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Abstract

In this thesis, I study the effect of adding in-line oscillation to heaving and pitching
foils using a power downstroke. I show that far from being a limitation imposed by the
muscular structure of certain animals, in-line motion can be a powerful means to either
substantially augment the mean lift, or reduce oscillatory lift and increase thrust.
Additionally, I show that the use of a model-based optimization scheme, driving a
sequence of experimental runs, allows the ability for flapping foils to tightly vector and
keep the force in the desired direction, hence improving locomotion and maneuvering.
I employ Particle Image Velocimetry (PIV) to visualize the various wake patterns of
these foil trajectories and a force transducer to evaluate their performance within a
towing-tank experiment.

Thesis Supervisor: Michael Triantafyllou
Title: Professor of Mechanical and Ocean Engineering

3



4



Acknowledgments

Principally, I would like to thank my advisor Professor Michael Triantafyllou for his

valuable guidance throughout my graduate studies. Professor Gabriel Weymouth also

acted as an additional voice of experience in hydrodynamics and provided access to

his Lilypad CFD code.

Additionally, my lab group in the MIT Towing Tank Group gave thoughtful feed-

back, both in official meetings and over innumerable lunches: Heather Beem, Jeff

Dusek, Audrey Maertens, Haining Zheng, James Schulmeister, Amy Gao, Stephanie

Steele, and Dilip Thekkoodan. Heather, Jeff, and Stephanie were especially patient,

teaching me how to conduct experiments in the Towing Tank while putting up with

my questions and mistakes.

This project was partly developed through a collaboration with the SMART-

CENSAM institute in Singapore, and our colleagues there also supported me and

allowed use of their facilities.

I am also indebted to my friends and family, who helped me when I needed it most.

My parents Terry and David, and brothers Joe and Adam, were always understanding

and willing to listen.

And a special thanks goes to Leah Mendelson, who did an amazing job both

keeping me sane off-campus and sometimes debugging my research on-campus.

5



6



Contents

1 Introduction 21

1.1 Biological Examples of In-Line Motion . . . . . . . . . . . . . . . . . 21

1.2 Experimental Flapping Foil Actuators . . . . . . . . . . . . . . . . . . 23

1.3 Chapters Overview and Trajectory Descriptions . . . . . . . . . . . . 25

2 2D Unsteady Foil Theory Background 27

2.1 Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Foils and the Kutta Condition . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Foil Flutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Delayed Stall Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Flapping Foil Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Materials and Methods 39

3.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Parametrization of the flapping motion . . . . . . . . . . . . . . . . . 41

3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Foil Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Propulsive Efficiency . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Force Quality: Effectiveness of Controlling Force Direction . . 45

4 Experimental Results 47

4.1 Trajectory I - Symmetric Flapping Profile . . . . . . . . . . . . . . . 47

7



4.2 Trajectory II - Forward Moving Downstroke to Augment Transverse

Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Trajectory III - Backwards Moving Downstroke to Augment Thrust

Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 CFD Simulated Control Solution 53

5.1 CFD Methodology - Lilypad . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Control Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Trajectory IIIb - Closed-Loop Lift Control . . . . . . . . . . . . . . . 57

5.4 Lift Control Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Optimization and Flapping Parameter Design 61

6.1 Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Theoretical Model Used in the Optimization . . . . . . . . . . . . . . 63

6.3 Optimization Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Optimization Results Based on the Theoretical Model . . . . . . . . . 67

7 Optimization Results Using Experiments 71

7.1 Optimized Trajectory IV - Intended Cx = 1 Cy = 0 . . . . . . . . . . 71

7.2 Optimized Trajectory V - Intended Cx = 0 Cy = 2 . . . . . . . . . . . 74

7.3 Optimized Trajectory VI - Intended Cx = 1 Cy = 4 . . . . . . . . . . 76

8 Conclusions and Future Work 81

8.1 Force Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Characteristic Wakes . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.3.1 Real-Time Force Control . . . . . . . . . . . . . . . . . . . . . 84

8.3.2 Three-Dimensional Effects . . . . . . . . . . . . . . . . . . . . 84

8.3.3 Applications on a Flapping Foil Vehicle . . . . . . . . . . . . . 84

A Wake Visualization on Trajectories I,II, and III 87

8



List of Figures

1-1 Comparison of Symmetric, Forward In-line, and Backwards In-line -

Various biological examples are able to change the direction of flapping

foil force, simply by changing the orientation of flapping relative to

oncoming flow. This degree of freedom, the stroke angle, is usually ig-

nored in experimental flapping foil studies, where the foil is constrained

to flap only perpendicular to the flow. . . . . . . . . . . . . . . . . . 22

1-2 Using the Stroke Angle for Force Control - Experimentally measured

force profile of a maneuver where the stroke angle is changed from a

bird-like trajectory with a large transverse force coefficient Cy, to a

turtle-like trajectory with all in-line force Cx. The instantaneous fluid

force on the foil is indicated by the red arrows, while the transition

flapping cycle is indicated by the gray region. Averaged over 8 tri-

als, filtered at 5 Hz with a 5th order low-pass Butterworth filter, as

described in Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-1 Kutta Condition and Wake Vorticity - An airfoil has some bound circu-

lation to enforce the Kutta condition at the trailing edge. Any bound

circulation must be accounted for by vortices in the wake of opposite

circulation (adapted from [21]). . . . . . . . . . . . . . . . . . . . . . 30

9



2-2 Wagner Function - A flat plate impulsively started at velocity U will

create a starting vortex that affects the instantaneous lift. The above

figure illustrates the ratio between the instantaneous lift and steady

state lift, as a function of chord lengths of travel. Taken from Anderson

et al. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2-3 Theodorsen Transfer Function - An oscillating foil of small amplitude

will have its lift the output of a transfer function C(k) = F (k)+ iG(k),

where the input is the quasi-steady lift. Note that at low and high

frequencies, the phase is zero. Taken from Theodorsen [32]. . . . . . 32

2-4 Delayed Stall - Numerous lift transients exist as a foil is impulsively

started beyond its stall angle. The initial and final peaks indicate

the added-mass forces from the foil accelerating, while the slow lift

decay at higher angles of attack indicate the delayed stall. Taken from

Dickinson and Gotz [5], at Re = 192 with 4.5◦ steps. . . . . . . . . . 33

2-5 Leading Edge Vortex - A leading edge vortex (LEV) forming above a

bio-inspired mechanical batoid wing. Taken from Koekkoek et al. [13]. 34
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Chapter 1

Introduction

Most fast-swimming fish undulate their caudal fins in a symmetric fashion, with equal

force generation from both the upstroke and downstroke of the fin. In contrast, other

animals such as turtles and birds, flap their fins and wings in an asymmetrical fashion.

This asymmetry typically involves a powerful downstroke with large fluid forces and

a ‘feathering’ upstroke with little force. Additionally, the flapping motion of the fin

or wing is not purely transverse to the direction of motion of the animal, but also

involves a strong oscillatory component parallel to its motion.

1.1 Biological Examples of In-Line Motion

There are major differences in how the in-line component is employed in different

animals: In turtle swimming, the flipper is moved both perpendicular to the flow,

as in a traditional symmetric flap, but also substantially parallel to the flow in the

downstream direction (Fig. 1-1). This behavior has been noted in unrestrained

swimming turtles, such as Chelonia mydas [4, 15], and also in mollusk labriform

swimmers such as Clione limacina [29]. The significant motion parallel to the flow,

or in-line motion [15], rotates the instantaneous flow over the flipper, orienting the

downstroke lift to produce thrust rather than a transverse force. In addition, the

angle of attack profile is further varied to obtain a powerful downstroke and weaker

upstroke, creating a highly asymmetric flap that averages to a net thrust with little

21
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Figure 1-1: Comparison of Symmetric, Forward In-line, and Backwards In-line -
Various biological examples are able to change the direction of flapping foil force,
simply by changing the orientation of flapping relative to oncoming flow. This degree
of freedom, the stroke angle, is usually ignored in experimental flapping foil studies,
where the foil is constrained to flap only perpendicular to the flow.

instantaneous transverse force. Previous experiments in Licht et al. [15] have found

that this mode of actuation generates less thrust, but can actually improve efficiency

while mitigating the transverse force oscillation.

Birds also exhibit significant in-line motion, but instead direct their flaps for-

wards during the power downstroke, i.e. in the upstream direction (Fig. 1-1), thus

augmenting the transverse force. Tobalske and Dial note that pigeons, magpies, and

hummingbirds control their in-line motion as a function of airspeed, which they define

using a stroke angle [34, 33]. Substantial upstream in-line motion helps support the

weight of the bird at low speed; however, at high speeds the in-line motion is reduced

since weight is constant while lift scales with the square of velocity [33]. In-line mo-

tion also varies strongly with flight speed in bats [16], a group with a very different

evolutionary history than birds.
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1.2 Experimental Flapping Foil Actuators

Symmetrically flapping foil actuators, inspired by animal flight and swimming, can

be used to generate both thrust and lift, and can be hydrodynamically efficient;

experiments have reported thrust efficiencies up to 80% [1, 22]. Introducing a bias in

the angular motion causes the development of steady lift, in addition to thrust, hence

enabling maneuvers [23, 27]. The oscillatory transverse forces that develop due to

the unsteady flapping motion, however, constitute a disadvantage of such propulsors,

in analogy to the rolling moment and breaking of symmetry introduced by rotating

propellers.

Licht et al. [15] showed that in the case of a turtle, the in-line oscillatory motion

causes the fin force to have a large in-line component and a small transverse com-

ponent, which is ideally-suited for a neutrally buoyant animal in order to minimize

transverse oscillations. Equally important, it was shown that its propulsive efficiency

is equal or better than that for a symmetrically flapping foil (without in-line oscilla-

tory motion).

Licht et al. [15] showed further in bird-like flapping, the inline motion during

the powerstroke is in the opposite direction than that of the turtle, which results in

substantially increased lift and serves to support the weight of the bird. As noted

already, as the forward speed increases, a bird reduces the amplitude of its in-line

motion, because the lift force scales with the square of the speed while its weight

remains constant.

