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Abstract

High-fidelity multi-scale simulation tools are critically important for examining energy
conversion processes in which the coupling of complex chemical kinetics, molecular
transport, continuum mixing and acoustics play important roles. The objectives of
this thesis are: (i) to develop a state-of-the-art numerical approach to capture the
wide spectra of spatio-temporal scales associated with reacting flows around immersed
boundaries, and (ii) to use this tool to investigate the underlying mechanisms of flame
stabilization and blow-off in canonical configurations.

A second-order immersed boundary method for reacting flow simulations near
heat conducting, grid conforming, solid object has been developed. The method is
coupled with a block-structured adaptive mesh refinement (SAMR) framework and a
semi-implicit operator-split projection algorithm. The immersed boundary approach
captures the flame-wall interactions. The SAMR framework and the operator-split
algorithm resolve several decades of length and time efficiently. A novel “buffer zone”
methodology is introduced to impose the solid-fluid boundary conditions such that
symmetric derivatives and interpolation stencils can be used throughout the interior
of the domain, thereby maintaining the order of accuracy of the method. Near an
immersed solid boundary, single-sided buffer zones are used to resolve the species
discontinuities, and dual buffer zones are used to capture the temperature gradient
discontinuities. This eliminates the need to utilize artificial flame anchoring boundary
conditions used in existing state-of-the-art numerical methods. As such, using this
approach, it is possible for the first time to analyze the complex and subtle processes
near walls that govern flame stabilization. The approach can resolve the flow around
multiple immersed solids using coordinate conforming representation, making it valu-
able for future research investigating a variety of multi-physics reacting flows while
incorporating flame-wall interactions, such as catalytic and plasma interactions.



Using the numerical method, limits on flame stabilization in two canonical con-
figurations: bluff-body and perforated-plate, were investigated and the underlying
physical mechanisms were elucidated. A significant departure from the conventional
two-zone premixed flame-structure was observed in the anchoring region for both
configurations. In the bluff-body wake, the location where the flame is initiated,
preferential diffusion and conjugate heat exchange furnish conditions for ignition and
enable streamwise flame continuation. In the perforated-plate, on the other hand, a
combination of conjugate heat exchange and flame curvature is responsible for local
anchoring. For both configurations, it was found that a flame was stable when (1)
the local flame displacement speed was equal to the flow speed (static stability), and
(2) the gradient of the flame displacement speed normal to its surface was higher
than the gradient of the flow speed along the same direction (dynamic stability). As
the blow-off conditions were approached, the difference between the former and the
latter decreased until the dynamic stability condition (2) was violated. The blow-
off of flames stabilized in a bluff-body wake start downstream, near the end of the
combustion-products dominated recirculation zone, by flame pinching into an up-
stream and a downstream propagating sections. The blow-off of flames stabilized in
a perforated-plate wake start in the anchoring region, near the end of the preheated
reactants-filled recirculation zone, with the entire flame front convecting downstream.
These simulations elucidated the thus far unknown physics of the underlying flame
stabilization and blow-off mechanisms, understanding which is crucial for designing
flame-holders for combustors that support continuous burning. Such an investigation
is not possible without the advanced numerical tool developed in this work.

Based on the insight gained from the simulations, analytical models were devel-
oped to describe the dynamic response of flames to flow perturbations in an acousti-
cally coupled environment. These models are instrumental in optimizing combustor
designs and applying active control to guarantee dynamic stability if necessary.

Thesis Supervisor: Ahmed F. Ghoniem
Title: Ronald C. Crane (1972) Professor
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Chapter 1

Introduction

1.1 Motivation

In practical combustors, the inlet velocity of the premixed reactants is typically much

higher than the laminar flame speed of the mixture. Bluff-bodies and perforated-plate

are often used to furnish the necessary mechanism for flame stabilization and contin-

uous burning in such combustors. Two typical burner configurations and schematic

illustrations of their canonical configurations are shown in Fig 1-1. These combustors

are common in a variety of propulsion devices (air-breathing and non-air-breathing

engines), industrial combustors (furnaces, heat exchangers) and domestic gas stoves.

The length scales vary from the meter-scale combustor geometric details to the thin

sub-millimeter-scale flame fronts. The time scales span the slow conjugate heat ex-

change processes between the burner wall and the flow, and the rapid diffusion and

reaction phenomena. There is a significant flame-wall interaction near the anchoring

region. Understanding the steady and dynamic flame characteristics near these burn-

ers has been an active research area because of its immense practical importance.

High-order efficient numerical methods are critically important to carry out such in-

vestigations. A numerical approach to accurately capture the flame-wall interactions

is still missing from the current state-of-the-art tools. Such a high-fidelity tool, when

developed, can provide deep insight into the complex underlying physical mechanisms

of fundamental processes like flame stabilization, extinction and blow-off, which still
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remain elusive because of their complex multi-physics nature. Increasing modern com-

puting power and massively parallel architecture has further made this within reach.

Development of an advanced immersed boundary method for reacting flows and its

application to the mechanistic understanding of fundamental processes of combustion

form the basis of my PhD thesis. This tool can also play a vital role in complementing

experimental investigations near the combustor walls; which is challenging due to the

harsh environment, limited optical access and often inadequate field data. It has a

wide range of applicability to other multi-scale combustion problems.

(b)	  Bluff-‐body	  burner	  

(a)	  Perforated-‐plate	  burners	  

-‐	  Bosch	  

-‐	  Lawrence	  Berkeley	  Lab	  

Figure 1-1: Some typical burner configurations and their schematic illustrations.
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1.2 Literature

1.2.1 Numerical method development

Accurate and efficient simulation tools to capture flame-wall interactions, allowing

the flame to find a stable location naturally, are still unexplored and essential for

understanding the localized phenomenon of flame anchoring. In fact, artificial flame

anchoring conditions are often employed: a high temperature hot-spot in [1], isother-

mal flame-holders in [2] and hot combustion products co-flowing with reactants at

the inlet in [3]. As a result, current Direct Numerical Simulations (DNS) investiga-

tions are limited to the flow-field far away from the anchoring region. These artificial

anchoring conditions are however advantageous because the slow time-scale of the

conjugate heat exchange between the flame and burner wall is decoupled from the

rapid combustion and flow time-scales. Gruber et al. [1] showed that incorporating

heat exchange between isothermal (highly simplified model) channel walls and the

interior reacting flow in a combustor was critical for accurate prediction of the high

convective heat fluxes associated with the rapid radical quenching; however flame-wall

interactions near the anchoring region were ignored.

DNS involve solving the governing reacting flow equations on a computational grid

that resolves all the relevant scales. Most DNS codes use fully explicit schemes on a

uniformly spaced or a stretched regular grid allowing simpler numerical implementa-

tion [1, 4]. This enables the use of high-order finite difference schemes to minimize

numerical diffusion: fourth-order temporally accurate and eight-order spatially accu-

rate simulations were performed in [1, 4]. The stable time-step used in such codes

is typically close to few nanoseconds for hydrocarbon combustion (4×10−9s in [1]),

primarily restricted by the stiffness of the chemical kinetics. A compressible flow

construction, used in [1], imposes additional restriction on the stable time-step based

on the sonic CFL condition. This extremely small time-stepping was significantly in-

creased by constructing a low-Mach, semi-implicit, operator-split projection method,

performing the transport and reactive time-advancement via specialized integrators

[5, 6].
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For typical burners employing a premixed mixture of the inflowing reactants, thin

reaction fronts exist only in a small fraction of the total domain. These regions have

very sharp gradients in the scalar fields of species mass-fractions, temperature and

density. For such problems, one may employ structured adaptive mesh refinement

(SAMR) for higher efficiency. SAMR was first suggested by Berger and Oliger [7]

and implemented for simulation of shock waves in [8]. Thereafter, it has been used

in the simulation of flames with complex chemistry in a variety of laboratory config-

urations [3, 9]. Hybrid Lagrangian/Eulerian 3D methods for high Reynolds number

reactive flows were developed by Schlegel [10]. Safta et al. [11] developed a spatially

fourth-order and temporally second-order operator-split projection scheme for the

study of chemically reacting flows at the low-Mach number limit using the SAMR

framework, which forms the basis of this thesis. This modular code was developed

using a Common Component Architecture (CCA) framework [12].

The numerical method for multi-physics reacting flows must also account for de-

tailed chemical kinetics model. Westbrook and Dryer [13] proposed various single-step

mechanisms using curve fitting techniques for methane-air flames. They concluded

that the single-step mechanisms could not accurately describe the chemical structure

of the flame, although they could reproduce experimentally observed flammability

limits and flame speeds within a certain range of conditions. A simplification of the

complex multi-step chemical kinetics processes in numerical modeling may capture

some physics qualitatively (McIntosh [14], Rook et al. [15] and Rook [16]), but may

not agree quantitatively with detailed kinetic mechanism simulations, especially with

regards to the flame structure. Accurately capturing the chemical structure of the

flame, especially near the burner walls where the flame anchors, is critical for inves-

tigating stabilization mechanisms.

The SAMR framework development for chemically reacting flows has hitherto been

limited to fluid-only domains. Originally developed by Peskin [17] to simulate blood

flow in the heart, the Immersed Boundary Method(IBM) has now found widespread

use in a variety of engineering applications, although primarily limited to non-reacting

flows. The primary advantage of the IBM is that the non-grid conforming complex
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immersed bodies can be tackled on a regular Cartesian grid. Mittal and Iaccarino

[18] presented a comprehensive review of the IBM. The presence of the solid body

becomes known to the fluid through a forcing function, which is consistently con-

structed using the transport equations and the solid body constraint. Based on the

method of forcing used, IBM can be categorized into a continuous forcing approach

(forcing imposed in the governing equations before discretization) or a discrete forc-

ing approach (forcing imposed in the governing equations after discretization). In the

direct forcing method [19], the solution is first obtained in the combined solid-fluid

domain, and then corrected inside the solid to the desired value by imposing the

boundary conditions.

Breugem and Boersma [20] presented a method for non-reacting cold flow simula-

tion in porous media using Cartesian mesh-aligned solid cubes in a three-dimensional

fluid domain. An IBM variant has been proposed for conjugate heat transfer prob-

lems with moving and stationary particles, as well as constant and variable tem-

perature particles; using RANS models in [21] and using LES/DNS models in [22].

For low-Mach number flows, Paravento et al. [23] proposed an IBM to include heat

exchange between a Cartesian grid-aligned rectangular object and the non-reacting

single-species fluid surrounding it. This heat-exchange method was not generalized

for flows with varying (temperature and composition dependent in reacting flows)

thermal conductivity. These challenges are further compounded by the presence of

chemical reactions and multi-species transport equations. IBM for reacting flows with

fully coupled momentum-species-energy transport and conjugate heat exchange with

complex immersed walls are not yet developed to the best of my knowledge.

In an effort toward bridging this gap, in this thesis I present a second-order “buffer

zone” IBM to incorporate flame-wall interactions and couple it with the numerical

development presented in [11]. The development is currently limited to a Cartesian

grid conforming immersed solid object. The developed numerical method allows the

detailed mechanistic investigation of flame-stabilization and blow-off for the first time.

This is performed in this thesis using two canonical configurations. The literature

survey on the existing investigations and their limitations are discussed below.
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1.2.2 Bluff-body stabilized flames

Bluff-body flames stabilize in the shear layer separating from the burner (Fig.1-1).

Blow-off of bluff-body stabilized premixed flames has been widely investigated in the

literature, primarily using experiments. However, there does not exist any literature

(experimental or numerical) describing the mechanism of bluff-body flame anchor-

ing or the simultaneous dynamic and heat transfer interactions between the reacting

flow and the bluff-body, to the best of my knowledge. Experimental investigations

face severe limitations such as optical diagnostics issues, harsh combustion environ-

ment and lack of detailed species-field data. Numerical simulations have not yet been

performed in the literature incorporating detailed chemical kinetics and flame-wall in-

teractions for bluff-body flames due to the large computational expense. Barlow et al.

[24], Dunn and Barlow [25] recently investigated the effects of preferential diffusion

in bluff-body stabilized turbulent premixed flames using high resolution experimental

diagnostics. They demonstrated a local increase in the local equivalence ratio in the

recirculation zone downstream of the bluff-body, a unique observation not reported

in the literature before.

Soteriou and co-workers [26, 27] studied the physics of the bluff-body stabilized

premixed flame at high Reynolds number using an unsteady two-dimensional vortex

element method. They analyzed the role of baroclinic vorticity generation, wall-

generated vorticity and the dilatation due to the combustion heat release in shifting

the asymmetric non-reacting flow in the von-Karman regime to a symmetric shed-

ding field. An adiabatic boundary condition at the bluff-body was imposed in these

simulations thereby forcing an artificial flame anchoring condition. Furthermore, the

influence of the multi-species transport on flame anchoring cannot be investigated

with their tool due to the kinematic flame-sheet modeling of the reacting flow.

The impact of global parameters on bluff-body blow-off such as chemical and

aerodynamic parameters has been studied experimentally in classical investigations

[28–31]. In these studies, the role of the bluff-body geometry, inflow velocity of the

premixed reactants, and various other operating conditions on blow-off were ana-
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lyzed. Typical blow-off curves were reported in the form of a plot of the maximum

inlet reactant velocity for which the flame is stable at different equivalence ratios.

Many phenomenological explanations for blow-off were proposed based on the ob-

served data. It was hypothesized that the flame blows off when the heat demand

by the combustible stream in the shear layer for ignition exceeds the heat received

by the recirculation zone [30, 32]. Longwell et al. [29] proposed that blow-off occurs

when the mass transfer of fresh reactants into the recirculation zone (which is viewed

as a perfectly well-stirred reactor) and the rate of its consumption (equivalently the

rate of burning) is not balanced. A similar idea was proposed in [28, 33], suggesting

that blow-off is caused by the imbalance between the heat supplied to the fresh reac-

tants from the recirculation zone and the heat released by the reaction. Shanbhogue

et al. [34] comprehensively reviewed the blow-off dynamics of the bluff-body stabi-

lized flames at various Reynolds numbers. They demonstrated that the Damköhler

number, based on various definitions discussed in Section 4.2.6, correlated very well

with the experimentally observed data; essentially encapsulating the physics govern-

ing bluff-body flame blow-off. Recent high-speed laser diagnostics based experimental

investigations of turbulent bluff-body flames showed that extreme stretch rate in the

shear layer results in local flame sheet extinction, which is a precursor to blow-off

[35, 36]. However, laminar flame blow-off mechanism cannot be explained from these

investigations. The simulations, discussed in this thesis, did not show any local ex-

tinction in the shear layer during blow-off.

Williams et al. [28] and Russi et al. [37] studied the impact of the flame-holder

temperature on flame stabilization. They concluded that the conjugate heat exchange

impacts the blowout limits in turbulent flames; heating/cooling the flame-holder de-

creases/increases the blowout tendency thus widening/shrinking the stability limit.

However, Russi et al. [37] also demonstrated that the flame-holder temperature plays

a weak role in the blow-off for low Reynolds number flow. The recent experimen-

tal investigation of reacting flow in a backward-facing step combustor in [38] revealed

that the conjugate heat exchange with a backward-facing step in a combustor can sig-

nificantly modify or sometimes even suppress the onset of the combustion instability
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depending on the operating conditions. A more thermally conductive steel step was

reported to be more susceptible to the self-sustained oscillations than a less thermally

conductive ceramic step.

Although a large literature exists on the bluff-body flame blow-off, its underlying

physical mechanism is still unclear. In almost all of the experimental investigations

discussed above, a flow-based timescale (such as heat transfer rate, mass transfer rate,

residence time in the recirculation zone) was compared to a chemical timescale (such

as burning rate, ignition, extinction) to globally explain the blow-off phenomenon.

These phenomenological hypotheses are based on the observed data correlation and

thus lack a physical portrait of the local blow-off mechanism.

1.2.3 Perforated-plate stabilized flames

A perforated-plate burner flame is composed of a periodic array of bell-shaped flames

connected with U-shaped flames downstream of the hole and the heat-conducting

plate, respectively (Fig.1-1). Previous studies have focused on the mechanisms of

stabilization and blow-off of inverted flame downstream of a single thin rod or a twin-

slot burner. The results of these studies are not directly applicable to perforated-plate

stabilized flames because of significant flame-wall interaction in the latter, although

some similarities are expected. Aerodynamic stretching, preferential diffusion effects

due to non-unity Lewis number, conductive heat losses to the burner plate, as well as

volumetric heat loss via radiation have been suggested as physical mechanisms that

impact stabilization and blow-off. However, there still exists strong disagreement

and contradictory hypothesis in the literature on these mechanisms even for flames

downstream of a single thin rod or a twin-slot burner.

One of the earliest theories on flame blow-off was proposed by Lewis and von Elbe

[40, 41]. These pioneering studies extended the flame stretch theory of Karlovitz et

al. [42] and postulated that blow-off occurs when a critical velocity gradient in the

nozzle near the burner plate is reached in the unburnt mixture. A schematic diagram

showing the velocity gradient is shown in Fig. 1-2(a). The criterion was formulated

in terms of a critical value of the Karlovitz number, Kb = η0gb/Su0, where η0 is the
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Figure 1-2: (a) Schematic diagram of boundary velocity gradient at the burner exit;
(b) Cross-section of the rectangular twin-slot burner exit used by Kawamura et al.
[39]; (c) Experimentally determined critical Karlovitz number, Kb = η0

∂u
∂r
/Su0; (d)

Experimentally determined critical area increase factor Ab = η0/Rb for methane-air
inverted flames stabilized on the rectangular twin-slot burner shown in (b). Data
taken from Ref. [39]. d = 0 corresponds to a very sharp edge. Results show that
1 < Kb < 10 and 1 < Ab < 2.
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characteristic length of the preheat zone, gb is the velocity gradient near the burner

plate and Su0 is the adiabatic burning velocity. This critical value depends on the

configuration used to stabilize the flame, and its value ranges between 1.3 to 2.0 for

wire stabilized flames, 0.7 to 3.0 for pilot stabilized flames, and 1.5 to 11 for bluff-

body stabilized flames [43]. I will refer to this theory as the ‘critical velocity gradient

theory’. Lewis and von Elbe assumed that the velocity gradient at the flame base is

almost the same as the velocity gradient near the exit of the burner plate. Edmondson

and Heap [44] provided additional support for the theory of Lewis and von Elbe by

performing experimental analysis of blow-off of inverted methane-air flames stabilized

on thin plates. Reed [43] extended Karlovitz’s flame stretch concept to flame blow-off

on burners with no secondary air dilution.

Melvin and Moss [45] analyzed the ‘critical velocity gradient theory’ and con-

cluded that it is largely unsatisfactory. The ‘critical velocity gradient theory’ was

also challenged by Kawamura et al. [39, 46]. They proposed that the flame area

increase factor (in the Lagrangian sense) due to the strong positive curvature at

the flame base (which is concave towards the products) is responsible for blow-off.

They demonstrated that a critical value of area-increase factor, which they define

as Ab = η0/Rb, where Rb is the radius of curvature of the flame base, correlates

better with flame blow-off than the Karlovitz number, Kb, used by Lewis and von

Elbe. I refer to this area-increase theory as the ‘curvature theory’. Kawamura et al.

([39]) performed experiments on a twin-slot rectangular burner. Figure 1-2(b) shows

a cross-sectional area of the burner. Figure 1-2(c) shows the measured critical values

of Kb and Fig. 1-2(d) shows the critical values of Ab for different equivalence ratios

and stabilization plate thicknesses, d. Note that 1 < Kb < 10 whereas 1 < Ab < 2.

For a given equivalence ratio, the variation of the critical value of Kb is larger for

different plate thicknesses as compared to the variation of the critical value of Ab.

Moreover, the order of magnitude of the critical value of Ab is unity across the range

of φ and d investigated in the experiment. Kawamura et al. concluded that the

blow-off of inverted flames can be predicted better by the area-increase factor (corre-

sponding to the ‘curvature theory’) than by the Karlovitz number (corresponding to
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the ‘critical velocity gradient theory’). However, the figures also show that Kb and

Ab have significant variation with thicker plates, demonstrating that both theories

fail as the plate thickness increases. The distance between the neighboring holes in

a typical perforated plate is comparable to the size of the holes, and it is equivalent

to the plate thickness in the twin-slot rectangular burner configuration. Thus, the

stabilization plate thickness is large in such perforated-plate burners.

A recent numerical investigation of an inverted methane-air flame stabilized on

a slot burner was carried out by Mallens et al. [47]. They concluded that the hy-

drodynamic straining of the flame base plays a significant role in flame stabilization

and not the flame stretch associated with curvature. They challenged the observa-

tions of Kawamura et al. [39, 46], once again opening up the debate on the leading

mechanisms of flame stabilization and blow-off. The numerical study of Mallens et

al. modeled the effect of heat loss by adjusting the parameters of the single-step

kinetics mechanism, which were determined using their experimental results. The

experimentally determined velocity profiles near and within the flame were matched

to the numerical results obtained using the single-step chemistry. The temperature

profiles in these simulations did not show significant gradients near the burner wall

(thus no heat loss to the burner) and it was concluded that heat losses played no role

in flame stabilization or blow-off.

A more fundamental understanding of flame stabilization and blow-off is needed,

sidestepping the aim to formulate a global blow-off criterion. For instance, the role

of heat transfer to the burner plate in flame stabilization and blow-off remains un-

clear. Trevino et al. [48] argued that heat transfer to the plate is necessary for the

stabilization of inverted flames. On the other hand, Sung et al. [49] demonstrated

the existence of solutions where inverted flame can stabilize without heat loss to the

thin stabilizing rod. However, they emphasize that the conclusions of Trevino et

al. may still be valid when the flame stabilizes close to the rod. Kawamura et al.

[39, 46] concluded that the heat loss plays an insignificant role in the flame blow-off

mechanism.

The dynamic response of the perforated-plate flame to velocity perturbations de-
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termines the nature of the self-excited oscillations in closed combustion system, which

may result in fatal structural damage. Durox et al. [50] experimentally investigated

the dynamic flame response using flame transfer functions (FTF) under different con-

figurations and determined that at certain low frequencies, the normalized heat release

amplitude is greater than the non-dimensional velocity oscillations. For V-shaped and

M-shaped flames, resonance (overshoot in the FTF gain) was attributed to flame-area

oscillations. In recent investigations, it was shown that for perforated-plate burners,

this behavior arises because of a significant thermal interaction between the gases

and the plate [51–53]. An analytical model for the prediction of perforated-plate sta-

bilized FTFs was proposed by Altay et al. [52]. The model relied on specifying the

steady-state flame standoff distance which was obtained from the perforated-plate’s

surface temperature using Rook’s model [15, 16]. This plate temperature was kept

as a free parameter. The model further assumed that the mean burning velocity of

the flame base is the adiabatic laminar flame speed. These assumptions encompass

the flame-wall thermal interaction information. In this thesis, I analytically model

this flame-wall interaction using the understanding of the perforated-plate flame sta-

bilization mechanism.

1.3 Thesis outline

My objective is to develop a second-order state-of-the-art numerical method to cap-

ture the wide spectra of spatio-temporal scales associated with combustion using an

operator-split projection algorithm and a block-structured adaptive mesh refinement

(SAMR) framework coupled with an immersed boundary formalism. No artificial

boundary conditions are used for flame anchoring. Using this new method, one can

simultaneously tackle (a) Cartesian mesh-aligned immersed wall undergoing conju-

gate heat exchange with the surrounding reacting flow allowing the flame to naturally

anchor, (b) multiscale processes using the operator-split projection scheme, (c) de-

tailed chemical kinetics for multi-species transport, and (d) dynamic tracking of the

flame with SAMR. I describe this novel numerical method in Chapter 2.
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Using the numerical method, limits on flame stabilization in two different configu-

rations: bluff-body and perforated-plate, are investigated and the underlying anchor-

ing and blow-off mechanisms are elucidated in Chapters 3-5. The sequence of events

during the blow-off process is discussed. The role of conjugate heat exchange with the

flame-holder was also investigated. I focus on laminar flames only, thereby decoupling

the additional complexities of flow unsteadiness and vortex shedding associated with

turbulent flames. Based on the insight gained from the simulations, an analytical

model is developed in Chapter 6 to describe the dynamic response of flames to flow

perturbations in an acoustically coupled environment. Advanced numerical develop-

ments showing the three-dimensional extension and the immersed stair-stepped solid

treatment are discussed in Chapter 7. The thesis summary and suggested future work

are presented in Chapter 8.
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Chapter 2

A second order buffer zone method

to incorporate flame-wall

interactions

2.1 Overview

State-of-the-art reacting flow simulations need to account for a wide spectrum of

spatio-temporal length and time scales. This mulstiscale problem is tackled by cou-

pling my novel immersed boundary method (IBM) with a low Mach semi-implicit

operator-split projection method and a block-structured adaptive mesh refinement

(SAMR) framework presented in [11] . A “buffer zone” methodology is introduced

to impose the solid-fluid boundary conditions such that the solver uses symmetric

derivatives and interpolation stencils throughout the interior of the numerical domain;

irrespective of whether it describes fluid or solid cells. The development discussed in

this chapter is limited to a two-dimensional Cartesian grid-conforming solid. I present

validation of the code using benchmark simulations documented in the literature. I

also demonstrate the overall second-order convergence of my numerical method.
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2.2 Governing equations

At the low-Mach number limit, the continuity, momentum and scalar equations are

written in compact form as

∇ · v = −1

ρ

Dρ

Dt
(2.1a)

∂v

∂t
= −1

ρ
∇p+ CU +DU (2.1b)

∂T

∂t
= CT +DT + ST (2.1c)

∂Yk
∂t

= CYk +DYk + SYk k = 1, 2, . . . , Ns (2.1d)

where v is the velocity vector, ρ the density, T the temperature, Yk the mass-fraction

of species k, p is the hydrodynamic pressure, and Ns is the number of chemical species.

The D
Dt

operator represents the material derivative, D
Dt

= ∂
∂t

+ v · ∇. The system of

governing equations is closed with the equation of state for an ideal gas

P0 =
ρ<T
W

= ρ<T
Ns∑
k=1

Yk
Wk

= const (2.2)

where P0 is the thermodynamic pressure, < is the universal gas constant, Wk is the

molecular weight of species k, and W is the molecular weight of the mixture. The

thermodynamic pressure is spatially uniform in the low-Mach number limit. Further,

restricting the focus to flow in an open domain, P0 is assumed constant.

The convection and diffusion terms in (2.1) are given by

CU = − (v · ∇) v, DU =
1

ρ
∇ · τ, (2.3a)

CT = − (v · ∇)T, DT =
1

ρcp
∇ · (λ∇T )−

(
Ns∑
k=1

cp,kYkVk

)
· ∇T (2.3b)

CYk = − (v · ∇)Yk, DYk = −1

ρ
∇ (ρYkVk) (2.3c)
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and the source terms by

ST = − 1

ρcp

Ns∑
k=1

hkω̇k, SYk =
ω̇k
ρ

(2.4)

where τ is the stress tensor given by τij = µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · v

)
, µ is the dynamic

viscosity, and λ is the mixture thermal conductivity. Further,

Vk = −Dk,m

Yk

(
∇Yk +

Yk

W
∇W

)
, (2.5)

is the diffusion velocity of species k, where Dk,m is the mixture-averaged diffusivity

of species k. Finally, cp and cp,k are the specific heats at constant pressure for the

mixture and species k, respectively, and hk and ω̇k are the specific enthalpy and molar

production rate, respectively, of species k. The equation of state Eq. (2.2) is used to

derive an expression for the right hand side of the continuity equation (2.1a)

DP0

Dt
= 0→ 1

ρ

Dρ

Dt
= − 1

T

DT

Dt
−

Ns∑
k=1

W

Wk

DYk
Dt

(2.6)

= − 1

T
(DT + ST )−

Ns∑
k=1

W

Wk

(DYk + SYk) (2.7)

The Soret and Dufour effects are negligible for hydrocarbon combustion and are

not included in the transport model. Radiation is ignored. A mixture-averaged

formulation is used to compute the transport properties of the gas mixture.

