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Abstract

Fast-ion conducting pyrochlore oxides, multi-metal compounds with the general
formula A2 B2 0 7 , are subject to growing interest because of their potential use as fuel cell
materials. This study focuses on a specific fast-ion conducting solid solution series,
Y2(ZrySniy) 2 0 7. Polycrystalline Y2(ZrySnl-y) 2 0 7 powders, where y=0.2, 0.4, 0.6 and 0.8,
were synthesized using a newly-devised variation of the Pechini method. Details on the
specific metal precursors, technique, heating schedules, as well as an extensive examination of
literature have been developed to provide useful guidelines in the preparation of mixed-cation
oxide powders via the liquid-mix approach. Through the use of combined neutron and x-ray
diffraction data, a Rietveld structural analyses were conducted to explore the disordering
behavior and cation distribution. This particular solid solution series was chosen with the hope
of reconciling differences in the behavior of Y2 (ZrYTi1 y)20 7, a system displaying increased
disorder in the anion and cation arrays with increasing y, and Y2 (Sn Ti 1 -)2 0 7, an essentially
ordered system. Results from the structural analyses of the Y2 (Zry n1 yI207 series show
marked similarities with the previously-studied Y2 (ZrvTi _y) 2 7 . Like the Ti zirconates, the
O(1) coordinate x decreased quadratically as opposed to the linear decrease in the Ti stannates.
Oxygen disorder in the Sn zirconates begin almost immediately upon substitution of Zr4+ in
solid solution, and is complete slightly beyond y-0.8, resulting in a defect fluorite phase .

The cation partitioning of the three cations, Sn 4+, Zr4+, and y3+, in the two
cystallographically independent sites, A and B, cannot be determined from a single diffraction
experiment. Determination of the cation distribution had consequently never been determined
for a pyrochlore oxide. Therefore, through the use of linear constraints and the methodical
refinement technique previously developed, x-ray and neutron diffraction data were both used
in the present work in an attempt to determine the cation distribution in the pyrochlore
structure. As was found in the Ti-zirconates, a fluorite-like phase possessing a slightly larger
lattice parameter co-existed with the pyrochlore solid solutions. This, in conjunction with the
weakening of superstructure intensities with increasing Zr content in the series led to increased
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residuals and larger standard deviations in the refined parameters as the structure disordered.
The results reveal that a small, fixed amount of Sn occupies the A site in substitution for Y3+
in the low-Zr, well-ordered portion of the solid solution series which is consistent with the
small amount of cation disorder in Y2 Sn 2 0 7 previously found in studies by Eberman.
Furthermore, Zr4+ readily enters the A site beginning as early as y=0.2 . The cation
partitioning of the Zr 4+ and y 3+ for y=0.4 could not be determined with because the neutron
data at this composition shows very little contrast in scattering between the A and B sites.
Another independent diffraction experiment can solve this two-cation, one-site problem, but it
is likely that nearly equal amounts of the two cations are distributed between the two sites.
Overall, the disorder and cation distributions found in this study confirm zirconium's ability to
enter the eight-coordinated A site more readily than covalently-bonded Sn. The fact that the
progress of cation and anion disorder with increasing Zr content has been shown to be quite
similar to that in the Y2 (ZryTil y)2 0 7 system, previously show to be an excellent fast-ion
conductor, allows one to predict that the newly-synthesized Y2 (ZrySnl-y)2 0 7 compositions
will prove to be equally-outstanding conductors.

Thesis Supervisor: Bernhardt J. Wuensch

Title: Professor of Ceramics
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1. Introduction

1.1 Purpose of this Research

Fast-ion conduction is property that is receiving growing attention in recent years

because of increasing demands for more diversified and cleaner energy sources. Fast-ion

conductors are solid materials displaying ionic conductivities (ranging from 10-6 to 4 S/cm)

that approach values comparable to those found in liquid electrolytes such as that in an

automobile battery [2]. The high ionic conductivities exhibited in these materials are suitable

for use as fuel cell electolytes. Ionic conductivity, in contrast to electronic conductivity in

which electrons are the charge carriers reflects an ability of ions to freely move through a

matrix to conduct electricity. In solid-state materials, this movement of ions in a crystalline or

amorphous structure can arise from a variety of diffusion mechanisms. One possible

mechanism in an ionic crystalline material, such as a ceramic oxide that is found today in

commercial solid oxide fuel cells, is the motion of oxygen ions into "holes" or vacancies in the

structure. Establishing a basic understanding of the relationship between crystal structure and

conductivity can lead to more rapid optimization of the property for the development of new

and improved materials.

This thesis focuses on the structural analysis of a specific fast-ion conducting

solid-solution system, Y2 (ZrySny)2O 7 , which are oxide materials with the intriguing

A2 B2 0 7 pyrochlore structure type. This particular solid solution series was chosen with the

hope of reconciling very different results obtained in previous structural studies by Heremans

[1,2] and Eberman [3] of Y2 (ZryTiiy)2O 7 and Y2 (SnyTiy)2O 7 respectively. The initial

interest in structures in the system (Y2Ti2O7-Y2Zr 2O7 ) was sparked by the conductivity studies

by Moon [6]
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who found a three order-of-magnitude increase in conductivity (to 10-2 S/cm at 1 0000 C) as Zr

substituted for Ti in Y2 Ti2O 7. Subsequently, Heremans [1,2] conducted neutron diffraction

analyses of Y2 (ZryTi1 y)20 7 solid solutions and showed that substitution of the larger Zr ion

for Ti induced progressive disorder in both the cation and anion arrays culminating in a defect

fluorite structure at y=0.9. Remarkably, the disorder among the oxygen ions and the mixing

between cation sites progressed at very distinct rates. The change in the distribution of oxygen

vacancies with composition provided a basis for explaining a 103 increase in the corresponding

oxygen ion conductivity. The relative size difference between the cations occupying the A and

B sites apparently served as the driving force for ordering.

Structural and conductivity studies of the Y2 (SnyTi1 y)2 0 7 solid solution series by

Eberman [3] and Yu [5] respectively, were performed to test the hypothesis that relative ionic

size determined the state of disorder and, thus, conductivity in pyrochlore-type materials. The

results revealed marked contrasts to the titanium-zirconate series. Using compositions with

the same average B-site radius as Hereman's samples, Eberman showed a high degree of

ordering was present in both the cation and anion arrays for the entire range of solid solution

despite the progressively decreasing radius ratio of the cations occupying the A and B sites [3].

Thus, disorder in the stannate series clearly is not subject to the same influence of radius ratio

as the zirconates. The nature of a strong Sn-O covalent bond may plays a role in maintaining

an ordered structure [3,5].

The interesting question then arises about the kind of disorder that might occur in solid

solutions between yttrium zirconate and stannate in view of their diametrically-opposed

behaviors . Yeo [4] was the first to perform a preliminary examination of this pseudo-ternary

system through x-ray studies of Y2(ZrySn-y)207. The behavior of the series appeared to be

similar to that found in Y2(ZrTiI -y)2 0 7 but her efforts were complicated by difficulties in

synthesis of single-phase powders. A second yttrium silicate phase appeared in some of the
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samples as a result of the processing technique employed. Yeo investigated samples with

compositions where the Zr content, y, was equivalent to 0.2, 0.4, and 0.6. In this report, I

have recorded a newly-devised synthesis method after an extensive examination of literature on

the Pechini method, and prepared new samples with the compositions of Yeo's work in

addition to a sample with y=0.8. Both x-ray and neutron diffraction data were collected and

analyzed using the Rietveld method to confirm Yeo's results and revisit the question of

disorder in the anion and cation array [43].

In many modern crystalline materials in which doping is advantageous to enhance a

particular property (i.e. conductivity) for technological applications, more than two distinct

species are found on a single crystallographic site. In our fast-ion conducting pyrochlores,

Y2 (ZrySni y)2 0 7, three types of cations, y 3+, Zr4+ and Sn 4 +, are distributed over two

diffferent crystallographic sites. To determine the exact distribution of the three cation species

over two sites, one additional linearly-independent diffraction pattern is necessary for each

distinct cation species beyond the number of available sites[37,38,40]. The cation distribution

of three species over two sites has never been determined for a pyrochlore oxide. Thus, an

additional objective of this paper of general crystallographic interest is the determination of the

partitioning of cations in the solid solutions using neutron and X-ray powder-diffraction data in

a combined approach for Rietveld structural-analysis. A strong site preference for one of the

cation species might well be the factor that could explain the fact that some solid solutions with

a given ratio of cation radii tent to disorder whereas others with the same mean sizes do not.

1.2 The Pyrochlore structure

Pyrochlore oxide materials of the general formula A2 B2 0 7 , where A and B are cations,

represent a family of phases identical in structure to the mineral pyrochlore,

(NaCa)(NbTa)0 6F/(OH) [41]. Predominantly cubic and ionic, pyrochlore compounds can
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have a wide range of chemical substitution at the A, B, and 0 sites as long as the ionic radius

and charge balance are amenable to the specific site. Valences of the A and B sites in many

pyrochlores are +3 and +4 respectively or +2 and +5. Vacancies can occur in the A and 0

sites and result in cation migration within the crystal structure. With a wide range of

chemical-substitution and presence of vacancies in its structure, pyrochlore compounds can

exhibit numerous physical properties including insulating, fast-ion conducting, semiconducting,

paramagnetic, ferro-magnetic, dielectric, piezo- and ferro-electric, and catalytic behavior

[10,41].

A superstructure with a lattice parameter twice that of a fluorite-type subcell, the cubic

pyrochlore structure, space group Fd3m, is shown in projections along a3 in Fig. 1.1(a) and

1.1(b). The large cation A3+, coordinated by eight 02- ions, occupies position 16c 3m 000;

the smaller cation B4+, surrounded by six 02- ions, occupies position 16d 3m 1/2 2 2-

Fifty-six oxygen anions per cell are found in three crystallographically-independent sites: 0(3)

in 8b 43m 3/ 38 3/8 is vacant in a fully ordered pyrochlore and would be fully occupied in a

fluorite array; 0(1) is in 48f mm x 1/8 /8 and 0(2) in 8a 43m 1/81/8 1/8, each tetrahedrally

coordinated by two A and two B cations and four A cations, respectively. An ideal position of

x= 3/8 for 0(1) would describe a regular cubic array of anions. Instead, 0(1) relaxes toward

the vacant 0(3) site and x> 3/8. This probably occurs because of the absence of the otherwise

repulsive force of an anion in the 8b position as well as the larger bond distance between 0(1)

and A3+ compared to that with B4+ [42].

Factors controlling ordering of pyrochlores have been studied extensively. Ionic radii

of the cations, temperature, and stoichiometric deviations are three main parameters that

influence the stability of a given pyrochlore [2]. Elevated temperatures cause many A2 B2 0 7

pyrochlores to disorder into a non-stoichiometric, defect fluorite structure (A,B)07/4 [1,3]. In

early studies of stannate pyrochlores, A2 Sn 2 0 7 , Brisse and Knop [46] suggested that the ratio
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B"' in 16 d 3m 1/2 1/2 1/2
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+ 0(3) in 8b 43m 3/8 3/8 3/8

a,,

a1

(b)

Figure 1.1 (a) A projection of the pyrochlore structure along the a3 axis for 0 z < 1/4,
showing the cation ordering around the different oxygen ion sites. The depicted 0(1)

displacement, A=x-3 /8 where x is the 0(1) coordinate, is 0.462 A correspondinf to

x=0.4207 occurring in Y2 Sn2 0 7 (b) A projection of the pyrochlore cell contents for /8-A

< z < 3 /8+A , showing the coordination around the cation sites (distorted 8 fold

coordination around A3 +and 6-fold coordination around B 4 +)
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of the ionic radii of the A3+ to the Sn 4+ ion rather than the chemistry solely determines the

stability of the pyrochlore structure. Upper and lower limits of relative ionic radii of the A and

B cations (rA3+:rB4+) were proposed as a range for pyrochlore stability. However, more

recent systemmatic studies by Kennedy [45] of stannate pyrochlores of the lanthanide elements

attributed complete cation and anion ordering to the covalent character of the Sn-O bond [45].

