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Abstract

In this thesis, I analyze the performance and usability benefits of broadcast-based
inter-core communication on manycore architecture. The problem of high communi-
cation cost on manycore architecture was tackled by a new architecture which allows
efficient broadcasting by leveraging an on-chip optical network. I designed the new
architecture and API for the new broadcasting feature and implemented them on a
multicore simulator called Graphite. I also re-implemented common parallel APIs
(barrier and work-stealing) which benefit from the cheap broadcasting and showed
their ease of use and superior performance versus existing parallel programming li-
braries through conducting famous benchmarks on the Graphite simulator.
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Chapter 1

Introduction

1.1 Motivation and previous work

As semiconductor technology advances, a single chip can contain more transistors.

Due to the power and heat problems on increasing clock cycles, the trend of advancing

computing power became putting more cores in a chip. Even a 64-core chip has been

available for server use. Although we are scaling the number of cores exponentially,

the performance return is sharply diminishing due to the cost of communication

among the cores.

In the shared-memory programming model, a parallel program which shares data

among cores needs to keep their caches coherent. On highly parallel programs, the cost

of cache coherence becomes important. Earlier architectures used a bus to transport

the cache coherence traffic, but it does not scale well due to contention and wire

length. There were some efforts to resolve the scaling problem by employing a point-

to-point network [8] and a mesh network [14].

To tackle the inefficiency of cache coherence on manycore architecture, a new

architecture with an on-chip optical network, called All-to-All Computing (ATAC),

was devised. [5, 12] The new architecture leveraging the on-chip optical network

accompanied with a novel cache coherence protocol called ACKwise, and achieved

higher performance than existing cache coherence system for manycore computers. [9]

Leveraging the same architecture, James Psota suggested new programming models,

13



which enabled higher performance for certain applications. [13]

1.2 Thesis scope

In this thesis, I have explored the benefits of exposing the on-chip optical network

to user applications directly, allowing the applications to broadcast a message among

cores efficiently. The existing ATAC architecture was modified to enable user-level

messaging, and an easy-to-use API (similar to MPI [6]) for the broadcast-based com-

munication was developed. To prove its performance benefits, common parallel pro-

gramming APIs (barrier and work-stealing) are re-implemented by utilizing the ben-

efits of the broadcast-based inter-core communication.

Chapter 3 provides an overview of the new architecture for efficient inter-core

broadcasting. Chapter 4 describes the performance model of the architecture, and

how I modeled it on Graphite. Modeling on Graphite was in two parts: modeling

functionality and modeling performance. Chapter 5 introduces the two usage ex-

amples: barrier and work stealing, and Chapter 6 shows their performance benefits

against existing platforms.
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Chapter 2

Background

2.1 On-chip optical network on ATAC [5]

Advances in optical communication technologies have enabled the integration of op-

toelectronic components with standard CMOS fabrication. [7] All-to-all computing

(ATAC), suggested by James Psota in [5], leveraged the optical communication tech-

nology to eliminate communication contention. ATAC uses Wavelength Division Mul-

tiplexing (WDM) to allow a single optical waveguide to simultaneously carry multiple

independent signals on different wavelengths. Also, the optical waveguide can trans-

mit data at a higher speed than its electronic counterpart. This capability virtually

eliminates the heterogeneous distance-dependent cost function for communication.

Figure 2-1 shows the process of sending a bit from one core to another. A mod-

sende receiveflip-flop flip-flop

filter

photodetector

filter/
modulator

modulator driver

data waveguide

wideband laser source

r r

Figure 2: Optical transmission of a single bit

guide and confine light by a combination of a high-refractive-index
material on the inside of the waveguide and a low-refractive-index
material on the outside (the cladding). Waveguides can be made
out of either silicon (Si) or polymer. Due to the fact that Si waveg-
uides can be packed onto a chip at much higher densities and that
modulators for Si can be made much more compactly, the ATAC
design employs Si waveguides. These waveguides can be manu-
factured in a standard CMOS process, as both the waveguide and
cladding materials are commonly used elsewhere. ATAC requires
waveguides with losses of less than 0.3dB/cm and total power ca-
pacity of about 10 mW, both of which are achievable with Si.

The optical filter is a ring resonator that couples only a specific
wavelength from the power supply waveguide to the data waveg-
uide. The exact wavelength, as well as the spacing between wave-
lengths, is determined by the ring resonator dimensions and is fixed
during manufacturing. Limited tuning can be achieved by chang-
ing the ring’s temperature or by injecting charge into the ring. The
modulator is an optical device that imprints a digital signal on the
light extracted by the filter by varying the absorption in the de-
vice. Modulators are used to translate an electrical signal (ampli-
fied by the modulator driver) into an optical signal, and can there-
fore be thought of as an “optical switch”, placing values onto op-
tical waveguides. The modulators are Ge based electro-absorption
modulators with integrated filters. The ring resonators are not used
for modulation but just for wavelength filtering. It is assumed that
athermal design [31] is implemented, so that the rings do not need
to be tuned. The modulators used in the ATAC design have char-
acteristics that are expected to be reached by designs available in
2012: insertion loss of 1dB; area less than 50 µm2; modulation
rate of 1 Gbps; energy required to switch less than 25 fJ; and power
consumption of 25 µW at 1 GHz [14].

At the receiving end of a waveguide, additional components are
used to receive the signal and convert it to an electrical signal. An
additional optical filter is used to extract light of a particular wave-
length from the data waveguide and transfer it to a photodetector.
The filter can be designed to extract any fraction of the total sig-
nal by adjusting the size of the gap between the waveguide and the
filter. The photodetector is an extremely sensitive optical device
which absorbs photons and outputs an electrical signal. The pho-
todetector proposed for ATAC has a responsivity of greater than
1 Amp/Watt and 3dB bandwidth performance at 1 GHz. It has
an area footprint of less than 20 µm2. Furthermore, the expected
capacitance of the photodetector is less than 1 fF [7]. In current
technology nodes, the output of the photodetector would need to be
amplified by a power-hungry TIA (transimpedance amplifier) be-
fore it could be used to drive a digital circuit. However, starting
with the 22nm node, the smaller transistor input capacitances will
allow the photodetector to directly drive a digital circuit, greatly
reducing power consumption.