There is thermal contact between the immersed solid body and the surrounding

fluid. This conjugate heat exchange between the solid and the surrounding react-

ing fluid is incorporated by simultaneously integrating the equations governing the

reacting flow with the transient heat conduction equation inside the solid:

∂T

∂t
=

1

ρscs
∇ · (λs∇T ) (2.8)

where ρs is the density, λs is the thermal conductivity and cs is the heat capacity of
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Figure 2-1: Schematic cell topology of a SAMR grid at two consecutive levels; filled
circles are cell centers of a coarse grid level L = 0 and open circles are cell centers
of a fine grid level L = 1. Velocity components are computed at the coarse grid face
centers marked by large arrows and interpolated to the fine grid face centers marked
by small arrows.

the solid.

2.3 Numerical Methodology

The semi-implicit operator-split projection method using the SAMR framework, de-

veloped for chemically reacting flows in [11] for fluid-only domains, forms the basis of

my numerical method. In this section I briefly summarize it and then couple it with

the new buffer zone method to accurately incorporate flame-wall interactions.

2.3.1 SAMR framework

SAMR is used to adaptively refine the computational grid in regions where the in-

ternal flame structure needs to be resolved accurately. Figures 2-1 and 2-2 show a

schematic illustration of the SAMR grid topology. A relatively coarse Cartesian mesh

is laid over the entire domain and the field variables are initialized on it. The grid
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Figure 2-2: Schematic cell topology of a SAMR grid at two consecutive levels; Patches
1 and 2 reside on fine grid level L and have adjacent valid regions, V 1

L and V 2
L

cells are collated into rectangular patches and finer grids, known as children patches

(obtained by splitting each cell in half in each dimension) are formed in regions of

sharp gradients (based on temperature or the species of choice). This refinement is

performed recursively, until a hierarchy of patches is formed. A layer of ghost cells are

added to each patch at all levels to allow the use of symmetric stencils for derivatives

and interpolations. The adaptive nature of SAMR arises from the periodic process

of identifying cells requiring refinement (followed by the addition of finer patches)

and the simultaneous coarsening of regions which no longer require refinement. In

the current implementation, the momentum equations are discretized and solved on a

uniform mesh only, and are coupled to the solution of the species and energy conser-

vation equations on the adaptive mesh hierarchy. For a typical premixed flame, scalar

gradients are much sharper than velocity gradients. The characteristic thickness of

the reaction zone of the flame (typical of the scalar length-scales) is approximately

5∼10 times smaller than the characteristic thickness of the convection-diffusion zone
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(typical of the velocity length-scales) for a conventional hydrocarbon flame1. More-

over, the integration of the momentum equations is typically a small fraction (∼

10%) of the total iteration time [11]. Thus it is efficient to choose a uniform base

grid capable of fully resolving the velocity field and using the SAMR hierarchy only

for the scalars. This is additionally advantageous because one avoids the complex

pressure Poisson solver on the SAMR grid in the projection step, which is currently

much slower than its uniform grid counterpart.

A binary marker function (value 1 in the solid and value 0 in the fluid) is used

as indicator for the solid cells at all the levels of refinement. The entire domain is

treated as a single-material (fluid-only) domain with physical properties (heat con-

ductivity, specific heat and density) appropriately changed in the solid region using

the marker function. Layers of fictitious cells, called a buffer zone in this chapter (dis-

cussed in Section 2.3.3), are created within the numerical domain near the solid-fluid

boundary and their values are filled such that the boundary conditions get imposed

automatically when the derivative and interpolation routines are implemented. This

allows the usage of the symmetric stencils throughout the interior of the domain.

The marker function approach allows for disjoint multiple solid objects (rectangular

or block-rectangular) in the computational domain; useful for practical applications

such as flow simulation around an array of heat-conducting flame-holders or T-shaped

burners in a combustor.

2.3.2 Semi-implicit operator-split projection algorithm

On each rectangular patch in the domain, a staggered mesh is used: variables are

defined at the cell-centers (scalars) and the edge-centers (vectors). The numerical

integration of the system of equations is performed in three stages. First, a projec-

tion approach is adopted for the momentum equations on a fixed uniform mesh. In

the second stage, a symmetric Strang splitting scheme is recursively implemented at

1 δR
δT
≈ n

Z for a premixed flame where δR is the reaction-diffusion zone thickness, δT is the
convection-diffusion zone thickness, n is the overall reaction order (≈ 1-3 for methane-air combustion)
and Z is the Zeldovich number (≈ 11 for methane-air combustion)
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all the SAMR levels beginning with the chemical source term contribution for half

the time step (implicit integration), followed by the contributions from the convec-

tion and diffusion terms for a full time step (explicit integration), and concluded by

the remaining contribution from the reaction term for half the time step (implicit

integration). The time stepping is concluded with the third stage, which repeats the

projection algorithm for the momentum equations using the updated scalar fields.

The sequential stages of the modified numerical algorithm to efficiently integrate the

multiscale governing equations, based on [11], are described below. My new buffer

zone IBM to incorporate the flame-wall interactions is then presented in detail in

Section 2.3.3.

Stage 1a

The second-order Adams-Bashforth scheme is used to advance the velocity field using

convection and diffusion terms only

v̂n+1 − vn

∆t
=

(
1 +

1

2

∆t

∆to

)
(Cn

U +Dn
U)− 1

2

∆t

∆to

(
Cn−1
U +Dn−1

U

)
(2.9)

where ∆t = tn+1 − tn and ∆to = tn − tn−1. Superscripts n and n − 1 refer to

values at the current tn and previous tn−1 times, respectively. The rigid rectangular

immersed body is stationary and the solid marker function is used to impose the no-

slip condition on the provisional velocity field v̂n+1
s = 0; subscript s denotes a solid

cell.

Stage 1b

The provisional velocity field, v̂, does not satisfy the continuity Eq. (2.1a). This equa-

tion is used in conjunction with Eq. (2.1b) to derive an equation for the hydrodynamic

pressure field which is then used to correct v̂.

∇ ·
(

1

ρn+1
∇p
)

=
1

∆t

(
∇ · v̂n+1 +

1

ρ

Dρ

Dt

∣∣∣∣n+1
)
, (2.10)
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Since the scalar fields at tn+1 are not yet known, 1
ρ
Dρ
Dt

∣∣∣n+1

is estimated by extrapola-

tion:
1

ρ

Dρ

Dt

∣∣∣∣n+1

=

(
1 +

∆t

∆to

)
1

ρ

Dρ

Dt

∣∣∣∣n − ∆t

∆to

1

ρ

Dρ

Dt

∣∣∣∣n−1

(2.11)

1
ρ
Dρ
Dt

is evaluated using Eq. (2.7), where the scalar values at time steps n and n − 1

are appropriately used. The density, ρn+1, is also extrapolated from values at tn and

tn−1 similar to Eq. (2.11).

A second-order discretization of the pressure Eq. (2.10) is described in Section

(2.3.2).

Stage 1c

The gradient of the hydrodynamic pressure is used to correct the provisional velocity

field v̂n+1 to obtain the predicted velocity at n+ 1

vn+1,p = v̂n+1 − ∆t

ρn+1
∇p, (2.12)

Superscript p refers to the predicted velocity values.

Stage 2a

The scalars (temperature and species mass fractions) are advanced over half the time

step based on contributions from the source terms, ST and SYk .

T ∗ − T n =

∫
∆t/2

STdt

Y ∗k − Y n
k =

∫
∆t/2

SYkdt k = 1, 2, . . . , Ns (2.13)

The CVODE stiff integrator package [54] is used to integrate Eqs. (2.13). The source

terms for species and energy equations are set to zero for the solid body using the

binary marker function.
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Stage 2b

A second-order, multi-stage, Runge-Kutta-Chebyshev (RKC) scheme is used to ad-

vance scalars based on the contributions from convection and diffusion terms:

T ∗∗ − T ∗ =

∫ tn+1

tn
CT +DT︸ ︷︷ ︸

FT

dt

Y ∗∗k − Y ∗k =

∫ tn+1

tn
CYk +DYk︸ ︷︷ ︸

FYk

dt k = 1, 2, . . . , Ns (2.14)

As scalars are advanced from tn to tn+1, velocity values needed to construct con-

vection fluxes for the intermediate RKC times are computed by interpolation based

on the values at tn and vn+1,p at tn+1 = tn + ∆t:

v(s) = (1− cs) vn + csv
n+1,p.

where cs = (ts−tn)/∆t is the time fraction corresponding to RKC stage s, 1 ≤ s ≤M .

The convection terms for species and energy equations are zero for the solid cells since

the velocity field is zero. The no penetration boundary condition for species mass-

fractions and the conjugate heat exchange matching conditions for temperature, as

discussed in Section 2.3.3 are imposed at each RKC stage.

Stage 2c

Stage 2c is a repeat of Stage 2a, using the “**” scalar values as initial conditions

T n+1 − T ∗∗ =

∫
∆t/2

STdt

Y n+1
k − Y ∗∗k =

∫
∆t/2

SYkdt k = 1, 2, . . . , Ns (2.15)

At the end of this stage all scalars correspond to tn+1.The species mass-fraction of the

diluent (N2 for air combustion) is computed by imposing the consistency condition∑
k Yk = 1.
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Figure 2-3: Schematic illustration of the time integration on the SAMR mesh hier-
archy, φ denotes a scalar field

Time integration on the mesh hierarchy

Temperature and species mass-fractions have to be integrated on the successively

refined mesh in the SAMR framework. On adjacent mesh levels, L and L + 1 in

the grid (see Fig. 2-1 and 2-2), the scalars are first advanced on the coarse level

L using the RKC algorithm described above. After the advancement is completed

on L, the solution on this level is used to provide boundary conditions (via coarse-

to-fine prolongation) for the solution advancement on L + 1. The values at various

intermediate times between tn and tn + ∆t are computed by interpolation on level L

and the results are interpolated to level L + 1. The grid size on the finer mesh level

L + 1 is half compared to L. The time step is also halved for stability purposes. At

the end of the two sub-steps on L + 1 the fine-grid solution is interpolated to the

coarse grid L via fine-to-coarse restriction. This is schematically illustrated in Figure

2-3

Stage 3a

The provisional velocity field values at tn+1 are re-evaluated based on the scalar values

obtained at the end of Stage 2 and on the predicted velocity values at the end of Stage

1
v̂n+1 − vn

∆t
=

1

2

(
(Cn

U +Dn
U) +

(
Cn+1
U +Dn+1

U

))
(2.16)

Similar to the Stage 1a, the no-slip boundary condition at the immersed boundaries

is imposed using the binary marker function.
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Figure 2-4: Indices of the cell centers and face centers in the interior and at the
boundary of the computational domain.

Stage 3b

The hydrodynamic pressure field is re-computed using Eq. (2.10). The divergence

term that enters the rhs for this equation is constructed using the provisional velocity

field obtained in Stage 3a, while Eq. (2.7) is used to compute 1
ρ
Dρ
Dt

∣∣∣n+1

based on scalar

values at tn+1, obtained in Stage 2.

Stage 3c

This final stage in the iteration is similar to Stage 1c. The gradient of the hydrody-

namic pressure obtained at Stage 3b is used to correct the velocity obtained at the

end of Stage 3a.

The interpolation and derivative stencils are chosen such that an overall second-

order accuracy is achieved. A fourth-order derivative stencil is used for all the terms

in the governing equations where second-derivatives need to be computed (e.g. the

diffusion terms). A second-order derivative stencil is used for all the terms in the

governing equations where only a first-derivative needs to be computed (e.g. the

convection terms). Second-order stencils are used for the interpolations required

during the multigrid prolongation and restriction in the SAMR framework. The

interpolation and derivative stencils for various orders of accuracy are presented in

[55].

49



Discretization of the pressure equation

A second-order finite difference discretization for the variable coefficient pressure Pois-

son Eq. (2.10) is presented here. A one-dimensional configuration, with the indices

for the cell and edge centers is shown in Fig. 2-4. The pressure gradient, ∂p
∂x

, is first

computed at face centers using a 2nd order approximation

∂p

∂x

∣∣∣∣
i+ 1

2

=
1

2hx
(pi+1 − pi) (2.17)

Density is interpolated from cell centers to edge centers using a 2nd order stencil [55].

The 2nd order derivative stencil is applied again to the product 1
ρ
∂p
∂x

resulting in

∂

∂x

(
1

ρ

∂p

∂x

)∣∣∣∣
i

=
1

(2hx)
2 (api−1 + bpi + cpi+1) (2.18)

where

a =
1

ρi− 1
2

; b = −

(
1

ρi− 1
2

+
1

ρi+ 1
2

)
; c =

1

ρi+ 1
2

(2.19)

The pressure stencil is appropriately adjusted near the computational domain bound-

aries and the immersed solid boundaries. No-slip boundary conditions are used at

the walls using the binary marker function. A staggered grid avoids the usage of an

explicit pressure boundary condition at the computational domain boundaries and

the immersed wall. The pressure value in the cell-center of one of the corner cells in

the outflow boundary of the domain is fixed to unity. The face-centered densities at

(−1/2) and (−3/2) are extrapolated using

ρ−1/2 =
1

2
(3ρ0 − ρ1) (2.20)

ρ−3/2 =
1

2
(5ρ0 − 3ρ1)

The hypre package is used to solved the linear system resulting from the above

second-order discretization. The solution is based on the iterative conjugate gradient
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method. The tolerance threshold for the residual is typically set to 10−14–10−17 to

limit the propagation of convergence errors.

Boundary conditions

Standard Dirichlet boundary conditions are imposed for the velocity components

normal to inflow and symmetric boundaries. For components tangential to these types

of boundaries, slip boundary conditions are applied through appropriate stencils used

to compute the corresponding convective and diffusion fluxes.

A “convective” boundary condition is used for the velocity components normal to

the outflow boundaries.
∂ (v · n)b

∂t
+ U0

∂ (v · n)b
∂n

= 0 (2.21)

Here, subscript b refers to the boundary values, n is the unit vector normal to the

boundary pointing outside the computational domain and ∂/∂n is the partial deriva-

tive normal to the boundary. Outflow boundary conditions are commonly used in

incompressible or low-Mach number flow computations to ensure that numerical er-

rors near outflow boundaries are convected out of the computational domain.

The “convective” velocity U0 is computed using a global mass conservation con-

straint obtained by integrating the continuity eq. (2.1a) over the computational do-

main.

∫
V

(
∇ · v +

1

ρ

Dρ

Dt

)
dv = 0→ U0 = ± 1

Aout

(∫
Ain

(v · n)dσ +

∫
V

1

ρ

Dρ

Dt
dv

)
(2.22)

Here Ain and Aout are the areas of the inflow and outflow boundaries and the sign

of the velocity depends on the direction of the unit normal n. For Stage 1a, U0 is

computed using 1
ρ
Dρ
Dt

∣∣∣n+1

extrapolated with eq. (2.11), while for Stage 3a this term is

computed using scalar values obtained in Stage 2.

The pressure solver requires global mass conservation to be satisfied to machine

precision. In order to ensure this, eq. (2.1a) is again integrated over the computational
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domain after the boundary conditions are applied at the end of Stages 1a and 3a∫
V

(
∇ · v +

1

ρ

Dρ

Dt

)
dv = ±εAout (2.23)

An average velocity correction ε is then added to the velocity components normal to

the outflow boundaries in order to ensure global mass conservation.

For Stage 2b, Dirichlet conditions are used for the scalar fields at the inflow bound-

aries. The Neumann conditions corresponding to symmetry boundary conditions are

imposed through appropriate stencils in the calculation of convective and diffusion

fluxes in eq. (2.1c-2.1d). A “convective” transport equation is used for scalars at

outflow boundaries, similar to eq. (2.21) for the velocity field.

In addition to the above, the no-slip boundary condition and the following scalar

matching conditions at each cell edge at the solid-fluid boundary of the immersed

object are enforced.

• Temperature matching T |fluid = T |solid

• Heat flux matching λ∂T
∂n
|fluid = λ∂T

∂n
|solid

• No penetration of species ∂Yi
∂n
|fluid = 0

These matching conditions are imposed using the novel buffer zone approach de-

scribed in the next section.

2.3.3 Buffer zone method

The buffer zone approach is introduced here: the solution is first obtained in the

combined solid-fluid domain, and then corrected inside the solid to the desired value

by imposing the boundary conditions. Similar techniques are well developed in the

literature for non-reacting flows, even for complex non-grid conforming immersed

solid bodies. However a methodology similar to the one described in the following

section, that solves multi-species reacting flows in the SAMR framework incorporating

solid-fluid conjugate heat exchange, is still missing to the best of my knowledge.
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Buffer zones, comprised of a very thin layer of fictitious valued-cells, are employed

near the solid-fluid boundary inside the numerical domain. These cells are created at

each sub-step of the scalar RKC integration in Stage 2 such that the boundary match-

ing conditions are automatically imposed when the symmetric stencils are used within

the solvers for computing derivatives and interpolations. This makes the numerical

implementation simpler as the entire domain can then be regarded as a fluid-only

domain. The no-penetration of the species is imposed by using single-sided buffer

zones and the temperature and heat flux matching conditions are imposed by using

dual buffer zones.

Single-sided buffer zones for species mass-fractions

The highest order of interpolation and derivatives needed for an overall second-order

accurate scheme is four [11]. Due to the presence of second derivatives in the diffusion

terms, the right-hand-side term in Eq. (2.1d) at each cell center then depends on a

3 × 3 grid cells around it (for a two dimensional stencil). Thus, to impose the no-

penetration of species condition at the fluid-solid boundary, a 3-cell deep layer of

buffer zone is created inside the rectangular solid body, refer to Fig. 2-5a for a

schematic illustration. The species mass-fractions do not physically exist inside the

immersed solid object allowing us to re-use the solid cells’ data structures originally

defined assuming they were fluid cells. This construction does not add significantly

to the iteration cost because the number of cells in the buffer zones are a very small

fraction of the total number of cells in the full numerical domain.

Consider, for simplicity, a one-dimensional configuration, with the indices for the

cell and edge centers as shown in Fig. 2-5b. The zero-gradient scalar no penetration

condition, ∂f
∂x

= 0, at the face center of the solid-fluid boundary using a 4th order
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Figure 2-5: (a) Schematic of a Cartesian solid body inside a fluid domain; the
shaded region is a 3-cell wide single-sided buffer zone (b) Cell-center indices for a
one-dimensional grid marking the single-sided buffer zone.

derivative stencil and 4thorder extrapolations for cells (−2) and (−3) gives

1

24hx
(f−2 − 27f−1 + 27f0 − f1) = 0

f−2 − 4f−1 + 6f0 − 4f1 + f2 = 0 (2.24)

f−3 − 4f−2 + 6f−1 − 4f0 + f1 = 0

leading to

f−1 =
1

23
(21f0 + 3f1 − f2)

f−2 =
1

23
(−54f0 + 104f1 − 27f2) (2.25)

f−3 =
1

23
(−250f0 + 375f1 − 102f2)

These expressions are used to construct the buffer zone for the species mass-fractions
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inside the solid. The fluid cells adjacent in the y-direction are used as 0, 1 and 2

for the y-normal edge of the solid body. Similarly the fluid cells adjacent in the

x-direction are used as 0, 1 and 2 for x-normal edge.

Corner treatment

Special corner treatment is required for the 4 corners of the immersed solid because

of the ambiguity in the direction to choose. The buffer zone is modified in the 3× 3

cells in each corner, see Fig. 2-6 for a schematic illustration. A set of 9 consistent

equations with these 9 unknowns are formulated and the corner cells (marked as 1, 2,

3 ..., 9 in Fig. 2-6) are appropriately filled. A zero-gradient condition is imposed at

the solid-fluid faces adjacent to cells 2, 3, 4 and 7. Corner point (cell 1) is a numerical

singularity and does not exist in reality. Hence I approximate a zero-gradient along

the diagonal of cell 1. This results in

1

hy
(f5 − 27f2 + 27fb0 − fb1) = 0

1

hy
(f6 − 27f3 + 27fc0 − fc1) = 0

1

hx
(f5 − 27f4 + 27ff0 − ff1) = 0 (2.26)

1

hx
(f8 − 27f7 + 27fg0 − fg1) = 0

1√
h2
x + h2

y

(f5 − 27f1 + 27fd0 − fd1) = 0

where hx and hy are the grid spacings in the x and y directions respectively. 4thorder

extrapolations along the diagonal direction are chosen for cells 5 and 9, along the

x-direction for cell 8 and along the y-direction for cell 6 on the basis of proximity.
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This results in

(f5 − 4f1 + 6fd0 − 4fd1 + fd2) = 0

(f9 − 4f5 + 6f1 − 4fd0 + fd1) = 0

(f8 − 4f7 + 6fg0 − 4fg1 + fg2) = 0 (2.27)

(f6 − 4f3 + 6fc0 − 4fc1 + fc2) = 0

Above is a set of 9 equations and 9 unknowns (Scalar values f1, f2, ..., f9) based on

21 knowns (fa0, fa1, fa2, fb0, fb1, fb2, ... , fg0, fg1, fg2). The explicit solution is

f1 =
1

23
(21fd0 + 3fd1 − fd2)

f2 = fb0 −
1

27
fb1 −

2

23
fd0 +

104

621
fd1 −

1

23
fd2

f3 =
1

23
(21fa0 + 3fa1 − fa2)

f4 = ff0 −
1

27
ff1 −

2

23
fd0 +

104

621
fd1 −

1

23
fd2

f5 =
1

23
(−54fd0 + 104fd1 − 27fd2) (2.28)

f6 =
1

23
(−54fa0 + 104fa1 − 27fa2)

f7 =
1

23
(21fg0 + 3fg1 − fg2)

f8 =
1

23
(−54fg0 + 104fg1 − 27fg2)

f9 =
1

23
(−250fd0 + 375fd1 − 102fd2)

Eqs. (2.25) and (2.28) together form the stencils for the single-sided buffer zones for

the species mass-fraction fields. They are constructed for each species at all the levels

of the SAMR grid and at every sub-step of the multistage RKC integration of the

scalar field.

I performed a simple test to check the second-order accuracy of the constructed

stencils. These stencils incorporated a zero-gradient (no penetration) condition of

the species mass-fractions at the solid-fluid boundary. To test for its accuracy, I first

analytically manufactured a test-field with circular contours around a reference point.
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Figure 2-6: (left) Schematic of a Cartesian corner region inside the domain (right)
Indices for the special corner treatment for the buffer zones; shaded region is the
zoomed-in meshed corner inside the solid body.

I then constructed the 3-cell wide single-sided buffer zone near two perpendicular

lines originating from that reference point (normal to the circular contours). The

manufactured test-field and the reconstructed field were then compared for order

of accuracy estimation. Figure 2-7 shows a uniformly discretized 256 × 256 square

domain. I chose the point corresponding to index (176+1/2,176+1/2) as the reference

origin (x0, y0) and computed the analytical distance (d =
√

(x− x0)2 + (y − y0)2) of

all the points in the numerical domain from it. The left plot in Fig. 2-7 shows

the distance contours of the manufactured test field; which are circular around the

reference point by mathematical construction. Two perpendicular line segments with

the indices; (1) i = (176+1/2) and (176+1/2) ≤ j ≤ 256 and (2) (176+1/2) ≤ i ≤ 256

and j = (176 + 1/2) were chosen as left and bottom edges of a 80 × 80 square

in the top right corner of the domain. The contours of the test field are normal

to these lines. I reconstructed the test field in the 3-cell wide buffer zone marked

by the region 177 ≤ i, j ≤ 179 using the single-sided buffer zone stencils. The

manufactured test-field and the reconstructed field were compared for the error using

the `1 norm (`1 =
∑

ij |dij−dij,a|
Np

). I repeated this by decreasing the resolution: 128×128

discretization of the domain with reference point as (88+1/2,88+1/2). The order of

accuracy was computed [56] to be log2
L1,256

L1,128
= 2.03. This manufactured solution test

57



Figure 2-7: Contours of distance from the lower bottom corner of the white square
is plotted using d =

√
(x− x0)2 + (y − y0)2 (left) everywhere in the domain without

any special treatment to any cells (right) everywhere in the domain except the 3-cell
wide single-sided buffer zone inside the white square using Eqs. (2.25) and (2.28).
Grid indices are labeled on the horizontal and vertical axes.

confirmed the second-order accuracy of the single-sided buffer zone stencil. Detailed

overall convergence order tests using various reacting and non-reacting flows will be

discussed in Section 2.5.

Note

3rd order extrapolations for cells (−2) and (−3) may be used instead of 4th-order

extrapolations to reduce numerical oscillations during a rapid transient such as an

artificial initial condition of ignition during the start of a combustion simulation. I

observed that this reduces the overall order of accuracy to 1. I describe the stencil

for such a construction below. Similar to what was done before:

1

24hx
(f−2 − 27f−1 + 27f0 − f1) = 0

f−2 − 3f−1 + 3f0 − 1f1 = 0 (2.29)

f−3 − 3f−2 + 3f−1 − 1f0 = 0
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leading to

f−1 = f0

f−2 = f−1 (2.30)

f−3 = 3f1 − 2f0

The corresponding lower order corner point stencil is

f1 = fd0

f2 = fb0 −
1

27
fb1 +

1

27
fd1

f3 = fa0

f4 = ff0 −
1

27
ff1 +

1

27
fd1

f5 = fd1 (2.31)

f6 = fa1

f7 = fg0

f8 = fg1

f9 = 3fd1 − 2fd0

Extension to third dimension

Although the buffer zone construction is shown for a two-dimensional immersed ob-

ject, it can be easily extended to three-dimensions. The corner will then correspond

to a 3 × 3 × 3 cube instead of a 3 × 3 square and an equivalent 27-point stencil can

be analogously derived. The 9-point stencils derived above can be directly used for

the sharp edges of the 3D immersed object.

Dual buffer zones for temperature

The numerical approach for buffer zones described in the previous section is valid for

the species mass-fractions as they cease to exist inside the solid body. The buffer zones
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were constructed based on the values in the fluid. Thus, for computing derivatives

and interpolations near the solid-fluid boundary, in the fluid domain, these variables

are continuous and smooth. This is not the case for the non-smooth temperature field.

The temperature field has a discontinuity in its derivative (a kink) at the fluid-solid

boundary in non-isothermal flows because of a large jump in the thermal conductivity:

two orders of magnitude jump at an air-ceramic boundary and even higher for an air-

metal boundary. Most conventional high-order derivatives and interpolations stencils

failed near such a boundary and reduced the overall accuracy because their derivation

assumes a smooth field variable.

In this section, I formulate a dual buffer zone approach to address this issue. I

construct two temperature fields in the numerical domain. One corresponds to the

fluid domain solution (T f ) with a 2-cell wide buffer layer penetrating inside the solid

domain, similar in concept to the single-sided buffer zone discussed above. The other

complementary field corresponds to the solid domain solution (T s) with a 2-cell wide

buffer layer penetrating inside the fluid domain. Figure 2-8a shows a schematic of

the dual buffer zone. Both temperature fields are the same at all the grid points

in the numerical domain, except in the 4-cell wide layer of cells around the solid-

fluid boundary. This construction, like the single-sided buffer zones, does not add

significantly to the cost of each iteration because the number of cells in the buffer

zones are again a small fraction of the total number of cells in the full numerical

domain. The increase in the memory requirement is also minor because only one

additional field needs to be stored in the computational memory along with all the

primary variables (temperature, pressure, velocity-field, species mass-fractions) and

other auxiliary variables during each iteration. The two temperature fields are inde-

pendently smooth in their valid domain and their corresponding buffer zones. This

allows the conventional derivative and interpolation stencils operating on Ts and Tf

to each be of high-order accuracy.

