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Abstract

This thesis investigates dynamic phenomena that arise in a variety of systems that
share similar characteristics. A common characteristic of particular interest in this
work is travel time. We wish to address questions of the type: How long does it
take a driver to traverse a route in a transportation network? How long does a unit
of product remain in inventory before being sold? As a result, our goal is not only
to develop models for travel times as they arise in a variety of dynamically evolving
environments, but also to investigate the application of these models in the contexts
of dynamic pricing, inventory management, traffic control and route guidance.

To address these issues, we develop general models for travel times. To make these
models more accessible, we describe them as they apply to transportation systems.
We propose first-order and second-order fluid models. We enhance these models
to account for spillback and bottleneck phenomena. Based on piecewise linear and
piecewise quadratic approximations of the departure or exit flows, we propose several
classes of travel time functions.

In the area of supply chain, we propose and study a fluid model of pricing and
inventory management for make-to-stock manufacturing systems. This model is based
on how price and level of inventory affect the time a unit of product remains in
inventory. The model applies to non-perishable products. Our motivation is based
on the observation that in inventory systems, a unit of product incurs a delay before
being sold. This delay depends on the level of inventory of this product, its unit
price, and prices of competitors. The model includes joint pricing, production and
inventory decisions in a competitive capacitated multi-product dynamic environment.

Finally, we consider the anticipatory route guidance problem, an extension of the
dynamic user-equilibrium problem. This problem consists of providing messages to



drivers, based on forecasts of traflic conditions, to assist them in their path choice
decisions. We propose two equivalent formulations that are the first general analytical
formulations of this problem. We establish, under weak assumptions, the existence
of a solution to this problem.

Thesis Supervisor: Georgia Perakis
Title: Associate Professor of Operations Research
Sloan School of Management
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Chapter 1

Introduction

1.1 Motivation and Contributions

This thesis investigates dynamic phenomena that arise in a variety of systems that
share similar characteristics. Such systems include transportation networks as well
as supply chain and inventory management systems. Two underlying common char-
acteristics of these systems are that they are dynamic in nature and that there is
some form of travel time (delay) incurred in these systems. In particular, due to
their service time and the inherent disequilibrium between demand and supply, these
systems give rise to dynamic delays. For example, in ground transportation, poor-
quality roads and congested traffic conditions cause travelers to experience delays in
traversing a network’s path. In inventory management systems, a high unit price
and a high level of inventory of a product may cause a newly produced unit of that

product to incur a delay before it is sold.

As a result, it is important for traffic planners to understand and manage the nature
of travelers’ delays (costs) in urban and highway transportation systems, and for the
supply chain industry to design optimal pricing and inventory management strategies
that maximize profits, reduce inventory levels, and effectively manage the delays that

products incur before being sold.
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Therefore, understanding the nature of the dynamic phenomena arising in these sys-
tems, exploring their common characteristics, and designing mechanisms to manage
them effectively, have potential for tremendous economic, social and political impacts.

This research explores these systems but also exploits the relationship between them.

The travel time models we develop in this research utilize fluid dynamics laws for
compressible flow. This allows us to capture a variety of interesting phenomena. For
example, in the transportation area, we are able to capture various flow patterns
such as the formation and dissipation of queues, drivers’ reaction time and response

to upstream congestion or decongestion, spillback and bottleneck phenomena.

We investigate the application of these models in two contexts: (i) supply chain man-
agement and dynamic pricing, and (ii) advanced traveler information systems (ATIS).
Indeed, by interpreting travel times as price/inventory-sojourn-time relationships, we
are able to propose a tractable fluid model of pricing and inventory management for
make-to-stock manufacturing systems. This model incorporates the delay of price in
affecting demand for non-perishable products. Furthermore, in the context of ATIS,
we are able to propose the first general analytical formulations of the anticipatory
route guidance problem (ARG), an extension of the dynamic traffic user-equilibrium

problem. We also establish useful properties of the problem.

Overall, the contributions of this research are the following:

e We develop general analytical models for travel times. Although our results ap-
ply to a variety of systems, we focus our exposition on dynamic transportation

systems.

e Through these models, we derive closed-form solutions for travel times. These

seem to correspond to the ones used in practice.
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e We propose enhancements of our models in order to account explicitly for link

interactions, spillback, bottleneck phenomena, and capacity constraints.

e We propose and study a fluid model of pricing and inventory management of
non-perishable products for make-to-stock manufacturing systems. This model
is, to the best of our knowledge, the first model that is based on how price and

level of inventory affect the time a unit of product remains in inventory.

e We propose the first general analytical formulations of the Anticipatory Route
Guidance problem (ARG). We establish, under weak assumptions, the existence

of a solution to the ARG problem.

This research has the potential to significantly impact inventory control and manufac-
turing as well as transportation planning. In the area of dynamic pricing, we believe
that our results will lay the foundations for the use of the delay of price in affect-
ing demand and fluid dynamics models in supply chain and inventory management
systems. Furthermore, our results in transportation could play an important role in
the development of advanced traveler information systems (ATIS). They could also

significantly increase the role of information technology in traffic management.

Our analysis in this research requires an interdisciplinary approach, drawing upon a
broad collection of methodologies from areas such as differential equations, functional

analysis, and dynamic optimization.

1.2 Thesis Structure

The thesis is organized as follows. In Chapter 2, we propose and study first-order
and second-order fluid models for determining travel times. These models capture a
variety of flow patterns such as formation and dissipation of queues, drivers’ reaction

time and response to upstream congestion or decongestion. We consider two simplified
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models to estimate travel times as functions of the entrance flow rates: the Polynomial
Travel Time (PTT) Model and Exponential Travel Time (ETT) Model. We propose
enhancements of our models in order to account explicitly for spillback and bottleneck
phenomena and incorporate inflow, outflow and storage capacity constraints. As a
result, we consider two simplified models to estimate travel times as functions of the
erit flow rates: the Spillback Polynomial Travel Time (SPTT) Model and Spillback
Exponential Travel Time (SETT) Model. We propose a general framework for the
analysis of the PTT Model and the SPTT Model that reduces the analysis of these
models to solving a single ordinary differential equation. Based on piecewise linear
and piecewise quadratic approximations of the flow rates, we derive several classes
of travel time functions for the separable PTT, SPTT, ETT and SETT models.
We further establish a connection between these travel time functions. We extend
the analysis of the PTT and SPTT Model to second-order non-separable velocity

functions in the case of acyclic networks.