Figure 2 puts all of these elements together, showing how one bit

is transmitted from a flip-flop of one core to a flip-flop of another
core. In this figure, the core on the left shows the components rel-
evant to sending and the core on the right shows the components
relevant to receiving; however, in the actual chip all cores would
contain both sets of components. From end to end, the process for
sending a bit on the ATAC’s optical network is as follows. The flip-
flop signals the modulator driver to send either a 0 or a 1. The mod-
ulator driver, which consists of a series of inverter stages, drives the
modulator’s capacitive load. The modulator couples light at its pre-
tuned wavelength λi from the optical power source and encodes
either a 0 or 1 onto the data waveguide. The optically-encoded
data signal traverses the waveguide at approximately one-third the
speed of light and is detected by a filter that is also tuned to wave-
length λi. Photons are detected by the photodetector and received
by a flip-flop on the receiver side. Note that Figure 2 shows where
a TIA would be needed to amplify the photodetector output, even
though it would not be necessary for an ATAC chip since ATAC
targets the 16nm technology node.

3. ARCHITECTURE OVERVIEW
As previously illustrated in Figure 1, the ATAC processor uses a

tiled multicore architecture combining the best of current scalable
electrical interconnects with cutting-edge on-chip optical commu-
nication networks. The ATAC architecture is targeted at 1000-core
chips implemented in a 16nm process. However, it can also be
scaled down to smaller chips. In this paper we describe and evalu-
ate 64- and 1024-core versions. We first review the baseline elec-
trical architecture, and then describe how it is augmented with the
optical interconnect.

The underlying electrical architecture consists of a 2-D array
of processing cores connected by a conventional point-to-point,
packet-switched mesh network (called the EMesh) like those seen
in other multicore processors [23, 12, 11]. Each core in ATAC
contains a single- or dual-issue, in-order RISC pipeline with data
and instruction caches (Figure 1(c)). ATAC uses a novel directory-
based cache coherence scheme with a portion of the directory in
each core (see Section 4).

To this electrical baseline, we add a global optical interconnect—
the ANet—based on state-of-the-art optical technology. Whereas
the EMesh is ideal for predictable, short-range point-to-point com-
munication, the ANet provides low-latency, energy-efficient global
and long-distance communication. The key component of the ANet
is the all-optical ONet shown in Figure 1(a). In the 1024-core
ATAC architecture (called ANet1024), cores are grouped into 64
“clusters”, each containing 16 cores. Each cluster contains a single
ONet endpoint called a Hub. The Hub is responsible for interfac-
ing between the optical components of the ONet and the electrical
components within a cluster. The ATAC architecture can be scaled
down by reducing the number of cores with each cluster. A 64-core
chip (called ANet64) would connect each core directly to a Hub.

In ANet1024, individual cores are connected to the Hub in two
ways: data going from a core to the hub uses the standard EMesh
(described above); data going from the Hub to the cores uses the
BNet, a small electrical broadcast network (Figure 1(b)). In the
22nm node, the clusters are small enough that a flit can travel from
the Hub to all cores in a cluster within one clock cycle. Because
the BNet is dedicated to broadcasts, it is essentially a fanout tree
and requires no routers, crossbars, or internal buffering. It requires
only a small amount of buffering and arbitration at the Hub and
receiving buffers at the leaves. We estimate that a BNet requires
less than one-eighth the area of a full EMesh of the same bitwidth.

The ANet1024 uses a 128-bit wide ONet (128 optical waveguides
for data); one 128-bit wide electrical EMesh; and two parallel 128-

Figure 2-1: Optical transmission of a single bit. [5]
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ulator is an optical component that writes 0 or 1 onto the network. Each core is

equipped with one modulator per bit statically tuned to a frequency that is dedicated

to that core. The modulator is controlled by a driver.

The optical signal is transmitted over a silicon waveguide at approximately one-

third the speed of light. The signals pass optical filters, each statically tuned for a

particular wavelength. The filtered signals are received by photodectectors.
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Chapter 3

Overview of all-to-all

communication (ATAC)

architecture

3.1 Architecture for all-to-all communication

The efficient broadcast-based all-to-all communication (ATAC) requires several sets of

hardware. Using optical network, hardware filtering, and message buffer, the fast and

efficient broadcast is realized. This section describes the architectural components for

the high performance broadcasting.

3.1.1 Broadcast on optical network

Broadcast-based inter-core communication leverages an optical network. Every core

on a chip is connected by a single optical network. Each core is assigned to use a spe-

cific frequency to broadcast a message over the optical network without interference.

Since different cores use different wavelengths to broadcast, there is no contention

between cores.

Although a core can send a message at anytime, it may receive messages from mul-

tiple cores at the same time. To guarantee delivery of a message to other cores, FIFO

17



Core 1

Core 2 Core 3

λ1 λ2 λ3 λn...

Optical 

Network

Message on wavelength λ2

Message on wavelength λ3

Hardware Message Filter

Figure 3-1: Diagram of optical network broadcast

queues, called lambda queues, are introduced for each core. Each core is equipped

with separate lambda queues for each wavelength (corresponding to the senders.),

and the queues are called lambda queues. A broadcast message arrives at the corre-

sponding lambda queue of its wavelength at each receiver core. (See figure 3-1)

3.1.2 Hardware message filtering

On our target manycore machine, the number of broadcast messages from all cores

would be too large to be processed by a core. To resolve the issue, hardware message

filtering is introduced. Each message arriving to a core is filtered through hardware

message filter set by user, so that only recognized messages are buffered in queue.