The dual buffer cells are constructed sequentially such that the matching condi-

tions at the fluid-solid boundary (T s = T f and λf
∂T f

∂n
= λs

∂T s

∂n
) discussed in Section

2.3.2 are imposed. The buffer cells (-1) are first constructed by matching the 4thorder
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Figure 2-8: (a) Schematic of a Cartesian solid body inside a fluid domain; the shaded
regions are 2-cell wide dual buffer zones for the solid and fluid domains (b) Cell-center
indices for a one-dimensional grid marking the dual buffer zones.

interpolations for temperature and and 4thorder derivatives for flux matching on the

boundary from both the solid and the fluid sides. This gives

1

8
(3T s−1 + 6T s0 − T s1 ) =

1

8
(3T f−1 + 6T f0 − T

f
1 )

λs
24

(−23T s−1 + 21T s0 + 3T s1 − T s2 ) = −λf
24

(−23T f−1 + 21T f0 + 3T f1 − T
f
2 ) (2.32)

where λs and λf are the thermal conductivities of the solid and the fluid cells respec-

tively. The same matching conditions are then satisfied using a symmetric 4thorder
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stencil as

1

16
(−T s−2 + 9T s−1 + 9T s0 − T s1 ) =

1

16
(−9T f−2 + 9T f−1 + 9T f0 − T

f
1 )

λs
24

(T s−2 − 27T s−1 + 27T s0 − T s1 ) = −λf
24

(T f−2 − 27T f−1 + 27T f0 − T
f
1 ) (2.33)

Equations (2.32) and (2.33) are sequentially solved to fill (-1) and (-2) cells. A third set

of conditions is required because the second derivative of the temperature (computed

for the thermal diffusion) needs a 3rdbuffer cell for computation. I choose a 4th-order

extrapolation condition on the heat flux Fi = λi
∂Ti
∂n

. The heat fluxes are computed

on the face centers of the staggered grid. The imposed extrapolation is

F f
−3/2 = 4F f

−1/2 − 6F f
1/2 + 4F f

3/2 − F
f
5/2

F s
−3/2 = 4F s

−1/2 − 6F s
1/2 + 4F s

3/2 − F s
5/2 (2.34)

If the thermal conductivity is constant in both the fluid and the solid domains, Eqs.

(2.34) gets simplified in terms of a temperature value at the third buffer cell (-3) using

4thorder derivative stencils as

T f−3 = 31T f−2 − 141T f−1 + 275T f0 − 275T f1 + 141T f2 − 31T f3 + T f4

T s−3 = 31T s−2 − 141T s−1 + 275T s0 − 275T s1 + 141T s2 − 31T s3 + T s4 (2.35)

However, the thermal conductivity varies for a reacting flow and using Eq. (2.35)

exhibited numerical instabilities. I used Eqs. (2.34) in the implementation.

Like the single-sided counterpart, the dual buffer zones are constructed at all the

levels of the SAMR grid and before the beginning of each stage in the multistage RKC

scheme (Stage 2b in the algorithm). Thereby, the conjugate heat exchange condition is

enforced at the beginning of each sub-stage. In a multi-species transport simulation,

the iteration time-step size is already small enough to ensure that errors are small

in between two stages of the multistage RKC, when the conjugate heat exchange

condition is not explicitly enforced. The dual buffer zones are required only for the
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construction of the thermal diffusion term in the energy equation. I thus compute

this term sequentially by sweeping first in the x-direction and then in the y-direction.

More specifically, the thermal diffusion due to the y-gradients in temperature is first

ignored and the dual buffer zones are formed in the x-direction and the diffusion

term is computed. The thermal diffusion due to the x-gradients in temperature is

then ignored and the dual buffer zones are formed in the y-direction and the diffusion

term is computed. These two terms are then added to get the total thermal diffusion

in each cell for the two-dimensional domain. This allows us to avoid the sharp corner

treatment as was necessary for the species mass-fraction fields2.

A conceptually similar Matched Interface and Boundary method was presented by

Zhou et al. [57]. They outlined a generalized method to obtain high-order accurate

solution of elliptic equations with discontinuous coefficients and singular sources on

Cartesian grids. They successfully demonstrated it using non-reacting test cases with

non-grid conforming immersed boundaries. However, a method for a more complex

problem such as multi-species reacting flows was not formulated. A second-order

buffer zone IBM coupled with an operator-split projection algorithm and SAMR

framework for multi-species reacting flows is unique in my method. Complex im-

mersed boundaries-SAMR coupling (irregular geometries with boundary cutting through

the grid cells) is a far more challenging task.

2.4 Performance gain

It has been previously shown that the semi-implicit operator-splitting algorithm can

boost performance by 20 times when compared to conventional fully-explicit numer-

ical methods [58]. Figure 2-9 shows that this can be further improved by employing

an SAMR framework. I simulated a stoichiometric planar flame propagating in two-

dimensions using a uniform grid of 20 microns resolution. I repeated this with a 40

micron uniform grid and one level of refinement and with a 80 micron uniform grid

22nd derivatives of the species mass-fractions need to be computed multiple times per iteration
making the alternate direction sweeping technique used for the dual buffer zone cumbersome for
implementation in the numerical method
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(a) (b)

(c)

Figure 2-9: (a) Planar stoichiometric premixed flame simulation with 2 levels of
refinement (b) Iteration time improvement (c) Data size advantage

and two levels of refinement. In this way, the effective flame resolution of 20 microns

was maintained constant in all the cases. The data size and wall clock time per iter-

ation were compared and show in Fig. 2-9. A significant performance boost of about

3.5 times is observed for the 2-level simulation when compared to the uniform grid

simulation. The data size also decreases because of the lesser number of total grid

cells in the domain when SAMR framework was used. This gain will however saturate

as more levels are used because of the increasing overhead in multigrid interpolations.

I verified that the performance gain was not reduced by my buffer zone method for

incorporating solid-fluid coupling because majority of the iteration time is spent in

integrating the reaction source terms and the diffusion terms [11].
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2.5 Code validation and convergence studies

In this section, I validate the overall construction and demonstrate its second-order

temporal and spatial convergence using various test cases.

2.5.1 Impulsively started thin vertical plate in a non-reacting

isothermal cross-flow: validation and temporal conver-

gence

The flow past a thin flat plate normal to the free stream is a classic example of bluff-

body flows. I use this test case to validate the no-slip implementation and the pressure

solver in the presence of the immersed solid in the momentum integration stages,

which is solved only on a uniform grid as noted before. I consider a fixed vertical

plate of height d in a cross-flow where the undisturbed velocity far away from the plate

is U . This configuration has been extensively used for benchmarking in the literature;

experiments of Taneda and Honji [59] and Dennis et al. [60], finite element simulations

of Yoshida and Nomura [61], Laval and Quartapelle [62] and Tamaddon-Jahromi et al.

[63], vortex method simulation of Koumoutsakos and Shiels [64]. As the plate is

impulsively started, a recirculation zone starts to form on the downstream face of the

thin vertical plate and it starts to grow with time. Figure 2-10 shows a comparison of

the location of this growing symmetric recirculation during its early development. The

recirculation zone size is defined as the distance of the downstream stagnation point

from the downstream edge of the plate. An inflow Red = 126 based on d was chosen in

the simulation. The thickness of the plate was used as 0.15d, where d = 5mm. 320×

128 grid points were used with the domain size of 20d× 12.5d. Symmetry conditions

were used at the boundaries parallel to the flow direction. Figure 2-10 shows an

excellent agreement with the transient data documented in the literature; here the

lengths and velocities are nondimensionalized by d and U respectively. For a better

visualization, a representative streamline pattern and vorticity at an intermediate

time instant is shown in the insert of Fig. 2-10. The scatter in the literature data

increases with the non-dimensional t∗ due to the increasing influence of the boundaries
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Figure 2-10: Experimental and numerical comparison of the recirculation zone growth
for a case with an impulsively started thin vertical plate in a cross flow. References
in the legend: [59, 61–64]. Literature data is reproduced using Fig. 19 in [64]. A
representative streamline pattern and colored non-dimensional vorticity contours at
an intermediate time instant t∗ = 3.5 is shown in the insert.

parallel to the flow depending on the experimental conditions and the numerical

approximation.

I further used the above uniform grid isothermal case to verify that an overall

second-order temporal accuracy is achieved. Projection methods for incompressible

flows have been reported to be potentially first-order accurate in time in the presence

of a no-slip wall due to the ambiguity in the boundary conditions to be used for the

intermediate velocity field before the pressure Poisson correction [65, 66]. Weinan and

Liu [66] reviewed the different boundary conditions proposed for the intermediate

velocity field to achieve an overall second-order temporal accuracy. I did not use

any such corrections but still observed that the second-order temporal accuracy was

maintained. As discussed in the numerical method, I impose a no-slip wall boundary

condition for the intermediate velocity field. The unsteady test case discussed above

was simulated for t∗ = 1 (corresponding to time when the recirculation zone length is

almost equal to the plate height d) using three different time-steps: coarse dt∗ = t∗

1000
,

medium dt∗ = t∗

2000
and fine dt∗ = t∗

4000
. The spatial grid resolution was the same in all

the three simulations. The `1 norms were used to compute the errors in the velocity
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Ã u v p
O`1 2.001 2.001 1.998

Table 2.1: Temporal convergence orders for the uniform grid simulation of an impul-
sively started thin vertical plate in a cross flow.

and the pressure field.

`1 =

∑
i,j | (φi,j − φi,j,ref ) |

Np

(2.36)

where Np is the number of grid points. The grid convergence order was then estimated

as [56]

O`1 = log2

err1,c−m

err1,m−f
(2.37)

where err denotes the `1 error and subscripts c−m and m− f denote the coarse and

medium temporal errors when compared to the medium and fine time-step simulations

respectively. The temporal convergence orders are shown in Table 2.1. The overall

second-order temporal accuracy for the velocity and the pressure field is verified.

2.5.2 Unsteady non-reacting isothermal flow: validation

I present another unsteady cold flow validation of the momentum transport using

a uniform 320 × 128 grid simulation. A fully developed parabolic inlet profile for

the streamwise velocity was assumed. Figure 2-11 shows the instantaneous vortic-

ity contours of an unsteady channel-confined cold flow around a square cylinder at

Red = 100 for a blockage ratio d/H = 0.2, where H is the y-direction width of the

computational domain. The vorticity was non-dimensionalized by the global max-

imum value. The cold flow was observed to be unsteady at these conditions. For

this flow, the value of the Strouhal number Sd = fd
U

reported by Suzuki et al. [67]

was 0.222 (on a stretched 207× 54 grid points two-dimensional simulation); f is the

frequency of vortex shedding. I calculated this to be Sd = 0.232. Figure 2-11 also

shows that the strong vorticity near the upper and lower channel walls, associated

with localized moving recirculation zones, is captured similar to observations in [68].
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Figure 2-11: Instantaneous non-dimensional vorticity contours of an unsteady
channel-confined cold flow around a square cylinder at Red = 100 for a blockage
ratio d/H = 0.2.

2.5.3 Steady-state conjugate heat exchange between air and

a ceramic solid object: validation and spatial conver-

gence

I present here a simple test case to validate the dual buffer zone method. I tested the

accuracy of the conjugate heat exchange between stationary air having a temperature

dependent thermal conductivity and a ceramic solid object of a constant thermal

conductivity of λs = 1.5W/mK (approximately 50 times larger than air). Only the

energy equation was integrated; the momentum projection and chemical source terms

were decoupled from the governing equations. The number of RKC steps for Stage 2b

of the numerical algorithm was fixed to M = 8. Symmetry conditions were imposed

at ymin and ymax boundaries. Dirichlet boundary conditions for temperature were

used: 300K at xmin and 600K at xmax boundaries. The steady-state solution on a

64× 64 uniform grid was obtained, shown in the contour plot in Fig. 2-12. x and y

were non-dimensionalized by the height of the heat-conducting solid object, d (white

square in Fig. 2-12). In the absence of any immersed solid, the temperature would

increase “almost” linearly from xmin to xmax; a small nonlinearity resulting from the

temperature dependence of the thermal conductivity of air. This is seen near the ymin

and ymax boundaries in Fig. 2-12(top), where the influence of the immersed solid is
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Figure 2-12: (top) Temperature contours at steady-state, white square marks the
immersed ceramic solid object in stationary air (bottom) Temperature profile at y/d =
1.6.

small. The temperature field is non-smooth at the edges of the solid body due to the

large change in the thermal conductivity. For a dual buffer zone implementation, that

accurately resolves the kink in T during the conjugate heat exchange, the change in

the slope of T must be equal to the thermal conductivity ratio. Fig. 2-12(bottom)

shows the temperature kink at the left and the right edge of the immersed solid. I

verified this jump at each edge to be equal to the thermal conductivity ratio of the

solid and the air at the corresponding temperature; thereby validating the dual buffer

zone construction.

I further verified the spatially second-order convergence of the numerical method

using the above test-case using three simulations. The steady-state simulations were

obtained on fine (64× 64 base grid + 2 levels of refinement equivalent to a grid size

of 256× 256), medium (64× 64 base grid + 1 level of refinement equivalent to a grid
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Figure 2-13: Contours of (top) T and (bottom) YCH4 at t = 0 (left column: initial
condition for the SAMR convection-diffusion convergence test) and t = 10ms (right
column). Rectangular solid is shown by white rectangle; level 1 and level 2 fine grid
patches are marked by the black rectangles in the right column. Streamlines are
overlaid on the T contours at t = 10ms.

size of 128 × 128) and coarse (a unilevel 64 × 64) grids. The temperature solution

fields for the three grids at the coarsest (base) grid level were compared. The `1 norm

(Eq. 2.36) was used to compute errors. The grid convergence order was estimated as

[56]

O`1 = log2

err1,c−m

err1,m−f
(2.38)

where err denotes the `1 error and subscripts c−m and m− f denote the coarse and

medium grid errors when compared to the medium and fine grid respectively. The

convergence order of 2.19 was obtained showing that the non-smooth temperature

profile was resolved with a second-order accuracy using the dual buffer zone method.

2.5.4 Convection-diffusion test: spatial convergence

The momentum and scalar transport equations were coupled with the SAMR frame-

work in the simulations discussed in the remaining sections. Both single-sided and
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dual buffer zones were thus constructed simultaneously.

Figure 2-13 shows a 2-level flow simulation of a Gaussian field of temperature and

species mass-fraction around an immersed rectangular solid. The black rectangles

mark the refined patches in the domain. The outer rectangle is the level 1 patch

refined by factor of 2 from the base grid and the inner rectangle is the level 2 patch

refined further by a factor of 2 from the level 1 grid. The flow direction is from left to

right. The flow was composed of a non-reacting mixture of 2 species (CH4 and N2).

The chemical source terms were switched off during this test case, thereby considering

a non-isothermal but non-reacting multi-species simulation. An initial condition of an

upstream Gaussian scalar field of T , YCH4 and YN2 was specified (note that
∑

k Yk = 1

and thus YN2 = 1− YCH4) such as

φ(x/d, y/d) = φ0 exp(−(x/d− x0)2(y/d− y0)2

δ2
) (2.39)

where d = 2.4 mm is the height of the solid body in the y-direction and non-

dimensional δ = 0.4, x0 = 1.0 and y0 = 1.6. The mean inlet flow velocity was

fixed at U = 0.3 m/s which was equivalent to an inflow Red = 45 based on d. A small

time step dt = 1× 10−5sec was chosen. This corresponds to convective and diffusive

CFL numbers of udt/dx = 0.05 and νdt/dx2 = 0.05 respectively; on the base coarse

grid. The number of RKC steps for Stage 2b of the numerical algorithm was fixed

to M = 8. Symmetry conditions were imposed at ymin and ymax boundaries. The

thermal properties of the solid body (corresponding to steel) were λs = 12W/mK,

ρs = 8000kg/m3 and cs = 503J/kgK. The simulation was performed for 10 ms on fine

(256× 128 base grid + 2 levels of refinement equivalent to a grid size of 1024× 512),

medium (256 × 128 base grid + 1 level of refinement equivalent to a grid size of

512× 256) and coarse (a unilevel 256× 128) grids. The flow is from left to right. The

scalar solution field for the three grids at the coarsest (base) grid level were compared.

The `1 norm (Eq. 2.36) was used to compute errors. The grid convergence order was

estimated similar to the previous section; its values are shown in Table 2.2. The errors

were computed only in the refined region in the SAMR simulations. A Gaussian field
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Ã T YCH4 YN2

O`1 1.96 1.82 1.82

Table 2.2: Spatial convergence orders for the convection-diffusion SAMR simulations.

Figure 2-14: (top) Zoomed-in single-sided buffer zone for YCH4 (bottom) Fine grid
patches overlaid on the YCH4 contours with the buffer-zone hidden.

of only YCH4 and YN2 for an isothermal flow; and a Gaussian field of only T were also

independently tested for convergence using the same flow conditions and convergence

orders of 1.85 and 1.96 were respectively obtained.

Figure 2-14 shows a visualization of the single-sided buffer zone for the species

mass-fraction of YCH4 corresponding to the lower right contour plot shown in Fig.

2-13. The contours inside the zoomed top figure visually show the fictitious values

inside the single-sided species buffer zone and the zero-gradient condition at the fluid-

solid boundary. It must be noted that for a refined patch, the penetration of buffer

zone inside the solid is smaller since the 3-cell zone covers less area on a finer patch

when compared to a coarser patch.
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Figure 2-15: Fuel (YCH4) contours for a premixed flame corresponding to a stoichio-
metric mixture interacting with a bluff body (white rectangle) (top) initial condition
corresponding to t = 0 (bottom) after t = 1ms. A level 1 fine grid patch is marked
by the black rectangle.

2.5.5 Reacting flow: spatial convergence

I now demonstrate the overall second-order convergence of the buffer zone method

using fully-coupled reacting flow simulations.

Premixed flame using a single-step chemical kinetics model

Figure 2-15 shows the fuel (methane) contours of a premixed flame interacting with

a bluff-body at the downstream end. A time-step of dt = 1× 10−6sec, corresponding

to convective and diffusive CFL numbers of 0.005, was chosen. The reactants are

flowing from left to right. A global single-step chemical mechanism for methane-air

combustion was chosen as

CH4 +O2 + 3.76N2 → CO2 + 2H2O + 3.76N2 (2.40)
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Ã T YCH4 YO2 YCO2 YH2O YN2

O`1 2.01 2.03 2.06 2.05 1.99 1.98

Table 2.3: Spatial convergence orders for the premixed flame SAMR simulations using
a global single-step chemical kinetics model.

The overall reaction rate expression for the single-step chemistry is given by

kf = AT n exp(
−Ea
RT

)[CH4]a[O2]b (2.41)

where the Arrhenius constant A = 9.0 × 1023 cm3/mol/sec, activation energy Ea =

55000 cal/moles, a = b = 1 were used. These values are representative of hydrocarbon

combustion for methane-air [13].

The same thermal properties for the solid material, inflow Red = 45 and the

domain boundary conditions as used in the previous section were used for this inves-

tigation. The laminar flame speed for a stoichiometric premixed methane air flame

is approximately 40 cm/s. The average streamwise velocity of 30 cm/s was chosen

at the inflow, thereby resulting in an overall flame motion towards the incoming re-

actants in the Eulerian frame. A planar premixed flame solution using Chemkin was

initialized with the flame downstream of the solid block. The solution was evolved

on a coarse grid with no adaptive meshes (256 × 128) to a time when there was a

reasonable interaction with the flame and the wall (Fig. 2-15 top). This solution was

then used as an initial condition for 3 simulations: fine (256×128 base grid + 2 levels

of refinement equivalent to a grid size of 1024 × 512), medium (256 × 128 base grid

+ 1 level of refinement equivalent to a grid size of 512× 256) and coarse (a unilevel

256×128) grids. The simulations were performed for 1ms allowing the flame to travel

by approximately four reaction zone thickness length in the domain. The `1 norms for

the scalars were used to estimate convergence order shown in Table 2.3. An overall

second-order convergence was computed for all the scalar fields demonstrating the

accuracy of the single-sided and dual buffer zone method in a fully coupled reacting

flow simulation.
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Ã T YCH4 YO2 YCO2 YH2O YCO YH YOH YCH3 YHCO
O`1 2.03 2.07 2.07 2.05 2.03 2.03 1.97 1.95 2.07 1.93

Table 2.4: Spatial convergence orders for the premixed flame SAMR simulations using
a detailed chemical kinetics model: C1 model described by Smooke et al. [69].

Premixed Flame using a detailed chemical kinetics model

I repeated the above discussed convergence test using a detailed chemical kinetics

model. A 16 species 46 reactions C1 chemical kinetics described by Smooke et al. [69]

was used for the simulations using similar flow conditions and domain configuration as

described in the previous section. Again a simulation for a total of 1ms was performed

for this test, corresponding to flame motion equivalent to approximately four reaction

zone thickness. The iteration time-step was however reduced to dt = 5 × 10−7sec

unlike the dt = 1× 10−6sec used in the single-step test. The methane contours of the

premixed flame interacting with the solid at its downstream end were visually similar

to the contours shown in Fig. 2-15. The convergence orders using the `1 norms of the

major and minor species and temperature field are shown in Table 2.4. The overall

second-order accuracy of the buffer zone method using a fully coupled reacting flow

simulation, in the presence of rapidly reacting radicals, is also confirmed3.

The SAMR simulation with 2 levels of refinement on a 256 × 128 base grid was

observed to be 3.5× faster than the equivalent setup (same finest mesh resolution)

of a unilevel 1024× 512 grid. The data size of the simulation in terms of disk-space

for the former was 4× smaller compared to the latter. This is indicative of the large

performance gain that can be achieved for reacting flow simulations using a coupled

immersed boundary-SAMR approach.

2.6 Conclusions

In this chapter, I introduced a spatio-temporal second-order accurate numerical method

for a low-Mach number chemically reacting flow simulation near Cartesian grid-

3Additional convergence studies using the same detailed chemical kinetics model for fluid-only
domains are shown in [11]
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conforming immersed walls. I presented a novel buffer zone method to impose the

solid-fluid boundary matching conditions eliminating the need to use one-directional

stencils near the heat-conducting walls. These buffer zones coupled with a block-

structured adaptively refined mesh and an operator-split projection algorithm pro-

vide a fast and efficient tool to investigate flame-wall interactions by resolving all the

scales of the problem. The numerical method treats the entire domain as if it were

completely fluid, allowing us to efficiently use the modular code developed using the

CCA framework for fluid-only domains [11, 12]. The solid cells are tracked using a

binary marker function allowing prescribing multiple solid bodies in the simulation.

I described a single-sided buffer zone construction to capture the species mass-

fractions discontinuity and presented the associated stencils. The buffer zones are

formed inside the solid using the zero-gradient conditions and high order extrapola-

tions. The stencils were tested for the second-order of accuracy using a manufactured

solution test. A dual buffer zone construction to capture the temperature gradient

discontinuity was also introduced. A sequential construction of the buffer cells in the

solid and fluid is done by imposing the boundary matching conditions maintaining

an overall second-order accuracy. The buffer zones are constructed at all the levels

of the SAMR grid and before each stage of the multistage RKC integration of the

scalar transport. The overall second-order convergence of the buffer zone method was

demonstrated using various non-reacting and reacting SAMR simulations. Validation

of the code using benchmark cases from the literature was also shown.

The accurate treatment of the flame-wall interactions through the conjugate heat

exchange between the reacting flow and the nearby wall allows the flame to naturally

anchor; thereby not requiring any artificial anchoring conditions often used in existing

numerical investigations. Flame stabilization, extinction and blow-off are classical

multiphysics problems that can be mechanistically investigated using this method. I

will present detailed flame stabilization and blowoff investigations in the next three

chapters. I will also present advanced developmental efforts undertaken to incorporate

stair-stepped solid geometries and three-dimensionalizing the SAMR code in Chapter

7.
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Chapter 3

Mechanism of laminar premixed

flame anchoring on a bluff-body

3.1 Overview

The objective of this chapter is to investigate the mechanism of the laminar premixed

flame anchoring near a heat-conducting bluff-body using the numerical method de-

scribed in Chapter 2. Simulations show a shear-layer stabilized flame just downstream

of the bluff-body, with a recirculation zone formed by the products of combustion. A

significant departure from the conventional two-zone flame-structure is shown in the

anchoring region. In this region, the reaction zone is associated with a large nega-

tive energy convection (directed from products to reactants) resulting in a negative

flame-displacement speed. It is shown that the premixed flame anchors at an im-

mediate downstream location near the bluff-body where favorable ignition conditions

are established; a region associated with (1) a sufficiently high temperature impacted

by the conjugate heat exchange between the heat-conducting bluff-body and the hot

reacting flow and (2) a locally maximum stoichiometry characterized by the prefer-

ential diffusion effects. I also discuss the unsteady behavior of the reacting flow-field

during the ignition process to start a simulation and in response to a sinusoidal inflow

velocity perturbation towards the end of this chapter.
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3.2 Results and discussions
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Figure 3-1: Schematic illustration of the numerical domain for the two-dimensional
simulation.

The multistep C1 skeletal mechanism (16 species and 46 reversible reactions) was

used for defining the chemical kinetics of methane-air combustion [69]. The following

parameters were kept constant throughout the numerical simulations: the dimensions

of the bluff-body (see Fig. 3-1), l × d = 5mm × 5mm; the channel width, H = 25

mm; the corresponding blockage ratio, d/H = 0.2; the inlet temperature, Tu= 300

K; the average inlet velocity Uin = 1.6 m/s. The corresponding inflow Reynolds

number based on the inlet fluid properties and the bluff-body width is Red = 500.

The cell size on the coarsest grid level is ∆x = ∆y = 196 µm and one additional

fine grid level in the SAMR grid is used. This is equivalent to a flame resolution

of 98 µm. A grid independence study using 25, 50 and 100 µm was conducted to

ensure that flame structure is accurately captured by this finest grid resolution for

lean premixed flames with mixture equivalence ratio φ ≤ 0.8. A constant time step of

∆t = 2 µs was chosen for the simulations; such a large value is attainable because of

the semi-implicit operator-split stiff projection algorithm (Chapter 2) used. A fully-

developed parabolic channel profile was imposed at the inlet, at a distance 2d from

the upstream face of the bluff-body. The domain length was chosen to be 9.5d from

the downstream face of the bluff-body for all the cases, except for φ ≤ 0.45, for which

17d was used because of the associated large recirculation zone sizes. To investigate
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flame anchoring, cases with φ =0.5, 0.55, 0.6 and 0.7 were simulated keeping all the

other operating conditions the same. Red was fixed at 500. Two bluff-body flame-

holders with thermal properties (1) Ceramic : the density ρfh = 673 kg/m3, the

specific heat cfh = 840 J/kgK, the thermal conductivity , λfh = 1.5 W/mK and (2)

Steel: ρfh = 8000 kg/m3, cfh = 503 J/kgK, and λfh = 12 W/mK were used in the

simulations. No artificial flame anchoring boundary conditions were imposed. The

flame was allowed to naturally choose an anchoring location by accurately solving for

the flame-wall conjugate heat exchange as discussed in Chapter 2. This is essential

to mechanistically study the flame anchoring region.

3.2.1 Non-reacting flow simulation

Figure 3-2: The streamlines around the confined bluff-body (marked by black square)
for a non-reacting case at Red = 500 for a blockage ratio d/H = 0.2.

The reacting flow was observed to be steady for all the simulated cases; even

though its cold-flow counterpart at Red = 500 was observed to shed vortices in the

Von-Karman vortex sheet regime as shown in Fig. 3-2. For this non-reacting case,

I computed the vortex shedding Strouhal number (fd/Uin where f is the vortex

shedding frequency) of 0.23. Vortex shedding is visible from the streamline patterns.