In Chapter 3, we propose and study a fluid model of pricing and inventory manage-
ment for make-to-stock manufacturing systems. Instead of considering a traditional
model that is based on how price affects demand, we consider a new model that relies
on how price and level of inventory affect the time a unit of product remains in inven-
tory. The model applies to non-perishable products. Our motivation is based on the
observation that in inventory systems, a unit of product incurs a delay before being
sold. This delay depends on the unit price of the product, prices of competitors, and
the level of inventory of this product. Furthermore, we believe that delay data is easy
to acquire. It is interesting to notice that this delay is similar to travel times incurred
in a transportation network. The model of this paper includes joint pricing, pro-
duction and inventory decisions in a competitive capacitated multi-product dynamic
environment. We apply ideas borrowed from transportation to inventory control and
supply chain in order to capture a variety of insightful phenomena that are harder

to capture using current models in the literature. In particular, in this chapter, we
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formulate the Dynamic Pricing Model (DPM) as a continuous-time nonlinear opti-
mization problem. We present a solution algorithm for a discretized version of the
model, test it on a small case example, and report on the computational results. Fur-
thermore, we study the analytical properties of the feasible region of the Dynamic
Pricing Model in the general case. We also establish, under weak assumptions, the
existence of a production/inventory control policy that maximizes the profit of the

company under study over the feasible region.

In Chapter 4, we consider the anticipatory route guidance problem (ARG). This prob-
lem consists of providing messages, based on forecasts of traffic conditions to drivers,
to assist them in their path choice decisions. Guidance becomes inconsistent when
the forecasts on which it is based are violated after drivers react to the provided
messages. We consider the problem of generating consistent anticipatory guidance
that ensures that the messages based on dynamic shortest path criteria do not be-
come self-defeating prophecies. In particular, in this chapter, we start by introducing
the notation and the feasibility conditions of the ARG problem. We then provide a
variational inequality (VI) formulation of this problem. We also present a fixed-point
formulation of the problem and establish the equivalence of the two formulations.
We discuss the special case of the Dynamic User-Equilibrium problem. We study
the mathematical properties of the problem. Under sufficient conditions on the path
flow rate functions and the travel time functions, we establish that the feasible re-
gion F(ARG) of the Anticipatory Route Guidance problem is non-empty, and that
the FIFO property holds. We show that the conditions we impose are the tightest
possible. We establish key properties of the feasible region, as a function of the path
flow rate functions, such as boundedness, closedness and convexity. Furthermore, we

establish the existence of a solution to the ARG problem.

Finally, in Chapter 5, we provide conclusions and future steps for the study of our

models.
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Chapter 2

Travel Time Models for Dynamic

Transportation Networks

2.1 Introduction and Motivation

2.1.1 Literature Survey

In recent years, traffic congestion has rapidly grown in transportation networks and
has become an acute problem. In fact, it is estimated that the presence of congestion
costs around $100 billion each year to Americans alone in the form of lost productivity
(see Barnhart et al. [6]). Therefore, it is critical to investigate and understand its
nature and address questions of the type: how are traffic patterns formed? and how
can traffic congestion be alleviated? Answering these questions and designing accurate

traffic flow models is important for the development of efficient control strategies.

The way flows circulate in traffic networks, the way queues form and disappear, and
the way spillback and shock wave phenomena occur, are striking evidence that traffic
flows are similar to gas and water flows. It is therefore natural to use physical laws

of fluid dynamics for compressible flow to model traffic flow patterns.

Lighthill and Whitham [49], and Richards [71] introduced the first continuum approx-
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imation of traffic flows using kinematic wave theory (see Haberman [34] for a detailed
analysis). The dynamic nature of these models gave them instant credibility. Indeed,
with the increase of urban and highway congestion, the variations of flow with time
are too important to be neglected. Dynamic traffic flow modeling captured the focus
of most researchers interested in theoretical or applied research in the transportation
area. A variety of dynamic traffic flow models have been proposed in the literature
that can be classified in three major categories: microscopic models, macroscopic

models and hybrid models.

Microscopic models, or car-following models, have the ability to describe, at a level of
detail, the network geometry, the traffic flow and its kinematics and the traffic control
logic. Such models enable simulated tests of traffic flow control strategies, and help
design safety procedures by better understanding the driver’s behavior. In 1950,
Reuschell [70] proposed the first car-following model. Pipes [69] and Herman et al.
[38] extended this model. Gerlough and Huber [32], Bekey et al. [7], Papageorgiou
([62], [63]), and Papageorgiou et al. ([64], [65]) and references therein provide an

extensive analysis of these models.

On the other hand, macroscopic models usually possess mathematical properties that
are useful in understanding the properties of a model and in designing solution algo-
rithms to solve instances of this problem. Developing a good understanding of such
phenomena is important since they arise not only in transportation systems but also
in manufacturing and communication systems. In an attempt to improve modeling
accuracy, the model of Lighthill and Whitham [49] was extended by Payne [67] and
Whitham [78]. These models are widely applied in practice. However, these models
contradict the anisotropic property of traffic flow (see Daganzo [25] for more details)
and faced criticism from Daganzo [25], Papageorgiou, Blosseville and Haj-Salem [65],

and Heidemann [37].

Finally, hybrid models try to capture, to a certain level, the detail and the realism of

microscopic models while allowing for the algorithmic flexibility of analytical models.
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Such models include the cell transmission model of Daganzo ([24], [25]) and the model
by Smith [75]. However, the discrete nature of these models does not allow for any

insightful mathematical analysis.

2.1.2 Objective and Motivation of this Work

The purpose of this work is to address the question of what is the travel time in
a transportation network of a driver in getting from his/her origin to his/her des-
tination. Practictioners in the transportation area have been using several families
of travel time functions. Akcelik ([1], [2]) proposed a polynomial-type travel time
function for links at signalized intersections. The BPR function [61], that is used to
estimate travel times at priority intersections, is also a polynomial function. Finally,
Meneguzzer et al. [58] proposed an exponential travel time function for all-way-stop
intersections. Our goal is to lay the theoretical foundations for using these polynomial
and exponential families of travel time functions in practice. While most analytical
models in traffic modeling assume an a priori knowledge of a driver’s travel time
functions, in this work, travel time is part of the model and comes as an output. To
determine the travel time, we examine and further extend the analytical model pro-
posed by Perakis [68]. This model provides a macroscopic fluid dynamics approach

to travel times and their connection to the dynamic user-equilibrium problem.

A key advantage in deriving closed-form expressions of travel times is the ability to
plug these expressions into optimization problems and variational inequality formu-
lations, in order to solve important research problems such as the dynamic system
optimal problem, the dynamic user-equilibrium problem, and, rhore generally, the
anticipatory route guidance problem (the analysis of the latter problem is the focus
of Chapter 4). As a result, one can design efficient solution techniques to solve these

problems, and gain insight on drivers’ behavior and the characteristics of congestion.
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The results of our research will enable researchers in the transportation area to de-
velop an alternative theory of equilibrium in transportation problems that is able to
make empirically testable predictions of traffic patterns and delays in transportation
networks. This research will also allow the transportation community to study both
microscopic and macroscopic phenomena of traffic patterns more accurately and give
insight into the nature of dynamic and static equilibria. The following list of repre-
sentative questions could be addressed:

What is the dynamic nature of traffic equilibrium? How are delays dynamically chang-
ing? What is the role of information to travelers in the formation of traffic patterns?
How can we control what information to release to travelers in order to induce a cer-
tain desirable behavior? Furthermore, this research will allow us to address various
issues that arise in transportation systems such as local bottleneck phenomena. In
particular, if there is a disturbance in the transportation network (like an accident),

how is the traffic pattern affected? How should traffic be rerouted?