(See figure 3-1) The hardware filter simply consists of mask, bitwise operation, and

signature. The filter first masks bits of a message signature and performs bitwise

operations (and, or, xor) with the filter’s signature. A user may configure the filter of

a specific core by setting filter mask, operation and signature. To handle concurrent

message arrivals, there is a set of parallel filters for each wavelength. All filters on a

core share the same configuration.

18



3.1.3 Virtual channel and message buffer

To facilitate the use of new broadcast-based inter-core communication, channel-like

new API is introduced. A user may create a channel for a specific use, and restrict

a broadcast message to be delivered to only subscribing cores. Although channel-

like API is used, hardware only pads messages with a channel number. Thus, we

call it “Virtual Channel” meaning no real communication channels exist. A user

may create multiple virtual channels for different purposes. Broadcast or reception

of a message happens on a specific channel. (For detailed description of API, refer

Section 3.2)

For a quick retrieval of a message from user applications, message buffer organizes

and stores messages from all senders by virtual channel id. As shown in figure 3-2,

a controller loops around the lambda queues and transfers messages to the message

buffer layer which is organized by channel id. The data storage for message buffer

leverages regular memory hierarchy, which is expected to primarily utilize local caches.

3.2 Virtual channel interface for ATAC architec-

ture

A new channel-like API, called virtual channel, is introduced to ease the use of the

broadcast-based inter-core communication. A message broadcast on a virtual channel

is only delivered to its subscribers. In this section, the structure of a message encoding,

and the API of the virtual channel are described.

3.2.1 Structure of message

To support filtering and virtual channel, a broadcast message is wrapped with extra

information. In figure 3-3, the message has user tag, size of data, message signature

for filtering, virtual channel id, and wavelength.

19



Core 1

Core 2 Core 3

λ1 λ2 λ3 λn...

Message on wavelength λ2

Message on wavelength λ3

Hardware Message Filter

Controller

Message buffer on memory hierarchy

vc1 ...vc2 vcm

User Application

Filter configuration

New Hardware

Regular Core

Figure 3-2: Diagram of whole architecture

Size of Data

<32bit>

Data

<Variable Length>

Virtual Channel 

ID

<32bit>

Signature

<32bit>

Wavelength

<32bit>

Figure 3-3: Structure of message
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3.2.2 Virtual channel

Virtual channel is a new style of programming for inter-core messaging. This supports

fast contention-free broadcast messaging among cores. API for virtual channel is easy

to use: a user creates a virtual channel and spawn a virtual channel port on each

thread. Core API functions are shown below.

1 c l a s s VirtualChannel {

pub l i c :

3 s t a t i c VirtualChannel ∗ c r e a t e ( ) ;

i n t g e t i d ( ) ;

5 } ;

7 c l a s s VirtualChannelPort {

pub l i c :

9 VirtualChannelPort ( VirtualChannel ∗vc ) ;

bool r e c e i v e mes sage (Message& msg buf f e r ) ;

11 bool send message ( i n t payload byte , i n t message s ignature , i n t tag ) ;

bool s e t l o c a l f i l t e r ( i n t f i l t e r ma sk , i n t f i l t e r ma t ch op e r a t i o n , i n t

f i l t e r s i g n a t u r e ) ;

13 } ;

A user may create a virtual channel using the create method, which allocates an

unused virtual id (Channel id is not exposed to application for usability and security.)

To send and receive message, virtual channel port for a virtual channel should be

created on each core. The example of use is shown below.

1 VirtualChannel ∗vc1 ;

3 i n t main ( i n t argc , char ∗∗ argv ) {

vc1 = VirtualChannel : : c r e a t e ( ) ;

5 f o r ( i n t i = 1 ; i < num threads ; i++){

SpawnThread ( thread func , i ) ;

7 }

}

9
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void ∗ thread func ( i n t thread id ) {

11 VirtualChannelPort ∗vcp = new VirtualChannelPort ( vc1 ) ;

13 vcp−>send message ( payload byte = 1 , mes sage s i gnature = 1 , tag = 0) ;

15 Message msg ;

vcp−>r e c e i v e mes sage (msg) ;

17 p r i n t f ( ”msg : %s \n” , rank , msg . t o s t r i n g ( ) . c s t r ( ) ) ;

}

22



Chapter 4

Performance modeling on Graphite

simulator

To measure the performance of the new all-to-all communication architecture, I

adopted an open-source multicore simulator, called Graphite, which is developed

by MIT carbon research group. [10] The simulator models system performance and

power usage quite accurately. For this research, the simulator is modified to accom-

modate the new broadcast-based communication and model its performance. (Power

usage is not modeled.)

4.1 The performance model

The performance model for the all-to-all communication architecture is composed

of two big parts: message delay modeling and CPU cost modeling. When a core

broadcasts a message, it takes time to arrive at the message buffer of a receiver. The

latency of delivery comes from two parts: optical network latency (from sender to

receiver’s lambda queue) and controller transfer delay (from lambda queue to message

buffer.) This message delivery delay becomes important if a user application waits

for the message.

Other than the time delay for a message to be ready for retrieval, there is a pure

CPU cost for an application to take a message from a local message buffer.
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Component Cycles needed

Optical network transport 5
Controller transferring a message 10
Checking message buffer 3

Table 4.1: Default performance modeling parameters

(1) Transport delay = constant 5 cycles

Core 1

Core 2

λ1 λ2 λ3 λn...

Hardware Message Filter

Message buffer on memory hierarchy

vc1 ...vc2 vcm

User Application

(2) Controller transfer delay = depends on contention

Controller

(3) Check buffer cost = constant 3 cycles

Affecting availability of 

message

(1) Transport delay

(2) Controller transfer delay

Affecting CPU cycles

(3) Check buffer cost

Figure 4-1: Performance modeling components for ATAC architecture.
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4.1.1 Message delivery delay from optical network

The message’s delivery among cores happens over an optical network. As ATAC ar-

chitecture guarantees the contention-free broadcast by utilizing various wavelengths,

the transport latency over the optical network stays constant. According to the

specifications of the real optical network hardware, the latency is expected to be 5

cycles. [12]

4.1.2 Message delivery delay from controller transfer

Messages in lambda queues should be transferred to a message buffer before retrievals

by applications. A hardware controller loops around lambda queues and transfers a

message to the corresponding location in the message buffer. For the simplicity of

hardware design, the controller transfers only one message at a time. Thus, if many

messages arrive at local lambda queues, contention in the controller causes extra delay

of message delivery.