Secondary recirculation zones were formed near the outer channel walls due to the

confinement, similar to the observations in [68]. Using two-dimensional Lagrangian
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simulations, Mehta and Soteriou [26] investigated reacting and non-reacting turbulent

bluff-body flows at Red = 20000 in a channel with blockage d/H = 0.16. The

reacting flow was shown to be more symmetric and very less coherent in shedding

than its non-reacting asymmetric flow counterpart, which shed coherent Von-Karman

vortices. They concluded that the symmetry in the reacting flow in the near-field of

the bluff-body is primarily caused by the dilatation associated with the combustion

heat release and is sustained in the far-field by the baroclinic vorticity generation.

The large increase in the kinematic viscosity was shown to have a secondary impact

on the near-field symmetry.

3.2.2 Reacting flow simulations

Figure 3-3 shows a laminar flame simulation at φ = 0.7. The flow is from left to right.

The flow separated at the leading edge of the bluff-body, similar to the correspond-

ing non-reacting flow behavior shown in Fig. 3-2, consistent with the observations

reported in [68]. Temperature contours show the conjugate heat exchange between

the heat-conducting bluff-body and the reacting flow around it. The fine grid level

rectangular patches are overlaid on the contours showing the adaptive flame tracking

by the SAMR framework. The mass-fraction contours of YCH4 (middle) and YHCO

(bottom) with a few representative streamlines are also shown in Fig. 3-3. A recircu-

lation zone is formed by the products of combustion behind the bluff-body. As shown

below, YHCO contours visualize the reaction zone of the flame. The premixed flame

anchored at a downstream location near the bluff-body wall and stabilized in the

shear layer separating from it. The flame region is a very small fraction of the overall

computational domain in such flows. SAMR framework thus makes such a compu-

tationally expensive study of bluff-body stabilized flames possible while maintaining

the flame resolution.
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Figure 3-3: (top) Temperature contours with overlaid fine grid patches (middle) Fuel
YCH4 contours with overlaid fine grid patches (bottom) intermediate species YHCO
contours with overlaid streamlines of a reacting flow at equivalence ratio φ = 0.7
around a confined ceramic bluff-body (marked by the white square) at a flow Red =
500 for a blockage ratio d/H = 0.2.
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Figure 3-4: Normalized contour lines of YHCO species (red dotted lines) and reaction-
rate (solid black lines) for the cases with φ = 0.5 and φ = 0.7 using the ceramic
bluff-body. The filled black region marks the bluff-body.
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3.2.3 YHCO and the definition of the flame anchoring location

Najm et al. [70] showed that the HCO species strongly correlated with the heat-

release rate for premixed flames over a wide range of unsteady flame stretch. I verified

this using the simulations at different φ. The flame stretch1 for these cases is shown

to be weak in Chapter 4. Results for the cases with φ = 0.50 and φ = 0.70 using

the ceramic bluff-body are shown in Fig. 3-4. Only a part of the computational

domain, focusing on the flame anchoring region, is shown. The red-dotted lines mark

the normalized YHCO mass-fraction contours and the black-solid lines represent the

normalized reaction-rate. Both are normalized by their respective maximum values

far downstream of the bluff-body. Figure 3-4 confirms the strong correlation between

the heat-release rate zone of the flame and the YHCO species mass-fractions. It was

also observed to be very strong in the downstream region (beyond the field shown in

the figure). The same result was also observed for all other equivalence ratios and

bluff-body materials investigated in this paper and is not shown here. I will thus use

the normalized YHCO contours as a surrogate for visualizing the heat-release zone or

equivalently the reaction zone in this paper.

Due to the continuous nature of all the scalar fields, I define the anchoring loca-

tion as the most upstream position where the value of the normalized YHCO is 0.1

(equivalently the most upstream location where 10% of its far downstream maximum

value is reached). Figure 3-4 shows that the flame anchored at a location closer to the

bluff-body for the case with φ = 0.7 than the φ = 0.5 flame. This, as will be shown in

Section 3.2.5, is because of the higher temperature values associated with the former.

The flame angle relative to the streamwise direction for φ = 0.7 is larger than φ = 0.5

because of higher flame speed associated with the former. On the contrary, the flame

thickness for the latter case is visibly larger.
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Figure 3-5: Temperature contours with overlaid streamlines and 10% YHCO black
contour line for various φ using a ceramic bluff-body marked by the white square.
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Figure 3-6: The non-dimensional x-position of the end of the recirculation zone at
the centerline y/d = 2.5 for different φ using the steel and ceramic bluff-bodies. The
downstream face of the bluff-body was at x/d = 3.
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3.2.4 Flame structure near the flame anchoring location

Figure 3-5 shows the flame simulations at various φ using the ceramic bluff-body.

A steady anchored flame was observed for all the cases. The colored contours show

the temperature distribution. The black contour line shows the 10% YHCO location,

visualizing the flame as discussed above. Few representative streamlines are overlaid

on each plot. The recirculation zone was observed to grow in size as φ was reduced.

The flame angle with respect to the streamwise direction was greater and the flame

was thinner for larger φ, as expected. Figure 3-6 shows the non-dimensional location

of the downstream stagnation point of the recirculation zone for various φ using

both the steel and the ceramic bluff-bodies. The downstream face of the bluff-body

corresponds to x/d = 3. The recirculation zone rapidly grew in size as φ was reduced2.

For each φ, the recirculation zone length for the steel case was slightly larger (order

of a flame thickness) than its ceramic case counterpart. This is because the flame

anchored at a slightly downstream distance from the bluff-body (also of the order of

a flame thickness as shown in Section 3.2.5) for the former.

Figure 3-7 shows the flame structure for the cases φ = 0.5 (top row) and φ = 0.7

(bottom row) using the ceramic bluff-body. The convection, diffusion and reaction

terms of the energy equation are plotted along the flame normal at four different

locations for each case; (1) anchoring location marked by the “start” column, (2) the

middle and (3) the end of the recirculation zone and (4) far downstream. These terms

correspond to CT , DT and ST terms respectively in Eqs. 2.3 and 2.4. Each term was

non-dimensionalized by the maximum reaction-rate value far downstream. The x-

axis corresponds to the flame normal co-ordinate in [mm]; with 0 value corresponding

to the maximum reaction-rate location in each plot. For both the flames, the flame

structure far downstream (“far” column in Fig. 3-7)3 was observed to be similar to a

one-dimensional unstrained flame structure: a two-zone structure with a convection-

1It is shown to be strain-dominated. The curvature contribution is shown to be finite but small
near the anchoring location and almost zero further downstream.

2For all the other operating conditions fixed, the recirculation zone length was shown to vary
inversely as the square root of the blockage ratio in [31]

3The y-axis scale was changed in for the “far” column of Fig. 3-7 compared to the three left
columns to show the overall flame structure.
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diffusion preheat zone and a reaction-diffusion zone. The two zones of the φ = 0.7

flame are thinner than the φ = 0.5 flame, as expected. However, the flame structure

was observed to be significantly different near the anchoring location for both the

cases. The flames here were visibly weaker as observed from the small values of the

ST terms in the “start” column. This is because of the large conjugate heat exchange

with the nearby bluff-body wall. Furthermore, the flame at the anchoring location

lacked the conventional sharp reaction-diffusion zone. Instead all the three terms

were comparable in the reaction-zone; demonstrating that the conventional premixed

flame correlations for stretch, flame-speed, flame-thickness must be used with extreme

caution in this flame-anchoring region. Similar departure from the conventional flame

structure near the flame anchoring region for the perforated-plate stabilized premixed

flames will be reported in Chapter 5.
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Figure 3-7: The flame structure: the convection (CT ), diffusion (DT ) and reaction
(ST ) terms of the energy equation normal to the flame-front at four different locations
relative to the recirculation zone; for the cases with φ = 0.5 and φ = 0.7.
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Figure 3-7 “start” column also shows that the reaction-zone at the anchoring

location had a strong negative convection of energy (bulk flow is directed from the

products to the reactants). Thus a significant heat-release associated with combustion

takes place within the recirculation zone. This is clearly visualized in Figs. 3-8 and

3-9. The 10% YHCO contour lines in the flame anchoring region start well inside

the recirculation zone. This is similar to the “negative flame displacement speed”

phenomenon reported in literature for premixed flame in a strongly turbulent flow

[71]. Due to the presence of heat-release, the consumption rate of the flame (and thus

its consumption speed) is positive even though there is a “negative flame displacement

speed”. I thus conclude that the fresh reactants must reach the reaction zone inside

the recirculation zone primarily by the mass diffusion across the streamlines. The

reaction-zone was also observed to be embedded inside the recirculation zone for the

φ = 0.55 and φ = 0.6 cases (see Fig.3-5); the embedded length of the flame rapidly

shrunk as φ was increased. The steel bluff-body also showed similar results. To the

best of my knowledge, this observation for laminar flames near the flame anchoring

zone has not been reported anywhere in the literature. High resolution experimental

measurements will be very useful to investigate this region in more detail.

Figure 3-7 also shows that the flame structure changed downstream from the

anchoring region and the conventional two-zone structure was observed to recover

near the center of the recirculation zone; although the magnitudes of the CT , ST and

DT terms were observed to be relatively smaller than the “far” column. Towards the

end of the recirculation zone, the conventional two-zone structure was almost entirely

recovered.

3.2.5 Influence of conjugate heat exchange on flame anchor-

ing

Figures 3-8 and 3-9 show the temperature contours with overlaid streamlines in the

near-field downstream of the bluff-body for three different thermal conductivities of

the bluff-body (corresponding to an almost adiabatic, ceramic and steel material) for
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Figure 3-8: Temperature contours with overlaid streamlines and 10% YHCO black
contour line for the case with φ = 0.5 for three different thermal conductivities of the
bluff-body (marked by the white square).
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Figure 3-9: Temperature contours with overlaid streamlines and 10% YHCO black
contour line for the case with φ = 0.7 for three different thermal conductivities of the
bluff-body (marked by the white square).
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the cases with φ = 0.5 and φ = 0.7. The 10 % YHCO black contour line visualizes

the reaction zone. The almost adiabatic bluff-body showed that the flame anchoring

location was very close to the buff-body compared to the other materials. Figure 3-9

confirms the above reported result (in Fig. 3-6) that a lower thermal conductivity

material results in a smaller recirculation zone. The temperature contours visually

show that the bluff-body is hotter for the low thermal-conductivity cases, consistent

with the laminar flame computations of perforated-plate stabilized premixed flames

shown in Chapter 5 and the experimental investigation of a backward-facing step

combustor in [38]. The bluff-body tends to be almost isothermal for the high conduc-

tivity case with its temperature depending on operating conditions and the thermal

conductivity. However apriori estimation of this temperature for isothermal modeling

of the bluff-body in numerical simulations (one of the many artificial flame anchoring

conditions used in literature) is not-trivial. For both the φ case, the flame anchoring

location followed the upstream movement of the temperature contours as the thermal

conductivity was reduced.
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Figure 3-10: The non-dimensional x-position of the flame anchoring location for three
different bluff-body materials for the cases with φ = 0.5 and φ = 0.7.

Fig. 3-10 shows that the anchoring location depended nonlinearly on the thermal-
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conductivity4. This will also be analytically shown in Chapter 6; the flame standoff

distance and the flame-holder surface temperature for a perforated-plate stabilized

flame depends non-linearly on the plate thermal conductivity for very low values, and

it saturates for larger values (beyond 20-30 W/mK). Similar observation was also

made by McIntosh and Clarke [72] in the context of one-dimensional plane flame on

porous-plug burners.

Figure 3-11: The y-profile of the temperature field at x/d = 3 for various φ using the
steel and the ceramic bluff-bodies. The insert shows a visualization of the x/d slice.

The anchoring location was shown to depend on the thermal properties of the

bluff-body above. This depends on the conjugate heat exchange between the bluff-

body and the reacting flow. The bluff-body provides a pathway for the heat transfer

from the downstream hot products to the upstream cold reactants. Figure 3-11 shows

the y-profile of temperature at the downstream face of the bluff-body (at 2 ≤ y/d ≤ 3

and x/d = 3) for the cases with different φ for both the steel and the ceramic bluff-

4Same trends were also observed using other flame anchoring definitions such as most upstream
location of the normalized 5%, 15% and 20% YHCO contour
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bodies. The temperature of the reactants towards the channel wall was 300K, it

peaked near the region where the shear layer separated from the bluff-body and

dropped at the face due to high thermal conductivity relative to the reacting flow.

For each φ, the ceramic bluff-body was hotter than the steel counterpart by 20-

25%. Figure 3-12 shows the heat-flux entering the downstream face of the bluff-body

(marked by the thick black line in the inserted contour plot) for all the above cases.

For each φ, the steel bluff-body allowed 8-10% higher heat flux to enter (thereby

allowing a higher heat-flux out of the sides of the bluff-body at steady-state) relative

to the corresponding ceramic case because of its higher thermal conductivity. The

temperature and the flux both expectedly grew as φ was increased because of the

associated increase in the combustion heat-release. The above discussed results that

flame anchoring location moves upstream when the thermal conductivity was reduced

or when the equivalence ratio was increased is thus justified.

Figure 3-12: The y-profile of the heat flux entering the downstream face of the bluff-
body (x/d = 3 and 2 ≤ y/d ≤ 3) for the steel and the ceramic bluff-bodies for various
φ. The insert shows a visualization of the x/d slice.
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Figure 3-13: The y-profiles of temperature and normalized YHCO species at various
x/d slices in the downstream vicinity of the ceramic bluff-body for the case with
φ = 0.7. Only y/d > 2.5 is shown because of symmetry.

The temperature and normalized YHCO profiles at different x/d, in the immediate

vicinity downstream of the ceramic bluff-body, are plotted in Fig. 3-13 for the case

with φ = 0.7. Only y/d > 2.5 is shown because of the observed symmetry in the flow-

field. The flame anchoring definition used in this paper is plotted using the dashed

line in Fig. 3-13(right). The temperature at this anchoring point was observed to be

approximately 1400 K. This region was also associated with a peak in the temperature

profile, as seen in the green curve marked by x/d = 3.2 in Fig.3-13. The maximum

value of YHCO and T both increased downstream. Figure 3-14 shows the anchoring

location (defined in Section 3.2.3) relative to the temperature contours for all the φ

cases investigated in this paper using a ceramic bluff-body. The anchoring location

was observed to be associated with a temperature in the range of 1330K (for φ = 0.5)

- 1400K (for φ = 0.7). Similar temperature range was also obtained for the steel bluff-

body. All these results indicate that the peak the YHCO mass-fractions (equivalently

the reaction-zone) depends very strongly on the temperature field in the reacting flow.
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In summary, it was shown in this section that the flame anchoring location depends

strongly on the conjugate heat exchange between the bluff-body and the reacting flow.

Figure 3-14: Normalized YHCO contours with overlaid temperature contour lines for
various φ using a ceramic bluff-body marked by the black square.

3.2.6 Influence of preferential diffusion on flame anchoring

Preferential diffusion, when present, changes the local stoichiometry of the premixed

mixture due to a mismatch in the mass-diffusivities of the different species. It cannot

be captured using a single-step chemical kinetics because of the nature of its origin

in multi-species transport. Furthermore, it is different from the thermo-diffusive

effects which results from a mismatch in the thermal and the mass diffusivities of

each species (commonly termed as the non-unity Lewis number effect). Barlow and

co-workers recently reported strong preferential diffusion in the recirculation zone of

bluff-body stabilized turbulent premixed flames using high resolution experimental

diagnostics in [24, 25]. They showed an increase in the local equivalence ratio and

the carbon-to-hydrogen atom (C/H) ratio across the turbulent flame brush (increase

from reactants to products). They conjectured the existence of preferential diffusion
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in anchored laminar flames oriented at a high angle to the direction of the incoming

reactants; similar to the flames investigated in this paper. I use the simulations

discussed above to study this and investigate its role in flame anchoring.
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Figure 3-15: Profiles of various quantities along the flame-normal co-ordinate using
the unstrained adiabatic laminar flame calculations from Chemkin for the cases with
φ = 0.55, φ = 0.6 and φ = 0.7.

Barlow et al. [24] defined a local equivalence ratio on the basis of the local fu-

el/oxygen atom balance using major species to investigate preferential diffusion.

φlocal =
0.5(XH2 +XH2O) +XCO2 +XCO + 2XCH4

0.5(XCO +XH2O) +XO2 +XCO2

(3.1)

where Xk is the mole-fraction of species k. I used the same definition for consistency

in this paper. I first show results for an unstrained adiabatic one-dimensional flame

simulation using the multistep C1 skeletal mechanism using Chemkin for three differ-

ent φ in Fig. 3-15. The temperature, φlocal and the C/H atomic ratio are shown along

the flame-normal co-ordinate (units [mm]). Due to the different diffusion coefficients

of each species, φlocal and C/H atomic ratios decrease just ahead of the flame for

all the three cases. However, upstream and downstream away from the flame, these

quantities were equal to their corresponding incoming flow values. Similar results

were also reported in [24] using temperature as the x-axis.

Figures 3-16-3-20 show these quantities in the two-dimensional simulations, using

only the ceramic bluff-body for various φ. All the results reported here were also ob-

served using the steel bluff-body. Figure 3-16 shows the colored contours of φlocal−φ
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Figure 3-16: Colored contours of φlocal − φ (departure from the incoming reactants
equivalence ratio) with overlaid streamlines and 10% YHCO black contour line for
various φ using a ceramic bluff-body marked by the white square.

Figure 3-17: Close-up of the φlocal−φ contours shown in Fig. 3-16 near the anchoring
location.
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(the departure of φlocal from φ of the incoming reactants) with overlaid streamlines

and the 10% YHCO black contour line. An increase in φlocal (approximately 7-10%)

was observed in the anchoring zone. Figure 3-17 shows that for all the cases, the

flame anchored at a location downstream of the bluff-body where φlocal was the maxi-

mum; equivalently where the departure from the φ of the incoming reactants was the

maximum.

Figure 3-18: φlocal profiles (left) at various x/d slices (right) as a function of the
temperature; for the cases with φ = 0.5 and φ = 0.7.

The increase in the local stoichiometry in the recirculation zone was observed to

depend on the relative location in the zone. Far downstream of the recirculation zone,

the one-dimensional observation of a φlocal drop just ahead of the flame (see Fig. 3-15)

is recovered for all the cases; except for the weakest φ = 0.5 case discussed below. φlocal

profiles at different x/d slices are plotted for the case with φ = 0.5 and φ = 0.7 in Fig.

3-18. An alternate plot of φlocal v/s T is also shown for comparison with the results

reported by Barlow et al. [24]. In their experimental investigations, the measurements

were taken at a fixed location downstream for different Red (presumably changing

the size of the recirculation zone in the process) and the increase in the stoichiometry
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was compared. However, Fig. 3-18 shows that a better location to compare these

cases would be a “fluid-dynamically equivalent” location such as half length of the

recirculation zone because of the significant change in the values within the zone itself.

I will show in Chapter 4 that the flame-stretch was weak in the laminar bluff-body

flames. I thus conclude that the preferential diffusion is not enhanced by the possible

presence of a strong stretch in the laminar flame configuration; as speculated in [25].

Figure 3-19: The local C/H atomic ratio contours with overlaid streamlines and 10%
YHCO black contour line for various φ using the ceramic bluff-body marked by the
white square.

Figure 3-19 shows the preferential diffusion through the C/H atomic ratio for

various φ, indicating that the hydrogen containing major species diffuse ahead of

the carbon containing major species (consistent with the observations reported in

[25]), resulting in a local accumulation within the recirculation zone. The region of

maximum φlocal, where the flame anchored, was also the region with the maximum

C/H atomic ratio. Figure 3-20 shows the contours of the major species for the case

with φ = 0.5. These contours visually show that the flame-tangential gradients are

strong near the upstream side of the recirculation zone, which is a manifestation of

the two-dimensionality of the flow. It is thus concluded that the primary source of
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preferential diffusion is the flow two-dimensionality. The far downstream location for

the case with φ = 0.5 is not “far” enough to forget the two-dimensionality; thereby

not allowing it to recover the preferential diffusion behavior of its corresponding one-

dimensional flame; unlike the case with φ = 0.7.

Figure 3-20: Major species : H2, H2O, CO and CO2 contours with overlaid stream-
lines and 10% YHCO black contour line for the case with φ = 0.5 using the ceramic
bluff-body marked by the white square.

3.2.7 Flame anchoring mechanism

Based on the observations reported above in this paper, I propose the following mech-

anism for the laminar flame anchoring near a heat-conducting bluff-body. Flame

anchoring relies on suitable “ignition” conditions to be established at a downstream

location near the bluff-body. For any mixture to ignite a sufficiently high temper-

ature and a suitable mixture conditions must be achieved near the flame location.

The unconventional flame-structure discussed in Section 3.2.4 shows that this loca-
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tion resides inside the recirculation zone (resulting in a negative flame displacement

speed); thereby fresh reactants are provided to the reaction zone by diffusion across

streamlines. Conjugate heat exchange discussed in Section 3.2.5 controls the location

of the ignition temperature depending on the thermal properties of the bluff-body.

Preferential diffusion discussed in Section 3.2.6 contributes to the formation of the

favorable ignition mixture composition, providing a region of locally increased stoi-

chiometry. A complex interplay of all these conditions establishes a suitable location

for flame anchoring. To the best of my knowledge, such a detailed investigation of

the flame anchoring zone has not been undertaken in the literature.

3.3 Unsteady simulations

3.3.1 Ignition to start a simulation

  

 

1 2

3 4

5

Figure 3-21: Temperature contours showing the ignition transient process (few ms
timescale) from a hot-spot created immediately downstream of a ceramic bluff-body.

A good initial condition for the above discussed simulations is required for a
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starting guess. The transient generated by this initial condition then gets convected

out before a steady-state is reached. There are various ways to ignite a numerical

slow-field. In the bluff-body simulations, I first simulated a cold-flow for some time

allowing a small recirculation zone to develop behind the downstream face of the

bluff-body (a visual image can be seen in the insert of the Fig. 7-2). The cold-

flow solution is then restarted with a high temperature hot-spot field imposed inside

the recirculation zone, flow-field marked as (1) in Fig. 3-21. The cold-flow is first

simulated to trap the hot-spot inside a recirculating fluid, otherwise it will quickly

convect downstream and then out of the domain. If this convection was faster than

the ignition delay of the mixture or if the ignition happened far downstream from

the bluff-body, no anchored flame sheet was observed. Hot-spot inside a recirculation

zone avoids this problem. A sequence of events during the transient is shown in

Fig. 3-21. Eventually, all the transients were convected out and the laminar steady

flame discussed in the above sections was established. This transient process is often

violent because of its “artificial” nature. The first-order buffer zone method presented

in Section 2.3.3 was observed to be numerically more stable than the second-order

method for the initial transient. The above ignition method was used only for the

highest φ = 0.8 investigated in this thesis. All the other simulations were started from

an already established steady-state simulation; for example φ = 0.55 was started using

the established steady solution of φ = 0.6 and changing the inflow conditions of the

reactants.

3.3.2 Unsteady simulation with inlet forcing

Understanding dynamic response of flame to velocity perturbations if an important

practical problem. The coupling between the acoustics and unsteady heat release

rate often leads to self-excited oscillations in combustion systems, which can be dan-

gerous (see, e.g., Lieuwen [73], Ducruix et al. [74], Candel [75] for instability related

mechanisms and models). One way to carry out a numerical investigation is to force

the inflow at a fixed frequency and small amplitude and investigate the response of

the flame to this forcing. Figure 3-22 shows such a simulation. Here the inflow ve-
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Figure 3-22: (left column) Temperature contours with overlaid streamlines (right
column) normalized YHCO contours with overlaid adaptive mesh patches during an
unsteady cycle with inlet velocity forcing of 100 Hz frequency and 0.1U amplitude.
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locity was forced sinusoidally at a frequency of 100Hz and amplitude of 10% of the

mean flow. One cycle of simulation is shown in the figure. Left column shows the

temperature contours with overlaid streamlines and the right column shows the flame

location via normalized YHCO species mass-fraction. The adaptive tracking of the

flame is also visible. The flame front also oscillated at the same frequency as the inlet

velocity oscillations. The recirculation zone size and shape varied during the oscil-

lation. The flame anchoring location oscillated near the downstream corner of the

bluff body, showing that the fixed flame anchoring used as a boundary condition in

dynamic response models [75] is not entirely valid. I will discuss an analytical model

in context of perforated-plate burners in Chapter 6 accounting for the flame anchor-

ing location in the dynamic response modeling. Similar investigations for bluff-body

flames must be undertaken in the future.

3.4 Conclusions

In this chapter, I investigated the mechanism of a confined bluff-body stabilized lam-

inar methane/air premixed flame anchoring using the numerical method discussed

in Chapter 2. I also demonstrated the capability of the numerical tool to simulate

unsteady flame behavior.

Steady flame simulations showed a shear-layer stabilized flame just downstream

of the heat-conducting bluff-body, with a recirculation zone formed by the products

of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than

a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased.

Flame anchoring was defined as the most upstream location where the YHCO mass-

fraction reaches 10% of its maximum value far downstream from the bluff-body; YHCO

was shown to be an excellent surrogate for the reaction zone in the range of conditions

investigated.

A significant departure from the conventional two-zone flame-structure (convection-

diffusion preheat zone and a thinner reaction-diffusion zone) was observed in the an-

choring region. The reaction zone was associated with a large negative convection
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of energy directed from products to reactants resulting in a local negative flame-

displacement speed. A significant part of the flame was observed to reside inside

the recirculation zone; the extent of embedding increased as φ was decreased. In

the anchoring region, fresh reactants reach the reaction zone by diffusion across the

streamlines. The two-zone structure was fully recovered towards the end of the recir-

culation zone.

The role of conjugate heat exchange between the bluff-body and the reacting flow

and preferential diffusion on flame anchoring was investigated. The anchoring location

moved upstream as the thermal conductivity was decreased; the dependence was non-

linear. It also moved upstream as φ was increased. The ceramic bluff-body allowed a

lower heat flux at its downstream face and was at a higher temperature as compared to

the steel bluff-body at the same φ. Strong two-dimensionality resulted in preferential

diffusion effects inside the recirculation zone; an increase in local equivalence ratio and

C/H atomic ratio were observed. Based on the results, I propose that the bluff-body

flame anchors at downstream location near the bluff-body where favorable ignition

conditions are established; a region associated with (1) a sufficiently high temperature

(impacted by the conjugate heat exchange) and (2) a favorable mixture composition

with an increased stoichiometry (impacted by the preferential diffusion).

The preferential diffusion effects depended strongly on the relative location within

the recirculation zone and was observed to be decoupled from the flame stretch.

Experimental investigations comparing the local change in equivalence ratio must

account for this change and choose a fluid-dynamically similar location for comparing

the cases in which the size of the recirculation zone changes.

In the next chapter, I will elucidate the mechanism of blow-off of the bluff-body

flames disccussed in this chapter.
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Chapter 4

Mechanism of laminar premixed

flame blow-off on a bluff-body

4.1 Overview

In the previous chapter, flame anchoring was investigated. Preferential diffusion was

shown to be strong in the recirculation zone and the critical role of flame-wall conju-

gate heat exchange on flame anchoring was highlighted. The objective of this chapter

is to investigate the mechanism of blow-off of the bluff-body premixed flames dis-

cussed in the previous chapter. Blowoff is approached by decreasing the mixture

equivalence ratio at a fixed Reynolds number of the incoming flow. A flame is stable

(does not undergo blow-off) when (1) flame displacement speed is equal to the flow

speed and (2) the gradient of the flame displacement speed normal to the flame is

higher than the gradient of the flow speed along the same direction. As the equiva-

lence ratio is reduced, the difference between the former and the latter shrinks until

the dynamic stability condition (2) is violated, leading to blow-off. The blow-off ini-

tiates at the location where this is first violated along the flame. The results show

that this location is far downstream from the flame anchoring zone, near the end of

the recirculation zone. The blow-off starts by flame pinching separating the flame

into an upstream moving (carried within the recirculation zone) and a downstream

convecting (detached from the recirculation zone) flame piece. In the range of oper-

105



ating conditions investigated, the conjugate heat exchange with the bluff-body has

no impact on the flame blow-off.