Thus, while the ionic radii can be used as a good initial estimate of the stability of the

pyrochlore phase, the chemistry of the individual species must also be considered [3].

The order-disorder transition induced in the pyrochlore crystal structure by solid

solution (as opposed to temperature) has also captured the interest of many researchers. As

seen in Y2 (ZryTi1 _y)2 0 7, this transition is accompanied by a 103 increase in the

corresponding oxygen ion conductivity[ 1]. Various models proposed by several researchers of

zirconate pyrochlores of the lanthanide elements have offered differing explanations of

disordering in the oxygen ion array [1]. One model suggests the evolution of antiphase

boundaries during pyrochlore formation. Through electron microscope and computer

simulation techniques, Van Dijk [24,29] propounded that pyrochlore formation begins with

cluster formation of anions ordering in a fluorite matrix. These clusters take on more

pyrochlore character as cations move to the appropriate positions. The pyrochlore domains,

embedded in a disordered fluorite structure, grow until the domains touch to form antiphase

boundaries. Van Dijk concluded that these antiphase boundaries provide possible pathways for

oxygen ion mobility accounting for high ionic conductivity [24]. It is interesting to note, and

as will be seen later in Chapter 2 of this report, that the synthesis method common to

Hereman's and Van Dijk's samples was the Pechini approach via citrate complexation of metal

precursors.
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1.3 Complementary Use of Neutron and X-Ray Powder Diffraction

Single-crystal X-ray and neutron diffraction experiments have been the main

contributor of detailed understanding of the structures of crystalline materials in past years.

With a need for the rapid development of new solid-state materials, growth of single crystals is

time-consuming and often extremely difficult or impossible. With recent advances in the

development of computer-automated diffractometers to collect digitized data in a step-scan

procedure and of the Rietveld refinement method, powder diffraction provides an excellent

alternative to single crystal methods for structural analyses [7].

An ideal polycrystalline material or powder can be thought of as an assemblage of a

large number of randomly-oriented single crystals [49]. A beam of radiation that is directed at

a crystal is diffracted by the set of lattice planes with Miller indices, h,k,l,denoted hereafter as

K and proportional to the structure factor FK, which contains all the information on the

structure of a crystal [2]:

FK= f e2 1ri(hx +ky. +lz) e-M(
SJ

where the scattering factors, f, for the jth atom (with fractional coordinates xj,y,zj), are

summed over the unit cell. Mi is the temperature factor which reduces FK by a factor that

depends on the thermal vibrations of the atoms around their equilibrium positions [2].

In powder diffractometry, the randomly-oriented planes of each crystallite in the

powder specimen results in a series of diffraction cones whose intensity can be measured by

moving a detector along a circle centered on the sample [49]. Details on diffraction theory can

be found in a number of sources [48,49]. Generally, two methods are used to extract

structural information from powder diffraction data. One technique is to measure the

integrated intensities of individual Bragg reflections (after deconvolution of those that overlap)
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and convert them to structure factors as one would for a single crystal. However, this method

works well only for simple, highly-symmetric structures with minimum peak overlap[7]. The

other approach is the Rietveld method in which the entire powder diffraction pattern is used.

Each data point is considered an observation. Subsequently, structural parameters, background

coefficients, instrumental, and profile parameters are varied in a least-squares procedure until

the calculated profile based on the theoretical structure matches the experimental diffraction

pattern [7,50].

The best least-squares fit in a Rietveld refinement minimizes the residual, Sy [50]:

Sy wi (yi-yci)2 1.2)

where wi is 1/yior the weight of the ith observation, yi is the observed intensity at the ith step,

and yci is the calculated intensity at the ith step [2,50]. The powder pattern can be thought of

as an ensemble of individual reflection profiles with an associated peak-height, position,

breadth, decaying tails, and an integrated area proportional to the Bragg intensity, IK, where K

represents the Miller indices, h, k, 1 [50]. The Bragg intensity is proportional to the square of

the absolute value of the structure factor IFK12 [2,50]. Table 1.1 [50] is an expanded list of

several types of residuals (R-values) that are currently used as figures-of-merit in Rietveld

analyses. Each R-value uses different criteria to judge the calculated fit of the proposed model

to the measured intensities, and indicates if the refinement cycles are proceeding satisfactorily

or nearing the end (convergence) [50].

While Rietveld analysis is a useful tool in solving structural problems, site-specific

information may be inconclusive from a single powder diffraction pattern as seen in the

determination of cation partitioning of several species in the same site (Section 1.1).

Therefore, combined use of varied sources for diffraction such as X-rays or neutrons provides

insight into crystal structure as well as site-occupancies [47]. Several researchers have
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Table 1.1 Definitions of Commonly Used Numerical Criteria of Fit or Residuals
(R-values) [50]

RF =
E I(IK('obs'))1/ 2 - (IK(calc)112)1

E (K('obs'))112

S IK ('obs') - IK(calc)
E IK('obs')

RP =_ ly(cbs) - yL(calc)
E yi(obs)

RF, = { w(y(o bs) - y,(calc))2 1/2

RWP = f F wj(yj(obs))2 I

('R-structure factor')

('R-Bragg factor')

('R-pattern')

('R-weighted pattern')

Here IK is the intensity assigned to the Kth Bragg reflection at the end of the
refinement cycles. In the expressions for RF and RB the 'obs' (for observed) is put in
quotation marks because the Bragg intensity, I, is rarely observed directly; instead
the IK values are obtained from programmatic allocation of the total observed
intensity in a 'scramble' of overlapped reflections to the individual reflections,
according to the ratios of those reflection intensities in the calculated pattern.

The 'Goodness-of-fit' indicator, S, is

S = (S,/(N - P)]1 2 = RWP/R,

where

Re = 'R-expected' = [(N - P)/E wiyj)1/2.

The Durbin- Watson statistic, 'd', is

N N

d' = E (Ay, - Ayj _ 1)2 A(1-yj )2
i=2

where
Ay, =yei - yci.

N = the number of profile points

P = the number of refined parameters
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employed the combined use of conventional x-ray and neutron diffraction to study cation

ordering in superconductor-related compounds [31-34]. Joint synchrotron X-ray and neutron

data have also been used to successfully determine the crystal chemistry and electronic

structure (valence) of the ions in crystals in addition to the structure as a whole [35-3 8].

X-rays and neutrons interact with atoms in a crystal differently. X-rays interact with

the electrons surrounding an atom. The diffraction effects are, therefore, relatively insensitive

to the presence of low atomic number elements early in the periodic table. Scattering power of

the atoms also declines with increasing angle because of the size of the electron cloud around

an atom is approximately the same as the x-ray wavelength [8,47,58]. The scattering factors

for x-rays of cations in our solid solution series of interest, namely, Y 3+, Zr4+ and Sn 4+, are

shown in Fig. 1.2 [51]. Notice that Y3+and Zr4+ with identically 36 electrons have nearly

overlapping atomic scattering factors for the entire range of diffraction angles. Thus,

distinguishing between these two cations via conventional x-ray diffraction is extremely

difficult and especially so for Y2 (ZrySni -y)2 0 7 given the weak intensity of superstructure

peaks as will be discussed later. Sn 4 + which has 46 electrons may be seen to have a

substantially different scattering factor profile.

In contrast to x-rays, neutrons interact with the nuclei of the atoms, and since the

nuclear dimensions are three orders of magnitude smaller than the neutron wavelength, point

scattering results; thus, neutron scattering factors (also called scattering lengths) are angle

independent. The rapid decrease in the scattering factor in x-rays with increasing angle limits

the precision of the thermal parameters of the atoms. Hence, neutron data provides more

precise thermal parameter values. Because nuclear scattering is dependent on the number of

nuclear particles (potential scattering) and neutron absorption by the nucleus (resonnance

scattering), neutron scattering lengths vary erratically across the periodic table and between

isotopes as well [8,58]. Thus, x-ray and neutron powder diffraction patterns will look
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Figure 1.2 Graph of x-Ray scattering factors, f of Y3 +, Zr4 +, Sn4 +as a function of

sin /A. Values are based on the scattering of the corresponding free ions as listed in the

International Tables of Crystallography [51]. Y3 +and Zr4 +, each with 36 electrons, have

nearly overlapping scattering factors over the entire range of 20 The lack of scattering

contrast between these two species makes them indistinguishable in x-ray diffraction. As

will be explained later in Section 3.1, the indistinguishablity will be used to our advantage

when determining cation distributions of the three species in two sites.
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different. Table 1.2 lists the neutron scattering lengths, also denoted as b, of each of the

constituents in our pyrochlore Y2 (ZrySnl-y)20 7:

Table 1.2: Comparison of Ionic Radii, Number of Electrons, and Neutron Scattering
Lengths for Ionic Species Present in Y,(ZrvSn 1 _),707

Coordination Ionic Radius Number of Neutron Scattering Length
Ion Number (Angstroms)[9L Electrons (1OE-12 cm) [521

0(2-) 4 1.38 10 0.5803
Y(3+) 8 1.019 36 0.7750
Zr(4+) 6 0.720 36 0.7160
Sn(4+) 6 0.690 46 0.6226

Neutrons, through spin interaction, are also sensitive to magnetic structure. One major

disadvantage of neutron diffraction is the need for large sample sizes for powder diffraction,

typically 10-20 g in a 5-10 mm diameter cylinder 30 mm long, due to the low scattering

cross-section of the neutron [8,38].

As seen in the above discussion, neutron data can provide more precise crystal

structures, thermal parameters, and would be more sensitive to anions like oxygens ions than

x-ray data. Atoms are mainly identified by their scattering powers relative to other atoms in

the structure. Atoms with similar scattering powers will not clearly distinguish the sites these

atoms occupy and could be resolved by changing the relative scattering power of the atoms

[8]. Thus, analysis of a combined data set, such as neutron and x-ray diffraction data, can

solve the problem of atomic or ionic ordering. Williams [8,31,35,58] was one of the first to

use both conventional x-ray and neutron diffraction in a simultaneous Rietveld refinement to

demonstrate the cation ordering in superconducting YBa 2 Cu 3 O6+x. The use of these two

different but complementary data sets resulted in a more tightly constrained refinement and in a

more precise structure.
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Another useful application of the complementary use of x-rays and neutron diffraction

is to address the more difficult problem of atomic site distributions. Williams [32,35] was also

the first to use anomolous x-ray and neutron diffraction to study the ordering of three cations

among two sites in Fe0 .50 Co 0 .4 8 V0 .0 2 . A minimum of two linearly independent structure

factors would be necessary to specify site occupancies [35]. Contrary to previous assumptions

that the V occupies both sites randomly or prefers the Fe site, the work by Williams [32]

showed through a simultaneous Rietveld refinement of the x-ray and neutron data V

preferentially occupies the Co sites .

Haile [44] also addressed the problem of specifying the occupancies of two sites by

three different cation species using a slightly different approach. By the introduction of

specific constraints on occupancies of various sites in Y2 (ZryTi 1 y) 2 07, Haile proved the need

for an additional diffraction experiment to completely specify occupancies of the three cations

in two sites [1,2,44]. This report implements the chemical constraints introduced by Haile in

neutron diffraction analyses of Y2 (ZrySniy)20 7 , and uses these neutron results in

subsequent x-ray Rietveld analyses. Thus, a complementary and combined approach of the

two different diffraction data rather than a simultaneous refinement, as used in the work by

Williams, is used in this report and will be further discussed in Chapter 3.
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2. Synthesis of Pyrochlore Oxide Powders

2.1 Introduction

Considering the previous work done on ionic conductivity and structural analysis for

the Y2(ZryTi1 y) 20 7 and Y2(SnyTi 1 y) 20 7 systems, one would imagine that the procedures

suitable for synthesis of Y2(ZrYSn.y) 20 7 powders would be well understood and documented.