A natural motivation for studying these problems arises in transportation planning
due to the growing congestion of urban and highway transportation systems world-
wide. Time-of-day plays a major role in how these networks are utilized. Studying
the traffic flow pattern before, during and after rush hour or when the traffic flow
changes in the vicinity of traffic signals and accidents requires the understanding of the
dynamic behavior of traffic. Furthermore, the impetus for studying these problems
has also been strengthened recently by the fast growing field of Advanced Traveler
Information Systems (ATIS).

In this chapter, we state the results and contributions of the first-order polynomial
and exponential travel time models of Kachani and Perakis [41], the second-order
models of Kachani and Perakis [42], and the models for spillback and bottleneck

phenomena of Kachani and Perakis [40].

The main contributions of this chapter are the following:
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1. We propose a variety of models for determining travel times in transportation

networks.
2. We propose analytical forms (closed-form solutions) of travel times.

3. We capture a variety of flow patterns such as formation and dissipation of queues,

drivers’ reaction time and response to upstream congestion or decongestion.
4. We account explicitly for splillback, bottleneck phenomena, and link interaction.
5. We incoporate inflow, outflow and storage capacity constraints.

In particular:

e We propose first-order and second-order fluid models for determining travel time

functions (Subsection 2.3.1).

e We propose two simplified models to estimate travel times as functions of the
entrance flow rates: the Polynomial Travel Time (PTT) Model and Exponential
Travel Time (ETT) Model (Subsections 2.3.2 and 2.4.1).

e We design enhancements of our models in order to account explicitly for spill-
back and bottleneck phenomena and to incorporate inflow, outflow and storage

capacity constraints (Subsection 2.5.1).

e We propose two simplified models to estimate travel times as functions of the ezit
flow rates: the Spillback Polynomial Travel Time (SPTT) Model and Spillback
Exponential Travel Time (SETT) Model (Subsections 2.5.1 and 2.5.2).

e We propose a general framework for the analysis of the PTT Model and the
SPTT Model that reduces the analysis of these models to solving a single ordi-
nary differential equation (Subsections 2.4.1 and 2.5.2).

e Based on piecewise linear and piecewise quadratic approximations of the flow
rates, we propose several classes of travel time functions for the separable PTT,

SPTT, ETT and SETT models (Subsections 2.4.1 and 2.5.2).
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e We extend the analysis of the PTT and SPTT Model to second-order non-
separable velocity functions in the case of acyclic networks (Subsection 2.4.2

and 2.5.3).

2.2 The Hydrodynamic Theory of Traffic Flow

In Subsection 2.2.1, we summarize the notation that we use throughout the paper. In
Subsection 2.2.2, we consider a single link network and introduce the hydrodynamic
theory of traffic flow developed by Lighthill and Whitham [49]. In Subsection 2.2.3,

we establish a relationship between path and link flows.

2.2.1 Notation

The physical traffic network is represented by a directed network G = (V, I), where
N is the set of nodes and I is the set of directed links. Index w denotes an Origin-
Destination (O-D) in the set W of origin destination pairs. Index P denotes the set
of paths and index P, denotes the set of paths between O-D w. Moreover, z, denotes
a position on a path p and z; denotes a position on a link . Below, we provide the

inputs and outputs of the models formulated in the rest of the chapter.

Inputs
Origin-Destination variables:
w : number of O-D pairs in the network;
Ny :  number of paths on O-D pair w;
dy(t) : demand rate function on O-D pair w.

Path variables:
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|P] : number of paths in the network;

L, : length of path p;

F,(0,t) : flow rate at the entrance of path p at time
F(0,t) : vector of departure path flow rates.

Link variables:

7] : number of directed links in the network;
L; . length of link ¢;

fi(0,t) : departure flow rate on link 7 at tirhe t;
f(0,t) : vector of departure link flow rates;

u;(0,t) : traffic speed at the entrance of link 4 at time ¢;
k;(0,t) : traffic density at the entrance of link 4 at time ¢;
umes :  maximum traffic speed on link i;

)

kres :  maximum traffic density on link 1.

Link-path flow variables:

i : a link-path pair;

1”p : predecessor of link ¢ on path p;

dp = 1 iflink 7 belongs to path p, and 0 otherwise;

Ly, : length from the origin of path p until the beginning of link .

Time variables:

[0,7] : O-D traffic demand period.

Outputs

Path variables:

Fp(zp,t) : flow rate at time ¢ on path p at position z,;

Tp(Lp,t) : traversal time of path p of drivers departing at time ¢.
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Link variables:

fi(z;,t) : flow rate at position z; on link 7 at time ¢;

Ti(Li,t) : traversal time of link 7 of drivers departing at time ¢;
ui(z;,t) : traffic speed at position z; on link 7 at time t;
ki(z;,t) : traffic density at position z; on link 4 at time ¢.

Link-path flow variables:

Tip(Lip,t) : partial path travel time function from the origin of path p

until the entrance of link ¢ of drivers departing at time ¢.

2.2.2 Hydrodynamic Theory of Traffic Flow on a Single Stretch
of Road
In this subsection, we describe the laws of fluid dynamics for compressible flow in

a single stretch of road. Lighthill and Whitham [49] introduced these laws. See

Haberman [34] for a more detailed analysis.

Let us consider a link of length L. We denote by 7 = 7(z,¢) the travel time to reach
position z when departing at time ¢. The three fundamental traffic variables of fluid

dynamics are:

e the flow rate function f(z,t + 7) that measures, in vehicles per unit of time,

that is, the flow rate that crosses point z at time ¢ + 7,

e the density function k(z,t + 7) that measures, in vehicles per mile, that is, the

density rate at point x at time ¢ + 7, and

e the velocity function u(z,t + 7) that measures, in miles per unit of time, that

is, the instantaneous speed at point z at time ¢ + 7.
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Two relationships connect these three variables.

flx,t+71)=k(z,t +7)u(z, t+71), Vz,7 (2.1)

Assuming that there are no exits in this stretch of road between the entrance position
z = 0 and the exit position x = L, the second relationship expresses a conservation

of vehicles in this stretch:

of(z,t+7) 4 Ok(z,t+ 1) _

oz or (2:2)

If we knew the velocity u(.), then conservation law (2.2) and equation (2.1) would
allow us to obtain the flow rate f(.) and as a result the density k(.). Nevertheless
the velocity is a consequence of the drivers’ behavior. In the mid-1950’s Lighthill and
Whitham [49] and independently Richards [71], proposed the additional assumption

that the velocity at any point depends only on the density. In mathematical terms:
u = u(k). (2.3)

The function % is empirically measured and is an input to the model.