4.2 Results and discussions

Blowoff can be achieved by fixing the Reynolds number, Red and decreasing/in-

creasing the equivalence ratio φ for a lean/rich premixed mixture or by fixing φ and

increasing the Red. I choose the latter for the numerical simulations discussed in

this chapter. As typically done in experiments, a sweep for a large range of Red and

φ is not possible due to the large computational expense. To investigate blow-off,

cases with φ = 0.42, 0.45, 0.5, 0.55, 0.6, 0.7 and 0.8 were simulated keeping all the

other operating conditions the same. Like in Chapter 3, Red was fixed at 500 and

no artificial flame anchoring conditions were used. The same C1 chemical kinetics

(16 species, 46 reactions) model was used. The YHCO contours are again used as a

surrogate for visualizing the heat-release rate contours, as discussed in Section 3.2.3

4.2.1 The blow-off process

Steady flames were observed for all the cases with φ ≥ 0.45. However blow-off oc-

curred for the case with φ = 0.42, thereby showing that the exact value of φ where

the flame blow-off occurs is within the range 0.42 ≤ φ < 0.45 for Red = 500. Similar

value of the blow-off φ was also reported for methane/air flames in [30]1. Finding the

exact blow-off value of φ would require a large computational expense. The blow-off

value was shown to strongly depend on the shape and size of the bluff-body [30, 32]

and to some extent on its thermal properties [28, 37] for high Reynolds number flows;

along-with the inflow reactant velocity and the equivalence ratio. The sequence of the

laminar flame blow-off is shown through the normalized YHCO contours (normalized

by its maximum value far downstream from the bluff-body) in Fig. 4-1. The entire

1Fig. 23 in [30] showed that blow-off value of φ ≈ 0.45 for a cylindrical flame holder of diameter
0.125” (3.2 mm) with inflowing reactant velocity ≈ 60 ft/s (18.2 m/s). This experiment corresponded
to Red ≈ 3500.
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transient process was observed to be symmetric, until the flame completely disap-

peared and a non-reacting unsteady flow was established. A distinct flame pinch-off

was observed downstream during the transient. A part of the flame was then en-

gulfed in the recirculation zone and was carried convectively upstream. It eventually

disappeared within the recirculation zone after a short anchoring period during its

upstream convection. The other part of the flame convected downstream out of the

domain. It remained completely detached from the recirculation zone throughout the

transient and convected out faster than the upstream moving piece. The upstream

part of the pinched-off flame is similar to the experimental observations reported in

[30, 31], where a luminous flame existed in the recirculation zone for a long period of

time before entirely disappearing. It was referred to as the “residual flame”.

In the following section, I will investigate a dynamic stability criterion and propose

a mechanism for the blow-off phenomenon. I will also explain physically why the

blow-off initiates downstream with a pinch-off.

4.2.2 Dynamic stability criterion

For a stable flame, it is well known that the displacement speed at every point along

on the flame must be equal to the flow velocity normal to the flame,

|S| = |vn| (4.1)

The displacement speed of the flame is well-defined in an asymptotic analysis where

the reaction zone is very thin. In a numerical investigation, this is typically estimated

at a fixed contour line. Equation 4.1 is a necessary but not a sufficient condition for

flame stabilization. An additional dynamic stability criterion, originally proposed for

inverted premixed flames in [46] without experimental or alternate evidence, must

also be satisfied

|dS
dn
| > |dvn

dn
| (4.2)
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Figure 4-1: Species mass-fraction contours of normalized YHCO with overlaid stream-
lines at different time-instants during the blow-off for φ = 0.42 around a confined
bluff-body marked by the black square. Time t = 0 corresponds to an arbitrarily
selected reference beginning time during the transient.
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where n is the normal to the flame front directed towards the reactants. |dS
dn
| is a mea-

sure of the change in the flame displacement speed if it were to stabilize at a small

distance normal to its current location whereas |dvn
dn
| quantifies the rate of change of

the incoming reactant velocity along the flame-normal in the non-uniform flow-field2.

Figure 4-2 shows a schematic diagram illustrating this criterion for dynamic stabil-

ity for a stable flame location n0. At this location, the flame and flow speeds must

be the same; |S| = |vn|. If the flow is accelerating, |vn|no+dn < |vn|no < |vn|no−dn,

then the flame can be stable to small perturbations only if |S|no+dn < |vn|no+dn and

|S|no−dn > |vn|no−dn. This is mathematically equivalent to the condition |dS
dn
| > |dvn

dn
|.

This physically ensures that if a small convective disturbance perturbs the flame

towards/away from the reactants, then the flame displacement speed increases/de-

creases more than the flow speed bringing it back to the original location and a

stable flame is sustained. I will demonstrate that the flame blow-off occurs when

the dynamic stability criterion is violated for bluff-body stabilized laminar flames.

I will also show that the blow-off initiates at the location where this criterion first

fails. I will also discuss the dynamic stability criterion in the context of blow-off of

perforated-plate stabilized flames in Chapter 5.

To check the validity of the dynamic stability criterion, |dvn
dn
| was directly computed

from the numerical results; the local flame-normal n was estimated by high-order

polynomial curve-fitting of the reference location. However computing the gradient

of the flame speed |dS
dn
| is not trivial. I estimate this indirectly by

|dS
dn
| = |dS

dκ
× dκ

dn
| (4.3)

where κ is the total flame stretch. Equation 4.3 decomposes |dS
dn
| into a directly

measurable flow property, dκ
dn

, from the simulations and a physico-chemical property

of the reacting mixture, dS
dκ
∼ O(1)mm, discussed in the following section. There is no

2In a uniform planar flow-field, an adiabatic unstretched premixed flame normal to it will sustain
itself at a fixed location as long as the reactant velocity is exactly equal to its flame speed. In this
case, both |dSdn | = 0 and |dvndn | = 0 and the flame is neutrally stable. If perturbed, it will move by a
distance corresponding to the disturbance and sustain at that new location when the perturbation
is removed.
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Figure 4-2: Schematic illustration of the dynamic stability criterion. A curved flame-
front (solid line) is shown with it normal n marked at a location.

local external heat losses experienced by the flame, especially near the blow-off point

which is far downstream from the heat conducting bluff-body. Hence the implicit

assumption of S = S(κ) in the decomposition shown in Eq. 4.3 is justified.

4.2.3 The Markstein length and flame stretch

The fame stretch κ is a combined effect of the strain of the flow-field, curvature of the

flame-front and the local unsteadiness during a transient flame motion. The flame

displacement speed is sensitive to κ and depends linearly on it when κ is sufficiently

small. This was first proposed by Markstein [76]:

S = S0
u − Lκ (4.4)

where S is the flame displacement speed of the stretched flame with respect to the

unburnt reactants, S0
u is the corresponding unstretched laminar flame speed and L is

the Markstein length, which is of the order of the flame thickness. L depends on the

physico-chemical properties of the reacting mixture and can be positive or negative;

although generally positive for most fuels [77]. For weakly stretched flames, dS
dκ

in Eq.

4.3 is thus the negative of the Markstein length L.

L is often non-dimensionalized by the characteristic premixed flame thickness δT
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and reported as Markstein number Ma in the literature. Analytical expression for

Ma was developed in the classical work of Clavin and Williams [78] using asymptotic

analysis

Ma = L/δT =
1

γ
ln

1

1− γ
+
β(Le− 1)

2

1− γ
γ

∫ γ/1−γ

0

ln(1 + x)

x
dx (4.5)

δT =
αmix,u
S0
u

, γ =
Tb − Tu
Tb

, β =
Ta(Tb − Tu)

T 2
b

(4.6)

where αmix,u is the thermal diffusivity of the unburnt mixture, Tb and Tu are the

adiabatic burnt gas and the unburnt gas temperature respectively, Ta is the activation

temperature, β is the Zeldovich number, Le is the Lewis number based on the deficient

reactant (methane in this investigation). The above theoretical result is restricted to

small flame surface deformations. More general expressions for large deformations

associated with extensive flame wrinkling were derived in [79, 80].

  

u= -κx
v = κy

κ is the strain rate

x

y

Flame Sheet

Stagnation 

κ=-du/dx

u

T

u
min

u
max

S
u

Extrapolation to 
flame sheet

Figure 4-3: Schematic illustration of (top) a planar stagnation point premixed flame
(bottom) the velocity profile, the temperature profile and the location used in litera-
ture for the stretch rate and the flame speed computation.

Many experimental and numerical investigations have also been carried out in the

literature to estimate the Ma for different fuels and at different equivalence ratios

[81–85]. In practice, determining Ma is non-trivial because of the non-uniformity in

the flow-field associated with the heat-release driven flow divergence and the finite-
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thickness flame region resulting from the detailed chemical kinetics. Determining

Ma in an experimental or a numerical investigation requires (i) defining an “up-

stream reference location” where the flame stretch is computed and (ii) defining a

“flame reference location” where the flame displacement is estimated based on veloc-

ity extrapolation from the “upstream reference location” [84]. In a stagnation point

flow, the common choice for the “upstream reference location” in the above cited ref-

erences is the location where the velocity reaches a minimum. In this configuration,

the velocity far upstream decreases as it approaches the flame front; it then starts

to increase as the reactants are preheated and divergence is created in the flow-field

due to combustion and it again starts to decrease to become zero at the stagnation

point. This is shown in the schematic illustration of a stagnation point flame in Fig.

4-3. The stretch κ is usually estimated as the maximum gradient in the upstream

velocity field. Ma depends significantly on the “flame reference location” definition.

Clavin and Joulin [86] showed that if the “flame reference location” is displaced by a

distance equal to the Markstein length, then error in estimation of Ma is 100%. It

can be positive or negative for the same flame based on the choice of this definition

as demonstrated by Deshaies and Cambray [82]. Tien and Matalon [87] theoretically

derive Ma relative to different “flame reference location” such as location at a fixed

contour of 1% temperature rise at the upstream edge of the preheat zone, location

of a velocity minimum in the preheat zone (used in [81]) and location of a veloc-

ity maximum at the downstream edge (used in [88]) using the counterflow premixed

flame configuration. Hence great caution must be exercised during any analysis before

directly using the Markstein numbers reported in the literature.

In this investigation, I used the analytical expression of Clavin and Williams [78]

(shown in Eq. 4.5) for estimating Ma. It is reasonable to use this expression for

laminar flames investigated here as it was developed assuming small flame surface

deformations. Table 4.1 shows the values of L calculated from this expression at

different φ investigated here. I chose Ta = 24400 K for methane/air flame, Tu = 300K.

Sou was obtained using the PREMIX code in Chemkin.

The stretch rate of a flame surface element dA is defined in the tensor notation
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φ Tb[K] β Le Ma αmix.u Sou[cm/s] L[mm]
0.45 1430 13.48 0.983 1.91 0.222 2.57 1.65
0.50 1501 13.01 0.982 1.94 0.222 4.80 0.90
0.55 1585 12.48 0.980 1.98 0.223 7.96 0.55
0.60 1669 11.99 0.978 2.02 0.223 11.57 0.39
0.70 1835 11.12 0.975 2.09 0.223 19.56 0.24
0.80 1992 10.40 0.972 2.15 0.223 27.81 0.17

Table 4.1: Markstein length using the analytical expression of Clavin and Williams
[78] shown in Eq. 4.5.

as [89]

κ =
1

A

dA

dt
= (δij − ninj)

∂ui
∂xj

+ S
∂ni
∂xi

(4.7)

where δij is the Kronecker delta, i, j are the directional indices in the Cartesian

coordinate system (xi, xj), n is the unit vector normal to the flame front towards the

reactants, S is the burning velocity normal to the flame surface. The first term on the

right hand side is the strain rate induced by the velocity field (κs), while the second

term represents the curvature contribution κc to the flame stretch (κ = κs + κc). For

a stationary flame, S at each point is equal to the the flow speed at that point normal

to the flame surface. For a two-dimensional Cartesian coordinate system, the stretch

rate simplifies to

κ = −nxny(
∂u

∂y
+
∂v

∂x
)− n2

x

∂u

∂x
− n2

y

∂v

∂y
− (unx + vny)(

dnx
dx

+
dny
dy

) (4.8)

Computing the flame stretch at an “upstream reference location” in a stagnation

point flame (configuration used in the literature for numerically computing or ex-

perimentally measuring the Ma) is relatively easier because of the uniformity of the

flow normal to the flame. However, the flow-field in the simulations shown in this

chapter is not uniform because of the channel and high flame angle to the incoming

flow. I thus define an “upstream reference location” by a fixed contour, where 1%

consumption of methane is completed as the location to compute the stretch. This

definition ensures that the flame stretch is computed at a location just ahead of the

preheat zone of the flame.
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Figure 4-4: The variation of the total flame stretch, with the strain and curvature
components computed at the upstream reference location, in the streamwise x-co-
ordinate for the cases (a) φ = 0.5 and (b) φ = 0.7.
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Figure 4-4 shows the flame stretch profile for the cases with φ = 0.5 and φ = 0.7.

The two-dimensional flow-field of these cases was discussed in Fig. 3-5 of the previous

chapter. The stretch profile was computed along the upstream reference location in

the top half of the y-domain (y/d ≥ 2.5 in Fig. 3-5) because of the observed symmetry.

The flame normal was computed at each location, using high-order polynomial curve

fitting, to obtain the projected flame normal unit vectors nx and ny for Eq. 4.8. Figure

4-4 shows that the stretch was dominated by the strain component almost along the

entire flame for both cases. There is a weak positive curvature (convex towards the

reactants) near the anchoring location and zero curvature further downstream; flame

for the higher φ case was curved more as also visualized by the contours in Fig. 3-5.

The stretch profiles for all the other φ investigated in this study also showed the same

result and are not plotted here.The total flame stretch was weak (|κ| <50s−1). This is

not surprising, especially at downstream locations because the flame is unconstrained

/ free to move and is not distorted by any unsteady flow-field feature. This also

justifies the use of the Markstein theory developed for weak stretch (Eq. 4.4) for the

blow-off analysis in the next section. The flame stretch was relatively higher near the

anchoring zone, but not large enough to lead to extinction as seen in turbulent flames

[35, 36].

The flame stretch discussed above was observed to be negative for all φ, demon-

strating that the flame stabilized in an accelerating flow. This is unlike the de-

celerating conventional stagnation point flow used widely in the literature, described

schematically in Fig. 4-3. Instead, this is a manifestation of the boundary conditions.

The flame at φ = 0.50 was observed to be almost columnar in the downstream region

(see Fig. 3-5). In this region, the speed of the incoming reactants into the flame zone

corresponds to the y-component of the velocity vector; v. For the confined-channel,

v = 0 at the channel walls (y/d = 0, y/d = 5) and at the centerline (y/d = 2.5) due

to symmetry. This enforces |v| to increase and then decrease from the channel walls

to the centerline. As a result, the flame experiences a locally accelerating flow, before

further accelerating it by thermal expansion. Figure 4-5 shows the v-velocity profile

at various downstream x/d locations for the case with φ = 0.5. The flame (preheat
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and the reaction zone) is seen in the region 1.2 / y/d / 1.7 and 3.3 / y/d / 3.8

where the thermal expansion results in a significant acceleration of the flow, before it

peaks and decelerates to become zero at the centerline y/d = 2.5.
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Figure 4-5: The profile of v-velocity normalized by the mean inlet velocity Uin =
1.6m/s versus the non-dimensionalized y-co-ordinate for the case with φ = 0.5 at
different x/d. The insert shows the flame location through the YHCO contour and
overlaid streamlines.

4.2.4 The blow-off mechanism

In this section, I will show that the dynamic stability criterion, expressed in Eq. 4.2,

got closer to being violated when the blow-off conditions were approached. I chose

an x/d location just downstream of the end of the recirculation zone for all the cases

with different φ and plotted the components of Eq. 4.2, |dvn
dn
| and |dS

dn
|, in Fig. 4-6.

An immediate downstream location to the recirculation zone was chosen because the

blow-off process was shown to initiate around this region in Fig. 4-1. The results
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dn
from the simulations at various φ.
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Figure 4-8: For steel and ceramic bluff-bodies, (a) |dvn
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| and |dS

dn
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dn
| − |dvn

dn
| for the cases

with φ = 0.45 and φ = 0.5.
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for the ceramic bluff-body are reported; similar observations were also made for the

the steel bluff-body. |dS
dn
| was estimated using the decomposition shown in Eq. 4.3.

dS
dκ

is the Markstein length L (Table 4.1); dκ
dn

and dvn
dn

were directly estimated using

the flow-field at the upstream reference location identified by the fixed 1% methane-

consumption contour (discussed in Sec. 4.2.3). The flame stretch κ was computed

using Eq. 4.8. Fig. 4-6 shows that when φ was reduced, |dvn
dn
| and |dS

dn
| approached

each other; thereby demonstrating that the dynamic stability criterion is the physical

mechanism that governs blow-off in this configuration. The difference (|dS
dn
| − |dvn

dn
|)

was observed to be 0.001 s−1 for φ = 0.45. Figure 4-7 shows the following decomposed

flame and flow components of the expression Eq. 4.3: (left axis) L and (right axis)

dκ
dn

. As φ was reduced; L increased and dκ
dn

decreased nonlinearly; however decreasing

their product |dS
dn
|. Both undergo significant variation with φ and thus form important

pieces of the dynamic stability criterion.

I now investigate the observation of blow-off initiating at a downstream location,

away from the bluff-body.Based on the dynamic stability criterion, shown above for

a location just downstream of the recirculation zone, the flame blow-off is expected

to occur at the location where the stability criterion is first expected to fail. Figure

4-8(a) shows |dvn
dn
| and |dS

dn
| along the entire flame for the case with φ = 0.50. The

location where |dvn
dn
| and |dS

dn
| were closest to each other was near the end of the

recirculation zone. I plotted the difference |dS
dn
| − |dvn

dn
| in Fig. 4-8(b)3 for φ = 0.45

and φ = 0.50. This plot also confirms that the dynamic stability criterion is closer to

failure near the downstream region where the recirculation ends; showing that blow-

off is expected to initiate at a downstream location with flame pinch-off. The part of

the flame near the upstream anchoring zone strongly satisfied the dynamic stability

criterion (|dS
dn
| − |dvn

dn
| > 0); explaining the experimentally reported and numerically

observed residual flame in Fig. 4-1 for a long period (few hundred ms) after blow-off.

Figure 4-8 shows these results for the ceramic and metal bluff-bodies and will be

discussed in detail in Section 4.2.5.

3The simulation domain downstream of the bluff-body was chosen to be much larger for φ = 0.45
case because of the very long recirculation zone; thus separate x-axes were chosen for clarity
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The case with φ = 0.45 in Figure 4-8(b) shows that the dynamic stability criterion

was violated for a part of the downstream region; the difference ((|dS
dn
| − |dvn

dn
| < 0)

was observed to be small. However, the numerical simulations did not show blow-off

for this case. This can be attributed to the theoretical simplifications associated with

the analytical expression used to compute L accurately. Despite that, Markstein’s

theory shows remarkable success in understanding the blow-off mechanism.

Figure 4-9 shows vn, the flow speed normal to the upstream reference location,

in the top half of the y-domain for the cases with φ = 0.45 and (b) φ = 0.5. For

a stable flame, this is equal to the flame displacement speed S at that location. Its

magnitude was observed to be higher at upstream locations for both cases because

of the large negative stretch there (Fig. 4-4), consistent with Markstein’s expression

shown in Eq. 4.4. The flame speed decreased at downstream locations as the flame

stretch weakened. These values also indicate that although the flame stretch is weak,

it is significant enough to change the flame speed if it moves a small distance normal

to itself, thereby playing a critical role in the dynamic stability criterion via the |dS
dn
|

term.

On the basis of the results discussed above, we propose the following physical

portrait of the blow-off mechanism, illustrated in Fig. 4-10. The flame downstream

of the bluff-body moves to a location where its flame speed is equal to the normal

flow speed (along the entire sheet). The dynamic stability criterion discussed above

must be additionally satisfied along the entire flame. If this is the case, flame is

stable. Otherwise, the flame will move to a different location; thereby changing the

flame-normal flow speed and the associated stretch rate. Concomitantly, the flame

speed will change. For the flame to be stable at this new location, again both criteria

discussed above must be satisfied. This “adjustment” process will continue until the

flame finds a stable location; otherwise it will blow-off. I showed the downstream

section of the flame, near the downstream end of the recirculation zone, violates the

criteria first resulting in pinch-off. The resulting upstream piece was relatively stable

and persisted in the form of a residual flame for a long time before complete blowout.
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φ = 0.5.
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Figure 4-10: Proposed physical portrait of the blow-off mechanism.
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4.2.5 The role of conjugate heat exchange on blow-off

Conjugate heat exchange between the reacting flow and the heat-conducting bluff-

body is critical in determining the stable location or the anchoring point of the flame

as shown in Chapter 3. However, its role in blow-off is still unclear and not explored

in the literature. I checked the blow-off mechanism in the context of conjugate heat

exchange with the bluff-body to investigate its impact on blow-off by simulating the

steady laminar flame, close to the blow-off φ, for two different thermal properties of

the bluff-body (i) corresponding to a ceramic material (used until now in this chapter)

with ρfh = 673 kg/m3, cfh = 840 J/kgK and λfh = 1.5 W/mK ; and (ii) corresponding

to a steel material with ρfh = 8000 kg/m3, cfh = 503 J/kgK and λfh = 12.0 W/mK.

The flow-field was discussed in Figs. 3-8 and 3-9 in Chapter 3. The flame anchored at

a relatively closer distance to the bluff-body for the ceramic case compared to the steel

case. The average bluff-body temperature of the downstream face was approximately

20% higher for the ceramic case (789 K for the ceramic bluff-body and 662 K for the

steel bluff-body). Its recirculation zone was observed to be slightly smaller than the

steel case; downstream stagnation point was located at x/d = 9.4 for the former while

at x/d = 9.9 for the latter.

Fig. 4-8 shows |dvn
dn
| and |dS

dn
| along the flame for the two cases discussed above. The

impact of the conjugate heat exchange on the dynamic stability balance is observed

to be negligible. I observed flame blow-off at φ = 0.42 and a steady-state flame at

φ = 0.45 for both the cases. Russi et al. [37] also showed that for relatively low

inlet velocities (moderate Red flows), blow-off was independent of the flame holder

temperature, but was dependent on it for very high Red flows. Their conjecture

was that the heat flux to the flame holder may be small at these Red and thus did

not impact blow-off. However, the heat flux was not small, as was quantitatively

shown in Section 3.2.5. The downstream stretch field and thus the dynamic stability

criterion along the flame is unchanged for the two thermal conductivities at the Red

investigated in this chapter, thereby not changing the blow-off value.
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4.2.6 Relationship to the Damköhler number correlation

Shanbhogue et al. [34] comprehensively reviewed the blow-off dynamics of the bluff-

body stabilized flames at various Reynolds numbers. They compiled large exper-

imental datasets on bluff-body blow-off from the literature and hypothesized that

the Damköhler number correlations encapsulates the essential physical mechanism

responsible for blow-off. The Damköhler number ( Da = τflow/τchem) is the ratio

of the flow time-scale (τflow) to the chemical time scale (τchem). τflow was estimated

by choosing a characteristic length scale: typically the bluff-body diameter [34] or

the length of the recirculation zone [32] and characteristic velocity scale: typically

the mean inlet velocity. To estimate τchem, three different time-scales were consid-

ered in [34]; the inverse of the extinction strain rate, blow-off residence time of a

perfectly stirred reactor and unstretched laminar premixed time scale δT
S0
u

(ratio of

flame thickness to the flame speed). Damköhler number based on each of these time

scales definition correlated well with blow-off; with Da ∼ O(1). The dynamic sta-

bility criterion discussed in Section 4.2.2 can be expressed as a balance between an

inverse flow timescale: |dvn
dn
| manifested in the form of inverse of the stretch and an

inverse premixed flame timescale |dS
dn
|. The results show that blow-off occurs when

this time-scale ratio become O(1), thereby demonstrating the physical basis of this

widely reported correlation.

4.3 Conclusions

In this chapter, I investigated the blow-off mechanism of a confined bluff-body stabi-

lized laminar methane/air premixed flame using the numerical method discussed in

Chapter 2. Flame blow-off was simulated by fixing the incoming Reynolds number of

the flow at 500 (based on the bluff-body diameter) and decreasing the mixture equiv-

alence ratio. The stretch rate along the flame was strain dominated; the contribution

of curvature was shown to be negligible. The flame was shown to be stable (does

not undergo blow-off) when (1) the local flame displacement speed was equal to the

flow speed, |S| = |vn| (static stability) and (2) the gradient of the flame displacement
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speed normal to its surface was higher than the gradient of the flow speed along the

same direction |dS
dn
| > |dvn

dn
| (dynamic stability). The difference between the former

and the latter decreased as φ was reduced. |dS
dn
| was computed by decomposing it into

a physico-chemical property |dS
dκ
| or the Markstein length and a flow property | dκ

dn
|.

The flame blow-off started at a section of the flame where the dynamic stability

criterion was first violated. This was shown to occur far downstream from the flame

anchoring zone, near the end of the recirculation zone. The blow-off initiated by flame

pinching at this location; separating it into an upstream moving section carried within

the recirculation zone and a faster downstream convecting piece, detached from the

recirculation zone. The experimentally reported “residual flame” was observed before

the complete blow-off because the upstream section of the flame strongly satisfied the

stability criterion, even though it was violated downstream. The mechanism based on

this criterion explains the widely reported Damköhler number correlation for blow-off.

Within the range of operating conditions investigated, the conjugate heat exchange

had no impact on blow-off. However, I will show in Chapter 5 that it plays a critical

role in the blow-off of perforated-plate stabilized premixed flame. In that chapter,

I will also show that although the flame configuration is different than bluff-body

flames, the dynamic stability criterion still governs the blow-off mechanism of those

flames.
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Chapter 5

Mechanism of laminar premixed

flame stabilization and blow-off on

a perforated-plate

5.1 Overview

The objective of this chapter is to investigate the flame stabilization mechanism and

the conditions leading to the blow-off of a laminar premixed flame anchored down-

stream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly

adiabatic conditions. Results show a bell-shaped flame stabilizing above the burner

plate hole, with a U-shaped section anchored between neighboring holes. The anchor-

ing location is based on a combined impact of flame curvature and conjugate heat

exchange with the perforated-plate. I simulate blowoff by maintaining a constant

equivalence ratio and slowly increasing the incoming flow velocity of the premixed re-

actants. The dynamic stability criterion discussed for bluff-body flame blowoff shown

in Chapter 4 is found to be the underlying mechanism for blowoff on perforated-plates

also. As discussed in Chapter 4, for a stable flame, the gradient of the flame base

displacement speed normal to the flame is higher than the gradient of the flow speed

along the same direction, leading to dynamic stability. However, in this chapter, I will
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show that unlike bluff-body flames, the blowoff is critically impacted by the conjugate

heat exchange with the perforated-plate because blowoff initiates close to it.