On the contrary, protocols for synthesis were typically general recipes and ambiguous. P.

Moon [6] gives the more detailed outlines of procedures for preparing gadolinium, titanium,

yttrium, and zirconium organic precursors. E. Yeo, in her X-ray analysis of Y2(ZrySn4) 20 7,

was not able to produce single phase powders, but found silicate impurities derived from

possible glass flakes introduced in her samples during processing [4]. Attempts to follow the

documented procedures in the present study led to failures of either producing a

continuously-clear solution of the polymeric cation precursors or a single-phase pyrochlore

powder.

This chapter hopes to benefit future students of these interesting fast-ion conducting

pyrochlore oxides by providing guidelines on how to prepare a given mixed-cation oxide

powder via the Pechini Method. To accomplish this objective, a literature review of past and

current uses of the Pechini method for obtaining ceramic oxides was conducted and

summarized in the following section. Demonstrating the applicability of these practical

pointers, the experimental section proposes a new synthesis scheme for Y 2(ZrYSn 1 y) 2O7 which

was subsequently utilized for the powders employed in the neutron and x-ray powder

diffraction measurements conducted in this study.
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2.2 Survey of Ceramic Synthesis utilizing the Pechini Method or other

Polymeric Precursor Techniques

In his original 1967 patent, Maggio P. Pechini announced his method for preparing lead

and alkaline-earth titanates and niobates to form electrical capacitors [28]. Little did he know

that his procedure later would be used and modified by numerous researchers to synthesize a

wide range of multicomponent oxides for applications beyond the scope of dielectric materials,

and later coined as the "Pechini method" or the "Liquid Mix Process" [18]. The attractive

features of the Pechini approach are the ability of preparing complex compositions,

homogeneous mixing at the molecular level in solution, control of stoichiometry, and low

firing temperatures. Conventional solid state reactions for preparing ceramic oxides require

extensive milling and grinding which not only can introduce contaminants detrimentally

affecting electrical properties, but also leave room for inhomogenities. Moreover, solid state

techniques generally require prolonged and high calcination temperatures while Pechini's

process theoretically necessitates substantially lower temperatures because of the presence of

self-igniting behavior of organic resins.

The original Pechini method calls for forming polybasic acid chelates from

alpha-hydroxycarboxylic acids, such as citric acid, with titanium, zirconium or niobium [28].

Chelation is a complexation process in which a ring forms, in this case to include a metal atom.

Citric acid has become the more widely used among the various acids that could be employed

because the citrate ion metal complexes tend to be stable. This is due to strong coordination of

the two carboxyl and one hydroxyl group of the citrate ion to a metal ion in solution [19]. In

the presence of a polyhydroxy alcohol like ethylene glycol, the chelates form an ester. When

heated, polymerization of the esters occurs thereby forming an organic matrix through the

solution[28]. The extremely high viscosity of the polymeric resins favor low cation mobility
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Figure 2.1 The chemistry of the Pechini Process is depicted [19]. Metal chelates are
formed in citric acid solution from strong coordination of the two carboxyl and one
hydroxyl group of the citrate ion to the metal ion. In the presence of a polyhydroxyl
alchohol, a condensation reaction occurs with the formation of a water molecule. When
heated, the hydroxyl ends of the depicted reaction product link (polyesterification) to form
a homogeneous solution of metal ions attached to an organic matrix [19,28].
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which helps prevent the different mixed cations from segregating. Upon further heating to

remove excess solvent, a transparent solid resin or glass containing the metals in solid solution

is formed. Burning off the organic cross-linked network leaves behind fine particulates of the

desired multi-metal oxide. Figure 2.1 diagrams the chemistry of the Pechini process [19].

As far as specific quantities of starting materials in the method is concerned, Pechini

suggested dissolving one mole of at least one member of the hydrated oxide, alkoxide, and

alpha-hydroxycarboxylate of titanium, zirconium, and niobium with 2-8 moles of citric acid

and excess ethylene glycol until a clear solution is obtained. Into this solution, 1-1.5

stoichiometric equivalents of one basic metal compound from the group consisting of the

oxide, hydroxide, carbonate, and alkoxide of lead and the alkaline earth metals is dissolved

[28].

Popularizing this liquid mix technique, Eror and Anderson [18] reported synthesizing

over 100 different oxides including chromites, ferrites, cobaltites, manganites, and silicates

using variations of Pechini's method. Expanding the types of cationic sources, they proposed

using carbonates, hydroxides, isopropoxides, and nitrates. In the synthesis of lead magnesium

niobate powders, Anderson, et al. [19] point out that a desirable feature of the Pechini process

is that it allows use of a processing temperature as low as 5000 C, thus minimizing the

volatilization of lead oxide. They reported a procedure in which the organic precursors were

mixed with a ratio of 1 g of anhydrous citric acid to 1.5 mL ethylene glycol. A typical

flowsheet for their synthesis process is shown in Figure 2.2 [18,19].

Responding to the increasing interest in mixed-cation oxide ceramics, Tai and Lessing

conducted systematic studies of the use of polymeric precursors in the Pechini method [11-13].

They asserted that the physical morphology of the final oxide powder is directly related to the
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Fig. 2.2 The flowsheet for the preparation of oxides by Anderson[18,19] who first
reported the use of a variety of other types of cationic sources besides the ones originally
proposed by Pechini. This flowsheet is also adopted for synthesis of pyrochlores in this
study.
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morphology of the resin intermediate. Maximizing the foaming property of the intermediate

resin maximizes, though does not guarantee, the chances of obtaining a single-phase,

fine-grained, and non-agglomerated powder. Thus, the optimal "polymeric gel point," that is,

the critical citric acid:ethlyene glycol (CA:EG) mixture at which an insoluble polymeric gel

forms, was determined to be equimolar or 50:50 through visual characterization of foaming,

viscosity measurements, and differential thermal analysis (DTA). They also found that

premixing of the citric acid and ethylene glycol at proper ratios prior to addition of the

constituent metal nitrate solution reduced the probability of the precipitation which may result

from instant changes in pH if pure citric acid is added directly to the solution [12].

In addition, Tai and Lessing found that the water content and the heating schedule

during gel setting, charring, and calcination affect the final agglomerate morphology [11,13].

Sufficient water content was found to be necessary for homogeneous mixing, but an amount of

water in excess of 100 g per 1 mole of CA-EG polymeric gel retarded the foaming process.

The organic precursors, while working as chelating agents, also provide combustion heat for

calcination. Use of a mole ratio of organic polymer to nitrate greater than four in their

proposed scheme required an excessively high calcination temperature. This resulted in large

crystallites that were very strongly agglomerated. A gel:nitrate ratio of 1:1 or 2:1 yielded the

resin intermediate of greatest expansion. Ignition can be controlled by lowering the oxygen

content of the atmosphere or spreading the resin in a thin layer. Moreover, grinding and

shaking the resin prior to calcination facilitated burning off the organic residues [13].

The results of Zhang et al. in their process for the synthesis of dense YBa 2Cu 30 7 ,

superconducting fibers provide additional insight into the highly-complex chemical reactions of

the precursor solutions [15]. They used a 1:4 CA:EG molar ratio, yielding a solution

possessing a 3:1 ratio of OH:COOH, and a 1:2.8 metal to carboxylic acid ratio. Desiring a

highly-viscous intermediate precursor solution to draw fibers, they found that heating the
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solution to a critical temperature of 1400 C resulted in esterification between the citric acid and

ethylene glycol; therefore, viscosity increased as a function of time and temperature and was

independent of the specific cation. A large excess of ethylene glycol terminates the products of

the esterification reaction thereby limiting the molecular weight [15].

Choy and Han have modified the Pechini process even further by eliminating all

esterification agents such as ethylene glycol in order to minimize particle agglomeration

[16-17] . From previous studies, they determined that the ability of the citric acid to chelate

with the metal ions is closely related to the kinds of chemical species present in aqueous

solution, which in turn are affected by pH, temperature, and concentration. They introduce the

idea of theoretical solution modelling to forecast optimum processing conditions through the

use of solubility isotherms. By considering the stability domains of all the chemical species as a

function of pH versus metal ion concentration, one can determine the minimum pH that may be

approached before the onset of the undesirable precipitation of any of the metal hydroxides

from the solution. Using metal nitrates or chlorides as their cationic sources, Choy and Han

employed their calculated model to predict an optimum pH condition of 6.5, and successively

produced single phase (PbO9 2 La 0 8)(ZrO. 65TiO.35)0 3 [16]. Lee and Fang also use a similar

theoretical model to predict the ideal cation:citric acid ratio and pH when using a citrate

process from thermodynamic equilibrium constants [26]. In the case of barium ferrite, they

found the optimal ratio to be 13:20 at 700' C and a pH of seven.

Modifying the Pechini method further, Liu and Wang use ethylenediamine as an

additional chelating agent to fabricate thin films, membranes and coatings of

La-SrzCol-yFey0
3x on both dense and porous substances [23]. In their work, Liu and Wang

found that the most important processing parameter for uniform and crack-free films is the

ratio of citric acid to total metal ions--a parameter that they defined as the C ratio. A C ratio

greater than 3, in which each metal cation interacts with three molecules of citric acid resulted
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in crack-free films. They explained this phenomena by reasoning that the average distance

between metal ions decreased in the presence of fewer complexation molecules and, therefore,

the interactions among metal ions were stronger. Consequently, metal ion clusters form

leading to a nonhomogeneous resin structure. However, too high of a C ratio means a lower

packing density of metal ions and greater difficulty in achieving densification during sintering.

The quality of the films did not depend on the citric acid to ethylene glycol ratio as mentioned

earlier, but the best films had ratios ranging from 1/3 to 1.

Other interesting studies involving the microstructure of the Pechini method may give

further insight into the mechanisms of antiphase boundaries formation discussed earlier. In

particular, Leite et al. studied the kinetic growth of particles of mixed metal oxides processed

by the Pechini method [24]. Their results show that the particle growth is controlled by two

different mass-transport systems. Below 8000 C, during calcination, surface diffusion leads to

filling of necks between nanometric particles. Particle boundaries migrate as neck growth

proceeds until the neck becomes the size of a smaller particle. At temperatures above 8000 C,

the nanometric clusters densify and form elongated grains. This particle growth behavior

proved typical of powders processed by the Pechini method and independent of the cations

present [24]. Also using a citrate method, van Dijk et al. [29] suggested that pyrochlore

domains, 10-100 nm in size, grow in a fluorite matrix and finally form antiphase boundaries.

Liete's work [24] would be able to indirectly support such a conclusion.

At this point of the discussion, several points are worth noting as guides to preparing a

given mixed-metal oxide. The Pechini method can be tailored to make fine particles, dense

fibers, and thin films of a wide array of multi-metal oxides. The modifications to Pechini's

basic method that are to be employed depend mainly on the types of metals present in the

oxide and, to a certain extent, the desired particle configuration and intended application. The
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typical metal precursors used to date have included hydroxides, alkoxides, and carbonates,

nitrates, alpha-hydroxycarboxylates, and chlorides [14, 16,19-22].

The first important question when making a mixed metal oxide is to consider the

solubility of the metal cations in the citrate solution. Han and Choy [16-17] tackled this

problem with the use of solubility isotherms. Alkoxides are highly unstable in the presence of

air and hydrolyze in the presence of water forming highly insoluble products. Thus, if using an

alkoxide or an easily hydrolyzable compound as a source of cations, non-aqueous based

solvents should be used to prevent precipitation of insoluble by-products.