Several models have been proposed in the literature for the velocity function @(.).

Mahmassani and Hernan (1984) proposed a linear model:

() = ume=(1 - ), (2.4)

)

where they assume that:

e the free flow speed is the maximum speed: @(0) = u™e=,

e at maximum density, the speed is zero: (k™) = 0.
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From equations (2.1) and (2.3), we obtain:
flz,t+71) = k(z,t+71)a(k(z,t+ 7)) (2.5)

In the case of the linear model of Mahmassani and Hernan, f(z,t+7) = u™.k(z,t+

T)(1 = ﬁ:,,f%l) More generally, there exists a function ¢(.) such that
flz,t+71) = g(k(z,t+71)). (2.6)
If g(.) is an invertible function, then:
k(z,t+71) =g f(z,t +7)). (2.7)

If we further assume that g(.) is differentiable, using the above expression in the

conservation law (2.2), we derive:

0f(z,t+7) , 99 (f(z,t+7) f(wt+7)

Oz of or 0 (28)

Equation (2.8) is a partial differential equation that can be solved using our knowledge
of the boundary term f(0,¢) corresponding to the entrance flow rate in the stretch of

road.

Once we solve this partial differential equation in f(.), we use equation (2.7) to obtain
the density function k(.) and subsequently equation (2.3) to obtain the velocity. Using
the velocity field equation

dx
- = u(z,t+7), (2.9)

we derive the travel time function 7 = 7(z,t) using as an initial condition the fact

that 7(0,t) = 0.

In the case of a network of multiple links, we will call the velocity function wu;(.) of

28



link ¢ separable if it only depends on the density function k;.

2.2.3 Relationship between Path and Link Variables

After determining travel time functions on the network’s links, we need to determine
the travel times to traverse the network’s paths. Determining path travel times
becomes complicated due to the dynamic nature of traffic. Two approaches have
been proposed in the literature to address this problem. The first approach assumes
that travelers consider only the current travel time information in the network. That
is, travelers compute their path travel time at time t as the sum of all the link travel
times along their route, based on the current information available to the travelers
at time t. For example, up-to-the-minute radio broadcasts could be a source of such
information. This type of travel time function is called instantaneous travel time
(see for example Boyce, Ran and Leblanc [17]). The second approach assumes that
travelers consider predicted or estimates of travel times. That is, the travel time to
traverse a path is the summation of the link travel times that the traveler experiences
when he/she reaches each link along the path (see for example Friesz et al. [30]).

Traveler information systems could provide, for example, such information.

In this paper, we follow the second approach. To illustrate this, let us first consider

a network with one path p and two links 1 and 2. We have:
Tp(Lp, t) = Ta(L1,t) + To(Lo, t + Th(Ly, 1))

Since Ly, = Ly and Top(Lap, t) = T1(Ly, t), it follows that:
Tp(Lp, t) = T1 (L1, t) + To(La, t + Top(Lop, t)).

Similarly, if we add a third link 3 to path p, it follows that:

Ty(Lp,t) = Ti(L1,t) + Ta(La,t + Ti(Ly, 1)) +
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T5(Ls,t + Ty (L, t) + To(Lo, t + Ty (L1, 1))
= Ty(Ly,t) + To(Lo, t + Top(Lop, t)) + T3(Ls, t + T3p(Lsp, t)).

The above formulas easily extend to the general case as follows:

TP(LP’ t) = Z Ti(Li, t + Tip(Lipa t))‘sip-
iel

2.3 General Models for Travel Time Functions

The goal of this subsection is to introduce and study second-order travel time models.
The term “second-order” reflects the fact that the speed on a link is not only affected

by the density, but also by the change in density on this link and its neighbors.

In Subsection 2.3.1, we propose a second-order non-separable model (Modél 1) for
travel time functions that incorporates the drivers’ reactions to upstream congestion
or decongestion as well as link interaction. This model generalizes the first-order
model proposed by Perakis [68]. In Subsection 2.3.2, we propose two simplified ver-
sions of the general model: the Polynomial Travel Time (PTT) Model and the Ex-
ponential Travel Time (ETT) Model. The analysis of these two models is the focus

of the following sections.

2.3.1 A Second-Order Model

The purpose of this subsection is to model the following two traffic phenomena:
1- Drivers’ reaction to upstream congestion or decongestion. In particular, when

a driver realizes the formation of a queue upstream, he/she starts slowing down.
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Similarly, drivers start accelerating when the queue starts dissipating.

2- Effects on a link of densities as well as variations in densities of neighboring links.

To account for the two phenomena, we replace the speed-density relationship u; =
4;(k) by u; = B;(k, Vk). The variables k and Vk contain the term %'; that allows
us to model the reaction of drivers to changes in the link density. They also contain
the terms k; and —L for the set of links j in the neighborhood of link 7, that allow
us to effectively model link interaction. We propose the following general form of the

velocity of link ¢, at position z; and at time ¢:

u;(k, Vk) = um“ — b (™) ky (5, t) —
)\z(.’lfz) Bk .’L'z,
7 7 7t Az
Wt om T agEhEmt A
Bij(z:i)  Oki(Tjt — Ay)
kj(fj, t— AU) 6:1:]- ’

(2.10)

jel
where «;;(z;) and S;;(z;) are density correlation functions between link ¢ and link 5
and depend on the position z; on link ¢; T; is a fixed position of a detector of density

on link 7 and A;; is a propagation time between link ¢ and link j.

The term —%% is borrowed from heat transfer and accounts for the drivers’

awareness of upstream and downstream conditions. The heat transfer term \;(z;) is
a positive term expressed in squared miles per unit of time. The propagation term
%%g% expresses the variation in the speed induced by a variation in the density.

For instance, when a queue is expanding on link 7, the term —%ﬂ%% is negative
3 1 1

and hence the velocity function u;(z;,t) decreases.

Model 1 can be formulated as follows:

Model 1
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For allt € [0,T], p € P, and i € I, we have:

Tp(Lp, t) = Eier Ti(Li, t + Tip(Lipv £))dip, (2.11)
fi(@it) = Xpep Fp(s,1)dsp, (2.12)
ui(zi, t) = ik, V), (2.13)

filzi t) = ki(zi, t)us (i, t), (2.14)
Qi) 4 izl — (2.15)

et L (2.16)

T;(0,t) = 0. (2.17)

When X;(.), a;;(.) and 8;;(.) go to 0, the above speed-density relationship becomes
u; = u® — b;(u**)?k;(x;,t). The latter corresponds to the first-order model pro-

posed by Perakis [68].