In our performance measurement, we assumed that the controller takes 10 cycles

to transfer a message. The contention delay among messages for this controller is

modeled by the Graphite’s contention tree shared-resource model, which is described

in Section 4.3.2.

4.1.3 CPU cost for retrieving a message from buffer

When a user application checks and retrieves a message from a message buffer, CPU

cycles are consumed. Similar to memory referencing, this cost depends on the pipelin-

ing algorithm of a core. In our experiment, we assumed constant 3 cycles to retrieve

data from a message buffer.

4.2 Key parts in Graphite

An open-source multicore simulator, called Graphite, is used to model performance

of ATAC architecture. The stock version of the simulator models multicore system
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Key Simulator Components

Physical Transport

Host Machine

MCP LCP

Target 
Core

Target 
Core

Target 
Core

Target 
Core

Host Machine

LCP

Target 
Core

Target 
Core

Target 
Core

Target 
Core

Host Machine

LCP

Target 
Core

Target 
Core

Target 
Core

Target 
Core 

11

Application Thread

Messaging 
API

Memory 
System

Target Network Model

Transport Layer

Figure 4-2: Graphite’s key simulator components: each target core has application
thread, messaging API, memory system, network model, and transport layer. [11]

performance quite accurately. The simulator was modified to support broadcast-

based communication and model its performance according to the model described

in section 4.1

Graphite is an application-level simulator based on dynamic binary translation,

which uses Intel’s Pin dynamic binary instrumentation tool. During Graphite’s sim-

ulation, an application runs natively except for new features or modeled events. For

such exceptions, Graphite traps the execution and models functionality and tim-

ing. [10]

For the new features or modeled events, Graphite simulator has three parts: inter-

nal functionality, performance modeling, and user interface. The first one, the internal

functionality portion, enables simulation of application code. The performance mod-

eling part models and counts CPU cycles by instructions. The last part, interface,

supports system API on Graphite simulation system (especially for instructions not

supported by popular modern architectures). [11]

4.3 How to model the performance on Graphite

To support broadcast-based communication, Graphite’s communication stack has

been modified. As shown in Figure 4-2, graphite has application thread, messag-

ing API, memory system, network model, and transport layers per core. Among

those layers, messaging API and network model layers were modified to support new
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ATAC features.

I leveraged Graphite’s network and transport models which can broadcast a mes-

sage and modified its performance model to reflect the correct ATAC cost model

described in Section 4.1.

4.3.1 Implementation of functionality on Graphite

To support the functionality of hardware filtering, lambda queues, and message buffer,

new components whose class names are filtered ingestor and message buffer are

created.

Filtered ingestor class incorporates the functionality of hardware filters and

lambda queues. The class takes a message from Graphite’s original network layer,

applys a hardware filter, and saves it to a lambda queue. As described in Section 3.1.1,

the message falls into a corresponding lambda queue with respect to its wavelength.

Message buffer class functions as a message buffer which organizes message by

virtual channel. This class is just a storage for messages and their latency information.

The calculated delay of a message is saved with the message itself to determine its

availability and CPU cycle cost if an application waits for it.

In addition to those two new components in Graphite, core and network are mod-

ified. The network layer is modified to support new features, such as checking avail-

ability of a message on the network layer of a core. Core is modified to support

hardware filter setting instruction and send/receive of a broadcast message (with

their cost calculations). Figure 4-3 lists the places where Graphite code is modified.

Graphite uses Intel Pin dynamic binary instrumentation tool. To support new

instructions (such as sending/receiving a message and setting hardware filter), the

Pin’s routine replace part should be modified. When routine replace finds match-

ing function calls from application code, it traps and replaces it with Graphite’s

internal code, so that the functionality and the cost modeling is handled by Graphite

instead of running natively. A user application can access interfaces under the

/common/user/ directory, but such function calls should be replaced by Pin before

it can reach Graphite’s internal codes.
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Figure 4-3: Locations of modifications on Graphite (.h header file is omitted in case
.cc file is in the list.)
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4.3.2 Performance modeling on Graphite

The performance model of ATAC architecture has three big parts as mentioned in

Section 4.1.

The message latency from the optical network stays constant. Since we lever-

aged graphite’s network layer, simply changing the network model of Graphite suf-

fices. Graphite comes with a “magic” network model, which assigns constant la-

tency to all messages. To use that model, configuration in the carbon sim.cfg file

should be changed: the value for network/user model 1 should be “magic.” Also

network model magic.cc file has to be changed to reflect the correct latency value.

The transfer delay from the controller is trickier to model. Graphite is an asyn-

chronous simulator, which allows time skew among target cores. This means that a

message whose arrival time is later may arrive before the message whose time is earlier.

This property poses a difficulty for modeling controller transfer delay, which varies

by contention. Because of such timing difficulties for shared resources, Graphite pro-

vides a tool, queue model, to estimate such contention delay from shared resources.

Especially, a history tree model is used in ATAC modeling; it stores utilization

history as sets of free intervals and computes delay by the distance from message

time and nearest available free interval. The detail of how the history tree works

is shown in pages 30-36 of the “model details” slide section in [11]. The calculated

controller transfer delay is then saved with the message to message buffer and used

when an application tries to retrieve the message.

Retrieving a message from a message buffer actually incurs CPU cycles on a target

core. This cost varies by all the latencies modeled. If the message is available when an

application checks a message buffer, it only costs three cycles. However, if a message

is not available, and the application waits for the message, extra cycles for wait time

is incurred (difference between current core time and message arrival time). To incur

correct cost, varying by situation, dynamic instruction should be used. The function

call of retrieval of a message is considered to be an instruction in Graphite. To support

this new instruction, a Check Buffer dynamic instruction is implemented. A core
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of graphite calculates the correct cost of a retrieval and queues the Check Buffer

dynamic instruction with corresponding cost. The queued instruction is handled by

the original Graphite system, which keeps target CPU time correct.