Hence, the added complexity of superposing an in-line oscillatory motion to a flap-

ping foil is compensated by the ability to better control the direction of the produced

forces to suit the function of the particular animal, without sacrificing propulsive

efficiency. Such directional control ability is also very important for maneuvering,

especially when the animal must execute a sharp change of direction. In contrast, a

symmetrically flapping foil always produces large transverse oscillatory forces, whose

effect may be reduced by averaging out when in steady translation, but not when in

transient motion, thus posing serious limitations in force direction control.
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force Cx. The instantaneous fluid force on the foil is indicated by the red arrows,
while the transition flapping cycle is indicated by the gray region. Averaged over 8
trials, filtered at 5 Hz with a 5th order low-pass Butterworth filter, as described in
Chapter 3.

Fig. 1-2 illustrates an example of a changing stroke angle to improve the force per-

formance of a flapping foil. In this experiment, the foil is oscillated upstream during

the first downstroke, and downstream during the third and fourth downstrokes. The

mean force coefficients change from a large transverse force to all in-line force, using

a single transition cycle to smooth the different motion trajectories. Such a control

scheme could be used on a flapping foil vehicle to provide augmented maneuverability

on the timescale of individual flapping cycles.

In this thesis I explore the possibility of enabling tight force control through

optimization of the in-line motion of asymmetrically flapping foils. I show through a

series of experiments on a high aspect ratio foil that both thrust and lift force can be

controlled through in-line motion optimization. The use of active motion control can

further enhance the performance of asymmetrically flapping foils, hence providing a

prime means for tight force control that can significantly improve maneuverability.
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1.3 Chapters Overview and Trajectory Descrip-

tions

I explore the effect of the in-line motion parameters, starting with the symmetrically

flapping foil and then proceeding with various shapes of in-line forcing, emulating

the flapping motions of birds and turtles. I present results in detail of seven different

motion trajectories, enumerated in Table 1.1.

Trajectory Name Stroke Angle Strouhal Number AoA Profile

Trajectory I
No In-line Motion

β = 90◦ St = 0.3 Sinusoid - max 25◦

Trajectory II
Upstream In-line

β = 45◦ St = 0.3 Cosinusoid - max 25◦

Trajectory III
Downstream In-line

β = 135◦ St = 0.3 Cosinusoid - max 25◦

Closed-Loop IIIb
Downstream In-line

β = 135◦ St = 0.3 Closed-Loop Control

Optimized IV
Mean Cx=1 Cy=0

β = 135◦ St = 0.48 Optimized

Optimized V
Mean Cx=0 Cy=2

β = 57◦ St = 0.28 Optimized

Optimized VI
Mean Cx=1 Cy=4

β = 59◦ St = 0.5 Optimized

Table 1.1: Motion Trajectories

Chapter 2 gives a historical overview of the fundamental fluid dynamics of flapping

foils. The chapter briefly covers potential flow, foils, delayed stall effects, and unsteady

foil theory.

Chapter 3 explains the experimental apparatus used to test these in-line motion

flaps, located in the MIT Towing Tank laboratory. These experiments measure the

force and moments generated by the flapping foil, as well as visualize the wake using

Particle Image Velocimetry (PIV). This chapter also describes the motion definition

of the foil trajectory, as well as the different metrics used to judge the quality of the

foil force performance.

Chapter 4 details the experimental results from the first three trajectories in Table
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1.1. These three trajectories give an initial pass on the utility of in-line motion, as well

as the necessity of additional techniques to mitigate unwanted forces from unsteady

fluid effects.

Chapter 5 illustrates one solution to mitigating unwanted fluid forces, using a

control scheme to change the foil angle of attack to remove the force disturbances. The

control solution is implemented in a CFD solver developed by Weymouth et al. [39].

The control solution does successfully mitigate the unwanted fluid forces; however,

implementing a real-time control in the actual experiment was deemed unfavorable

when compared to an optimization-based design approach. This chapter discusses the

force performance of Trajectory IIIb, a force-controlled version of the experimental

Trajectory III (Table 1.1).

Chapter 6 gives an overview of an optimization routine used to design in-line

motion trajectories with excellent force performance without the need for a real-time

controller. The optimization employs a nonlinear fluids model, using the SNOPT

algorithm developed by Gill et al. [7].

Chapter 7 illustrates how the optimization routine can be used to make incre-

mental corrections on experiment results, using the theoretical model developed in

Chapter 6. Three flapping trajectories, Optimized IV, V, and VI from Table 1.1,

are designed using this method. The force performance of these final trajectories are

discussed, along with visualizations from their wakes.

Chapter 8 concludes the thesis and places the results of the optimization routine

back into the larger context of flapping foils.
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Chapter 2

2D Unsteady Foil Theory

Background

This chapter goes over the fundamental theory of unsteady foils in potential flow,

along with more recent developments in flapping foil propulsors.

2.1 Potential Flow

The classic Navier-Stokes equation governing fluid flow describes the forces on a point

in the fluid, essentially acting as Newton’s Second Law:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + Fg (2.1)

Where v is the fluid velocity vector at a fixed point in space, ρ is the fluid density,

p is the pressure, µ is the fluid viscosity, and Fg is the gravitational force. The left side

indicates the acceleration of the fluid, while the right side indicates the three main

forces: a pressure (or inertia) force, a frictional force from viscosity, and gravity.

In most subsonic foil problems, the fluid is modeled as incompressible, meaning

that the divergence of the velocity vector must be zero to conserve mass:

∇ · v = 0 (2.2)
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Additionally, for most applications of foils, the Reynolds number is much larger

than 1, usually on the order of multiple thousand:

Re =
ρUL

µ
� 1 (2.3)

The Reynolds number gives an approximation of how important the pressure

term is compared to the friction term in the Navier-Stokes Equation (Eqn 2.1). We

can therefore ignore the viscous term µ∇2v, leading to ideal flow theory. In these

problems, the viscous term is only important very near the foil, in the boundary layer

first predicted by Prandtl. The Navier-Stokes equation, once such simplified, becomes

linear and much easier to solve.

We can now recharacterize the flow velocity as the gradient of a new scalar field

φ called the flow potential, where:

v = ∇φ

∇2φ = 0
(2.4)

Since the problem is now linear, the sum of any two solutions is also a solution to

the fluid equations. We can therefore represent a foil in flow as the sum of a set of

fundamental flows. One example fundamental flow is the point source:

φ(r, θ) =
m

2π
ln r (2.5)

This fundamental flow is fluid diverging from a single point of source strength m,

where r is the radius from the point. In general, bodies are represented in a fluid as

a collection of positive and negative point sources.

An additional important fundamental flow is the point vortex :

φ(r, θ) =
Γ

2π
θ (2.6)

This fundamental flow is a point of rotating fluid, or a vortex, of circulation strength

Γ. In truly ideal flow, a vortex is a single point, but viscous effects actually diffuse
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the vortex. The circulation is defined as area integral of the vorticity ω:

ω = ∇× v

Γ =
∫
A

ωdA =
∮
C

v · dS
(2.7)

An interesting consequence of potential flow is that the force on a body made of

point sources and sinks in a steady flow is exactly zero, meaning that this formulation

cannot predict the drag on a body. The drag is caused by viscous affects - both friction

in the boundary layer and flow separation that develops out of this boundary layer,

neither of which is predicted by the ideal flow theory. However, there is a lifting force

on a vortex:

L = −ρUΓ (2.8)

Where U is the velocity of the flow relative to the vortex (2D formulation).

Additionally, potential flow also predicts the added mass on a body, or the fluid

force from accelerating a region of fluid along with an accelerating body.

2.2 Foils and the Kutta Condition

The airfoil in potential flow is a collection of point sources and sinks, arranged such

that the boundary condition takes the classic shape of an airfoil. However, the solution

with only these point sources and sinks creates an infinite velocity at the trailing edge

of the foil, as the fluid whips around the sharp edge (Figure 2-1).

A foil will therefore develop a net circulation Γ, represented by point vorticies

within the body, that mitigates this infinite velocity. This is called the Kutta Condi-

tion, and explains why foils must have a sharp trailing edge in order to generate lift.

The foil lift is therefore proportional to the bound circulation of the foil, which only

exists because of the sharp trailing edge.
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Figure 2-1: Kutta Condition and Wake Vorticity - An airfoil has some bound circula-
tion to enforce the Kutta condition at the trailing edge. Any bound circulation must
be accounted for by vortices in the wake of opposite circulation (adapted from [21]).

2.3 Foil Flutter

A consequence of the generation of bound circulation is the creation of additional

vortices in the wake of the opposite sign, often called trailing edge vortices (TEVs).

Kelvin’s Theorem states the circulation of an ideal fluid flow must remain constant,

because the viscosity term that could force the fluid to spin is negligibly small. The

sum of the wake vorticity is exactly equal to the negative of the bound vorticity of

the foil.

A foil accelerated instantaneously from rest will therefore not generate a full cir-

culation immediately, since the vortices in the wake also help mitigate the infinite

velocity at the trailing edge. The lift from a such a foil is called the Wagner Func-

tion [37], as illustrated in Fig 2-2. Wagner theory predicts that a step change in foil

velocity will initially have only half of its steady lift value.

Theodorsen’s flutter theory [32] extends Wagner’s result by determining the lift
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Figure 2-2: Wagner Function - A flat plate impulsively started at velocity U will
create a starting vortex that affects the instantaneous lift. The above figure illustrates
the ratio between the instantaneous lift and steady state lift, as a function of chord
lengths of travel. Taken from Anderson et al. [1]

on a foil that is both sinusoidally heaving h and pitching θ, assuming small amplitude

for each, by approximating the foil wake as a line of point vortices. The Theodorsen

theory accounts for the constantly varying circulation of both the foil and the wake.

Theodorsen’s model [32] consists of three parts: the quasi-steady lift Lqs, the

added mass lift Lam, and the Theodorsen transfer function C(s) to account for wake-

induced lift:

L = LqsC(s) + Lam (2.9)

The quasi-steady lift is the lift predicted by the Kutta Condition without a wake.

The quasi-steady lift for a foil rotated about quarter-chord is given by:
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Lqs = ρπcU(Uθ − ḣ+
1

2
cθ̇) (2.10)

Note that if the foil has no pitching velocity θ̇, then the quasi-steady lift is pro-

portional to the instantaneous angle of attack:

α = θ − atan

(
ḣ

U

)
≈ θ − ḣ/U (2.11)

Figure 2-3: Theodorsen Transfer Function - An oscillating foil of small amplitude will
have its lift the output of a transfer function C(k) = F (k)+ iG(k), where the input is
the quasi-steady lift. Note that at low and high frequencies, the phase is zero. Taken
from Theodorsen [32].