Model 1 is very hard to analyze in its current form. For this reason, in the following

subsection, we consider two simplified models of Model 1.

2.3.2 Two Simplified Second-Order Separable Models for Travel

Time Functions

Our goal in this subsection is to solve Model 1 and propose specific travel time func-
tions. To achieve this, the first step is to eliminate some of the variables involved in
the model. We eliminate the density variables by expressing them as functions of the
flow rates. This leads to proposing two simplified versions of Model 1. We impose
the following assumptions:

A1 w;(k, VEk) is a separable function of the density k;. Further, u;(k, Vk) = ue® —
b (u™%) 2k (x4, t) — kﬂzzﬂ})%:’—’tl, where b; is a constant.

A2 The term (u:"‘%ﬁ << 1.

A3 The term )\i(zi)%f << 1.

32



A4 The link flow rate f;(0,¢+ 7;) can be approximated through a continuously dif-

ferentiable function hl(7;) of ;.

Lemma 2.1 Under Assumption (A1), the link density as a function of the link flow

rate function and the queue propagation term can be exrpressed as:

1 Ok; 1
k,; = 2bi’u,;naz (1 - (1 - 4bl(fz + Az(xz)a—mz)) ) (218)

Proof:  Since @(k;) = u™* — b;(ul"*)?k;, combining the speed-density and the

flow-speed-density relationships, we derive f; = u**®k; — b;(u]"**)?k} — \i(z:) 3. By

solving in terms of k; for stable flows, we obtain the result of the lemma.

The Polynomial Travel Time (PTT) Model

In this subsection, we consider an approximation of equation (2.18). This approxi-
mation enables us to describe the conservation law of cars (2.15) only in terms of the

link flow rate functions.

Lemma 2.2 Under Assumptions (A1)-(A2), the link density as a function of the link
flow rate function and the queue propagation term can be expressed as:

_fi N 5 b (fi + Ai(zi) )2

T
u;na uma.z

(2.19)

Proof: From equation (2.18), k; = W( — (1= 4b;(fi+i(z %:}))%). Assumption
(A2) and the definition of b; in Assumption (A1) imply that all the terms of order

higher than or equal to 3 in the Taylor expansion of the above equation are negligible.

That is, 1 — (1 — €)2z = s+ % + O(€3). The result of the lemma follows.
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Using the above result, the following theorem provides a partial differential equation
that provides a new version of the conservation law (2.15) described only by the link

flow rate functions .

Theorem 2.1 Under Assumptions (A1)-(A3) and equation (2.19), the link flow rate

functions f; are solutions of the second-order partial differential equation:

Afi wr ofi
o T abfom - @)

0*f;

7
0x;

(2.20)

Assumption (A4) provides a boundary condition and, when X\;(z;) is non-zero, f;(;,0),

for z; € [0, L;] and i € I, provides an initial condition.

Proof: Replacing the value of k; from (2.19) in the flow conservation equation gives

rise to:

Of  L4Mfidfi 1 Ok

oz T w0 e e, ()
6’{,‘, 2b7,/\, (iL‘,,) ak, 8f
()220 () £:) 4 22\ ORi OF
+2b; M (z;) oz, + 20 \i () fi) + T T

Differentiating the flow conservation equation with respect to z; leads to % =

2 f. . 2p. . .
—%zé}. Replacing the above value of gt_akf- in the above second-order equation and

using Assumption (A3) leads to gﬂ% 4 L2fof Ai(xf)tfi’j;\i(xi)fi%i% = 0. Dividing

each term by 1:—3”“"— gives rise to the result of the theorem.

O

Conservation law (2.20) is the basis of our analysis of the PTT Model in the following

sections.

The Exponential Travel Time (ETT) Model

In this subsection, we use a different approach. We first eliminate the density vari-

ables through equation (2.18), and use this to derive a conservation law. We then
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approximate this equation to obtain a conservation law in the link flow rate.

Theorem 2.2 Under Assumption (A1), the link flow rate functions f; are solutions

of the partial differential equation:

&
0z’

afl ma.z laf’— A .
L1 = b+ M) ST < (a)

Furthermore, under Assumptions (A2) and (A8), the link flow rate functions f; are

solutions of the second-order partial differential equation:

ofi ofi 0 f;

M1 — 2b; ;) =— = Xi(z;) == 2.21
(=) 2 ) (2.21)
Assumption (A4) provides a boundary condition and, when \;(z;) is non-zero, f;(;,0),
z; € [0, L;] and 1 € I, provides an initial condition.

Proof: Under Assumption (Al), equation (2.18) holds. Differentiating this equation

%-h\ (zl)ﬂL

with respect to ¢ gives rise to %’4 = SRR . Moreover, differentiating
u™e®(1—4b; (f,+A,(z1)aI ))
the flow conservation equation with respect to z; leads to WL = —%—Zéi. Therefore, it

o nilw) T4
wes (1-ab (fi+i(ze) 2)
flow conservation equation leads to %’:—" +ul (1 —4b; (fi + Xi(z;) g—kl)) (x,)—é—

T

follows that %’l = Substituting the above value of % in the

Assumption (A2) implies that all the terms of order higher than or equal to 2 in the
Taylor expansion of the above equation are negligible. That is, (1—€)? = 1— $4+0(€).
Assumption (A3) gives then rise to equation (2.21).

O

Conservation law (2.21) is the basis of our analysis of the ETT Model in the following

sections.

35



Our purpose is to reduce the analysis of the Second-Order ETT Model to the analysis
of a known problem in fluid dynamics. This reduction will be achieved in two steps.
The first reduction consists of transforming the bottleneck operation of the model to
a Burgers equation. In fluid dynamics, Burgers equations are considered to be the
simplest form of equations combining both nonlinear propagation effects and diffusive
effects. The second reduction consists of a standard reduction of a Burgers’ equation

to a heat equation.

Equation (2.21) is a second-order partial differential equation in the link flow rate
fi- Solving this PDE is the bottleneck operation in the solution of this model. The
following result achieves the two-stage reduction outlined above.

Theorem 2.3 (i) Let Y; = ues(1 — 2, f,). Then, Y; satisfies 24 + Yigh =\, 2%,

oz?
oz

(i) Let Z; be defined by Y, = —2/\5%5—. Equation (2.21) reduces to ¢ heat equation of

the type
0Z; 0*Z;
EaRRETS (222)
0z;

Note that f;, = (1 + 2u—,ﬁ;—,—7'~) Equation (2.22) is a heat equation. The heat
equation has been extensively studied in the literature. The application of these

results to our specific problem is the subject of ongoing research.