4.3.3 How to run simulation

Many common applications can run on Graphite. As long as an application is com-

patible with Graphite, it can also use ATAC architecture. To use broadcast-based

communication, a user has to include atac user.h. The APIs for ATAC features are

listed in Table 4.2.

One thing to be cautious about is that a user has to modify his/her code before

using ATAC features. Before calling virtual channel API functions, an application

must specify CAPI rank using CAPI Initialize and set a barrier across all cores using

ATAC features to make sure all threads are initialized with correct rank value. Most

parallel programs assign a thread to a core with sequential thread id. In such cases,

a user may simply use thread id as rank in Graphite.

After those changes, a user may run his/her application by following a standard

procedure to run an application on Graphite. [11]

As the user application finishes, the sim.out file includes additional performance

statistics: the number of messages received, the number of messages through con-

troller, and the average packet delay.
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VirtualChannel class
static
VirtualChannel*

create()
Creates a new virtual channel with new id assigned
automatically.

VirtualChannelPort class
Constructor VirtualChannelPort (VirtualChannel *vc)

Creates a new port for a virtual channel.
bool receive message (Message& msg buffer)

If there is a message corresponding to this VirtualChannel,
then it copies the message in msg buffer and returns true.
Otherwise, returns false.

bool receive message long (Message& msg buffer,
char* data buffer, int data size)
If there is a message corresponding to this VirtualChannel,
then it copies the message in msg buffer, copies data along with
message in data buffer and returns true. Otherwise, returns
false.

bool wait and receive message (Message& msg buffer)
Blocks until a message corresponding to this VirtualChannel
arrives, then it copies the message in msg buffer and returns
true. If it fails, returns false.

bool wait and receive message long (Message& msg buffer,
char* data buffer, int data size)
Blocks until a message corresponding to this VirtualChannel
arrives, then it copies the message in msg buffer, copies data
along with message in data buffer and returns true. If it fails,
returns false.

bool send message (int payload, int message signature, int tag)
Broadcast a message with the specified attributes through this
virtual channel. Returns true if succeed, false otherwise.

bool send message long (char* data, int data size, int
message signature, int tag)
Broadcast a message with the specified attributes and extra
variable length data through this virtual channel. Returns true
if succeed, false otherwise.

bool set local filter(int mask, int match operation, int signature)
Configure the hardware filter of a local core with the specified
attributes. Returns true if succeed, false otherwise.

Table 4.2: API of Virtual Channel and Virtual Channel Port

31



THIS PAGE INTENTIONALLY LEFT BLANK

32



Chapter 5

Applications of ATAC on parallel

programming APIs

The efficient broadcast-based messaging system of ATAC can be used in many appli-

cations to improve their performance. However, the modifying program to utilize the

new communication feature means extra work for programers. Thus, two commonly

used parallel programming APIs—barrier and work stealing— are re-implemented

by utilizing the broadcast-based messaging. Programmers may just replace existing

barriers or work stealing with new versions which utilize the efficient broadcast-based

communication.

5.1 Barrier

Barrier is a very popular parallel programming API. Every parallel programming

language or library comes with its barrier implementation for synchronization (names

may vary from barrier to synchronization). In fact, barrier is a very good example

where broadcasting helps a lot since every core has to know every other cores’ status.

The basic strategy of broadcast-based barrier is very simple: a core broadcasts out

its finish over a virtual channel, and waits for other cores’ broadcast messages until it

receives from all other cores. Since ATAC architecture saves messages until retrieval

(as long as correct filtering and virtual channel subscription are done before), a core
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Core 1 Core 2 Core 3 

Finished & wait 
Broadcast “core1 done” 

Finished & wait 
Broadcast “core2 done” 

Does nothing. Let queue to pile messages 

Finished & wait 
Broadcast “core3 done” 

Checks VC queue.  
Release as it received 2 
other broadcasts already. 

Continue to checks VC 
queue until receive N-1 
(=2) other broadcasts. 

Release 

Release 

Continue to checks VC 
queue until receive N-1 
(=2) other broadcasts. 

Figure 5-1: How broadcast-based barrier works.

can retrieve finish messages from all other cores regardless of order.

Figure 5-1 shows how broadcast-based barrier works. When a core finishes its job

and hits a barrier, it broadcasts out its finish and waits for messages from other cores.

As the count of messages reaches N − 1 (N is the number of threads), it exits the

barrier and proceeds.

API for this barrier is similar to that of Pthread, which is familiar to most pro-

grammers. For brevity, the broadcast-based barrier is named as a VC barrier (short

for virtual channel based barrier). Instead of the pthread barrier t instance, Bar-

rierMaster class functions as global reference to a barrier. A user has to initialize

an instance of BarrierMaster with a number of threads. After initialization, each

thread should generate a Barrier object using the generate barrier() function of an

instance of BarrierMaster. The user may put barrier.wait() where synchronization

is needed. A full list of API functions for VC barrier is in Table 5.1. A simple example

of barrier usage is the following.

/∗ Example o f VC ba r r i e r ∗/

2 Barr ierMaster ∗bm;
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4 i n t main ( i n t argc , char ∗∗ argv ) {

bm = new Barr ierMaster ( num threads ) ;

6 f o r ( i n t i = 1 ; i < num threads ; i++){

SpawnThread ( thread func , i ) ;

8 }

}

10

void ∗ thread func ( i n t thread id ) {

12 Bar r i e r ∗ ba r r i e r = bm−>g en e r a t e b a r r i e r ( ) ;

p r i n t f ( ”Before b a r r i e r \n” ) ;

14 ba r r i e r−>wait ( ) ; // Synchron izat ion po int .

p r i n t f ( ”After b a r r i e r \n” ) ;

16 }

BarrierMaster class
Constructor BarrierMaster (int number of threads)

Creates a new barrier master. This reserves a virtual channel
for barrier use.