The wake effects are captured by the transfer function C(s) (Fig. 2-3), which is

normally expressed in terms of Bessel Functions. Numerous historical approximations

exist, nicely enumerated by Brunton and Rowley [3].

The lift due to added mass is proportional to the acceleration of the foil, given by:

Lam =
1

4
ρc2(Uπθ̇ − πḧ+

1

4
πcθ̈) (2.12)

Theodorsen uses this unsteady lift formulation to predict when airplane wings
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would exhibit aeroelastic flutter, caused by a vibrational coupling between the elas-

ticity in the wing structure and the vortices in the wake. His formulation, however,

has since been adapted into research on powered flapping flight [2, 20, 14, 8].

2.4 Delayed Stall Effects

The ideal potential flow theory only remains valid at low angles of attack; once a foil

passes an angle of attack of roughly 15◦, the flow separates from the upper surface of

the foil, causing a loss of lift.

Figure 2-4: Delayed Stall - Numerous lift transients exist as a foil is impulsively
started beyond its stall angle. The initial and final peaks indicate the added-mass
forces from the foil accelerating, while the slow lift decay at higher angles of attack
indicate the delayed stall. Taken from Dickinson and Gotz [5], at Re = 192 with 4.5◦

steps.

However, if a foil is rapidly moved beyond its stall angle and returned, the flow

does not fully stall (Fig. 2-4) [1, 18, 5]. Stall is the steady-state phenomenon, while

several transient flow structures exist as the stall develops. Many biological examples

of flapping flight take advantage of this effect, often using large α without loss of lift.
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Figure 2-5: Leading Edge Vortex - A leading edge vortex (LEV) forming above a
bio-inspired mechanical batoid wing. Taken from Koekkoek et al. [13].

The leading-edge vortex (LEV) is one example of a stall transient that can boost

the lift (Fig. 2-5). As a foil passes the stall angle, the flow above the leading edge of

the foil forms a vortex that acts as a low-pressure region, whose suction boosts the

instantaneous lift. Leading edge vortices generally shed into the wake and a full stall

develops, but stabilizing these beneficial structures is an active research field.

2.5 Flapping Foil Theory

A body experiencing drag will create a region of separated flow, and the shear layer

on the border of this separated flow will form a regular pattern of vortices [26].

The vortex pattern has a remarkable consistency across the laminar flow regime,

characterized by the Strouhal number:
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St =
fd

U
≈ 0.2 (2.13)

Where d is the width of the wake, f is the frequency of vortex shedding, and U is

the free stream velocity. This wake is called the classic von Kármán vortex street. The

von Kármán vortex street also exists in turbulent flows, only disappearing completely

in the transition regime for very smooth bodies.

Remarkably, a flapping foil can also be used to generate thrust, demonstrated

by Koochesfahani [14], through the creation of a reverse von Kármán vortex street.

Figure 2-6 illustrates a wake taken from Koochesfahani [14], where the vortices appear

staggered in the opposite orientation of the drag wake. This result is not predicted

by Theodorsen [32], who limited his wake to a single line.

Using a flapping foil to generate thrust is inefficient unless it is also flapped at

a Strouhal number around 0.2 − 0.4 [36], illustrating another parallel with the drag

wake. Efficiencies as high as 80% have been reported [1, 22] for such a flapping foil at

these frequencies. Additionally, a wide range of animals have been observed taking

advantage of the effect [25, 36]. Figure 2-7, taken from Taylor et al. [30] illustrates

a number of animals across multiple phyla, all characterized by a small range of

Strouhal frequencies.

Flapping foils, however, generate a large oscillating transverse force in addition

to the thrust. This problem can be mitigated using in-line motion, where the foil

is oscillated parallel to the free stream in addition to transverse. Licht et al. [15]

notes that a reduction in the transverse force can be obtained without compromising

the thrust efficiency. In-line motion in the opposite direction can instead be used to

augment the transverse force.

This thesis explores the use of in-line motion on a flapping foil to improve the

force performance, so that the flapping foil could be used as a maneuverable actuator

on an autonomous vehicle.

35



Figure 2-6: Thrust-Producing Reverse von Kármán Wake - The wake of an oscillating
foil will generate a reverse von Kármán vortex wake. Top: The reverse von Kármán
wake consists of a vortex street of staggered vortices. Bottom: The mean flow one
chord-length behind the foil, indicating a thrust wake. Taken from Koochesfahani [14],
chord Re = 12, 000 NACA0012 oscillated with 2◦ amplitude about quarter-chord.
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Figure 2-7: Animals Flapping at Narrow Band of Strouhal Frequencies - A wide range
of animals across multiple phyla and fluids flap at a narrow band of Strouhal numbers,
usually residing between St = 0.2 and St = 0.4. Taken from Taylor et al. [30].
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Chapter 3

Materials and Methods

We conducted a series of tests on a high aspect ratio foil in order to explore the

parametric range of an added in-line motion, combined with a power downstroke and

a feathering upstroke.

3.1 Experimental Apparatus

We test a series of flapping trajectories on foils in a glass tank, 2.4m by 0.75m by

0.75m, located in the MIT Towing Tank Facility. The towing apparatus is equipped

with four actuators for controlling the motion of the foil (Fig. 3-1):

1. A main carriage motor that tows the entire assembly at a constant speed U ,

through a chain drive mechanism that is tensioned by a pull-cord linear velocity

transducer.

2. A Parker Trilogy linear servomotor capable of moving the foil transverse to the

flow, y(t).

3. A second Parker Trilogy linear servomotor that moves the foil in-line with the

flow, x(t), adding a time-varying velocity to the constant speed U .

4. A rotary Yaskawa Sigma Mini Servomotor that actuates the foil pitch motion

θ(t).
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Figure 3-1: Towing Tank Schematic - A: Photograph of the towing tank apparatus.
The foil is attached to a pitch motor, which is mounted to the force meter. The entire
assembly is then mounted on an two-axis linear stage. B: The motion system rests
on a carriage that moves down the tank at velocity U .

The x, y, and θ motors are controlled through a Delta Tau PMAC2A-PC motion

controller, amplified by two Copley Controls XENUS Digital Drives and a Yaskawa

Sigma Mini motor controllers respectively. The forces are measured with an ATI

Gamma force transducer, logged through a LabVIEW interface. All data processing

is performed in MATLAB. The foil is a lightweight NACA0013 carbon fiber blade,

with a true chord length of 55 mm and aspect ratio of 6.5. The trailing edge of this

foil is not perfectly sharp (0.6 mm width) due to manufacturing limitations, cutting

approximately 3% off the ideal chord length. All data is filtered with a 5th order low-

pass Butterworth filter at 10 Hz to remove electrical and vibration effects without

affecting the highest frequency fluid forces - usually the 6 Hz Strouhal shedding caused

by the foil thickness.

The tank includes a movable false bottom, which was raised to within 8 mm of the

foil tip, or 15% of the chord. The false bottom reduces the effect of the tip vortex [28],

which in addition to the free surface, allows us to approximate the fluid dynamics

as a 2D unsteady foil problem. Therefore, while the nominal foil aspect ratio is 6.5,

the effective aspect ratio is larger. Wave-making effects in previous experiments were

found to be negligible at the carriage speed used, 0.2 m/s.

We visualize the foil wake using planar Particle Image Velocimetry (PIV), illumi-

nated by a Quantronix Darwin Nd:YLF laser (527 nm wavelength) located behind
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the foil. The laser is collimated and then expanded into a 4 mm thick plane, while

the tank is seeded with 50 micron polyamid particles. A 10 bit Imager Pro HS CMOS

high-speed camera, located below the tank facing upwards, records the flow at 600 Hz

with 949x749 pixels. All PIV time-series processing is performed in DaVis 7.2 using

the following parameters:

• Three-frame gap to allow adequate seed motion

• A 5 pixel sliding background preprocessing to remove unwanted reflections

• Three interrogation window passes, first at 64 pixel and two at 32 pixels with

50% overlap

• A post-processing vector median filter and a 3x3 smoothing filter

An optical limit switch is located about a meter down the tank, which both triggers

the PIV system and indexes the PIV dataset to the LabVIEW data log. Final data

processing is performed in MATLAB, using the PIVMat toolbox to import the data.

3.2 Parametrization of the flapping motion

The foil is towed along the tank at constant speed U and is allowed to move in three

degrees of freedom:

1. motion transversely to the direction of towing, or heave y(t);

2. angular motion about a spanwise axis, or pitch θ(t); and

3. motion parallel to the direction of towing, or surge x(t).

The surge and heave motions, x(t) and y(t), are set to be sinusoidal motions with

the same frequency of oscillation. Their relative phase is set equal to zero, which is

only an approximation of the observed animal motion, resulting in the foil translating

back and forth along a straight line when viewed in the carriage’s reference frame.

We call this line the stroke line (Fig. 3-2), defined by an angle β with respect to the
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horizontal. The stroke line is the 2D analog to the stroke plane, a simplification used

in several biological studies of flapping animals [33, 16, 34, 29].

x(t)

y(t)

α(t)

θ(t)

β

U (fluid)

x(t)+Ut

y(t)
θm(t)

Carriage Reference Frame Global Reference Frame

A B

Figure 3-2: Definition of variables - A: In the carriage reference frame, the foil
travels along a single stroke line (illustrated in orange) with sinusoidal components
as function of time. This line is defined by the angle β with respect to the horizontal.
B: As the carriage moves at constant velocity U , the stroke line translates, resulting
in a skewed-harmonic trajectory for the foil. Ignoring the induced velocities from the
wake vortical patterns, the nominal angle of attack α is the angle between the foil
pitch θ and the angle of foil motion θm.