5.2 Nomenclature

Roman

d Thickness of the burner plate

D Diameter of the inlet hole

KB Total stretch at the flame base

Lf Total length of the typical bell-shaped flame

mB Mass burning flux at the flame base = ρBSB

qp Heat flux at the burner plate at z/D = 0 and r/D = 1

r Radial coordinate

SB Flame base displacement speed

Sc Flame consumption speed

ST Flame tip displacement speed

t Time

Tad Adiabatic flame temperature

0.8× Tad Temperature contour used to define the flame location

TB Flame base temperature

Tp Temperature of the burner plate at z/D = 0 and r/D = 1

u Streamwise velocity

U Mean inlet velocity of the reactants far upstream

v Radial velocity

vr,B Strain at the flame base; 1
r
∂(rv)
∂r

z Streamwise coordinate

Greek

γB Radius of curvature of the flame base
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ρB Density at the flame base

ψB Flame stand-off distance above the burner plate

ψT Location of the flame tip above the burner plate

ω Volumetric heat release rate

ζ Location of the stagnation point above the burner plate

5.3 Numerical Methodology
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Figure 5-1: (a) Schematic diagram of a perforated-plate burner; and (b) Boundary
conditions used for the two-dimensional computational domain..

I previously worked on the development of an axi-symmetric, time accurate, two-

dimensional numerical simulation tool to study perforated-plate stabilized flames,

incorporating detailed chemical kinetics and species transport mechanisms. This tool

was discussed in my previous thesis [90]. In that, I also presented numerical investi-

gations of the dynamic response of perforated-plate stabilized flames to inlet velocity

perturbations . The semi-implicit operator-split projection method was used, sim-

ilar to the numerical method discussed in Chapter 2. However, no adaptive mesh
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refinement was employed; the code employs uniform structured grid with a staggered

arrangement. SAMR was not required for these simulations (unlike the Bluff-body

flames discussed in previous chapters) since the perforated-plate thickness is compa-

rable to the flame thickness, keeping the domain size small enough to be fully resolved

on a uniform grid. The low Mach number formulation of the reactive flow was used in

radial coordinates, shown in [90]. The assumptions remain the same as in Chapter 2.

Instead of using an immersed boundary formulation, the solid and the fluid domain

were solved separately and the solutions were updated at each time-step in the form

of boundary conditions. A detailed chemical kinetics mechanism with 20 species and

79 reactions for a methane-air mixture, described and validated in [91], is used. The

calculation of the production rates of each species and the evaluation of the thermo-

dynamic and transport properties are performed using Cantera [92]. Code validation,

grid independence and time-step independence studies of the code are shown in [90].

The results presented in this chapter are obtained using this numerical tool developed

in [90].

Figure 5-1b shows a schematic diagram of the computational domain at an ar-

bitrary angular slice, illustrating the boundary conditions specified at each surface.

Conduction heat exchange between the perforated-plate and the gas mixture is con-

sidered. Convective heat transfer is modeled at the bottom surface of the perforated-

plate using a constant specified convective heat transfer coefficient, h; the impact of

which can be ignored for small h and relatively long plates as noted in [91]. The

gas temperature at the inlet is assumed to be uniform and at the free stream value

(To = Tin = 300K). Symmetry boundary conditions are imposed at the centerline,

r = 0. Adiabatic, impermeable, slip-wall boundary conditions are used at the right

boundary in order to model the interaction between adjacent flames. At the exit, typi-

cal out-flow boundary conditions are used. The thermodynamic pressure, po = 1atm,

is kept constant. The mean inlet velocity, U , is kept constant to simulate steady

flames. The mixture composition at the inlet is steady and uniform and calculated

based on the specified equivalence ratio of the reactant mixture. The pressure gradi-

ent, and the velocity profile at the inlet are calculated based on the the laminar, fully
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developed flow assumption. They can be imposed as functions of time, t; however

they are temporally independent in this investigation.

5.4 Results and Discussions

The following parameters are kept constant throughout the numerical simulations:

the thickness of the plate or the distance between neighboring holes (see Fig. 5-1a),

d = 1 mm; the diameter of the hole (see Fig. 5-1a), D = 1 mm; the distance between

the top surface of the plate and the bottom surface/inlet section or the height of the

plate, L =13.2 mm (see Fig. 5-1a); the distance between the top surface of the plate

and the exit of the domain, Ld=15 mm; the inlet temperature, Tin= 300 K; the inlet

Prandtl number of the mixture, Pr = 0.71; the equivalence ratio of the reactants at

the inlet, φ = 0.75; the burner plate density ρfh = 2400 kg/m3; the burner plate

specific heat cfh = 1070 J/kgK; the thermal conductivity of the perforated-plate,

λfh = 1.5 W/mK. The cell size in the flow direction is ∆z = 0.04 mm, in the radial

direction is ∆r = 0.02 mm and the time step is ∆t = 0.9 µs. The Lewis number

based on the deficient reactant (methane for a lean methane-air mixture) is Le≈ 1.

Hence in my analysis, the preferential diffusion effects are not significant [93].

In my previous thesis work [90], I investigated the impact of the operating con-

ditions and the perforated-plate design on the steady-state characteristics of lean

premixed flames. I varied the equivalence ratio, the mean inlet velocity, the distance

between the perforated-plate holes and the plate thermal conductivity. I observed

that when the plate is modeled as adiabatic, i.e. when no heat exchange between

the flame and the plate is allowed, a conical flame is anchored near the corner of the

plate. However, when heat exchange between the burner plate and the flame is finite,

a bell-shaped flame stabilizes at a stand-off distance above the burner plate. The

flame stabilizes further downstream as the mean inlet velocity increases and/or the

equivalence ratio decreases.
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Figure 5-2: Contours of ω and T and the streamlines superimposed on T contours
in the region close to the burner plate at (a) U = 0.5 m/s; (b) U = 0.8 m/s; and
(c) U = 2.0 m/s. The corresponding locations of ζ and ψB are marked by × and o
respectively.
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5.4.1 The Stagnation Zone

Figure 5-2 shows contours of heat release rate, ω and temperature, T across the do-

main where finite values of the former are detected, and the streamlines superimposed

on the T contours in the region close to the burner plate, for stable laminar flames at

U = 0.5, 0.8 and 2.0 m/s. The corresponding locations of the stagnation point, ζ and

the flame stand-off distance, ψB are marked by × and o, respectively. Only part of the

computational domain is shown in these plots. The typical bell-shaped flame above

the hole is observed with a negatively curved flame tip, positively curved flame base

above the plate and weakly curved flame wing in between. The flame stabilizes just

above the recirculation zone in a low velocity region, where the flow velocity recovers

to small positive values downstream of the stagnation point. Because of the presence

of the stagnation zone, the flame base is located at a finite stand-off distance, ψB,

above the burner plate. As U increases, the recirculation zone grows and stagnation

point moves downstream forcing the flame stabilization point to move downstream

or ψB to increase. Meanwhile, as shown in the figure, the flame base moves closer

to the stagnation point. The stagnation point lies inside the flame thickness at the

higher velocity values. The flame moves away from the plate as U increases, lowering

heat loss to the burner plate. Heat lost to the plate top-side is significant, and it is

recirculated back to the reactants from the burner side along the hole in the perfo-

rated plate in this almost adiabatic system (the overall problem is nearly adiabatic

because of a high L/D plate used here and the heat loss from the lower side is found

to be negligible).

The top of the burner plate is located at z/D = 0 and 0.5 < r/D < 1. In the

following discussions, I focus on the results along the symmetry axis above the burner

plate z/D ≥ 0; r/D = 1, unless otherwise noted. This is because my primary interest

is to examine the stabilization of the flame base downstream of the plate. Along

this streamwise direction, the flame is always normal to the flow because a symmetry

boundary condition is enforced. I examine the change in the flame location and

structure along this line as the inlet velocity changes.
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Figure 5-3: Streamwise velocity at r/D = 1 along z/D for reactive flow and non-
reactive flow at U = 1.3 m/s.

It is widely established experimentally and numerically that the presence of a flame

significantly reduces the size of the recirculation region as compared to a non-reacting

flow [40, 46, 47, 91]. Figure 5-3 shows that my results capture this trend. Under non-

reactive conditions, the recirculation zone covers the range 0 < z/D < 4.3. For

identical inlet flow conditions, but in the presence of exothermic chemical reactions,

the extent of the recirculation zone is significantly reduced to 0 < z/D < 0.5. The

slow recovery of the velocity beyond the stagnation point in the cold flow case as

compared to the case of the reactive flow where significant acceleration is observed

must be noted. Downstream of the flame zone, velocities are different because of the

thermal expansion in the reactive flow case.

Flame front definition

Within the reaction-diffusion zone of the flame, there is a significant change in the

streamwise velocity because of the flow recovery after the stagnation point, besides

the usual change in the density across the flame (thermal expansion). Because of
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Figure 5-4: Column 1 and Column 3: The net convection, net diffusion and reaction
rates from the energy equation normalized with respect to ωmax; Column 2: the
streamwise velocity profile and the different scalar profiles normalized with respect
to their respective maximum for (a) U = 0.5 m/s; (b) U = 0.8 m/s; and (c) U = 2.0
m/s.The corresponding locations of ζ and ψB are marked by × and o respectively;
r/D = 1; D =Diffusion, C=Convection, R=Reaction.
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that, definitions of a flame location and a single flame displacement speed are not

obvious. There are multiple ways to define them (see Poinsot and Veynante [94]). I

define the location where T ≈ 0.8×Tad as the flame base location and the flow speed

at this location as the flame displacement speed, SB. The T plots in Fig. 5-4 show

that this is a reasonable location near which maximum burning occurs or ω peaks, for

all the different values of U . Other definitions used in literature, such as the location

where 95% of methane is consumed, correspond very closely to this location, as can

be seen in Fig. 5-4.

Fame base structure
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Figure 5-5: The net convection, net diffusion and reaction rates from the energy
equation normalized with respect to ωmax for an unstrained one-dimensional flame;
D =Diffusion, C=Convection, R=Reaction.

The net convection, net diffusion and local reaction rates, estimated by evaluating

the corresponding terms in the energy equation, the streamwise velocity profile and

some scalar profiles are shown in Fig. 5-4 for three inlet velocities. The net convection
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and diffusion rates are normalized with respect to the maximum volumetric heat

release rate (ωmax) along the symmetry axis. The velocity profile and the different

scalar profiles are normalized with respect to their respective maximum values on

the symmetry axis. The corresponding locations of ζ and ψB are marked by × and o

respectively. The recirculation zone is almost absent for U = 0.5 m/s and is very small

for U = 0.8 m/s case, but is significant in the case of U = 2 m/s. Moreover, while

the stagnation point is outside the flame-temperature thickness at low velocity, it is

located well within this thickness at higher velocity. On the other hand, the stagnation

point is essentially outside the reaction zone in all cases. The figures also show that

the flame stand-off distance, defined as the point where T ≈ 0.8 × Tad (where Tad is

the adiabatic flame temperature) also coincides with the point of maximum reaction

rate, showing that this is a reasonable surrogate for the flame.

There is a diffusion-reaction-convection balance near the stagnation point. On the

other hand, near the flame location, there is a strong reaction-diffusion balance, as

seen in conventional flames. At U = 2.0 m/s case, the size of the recirculation region

is significant. Moreover, a convection-diffusion balance is established in this recircu-

lation region with negative streamwise velocities and an overall positive diffusion rate

due to the positive diffusion of energy by the diffusing species in the recirculation

region, although there is a negative diffusion associated with upstream conduction.

The flame region is again characterized by a reaction-diffusion balance. In all cases,

there is a significant change in the flow velocity within the reaction-diffusion region.

For comparison, a similar plot of the net convection, net diffusion and reaction rates

normalized with respect to the maximum volumetric heat release rate or reaction rate

(ωmax) in the one-dimensional unstrained planar flame (φ = 0.75) is shown in Fig.

5-5. Such flames are characterized by a distinct convection-diffusion preheat zone and

a reaction-diffusion flame zone downstream. It is interesting to note that Fig. 5-4c

and Fig. 5-5 are different with respect to the opposite signs and lower magnitudes of

convection and diffusion in the upstream zone. Results in Fig. 5-4 also emphasize my

conclusion that, while stabilizing in an accelerating flow, the flame moves closer to

the stagnation point at higher velocity, where the flow velocity is significantly lower.
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5.4.2 The non-monotonic flame displacement speed

The flame base has the lowest displacement speed along the bell-shaped flame sta-

bilized on perforated-plate burners; this can easily be deduced from Fig. 5-2. The

ability of the positively curved flame base to sustain steady combustion determines

where the flame is anchored and whether a stable equilibrium can be established, that

is the overall stability of the flame. It must be noted that the flame base character-

istics depend on the overall shape of the flame. For a systematic analysis of flame

stabilization and to understand the sequence of events leading to eventual blow-off

downstream of the perforated plate, I start with a steady-state numerical solution at

a low mean inlet velocity. The equivalence ratio is fixed at φ = 0.75, as well as all

the other conditions except for the inlet velocity. I then incrementally increase U to

obtain the next steady-state solution, until the flame is no longer able to stabilize on

the burner and blows out. The flame shapes obtained using this procedure are shown

in Fig. 5-6a, for different values of U , shown on their corresponding flame shape.

Overall, the flame shape maintains the same structure of a base-wing-tip.

Figure 5-6b shows the variation of the mass burning flux at the flame base (or

the density weighted displacement speed), mB = ρBSB with U until blow-off occurs,

where ρB is the density at the flame base just ahead of the point of 0.8 × Tad and

SB is the flame displacement speed at the same point. Fig. 5-6b shows that the

value of ρB decreases slightly, but the trends of mB and SB are the same. Both

undergo a maximum as U increases and then decrease, with the former starting out

at ≈ 0.075, growing rapidly to ≈ 0.1; then decreasing gradually back to ≈ 0.07 at

higher velocities. The three cases of U chosen in Figs. 5-2 and 5-4 correspond to:

(a) the smallest value of U I used in the simulations, 0.5 m/s; (b) the value of U

where mB (and correspondingly SB) peaks, 0.8 m/s; and (c) the maximum value of

U before blowoff occurs, 2.0 m/s. The corresponding unstretched adiabatic values of

the laminar flame speed So = 0.21 m/s and the mass burning flux mo = 0.045 kg/m2s

for a one-dimensional methane-air premixed flame at φ = 0.75. Note that the value

of So is less than the values of SB because of the definition of the flame front in the
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stagnation zone used in this chapter, as described in Section 5.4.1.

Figure 5-6c shows that both ψB and ζ increase with U . The recirculation zone

size (ζ) is a ‘flow effect ’, that is, its size is determined by the reactive flow dynamics.

Although its absolute size is reduced in the presence of a flame as compared to a

non-reactive flow, it monotonically increases with increasing U . For low values of U ,

the figure shows that the recirculation zone almost vanishes. The stand-off distance

results from a combined effect of the flow (recirculation zone size) and combustion

(flame structure and associated displacement speed). It increases monotonically with

U , as ζ increases and the combustion characteristics change. However, the relative

location of the flame base with respect to the stagnation point is not a monotonic

function of U . Initially, at low inlet velocity and when the recirculation zone length

is almost zero, the stand-off distance and the relative location of the flame base

with respect to the stagnation point increase with U . However, as the recirculation

zone starts to grow, the flame moves closer to the stagnation point. I will show

that while the growth of the recirculation zone reduces the heat loss, the flame base

radius of curvature decreases and hence the flame displacement speed is reduced. The

reduction of the displacement speed explains the non-monotonic behavior of mB. A

field visualization of these distances can be seen in Fig. 5-2 where × and o are used

to mark ζ and ψB respectively.

Figure 5-6d shows that similar to ψB, ψT monotonically increases with U (ψT

is the distance of the flame tip). Moreover, the total length of the flame from the

flame base to the flame tip, Lf , grows with U to accommodate the extra mass flow of

reactants. However, Lf does not grow linearly with U because the flame displacement

speed changes along the length of the flame due to stretch. Hence the slopes of Lf ,

ψB and ψT curves are different.

The non-monotonic behavior of the flame displacement speed, as I will show, is

a result of competing impacts of the flame base curvature and the heat loss to the

burner.
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The role of flame base curvature

Figure 5-7a shows that the normalized flame base radius of curvature, γB/D, decreases

as U increases (also seen qualitatively in Fig. 5-6a). Note that γB decreases because

the flame length Lf grows to accommodate a higher reactant mass flow rate and hence

it can be considered as a kinematic effect. Choi and Puri [95] studied the response

of the flame to strain and curvature induced stretch using inverted methane-air and

propane-air flames stabilized on thin ceramic rods, and concluded that positive/neg-

ative curvature decreases/increases the flame displacement speed. This trend is also

well established in the literature [46, 47, 96] for curved flames in various configura-

tions. At higher U , smaller positive radius of curvature of concave (towards products)

flames lowers the flame displacement speed as shown in Fig. 5-7a. As the displace-

ment speed decreases, the flame moves closer to the stagnation point until it finds an

equilibrium position where the flow speed equals the flame displacement speed.

The geometry of the problem establishes conditions in which γB is comparable

to the thickness of the flame at its base, this is especially true at large U . In this

range, γB approaches a critical value, which is constant near blow-off. I discuss flame

blowoff in detail in Section 5.4.3. It is for this reason that Kawamura et al. [39, 46]

experimentally observed a strong relation between blowoff and the flame curvature.

For methane/air flames at 0.7 < φ < 1.1, Kawamura et al. reported a blowoff radius

of curvature of 0.1 < γB < 0.2 mm, see Fig. 5-8. The numerical value of the critical

radius of curvature is in the same range. Mikolaitis [97] showed analytically that there

exists a minimum radius of curvature for strongly curved concave (towards products)

premixed flames; below which a flame can not survive. Similar remarks on a limiting

flame curvature were also made by Echekki and Mungal [98] and Poinsot et al. [99] in

the context of flame displacement speed measurements at the negatively curved flame

tip on a cylindrical slot burner. They interpret the existence of a critical radius of

curvature on the grounds that the flame thickness cannot exceed the value of a radius

of curvature. The limiting radius of curvature for their flame tip was 0.36 mm, which

is in the same range as our numerical value. For the perforated-plate burner, this value
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depends strongly on the equivalence ratio, geometry of the burner as determined by

its height and the distance between neighboring holes, and its thermal conductivity.

Flame curvature, flow non-uniformity (strain) and unsteady flame motion together

determine the stretch imposed on a flame. Under steady conditions analyzed here,

the total stretch at the flame base is characterized by KB = SB/γB − vr,B, (see [47])

where SB/γB is the contribution of the flame base curvature and vr,B = 1
r
∂(rv)
∂r

is the

contribution of the strain at the flame base. Figure 5-7b shows the two individual

contributions at the flame base for different values of U . The curvature and strain

make opposite contributions to the flame stretch for this concave premixed flame

established in an accelerating flow downstream of the stagnation point. The contri-

bution of the strain is relatively small compared to that of the curvature at large U

and hence near blow-off. Also note that at lower values of U , KB is small and thus

flame stretch does not significantly impact the flame displacement speed, although

the impact of heat transfer is significant.
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Figure 5-9: Impact of the upstream heat loss to the burner plate, qp, on the laminar
flame displacement speed, SB at an almost constant flame base curvature. U =
1.3m/s and the thermal conductivity of the burner plate is varied between 0.1W/mK
- 50W/mK to vary qp.
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The role of heat loss to the burner plate

Individual impact of the heat loss to the burner plate on the flame displacement speed

is demonstrated in Fig. 5-9. It shows that, at an almost fixed value of curvature,

heat loss to the burner plate reduces the flame displacement speed. To maintain the

curvature constant, the mean inlet velocity was fixed at U = 1.3m/s. The thermal

conductivity of the burner plate was varied resulting in different standoff distances

and hence different heat loss to the plate. The increasing slope of the curve as qp is

raised shows that the impact of heat loss on the flame displacement speed increases

as qp grows. This result, as will shown in Section 5.4.3, is crucial in understanding

the dynamic stability mechanism for blowoff, contrary to many of the observations in

the literature. It must me noted that approximately 50% increase in qp reduces SB

by 38% whereas the variation in the curvature was less than 8%. While the curvature

exhibits weak dependence on qp, the impact of heat loss to the plate on SB is much

stronger.

Figure 5-10a shows that as U is raised, the flame stabilizes further away from

the burner plate decreasing its temperature and reducing the heat loss to the burner

plate. Furthermore, as the flame moves downstream, Fig. 5-10b shows that the

flame temperature at the base, TB, and the maximum volumetric heat release rate,

ωmax grow as the heat loss is lowered. Thus, at lower U , when the impact of weak

flame stretch is not significant, higher heat loss to the burner plate lowers the flame

displacement speed. This is contrary to the cases at higher U , where the impact of

flame stretch is stronger. This explains the non-monotonic behavior of SB.

Flame base consumption speed and the displacement speed

The consumption speed of a flame is related to the integral of the volumetric heat

release rate. Figure 5-10c shows that the flame base consumption speed, Sc, increases

when U is raised, unlike the non-monotonic trend observed for the displacement speed,

SB. I use the following definition of the flame consumption speed at the flame base,

Sc, which is obtained by integrating the energy equation across the flame, above the
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Figure 5-10: (a) Temperature and the heat flux at the burner plate at z/D = 0 and
r/D = 1; (b) Temperature at the flame base and the maximum volumetric heat release
rate along z/D = 1; (c) Consumption speed of the flame base; (d) Displacement speed
of the flame base and the flame tip for U = 0.5− 2.0 m/s.
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burner plate, along r/D = 1

Sc =

∫∞
0
ω/cp dz

ρu (Tb − Tu)
(5.1)

where ρu is the unburned mixture density, Tu and Tb are the unburned and burned

temperature, respectively. For reference, the corresponding unstretched adiabatic

flame consumption speed of a one-dimensional methane-air premixed flame at φ =

0.75 is Soc = 0.29m/s. Note that the adiabatic flame displacement speed and the adi-

abatic flame consumption speed of an unstretched one-dimensional premixed flame

are equal. Poinsot et al. [99] noted that for near-unity Lewis numbers, only chemical

mechanisms (related to the reaction zone structure) modify the flame consumption

speed, while combined chemical, hydrodynamic and diffusive mechanisms (related to

the aerodynamics of the flow) modify the flame displacement speed. With increasing

U , as the flame moves away from the burner, lower heat loss to the burner plate

raises the flame temperature and the reaction rate (chemical mechanism). This en-

hances both the flame displacement speed and the consumption speed. However,

since curvature does not impact the flame consumption speed, Sc continues to grow

monotonically, whereas curvature dominates SB decreasing its value. Thus, within

the range of conditions investigated here, the chemical mechanism does not play a

significant role in the modification of the displacement speed as compared to the

hydrodynamic and diffusive mechanisms.

Figure 5-10d shows the changes in the displacement speed of the flame tip and the

flame base as U is increased. The shape of the flame base depends on the response of

the overall flame to the flow-field on the reactants side. But at higher U , ST increases

whereas SB decreases with increasing U. Because of that, the tendency of the flame

tip to move upstream whereas the tendency of the base to move downstream or to

blow-off increases with growing U . Thus it is concluded that the stabilization and

blowoff are more critically dependent on the local events at the flame base rather

than the flame tip, even though the flame base structure depends on the overall flame

shape to a certain extent.

Mallens et al. [47] reported constant values of mB for all inlet velocities until
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blow-off occurs. Based on this observation, they concluded that despite of its pres-

ence, flame curvature plays no role in flame blowoff, contrary to the conclusions of

Kawamura et al. [39, 46]. Mallens et al. postulated that the streamtube contraction

(fluid dynamic effect) of the strain influences the stabilization mechanism and not the

change in flame displacement speed due to net stretch. Results reported by Mallens

et al. could not be explained using the theory of stretched flames in which the flame

displacement speed undergoes significant changes in the presence of curvature induced

stretch [93, 95, 100, 101]. My results, which are based on a model that incorporates

detailed chemical kinetics and heat exchange between the flame and the plate, show

that mB varies with U , following the changes in SB although the percentage change is

not as high. Moreover, I show that the flame base curvature contributes significantly

to its stretch and hence to SB.

To summarize, I propose the following scenario for flame stabilization on a perfo-

rated plate. In the lower range of U , as U increases, ζ grows slowly while remaining

very small, qp and Tp decrease, resulting in stronger flame, higher TB and higher values

of SB, and the flame finds an equilibrium position further downstream of the stagna-

tion point where the flow velocity is relatively high. On the other hand, in the higher

range of U , as U increases, ζ increases more readily and hence decreasing the heat loss

to the plate, γB decreases to accommodate the growing flame length and decreasing

SB, hence moving the flame closer to the stagnation point. These two competing

effects at low and high values of U result in the observed non-monotonic behavior of

SB. A stronger/weaker flame with higher/lower SB stabilizes away from/closer to the

stagnation point.

5.4.3 Blowoff

As U increases, the reduction of the displacement speed associated with the increasing

curvature does not continue forever. Instead, at a critical radius of curvature, the

flame moves downstream continuously, i.e. blow-off occurs. Blowoff is a critical

phenomenon, like flashback and quenching, that occur when a certain condition is

satisfied. I illustrate this condition in the next section.
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Dynamic stability mechanism
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Figure 5-11: Mechanism for dynamic stability at the flame base. (a) Stable case,
SB = uB and dSB

dz
> (du

dz
)B; (b) Critical case for blow-off, SB = uB and dSB

dz
= (du

dz
)B;

(c) Unstable case, SB = uB and dSB

dz
< (du

dz
)B; and (d) Schematic diagram of a U-

shaped flame base downstream of the plate of thickness d.

For a stable flame, its displacement speed at every point must be equal to the

flow velocity normal to the flame. At the flame base SB = uB. However, this is a

necessary but not a sufficient condition for flame stabilization. For dynamic stability,

an additional condition that dSB

dz
> (du

dz
)B must also be satisfied. This was discussed in

the context of bluff-body flames in Chapter 4. Note that the z co-ordinate is normal to

the flame base. This hypothesis was proposed in [46] but no experimental or alternate

evidence was provided. Further, although the role of curvature was highlighted in [46],

the simultaneous role of heat loss was ignored. Figure 5-11 shows a schematic diagram

illustrating this condition for dynamic stability at the flame base. For all the three
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cases in the figure, SB = uB but the relative magnitude of the velocity gradient and

the displacement speed gradient change. At a fixed U , dSB

dz
> 0 is always true for a

stable flame because of the impact of heat loss to the burner plate on SB (higher/lower

heat loss decreases/increases the flame displacement speed). This was shown in Fig.

5-9 where the impact of qp on the flame displacement speed at an almost constant

curvature or equivalently constant U was discussed. Further the value of dSB

dz
changes

with U as the flame standoff distance changes. I also note that (du
dz

)B > 0 is also

always true because the flame stabilizes in an accelerating flow on the top of the

burner plate. In Fig. 5-11a, dSB

dz
> (du

dz
)B. If a small convective disturbance moves

the flame downstream/upstream, the flame displacement speed increases/decreases

more than the flow velocity bringing it back to the original location and a stable

flame is sustained. This is contrary to the case shown in Fig. 5-11c. Note that Fig.

5-11b shows the critical case when dSB

dz
= (du

dz
)B, at the onset of blowoff. Figure 5-11

is true not just for a 1D planar flame but also for a flame with finite curvature.
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Figure 5-12: Streamwise velocity gradient, uz,B or (du
dz

)B at the flame base for U =

0.5− 2.0 m/s; (b) Blowoff mechanism as dSB

dz
approaches (du

dz
)B

I indirectly validate the hypothesis, illustrated in Fig. 5-11, using my numerical

results. Figure 5-12a shows from my simulations that the flow velocity gradient

(du
dz

)B > 0 grows with increasing mean inlet velocity U . At a fixed U , if I convectively

147



disturb the flame to move slightly away from/towards the plate, the heat loss to the

burner plate decreases/increases. The curvature remains fixed as the incoming mass

flow accommodated by the flame is constant. This can be alternatively visualized

as the flame convectively moving up or down as a whole entity in the vicinity of its

stabilization point in the process of locating it before the stable solution is achieved.