The second factor to consider in using the Pechini method is the desired

microstructure. To make fine, non-agglomerated powders, an equimolar citric acid:ethylene

glycol ratio has been suggested; for increased density of the powders, a lower ratio should be

used, such as the 1:4 ratio employed for making fibers. A "C" ratio or citric acid: cation ratio

of 3 has also been reported to promote a more homogeneous resin structure, especially for

crack-free films. For x-ray and neutron diffraction studies, a fine non-agglomerated powder

would suffice and a CA:cation:EG ratio of 3:1:3 was chosen.

2.3 Experimental Synthesis of Y 2 (ZrySnl y)2 0 7 powders via Polymeric

Precursors

2.3.1 Preparation of Stock Solutions

Based on the literature search conducted, a modified technique for making

Y2 (ZrySniy)2 0 7 was used. Alkoxides were a common precursor used for a source of tin and

zirconium in prior syntheses by Yu [5] and Yeo [4]. Not only are they extremely expensive,

but more importantly, alkoxides readily hydrolyze in the presence of water, producing insoluble
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by-products. The alkoxide precursors were used in an initial attempt to synthesize the samples.

When individually-clear citrate stock solutions of yttrium carbonate, tin(II) ethoxide and

zirconium n-propoxide were mixed and gradually heated to about 900 C, a milky intermediate

solution was observed in the final mixing stages. Although the solution evolved into a clear

yellow solution at around 1000 C, an alternate synthesis scheme was devised with the thought

of preventing such an onset of sudden precipitation. The transient milky solution could have

been a result of the temporary adjustment of disparate pH values of the three different stock

solutions. Moreover, resin formation using the alkoxides did not seem to yield a completely

transparent resin; in fact, a brown slurry seemed to coexist in the resin upon close visual

inspection.

Since yttrium carbonate is hydrated, alternative water-soluble metal precursors for

zirconium and tin were investigated. According to past studies of zirconium-containing mixed

oxides synthesized by the Pechini method, zirconyl chloride had been successively used

[14,16,17]. Figure 2.3 depicts the solubility isotherm constructed by Choy and Han for the

zirconium(IV)-citric acid-water system [17]. The solubility curve of highly insoluble Zr(OH)4 ,

is superimposed onto the concentration of Zr(IV) ions. Hydroxide precipitation is strongly

suppressed in the presence of the complexing citric acid, and can occur above pH=7. Further

research was then conducted on possible tin precursors that are stable below pH 7. A logical

candidate was tin(II) chloride, SnCl2 . Tin (II) chloride is very soluble in water (83.9 g in 100

mL H2 0 at 0 C) and stable at low pH or in the presence of strong complexing anions like

CH 3 C0 2 . In a citric acid solution, the Sn ions can form complexes like [Sn(C 6 H5 0 7 )]~,

[Sn(OH)(C 6H 5 0 7)]2- and [Sn(C 6H 50 7 )2]4 - [27]. Unless these low pH or complexation

conditions are met, SnCl 2 is susceptible to hydrolysis resulting in insoluble tin (II) oxides.
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Fig. 2.3 The solubility isotherm for the zirconium(IV)-citric acid-water system [7]. The
solid black line represents the total concentration of soluble zirconium citrates as a
function of pH. The curve relates the solubility of Zr(OH)4 (s) in the system.
Undesireable precipitation of Zr(OH)4 in the absence of citric acid starts at low pH, but is
suppressed in chelate-forming citric acid as noted by the dip in the curve. Below pH= 7,
zirconium citrates are the dominant species rather than the hydroxy species [7].
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Thus, by carefully considering the properties of the individual cations in choice of

precursors, an aqueous based-approach was used. A modified Pechini method as outlined by

Anderson et al. [9] and Moon [6] was used where stock solutions of each of the metal cations

were prepared. In light of past studies of CA: cation:EG ratios, a 3:1:3 ratio was chosen in

order to maximize the amount of chelation to metal ions, provide a fully-foamed and viscous

gel to minimize agglomeration and precipitation, and keep the amount of organics to sufficient

but not excessive quantities to minimize calcination temperatures. Having a similar pH among

solutions is also desireable to minimize precipitation upon combining solutions due to regional

variations in pH. In step with Tai and Lessing's suggestion on minimal water content, 0.5 mL

of water were used per 1 g of citric acid [12]. Specific procedures for making stock solutions

with both the alkoxide or chloride follows.

2.3.1.1 Yttrium Citrate:

To 400 mL of deionized water, 805.3 g of citric acid (anhydrous, ACS, 99.5+%, Alfa)

was added and mixed with a magnetic stir bar. Next, after 20 minutes, 234 mL (or 260.2 g

since the density= 1.1088 g/mL) of ethylene glycol was added. Slow addition of 250 g of

Y 2 (CO 3)3 3H 2 0 (Alfa, 99.9%) in 1-3 g increments (roughly a few spatula fulls) was

performed over the course of approximately two hours. The solution appeared to be a

white-skim-milk like mixture fizzing as a result of the carbonate reacting to form carbon

dioxide and water. When left to stir overnight, the solution became completely clear and

colorless by the next day. At this point, it is suggested that the solution be assayed (for details

on assay procedure see Section 2.3.2 below). The result should be a CA:cation:EG ratio

solution of 3: 1: 3.

However, in following Moon's guidelines of subsequent heating to 70' C to ensure
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complete dissolution, I heated the solution to 700 C for 4 hours. Polymerization ensued to

cause the appearance of fine long fibrous particles and small bubbles. In the future, such a

heating step is not recommended. Such a viscous medium is difficult to filter and precisely

measure in small quantities for accurate determinations of stoichiometry. Thus, additional

ethylene glycol and water were added to decrease viscosity. A total of 12 g of citric acid, 210

mL of ethylene glycol, and 155 mL of pure water was added in this remedial process. This

would equate to a CA:cation:EG ratio of approximately 3: 1: 4.9. The final solution was cone

filtered over the course of 2-3 days. From experience, use of an aspirator does not significantly

speed up the process.

2.3.1.2 Tin Citrate:

A. Aqueous-based approach:

An amount equal to 255.4 g of citric acid was added to 200 mL of pure water. The

solution was stirred and heated to 500 C to foster dissolution of the citric acid. Then, 100 g of

SnCl 2 *2H20 was added to the solution. Two separate layers in the solution were observed at

this point: a cloudy mixture on top of a clear bottom solution. Next, 75 mL of ethylene glycol

were added to the solution. At this point the solution should be left to stir overnight. A

translucent hazy solution resulted, but it became clear and colorless when filtered. It is

recommended that the solution be assayed at this point. The result should be a CA:cation:EG

ratio of 3: 1: 3.

In an attempt to clear the hazy solution as mentioned above, I added further amounts of

citric acid and ethylene glycol. An additional 170.4 g of citric acid and 500 mL of ethylene

glycol were added causing no significant change to the solution. The CA:cation:EG ratio used

for the final stock solution was 5: 1: 7.7.
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B. Alkoxide precursor approach (additional details not mentioned in Yu's work [5])'

To 150 mL of isopropanol, I added 25 g of tin(II)ethoxide (Sn(OC 2 H5 )2 , Alfa). Stir

this peach-colored milky solution for about five minutes. Gradually add 100 g of citric acid

over the

course of 2 hours. Increase the temperature to 500-600 C. An additional 30 mL of

isopropanol were added as the solution was thickening and becoming harder to stir. Sufficient

time was allowed for chelation to occur; the milky solution became thinner in consistency and

resembled skim milk. After about 2 hours, 200 mL of ethylene glycol was added. This turned

the mixture to a clear orange solution. The solution was left to stir near the boiling point of

isopropanol for 2 hours, filtered, and assayed.

2.3.1.3 Zirconium Citrate:

A. Aqueous-based approach:

To 350 m of pure water, 250 g of zirconium dichloride oxide (ZrOCl2 '8H 2 0, 99.9%,

metals basis, Alfa) was added and dissolved to give a clear solution. To this solution 447.14 g

of citric acid was added followed by 130 ml of ethylene glycol. The solution was left to stir

overnight. It is suggested that the solution be filtered and assayed at this point. The

proportions should result in a CA:cation:EG ratio in the solution of 3: 1: 3.

Like the yttrium citrate solution, this large batch of zirconium citrate was gradually

heated to 700 C for 4 hours as suggested by Moon to ensure complete dissolution. However,

since both these citrate solutions are readily soluble at room temperature, such a step is

unnecessary and even caused polymerization to occur. Fine long fibers were seen in the

solution accompanied by the development of an increased yellow/orange color. An additional
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50 mL of water and 40 mL of ethylene glycol was added to decrease the viscosity of the

solution which was then cone filtered. The final CA:cation:EG ratio of this solution was 3:1:4.

B. Alkoxide precursor approach (additional details added to Moon's original procedures[6]):

Zirconium (IV) n-propoxide (Zr(OC3H7 )4 , Strem Chemicals Inc.) in the amount of

160 g was added to 800 mL of isopropanol and left aside to stir for 20 minutes. To this

solution 640 g of citric acid was gradually added. Upon first adding the citric acid, the

solution turns yellow and

then becomes increasingly milk white. The mixture was heated to 500 C. Then 800 mL of

ethylene glycol was added to the solution upon which it was heated to 1000 C as rapidly as

possible. The mixture immediately turned into a clear champagne-colored solution. Additional

heat should be applied, but for no more than 2 hours to prevent polymerization. The solution

was filtered and assayed. Repeated attempts to use zironium (IV) isopropoxide

(Zr(OC3 H7 )4 C3 H7 0H) because of its greater purity over zirconium (IV) n-propoxide

(possibly containing up to 0.5-0.9% hafnium) were not successful. Unfilterable, insoluble,

white by-products remained suspended in the citrate solution, and gradually settled to the

bottom of the reaction vessel over time.

2.3.2 Stock Solution Assay

Each citrate solution was gravimetrically assayed by measuring ideally 10 g quantities

in three separate alumina crucibles. The tare and tare+solution weights were recorded. The

crucibles were set on a hotplate and heated overnight to 2000 C. The crucibles were then put

in a box furnace and gradually heated to following the schedule shown in Table 2.1 to prevent

bubbling over or loss of sample.
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Table 2.1 Heating schedule for Assaying Stock Solution Samples
Starting Temperature(0 C) Ending Temperature (0C) Ramp Rate (0 C/min) Dwell Time (hrs)

23 200 2 1
200 400 1 3
400 900 2 7
900 105 5 end

The final weight of the crucibles containing the oxide powders was determined and recorded.

The oxides were x-rayed to confirm the presence of a single-phase metal oxide. The three sets

of results were obtained and averaged to obtain a value for the grams of oxide/g of citrate

solution. The estimated error of the assay ranged from 0.01-0.02%. These results were used

to determine the weight of stock solution necessary to provide a given weight-fraction of oxide

for a solid solution of desired stoichiometry.

2.3.3 Mixing Stock Solutions for Multi-Metal Compositions

Based on the results of the assay, a balance was used to weigh a 2000 mL beaker

containing each of the citrate solutions in correct stoichiometric proportions. Crystallizing

dishes can be used if a smaller sample size is required. The multi-metal citrate solutions were

left to stir overnight to ensure homogeneity.

2.3.4 Thermogravimetric Analysis (TGA/DTA)

To set up an appropriate temperature profile for calcination, thermogravimetric analysis

(TGA) and differential thermal analysis (DTA) was conducted for the citrate solution

corresponding to Y2 (ZrO. 2 SnO.8 )20 7. Measurements were taken under ambient conditions on a

Seiko Thermal Analyzer (TG/DTA 320). Based on previous experience with citrate solutions

and knowledge of the the processing temperature employed [3, 6] the heating schedule for the

sample listed in Table 2.2 was used in hopes of observing chemical transitions at each of the

steps.