The motions in x and y are therefore given by the expressions:

y(t) = h cos(2πft) (3.1)

x(t) =
h

tan(β)
cos(2πft) (3.2)

where h is the amplitude of the transverse motion, β is the stroke angle, and f is

the flapping frequency (in Hz). Note that the above parametrization keeps the total

transverse displacement at 2h, independent of β. By assuming that the wake width

is the same as the transverse displacement, we can thereby define a Strouhal number

[36]:

St =
2fh

U
(3.3)

For symmetric flapping foil propulsion, high efficiency thrust production occurs in

wakes with a Strouhal number in the range of 0.2 < St < 0.4, which also accurately

predicts the flapping frequencies of various birds and swimming creatures [30, 19, 35].
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The angle of foil motion θm is dependent on the velocity of the foil in the global

reference frame:

θm(t) = atan

(
ẏ(t)

ẋ(t) + U

)
(3.4)

The angle of the incoming flow relative velocity, θf , is influenced by the kinematics

of the foil as well as the induced velocities from the vortical structures in the wake. For

simplicity, we approximate θf with θm. The approximate angle of attack is, therefore:

α(t) = θ(t)− θm = θ(t)− atan

(
ẏ(t)

ẋ(t) + U

)
(3.5)

Following Hover et al. [10], we impose the functional form of the angle of attack,

rather than that for the pitching motion. This was found to be significant for sym-

metrically flapping foils at high Strouhal numbers, when a sinusoidal pitch motion

causes multiple peaks in the angle of attack and degradation of performance [10]. It

should be noted that an asymmetric flapping profile, where β 6= 90◦, will not create a

symmetric wake. We therefore set the intended angle of attack α(t) directly, discussed

in detail in Section 4, then derive the required θ(t) from the known θm(t).

θ(t) = α(t) + atan

(
ẏ(t)

ẋ(t) + U

)
(3.6)

Using Eqns 3.1, 3.2 and 3.6, we parametrize the flapping trajectory first by setting

the shape of α(t), and employing four dimensionless parameters (Strouhal number St,

stroke angle β, heave to chord ratio h/c, and chord Reynolds number Re = Uc/ν).

We further limit these parameters to the following ranges that fit our experimental

apparatus:

0.1 < St < 0.5

45◦ < β < 135◦

h/c = 1

Re = 11, 000

(3.7)
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The constant heave to chord ratio is in accordance with the values that have

been used in high efficiency foils [1], but it is only representative of animal motion,

expecially for 3D flapping birds; however, this assumption keeps the parameter set

small enough to focus on the in-line motion effects. Our chosen experimental Strouhal

range overlaps with the expected high-efficiency and high-thrust flaps investigated in

Anderson et al. [1], while the stroke angle β is limited by the travel of the X motion

actuator. The Reynolds number of 11,000 was chosen to both fit the intended regime

for biological propulsion and to integrate easily into our existing tank equipment.

3.3 Performance Metrics

We record the forces and define metrics for force production which can serve for

parametric optimization.

3.3.1 Foil Forcing

In each experiment, we recorded the following forces and moments on the foil as

function of time:

F(t) =


Fx(t)

Fy(t)

Mθ(t)

 (3.8)

Where Fy is the transverse force, Fx is the thrust force, and Mθ is the torque

about the rotation axis, after correcting for acceleration of the reference frame. We

non-dimensionalize these forces using the dynamic pressure and reference (one-sided)

foil area to find the following transverse and thrust force coefficients:

Cx(t) =
Fx(t)

0.5ρU2S
Cy(t) =

Fy(t)

0.5ρU2S
(3.9)

Cm(t) =
Mθ(t)

0.5ρU2Sc
(3.10)
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Where S is the projected area of the foil (one-sided), viz. the span b times the

chord c.

3.3.2 Propulsive Efficiency

We compute the propulsive efficiency as the ratio of output power Pout to input Pexp

power, i.e. the product of average thrust times forward speed, divided by the average

expended power:

Pout(t) = 1
T

∫ T
0
Fx(t)Udt

Pexpended(t) = 1
T

∫ T
0

[Fx(t)ẋ(t) + Fy(t)ẏ(t) +Mz(t)θ̇(t)]dt)
(3.11)

η =
Pout
Pexp

(3.12)

Previous experiments in Licht et al. [15] have shown that downstream in-line

motion can increase the propulsive efficiency of the flapping foil in the range 0.2 <

St < 0.4, with minor reduction in thrust.

3.3.3 Force Quality: Effectiveness of Controlling Force Di-

rection

A principal reason for using in-line motion is to achieve better force control, in the

sense of directing the force as desired and minimizing any components in the per-

pendicular plane. This is in principle particularly difficult in a flapping foil which is

subject to large oscillatory forces.

Hence we define a metric of force quality as the magnitude of the parasitic force

which is perpendicular to the desired direction, expressed as the root-mean-square

of the undesirable force over the mean value of the total force. For example, in the

case of a symmetric thrust-producing flap, the desired force is in the x̂ direction.

Therefore, we want to minimize the oscillation in Fy.

The following definition covers a wider range of flapping profiles: Restricting the

derivation to two dimensions, we express the instantaneous force into a reference
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frame consisting of the direction of intended force, expressed through the unit vector

n̂i, and the perpendicular direction. Ideally the flapping actuator would produce a

force only in the direction of n̂i, and hence no force in the perpendicular direction.

n̂i =

 â1

â2

 (3.13)

 F‖(t)

F⊥(t)

 =

 â1 â2

−â2 â1

 Fx(t)

Fy(t)

 (3.14)

Where F‖(t) is the instantaneous force parallel n̂i, and F⊥(t) is the instantaneous

force perpendicular to n̂i. We quantitatively judge the cleanliness of the flapping

profile by the root mean square of F⊥(t), which we then normalize by the mean force:

RMS(F⊥) =

√√√√√ 1

T

T∫
0

F⊥(t)2dt (3.15)

σ∗ =
RMS(F⊥)

‖Fmean‖
(3.16)

The non-dimensional metric σ∗, therefore, measures the amount of unintended

force oscillation relative to the main intended force.
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Chapter 4

Experimental Results

This chapter discusses the force performance of Trajectories I, II, and III from Table

1.1. The PIV wake visualization for these trajectories is given in the appendix.

4.1 Trajectory I - Symmetric Flapping Profile

As a basis for comparison, setting the stroke angle at β = 90◦ results in a classic

symmetric flap similar to those studied extensively theoretically and experimentally

[32, 27, 36, 10, 1]; we impose a sinusoidal variation for the angle of attack α rather

than for the pitching angle θ.

α(t) = αmax sin(2πft) (4.1)

θ(t) = α(t) + atan

(
ẏ(t)

ẋ(t) + U

)
(4.2)

For this profile, we set αmax = 25◦. While 25◦ is higher than the recorded stall

angle for a NACA0013 under steady towing conditions, unsteady foils can maintain

lift at high angles of attack because of delayed stall effects [1, 18].

Results for this symmetric flap are given in Fig. 4-1, averaged over 5 trials of 2

cycles each. Note that the thrust coefficient Cx has two peaks, caused by the positive

and negative lift on the downstroke and upstroke. Also note that there is substantial
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force perpendicular to the mean force direction - all the transverse force Cy integrates

to zero but would oscillate a vehicle driven by the foil during the flap. In this example,

the non-dimensional oscillation cost σ∗ = 3.1 , so Cy has an RMS of 3.1 times the

mean of Cx. As we show below, flaps that use in-line motion can be designed to have

far smaller oscillation costs.
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Trajectory I: Symmetric Motion
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Figure 4-1: Trajectory I: Symmetric Flap - Experimental data for flapping perpen-
dicular to the mean flow (β = 90◦), at frequency given by St = 0.3. A: The angle of
attack, ignoring the wake-induced velocity, achieved by the θ motor. B: The instanta-
neous force coefficients in the in-line and transverse directions (X and Y ), normalized
by 1

2
ρSU2. All error bars refer to one standard deviation over 5 runs of 3 flaps per

run, while ignoring the first cycle in each run. Right: The different parameters used
to define the motion trajectory, along with the force performance of the flap. C: The
force superimposed on the foil trajectory in the global frame. Foils are plotted every
1
6

of a flapping cycle.
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4.2 Trajectory II - Forward Moving Downstroke

to Augment Transverse Force

Setting the stroke angle 45◦ < β < 90◦ results in a dramatic increase in the transverse

force Cy during the downstroke, largely clean of unwanted force oscillation. Fig. 4-2

illustrates an example profile at St = 0.3 and β = 45◦. There are many ways to

define α(t) profiles over the course of the flapping motion, which can have a strong

effect on the resultant force [10]. For this example, we chose a single peaking profile

for the downstroke. To effect a smooth transition between downstroke and upstroke,

we use an offset cosine wave that blends well at the boundaries, defined by a single

additional parameter αmax, which can be seen graphically in Fig. 4-2:

α(t) =
αmax(0.5− 0.5 cos(4πft)) t mod T 5 T/2

0 t mod T > T/2
(4.3)

Where T is the flapping period, and αmax = 25◦ is the angle of attack at the

middle of the downstroke.

As a general observation, forward moving flaps during the downstroke exhibiting

good performance are easy to design and set up. The large downstroke lift, largely

isolated in one direction in the global frame, removes the unwanted force oscillation

present in a symmetric flap (in this example σ∗ = 0.28). Note that there are small

maxima and minima in the lift (Fig. 4-2) at the beginning and end of the upstroke

when the foil rotates quickly; however, these are far smaller than the large values of

the downstroke lift.

The fact that lift is largely restricted to the downstroke for this specific motion

trajectory is heavily supported by 2D unsteady foil theory. According to this theory,

the lift per unit span is dependent on three components: the quasi-steady lift, the

added mass, and wake effects. If for the moment we focus only on the quasi-steady

term, derived for a foil rotated at quarter-chord [32]:

Lqs(t) =
1

2
ρcv(t) 2π[v(t)α(t) +

c

2
θ̇(t)] (4.4)
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Trajectory II: Forwards In−Line Motion
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Figure 4-2: Trajectory II: Bird-Like Forward Biased Flap - Experimental data for
flapping forward during the downstroke, along an angle of β = 45◦, with flapping
frequency given by St = 0.3. Descriptions of the subplots are same as in Fig. 4-1.
Note that lift production is almost entirely restricted to the downstroke; furthermore,
the increased lift production boosts the transverse force Cy with little unwanted force
oscillation in the thrust Cx. This good force production performance was achieved
with a very simple motion definition, a partial cosinusoidal α(t) and sinusoidal heave
and in-line motion along a 45◦ angle.

Where c is the chord and v(t) is absolute velocity in the global frame:

v(t) =
√
ẏ(t)2 + (U + ẋ(t))2 (4.5)

And ẋ(t) and ẏ(t) are given by the derivatives of Eqns 3.1 & 3.2:

ẋ(t) = −2πfh

tan β
sin(2πft) ẏ(t) = −2πfh sin(2πft) (4.6)

During the downstroke, v(t) is larger than during the upstroke, since β < 90◦

causes ẋ(t) to be positive when sin(2πft) is positive. In other words, in a bird-like
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flap, the foil is moving substantially upstream during the downstroke, meaning that

the relative velocity of the foil is much higher. This can be verified visually in Fig.