The corresponding change in the displacement speed will be higher/lower when qp is

large/small. This was shown in Fig. 5-9 which illustrated that the gradient in SB is

smaller for lower qp, when the latter was varied at a constant curvature. Equivalently,

the impact of heat loss on lowering the flame displacement speed becomes weaker when

U increases (or heat loss decreases). As a result, the magnitude of dSB

dz
is expected to

decrease with growing U , even for curved flames. Thus as U increases (du
dz

)B grows

and dSB

dz
diminishes gradually, taking the situation from being dynamically stable as

shown in Fig. 5-11a to being dynamically unstable as shown in Fig. 5-11b, eventually

leading to blow-off (see Fig. 5-12b for a schematic illustration). It must be noted

that the quantity dSB

dz
makes physical sense only at a given U and is hence difficult to

numerically measure unless transient simulations are performed near the stabilization

point. There exists a unique dSB

dz
for every U . I assumed that the flame blowoff is a

convective phenomena in this analysis (curvature remains fixed as the flame is locating

the stabilization point at a given U), which is valid as will be shown in Section 5.4.3.

Furthermore, at higher U , the results also show that the radius of curvature is almost

constant or a critical value as discussed before.

Figure 5-13 shows additional support for the hypothesis illustrated in Figs. 5-11

and 5-12, where the flame base displacement speed as a function of the flame base

location is shown during an unsteady simulation (commonly referred to as phase-

portrait). To obtain (a), (b) and (c), steady solutions corresponding to U = 0.8 m/s,

U = 1.0 m/s and U = 1.3 m/s respectively are instantaneously perturbed by a sudden

increase in the inlet velocity by 10%. This perturbs the flame convectively and the

flame executes an oscillation before finding a new stable location. Since the flame is

in motion, SB is computed by tracking the base of the flame contour at successive

times in the unsteady simulation and adding to it the flow velocity at the base of the
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contour, uB. For a stationary flame, SB = uB, because the contour velocity is zero.

A dynamically stable physical system executes a converging spiral phase-portrait in

the phase-plane. Thus, the converging spirals in Fig. 5-13 indicate that the stability

mechanism illustrated in Fig. 5-11 is valid. Figure 5-13d shows the phase-portrait of

the unstable case, where both SB and ψB increase as blow-off progresses. Additional

details of the blowoff process are discussed in the next section.
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Figure 5-13: Flame base displacement speed versus the flame base location after a
small convective perturbation is added to the inlet velocity. (a) U = 0.88 m/s, (b)
U = 1.1 m/s and (c) U = 1.43 m/s correspond to statically stable flame; (d) U = 2.3
m/s corresponds to flame blow-off

During blow-off

Figure 5-14 shows a visualization of the streamlines and the volumetric heat release

rate contours during the process of flame blowoff which, for the case analyzed, occurs
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at U = 2.2 m/s. During blowoff, the results show that the recirculation region grows

with time while the inlet flow velocity is fixed. Furthermore, as the flame moves

away from the plate, the plate temperature decreases, and the flame length gradually

decreases. The time history of different relevant physical quantities is shown in Fig.

5-15. The flame stand-off distance, recirculation zone size and the relative location

of the flame with respect to the stagnation point all increase during this period. It is

interesting to see that initially they change only gradually. The impact on the radius

of curvature is especially minimal when compared to the impact on the heat loss,

confirming that the blowoff process initiates in a convective manner as discussed in

the dynamic stability mechanism. However as the burner plate cools down (Tp and

qp curves), the blowoff process, as manifested by the increase in stand-off distance,

accelerates. During blowoff, the flame base displacement speed, SB, is less than the

flow speed, uB. This confirms the blowoff hypothesis illustrated in Fig. 5-11, that

the flame is unable to find a stable location because at every location SB < uB.

Since the flame is in motion, SB is computed by tracking the base of the flame

contour at successive times in the unsteady simulation and adding to it the flow

velocity at the base of the contour, uB. The difference in SB and uB is very small

in the initial stages of blowoff and keeps increasing as the blowoff process continues,

showing flame acceleration. During blowoff, as heat loss decreases and SB increases,

the radius of curvature increases slightly, further contributing to raising SB. The

flame displacement speed increases as the effect of curvature decreases rapidly, thus

moving the flame away from the stagnation point. It is interesting to note that

the acceleration of the growth of the stand-off distance coincides with the rise in γB,

further supporting the contribution of the flame base curvature to the flame dynamics

mechanism. The recirculation zone continues to grow until it reaches values close to

those corresponding to what is observed under non-reactive flow conditions. Thus,

an interesting feedback mechanism between the growing size of the recirculation zone

and the cooling of the burner plate is seen, which determines the flame speed during

blowoff.
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5.5 Conclusions

In this chapter, I investigate the stabilization and blow-off mechanisms of a periodic

array of lean premixed flames downstream of a heat conducting perforated plate using

two-dimensional numerical simulations. I use a detailed chemical kinetics mechanism

for a methane-air mixture for the analysis. The results show that the flame stabilizes

with its base located close to the stagnation point in the accelerating flow above the

burner plate. Significant thermal and aerodynamic interaction between the flame and

its environment are observed, manifested in the heat exchange with the burner plate,

with the associated rise of the plate temperature and drop in the flame temperature,

and the flow non-uniformity. Lower heat loss (increases flame displacement speed)

and smaller radius of curvature (decreases flame displacement speed) have opposing

impact on the flame displacement speed when imposed independently on the flame.

These effects are coupled in the configuration under investigation.

The flame displacement speed at its base varies non-monotonically with the mean

inlet velocity of the reactants. In the lower range, as the mean inlet velocity of the

reactants increases, the recirculation zone is virtually non existent. The flame stand-

off distance increases and the heat transfer to the burner plate decreases strengthening

the flame and increasing its displacement speed. This causes the flame to move away

from the stagnation point. As the mean velocity increases further, the recirculation

zone grows and the stagnation point moves downstream. The radius of curvature of

the flame base decreases to accommodate growing but confined flame length. This

weakens the flame, lowering the displacement speed at the base and bringing it closer

to the stagnation point.

At higher mean inlet velocity, the radius of curvature of the flame base approaches

a critical value limited by a physical minimum radius which is comparable to the flame

thickness. This curvature remains almost constant until the flame blows off. The total

flame stretch is dominated by the curvature of the flame base near blow-off. Thus,

my results ascertain that the ‘critical velocity gradient theory’ [40], which ignores the

presence of strong positive curvature, cannot explain blowoff in this configuration.
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I show that heat loss to the burner plate is critical in providing a mechanism for

dynamic stability of the flame, under the conditions explored in this chapter. This

was not the case for bluff-body stabilized flames (Chapter 4) which also undergoes

blowoff when the dynamic stability criterion fails. At its stabilization point, the

flame displacement speed is equal to the flow speed; and the gradient normal to the

flame base of the former is greater than the corresponding gradient of the latter.

Near blowoff, as U is increased, the flame displacement speed gradient is reduced

and the flow speed gradient grows. The flame blows off when the two values are

equal. During blowoff, the recirculation zone size, flame stand-off distance, and the

flame displacement speed increases and the burner plate cools down. The change in

the radius of curvature of the flame base is negligible during the initial phase when

the blowoff starts, showing that the flame blows off convectively. As the rate of the

burner plate cooling increases, the blowoff process accelerates. There is a strong

feedback between the growing recirculation zone and the cooling burner plate, which

determines the flame speed during blowoff.
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Chapter 6

Modeling dynamic response of a

premixed flame stabilized on a

perforated-plate

6.1 Overview

The dynamic response of a premixed flame stabilized on a heat-conducting perforated

plate depends critically on their coupled thermal interaction, which was discussed

in Chapter 5. The objective of this chapter is to develop an analytical model to

capture this coupling. A critical step in the development is the hypothesis presented

in Section 6.2.2 for model closure. This hypothesis is based on the observations of

flame stabilization using the numerical simulations discussed in Chapter 5, showing

the powerful applications of high-fidelity numerical simulations.

The model developed in this chapter predicts the mean flame base standoff dis-

tance; the flame base area, curvature and speed; and the burner plate temperature

given the operating conditions; the mean velocity, temperature and equivalence ratio

of the reactants; thermal conductivity and the perforation ratio of the burner. The

dynamic response is typically characterized by the flame transfer function (FTF). A

linear FTF is defined as TF(f) =
Q′f/Qf

U ′/U
, where f is the frequency of the velocity per-
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Figure 6-1: (a) Schematic illustration of the analytical domain with a thick flame
holder to use fin approximation ; (b) Top view of the burner shown in part (a) ;
(c) Isothermal plate illustration to model a thin flame holder, to compare the flame
transfer function model with the experimental results in [102]

.

turbations (U ′) and Qf is the net heat release rate. My model is combined with the

flame transfer function (FTF) model described in [52] to predict the dynamic response

of the flame to velocity perturbations. I show that modeling the thermal coupling

between the flame and the burner, while accounting for the two-dimensionality of

the former, is critical to predicting the dynamic response characteristics such as the

overshoot in the gain curve (resonant condition) and the phase delay. Good agree-

ment with the numerical and experimental results is demonstrated over a range of

conditions.

6.2 Governing Equations

Figure 6-1a schematically illustrates a two-dimensional slice of an axis-symmetric

bell-shaped premixed flame stabilized on a heat conducting plate. Figure 6-1b shows

a top-view of the perforated-plate burner. A co-ordinate system r − x is used. The

control volume under consideration is shaded in Fig. 6-1a. It includes the solid burner
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region, additionally marked by hashed lines. The part of the flame above the burner

plate and within the shaded region in Fig. 6-1a is referred to here as the flame base.

In this section, I develop the governing equations to predict the steady-state physical

quantities given the mean inlet velocity, U , through inner hole of perforated-plate;

equivalence ratio φ; thermal conductivity of the plate (or flame-holder) λfh and the

perforation ratio κ = Ro/Ri. Ro is the outer radius of the domain and Ri is the

inner hole radius. U is assumed to be constant across 0 < r < Ri. Tu, ρu are the

temperature and the density of the unburnt reactants.

δT is the flame base standoff distance. I assume that the temperature at the

flame base (where the reaction rate is zero) is the burnt gas temperature, Tb. This

assumption over-estimates the flame base temperature. The actual value at that

location is lower due to factors such as incomplete oxidation of CO and heat losses

to the surroundings. There is typically a small recirculation zone region within δT

that plays an important role in the overall stability of the flame as discussed in detail

in Chapter 5. δR is the reaction zone thickness where the reaction rate is finite and

high, which lies immediately above the recirculation zone. For modeling simplicity, I

assume that δT and δR are the mean characteristic distances of the entire flame base.

This is an approximation because the flame base is often highly curved, with its curved

area, AF , greater than the flame holder area, Afh = π(R2
o − R2

i ). The thickness of

the plate is denoted by L. The specific heat, cp,u, and the thermal conductivity, λu,

of the mixture are assumed constant throughout the domain at their unburnt values.

The outer (due to periodicity) and the inner streamwise edges of the shaded

domain in Fig. 6-1a are modeled as adiabatic slip walls. This is chosen to separate

the flame base region from the flame tip region, such that A∗i /πR
2
i = Afh/πR

2
o. A

∗
i is

the cross-sectional area of the shaded region of the inner hole (see Fig. 6-1b). This

relation suggests that at each streamwise location of the control volume, the fraction

of the total cross-sectional area occupied by the streamtube under consideration is

the same. The flame base speed is denoted by SF . Mass conservation in the shaded

control volume is

ρuUA
∗
i = ρuSFAF (6.1)
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I assume that the density at the unburnt side of the reaction front (where the flame

speed SF is to be estimated) is ρu for simplicity. The actual value is slightly lower due

to the preheating via heat recuperation from the burner, as discussed later. Similar to

δT and δR, SF is also an average over the curved flame base. The energy conservation,

assuming an overall adiabatic system, is

ρuUA
∗
i cp,u(Tb − Tu) = w̄f∆HR,fδRAF (6.2)

where w̄f is the average volumetric fuel consumption rate and ∆HR,f is the heat of

reaction of the fuel (methane). The overall adiabatic assumption is consistent the

numerical simulations in Chapter 5. However, the burner plate may be externally

cooled as discussed in [51, 102]. Including this non-adiabaticity is a natural extension

of my model; however the focus of this chapter is to see the critical impact of the in-

ternal parameters of the system alone on the physical quantities of interest. w̄f∆HR,f

is estimated using our one-dimensional simulations in [91]. The consumption speed

of a flame, Sc, defined on the basis of the rate of energy consumption, is used because

it does not depend significantly on the flame curvature [99]. For a given φ and Tu;

the 1D flame thickness δoR, Tb and the adiabatic laminar flame speed SoL (equal to its

consumption speed for one-dimensional adiabatic unstretched flames),

w̄f∆HR,f =
ρuS

o
Lcp,u(Tb − Tu)

δoR
(6.3)

I assume that the temperature increases linearly from Tfh,0 to Tb in the region above

the flame-holder, where Tfh,0 is the plate surface temperature. Hence the average

heat flux on the top of the flame-holder

q̇′′fh =
λu(Tb − Tfh,0)

δT
(6.4)

The heat transfer to the burner plate’s top surface re-enters into the reactants from
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the inner-hole wall. The balance of this recirculated heat is

q̇′′fhAfh = ρuUA
∗
i cp,u(Ti,0 − Tu) (6.5)

where Ti,0 is the mean temperature of the reactants exiting the inner hole. The flame

base geometry is assumed to be parabolic with its axis as the periodic outer edge of

the domain and curvature γ = d2xF
dr′2

at the tip of the parabola (where r′ = Ro − r).

The area of the flame base is larger than Afh for positively curved (concave towards

products side) flame base. I assume a circular burner surface area for simplicity. The

flame base above the burner plate can then be represented as dxF
dr′

= −γr′ and its base

area is approximately

AF =

Ro∫
Ri

2π(Ro − r)
√

1 + γ2(Ro − r)2dr (6.6)

Due to double-periodicity, the perforations and the flames form an artificial ring-like

pattern. The integration in Eq. 6.6 to estimate the curved flame area, can also be

performed along a circle with an origin at inner axis rather than at the outer periodic

edge. I found that the results do not change with this modification. High activation

energy asymptotics [103] is used to approximate the relative size of the reaction zone

thickness to the flame standoff distance, which is equivalent to a thermal thickness

of the flame base. For chemical reaction with overall reaction order n, Zeldovich

number Z = Ta
T 2
b

(Tb − Tu) (Ta is the activation temperature of the fuel) and the

ignition temperature Tig,
Tb − Tig
Tb − Tu

=
n

Z
(6.7)

Ignition corresponds to the start of the reaction zone. Hence geometrical constraint

results in
Tb − Tig
Tb − Tfh,0

=
δR
δT

(6.8)
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6.2.1 Estimating Ti,0 and Tfh,0

The governing equations that determine the thermal coupling between the plate and

the fluid depend on the burner geometry and the natural thermal boundary condi-

tions. There is a temperature gradient within the plate if the Biot number, based on

the plate thickness, hcL/λfh > 0.2 , where hc is a convective heat transfer coefficient.

The resulting temperature profile within the burner plate and the bulk temperature

of the fluid in the inner hole is denoted by Tfh,x and Ti,x respectively. The subscripts

fh and i denotes the flame-holder (burner plate) and the inner hole respectively; and

x denotes their variation in that direction. The corresponding burner surface temper-

ature and the exit hole temperature are given by Tfh,0 and Ti,0, discussed in Case A.

Alternatively a thin plate, with a small Biot number (illustrated in Fig. 6-1c) used in

the experiments in [51, 102], can be modeled as being isothermal as discussed in Case

B. In both the cases, the Biot number based on the characteristic radial dimension,

hc(Ro−Ri)/λu < 0.2, for the typical burner geometries used in this chapter and hence

I neglect any radial variation in Ti and Tfh.

Case A: Fin approximation for a thick plate

There is a laminar flow through the inner hole of the perforated plate. An average

Nusselt number for the convective heat transfer ≈ 4 [104], resulting in hc = 2λu
Ri

.

Similar to fin analysis [104], the governing equation within the flame-holder is

λfh
d2Tfh(x)

dx2
= 2πRihc(Tfh(x)− Ti(x)) (6.9)

with the boundary conditions as Tfh(x = 0) = Tfh,0 and
dTfh(x)

dx
(x = L) = 0. Similarly,

the governing equation for the bulk motion of the fluid within the hole is

ρuUA
∗
i cp,u

dTi(x)

dx
= −2πRihc(Tfh(x)− Ti(x)) (6.10)

with the boundary condition at the inlet of the hole as Ti(x = L) = Tu. The ordinary

differential Eqs. 6.9 and 6.10 are simultaneously solved numerically to obtain Tfh(x)
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and Ti(x). Using the solution, I obtain the exit hole bulk temperature of the fluid

Ti,0 = Ti(x = 0) (6.11)

Case B: Isothermal thin plate

In this case, the natural boundary condition corresponds to the heat being convected

upstream from the thin perforated plate, illustrated in Fig. 6-1c. The average con-

vective heat transfer coefficient, hpp can be estimated using the Nusselt number cor-

relation for convective heat transfer from an isothermal perforated plate to upstream

impinging reactants [105],

hpp = 0.881
λu
L∗

(
2RiU

νu
)0.476Pr

1
3 (6.12)

where L∗ = Afh/(2Ro). I take Pr = 0.69 and νu = 1.5× 10−6m2/s. The heat trans-

ferred upstream from the isothermal perforated-plate increases the sensible enthalpy

of the incoming reactants such that

ρuUA
∗
i cp,u(Ti,0 − Tu) = hppAfh(Tfh,0 − Tu) (6.13)

In both the cases, it is assumed that the heat lost to the environment is negligible.

This may not be the case for externally cooled plate, as in the experiments in [51, 102].

6.2.2 Hypothesis for model closure

In the governing equations, SF is an average flame base speed. The local flame struc-

ture above the flame holder, at the curved base, was discussed in detail in Chapter

5. I showed that the unburnt side of the reaction front is immediately above the

stagnation point of the recirculation zone over the burner plate. Hence, I assume

here that the edge of the parabolic flame base has a zero local flame displacement

speed. The structure of the flame wing resembles that of a one-dimensional flame as

the influence of the burner wall is reduced. Thus I assume a linear decrease of the

161



flame speed from SoL at the inner edge to zero at the outer periodic edge of the shaded

region in Fig. 6-1a. The area averaged flame speed is then

SF =
1

AF

Ro∫
Ri

SoL(Ro − r)
Ro −Ri

2πr
√

1 + γ2(Ro − r)2dr (6.14)

Depending on the boundary conditions, Eqs. 6.1-6.11 and 6.14 or Eqs. 6.1-6.8 and

6.12-6.14 form a complete set of nonlinear equations. These are solved simultaneously

to obtain the physical quantities of interest δT , δR, Tfh,0, Ti,0, γ, SF , AF and q̇′′fh, given

the operating parameters φ, U , κ, λfh, Tu.

6.2.3 Linear flame transfer function model

Altay et al. [52] developed an analytical model to predict FTFs by assuming a

series of plane and conical flame fronts above the perforated-plate to account for

two-dimensionality. The kinematics of 2D flame surfaces were modeled, extending

the assumptions of Fleifil et al.[106] to couple the flame surface kinematics equation

with the heat loss to the burner plate. I improved this model by coupling the above

developed steady-state model. The major changes are highlighted below1.

The flame speed above the burner plate (S̄u in [52]), which was assumed to be SoL,

is modified to SF . The burnt gas temperature (T̄b in [52]) was assumed to be a free

parameter to account for non-adiabaticity. This is changed to the adiabatic value

since I have developed an overall adiabatic model. Tfh,0 was accounted for in the

form of the density weighted flame stand off distance, ψ̄fp, which was estimated using

Rook’s logarithmic model in [16]. This is replaced here by the average temperature

weighted flame standoff distance,
ψ̄fp

δ
= 1.5 δT

δ
Tu
Tb

. δ = λu
rhoucp,uS0

L
is a reference thermal

thickness of the flame. The factor of 1.5 is used because it provided a reasonable

agreement with the FTFs from my previous numerical simulations, discussed in Sec.

6.3.

1Nomenclature in [52]: Ts = Tfh,0, Aopen = πR2
i , Au = πR2

o and Ap = Afh
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Figure 6-2: Mean temperature profiles, Tfh(x) and Ti(x) , validation of the model
using the two-dimensional steady-state simulations described in [90] for the case:
κ = 1, U = 1.3 m/s

6.3 Results and Discussions

The discussions in this section are divided into three parts. First, the steady-state

model described in this chapter is validated using my numerical simulations from [90]

and Chapter 5. The results of the steady-state model coupled with the FTF model

described in Section 6.2.3 are then compared to the numerical simulations in [53] at the

same operating conditions. Lastly, I compare my model results to the experimentally

obtained FTFs from [102]. The parameters that are kept constant throughout the

analysis are, Ri = 0.5 mm; the plate thickness, L =13.2 mm (except in Section 6.3.3

where the plate is very thin), Tu= 300 K, ρu = 1.15 kg/m3, cp,u = 1059.4 J/kgK,

λu = 0.0275 W/mK, lower heating value of methane LHV = 50.1 MJ/kg, Ta =

24400 K and order of reaction n = 1.9. SoL, δoR and Tb depend on φ and Tu and the

values are determined using our 1D simulations in [91]
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Figure 6-3: Plate temperature and the flame standoff distance predicted using the
model for burner with λfh = 1.5 W/mK as function of the mean inlet velocity at differ-
ent equivalence ratio and perforation ratio. The average plate temperature computed
from simulations in [53] is also shown for the case with φ = 0.75, λfh = 1.5 W/mK
and κ = 2

6.3.1 Steady-state Model Validation and Verification

Fig. 6-2 shows good agreements for Ti,x and Tfh,x obtained using the model and simu-

lations at different operating conditions. The natural boundary conditions discussed

in Sec. 6.2.1 Case A are used in the model. The temperature field from the simu-

lations was averaged in the radial direction to obtain a variation with x. The plate

temperature increases as φ and κ grow. Moreover, the standoff distance predicted by

the model is of the same order of magnitude as seen in the simulations. The standoff

distance depends on the definition of the flame front. For example, for the case with

U = 1.3 m/s, φ = 0.75 and κ = Ro/Ri = 2, the model predicts δT =1.49 mm and

δR =0.29 mm. This is in close agreement with the values obtained from the simula-

tions for T = 0.9× Tb contour discussed in Chapter 5; δT =1.3 mm and δR =0.4 mm,

computed at the periodic edge of the domain where there flame is the closest to the

burner plate.
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Figure 6-4: FTF comparison with simulations in [53] for the cases with φ = 0.75,
κ = 2 and λfh = 1.5 W/mK

I numerically demonstrated the increase in the flame standoff distance, and de-

crease in the burner temperature as U grows Figs. 5-6 and 5-10 of Chapter 5. In [90]

I showed that δT decreases and Tfh,0 increases as φ or κ were increased at a constant

U . Figure 6-3 shows that all these trends are well captured in the model with the

changing operating (φ, κ, U). It also shows a good agreement in Tfh,0 between the

model and the simulation results for φ = 0.75 and κ = 2 for a wide range of U .

6.3.2 FTF comparison with numerical simulations

In this section, I discuss the impact of the operating conditions on the FTFs obtained

using the model and compare them with the simulations in [53]. Figures 6-4 and 6-5

show the gain and the phase of the response at different operating conditions.

The overall shape of the FTF of such heat conducting perforated-plate burner

are discussed in detail in [51–53]. The model predicts rather well the FTFs in all

the conditions of interest. At low frequencies, as the flame moves away / towards

the burner, its burning velocity increases / decreases, amplifying the flame motion
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at certain frequencies, the gain overshoots unity and exhibits a resonance behavior.

The flame responds weakly to high frequency oscillations (diminishing gain in FTF),

due to quick dissipation of small scale-structures in the flame. There is a time delay

associated with the convection time needed for the reactants to reach the flame base,

τ ∼ δT/SF [53]. Depending on the frequency of the imposed velocity oscillations,

f , the convective time delay results in a phase difference of 2πτf , growing linearly

with frequency as I observe in Fig. 6-4 and 6-5. The resonant frequency is likely to

depend on this time lag, fres ∼ 1/τ ∼ SF/δT . For U = 1.3 m/s, φ = 0.75 and κ = 2,

my model predicts SF/δT ≈ 80 Hz, which is very close to the fres seen in Fig. 6-4.

SF/δT predicts fres reasonably well for all the other cases also. Similar dependency is

noted in [52, 102]. I demonstrated in [53] that the flame-wall interaction is a critical

mechanism which results in the observed resonance, which is completely missed if a

perfectly adiabatic burner plate is assumed. The slope of the phase curve changes

near the resonant frequency, showing that the large amplitude oscillations near the

resonant condition alters the time lag, also observed by Durox et al. [50]. The physical

mechanism of the system’s affinity to certain low frequencies for an under-damped

response is still unclear.

Figures 6-4 and 6-5 show that the low frequency response of the FTF (both in gain

and phase) is captured reasonably well by the model. The resonance frequency shifts

to the right and the phase delay decreases as the plate temperature increases or the

standoff distance decreases, as seen when U changes from 1.3 m/s to 0.8 m/s in Fig.

6-4, and when φ increases from 0.75 to 0.85 in Fig. 6-5. This is also consistent with

the hypothesis that fres ∼ 1/τ ∼ SF/δT . Similar trends are observed when κ increases

from 2 to 3. Thus, the plate temperature and the standoff distance must be accurately

predicted to capture the correct dynamics. In the experimental results in [102], the

resonant frequency increases with U contrary to the results shown here, because of

the additional influence of the external cooling on δT when U (or equivalently SF )

changes. Since fres ∼ SF/δT , the shift in resonant frequency will depend on this

modified thermal boundary condition.

It was shown in [52] that at low frequencies with respect to fres, the contribution
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Figure 6-5: FTF comparison with simulations in [53] for the cases with U = 1.3 m/s,
λfh = 1.5 W/mK

of flame area oscillations to the net heat release rate is weak compared to that of

the burner heat loss oscillations, resulting in the rapid increase in the phase lag.

For f > fres, only flame area oscillations contribute to the net heat release rate

fluctuations, which arise as a result of the inlet velocity fluctuations, saturating the

phase behavior. The model predictions are poor compared to the simulations near

the frequency where the phase saturates; this is the cut-off frequency of my model f ∗.

In all the FTF phase curves obtained using my model, f ∗ ≈ 1.5× fres ∼ 1.5×SF/δT .

f ∗ ≈ 140 Hz for the cases shown in Fig. 6-4. f ∗ is a result of the assumptions of my

analytical model and is not a physical quantity.

Several factors account for the quantitative differences between the predictions in

Figs. 6-4 and 6-5 using the model and in simulations. The dynamic response model

used from [52] does not account for increased flame base area due to curvature. I

also assumed complete adiabaticity, whereas there may be some heat loss to the inner

streamtube which was thermally detached in my assumptions. Lastly, the application

of Rook’s model to the plane front of the flame over the burner in [52] to predict
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φ = 0.75, κ = 2 and U = 1.3 m/s at different thermal conductivities of the burner.
The inserted figure shows gain and phase of FTF as λfh is increased

its burning velocity oscillations is incorrect in strictest sense because it was mainly

developed for one-dimensional flat flames over non-adiabatic porous burners.

Impact of thermal conductivity

Figure 6-6 shows the impact of the plate thermal conductivity on its surface temper-

ature; the gain and phase of the FTFs. The impact quickly saturates with increasing

thermal conductivity as one moves away from a ceramic and other low conductivity

material. The “resonance” behavior of such burners can thus be controlled if the

burner plate is made of low thermal conductivity material. The dependency of the

system dynamics on λfh, including the saturation for high λfh, was also shown by

McIntosh and Clarke in [72] for flat flames stabilized over cooled porous-plug type
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Figure 6-7: FTF comparison with experiments in [102] at different equivalence ratios
for the cases with U = 1.25 m/s and κ = 1.5.

of flame-holders, where they reviewed models determining the flame stand-off dis-

tance and its temperature. The thermal conductivity plays a role in determining

Tfh,0 through Eqs. 6.9 and 6.11 developed for thick plates. This is not the case for

isothermal thin plates as can be seen through Eqs. 6.12-6.13.