Barrier* generate barrier ()
Generates a barrier access for the local core. This generates a
VirtualChannelPort internally.

Barrier class
void wait ()

Indicates synchronization point. Broadcasts its finish and
blocks until all other cores call wait() as well.

Table 5.1: API of broadcast-based barrier: BarrierMaster works as global barrier
object and Barrier class is an access point from a core.

5.2 Work stealing

Work stealing job distribution is supported in many parallel programing libraries

(TBB, Cilk++, MS PPL). Most such work-stealing implementations assume that

there is exactly one work queue per thread. [4] They first try to retrieve a work from
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their own local queue. If the queue is empty, they try to steal from queues in other

cores. A difficulty comes from figuring out which queues to look in; scanning queues

serially for work is very expensive and may cause a serious contention among threads

looking for work.

At this point, there is an opportunity to improve performance using the cheap

broadcasting ability: we can utilize the cheap broadcasting to figure out which core

is most appropriate as a victim.

Two different prototypes for the new work-stealing system are implemented. The

basic strategy is the same for all implementations; a thread with low or empty lo-

cal queue broadcast out “request to share work” and other cores with enough work

respond to the message. The ways of resolving contention while dequeuing a work

among the local core and remote cores are different for the two implementations.

The first version is similar to existing ones: double-ended queue with mutex is used

for each local queue, and remote thieves compete to grab the mutex of a victim.

The second version is a bit more complex; it does not have any mutex, and uti-

lizes compare-and-swap on an item in a queue. In this version, the owner of a local

queue actively suggests a particular item on its queue to thieves, and the thieves may

dequeue items in parallel without any contention.

Table 5.2 lists user API functions for the work-stealing systems. The API is a

wrapper interface for the various implementations described above. Similar to virtual

channel and barrier, a user has to create a DWorkPileMaster instance first, and

DWorkPile which serves as an access point for a local queue and the whole system.

5.2.1 Double-ended local queues with mutex implementation

for work stealing

In this version of work-stealing implementation, each core has a double-ended queue

with a mutex. (See Figure 5-2.) All local accesses (put or get) are made through the

top end of local queues, and remote steals of jobs are through the bottom end of the

queues.
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DWorkPileMaster class
virtual
DWorkPile*

generateLocalWorkPile ()
Creates a new local workpile instance for the caller core.

DWorkPile class
virtual
IWorkTask*

get ()
Fetches a task. It may retrieve the task from the local queue or
a remote queue (by stealing).

virtual void put (IWorkTask* task to push)
Pushes a task into local work queue.

virtual void process pending request ()
Processes requests from other cores which need more work.

virtual void update filter ()
Updates filter setting according to current local queue size.

virtual void finish (int num threads)
Broadcasts out the finish of the whole application.

Table 5.2: API of broadcast-based work-stealing system: this list is general user inter-
face for work-stealing system, which is composed of two virtual classes: DWorkPile-
Master and DWorkPile. The two virtual classes are implemented in various versions,
using different algorithms.

When a core lacks jobs to process, it broadcasts out a “request to share work”.

Cores with enough work to share may respond to the request with an offer to take

jobs. The thief who wants more work chooses jobs to steal among the offers from other

cores. To transfer the jobs, the thief must grab the mutexes of their owners, which

marshal concurrent dequeue trials from multiple thieves. These steps are displayed

in Figure 5-3.

Since thieves broadcast out their requests, piling of the request messages may

burden too much overhead for responders. The hardware filtering is used to reduce

such overhead. A core changes its hardware filter according to its number of remaining

jobs; the filter is set to accept messages if there are too many jobs in the queue, and

it is set to decline if there are too few. For the moderate number of jobs to process,

filter is set probabilistically by the function in Figure 5-4.
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Figure 5-2: Local work queue for a double-ended queue with mutex version.
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Figure 5-3: Steps of sharing jobs between threads.
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5.2.2 Parallel stealing with compare-and-swap implementa-

tion for work stealing

In this version of work-stealing implementation, each core has a queue without any

mutex. (See Figure 5-5.) All local accesses (put or get) are made through the bot-

tom end of local queues, and remote steals of jobs are made in parallel. This is a

bit complex mechanism: a victim responds to a request to share work by memory

addresses of jobs offered, and remote thieves may concurrently steal jobs from the

victim. Taking a job (either steal or local get) is done by by trying compare-and-swap

(CAS) on the item (specifying the address for the job) in queue; if it succeed, the

CAS reset the item as 0, meaning job is taken.

The assignment of jobs to be offered is made only by the owner of the jobs. As

shown in Figure 5-6, the owner (victim) keeps an index value, assigner, to keep

track which jobs are offered to thieves already. The assigner starts from the top end

(the opposite to local accesses) and loops the queue until a critical region which is

exclusively reversed to be processed locally, which ensures that unnecessary overhead

is avoided.

When a core lacks jobs to process, it broadcasts out a “request to share work”.

Cores with enough work to share may respond to the request with an offer to take

jobs. The thief who wants more work chooses jobs to steal among the offers from

other cores. To transfer the jobs, the thief tries a compare-and-swap operation to

reset the original job as 0, which guarantees only one thief or owner takes the job and
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Figure 5-5: Local work queue for a parallel stealing with CAS version.

process it. These steps are displayed in Figure 5-6.

In this scheme, remote steals doesn’t directly shrink the size of queue, and just set

values of queue items as 0 instead. To resolve the increasing size of queue, assigner

acts like a garbage collector: when it loops the queue, the assigner checks whether

the value of items are 0. If it is, it removes the taken item from the queue.
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Chapter 6

Performance benchmark of ATAC

parallel programming APIs

The two commonly used parallel programming APIs—barrier and work stealing—

are benchmarked on many-core architecture. The performance of common applica-

tions was greatly improved by simply replacing existing APIs with new ones, and

the effect grows as the number of cores on a chip increases. This finding proves the

common performance benefit of ATAC architecture on manycore systems.