4-2C: the foils shown on top of the global motion trajectory are at constant time

increments, illustrating the faster velocity during the downstroke.

Returning to Eqn 4.4, the quasi-steady lift is dominated by the angle of attack

term v(t)α(t) during the downstroke, but α = 0 during the upstroke, making the

other term c
2
θ̇(t) dominant during the upstroke. However, since πρSv(t) is much

smaller on the upstroke than on the downstroke, we have little quasi-steady lift on

the upstroke compared to the downstroke. In effect, the foil is moving fastest when

the largest forces are desired.

The unsteady lift due to wake effects and added mass additionally affect the total

lift. However, they are generally small compared to Lqs and also scale with the

velocity of the foil v(t), meaning they are dwarfed by the quasi-steady lift during the

downstroke. As a result, the lift is largely isolated to the downstroke, as supported

by the experiment.

4.3 Trajectory III - Backwards Moving Downstroke

to Augment Thrust Force

Setting the stroke angle 90◦ < β < 135◦ results in a thrust-producing flap, but the

unsteady effects are far more pronounced. Fig. 4-3 shows the analogous flap to the

previous example, with St = 0.3, β = 135◦, and α(t) is the same as in Eqn 4.3.

Since the intended force direction for this flap is horizontal thrust, the transverse

forcing at the beginning and end of the upstroke caused by the rapid foil rotation is

undesirable, drastically increasing σ∗. Additionally, the large negative thrust on the

upstroke negates the effectiveness of the downstroke, caused by “memory effects” in

the wake, viz. induced velocities from shed vorticity in the wake. Previous experiments

in Licht et al. [15] show similar peaks indicating strong wake memory effects during

the upstroke.
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Trajectory III: Backwards In−Line Motion
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Figure 4-3: Trajectory III: Turtle-Like Backwards Moving Downstroke - Experimental
data for a backwards moving downstroke, along an angle of β = 135◦, at frequency
given by St = 0.3. Descriptions of the subplots are same as in Fig. 4-1. Note
that unlike the bird-like flap, this flap is intended to create thrust Cx, not transverse
force Cy. Accordingly, the large transverse forces at the beginning and end of the
downstroke are unwanted, as is the negative thrust during the upstroke.

The poor performance of this flapping mode can again be explained by analyz-

ing v(t). Since β > 90◦ instead, v(t) is now smaller on the downstroke than on the

upstroke, exactly opposite of what happens in the forward moving downstroke. Effec-

tively, the foil is moving at its slowest when the intended force is highest, making this

type of motion trajectory far more difficult to effectively design. The quasi-steady lift

during the slow downstroke is now closer in magnitude to unsteady effects throughout

the rest of the flap.

Therefore, designing flaps that take advantage of backwards in-line motion is

far more difficult, and significant correction is required to mitigate unsteady fluid

dynamics.
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Chapter 5

CFD Simulated Control Solution

Given the poor performance of Trajectory III (described in detail in Section 4.3),

we introduce a control-based approach to mitigate the unwanted lift. This controller

tests the following hypothesis: the unwanted forces that are difficult to exactly predict

can be measured and subsequently counteracted in real-time using easily-predicted

lift forces.

The intent of this control is therefore to create a force-profile follower, where the

angle of attack of the foil is varied to create the intended force at the intended time

during the flapping cycle.

Instead of implementing a real-time control solution on the experimental appa-

ratus, we instead demonstrate its viability through a computational fluid dynamics

(CFD) simulation. However, as is to be noted in the next chapter, an optimization-

based solution is preferable, so this control scheme has yet to be implemented on the

experimental apparatus.

5.1 CFD Methodology - Lilypad

The CFD codebase, described by Weymouth et al. [39], has been successfully used

previously to investigate ship flows [39], cavity formation [38], and vanishing bodies

[40]. As a brief description of the method, the simulation takes place on an evenly

spaced cartesian grid that does not wrap to the body geometry. Instead, the nonlinear
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fluid equations are integrated over the boundary using a kernel, defining a smooth

interface between the body and the fluid.

The code therefore analytically combines the Navier-Stokes equations of the fluid

velocity ~u with the body velocity ~Vbody [38].

fbody(~u) = ~u− ~Vbody (5.1)

ffluid(~u) =
∂~u

∂t
+ (~u · ~∇)~u+

1

ρ
~∇p− ν∇2~u (5.2)

Figure 5-1: CFD Solution Method - The CFD solution consists of a static cartesian
grid that does not wrap to the body boundary. Instead, the differential equations are
integrated over a kernel on the body boundary, analytically combining the Navier-
Stokes equations in of the fluid region Ωf with the body boundary conditions of the
body region Ωb . Taken from [17].

An example flow field for our foil CFD simulation is shown in Figure 5-2, where

the foil is oscillated between ±5◦ at ω = 2π radians per body length of travel. As

expected by the model proposed by Theodorsen [32], a steady trail of vortices appear

downstream of the foil, which summarily affects the lift. As a standard in all the

simulations, the grid includes 64 gridpoints per foil chordlength and a NACA0012

foil.

For the purposes of this simulation, our intended chord Reynolds number is 11,000,

in the regime typical of flapping foil actuators [1]. However, because of the discrete

grid, the true effective Reynolds number is much lower, since the numerical solution

has an additional diffusivity that acts similar to an augmented viscosity.
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Figure 5-2: Reverse von Kármán Vortex Street - An example flow field from the CFD
simulation, illustrating the classic reverse von Kármán vortex wake [14]. The color
indicates the vorticity of the flow field, describing both the vortices shed into the
wake and the vorticity in the boundary layer above and below the foil. The Force
X and Force Y labels describe the instantaneous drag and lift respectively, and the
black arrow illustrates the force vector.

5.2 Control Model

A simplified linear model of the lift output is necessary for developing the appropriate

control law. We therefore look to the classic unsteady lift model of Theodorsen [32]

as a starting point.

Theodorsen’s model [32] consists of three parts: the quasi-steady lift Lqs, the

added mass lift Lam, and the Theodorsen transfer function C(s) to account for wake-

induced lift:

L = LqsC(s) + Lam (5.3)

For our simple controller, we will use the quasi-steady assumption, approximating

L with Lqs.
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L ≈ Lqs(t) =
1

2
ρcv(t) 2π[v(t)α(t) +

c

2
θ̇(t)] (5.4)

Unfortunately, in the in-line motion flap, the global velocity of the foil v (Eqn 4.5)

is time-varying, meaning that this lift model is not time-invariant. Additionally, given

that the control input is some derivative of θ, then the angle of attack α includes the

nonlinear added term θf from Eqn 3.4. However, if we normalize the output by v(t)2

and subtract the known θf , then only one input term is non-LTI:

α(t) = θ(t)− θf (t) (5.5)

Lqs(t)

v(t)2
+ ρcπθf (t) = ρcπθ(t) +

ρc2π

2v(t)
θ̇(t) (5.6)

We can subsequently approximate the second term with ρc2π
2U

θ̇(t) and call the

remainder a disturbance d(t). Adding the added mass and wake effects into the

disturbance as well, we achieve the following linear model:

youtput =
L(t)

v(t)2
+ ρcπθf (t) ≈ ρcπθ(t) +

ρc2π

2U
θ̇(t) + d(t) (5.7)

Replacing a = ρcπ and b = ρc2π
2U

, and setting the input u = θ̇ we achieve the

following Laplace domain model:

youtput =
a+ bs

s
u+ d (5.8)

Finally, we can develop the following pole-placement trajectory follower for youtput,

using the error e = youtput − ydesired:

τ ė+ e = 0 (5.9)

τ [(a+ bs)u− sydesired] + youtput − ydesired = 0 (5.10)
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By integrating both sides, and ignoring initial conditions, we achieve a time-

domain model in terms of the foil pitch θ = u/s.

τ(aθ + bθ̇ − ydesired) +

∫
youtput − ydesireddt = 0 (5.11)

Discretizing and solving for the new θN+1 and θ̇N+1 = θN+1−θN
∆t

each timestep:

θN+1 =
ydesired + θN

b
∆t

+ 1
τ

∑
ydesired − youtput∆t

a+ b
∆t

(5.12)

This controller could clearly be improved in a number of ways, either by including

integral error dynamics into Eqn 5.9 to mitigate a constant disturbance d, or by

creating a truly time-varying control instead of LTI. However, the simple controller

appropriately and stably rotates the foil to compensate for unwanted lift forces.

5.3 Trajectory IIIb - Closed-Loop Lift Control

The results of this closed-loop lift control can be found in Figure 5-3. The lift con-

troller follows a partial cosinusoid lift trajectory, similar to Eqn 4.3, but includes an

additional gain from steady foil theory:

Ldesired(t) =
ρcv(t)2π αmax(0.5− 0.5 cos(4πft)) t mod T 5 T/2

0 t mod T > T/2
(5.13)

This desired lift function is the steady lift expected from the time-varying angle of

attack of Trajectory III. The controller will therefore try to mitigate all the unsteady

lift effects in Trajectory III, leaving only the wanted steady lift.

As indicated in Fig. 5-3, the controller successfully isolates the lift purely to the

downstroke. The angle of attack function (Fig 5-3A) clearly shows the control scheme

adding additional features to mitigate the unwanted downforce and upforce at the

beginning and end of the downstroke, when the foil rotates the fastest. Additionally,

the control removes most of the upstroke lift, with only small disturbances (Fig 5-3B).
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Trajectory IIIb: Closed−Loop AoA
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Figure 5-3: Trajectory IIIb: Closed-Loop AoA - CFD Force data for the control
scheme, changing the foil AoA to follow a desired lift function. Similar to Trajectory
III, this trajectory flaps along a stroke angle of β = 135◦, at frequency given by
St = 0.3. Descriptions of the subplots are same as in Fig. 4-1.

Figure 5-4 illustrates the flow state at the end of the downstroke, when the control

algorithm is using a negative angle of attack to mitigate unwanted vertical force.

5.4 Lift Control Discussion

However, the force trajectory in Fig. 5-3 demonstrates a clear problem with using the

control approach. While the lift is entirely isolated to the downstroke, the downstroke

lift still causes substantial transverse force Cy, which may or may not be desired.