6.3.3 FTF comparison with experiments

In this section I show that my model qualitatively predicts the FTFs in [102]. I use an

isothermal plate, which is the natural boundary condition for thin plates (discussed in

Sec. 6.2.1, Case B), since the Biot numbers, hcL/λfh < 0.2 and hc(Ro−Ri)/λfh < 0.2

for thin plates (see schematic illustration in Fig. 6-1c). Figure 6-7 shows a comparison

between the predicted FTF assuming overall adiabaticity and the experimental FTFs

in [102] determined in the presence of external cooling of the plate. I qualitatively

capture the trends of the experiment showing that the non-adiabaticity must be

introduced in the model. Moreover, the amount of external cooling in [102] is likely

to depend on φ, because at high φ the flame is closer to the plate, increasing the plate
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temperature, which will likely increase its non-adiabaticity.

The FTFs depends on the accurate estimation of Tfh,0 and δT . These quantities are

coupled and their relationship will be strongly influenced when there is an additional

external control over the thermal boundary conditions of the system, such as external

cooling of the burner plate. This is a major reason that some trends of the FTFs in

[102] were reported to be different from those predicted in [53]. The secondary peak,

seen at high frequencies (around 500 Hz) in the experimental results in [102], are not

reproduced. This secondary peak is also missing in my numerical simulations [53],

although a finite gain at high frequencies is predicted due to the detailed length scale

resolution of the flame structure. This should be investigated in the future work in

this area.

6.4 Conclusions

A coupled analytical model for perforated-plate stabilized flames has been developed

to predict the burner surface temperature, flame standoff distance, flame base speed,

area and curvature given the operating conditions. I validated the model using my

detailed numerical simulations data from Chapter 5 and my previous research thesis

[90]. The mean flame standoff distance and the flame base speed are used as inputs to

the linear flame transfer function model described in [52]. The two models are coupled

and used to predict the linearized dynamic response of the flame to velocity perturba-

tions. Under-damped oscillations resulting in gain overshooting unity (resonance) and

the phase lag behavior are recovered. The resonant frequency, fres ∼ SF/δT , depends

on the thermal coupling between the flame and the heat loss to the burner surface.

This coupling manifests itself in the burner surface temperature and the flame stand-

off distance. Thus models used to predict such flame dynamics must capture their

dependency. The FTF model used in this chapter resolves only the large length-scales

of the system; as a result high frequency response, beyond the model cut-off frequency

f ∗, is not accurately predicted. For f < f ∗, the FTFs are in good agreement with my

numerical simulations presented in [53], with all the trends predicted correctly. By
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changing the thermal boundary conditions to match the experiments in [102], good

qualitative predictions are also achieved showing that non-adiabaticity, to account for

heat losses to the environment, needs to be incorporated in the model. The flames are

modeled as a series of conical flame front over the holes and plane flame fronts above

the burner in the FTF model in [52]. The dynamic response of the plane flame-front

was predicted using the Rook’s model developed for 1D flat flames above a porous

burner in [15]. This mismatch is a limitation in my FTF model, which needs to be

addressed. A mechanistic understanding of the resonance behavior is still unclear and

must be investigated in more detail in future research.
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Chapter 7

Advanced numerical developments

7.1 Overview

I presented a second-order buffer zone immersed boundary method for rectangular

solid objects in Chapter 2 and demonstrated its application to flame-stabilization and

blow-off mechanisms in Chapters 3-5. The immersed solid object in that second-order

development was restricted to grid conforming rectangular or block-rectangular (T-

shaped, L-shaped) geometries . An advanced development must capture the effects of

complex geometries, with smooth boundaries cutting across grid-cells. However, this

is a very challenging task especially in reacting flows. The current state-of-the-art

immersed boundary methods capable of this are restricted to non-reacting flows. In

this chapter, as an intermediate step, I discuss the development of a first-order method

incorporating grid-conforming stair-stepped geometry and the surrounding reacting

flow. I will also show the three-dimensional code development for “fluid-only” domain

coupling the SAMR framework with the semi-implicit projection method.

7.2 Arbitrary shaped stair-stepped immersed solid

The buffer zone immersed boundary method discussed in Section 2.3.3 is simplified

for a stair-stepped solid object illustrated in Fig. 7-1(a). Stair-step treatment is

a trade-off between the order of accuracy and the range of applicability in terms
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of flame-holder geometry. For several practical problems at small scales, such as

combustion and gasification of coal particles, micro-scale liquid fuel droplet burning,

micro-fluidic particle transport, the local Reynolds number is sufficiently low to allow

direct numerical simulation (DNS) in the laminar regime. If the boundary layers

are fully resolved, a first order-accurate method can give adequate accuracy, while

providing substantial ease of implementation.

7.2.1 Numerical method

(a) (b)

Figure 7-1: (a) Typical stair-stepped circle on a Cartesian mesh (b) Schematic
illustration of 4 cases: (left to right) a solid domain cell (marked by center box
s) surrounded by all solid cells, by 1 fluid cell (marked as f) , by 2 fluid cells and by
3 fluid cells.

For an overall first-order accurate solution, one layer of buffer zone for the species

mass fractions is constructed using a finite-volume approach, unlike the three-celled

layer as discussed in Section 2.3.3 which was based on a finite difference approach.

The no-penetration of species is imposed by enforcing a zero-net flux through the

solid cell immediately next to the solid-fluid boundary. Each solid domain cell is

tagged based on the number of fluid and solid neighbors around it, see Fig. 7-1(b)

for a schematic. If all its neighbors belong to the solid object, then that cell is tagged

as an embedded cell (completely within the solid) and is not included in the single-

cell wide buffer layer. All the other solid cells are included in the buffer zone. This

single-celled buffer layer inside the solid is then filled cell-by-cell by enforcing a net

zero flux through it. For two-dimensions,
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4∑
k=1

∂Yi
∂nk

δsf,k = 0 (7.1)

where k represents the four faces of each solid cell with the normal direction nk

pointing in the positive x or y co-ordinate directions, δsf,k is the Kroneckor delta

which is 1 if the face k is a solid-fluid boundary and 0 otherwise. The derivative

(face-centered because of the staggered arrangement) is then computed using the

second-order stencil on the cell-centered mass-fractions such that

∂Yi
∂x

=
Yi,f − Y−1

xi,f − x−1

(7.2)

∂Yi
∂y

=
Yi,f − Y−1

yi,f − y−1

(7.3)

where Yi,f is the species-mass fraction in the fluid cell, Y−1 is the value of the

buffer cell. Using the above equations, the single-celled buffer layer is created inside

the solid zone that imposes the no-penetration boundary conditions for the species at

the immersed boundaries. This is constructed for each species at all the levels of the

SAMR grid and at every substep of the multistage RKC integration of the scalar field.

Dual buffer zones for temperature matching conditions as discussed in Section 2.3.3

are not required since high order derivative stencils are typically first-order accurate

already when the thermal conductivity jumps sharply across a grid cell. The thermal

conductivity jump is accounted using the binary marker function.

7.2.2 Verification of the first order construction

In this section, I show the verification of the methodology discussed above. The con-

fined rectangular bluff-body, discussed in Chapters 3 and 4, is revisited. I simulated an

unsteady non-reacting isothermal flow using both the second order method discussed

in Chapter 2 and the stair-stepped approach presented above. The Reynolds number

Red = 100 was chosen and the rectangular bluff-body was inserted instantaneously in

a channel flow. A steady recirculation zone develops before unsteady vortex shedding
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begins. The rate of growth of the recirculation zone length (non-dimensionalized by

the width of the rectangular cylinder d) during the steady-transient shown in Figure

7-2 using both the methods. The stair-stepped method discussed here accurately

predicts this growth, verifying the numerical construction and its implementation in

the code. The time is non-dimensionalized by t∗ = tU/d, where U is the mean inlet

velocity.
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Figure 7-2: Comparison of the recirculation zone growth with time for an impulsively
started channel-confined cold flow around a rectangular cylinder at Red = 100, for
a blockage ratio d/H = 0.2 using the second order numerical method developed in
Chapter 2 and the first order stair-stepped method developed in this chapter.

7.2.3 Code validation using a confined circular cylinder in a

non-reacting flow

I used a two-dimensional stair-stepped solid circular cylinder and obtained steady-

state using the above described methodology. The flow does not shed vortices at the

Reynolds numbers investigated. Comparison of the recirculation zone length (non-
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dimensionalized by the diameter of the circular cylinder d) in a steady non-reacting

flow across a confined circular cylinder with results of Chen et al. [107] is shown in

Figure 7-3. The Reynolds number was based on the channel height for consistency

with [107]. A good agreement is seen validating the solution obtained using the

stair-stepped code.
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Figure 7-3: Comparison of the steady-state recirculation zone size for a channel-
confined cold flow around a circular cylinder at different ReH, for a blockage ratio
d/H = 0.2 using results of Chen et al. [107].

7.2.4 Premixed flame stabilized on a confined circular bluff-

body

A reacting flow simulation for a flow around the confined circular cylinder is shown

in Figure 7-4 at Red = 1000 for a blockage ratio d/H = 0.2. The domain sizes is

the same as discussed in Chapters 3 and 4, except the bluff-body shape is a stair-

stepped circle. The single-step chemical kinetics mechanism described in Section 2.5.5

was used for this simulation1. Equivalence ratio of the methane-air reactants at in-

flow was chosen to be φ = 0.8. The black rectangles on the temperature contours

1The tool is flexible to use a detail chemical kinetics model as well
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Figure 7-4: (top) Temperature contours with overlaid fine adaptive patches and (bot-
tom) the fuel contours with overlaid streamlines for a reacting flow at equivalence
ratio φ = 0.8 around a confined circular cylinder at a flow Red = 1000 for a blockage
ratio d/H = 0.2.

mark the fine adaptive mesh patches. The streamlines are overlaid on the fuel con-

tours. The flow separates at some downstream location on the circular cylinder. The

temperature contours show the conjugate heat exchange between the solid circular

body and the flow. The flame was allowed to naturally anchor near the wall and

no forced anchoring condition was enforced as discussed before. The corresponding

non-reacting isothermal flow sheds vortices in the von Karman regime, like the rect-

angular cylinder counterpart. This vortex shedding is shown by the non-dimensional

vorticity contours in Fig. 7-5. The combustion heat-release made the unsteady flow

symmetric and steady as discussed in Section 3.2.1.

Figure 7-6 shows a comparison between the reacting flow simulations using a

circular and a rectangular bluff-body burner, both using single-step chemical kinetics.

The temperature contours with overlaid streamlines are plotted. The diameter of the

circular cylinder and the width of the rectangular cylinder were kept the same in

this simulation, thereby keeping the Reynolds number based on d the same for both

the cases. The circular cylinder was observed to have a smaller recirculation zone
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Figure 7-5: Non-dimensional vorticity contours (by its maximum value in the domain)
for a non-reacting cold flow around a confined circular cylinder at a flow Red = 1000
for a blockage ratio d/H = 0.2
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Figure 7-6: Temperature contours with overlaid streamlines for a reacting flow at
equivalence ratio φ = 0.8 around a confined (top) circular and (bottom) rectangular
cylinder at a flow Red = 1000 for a blockage ratio d/H = 0.2.

length of products, because of the relatively downstream separation point. The flow

around the rectangular bluff-body separated at the leading edge. The circular flame-

holder was much cooler than the rectangular counterpart because of relatively smaller

boundary is in a direct contact with the hot products for the former. This simulation

shows the significant impact that the geometry of the flame-holder can have on the

reacting-flow around it.

7.2.5 Error in the stair-step approximation

A stair-step approximation will result in the surface area of the solid body to be

different than its actual surface area. Figure 7-7 shows the relative error of volume

depending on the number of control volumes inside a stair-stepped circular cylinder

along the diameter. This is adapted from Fig. 4.12 in the book by Nikrityuk [108]. It

shows that as the grid size becomes finer, the error in the surface area as a percentage

of the actual area decreases. In the confined circular bluff-body simulations discussed
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Figure 7-7: Relative error of volume depending on the number of control volumes
inside a stair-stepped circular cylinder along the diameter. Adapted from Fig. 4.12
in the book by Nikrityuk [108]

above, the diameter was chosen to be 5 mm. The actual curve length of this exact

circle is 15.7 mm. There were around 26 × 26 cells inside the circular cylinder. The

approximate circular length of the boundary was estimated to be 14.7 mm using the

stair-step approximation. This gives an error of 6.5% relative to the exact curve

length. The local roughness introduced due to the stair-step approximation may also

presumably change the location of the separation point, a detailed investigation of

which should be performed in the future work.

All the simulations shown here considered a stair-stepped circle. However, the

numerical method developed here is general to account for any arbitrarily complex

geometry discretized in a stair-stepped manner, such as an airfoil, ellipse, v-shaped

gutters.

7.3 Three dimensional code development

Another major developmental effort undertaken was to complete the three-dimensional

implementation of the fluid-only code. Second-order finite difference pressure solver

discussed in Section 2.3.2 was used in three-dimensions. The results of a three-
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Figure 7-8: Gaussian temperature blob as the initial condition in the 3D domain.
Colored temperature contours and iso-surfaces are shown.

Figure 7-9: Fuel contours showing the ignition process from a hot-spot on the center
x-normal slice.
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dimensional channel flow with adaptive mesh refinement are shown below. A high

temperature hot spot was introduced in the center of the channel in the form of

a three-dimensional Gaussian blob for igniting a premixed mixture. A detailed C1

chemical kinetic mechanism, discussed in Chapter 3 was used. The mixture equiva-

lence ratio was fixed at φ = 0.6. A domain size (in mm) of 30 × 15 × 15 and corre-

sponding grid size of 64 × 32 × 32 was simulated with one level of grid refinement.

The mixture starts to burn because of the high temperature hot-spot introduced as

the initial condition. Snapshots of this simulation are shown in the Figs. 7-8-7-10.

Adaptive meshes are also shown in Fig. 7-10. The flow is along the positive x di-

rection. As combustion proceeds, products are formed after ignition in the hot-spot.

CO2 contours are shown in Fig. 7-10.

Figure 7-10: Three-dimensional adaptive mesh patches overlaid on HCO, CO2, T
and CH4 contours on a x-normal center slice. Volume mesh patches are overlaid on
the CH4 contours.

Figure 7-12 shows a flame-structure comparison (via temperature, major and mi-

nor species profile) of the spherically outward propagating flame with a one-dimensional
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Figure 7-11: Temperature and major species profile during the unsteady spherical
flame expansion.

adiabatic unstrained flame (obtained using Chemkin at the same φ). This was done

after few iterations, once the flame propagation “reasonably” forgot the ignition con-

ditions. The x-axis is in mm units and corresponds to the flame co-ordinate. They

have been shifted to keep the peak YHCO or equivalently the peak heat release-rate

location at 0. The 3D profile was taken at a line normal to the spherical flame shown

in Fig. 7-10. Spherically expanding flame is an unsteady process (see Fig. 7-11) and

the flame-structure is expected to change during this expansion. This comparison

was carried out when the flame radius of curvature was 1.5 mm defined on the basis

of peak heat-release rate location (snapshot corresponding to Fig. 7-10). A good

overall agreement can be seen in the flame structure. Due to curvature effects, an

exact match is not expected. Based on the Lagrangian definition 4.7, for a spherical

propagating flame in a quiescent medium, the unsteady stretch simplifies to

κ =
2

r

dr

dt
(7.4)
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where r is the instantaneous radius of curvature of the flame-front. The stretch is

positive for an expanding flame and was computed to be 810 s−1 at the time-instant

investigated here. After a long time, when the radius of curvature becomes very

large compared to the flame thickness, the flame structure becomes same as that

of a unstrained one-dimensional flame. Until then, the flame characteristics such as

the flame speed the burnt gas temperature will be different from its one-dimensional

counterpart. As discussed in Section 4.2.3, flame speed is expected to decrease from

its adiabatic value for a positive flame stretch 2 for lean methane-air flames (Le < 1

Table 4.1). It can be estimated by

x

Y
H
C
O

2 1.5 1 0.5 0 0.5
0

2E06

4E06

6E06

8E06

1E05

[mm]

Y
C
H
4

2 1.5 1 0.5 0 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

3D
1D

x

Y
C
O

2 1.5 1 0.5 0 0.5
0

0.005

0.01

0.015

x

T

2 1.5 1 0.5 0 0.5

500

1000

1500

Figure 7-12: Comparison of the spherically propagating flame structure with a one-
dimensional unstrained flame.

Sb =
dr

dt
(7.5)

2Although the linear Markstein relationship discussed in Section 4.2.3 is not valid for the strong
stretch computed at the time-instant considered here.
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Su = Sb
ρb
ρu

(7.6)

The instantaneous flame speed computed was 10.42 cm/s (adiabatic value is 11.87

from Table 4.1). The peak burnt gas temperature was observed to be 1756 K, slightly

higher than the adiabatic flame temperature of 1669 K (from Table 4.1). Matalon

[109] showed that for the cases when the flame speed decreases from its adiabatic

value when positively stretched, there need not be a direct correlation between the

flame speed and the flame temperature. It was analytically shown that for such cases,

the flame temperature increases although the flame speed decreases relative to their

corresponding adiabatic unstretched values. This explains the higher temperature

predicted for the spherical flame in Fig 7-12.

The SAMR framework allowed a very coarse base 3D grid, while maintaining the

flame resolution by the adaptive fine patches in the above simulation.

7.4 Conclusions

In this chapter, I presented the advanced numerical developments undertaken. I

discussed a first-order methodology to tackle any arbitrary shaped stair-stepped im-

mersed solid. A simulation of a flame stabilized on a circular-cylinder was shown

and the impact of flame-holder geometry on the flow was discussed. Extension of the

code to three-dimensional domain was undertaken and a spherically expanding flame

simulation was tested. Its structure was compared to a one-dimensional unstrained

flame simulation. The 3D development was limited to “fluid-only” domains. A 3D

buffer zone immersed boundary method formulation, analogous to the development

in this thesis must be undertaken in the future. These developments, along-with the

novel method discussed in Chapter 2 make the current simulation tool a valuable

resource for future multi-physics numerical investigations.
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Chapter 8

Conclusions

8.1 Summary

The major contributions of this thesis are (i) development of a state-of-the-art numer-

ical approach to capture the wide spectra of spatio-temporal scales associated with re-

acting flows around immersed boundaries, (ii) elucidating the underlying mechanisms

of laminar flame stabilization and blow-off in bluff-body and perforated-plate burners,

and (iii) formulating an analytical model for the dynamic response of perforated-plate

stabilized flames to acoustic perturbations.

A second-order immersed boundary method for reacting flow simulations near

heat-conducting, grid conforming, solid object was presented in Chapter 2. The

method was coupled with a block-structured adaptive mesh refinement (SAMR)

framework (for the multi-length-scales) and a semi-implicit operator-split projec-

tion algorithm (for the multi-time-scales) developed by Safta et al. [11]. The im-

mersed boundary approach captures the flame-wall interactions. A novel “buffer

zone” methodology was introduced to impose the solid-fluid boundary conditions

such that symmetric derivatives and interpolation stencils can be used throughout

the interior of the domain comprised of fluid and solid cells, thereby maintaining the

order of accuracy of the method. A binary marker function was used to track the solid

cells, allowing prescribing multiple solid objects (rectangular or block rectangular like

T-shaped) in the simulations. Near an immersed solid boundary, single-sided buffer
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zones (inside the solid) were used to resolve the species discontinuities, and dual buffer

zones (inside and outside the solid) were used to capture the temperature gradient

discontinuities. The buffer zones were constructed at all the levels of the SAMR grid

and before each stage of the multistage RKC integration of the scalar transport. This

eliminated the need to impose artificial flame anchoring boundary conditions used in

the existing stat-of-the-art numerical methods. As a result, this relaxes the current

restriction of the simulations being accurate only in the far-field away from the an-

choring region. The overall second-order convergence of the numerical method was

demonstrated. A low-order approach was also developed to resolve the flow around

complex immersed solids using a coordinate conforming representation (discussed in

Chapter 7). The numerical tool developed in this thesis is valuable for future research

investigating a variety of multi-physics reacting flows while incorporating flame-wall

interactions.

As such, using this approach it is possible for the first time to analyze the com-

plex and subtle processes near-walls that govern flame stabilization. Limits on flame

stabilization in two canonical configurations: bluff-body and perforated-plate, were

investigated and the underlying physical mechanisms were elucidated in Chapters 3-5.

Detailed chemical kinetics model for methane-air combustion was used. Bluff-body

simulations showed a shear-layer stabilized flame within a recirculation zone domi-

nated by products of combustion. Perforated-plate simulations showed a bell-shaped

flame stabilized on a preheated recirculation zone of reactants. A significant depar-

ture from the conventional two-zone premixed flame-structure was observed in the

anchoring region for both configurations. The total flame stretch in the two config-

urations was strain and curvature dominated respectively. In the bluff-body wake,

the location where the flame is initiated, preferential diffusion and conjugate heat

exchange furnish conditions for ignition and enable streamwise flame continuation.

In the perforated-plate, on the other hand, a combination of conjugate heat exchange

and flame curvature is responsible for local anchoring. For both configurations, it was

found that a flame was stable when (1) the local flame displacement speed was equal

to the flow speed (static stability), and (2) the gradient of the flame displacement
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speed normal to its surface was higher than the gradient of the flow speed along the

same direction (dynamic stability). As the blow-off conditions were approached, the

difference between the former and the latter decreased until the dynamic stability

condition (2) was violated. The blow-off of flames stabilized in a bluff-body wake

start downstream, near the end of the recirculation zone, by flame pinching into an

upstream and a downstream propagating sections. The blow-off of flames stabilized in

a perforated-plate wake start in the anchoring region with the entire flame front con-

vecting downstream. Within the examined range of operating conditions, conjugate

heat exchange was shown to play negligible role in the former configuration, whereas

its role was critical in the latter. A “Residual flame” was observed in the bluff-body

configuration before complete blow-off because the flame near the anchoring region

strongly satisfied the dynamic stability criterion even though it is violated at a down-

stream location. The mechanism based on that criterion satisfies the widely reported

Damköhler number correlation for blow-off. These investigations elucidated the thus

far unknown physics of the underlying flame stabilization and blow-off mechanisms,

understanding which is crucial for designing flame-holders for combustors that sup-

port continuous burning. Such an investigation is not possible without the advanced

numerical tool developed in this work.

Based on the insight gained from the simulations, an analytical model was for-

mulated in Chapter 6 to describe the dynamic response of perforated-plate stabilized

flames to flow perturbations in an acoustically coupled environment. These mod-

els are instrumental in optimizing combustor designs and applying active control to

guarantee dynamic stability if necessary.

8.2 Suggested future work

8.2.1 Numerical development

Although currently restricted to Cartesian geometries (second order accurate) and

stair-stepped geometries (first order accurate) only, the method is a progressive step
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towards developing more complex immersed boundary formulation (solid walls not

aligned with the grid) for reacting flows. Current state-of-the art codes that tackle

complex immersed boundaries are restricted to non-reacting flows. This is an im-

mensely challenging task for reacting flows, specially for high-order accuracy and

coupling with the SAMR framework, which must be undertaken in the future. The

modularity of the code, developed using the Common Component Architecture (CCA)

framework [12], will allow the numerical machinery to be directly connected to the

complex immersed boundary formulation, once developed.

Investigating catalytic and plasma interactions in the presence of burner walls will

be feasible, once the numerical development governing their physics is incorporated

in this method. The binary marker function approach also provides an important

advantage to deal with moving bodies in the future, e.g. coal or biomass particles in

combustors in the future. In such cases tracking the moving boundary is not only

expensive, but also complicated in terms of data structure implementation due to

the search operations involved. Currently, to the best of our knowledge, second-order

fully resolved numerical simulations with flow, thermal and chemical effects using a

coupled SAMR-IBM is unavailable for moving bodies and research in this direction

will be a significant contribution to this field.

Other major developmental task would be to incorporate flame-wall interaction in

three-dimensions, which is expected to be relatively easier extension of the numerical

method discussed in this thesis. This can then be potentially coupled with LES

models for investigating turbulent combustion.

8.2.2 Turbulent bluff-body flame blow-off

Most experimental studies in the literature were focused on analyzing and correlating

turbulent flame blow-off. Turbulence adds additional complexities to the flow-field

in the form of vortex shedding, flow unsteadiness and potentially extreme stretch

rates resulting in local extinction of the flame sheet. The extension of the physical

mechanism for laminar flame blow-off demonstrated in this thesis to turbulent flows is

unclear at this point. However, it is a good starting point for similar investigations of
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weakly turbulent flames. This involves investigating flame blow-off at higher Reynolds

number (transition to turbulence regime).

8.2.3 Unsteady flame dynamics

Recent experimental investigations in the Reacting Gas Dynamics Laboratory [38]

showed that the conjugate heat-exchange with a backward-facing step in a combus-

tor can significantly modify or sometimes even suppress the onset of the combustion

instability. These experiments were performed in the compressible turbulent flow

regime. The impact of the conjugate heat exchange on the unsteady response of the

premixed flames to acoustic perturbations is a multiphysics challenging problem and

its mechanism is still unclear. Investigating this is critical to understand how the

acoustic oscillations couple with the combustion heat release; potentially leading to

combustion instability. I demonstrated that conjugate heat exchange is the driving

factor for a resonant behavior of the dynamic response of premixed flame stabilized

on perforated-plate burners analytically in Chapter 6. Similar investigation in the

context of bluff-bodies using the numerical tool discussed in this thesis must be un-

dertaken. A preliminary simulation to that effect - an unsteady bluff-body flame

responding to inlet velocity forcing was shown in this thesis in Section 3.3.2.

Another interesting application to the developed tool would be to study the un-

steady ignition process near spark-plugs or walls. A detailed understanding of such

a process will be very critical for efficient ignition equipment design in combustors.

8.2.4 Lewis number effects

Markstein length, which depends on the Lewis number, was shown to play an impor-

tant role in the dynamic stability criterion in Chapter 4. This is a physico-chemical

property of the mixture that will impact the flame blow-off characteristics of a fixed

bluff-body operating with different fuels. The methane-air flames investigated in this

thesis have Lewis number based on the deficient reactant (CH4) close to unity. In-

vestigating the applicability of the stability criterion to combustors with fuels having
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extreme non-unity Lewis numbers such as Hydrogen (Le < 1) and gasoline (Le > 1)

is thus a natural extension of this work.

8.2.5 Radiation

The numerical model discussed in this thesis neglected radiative heat transfer. The

radiative heat flux can be estimated as qr ≈ εσT 4
f where qr is the radiative heat

flux, ε is the total gas emittance, σ is the Stefan-Boltzmann constant, and Tf is the

flame temperature. ε is less than 0.01 for the dominant emitters H2O and CO2 at

1 atm [110]; while Tf ≈ 1900 K. Thus qr ≈ 7 × 103 W/m2. For perforated-plate

stabilized flames discussed in Chapter 5, the average conductive heat exchange with

the burner plate for φ = 0.75, U = 1.3 m/s can be estimated as qp ≈ 3× 104 W/m2,

which is almost an order of magnitude higher than the radiative flux. In cases where

radiation contributes equally, the overall physics of flame stabilization and blow-off is

not expected to change significantly. Radiation will provide an additional pathway for

heat loss to the burner plate and surroundings. Quantifying radiative heat exchange

and its impact on flame stabilization and blow-off is a challenging numerical task that

must be undertaken in the future.
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