6.1 Barrier

First, barrier is micro-benchmarked by measuring time for loops with barriers inside.

Secondly, an application called Streamcluster, which is a part of PARSEC

benchmark suite, is benchmarked. PARSEC is short for Princeton Application Repos-

itory for Shared-Memory Computers, a benchmark suite designed for shared-memory

parallel computing performance. [1, 3, 2] PARSEC is a very renowned as a benchmark

for shared-memory parallel computing.

All benchmarks were performed on the Graphite simulator for a fair comparison.

Graphite is configured to have at most 64 target cores, power modeling off, and a lax

clock skew minimization strategy. Each target core is set to run at 1GHz with 4-way

associative 32KB of L1 dcache whose access time is 1 cycle. The user messaging
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network among cores is set to use the magic model (to reflect the cost of the ATAC

model in 4.1). Additionally, the number of cycles required to transfer a message

through a controller is set to 10, and retrieving a message from a message buffer is

set to take 3 cycles unless mentioned otherwise.

The Graphite simulation was hosted on a dual quad-core Intel(R) Xeon(R) X5460

@ 3.16GHz system with 8GB of DRAM. The system ran Debian Linux with kernel

version 2.6.32-5. Only one process on a machine was used for a benchmark to avoid

issues in Graphite and obtain more accurate results.

6.1.1 Barriers in a loop

To purely measure the cost of barriers, timing a loop of barriers is used. A for-loop

with a just barrier wait call inside is used. To compare the performance of barriers

against existing implementations, Pthread barrier and sense-reversing barrier are

selected as baselines.

The example code for the VC barrier benchmark is in below. Benchmark codes

for Pthread and sense-reversing barriers are similar.

/∗ Bar r i e r in loop benchmark ∗/

2 c a r b on ba r r i e r t r ank ba r r i e r ;

Barr ie rMaster ∗bm;

4 i n t NUMLOOPS = 1000 ;

6 i n t main ( i n t argc , char ∗∗ argv ) {

bm = new Barr ierMaster ( num threads ) ;

8 f o r ( i n t i = 1 ; i < num threads ; i++){

SpawnThread ( barr ier InLoop , i ) ;

10 }

}

12

void ∗ barr i e r InLoop ( i n t thread id ) {

14 CAPI In i t i a l i z e ( thread id ) ; // I n i t i a l i z a t i o n f o r Graphite

Bar r i e r ∗ ba r r i e r = bm−>g en e r a t e b a r r i e r ( ) ;

16 CarbonBarrierWait(& rank ba r r i e r ) ; // I n i t i a l i z a t i o n f o r Graphite
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f o r ( i n t loop = 0 ; loop < NUMLOOPS; loop++) {

18 ba r r i e r−>wait ( ) ; // Synchron izat ion po int .

}

20 }

The end-to-end runtime of the micro-benchmark is displayed in Figure 6-1. The

graph shows the exponentially increasing runtimes of the simple sense-reversing

barriers. The Pthread barrier does a better job than the sense-reversing one with

a higher number of cores. The barrier using the virtual channel for broadcasting

outperform other barriers with a high number of cores. Even for a machine with four

or more cores, the virtual channel barrier does a better job.
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Figure 6-1: End-to-end runtime of a loop of 1000 barrier waits: left graph shows all
data including 32 and 64 cores. Full graph on the left shows exponentially increasing
synchronization cost, and superb performance of virtual channel barrier. Graph
on the right shows virtual channel barrier is good at smaller number of cores as
well.

In addition to the end-to-end runtime measurement, the performance of each

barrier wait is measured as well. The time span from the entrance of the last thread

into barrier wait to the moment when the last thread exits barrier is called exit

latency. Since the latency of an ideal barrier is zero, the exit latency is considered as

a pure synchronization cost.

In Figure 6-2, the median values of measured exit-latency are displayed. The trend
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of exit latency values are very similar to the end-to-end measurement in Figure 6-1,

which proves the superb performance of virtual channel Barrier.
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Figure 6-2: Median of exit-latency of barriers for a 1000 loop benchmark:

6.1.2 Streamcluster application in PARSEC benchmark suite

Streamcluster application in PARSEC benchmark suite tests the performance of

an architecture for approximating the optimal clustering of a stream of data. It is

a machine learning application with coarse-granular parallelism with a static load-

balancing. This problem is representative of everyday use application since clustering

is very widely used in many fields like a network security or pattern recognition, and

many uses like real-time fraud detection have a continuous stream of data instead of

data set.

The implementation of Streamcluster is divided into three repeating steps: get

block, cluster locally, and consolidate centers. The application need to synchronize

every loop to proceed. PARSEC provides a Pthread implementation, which provides

a good baseline for our virtual channel barrier. For experiment, the existing Pthread

barriers in Streamcluster are replaced with sense-reversing barriers and virtual chan-

nel barriers.

Figure 6-3 shows the end-to-end runtime of Streamcluster with Pthread, sense-

reversing, virtual channel versions of barriers.
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Figure 6-3: End-to-end runtime of Streamcluster with simtest input size: left
graph shows all data including 32 and 64 cores. Full graph on the left shows expo-
nentially increasing synchronization cost, and superb performance of virtual chan-
nel barrier. Graph on the right shows virtual channel barrier is good at smaller
number of cores as well.

As in the barrier-in-loop application, the exit latency values are measured to gauge

the performance of each barrier wait1.

In Figure 6-4, the median values of measured exit-latency are displayed. The trend

of exit latency values are very similar to the end-to-end measurement in Figure 6-3,

which indicates the superb performance of virtual channel Barrier.

6.1.3 Robustness test of ATAC architecture model

The benchmark results in Section 6.1.2 and 6.1.1 are based on the performance

model defined in Section 4.1. Although the results support the claim that the ATAC

architecture and virtual channel barrier outperform the existing ones, the correctness

of the claim is still contingent with the validity of the performance model.