To have complete control over the force direction, the Strouhal St and stroke angle

β must also be varied so that the downstroke lift is correctly oriented. Additionally,

there is no compelling reason that the ideal lift trajectory should take the sinusoid

form given in Eqn 5.13. The proper control algorithm would therefore be better suited
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as an optimization problem, changing the all the trajectory parameters to minimize

some defined cost function.

Most importantly, this control approach over-confines the problem by assuming

that the solution must be performed in real-time, while the foil is in motion. However,

the unwanted lift force originates mostly as unmodeled dynamics, not as a stochastic

disturbance. Repeating the same motion trajectory will roughly reproduce the same

unsteady lift forces.

A better solution is therefore to develop the trajectory parameters a-priori, per-

form an experimental or CFD trial, and then close the control loop in between trials.

This type of feedback could design motion trajectories that mitigate unmodeled forces

without the need for real-time control. A real-time controller may also be necessary

to reject true flow disturbances, but it should be posed as a secondary problem about

an optimized motion trajectory.

Chapter 6 develops this optimization routine, using a more advanced force model,

while Chapter 7 illustrates three example motion trajectories designed using the tech-

nique. A real-time controller about these optimized trajectories has been reserved for

future work.
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α

Figure 5-4: CFD Flow Visualization on Trajectory IIIb - The CFD simulation illus-
trates how the angle of attack can be varied to mitigate unwanted lift. The dashed
orange line indicates the stroke angle, flow is traveling to the right. This image was
taken at t = 0.5T , or the end of the downstroke. Note that the angle of attack is
negative, effectively using the lift generated by this angle of attack to counteract the
suction from the shedding vortices.
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Chapter 6

Optimization and Flapping

Parameter Design

As demonstrated in Chapter 5, we have found that making relatively modest changes

to the shape of the angle of attack curve as function of time, α(t), can effectively

mitigate unwanted unsteady effects, so optimizing α(t) can lead to a clean force

generation with minimized cost σ∗. Additionally, the stroke angle β and Strouhal

number St have strong effect on the resultant mean flapping forces. We therefore set

up an optimization routine that optimizes the shape of the angle of attack as well as

the Strouhal number and stroke angle.

More specifically, we parametrize the problem in terms of the following N + 2

parameters to be optimized:

• Stroke angle β

• Strouhal number St

• Trajectory of the angle of attack α(t) as function of time, over N equidistant

time instances, which is splined to create a continuous function
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6.1 Optimization Method

Our intent is to demonstrate that optimization can yield far superior performance,

hence we chose from simple methodologies that are adequate to obtain results with

relatively few experiments. More specifically, we employ a model-based optimization

driving iterative experimental runs. Another reason for choosing this methodology is

that a large number of discretization points N are needed to properly parameterize

a trajectory, hence the number of optimization parameters is too large to search

the entire parametric space for a global optimum within a reasonable number of

experimental trials. For example, even a coarse discretization of α(t) into N = 4

parametric values, and then discretizing each of the N + 2 parameters into 10 values,

results in 106 experiments.

Several studies have been performed with optimization routines guiding system-

atic experiments or CFD trials [12, 24], using algorithms such as weight perturbation

[11] or CMA-ES [9]. However, these methods generally have far slower convergence

when compared to model-based methods, where a theoretical model is used to guide

the optimization between experimental trials. A disadvantage of model-based opti-

mization is that the optimization engine can only make decisions informed by the

model physics, which may not capture the full nature of the flow. The optimization

may still reject disturbances from the unmodeled dynamics; however, it will only

search in directions deemed favorable by the theoretical model.

Model-based optimization greatly improves the converge rate, since optimization

gradients are calculated analytically instead of experimentally, but the optimality of

the final result is dependent on the quality of the theoretical model. For the purposes

of our design problem, however, the method is shown to design flaps that perform far

better than the simple sinusoids described previously in Section 3.2.

The optimization algorithm is therefore organized as follows:

1. An initial flap is chosen based on the theoretical model, that meets a mean

force vector constraint Ftheoretical = Fdesired, while minimizing the cost function

J = σ∗.
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2. The initial flap is run through an experimental trial, recording the true forces

Fx(t) and Fy(t).

3. The initial flap shape is corrected using the theoretical model to predict how

changes in the parameter space will change the measured Fx(t) and Fy(t) to the

desired values, again minimizing the cost function J = σ∗.

4. Steps 2 and 3 are repeated until satisfactory convergence is obtained, defined in

our case as when the measured force from the experiment is within 5% of the

desired value Fdesired.

The choice of model-based optimization algorithm is dependent on the nonlinearity

and sparsity of the theoretical model dependencies on the parameter space. For

our optimization, we chose Sequential Quadratic Program for Nonlinear Constrained

Optimization, or SNOPT, an algorithm described in Gill et al. [7]. The optimization

code, along with its associated MATLAB wrapper, can be found at Philip Gill’s

website [7].

6.2 Theoretical Model Used in the Optimization

We use a relatively simple theoretical model based on a blend of two-dimensional,

linear, unsteady thin-airfoil theory and a quasi-steady drag formulation:

F(t) = [Lqs(t) + Lwake(t)]êL(t) + Fam1(t)ê1(t) + Fam2(t)ê2(t) +Dqs(t)êD(t) (6.1)

These forces are illustrated in Fig. 6-1. The quasi-steady lift Lqs(t) is given by Eqn

4.4, reprinted below, having direction êL(t), which is perpendicular to the velocity

v(t), and in the direction of the angle of attack:

Lqs(t) = 1
2
ρcv(t) 2π

(
v(t)α(t) + c

2
θ̇(t)

)
êL(t)× v(t) = 0

(6.2)
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x(t)+Ut

y(t)

Lqs(t)+Lwake(t)

Dqs(t)

v(t)

Fam1(t)

Fam2(t)

F(t)

= +

Figure 6-1: Force Model - The four components of the force model are illustrated
above, along with their instantaneous directions. The lift and drag forces, Lqs+Lwake
and Dqs, are oriented with respect to the relative foil-fluid velocity, ignoring wake-
induced velocities. The added mass forces, Fam1 and Fam2, are represented in the foil
body frame.

The wake-induced lift Lwake(t) of a small-amplitude flaps is well studied in the

flutter theory literature, based on the classic results of Theodorsen [32]. Unfortu-

nately, the flapping motion discussed in this paper exceeds the linear range, since

the amplitude of motion is comparable to the chord, h/c = 1, and there is unsteady

in-line velocity, i.e. v̇x 6= 0. A more detailed analysis of the effects of the vortical

patterns, such as the model described in Pan et al. [20], is therefore necessary to truly

capture the wake effects.

To mitigate the computational complexity of these wake models, we consider the

wake-induced lift as our prime unmodeled dynamic, and use a conservative simplifi-

cation for the wake effects:

Lwake(t) ≈ −1
2
Lqs(t) (6.3)

This simplification assumes that the Wagner effect [37] affects the lift magnitude

for the entire flapping cycle, and ignores the phase information from the Theodorsen

transfer function.

Hence, we proceed with the simplified model, because of its analytic tractability,

and considered the omitted effects as unmodeled dynamics for the controller design.

The added mass effects are given in the body frame, using the unit vectors ê1 and

ê2, where ê1 is parallel and ê2 is perpendicular to the foil chord. The magnitudes of
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the added mass forces are:

Fam1(t) = v2(t)θ̇(t)m22

Fam2(t) = −a2(t)m22 − aθ(t)m26

(6.4)

where v2, a2, and aθ denote the global linear velocity, linear acceleration, and

angular acceleration, respectively, expressed in the body frame of the unit vectors

ê1 and ê2. The added mass coefficients are approximated by a plate rotated at its

quarter chord, namely:

m22 = 1
4
ρπc2

m26 = − 1
16
ρπc3

(6.5)

The drag force is approximated by a quasi-steady drag equation, oriented in the

direction êD(t), opposing the instantaneous velocity, with magnitude:

Dqs(t) =
1

2
ρcv(t)2CD(α) (6.6)

where the coefficient of drag CD(α) is approximated by a polynomial fit of mea-

sured steady drag force on the foil, illustrated in Fig. 6-2:

CD(α) = −3.70α6 + 2.08α4 + 2.52α2 + 0.0334 (6.7)

We do not use a polynomial fit for the coefficient of lift CL, since using the steady

lift coefficient is a poor predictor of dynamic stall effects. Instead as mentioned above

in Eqn 6.2, we use an unsteady linear approximation for the lift coefficient and include

a magnitude correction for wake effects.

6.3 Optimization Constraints

To automatically design flaps that meet all design criteria, we implement a number

of constraints to guide the optimization routine, as follows:

1. The mean of the predicted force component parallel to the direction of the
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Figure 6-2: Steady Force Measurements on NACA0013 Foil - Force data as the
NACA0013 foil is towed at constant speed, averaged over three trials of 20 chord-
lengths of travel. The drag data is fit to a polynomial for use in the theoretical drag
model. The lift data is not fit to a polynomial, as the steady lift coefficient is a poor
predictor of unsteady lift at high angle of attack. The theoretical lift coefficient is
CL = 2πα, but we instead use CL = πα to give a conservative approximation of wake
effects, as predicted by Wagner’s impulsive foil theory [37].

desired force, F‖(t), is within 1% of the desired force magnitude.

2. The mean of the predicted force component perpendicular to the direction of

the desired force, F⊥(t), is less than 1% of the desired force magnitude.

3. The jerk of θ(t) stays below a target value that scales appropriately with the

flapping frequency and number of discretizations of t. This is easily implemented

by keeping the triple difference |θk − 3θk+1 + 3θk+2 − θk+3| under a maximum

value. For our optimizations, we set this maximum value at 1/N , in order to

generate highly smooth motion trajectories.