2.4 Departure-Flow-Based Models

In this subsection, we focus on first-order travel time models. We propose and study
two models. Under some approximations on the entrance flow rates, we derive analyt-

ical forms of travel time functions. Finally, we compare and discuss these functions.
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2.4.1 Analysis of Separable Velocity Functions

In this subsection, we study the PTT and the ETT Models in the case of first-order
separable velocity functions. That is, we consider A; = 0. In this case, the velocity

functions reduce to u;(k) = u?*® — b;(u"*®)%k;(x;, t).

In particular, we extensively analyze the PT'T Model for piecewise linear and piecewise
quadratic functions hi(T;) (see Assumption (A4)). We show how Model 1 reduces in
this case to the analysis of a single ordinary differential equation. We provide families

of travel time functions.

We also analyze the ET'T Model by approximating the initial flow rate with piecewise
linear functions hf(T;). Moreover, we show why the analysis of the ETT Model is more
complex than the one of the PTT Model. Finally, we propose a family of travel time

functions.

Furthermore, we summarize our results and show how these families of travel time

functions relate. We also provide a numerical analysis of these travel time functions.

Separable PTT Model

In this subsection, we analyze the PTT Model for piecewise linear and piecewise
quadratic approximations of departure flow rates. We provide families of travel time

functions under a variety of assumptions.
Model Formulation

Theorem 2.1 gives rise to the following formulation:

PTT Model
For all t € [0, T:
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o + Sorok =, for all i € I, (2.23)

fi(0,t + T;) = hi(T7), for all 5 € I, (2.24)

ki = —,{E + TL foralli e I, (2.25)

u; = £, for all i € I, (2.26)

e = L forallie I, (2.27)

T;(0,t) = 0, for all i € I, (2.28)

Tp(Lp,t) = Lier Ti(Liyt + Tip(Lip, 1))0sp, for all p € P. (2.29)

Equation (2.23) is a first-order partial differential equation in the link flow rate f;.
Solving this PDE is the bottleneck operation in the solution of this model. Moreover,

equation (2.24) provides the boundary condition for this partial differential equation.

If we assume that equations (2.23) and (2.24) possess a continuously differentiable
solution f;, then, equations (2.25) and (2.26) determine the density function k; and
the velocity function u;. The ordinary differential equation (2.27), under boundary
condition (2.28), determines travel times on the network’s links. Finally, path travel
times follow from equation (2.29). Therefore, if we assume that equations (2.23) and
(2.24) possess a continuously differentiable solution f;, the PTT Model, as formulated
by equations (2.23)-(2.29), also possesses a solution.

Remark: Note that equations (2.25) and (2.26) simplify the travel time differential

equation (2.27) into

dTi(z;,t)  1+bif;
dz; e

(2.30)

38



Existence of Solution to the PTT Model

The following theorem provides an existence result for a continuously differentiable

solution of the PTT Model as formulated above.

Theorem 2.4 (Perakis [68]) The PTT Model as formulated in equations (25)-(31)
possesses a solution if and only if the first derivative of the link flow rate function

hi(T;) satisfies the following boundedness condition:

dh(T) | _ure
dT; 2b;L;

(2.31)

A General Framework for the Analysis of the PTT Model

The purpose of this subsection is to provide a general framework for the analysis
of the PTT Model that reduces the problem to solving a single ordinary differential

equation.

Applying this general framework to piecewise linear departure link flow rate functions
will result in an easy derivation of link travel times. Furthermore, applying this
framework to piecewise quadratic departure link flow rate functions will provide us

with a closed form solution of link travel time functions.

As a first step towards establishing the main result of this subsection, we introduce
the classical method of characteristics in fluid dynamics. Haberman [34] provides a
detailed analysis of this method. Along the characteristic line that passes through
(zi,t + T;) with slope 1:1—3,2‘:13, the solution f;(z;,t + T;) of equation (2.23) remains
constant. If (0,¢ + s;(z;,t + T;)) denotes the point at which the characteristic line

intersects the time axis, we have

fi(zi, t + T;) = hi(si(zi,t + T5)). (2.32)
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Perakis [68] establishes that

Tul® — x; — 2b;x;ht(s;(zs,t + Ty
il t +Ty) = D = T = Bbimihi(sifen t+ T)) (2.33)

max
U,

We introduce two new variables m;(.) and g;(.) defined by m;(s;) = bz (hi(s;) — A;)

and gi(.’L‘i,t) = T‘l(.’L‘z,t) — %,.,%%’.‘Sﬂi.

Theorem 2.5 (General framework) The PTT Model reduces to solving the following

ordinary differential equation:

ds;  —ma(si) — —’—Lf;ﬁ;

d_a:,- - 14+ 2:czm; (Si)

, (2.34)

with $;(0) = 0 as an initial condition. The link flow rate functions and the link travel

time functions follow from:

f,’(Ii,t) = hf(Sz) (235)

i + 2b;z;hi (s
Ti(zi,t) = s+ = ks ;mzzx (s ), (2.36)

Proof: Introducing g;, m; and A; in equations (2.33) and (2.30), we derive the

following two relations:

8 = gi—2z;m4(s;) — %-’Ei: (2.37)
B = s, (239
with s;(0) = ¢;(0) = m;(0) = 0.
From equations (2.37) and (2.38), it follows that
Bi B () — 20 () — DA

max
U;
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dSi ’ b,;A,;

= —my(s;) — 2z;

Hence, j—;f(l + 2z;mi(s;)) = —my(s;) — ;b:,,ﬁ—'; Then the results of the theorem follow.
0

Piecewise Linear Departure Link Flow Rate Functions

In this subsection, we apply the general framework to simplify the analysis of the

piecewise linear approximation of departure flow rates.

We assume that during a time period [t,t + A], travelers make the approximation
that the departure link flow rate for subsequent times ¢ + 7; is linear in terms of the

travel time 7T;. That is,

fi0,t+ T) = hi(T) = Ai(t) + Bi(t)T;. (2-39)

Over the time period [0, T}, this results into a piecewise linear approximation of link

departure flow rates as shown in Figure 2-11 of Subsection 2.5.2.

Remark:
Note that equation (2.31) is a necessary and sufficient condition for the existence of

solution of the PT'T Model. In this case, the condition becomes:

max
U,

Bi(t) > ~g 7 (2.40)

We call the system of equations (2.23)-(2.29) and (2.39) the Linear PTT Model. Next,

we provide a closed form solution for the Linear PTT Model.