36



(a) The thermogravimetric
(TG) analysis of a Y3
Zr4 , Sn citrate-solution
that would result in

Y2 (Zr0.2 Sn0.8)20 7 when all
the organic residues are
removed. Continual weight
loss (in mg) is noted at
temperatures extending to

14500 C.
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(b) The differential
thermogravimetric plot
(DTG) locates peaks in
regions of the most
significant changes in

weight, namely, 260-400' C
during the burn-off of
organics. The sharp peak'2

located around 2000 C is
marks the boiling point of
ethylene glycol, and signals
the elimination of the excess.

(c) The differential thermal
analysis (DTA) represents
the energy, expressed in
microvolts, absorbed or
released in the reaction. The
broad endothermic peak
confirm that decomposition
of the citrate to the oxide is
not complete at temperatures

as high as 1450 C.
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Table 2.2: TG/DTA Heating Schedule for Citrate Solution Sample
Starting Temperature(0 C) Ending Temperature (0 C) Ramp Rate (0 C/min) Dwell Time (hrs)

22 120 3 0.5
120 170 3 0
170 400 5 1
400 1500 10 0

Figure 2.4(a) is a TGA plot of the change of weight as a function of temperature that reveals

continual weight loss of weight through 14500 C. Figure 2.4(b), the differential

thermogravimetric plot (DTG), shows a sharp spike at around 200' C which is most probably

the point where the excess ethylene glycol evaporated (b.p. 198'C). The most significant

change in weight from 2601C- 4000 C occurs from the burn-off of organic residues. The

plateau beginning at 7500 C and dropping off at 14500 C seems to indicate that decomposition

to the pure oxide is not complete until 14500 C. The results of the DTA in Figure 4.4(c)

confirm this fact by showing a broad endothermic curve throughout the heating schedule.

2.3.5 Preparation and Processing of Metal Citrate Solutions for Y2(ZrySn1 y) 207

Using the newly devised solution scheme for preparing stock solutions of the individual

metals, a small 1 g sample of Y2 (ZrO. 2SnO.8) 20 7 was prepared to test the procedure and confirm

the presence of the pyrochlore phase. The microscaled experiment indicated no signs of

precipitation during resin formation. Moreover, X-ray diffraction of the final oxide indicated

the expected pyrochlore superstructure peaks.

Upscaling to larger batches of 38 g samples of Y2 (ZrySn 1 y)2 0 7 where y=0.2, 0.4, 0.6,

and 0.8, the mixed metal citrate solutions were measured in the appropriate calculated amounts

placed in 2000 mL beakers and weighed on a scale. The solutions remained clear throughout
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an overnight mixing at room temperature. However, when gradually heated to 1200 C, white

precipitate appeared suspended in the solution. Contrary to the results of a smaller sample

size, the sudden precipitation in a large batch could be a result similar to that seen for the

alkoxides where sudden changes or pH or oxidation conditions resulted in precipitation.

However, unlike the synthesis technique using the alkoxides, in which the multi-metal citrate

solutions eventually turned into a clear yellow viscous media, the mixture did not cease to have

some visible white precipitate suspended in the gel. Thus, the onset of precipitation of the

aqueous-based citrates seem to evolve even sooner (during polymerization) than that of the

alkoxides which evolved later during the resin formation. The resin was charred to form a

tough black mass, and further burned to obtain a grey-white powder.

The powder was then transfered to alumina crucibles and heated to 4000 C for 24

hours in a box furnace. After slightly mixing and very modestly grinding the calcined powder,

the samples were transferred to a high temperature furnace and further heated treated at 8500

C for two hours followed by an equilibration at 15000 C for 30 hours. Following this, the

samples were immediately air quenched. The final samples were fine white powders with a

faint-pink tint. Table 2.3 summarizes these heating steps and the heating rates employed for

the entire solid solution series.

Table 2.3 Heating schedule of the Charred Resin Intermediate to Obtain Fine White
Oxide Powder Samples of Y2(ZrYSn.,) 207
Starting Temperature(OC) Ending Temperature (0 C) Ramp Rate (0C/min) Dwell Time (hrs)

23 170 10 0.2
170 400 5 24

Transfer powders to a High Temperature Furnace
23 850 8 2

850 1500 10 30
1500 23 20 end
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3. Structural Analysis

3.1 Introduction

According to Buerger [53,54], by suppressing certain symmetry operations in a simple

atomic arrangement, a derivative structure is formed. Four mechanisms or combinations

thereof are possible: ordered substitution, ordered omission, "stuffing" in which an extra atom

is positioned interstitially, and distortion. A special type of derivative structure is the

superstructure in which a translational symmetry operation is suppressed. Buerger proposed

that such superstructures should be analyzed to advantage as the sum of the substructure, that

is the average scattering density in the structure, and the complement structure (the function

that must be added to the substructure to produce the scattering density in the true

superstructure)[1,54]. The pyrochlore structure is a superstructure of a fluorite array of

atoms. The diffraction pattern of pyrochlore would thus consist of a strong set of intensities

attributed to the average fluorite substructure, and the weaker superstructure intensities from

the complement structure. These superstructure intensities contain all the information on the

ionic ordering and anionic displacements that form the pyrochlore superstructure [1].

Several challenges arise when analyzing pyrochlore superstructures. Since disorder

occurs on both the anion and cation arrays, occupancies of all sites are unknown in an partially

disordered pyrochlore. Moreover, the scale factor, which relates observed and calculated

intensities in the least-squares Rietveld analysis, is highly correlated to structural parameters

including occupancies, temperature factors, and displacement of atoms from ideal substructure

positions [1]. In addition, the relatively small differences in scattering lengths and numbers of

electrons present in our multi-metal oxide system, Y2(ZrySnl.y) 207 , leads to extremely small

superstructure intensities, that weaken further as the structure progressively disorders.
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Taking advantage of the fact that all ions occupy special position in the space group,

Heremans [1,2] devised a systemmatic determination of key features of the pyrochlore

structure through initial deletion of portions of the diffraction pattern. Details of her

methodology are described elsewhere [1,2], but the basic four steps, which were also

employed in this study for both neutron and x-ray diffraction profiles, are as follows:

(1) Deletion of all but those subcell reflections to which the cations solely contribute permits a

good estimation of the scale factor, lattice parameter, instrumental parameters (zero point,

peak shape, background) and isotropic temperature-factor coefficients for the cations.

(2) Fixing the value of the scale factor, one then deletes all but the superstructure reflections

to which the oxygen ions make contributions and makes a preliminary determination of the

x-coordinate for 0(1), occupancies and temperature-factor coefficients for the anions.

(3) Inclusion of all the superstructure reflections and refining the cation and oxygen

parameters results in full description of the complement structure.

(4) Restoring all the subcell reflections would normally improve agreement between

calculated and observed patterns; however, the presence of a coexisting fluorite-like phase in

Hereman's Y2(ZryTi1 y) 20 7 as well as the solid solution series of this study exacerbated the

residuals from inclusion of the entire pattern. Another problem that arises is that the

superstructure peaks may have different shapes than the substructure reflections if the former

are influenced by antiphase domains or the latter peaks include a contribution from a fluorite

phase with slightly different lattice constant.

In this study's structural analysis of Y2(ZrySn 1y) 20 7 , steps 1-3 were the general strategy

employed in the neutron diffraction data. Step 2 was skipped for x-ray data refinement

because superstructure reflections only contributed by the oxygens, unlike the neutron data,

could be barely distinguished from the background. Thus, oxygen parameters derived from the

neutron analyses were used in the x-ray analyses.
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The implemention of hard constraints on site occupancies proposed by Haile [44] will

be a crucial step in solving cation distributions in the combined analyses. Rietan [39,52] and

Refine are the only two Rietveld-analysis programs of which the author was aware of that

enabled the user to write constraints with more than one independent variable. Refine, a

program of Rietveld as modified for the National Institute of Standards and Technology

multidetector diffractometer by Prince [44,55,56] is only able to analyze neutron data. This

study uses the latest version of Rietan (Rietan 97-Beta) [52] which is a fairly new software

package that can be downloaded from the internet with no cost to the user. While Rietan does

not allow for simultaneous refinement of multiple data sets like GSAS [57] (General Structural

Analysis Software used by Williams [31,32] in his simultaneous x-ray and neutron studies),

Rietan has many advantages including linear and non-linear constraints, a stable

automatic-convergence to a minimum of the weighted sum of residuals using complex

algorithms in non-linear least-squares procedures, various peak-shape functions, an easy input

manner, and several kinds of formats for graphical data [52].

Although mentioned elsewhere [1,2,44], the constraints first introduced by Haile will

be recapitulated in this section for clarity and understanding by the reader as these constraints

are often referred to in later sections of this Chapter. To start off with the simplest constraint,

the connection between oxygen site occupancies in pyrochlore is straighforward since only one

scattering length is involved [1,2,44]:

48N 0 + 8N 2
0 + 8N 3 = 56 (3.1)

where Nio is the fractional occupancy of the oxygen in the 0(1) site. Rearrangement of this

equation defines NIo and N2
0 as the independent variables:

N3 = 7-6N 0 - N2
0 (3.2)
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The constraints imposed on the cations are less obvious. A single diffraction

experiment with our system, Y2(ZrySny)207, fails to reveal the exact distribution of the three

cations in two crystallographically distinct sites, A and B. In our neutron diffraction studies,

only the effective scattering lengths, bA and bB, of sites A and B can be determined:

bA= NAyby + NA zrbzr + NA sbs (3.3)

where NA is the fractional occupancy of site A by species i [1,44]. On the other hand, the

scattering length of site B is not independent, but constrained stoichiometrically:

bA+ bB= by+ ybZr (I-y)bSn (3.4)

Common structural analysis programs like GSAS, Refine, or Rietan only allow for site

occupancy refinement as opposed to the scattering lengths of the sites. This obstacle was

overcome by assigning only one cation species such as Y to site A, and then refining the

occupancy of the A site. This result yields the scattering length of the A site [2]:

bA= NAby (3.5a)

= NAyby + NAzrbzr + NA snbSn (3.5b)

As by > bzr > bs (Table 1.2), it follows that NA > 1. Moreover, relation (3.4) can be

rearranged to become [2]:

bB y[by± ybZr (I-y)bSn] -bA (3.6a)

= [by + ybZr + (1 -y)bsn] - NAby (3.6b)

and arbitrarily assigning the scattering length of Sn to the B site, it follows that:

bB= NBbsn (3.7a)

NB = [by + ybZr + (I-y)bsn]/bsn - NAbY/bsn (3.7b)
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Therefore, by treating NA as the independent "occupancy", NB becomes a dependent variable,

and equation 3.7b is the hard constraint employed in the refinement program which can also be

expressed as:

NB= K1 -K 2 NA (3.7c)

where K1 and K2 are constants equivalent to the calculated value of the coefficients in

equation 3.7b. Additionally, assuming that both A and B sites have unit occupancy, the

following relations are also established:

NA +NBy= 1 (3.8)

NAZr + NBzr = y (3.9)

NA1 + NBsn =I - y (3.10)

In total, five equations are given, but six unknown site occupancies exist [1,2,44]. Thus, an

additional x-ray diffraction experiment is conducted to provide the missing information.

As noted previously in Chapter 1, the number of electrons associated with Y3+and Zr 4+

are identically 36. Hence, these two species are virtually indistinguishable in X-ray diffraction.

This fact is exploited by solving the site occupancies as a two site, two cation problem by

employing only scattering factors for Sn 4+ and (arbitrarily) y3+ in the calculations. The

following site occupancy constraints are introduced in the x-ray analyses assuming that A and

B sites have unit occupancies:

NA s + NAy = 1 (3.11a)

N sn + (I-N ) 1 (3.11b)

NBs + NBy= 1 (3.12a)

((I-y)- NAS) + (y + NAsH) = 1 (3.12b)
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Therefore, the average scattering factors at each cation site can be written as:

fA= NAnfSn + (1 - NASn)fY (3.13)

fB= ((1-y)- NA S) fsn + (y + NA s ) fY (3.14)

With all these careful considerations in mind when refining the pyrochlore structure, analysis of

Y2(ZrySn1 y) 20 7 can begin.