4. The angle of attack α(t) must avoid full stall. In general, we found that a
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large α was necessary around t = 0 and t = T/2 to mitigate the additional lift

caused from rotating the foil, while a smaller α was necessary during the rest of

the trajectory. We therefore constrained the angle of attack between two offset

cosine curves:

αmid = 25◦ αturn = 45◦

αmax(t) = (αturn − αmid)[1
2

+ 1
2

cos(2πft)] + αmid

αmin(t) = (αturn − αmid)[−1
2

+ 1
2

cos(2πft)]− αmid

(6.8)

αmin(t) < α(t) < αmax(t) (6.9)

In addition, we filter the force data at a lower frequency for the optimization

routine, using a 5th order low-pass Butterworth at 5 Hz. This filter removes the

force signature of the Strouhal shedding from the boundary layer breakup, which

occurs around 6 Hz. While the other forces on the foil can be mitigated by through

the optimization by changing the angle of attack of the foil, the Strouhal shedding

phenomena is unstable, meaning that changing the angle of attack of the foil will only

flip the phase of the vortex shedding. The lower frequency filter therefore mitigates

this issue and improves convergence of the model-based corrections.

6.4 Optimization Results Based on the Theoreti-

cal Model

We verify the model performance in two ways, by comparison of the model and exper-

imental force measurements, and by noting the direction of the predicted gradients of

the parameters with respect to the true optimum. The latter of these evaluations is

more significant, because it is more important that the model predicts the correct di-

rection, toward the optimum value, than providing a precise estimate of that optimal

value.

First we obtain the optimum values using only the theoretical model outlined

above in Section 6.2, i.e. without conducting an experiment. Results are illustrated
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Figure 6-3: Parameter Selection Using Only the Theoretical Model - Optimized flap-
ping patterns using the theoretical model only. A flapping pattern was derived for
every asterisk in the colored plot, based on 52 parameters (stroke angle β, Strouhal
number St, and 50 equidistant time intervals for the angle of attack over one period
α(t)). The upper left contour plot indicates the stroke angle β, with red implying
backwards, turtle-like in-line motion; while blue is for forward, bird-like in-line mo-
tion. The lower left contour plot indicates the designed flapping frequency. A few
of the designed trajectories are illustrated along right border of the figure, indicating
their β, St, α(t), and predicted force performance. The ideal polar for a NACA0013
in steady flow is given by the red dashed curve. Note that when the intended Cy = 0,
the optimized trajectories have substantial backwards in-line motion. When larger
transverse force is desired, trajectories with forward in-line motion are obtained. Near
the NACA0013 steady flow polar, trajectories are optimized to have very low flap-
ping frequency. Trajectories B, E, and G are further optimized using experiments in
Section 7.
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in Fig. 6-3, where the contour plots provides the value of the stroke angle β and

Strouhal number St as function of the required thust and transverse force coefficients,

Cx and Cy, respectively. The flapping pattern is defined by the same parameters as

given in Eqn 3.7, except that instead of limiting the angle of attack as function of

time, α(t), to a simple harmonic, it is instead parametrized by N = 50 equidistant

time instants over one period of the flapping motion.

First, we note that optimized flaps for zero transverse force, i.e. along the Cy = 0

axis, require substantial backwards in-line motion (β > 90◦) when the thrust con-

straint is also low. As the thrust constraint increases, however, it becomes increas-

ingly more difficult to use only a power downstroke, without violating the angle of

attack constraint. As a result, the optimization chooses increasingly more symmetric

profiles, which incur higher oscillation costs. This result is in agreement with Licht

et al. [15], where backwards in-line motion was also found to decrease the mean thrust.

As the required transverse force coefficient, Cy, increases, the model predicts in-

creasingly larger forward flaps (β < 90◦), capturing the features of bird-like flapping

noted by Tobalske and Dial [33].

The model also predicts the gliding regime, indicated by the red dashed polar,

which shows the performance of a NACA0013 foil in steady flow. As the intended

Cx and Cy approach this regime, the predicted ideal Strouhal number decreases dra-

matically, as indicated by the slow flaps in the lower left corner of Fig. 6-3. The

parametrization, however, eventually breaks down at such low Strouhal numbers - as

St approaches zero, β no longer affects the flap - so the predicted ideal stroke angle

varies erratically.
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Chapter 7

Optimization Results Using

Experiments

We proceed to derive optimized flapping patterns as outlined in Section 6.1, i.e. using

first the results of the theoretical model from the previous section, and then testing

the foil experimentally. Based on an assessment of the experimental performance

of the foil, we use the model to provide a new estimate, and continue alternating

between experiments and model-based corrections, until convergence is obtained. As

such, we take the results from Optimizations B, E, and G in Fig. 6-3, and further

optimize them using experiments to design Trajectories IV, V, and VI respectively.

7.1 Optimized Trajectory IV - Intended Cx = 1

Cy = 0

An example optimization progression for a thrust-producing flap is illustrated in Fig.

7-1, with required mean thrust coefficient Cx = 1 and transverse force coefficient

Cy = 0.

The initial flapping pattern, taken from Optimization B of Fig. 6-3, provides

results in the right direction, but the unaccounted effects provide a relatively large

mean Cy. It should be noted that this initial flap performs far better than the simple
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Figure 7-1: Optimization IV Using Experiments Cx = 1 Cy = 0 - Each row of the
figure refers to an iteration of the optimization process. A: The optimization begins
with the results of Fig. 6-3, designed for the required Cx = 1 and Cy = 0. The flapping
motion and resulting forces are shown in the upper left plot, with green depicting the
expected force from the model, and red the force measured from the experiment. B:
On the basis of the difference between measured and predicted force, a new flap is
designed, which is shown in the middle plots. C: After five such iterations, the force
performance has suitably converged.

in-line motion flaps described in Section 4.3. Compared to the flap in Fig. 4-3, the

angle of attack has been altered to mitigate much of the unwanted lift at the beginning

and end of the downstroke, indicated by the peaks and troughs in the angle of attack

α(t), largely restricting the lift to the middle region of the downstroke. The overall

mean force, however, has a large bias towards positive Cy since the model does not

adequately predict the wake-induced lift.
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Figure 7-2: Flow Visualization on Optimized Trajectory IV Cx = 1 Cy = 0 - The
phase-averaged PIV data illustrates the wake structure at t = 0.25T (midway through
the downstroke) and t = 0.75T (midway through the upstroke). The shadow of the
foil in the laser plane is colored in gray, in addition to a conservative two interrogation-
window region around the foil. The stroke plane, which moves to the left at velocity
U is highlighted by an orange dashed line, while the black dashed line indicates the
trajectory of the foil. The black arrow coming out of the foil quarter-chord point is
the instantaneous fluid force, scaled by a force coefficient of 10 per chordlength of
arrow. Note the dual jets, one formed between the two vortices shed when the foil
rotates quickly and a second formed between the LEV and TEV that creates the
pulsed thrust.

By assessing the difference between the predicted and experimentally measured

forces, the theoretical model is used to provide a correction to the original design,

which is assessed again, and a new correction is obtained. For example, the second

designed flap mitigates most of the unwanted Cy (Fig. 7-1B). After five iterations of
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experimental runs and model-based corrections, the design converges to within 5% of

the desired mean force.

Fig. 7-2 gives a detailed view of the wake of this final optimized trajectory,

obtained from phase-averaged PIV data. The number of datasets averaged ranges

from four on the far left and right edges of the PIV image, to eight datasets in the

center. As the foil rotates quickly at the beginning of the downstroke, a small jet of

fluid is flung upwards, bound by two vortices. A trailing edge vortex (TEV) is shed

as the foil accelerates into the downstroke, consistent with Wagner theory [37]. The

leading-edge vortex (LEV) is shed at the end of the downstroke. These leading and

trailing edge vortices form a rearward facing pulsed jet, providing a large thrust force

with very little transverse force.

Circulation values demonstrated in Fig. 7-2 are calculated by summing all the

vorticity of the same sign contained within a circular region, effectively allowing for

overlapping regions of opposite-signed vorticity. These circular regions are centered

on a local maximum or minimum in the vorticity field, and are radially dilated until

the mean vorticity on the perimeter is 5% of the vorticity in the center [6].

7.2 Optimized Trajectory V - Intended Cx = 0 Cy =

2

Analogously to the motion profile designed in the previous section, the theoretical

model is used to provide incremental corrections to experimental results, eventually

converging to a motion trajectory with the intended mean force of Cx = 0 and Cy = 2.

As illustrated in Fig. 7-3, the theoretical model in Optimization E initially un-

derestimates the downstroke lift, but otherwise accurately predicts the force perfor-

mance. In this case, we follow a slightly longer convergence, eleven trials, to allow

the optimization to get as close as possible to zero mean thrust.

The PIV wake visualization of this optimized trajectory is provided in Fig. 7-4.

Similar to the previous optimized trajectory, a trailing-edge vortex is shed as the foil
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Figure 7-3: Optimization V Using Experiments Cx = 0 Cy = 2 - Similar to Fig. 7-1,
each row of the figure refers to an iteration of the optimization process. A: The top
row indicates the flap designed through the model-only optimization described in Fig.
6-3. In this case, the routine initially underestimates the lift during the downstroke.
B: On the basis of the difference between measured and predicted force, a new flap
is designed. C: After a number of such iterations, the force performance has suitably
converged.

accelerates into the downstroke. A bound leading edge vortex provides a large lift

force, which is then shed at the end of the downstroke. This leading edge vortex

disperses relatively quickly, aided by the trailing-edge shedding at the beginning of

the upstroke.
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Figure 7-4: Flow Visualization on Optimized Trajectory V Cx = 0 Cy = 2 - Similar
to Fig. 7-2, the gray region indicates PIV data invalidated by the laser shadow
and proximity to the foil. The orange and black dashed lines indicate the stroke
plane and position history of the foil respectively. Note the large leading edge vortex
structure midway through the downstroke, as well as a trailing-edge vortex shed at
the beginning of the downstroke.

7.3 Optimized Trajectory VI - Intended Cx = 1

Cy = 4

Fig. 7-5 demonstrates one final optimized trajectory with intended thrust coefficient

of Cx = 1 and transverse coefficient of Cy = 4. This final experiment uses Optimiza-

tion G of Fig. 6-3 as an initialization before improving the force performance.