Theorem 2.6 If (2.40) holds, then:
(i) The Linear PTT Model possesses a solution,
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(11) The link flow rate functions fi(z;,t + T;) are continuously differentiable,

Bi(t)’u:-nazﬂ — B,;(t)$i + Ai(t)uznaz
flat+T) = B (241)

(iit) The link travel time functions T;(z;,t) are given by:

T; Ai(t) 2b,;Bi(t)£l:i 1
e T e )T

1] 2

(2.42)

Proof:  Since hi(s;) = A; + B;s;, it follows that m;(s;) = 28is, Replacing in

equation (2.34), we obtain

_bBi o biA

ds’i . u;n.az (2 u}'naz
- b; B;
dz; 1+ 2IE1;,’E’;

?

The above equation can be written as the following separable equation:

doy e (2.43)
Integrating both parts (see Bender and Orszag [9]) gives rise to ae 1
Therefore it follows that 1
A, 1
i= = —1). .
’ Bi((]. +2b84,)3 ) (2.44)
Using equations (2.35) and (2.36), the results of the theorem follow.
g
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Corollary 2.1 Assume that

u;naI
|B;(t)] << T (2.45)
Then:
(1) The Linear PTT Model possesses a solution,
(ii) The link travel time functions T;(z;,t) simplifies as follows:
1 Al t B, t b,, 2
T:L'(.’Ei, t) = [(1 + Az(t)bz)lﬁl - ( )QUT’EGB’( ) .’1712] (246)

Proof:

(i) Note that equation (2.45) implies that equation (2.40) holds. From Theorem 2.6,
part (i) follows.

(ii) Equation (2.45) justifies why a second order Taylor expansion of equation (2.42)

is reasonable. This leads to equation (2.46).

Example

To illustrate our results, we consider a network of four links connecting one O/D pair.

The total length of each of the four links is L; = 4 miles, Ly = 5 miles, L3 = 6 miles
and L4 = 7.5 miles, respectively. The speed limit on each link is u*** = 40 miles/hr,
u3*® = 25 miles/hr, uf** = 25 miles/hr and u}**®* = 30 miles/hr, respectively.
Finally, the maximum density on each link is k7**® = 200 cars per mile, kJ*** = 160

cars per mile, k3'** = 192 cars per mile and kJ**® = 250 cars per mile, respectively.

We illustrate our results using the four-link network example. We consider various

choices for A;(t) and B;(t).
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1) The traveler estimates his/her travel time on link ; by assuming that the departure
link flow rate f;(0,t+T;) = fi(0,), that is the flow rate remains constant during the
time period [t, + A]. Then, A4;(t) = fi(0,t) and B;(t) = 0.

2) The traveler assumes that the departure link flow rate is equal to the average
of the departure link flow rate over a previous time interval of length h, that is,
fi(0,t+T) = & [, £i(0, w)dw. Then, Ai(t) = £ L, £:(0, w)dw and Bi(t) =0.

3) The traveler uses information prior to ¢ as in 2). The traveler considers the depar-

ture link flow rate on link 7 to be
1

For this choice, 4;(t) = f;(0, t) and B;(t) = 2[£:(0,8) — fi(0,t - h)].
4) The traveler takes into account the first order information of the departure link

flow rate function
df;(0,¢
fi(0,t +T;) = £i(0,1) + %_)ﬂ

For this choice, 4;(t) = £;(0,t) and Bi(t) = %gﬁ'

Using the first two choices 1) and 2), Corollary 2.1 gives rise to the following travel

times

Ty(Ly,t) = ﬁa[sfh(t) +1000],
Ty(Ls,t) = 10300[2A2(t)+2000]
T3(Ls,t) = m[§A3 (t) + 2400],
T4(L4,t) = ﬁ[;fh( )+ 2500],
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Using the latter two choices 3) and 4), the travel times become

il t) = 10000[8 1(t) + 1000 - A112(8)013(1)8:)],
Tl ) = 10000[2‘42( ) +2000 %],
Bllat) = 10000[2 3(t) + 2400 - %ﬁ;@)]’
Ti(Ls,t) = 10000[3 4(£) + 2500 — A“l(;())g;ét)].

Piecewise Quadratic Departure Link Flow Rate Functions

In this subsection, we assume that during a time period [t,t + A], travelers make
the approximation that the departure link flow rate for subsequent times t + 7} is

quadratic in terms of the travel time 7;. That is,

fi(0,t+ To) = hi(Ti) = Ai(t) + Bs(t) T + Ci(1)(T0)*. (2.47)

Over the time period [0, 7], this results into a piecewise quadratic approximation of

link departure flow rates as shown in Figure 2-12 in Subsection 2.5.2.

Note that equation (2.31), which is a necessary and sufficient condition for existence

of a solution, becomes in this case:

maz

u’l.
B;(t) + 2C;(t)(t + A) > T

(2.48)

We call the system of equations (2.23)-(2.29) and (2.47) the Quadratic PTT Model.
Next, we provide a closed form solution to the Quadratic PTT Model. Note that
when the quadratic term is neglected (i.e. C; = 0), we capture the previously studied

case of piecewise linear departure link flow rate functions.
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ma.a: b ma.z mut -
1

Theorem 2.7 Assume that

maz

u’z
|Bi(t) + 2C;(t)(t + A)| << L

(2.49)

Then, the following holds
(i) The Quadratic PTT Model possesses a solution.
(ii) The link characteristic line functions s; are continuously differentiable and are

given by

6% . a:A2 T3 2
Si(CL'i; t) — 0_26—alz1+(20%+01203)—2‘- /0 ea1t—(2a%+a2cxa)%(_al + 2a%t)dt. (2.50)
1

(74i) The third degree Taylor expansion of the link characteristic line functions s;

becomes

3a? ,
Si(.'IJi,t) = —a—(ala:,- - —2—$ (701 + 2(110!2013)
1

o ]ﬁw

). (2.51)

(iv) The third degree Taylor expansion of the link travel time functions T;(z;,t) be-

comes

[(1+A () ) Ai(t)Bi(t)(bi)z 2

maz zumaa: ]

(11A i(0)Bi(8)*(b:)°  4A4:(t)*Ci(t)(b:)° 3]
G(umaz) 3(u;77'ﬂ$)

(2.52)

Proof: The analysis involved in this proof is very tedious. For the sake of simplicity

and brevity, we only include the most important steps of the analysis.

(i) Note that condition (2.49) implies that condition (2.48) holds. Hence, the result
of Theorem 2.4 applies. Therefore, the Quadratic PTT Model possesses a solution.
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(i) Equation (2.34) can be rewritten as

b; 2 biA;
ds; T umes (Bisi + Cis7) — umes
i3 k3

dz; 1+ 2z, 7= (Bi + 2C;s;)

Condition (2.49) allows us to consider a first order Taylor expansion of the denomi-
nator in the above equation. Introducing «;, i € {1,2,3} as defined above, using a
Taylor expansion and rearranging terms leads to the following linear ordinary differ-

ential equation:

dsi
d.’l?i

- (—011 + (20(% + azag)xi)si = —02(1 — 2C¥1$i), (253)

with s;(0) = 0 as an initial condition.