3.2 Neutron and X-ray Diffraction Analyses

3.2.1 Experimental

Neutron diffraction data were collected at ambient conditionswith the 32-detector High

Resolution Powder Diffractometer at the Research Reactor at the National Institute of

Standards and Technology. The diffraction profiles were collected in steps of 0.050 20 for the

range of 3.0 -168' 20 using 1.5402 A thermal neutrons monochromated by reflection from

(311) of a copper single crystal. The volume of the NIST cylindrical sample holder was

9.7096 cm 3 with an inner radius of 0.78 cm. Approximately 15 g of sample were used for

each of the measurements. The cylindrical configuration of the sample requires that absorption

be corrected as a function of Oi, the diffraction angle at the ith step, during the refinement of

the data [3]. Rietan uses an absorption correction factor, A(0i), based on the user's input of

the radius of the sample holder rc and packing density of the sample [52]:

A(0i) = exp [(1.7133-0.0368sin 2oi),Irc - (~0.0927-0.3750sin 2Oi)(rL) 2 ] (3.15)
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The linear absorption coefficient, p1, is calculated from the packing density inputted by the user.

Since the packing density of the sample could not be precisely determined because of the

unique sample holder employed at NIST, all the samples were estimated to have a packing

density of 1.545 g/cm3 , based on an approximate mass of 15 g per sample. Based on

calculations using the function of the absorption correction factor employed in Rietan, a

discrepancy as great as 50% of the linear absorption coeefficent t in the sample with the

highest absorption in our solid soltuion series (y=0.2 since Sn has a higher absorption cross

section than Zr), would still result in relatively small systemmatic source of error. Namely, at

low diffraction angles, the absorption correction factor would vary +2E-06, and at high angles,

the correction factor would vary ±0.004. A 10% discrepancy in p. would decrease the margin

of error in the absorption correction factor further by an order of magnitude in both low and

high diffraction angle regions.

X-ray diffraction data were provided by a Rigaku RU300 18 kW rotating anode

generator using Cu Kca radiation (CuKal 1.54051 A, 2(Cua 2 =1 .54433 A). The diffracted

beams were monochromated from the (002) reflection of graphite. A 0.3 mm receiving slit

before the detector, a 1 0 divergence slit for the beam incident on the sample, and a 10 receiving

slit after the monochromater were used. The powders were ground with the addition of sparse

amounts of acetone (as a drying lubricant) in an agate mortar and were mounted on a glass

slide. Intensity data were collected from 11 -1540 20 with a step size of 0.03' 20, and with a

total count-time of 200 minutes per sample for each sample in the solid solution series where

y=0.2, 0.4, 0.6, and 0.8. Prior to the scans of the samples, NIST certified Si and LaB6

standards were measured with the same step size, but over a shorter 20-minute count-time.

The Si standard provided the zero-point of the diffractometer, and the LaB6 standard provided

sharp, well-defined peaks for instrumental peak-shape parameters (to be used later in the

refinement ) that have no functional dependence on the sample [3].
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Rietveld analyses were performed using the latest PC versions of Rietan (FAT-Rietan

97beta )[6]. For the neutron diffraction data, a total of 29 adjustable parameters were used in

the model. The 15 structural parameters included a scale factor, lattice constant, the 0(1) x

coordinate, three site occupancies (A, 0(1), 0(2)), and 9 temperature factor coefficients. As

previously mentioned, hard constraints were employed to evaluate the dependent occupancies

of B and 0(3). The species designated to the B site is arbitrary, and the constant values K, and

K2 of the hard constraint (equation 3.7c) was adjusted accordingly. In this study, Sn 4+ was

assigned to the B site for y=0.2 and 0.4; Zr4 + for y=0.6; and an imaginary species (Zr0 .8 Sn 0 2 )

for y=0.8. The remaining 14 instrumental variables were the zero-point in 20, 8 background

parameters, and 5 peak-shape parameters, U, V, W, X, Y. The background function used in

Rietan is approximated by a finite sum of Legendre polynomials F(xi), as first expressed by

Abramowitz and Stegun [52,60], orthogonal relative to integration over the interval [-1,1]:

11

Ybi b.F.(x.) (3.16)
i=oJ

where b are the background parameters to be refined in the Rietveld analysis, and the variable

xi is the diffraction angle 20, normalized between -1 and 1 [52]:

Xi = 20i - max - Omin (3.17)
dmax - Omin

The profile or peak-shape function employed in Rietan is a slightly modified pseudo-Voigt

function of Thompson, Cox and Hastings [52,59]. A convolution of a Lorentz (L) and Gauss

(G) function, the Voigt function is approximated by a linear combination of the two functions

[52]:

k(A20) = rL(A2 0 ) + (1-n) G(A 2O) (3.18a)
=r 2 [1+4(A20/Hk) 2]1 + (1-r) 2(ln 2)1/2 exp[-41n2((A20)/Hk))2] (3.18b)

r(Hk /2Hk
where:

= .36603(Hj/Hk) - 0.47719((Hj/Hk))2 + 0.11116((Hj/Hk))3 (3.19)
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and:

Hk (H5 kG+ 2.69269H 4 kGHk + 2.42843 H3 kGH2 k+ 4.47163H 2 kGH3k+ 0.07842H 4 kGH5 )0 .2 (3.20)

In the above equations 3.17a-3.19 [52], A20 = 20i - 2 0 k (i is the step number; k is the reflection

number; 20i is the diffraction angle at the ith step; and 8 k is the Bragg angle for the kth

reflection), #L is the normalized Lorentz function, 4 G is the normalized Gauss function, q is the

fraction of the Lorentzian component, and Hk is the full-width-at-half-maximum (FWHM) of

$L and $G. Hg and HkG are the FWHM of the Voigt function for the Lorentzian and

Gaussian components respectively [52].

The variance G2 of the Gaussian component can be expressed as:

a 2 = Utan2 Ok + Vtanok + W + Psec 2 ek (3.21)

where:

HkG = (8a 21n2)1/2 (3.22)

Therefore, U, V, W are three peak-shape parameters describing the Gaussian character, and P

is the Scherrer coefficient for Gaussian broadening but is not used as an adjustable parameter

in this study [52,61]. Variables V and W depend solely on the instrument and not the sample.

The Lorentzian contributions to the profile parameters are X, Y, X., and Y. related in the

expression:

Hk = (X+Xecos(pk)sec6k + (Y± Yecosyk)tan6k (3.22)

The first part of the expression proportional to secOk is associated with crystallite-size

broadening. The second part proportional to tan6k is assoicated with Lorentian microstrain

broadening. X and Y are isotropic-broadening coefficients while Xe, and Ye are

anisotropic-broadening coefficients, and (P is the angle between the scattering vector and an

anisotropic broadening axis [52]. Only X and Y were used as adjustable parameters in this
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study. Isotropic thermal factors were assigned to all atoms in the early stages of refinement

and later replaced with anisotropic terms.

For the x-ray diffraction data, structural parameters were identical to those used for

the neutron data except that the occupancy of 0(2) was fixed for y-0.2, 0.4, and 0.6 in the

later cycles of the refinement for an improved fit. The zero-point, peak-shape parameters V

and W (which solely depend on the instrument), and Lorentz-polarization correction factor as

determined by Eberman [3] were fixed at the refined values obtained for these parameters

using the NIST-certified Si and LaB6 standards diffraction profiles measured prior to the

solid-solution samples. The remaining instrumental parameters included three peak-shape

parameters, U,X,Y, 8 background parameters, specimen displacement, and specimen

transparency.

The general refinement approach for both sets of data was outlined earlier in this

chapter according to Heremans [1,2]. When the final step of including all the substructure

peaks was employed, the dramatic increase in residuals and shift in to a larger lattice

parameter, signaled the coexistence of a fluorite-like phase as seen in the Y2 (ZryTi1 y)2 0 7

series. Antiphase boundaries in diffraction patterns are characterized by broadening the

superstructure lattice points in reciprocal space, but integrated intensities remain unaffected

[2]. The peak shapes employed for the superstructure were incommensurate with the

substructure, since the former tends to be broader in shape. Thus, reported values are

associated with only the superstructure peaks. Other useful guidelines in the refinement

process can be found in work by Eberman [3] and Young [50].

3.2.2 Results

Figure 3.1 (a) and (b) depict low-angle regions of neutron and x-ray powder diffraction

patterns for the y=0.2 sample. Since the wavelengths of the thermal neutrons and the x-ray
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radiation used in these experiments were very similar (1.5402 A and 1.5405 A respectively), a

given reflection in the neutron profile can be found within the same general 20 region in the

other according to Bragg's Law. The inherent differences in the scattering processes of the

two types of radiation can be further appreciated from a comparision of the patterns. Since

x-rays interact strongly with high-electron count species and are most intense at low angles,

the maxima in 3.1(b) can be found at the low angle region and correspond to substructure

cation-reflections. On the other hand, in the neutron diffraction pattern, in which scattering is

angle-independent, can contain maxima at higher scattering angles than the x-ray pattern and

correspond to substructure cation and anion reflections. Thus, at approximately 30", the (222)

reflection which is a fluorite-substructure peak associated with the cations, is the most intense

peak found in the entire x-ray pattern, but less intense in the neutron pattern. The (440)

fluorite reflection at about 50 0is most intense in the neutron pattern since both cations and

oxygen ions contribute to the peak. Furthermore, the challenge of analyzing the superlattice

peaks can be further appreciated when examining the sheer magnitude of the substructure

peaks compared with the superstructure maxima. Specifically, the fluorite (222) reflection as

observed in the x-ray pattern exceeds the highest intensity superstructure peak, the (311)

reflection at 28D, by three-orders-of-magnitude. The remaining superstructure peaks in the

x-ray pattern are not nearly as intense as the (311) reflection and weaken with increasing Zr

content.

Figure 3.2(a)-(h) depicts the low angle regions of the observed and calculated neutron

((a)-(d)) and x-ray ((e)-(h)) diffraction patterns for entire solid solution series. The

substructure maxima have been excluded in the profiles and superstructure reflections are

labeled in the y=0.2 patterns as a reference. The progressive weakening of the superstructure

reflections becomes apparent as the Zr content, y, increases, and as the background takes on

greater significance (notice should be taken of the change in the scale to which the intensities

ae plotted as y increases!). Located at the lower portion of Fig. 3.2.(a)-(h), difference plots
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Neutron Observed, Calculated, and Difference Plot for Y2(ZrySn1.y) 207
(Superstructure Peaks Shown Only)
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Figure 3.2 (a), (b), (c), (d) Neutron powder diffraction profiles for y=0.2, y=0.4, y=0.6, and y=0.8
respectively. The difference between the observed and calculated intensity is plotted in the negative y
region of the graph. The y=0.2 profile has all the superstructure planes labelled and can serve as a guide.
A capital 0 denotes peaks where only oxygen ions contribute.
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X-Ray Observed, Calculated, and Difference Plots for Y2(ZrySn1.y)2O 7(Superstructure Peaks Only Shown)

4000

3000

2000-

(311)(111)

4-

1000 .

0-

-1000
17501

1500-

1250-

1000

750

500

250

-250

-500

20

(e) y= 0.2 X-ray

- observed

+ calculated

V differenceI.
+

(333)
(511)

-
0

A-

(553)
(551) (731)

(711)

jj.IL (555)

111"

30 40 50

(531)

60 70
20

Figure 3.2 (e), (f), (g), (h) X-ray powder diffraction profiles for y=0.2 , y=O.4, y=0.6, and y=0.8respectively. The difference between the observed and calculated intensity is plotted in the negative yregion of the graph. The y=0.2 profile has all the superstructure planes labelled and can serve as a guide.
A capital 0 denotes peaks where only oxygen ions contribute.
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between the experimentally observed and calculated values of the pattern are useful indicators

of the quality of the Rietveld-analyzed data.