To strengthen the claim that the virtual channel barrier is much better, the per-

formance measurements of the two applications are collected with much worse as-

sumptions on the ATAC performance model.

Section 4.1 introduced the default assumptions on the ATAC performance model:

(1) transport delay = 5 cycles, (2) Cycles to transfer though a controller = 10 cycles,

1Exit latency is a time span from the entrance of the last thread into a barrier to the moment
when the last thread exits the barrier.
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Figure 6-4: Median of exit-latency of barriers for Streamcluster with simtest input
size:

and (3) check buffer cost = 3 cycles. For this robustness test, each parameter is

changed to a more harsh value, and the end-to-end runtime is measured.

Figure 6-5 shows the effects of the worse parameters on end-to-end runtime of the

barrier-in-loop application. In the three graphs, the leftmost point is the default value

in Section 4.1, and x-axis is log10 scale. It is found that the virtual channel barrier

is quite resistant to all three parameters. Especially, optical network transport delay

can increase up to 200 cycles without sacrificing the application performance. (Even

20000 cycles of the delay just doubles the runtime.) For controller transfer delay,

values up to 200 cycles give comparable performances. Check buffer cost directly

increases the runtime, but it is not the biggest factor.

On the other hand, Figure 6-6 shows the effects of the worse parameters on the end-

to-end runtime of Streamcluster application. Again, the leftmost point is default value

in Section 4.1, but x-axis is now in linear scale. It is found that the virtual channel

barrier is still quite resistant to all three parameters. Still, high optical network

transport delay does not increase the end-to-end runtime of Streamcluster. For the

controller transfer delay, values up to 200 cycles still give comparable performance.

Check buffer cost again directly increases the runtime, but it is not the biggest factor.
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6.2 Work stealing

Work stealing is benchmarked by measuring time for a consuming distributed work.

Since our work stealing implementation targets 64 cores with sacrifice on overhead,

work stealing is benchmarked only on 64 core architecture.

6.2.1 Synthetic benchmark with distributed simple work tasks

To benchmark the performance of our work stealing implementations, we measured

the time spent to consume all work in queues. Since the initial distribution of work

largely affects the runtime, the benchmark is performed with five different types

of initial distributions: total skew, half, even, quarter, and random. Total skew
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Figure 6-7: Initial distribution of work for synthetic benchmark: for random distri-
bution, illustrated value is just an example.

distribution puts all work on a core, and rest has nothing initially. For the half and

quarter distributions, half or quarter of cores have an even work distribution. Random

distributes work randomly from normal variable. These distributions are illustrated

in Figure 6-7

The work item for the benchmark is a combination of dummy floating point op-

erations. Each work is set to consume about 0.12 mills on Graphite’s target core.

This size shows a good balance to show both communication cost and work running

time. (If the work size is too large, the difference in communication costs of various

implementations becomes unnoticeable. Too small work size will mislead to zero work

sharing.)

For the baseline of this benchmark, I developed additional two implementations

for work stealing. First implementation has work queue style (modeling Java work

queue), which has only one global work queue with a global mutex. Second one

models the the Cilk style work stealing implementation which has work queues for

every core and randomly picks a core to steal work from. [4]

This benchmark result shows how broadcasting helps choose a victim efficiently.

In Cilk style work stealing, a thief randomly picks a victim without any knowledge of
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Figure 6-8: End-to-end runtime of work-stealing synthetic benchmark.

which core is more willing to share, and the style suffers when there is a huge skew

in the distribution of work.

Figure 6-8 shows the end-to-end runtime of the benchmark. The performance of

the virtual channel compare-and-swap (VC-CAS) version (described in Section 5.2.2)

is outstanding for total skew, half, and quarter. All of the distributions where VC-

CAS outperform others have idle cores at the beginning, and work needs to be dis-

tributed. Cilk-style random stealing version has a slight advantage for even and

random distributions where jobs are distributed quite evenly since they do not in-

cur communication overheads. The performance of the virtual channel double-ended

queue with mutex version (described in Section 5.2.1) is little worse than that of

VC-CAS. Java-style global queue version relies only on cache coherence protocol and

global mutex, it performs generally worse than other versions where each core has its

own queue. The work queue version does best for total skew distribution, but this

extreme distribution is not expected to appear in real applications much.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Through this project, we have designed and implemented a novel architecture for

broadcast-based inter-core communication on manycore systems. As a result of the

advances in on-chip optoelectronics, a cheap broadcasting of a message became possi-

ble. Our design of the architecture allows a user application to broadcast and receive

a message efficiently with an easy-to-use API, called Virtual Channel. This architec-

ture is implemented on a Graphite simulator, which provides an accurate modeling

of system performance.

To prove the benefits of the architecture, two commonly used parallel program-

ming APIs are re-implemented in a way that utilizes the cheap inter-core broadcast-

ing ability. The first one, barrier, outperformed existing implementations (especially

Pthread) with much simpler algorithm than theirs, proving the ease-of-use and per-

formance of our architecture. Second parallel programming API, work stealing, per-

formed better than other existing strategies when there is an actual imbalance of job

distribution.
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7.2 Future work

7.2.1 Benchmark work stealing with real applications

Due to the difficulty in finding famous and good benchmark for work stealing, only a

synthetic benchmark was conducted. The difficulty was finding a benchmark which

fits well with work stealing and is compatible with Graphite simulator. Since Graphite

simulator only supports Pthread API for threaded programming, many benchmarks

running on other platforms had to be excluded.

Recently, we found a good matching benchmark: Dynamic Graph Challenge devel-

oped by Dan Campbell in Georgia Tech. We hope to run this problem as benchmark

for our work stealing implementation very soon.

7.2.2 Running real parallel programming platforms as base-

lines

Instead of synthesizing baseline implementation according to existing algorithms, con-

ducting benchmark directly with existing parallel programming platforms is preferred.

We are now investigating on running Cilk++ on Graphite to benchmark its work

stealing implementation as a new baseline.
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