This trajectory particularly highlights the importance of in-line motion for aug-
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Optimized Trajectory VI: Cx=1 Cy=4 − Convergence with Experiment
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Figure 7-5: Optimization VI Using Experiments Cx = 1 Cy = 4 - Similar to Fig.
7-1, each row of this figure refers to an iteration of the optimization process. A: The
top row indicates the flap designed through the model-only optimization described
in Fig. 6-3. In this case, the routine initially underestimates the lift during the
downstroke and ignores wake effects during the upstroke (top plots). B: After five
iterations of improving the experiment based on the difference between the measured
and predicted force, the mean force converges (C).

menting the foil lift. For example, a lift coefficient of CL = 4 is not possible on a

typical steady foil - assuming the ideal CL = 2πα, a steady foil would require an

angle of attack of α = 36◦, which is well-beyond the stalling angle. Lift augmentation

in this case is possible because of the in-line motion, which allows the foil to move

faster than the mean flow, in addition to delayed stall effects from the pulsed angle

of attack.
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Optimized Trajectory VI: Cx=1 Cy=4 − PIV Wake Visualization
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Figure 7-6: Flow Visualization on Optimized Trajectory VI Cx = 1 Cy = 4 - The PIV
data is phase averaged at t = 0.25T and t = 0.75T , or the middle of the downstroke
and the middle of the upstroke. The foil trajectory in the global frame is indicated
by the dashed black line, while the stroke plane is indicated by the dashed orange
line. Note the staggered trailing and leading edge vortices, with the LEV augmenting
the downstroke lift. The TEV indicates that there is bound vorticity during the
downstroke, while the small jet illustrates the generated thrust.

As indicated in Fig. 7-5, the optimization routine again underestimates the down-

stroke lift, but converges suitably after a number of corrections to the original exper-

iment. The foil wake is demonstrated in Fig. 7-6. Similar to the previous wake, this

wake consists of staggered leading and trailing edge vortices, with the trailing edge

vortex shedding as the foil accelerates into the downstroke and the bound leading

edge vortex augmenting the lift during the downstroke.
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Additionally, we can see a smaller vortex above the shed LEV, forming a jet flow.

This jet indicates that thrust has been generated during the downstroke, analogous

to how the TEV indicates the existence of bound vorticity on the foil that provides

the lift.
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Chapter 8

Conclusions and Future Work

8.1 Force Performance

Birds and certain marine animals actuate their flapping foils with in-line motion, and

experiments have demonstrated that in-line motion can improve force vectoring and

control without necessarily sacrificing efficiency [15]. In-line oscillation is associated

with a power downstroke and a feathering upstroke. Depending on the direction of

the in-line motion during the downstroke, the resulting force can be made to consist

of mainly a thrust force with small oscillatory lift, as in turtles and mollusks, or to

consist of a large lift component in addition to thrust, as in a bird. The ratio of thrust

to lift force can be chosen arbitrarily by adjusting the in-line motion.

In the case of large thrust generation, we show that the principal restriction is

in the maximum angle of attack to prevent excessive dynamic stall. Although the

maximum angle of attack is significantly higher than the stalling angle for a foil

moving at constant angle of attack, a reasonable upper limit still exists. Hence,

as the specified thrust force is increased, optimization tends increasingly towards a

symmetric flapping, i.e. involving little in-line motion and a power upstroke.

In the case of large lift generation, forwards in-line motion can be used to increase

the mean lift far beyond the steady foil case. The high pulsed angle of attack does

not stall due to delayed stall effects, while the increased effective foil velocity further

boosts the lift. This extra lift could be especially useful for engineering applications
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of unsteady foils.

Added complexity results from the in-line motion, both in terms of having an extra

degree of freedom to actuate and because several parameters need to be optimized:

The overall motion, even under steady-state conditions, is not purely sinusoidal, while

strong effects from the vortical patterns in the wake require additional modification

of the motion profile. Such optimization is especially required when a low lift force is

commanded. The overall force is very sensitive to the functional shape of the angle

of attack as unsteady wake effects become dominant, because of the large difference

in relative velocity between the downstroke and upstroke.

I show in this thesis that such an optimization scheme is possible by employing

a model-based iterative optimization method. A simplified theoretical force model

is used to drive an iterative process, altering the parameters of the flapping foil tra-

jectory based in the difference between the theoretical predictions and experimental

results. The process is shown to converge, leading to the generation of forces in the

desired direction and with very small undesirable forces. The parameters of the tra-

jectory consist of the Strouhal number, stroke angle, and the profile of the angle of

attack as function of time; the latter is specified at N points along one period of

oscillation, where typically N = 50. Three examples of optimized flapping foils have

been worked in detail:

• Trajectory IV, a turtle-like case, with specified thrust coefficient Cx = 1, and

zero lift coefficient Cy = 0;

• Trajectory V, a purely lifting foil, with zero specified thrust coefficient Cx = 0,

and lift coefficient Cy = 2; and

• Trajectory VI, a bird-like case, with specified thrust coefficient Cx = 1 and lift

coefficient Cy = 4.

The present results have been derived for steady-state oscillations, and for oscillations

that transition smoothly from cycle to cycle (Fig. 1-2). However, the same procedure

can be extended to apply to rapidly varying motion, such as needed for maneuvering.
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As noted in Section 4, Trajectories I, II, and III represent un-optimized examples

using simple sinusoidal definitions for the motion trajectory.

8.2 Characteristic Wakes

The wakes of asymmetric motion profiles vary substantially from the classic reverse

von Kármán wake of a symmetrically flapping foil. The in-line motion adds further

variability to the wake.

In Trajectory IV, the turtle-like case designed to produce only thrust force Cx = 1,

the wake consists of two large counter-rotating vortices placed along a single transverse

line (Fig. 7-2). This wake is analogous to a pulsed jet or the drag-based thrust from

a paddle, yet the force remains lift-based and efficient because the in-line motion

rotates the effective foil velocity. Small additional vortices can also be shed as the

foil quickly rotates at the beginning of the downstroke. The optimization process

minimizes the strength of secondary vortices primarily through changes in the angle

of attack profile.

In Trajectory V with Cx = 0 and Cy = 2, a bird-like forwards moving downstroke,

the wake consists of one TEV that sheds as the foil accelerates into the downstroke,

and a strong LEV that boosts the lift and sheds at the end of the downstroke. The

TEV is indicative of some bound foil vorticity. These two vortices are staggered

asymmetrically in the wake because of the in-line motion.

Trajectory VI with Cx = 1 and Cy = 4 corresponds to substantial transverse force

combined with a small thrust force. This wake combines the features of Trajectory IV

and V. A small vortex forms transverse to the shed LEV, forming a rearward-facing

jet that indicates the presence of an upstream thrust force (Fig. 7-6). If no thrust is

desired, as in Trajectory V, the pair instead annihilates and no jet forms (Fig. 7-4

Top).
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8.3 Future Work

8.3.1 Real-Time Force Control

The controller from Chapter 5 has not been tested in experiment, given that the

optimization routine is a better definition of the model-uncertainly problem. However,

a controller would be necessary for rejecting flow disturbances, such as placing the

flapping foil within a large von Kármán vortex street or a flow of unsteady direction.

A real-time controller, following a baseline trajectory developed by the optimization

routine, would be a valuable addition to this work. Given a baseline trajectory, more

traditional time-varying control solutions could also be used, such as a time-varying

linear quadratic regulator (TVLQR), to mitigate the variable gain between the angle

of attack and lift caused by the changing foil velocity.

8.3.2 Three-Dimensional Effects

This work has so far been limited to the two-dimensional flapping foil problem, where

the foil is simply translated and pitched in a single plane. However, most examples of

flapping foils are strongly three-dimensional, such as a pitching and rolling bird wing

that extends from the animal’s body.

Various simple extensions exist from the planar theory into the true three-dimensional

problem, such as the 70% foil span approximation from propeller theory [31]. Adding

in-line motion, or yaw, to the three-dimensional flapping flight problem would be a

necessary extension of this work for the development of a flapping foil vehicle.

8.3.3 Applications on a Flapping Foil Vehicle

In-line motion has numerous applications if implemented on a traditional flapping foil

vehicle:

• Position Trajectory Following - The ability to easily and repeatedly vector the

force from a flapping foil improves the vehicle’s ability to follow a sharply ma-

neuvering trajectory.
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• Augmented Lift Maneuvers - A flapping foil with in-line motion can generate

huge coefficients of lift (see Section 7.3). This ability could give a vehicle de-

signed for gliding, i.e. large aspect ratio, the ability fly slower than the steady

stall speed.

• Augmented Roll Rate - A flapping foil vehicle with in-line motion could also

use the boosted lift coefficient to quickly roll the vehicle. Traditionally, fast roll

rates are created using a wingaron, where the entire wing is used as an aileron.

In-line motion can alternatively generate large impulsive roll rates by lunging

the ailerons forwards instead of pitching the whole wing. Such a scheme could

simplify the design of the wing.
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Appendix A

Wake Visualization on Trajectories

I,II, and III
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Trajectory I: Symmetric Motion − PIV Wake Visualization
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Figure A-1: Flow Visualization on Trajectory I: Symmetric Flapping Profile - The
phase-averaged PIV data illustrates the wake structure at t = 0.25T (midway through
the downstroke) and t = 0.75T (midway through the upstroke). The shadow of the
foil in the laser plane is colored in gray, in addition to a conservative two interrogation-
window region around the foil. The stroke plane, which moves to the left at velocity
U is highlighted by an orange dashed line, while the black dashed line indicates the
trajectory of the foil. The black arrow coming out of the foil quarter-chord point is
the instantaneous fluid force, scaled by a force coefficient of 10 per chordlength of
arrow. Note the classic inverted von Kármán vortex street.
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Trajectory II: Forwards In−Line Motion  − PIV Wake Visualization
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Figure A-2: Flow Visualization on Trajectory II: Bird-Like Forward Biased Flap -
Similar to Fig. A-1, the gray region indicates PIV data invalidated by the laser
shadow and proximity to the foil. The orange and black dashed lines indicate the
stroke plane and position history of the foil respectively. Note the large leading edge
vortex structure midway through the downstroke, as well as the set of trailing-edge
vortices shed throughout the downstroke. The LEV is shed as the foil rotates into
the upstroke, along with two smaller vortices that form a downwards-facing jet.
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Trajectory III: Backwards In−Line Motion − PIV Wake Visualization
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Figure A-3: Flow Visualization on Trajectory III: Turtle-Like Backwards Biased Flap
- Similar to Fig. A-1, the gray region indicates PIV data invalidated by the laser
shadow and proximity to the foil. The orange and black dashed lines indicate the
stroke plane and position history of the foil respectively. Note two TEVs, one shed at
the beginning and one shed at the end of the downstoke, and a trail of boundary layer
breakup during the upstroke. This trajectory has very little net thrust, as indicated
by the lack of a rearward facing jet behind the flap.
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