Table 3.1 and 3.2 lists the Rietveld-refined structural parameters for the results of the

neutron and x-ray diffraction analyses respectively. Refer to Table 1.1 for definitions of the

different residuals. Results of a neutron diffraction analysis of Y2 Sn 2O 7 (y=0) by Eberman [4]

are also included. The progressive increase in the residuals with Zr content can be attributed

to weaker and broader superstructure peaks as well as the growth of a co-existing fluorite-like

phase similar to that found in the Y2 (ZryTil-y)2 0 7 series [1,2,24,29,30]. It seems that

standard deviations of refined parameters, and the Bragg residuals rise with increasing

disorder. .The fluorite-like phase present in this study's samples has a slightly larger lattice

parameter than that of the superstructure, and also has a dramatically different peak-shape.

Table 3.3 shows the x-ray refined values obtained when the fluorite peaks to which only the

cations contribute (step 1 of the outline procedures in Section 3.1). The differences in lattice

constant, peak shape, and significantly-improved residuals are apparent when compared with

Table 3.2.

The presence of the co-existing fluorite phase may also account for deviations from a

truly linear dependence in lattice parameter with increasing Zr 4+ substitution of the

superstructure, Fig. 3.3. General agreement between the x-ray and neutron results is obtained

with the exception at y=0.8 in which the structure approaches complete disorder. An estimate

of the amount of fluorite that is present and how it changes with y would be a useful and

interesting problem for future work, especially in considering how conductivity relates to

structure. Oxygen-ion mobility in the coexisting fluorite phase or antiphase boundaries offers

another possible mechanism for conductivity observed in zirconate pyrochlore oxide powders.
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Table 3.1. Neutron Derived Lattice Constants, Atomic Coordinates, Site Occupancies and
Anisotropic Temperature Factor Coefficients for the Y,2(ZrsSn ,)907

Y= 0 0.2 0.4 0.6 0.8_
a (Angstroms)

Ain 16c m0 00

N

P 11= P22= P33

p12=p13=p23

B in 16d 3m 1/2 1/2 1/2

p 11= P22= P33

p12=P13=p23

O(1) in 48f mm x 1/8 1/8

N
x

P11
p22=P33

P23

O(2) in 8a43m 1/8 1/8 1/8

N

P 11= p22= P33

O(3) in 8b 43m 3/8 3/8 3/8

N

p 11= P22= p33

Rp(%)
Rwp(%)
Re(%)
RB
RF
d
S

10.3747(2) 10.3882(1) 10.3962(6) 10.3979(25)

0.88(4) 0.97(2)
0.014(2)

1.01(3)
0.010(2)

0.95(9)
0.014(5)

10.4019(21)

0.92(7)
0.009(5)

-0.0023(8) -0.002(1) -0.004(3) -0.002(2)

0.020(4) 0.012(3) 0.017(6) 0.010(6)

-0.001(1) -0.003(2) -0.0016(38)

1.00
0.4130(1)

0.96(2)
0.4119(4)
0.0007(4)
0.0015(3)
-0.0016(6)

0.997(9) 0.94(3)
0.0016(7)

0.003(9) 0.27(5)
0.21(15)

7.17
9.20
8.54

4.36

4.75

6.33
5.24

3.10
2.77

0.5804
1.2072

0.94(3)
0.4100(9)

0.0007(12)
0.0027(8)
-0.002(1)

0.89(7)
0.004(2)

0.47(10)
0.06(4)

6.49

8.66
5.06
7.24
4.19

0.3024
1.7122

0.89(7)
0.4013(34)
0.0097(46)
0.0096(31)

-0.011(4)

0.92(21)
0.019(11)

0.74(28)
0.07(7)

8.32
11.07
4.35

30.46
15.69

0.1649
2.5442

-0.0006(22)

0.91(5)
0.383(7)
0.014(7)
0.011(4)

-0.010(5)

1.05(22)
0.02(2)

0.52(27)
0.03(5)

8.40

10.91
4.78

57.18
32.66
0.164
2.2813

Note: Values for y=O are based on past studies by Eberman[3]
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Table 3.2. X-Ray Derived Lattice Constants, Atomic Coordinates, Site Occupancies and
Anisotropic Temperature Factor Coefficients for Y2 (ZrYSni _y)207

Y= 0.2 0.4 0.6 0.8
a (Angstroms)

A in 16c 3m 0 00
N (Occupancy) for Sn4+

N for Y3+/Zr4+

f3 11= 322= 133 3

P12=1313=P23

B in 16d 3m 1/2 1/2 1/2
N(Occupancy) for Sn4+

N for Y3+/Zr4+

[p 11 = f322= 33 3

f312=1 13=f323

O(1) in 48f mm x 1/8 1/8

N
x
fl 1

1322=1333

f323
0(2) in 8a 43m 1/8 1/8 1/8

N
f11= f122= 33 3

0(3) in 8b 43m 3/8 3/8 3/8

N
fi1 = f22= [33 3

U
x
Y

Specimen Displacement Ds

Speciment Transparency Ts

10.3910(9)

0.08(1)

0.92

0.008(1)

-0.0007(5)

0.72

0.28

0.0041(5)

-0.0002(4)

0.94(3)
0.412(2)
0.007(4)
-0.005(2)

-0.0009(18)

1.00
0.001(2)

0.337
0.25(14)

0.05537(4)
0.0614(5)
-0.007(2)

-0.04296414(4)

-0.0136433(6)

10.3971(18)

0.16(2)

0.84

0.012(1)

-0.002(1)

0.44

0.56

0.063(5)

-0.00003(73)

0.89(4)
0.410(4)
0.02(1)
0.003(4)

-0.0004(31)

1.00
0.006(4)

0.661
0.16(6)

0.1507(1)
0.0919(8)
-0.092(3)

-0.0470747(2)

0.006889(3)

Rp (%) 6.75 5.95 5.43 5.61

Rwp (%) 8.56 7.70 7.00 7.26
Re (%) 5.38 4.89 4.43 4.08

RB 17.09 32.39 43.75 64.63
RF 9.60 18.57 21.64 43.31

d 0.8607 0.8224 0.8512 0.6471
S 1.5901 1.5747 1.5800 1.7779
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10.399(5)

0.07(2)

0.93

0.009(1)

-0.0031(9)

0.33

0.67

0.009(1)

0.0003(10)

0.89
0.398(45)

0.10(5)
0.006(8)

-0.004(8)

0.920
0.008(12)

0.740
0.3(16)

0.2850(3)
0.013(2)
-0.014(8)

-0.011288(1)
-0.00997(2)

10.4126(22)

0.06(11)

0.94

0.005(4)

0.00001(86)

0.14

0.86

0.006(4)

0.001l(1)

0.86(3)
0.377(26)

0.01(2)
0.03(2)

-0.02(1)

0.88(23)

0.05(4)

0.94
0.04(4)

0.00151(3)
-0.017(2)

0.131(3)

-0.040166(5)

-0.01609(1)
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Figure 3.3 Variation of the lattice constant of Y2 (ZrySn 1_,)20 7 with increasing Zr
content from neutron and x-ray analyses. Deviations from linearity in the variation may
be a result of the poor resolution of superstructure peaks from the background combined
with the co-existing fluorite phase that has a slightly larger lattice constant than the
superstructure.
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Table 3.3 X-ray Derived Lattice Constant, Peak-Shape, and Residuals for the
Substructure Peaks in which Cations Contribute only

Y= 0.2 0.4 0.6 0.8
a (Angstroms) 10.38994(4) 10.39820(4) 10.40627(4) 10.41321(5)

U 0.0007494(6) -0.0005324(6) 0.0004482(6) 0.0004181(5)
X 0.02308(7) 0.03670(7) 0.3990(7) 0.02061(7)
Y 0.0406(2) 0.0297(2) 0.0304(2) 0.0302(2)

Rp(%) 5.13 4.85 4.63 5.26
Rwp(%) 7.35 6.73 6.32 7.19
Re(%) 3.15 3.06 3.20 2.90
RB(%) 1.04 1.26 1.66 1.42
RF(%) 3.67 3.77 7.17 7.17

d 0.5896 0.6704 0.6722 0.6044
S 2.3354 2.2006 1.9753 2.4809

3.2.2.1 Order and Disorder in the Pyrochlore Structure

The Y2 (ZrySn1 -y)2 0 7 series of solid solutions shows striking similarities to the

progressive disorder found in the Y2(ZrTi1 _y)2 0 7 series. Fig. 3.4 contrasts the behavior of

x-coordinate 0(1) of the aforementioned Y2 (ZryTi1 -y)2 0 7 and Y2 (SnyTil-y)2 0 7 systems.

While the zirconate series shows a quadratic relationship of the x-coordinate with increasing

Zr, the stannate series shows a linear relationship with increasing Sn [1,4]. Fig. 3.5 is a plot of

the behavior of the 0(1) x-coordinate with change in composition, y, in Y2 (ZrySn _y)2 0 7 and

shows a similar quadratic decrease with Zr 4+ content as clearly seen in Y2 (ZryTi1 -y)2 0 7.

For the Y2 (Zr TiI -y)2 0 7 series, independent disorder rates between the cations and

among the three different anions were observed: 0(1) and 0(3) were engaged in early stages

of disorder at y=0.3; mixing between the cation sites begins between y=0.45 and 0.60; and final

participation of 0(2) occurred at y=0.60 followed by complete disorder in both arrays at

y=0.90, Fig. 3.6 [2]. Yeo's [5,43] earlier x-ray analyses of the Y2 (ZrySnlpy) 2 0 7 series

reveals a similar trend, shown in Fig. 3.7, which shows oxygen occupancies as a function of
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Figure 3.4 A comparison of the change in the x coordinate for 0(1) as a function Qf the

mean radius of the cations nominally occupying the B site for Y2 (ZrTil-y207, a system

displaying disorder in the anion and cation arrays (quadratically decreasing x ), and for

Y2 (SnyTi I_)20 7, an essentially ordered system at all compositions (linearly decreasing x)

[3].
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Figure 3.5 Quadratically-decreasing 0(1) x-coordinate with increasing amounts of Zr in

Y2 (ZrySni_,)207. Neutron and x-ray analyses show good agreement.
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Figure 3.6 Neutron diffraction analyses by Heremans [1,2] of Y2(Zr Tii_,)207 show the
change in anion occupancies as a function of Zr content y. 0(2) is involved in disorder
midway through the solid solution series after mixing of the cation occupancies.
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X-RAY Refined Results

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.

0. 0.6

y in Y2(ZrySn1.y)20 7

Figure 3.7 Results of preliminary x-ray studies by Yeo [5,43] showing the change in the
occupancies of the anion sites as a function of increasing Zr content, y, in
Y(ZrSn-1 ) 07. The y=O value is taken from neutron diffraction studies by Eberman
[3J. ike 2(ZrTij_2 0 7 [2], the oxygen ions in Y2 (ZrSn]_2 0 7 display independent
disordering rates.
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(a) X-RAY Refined Results
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Figure 3.8 (a) X-ray diffraction data of this study showing the change in occupancies of the oxygen ion
array as a function of increasing Zr content, y, in Y2 (ZrSnl_) 2 7. General agreement is also seen with
Yeo's results, but anion disorder occurs almost immediately upon addition of Zr as seen in the linear
increase of the 0(3) occupancy. (b) Neutron data, a more sensitive measure of oxygen occupancies,
showing the change in the occupancies of the anion sites as a function of Zr content in Y2 (ZrySnnj)2

0
7.

Disorder in both the cation and anion arrays begin as almost immediately upon increase of y. High
standard deviations of the oxygen occupancies at y=0.8 is due to the increased presence of a co-exising
fluorite-like phase coupled with weaker superstructure intensities.
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increasing Zr content. The x-ray results of this study, Fig. 3.8(a), closely resemble Yeo's

work, but suggests a immediate disorder of the anion array as noted by the linear increase of

the 0(3) occupancy from y=0. Oxygen ion occupancies for y=0.6 in the x-ray analyses were

fixed at the values obtained from the neutron refinement since nonsensical values were

obtained when these parameters were allowed to vary

The neutron data, which provide a more sensitive measure of oxygen occupancies, also

suggests disorder in O(1) and 0(3) and slight levels within 0(2) immediately upon addition of

Zr as seems to increase linearly with y, Fig. 3.8(b). At y=0.2 the average B4+ site radius is

0.696 A corresponding to (Zr0 .8 Ti 0.2 ) which would have already showed levels of disorder in

both the cation and anion arrays in the zirconium-titanium pyrochlores. Figure 3.9 is a

comparison of the O(1) x-coordinate as a function of average ionic radius of site B of the three

solid solution series, Y2 (ZryTil-y) 2 07, Y2 (SnyTil-y)207, and Y2(ZrySnl y) 2 07. Previous

studies of Y2 Sn 2 0 7 by Eberman [4] indicated levels of cation disorder but no anion disorder.

Clearly, results of both the neutron and x-ray analyses in the present study agree that the anion

array is not completely disordered (when all the anion site occupancies of the defect fluorite

state would be 7/8) for Zr substitution extending to y=0.6. In fact, neutron diffraction data of

y=0.8 still showed signs of very weak maxima for those superstructure peaks occurring at low

angles as seen in Fig. 3.2(d). The extreme weakening of intensities of superstructure peaks in

the neutron diffraction data, and the virtually non-existent peaks buried in the background for

the x-ray data at y=0.8 made accurate structural analyses difficult as seen in the high standard

deviations of the oxygen occupancies in Tables 3.1, 3.2 and Fig. 3.9. Overall, the Zr present in

the Y2 (ZrySniy)2 0 7 series appears to override the tendency of Sn to maintain an ordered

structure. This suggests that Zr4+, as a consequence of its larger size, has greater ability to

enter the eight-coordinated A site than the Sn 4+, which has Sn-O bonds possessing significant

covalent character.
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Figure 3.9 Comparison of the 0(1) x-coordinate as a function of
the B site in three solid solution series, Y2 (ZryTiy)>2 0 7,

2 (ZrySnI-) 207.

average ionic radius ?f

Y2 (SnyTi _>) 2 07, and

67

. . . . . .0.43

0.42
x
0

0
0
0U

0.41

0.40

0.39

0.38

0.37 .



3.2.2.2 Cation Distribution

The effective scattering powers of the A and B cation sites, as reported in Tables 3.1

and 3.2, were employed in the equations outlined in Section 3.1 to calculate the distributions of

Sn 4+, Zr4 + and Y 3+ cations. The results are listed in Table 3.3. Table 3.5 shows the

occupancies in terms of relative percent of the total stoichiometric amount of each cation in the

two sites.

Table 3.4 Cation Distribution from Combined X-ray and Neutron Analyses
y- Y Sn4+ in A Sn4+ in B Zr4+ in A Zr4+ in B Y3+ in A Y3+ in B

0.2 0.08(1) 0.7165 0.2181 -0.0181 0.6984 0.3017
0.4 0.16(2) 0.4441 -0.4851 0.8851 1.3292 -0.3292
0.6 0.07(2) 0.3317 0.5243 0.0758 0.4075 0.5925
0.8 0.06(11) 0.1380 0.9000 -0.1000 0.0381 0.9619

Table 3.5 Relative Percent of Total Stoichiometric Amount of Each Cation Distributed
in Sites A and B

y %SninA %SninB %ZrinA %ZrinB %YinA %YinB
0.2 10.44 89.56 109.07 -9.07 69.84 30.16

0.4 25.98 74.02 -121.27 221.27 132.92 -32.92

0.6 17.07 82.93 87.37 12.63 40.75 59.25

0.8 30.98 69.02 112.50 -12.50 3.81 96.19

Results of the cation distributions show both surprising and expected trends. A more or less

constant amount of Sn 4+ occupies the A site, averaging approximately 20% (with standard

deviations considered) of the total amount of Sn 4+ present in the solid solution. This result is

consistent with the results of Eberman[3] who found cation disorder in Y2 Sn 2O 7 . In fact, he

found the y3+ A site occupancy to be only 0.88±0.04 which shows general agreement with

this study. The second trend is that Zr 4+, as predicted, has an increasing tendency with y to

enter the A site; however, a surprising exception to this prediction occurs at y=0.4. At this

composition, the results seem to indicate that all the Zr 4+ remains in the B site based on the

"negative" occupancies. However, upon further analysis of the calculations, it became clear
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that the necessity of lumping the Zr 4+ and Y3+ together in the x-ray analysis (because of their

nearly identical scattering factors) no longer permits computation of partitioning of the three

species from the results of the neutron analysis because the neutron data at this composition

shows very little contrast in scattering between the A and B sites. More specifically, any

combination of values that were substituted for the occupancy of the Sn 4+ always resulted in a

positive and negative occupancy in the respective B and A site for Zr 4+; and a positive and

negative occupancy in the respective A and B site for Y3+. Thus, we are left with a two

cation one site problem here! More than likely, equal amounts of Zr 4+ and Y3+ are found in

both sites, leading to indistinguishable scattering lengths (i.e occupancies of 0.2 in the A and B

sites for Zr 4+, and 0.5 in both sites for Y 3+). The distribution of the Zr 4+ and y3+ occupancies

cannot be determined based on the x-ray data and model for analysis. Another

linearly-independent diffraction experiment is needed for increased precision.

Another complication in determining the cation distribution in this solid solution series,

Y2(ZrySniy)2O7, is the presence of the fluorite-like phase. Examination of the amount of

fluorite phase present in the powders would better quantify the degree of uncertainty in the

values listed in Table 3.4 especially if the lattice constant of this fully-disordered phase

indicates a composition that is different from that of the pyrochlore phase. Furthermore,

particular cations, like Zr, may have a tendency toward antiphase boundaries. Thus, the

amount of Zr available for the pyrochlore regions would be decreased. The same is true of the

Y or Sn which may be present in the co-existing fluorite phase. Zaghete [25] used the Rietveld

method to perform quantitative analysis of the evolution of the tetragonal and rhombohedral

phases of lead zirconate titanate prepared by the Pechini method. The relative amounts of

these phases were contingent on composition and calcination temperature. By studying three

varying Zr:Ti ratios of 49:51, 53:47, and 57:43, they concluded that the zirconium ion diffused

toward titanium-rich regions thereby increasing the amount of tetragonal phase for
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compositions with zirconium less than 53% and decreasing the tetragonal phase for

compositions with zirconium greater than 53%. A similar treatment of the solid solution series

of this study could provide further insight into the cation distribution in the pyrochlore

structure.

4. Conclusions

The present structural analyses of the solid solution series, Y2 (ZrySnl y)2 0 7, provide

insight into the marked contrasts between the highly ordered Ti stannate series,

Y 2 (SnyTi I y)20 7 and the Ti zirconates, Y2 (ZryTi1 -y)2 0 7. Rietveld analyses of neutron and

x-ray data of the Y2 (ZrySniy)2 0 7 system shows marked similarities with the

Y2(ZryTi I -y)20 7 solid solution series. Like the Ti zirconates, the 0(1) coordinate x

decreased quadratically with increased Zr content, y, a hallmark of the creation of disorder in

the cation and anion arrays. Results from both the x-ray and neutron analyses suggest almost

immediate cation and anion disorder upon addition of Zr. Furthermore, complete disorder of

the pyrochlore structure to the defect fluorite phase seems to occur slightly beyond y=0.8.

Combined analyses of x-ray and neutron diffraction data was used in an attempt to

determine distribution of three cations in two cystallographically independent sites. Separating

superstructure peaks from the background became increasingly difficult with increasing Zr

content,y, because of rapidly-increasing disorder and the general lack of contrast between the

three cation species for both x-rays and neutrons. Poor resolution of the superstructure peaks

also account for rising residuals and standard deviations with increase in y. The results show

an essentially constant amount of Sn 4+ remains in the A site for the highly-ordered, low Zr

solid solutions. This corresponds to approximately the same level of cation disorder found in
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Y2 Sn 2 O7 found by Eberman [3]. Furthermore, Zr 4+ readily enters the A site beginning as

early as y=0.2 . The cation partitioning of the Zr4+ and Y3+ for y=0.4 can be more precisely

solved with another independent diffraction experiment.

The presence of a co-existing fluorite-type phase presented additional challenges in

examination of the Y2 (ZrySny)2O 7 series. The fluorite phase seemed to have a slightly

larger lattice constant than that refined for the superstructure which could be indicative of a

composition different from that of the pyrochlore phase. Departure from the nominal

composition of the latter could explain deviations from linear dependence of the lattice

constant on increasing Zr content. Moreover, the cation distribution determined for the

superstructure may be offset by the cations that may have a tendency toward antiphase

boundaries or the fluorite-like phase. Nonetheless, preliminary analysis of combined neutron

and x-ray data seems to reveal more similarities of the present Y2 (ZrySn _y)2 0 7 compositions

with the Y2(ZryTil _y)207 series than with the order that persists in Y2(SnyTily) 2 0 7.

Overall, the examination of disorder and cation distributions in this study suggests an ability of

Zr to more readily enter the eight-coordinated A site than is the case for the covalently-bonded

Sn. The fact that the progress of cation and anion disorder with increasing Zr content has

been shown to be quite similar to that in the Y2 (ZryTil-y)2 0 7 system, previously show to be

an excellent fast-ion conductor, allows one to predict that the newly-synthesized

Y2(ZrySny)2O7 compositions will prove to be equally-outstanding conductors.
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5. Future Work

A number of interesting problems and areas for further research are generated from this

investigation. As found by previous studies, antiphase boundaries in pyrochlore solid solutions

were common in samples using a modified Pechini method or a citrate metal precursor

technique [1,2,24,29,30]. An interesting question is if another synthesis method would give

the same structural analysis results. Eberman [3] attempted to address this question by

synthesizing compositions of pyrochlore via solid state reaction, but concluded that the

samples were actually different in nominal composition. Thus, the question of whether

antiphase boundaries are common to all polycrystalline pyrochlore compounds or simply a

result of the synthesis route remains to be determined. Quantifying the amount of fluorite

present in the solid solution powders would be useful in determining more accurate lattice

parameters and the cation distribution of the superstructure.

Yu[5] has studied the ionic conductivity measurements of Gd2 (ZrySnl-Y) 2 07 . It

would be interesting to see how the conductivity of Y2 (ZrySnl-y)2 0 7 compares with the

gadolinium counterpart as the structural insights of disorder in this study predict that the

newly-synthesized yttrium zirconium stannates should display high oxygen ion conductivities

comparable to Y2 (ZryTi1 y) 2 07 .

While this is the first study to employ two radiation to analyze the cation distribution in

a pyrochlore compound, other pyrochlore compounds that have greater differences in

scattering lengths may be more amenable to analysis with increased accuracy and precision.

The use of synchrotron x-ray radiation with wavelengths close to the absorption edge of one or

more of the cations can also be used to enhance superstructure intensities, as the effective

scattering power of a cation may thereby be shifted by as many as a dozen electrons.
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Substituting all three cations Zr 4+, Sn 4+, and Ti4+ in the B site of our pseudo-ternary

system, Y2TI207 -Y2Sn 20 7 -Y2Zr 207 , would add further insight into this system and perhaps

reveal conductivities that are further enhanced. Moreover, as mentioned by Eberman [3], an

A-site substitution series would also provide great insight into factors that control ordering in

the pyrochlore structure.
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