The integrating term I(z;) of this equation (see Bender and Orszag [9] for more

details) can be written as

; 2
I(_I,L) _ efom (a1+(2ai+azas)t)dt — ealmi—(2a§+aza3)%—_

Equation (2.50) then follows.

(iii) Let N(z;) denote the following function:
2 z;
N(.’Ez) — e—a1x¢+(2a¥+a2a3)£§-/ ea1t—(2af+azaa)%(_al + 2af )dt. (2_54)
0

Tedious analysis leads to N(0) = 0, NV(0) = a;, N®(0) = —3a? and N®(0) =

702 + 2010903. From
2 3
N(z;) = N(0) + N'(0)z; + N® 05+ N® (0)5 + o(z?), (2.55)

equation (2.51) follows.

(iii) Equations (2.51) and (2.36), with a, ¢ € {1, 2, 3}, lead to equation (2.52).
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Example

We illustrate our results using the four-link network example. We consider two addi-

tional choices for A;(t), B;(t) and C;(t).

5) The traveler considers second-order information prior to ¢. That is, he/she consid-

ers the departure link flow rate on link 7 to be

df,-(O,t) 1 dfi(O,t) dfi(O,t—h) o
dt T’+ﬁ dt dt I

fi(0, 8+ To) = fi(0,1) +

For this choice, A;(t) = fi(0,t), B;(t) = W and Ci(t) = #[df‘g’t) - dfi(%:_h)].

6) The traveler considers second-order information of the departure link flow rate

function

af(0,1).,  1di(0,8)

[0t +T) = fi(0 1) + =5 =T+ 5 — 711"

For this choice, A;(t) = fi(0,%), Bi(t) = 404 and C;(t) = 1£L0H

Using choices 5) and 6), Theorem 2.7 gives rise to

2 2
A)Bi(r) | R - OO 4 3BY(1)C (1)

Ty (L.t A, (t) + 1000 —
1L, t) = 10000[8 (8) +10 1280000 1280000000 b
2A2(t)Ca(t) _ TA2(#)B(2) B2(¢ t
Ty (I, ) = goss(s Aalt) + 2000 - 2080 — 7 m——" il )1,
10000 2 80000 32000000
B 243(t)C3(t) 7A3(t)B2(t) 3 B AC
10000 2 80000 32000000
A Ba(t 2A5(t)Ca(t) 7A4(t)B ) 3B2
10000 3 180000 90000000
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Equation (2.52) provides us with a general family of travel time functions. Below, we
will discuss the relationship between this family of travel time functions and the one

obtained by the Linear PTT Model.

Separable ETT Model

In this subsection, we study the ETT Model. We show that the analysis of the ETT
Model is more complex than the PTT Model, and propose a different class of travel

time functions for piecewise linear approximations of departure flow rates.
Model Formulation

Theorem 2.2 gives rise to the following formulation:

ETT Model
For all t € [0, T:

8+ umes(1 - 20, fi) 58 =0, for all s € I, (2.56)
£i(0,t +T;) = hi(T3), for all i € I, (2.57)

i = b + %ﬁ for alli € I, (2.58)

u = £, for all i € I, (2.59)

i) - 1 for all i € I, (2.60)

T;(0,t) = 0, for all i € I, (2.61)

To(Lp,t) = Yier Ti(Li, t + Tip(Lip, t))0ip, forallp e P. (2.62)

Equation (2.56) is a first-order partial differential equation in the link flow rate f;.
Solving this PDE is the bottleneck operation in the solution of this model. Moreover,

equation (2.57) provides the boundary condition for this equation.
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Assuming that equations (2.56) and (2.57) possess a continuously differentiable so-
lution f;, equations (2.58) and (2.59) determine the density k; and the velocity wu;.
The ordinary differential equation (2.60) under its boundary condition (2.61) deter-
mines travel times on the network’s links. Finally, path travel times follow from
equation (2.62). Therefore, if we assume that equations (2.56) and (2.57) possess a
continuously differentiable solution f;, the ETT Model, as formulated by equations

(2.56)-(2.62), also possesses a solution.

Remark: Replacing equations (2.58) and (2.59) in equation (2.60), leads to the same
equation as for the PTT Model, that is

dTi(zi,t) 1+ bif;

dz, ures

(2.63)

Existence of Solution to the ETT Model

The following theorem provides an existence result for a continuously differentiable

solution of ETT Model as formulated above.

Theorem 2.8 The ETT Model as formulated in equations (2.56)-(2.57) possesses a
solution if and only if the first derivative of the link flow rate function hi(T;) satisfies

the following boundedness condition:

dh{(T;) ui" £ 2
> g (L 2(T) (2.64)

Proof:

This result relies on the classical method of characteristics in fluid dynamics. Along
the characteristic line that passes through (z;,t + 7;) with slope W, the
solution f;(x;,t+T;) of equation (2.56) remains constant. Let (0, ¢+ s;(z;,t+T;)) be
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the point at which the characteristic line intersects the time axis. We know that:
filzi,t +T;) = hi(si(zi, t + T5)). (2.65)

Using the slope information, we obtain that

1 _t+ T =t +si(mt+T)  Ti—sixi, t+Th))
(1 — 2bifi)um‘” N z; — 0 B Z; .

2

It follows that

Z;

(1 — 2b;ht(si(zs, t + T3))Jumes”

si(zi,t+T;) =T, — (2.66)

Differentiating the above equation with respect to 7;, and rearranging terms, leads

to the following expression of M%*'T"Z,

Osi(zi,t+T3) 1
T 2b,, T ymaz (1 9, h4(T;))? + 1

Using the method of characteristics, equations (2.56) and (2.57) possess a continuously
differentiable solution f; if and only if M%l > 0. This gives rise to equation
(2.64).

Therefore, we conclude that the ETT Model possesses a solution if and only if the

derivative of hi(T;) satisfies the boundedness condition

dhi(T;) u;* ¢ 2
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Piecewise Linear Departure Link Flow Rate Functions

In this subsection, we assume that during a time period [t, ¢ + A], travelers make the
approximation that the departure link flow rate for subsequent times ¢ + 7T; is linear

in terms of the travel time T; (see Figure 2-11 in Subsection 2.5.2). That is,

fi(0,t+T;) = hY(T;) = Ai(t) + Bi()T;. (2.67)

Note that equation (2.64), which is a necessary and sufficient condition for the exis-

tence of a solution, becomes in this case:

maxr

Bi(t) > — ;‘b 7 (L= 20iA4(0) = 26:B,(0)(¢ + 1)) (2.68)

We call the system of equations (2.56)-(2.62) and (2.67) the Linear ETT Model. Next,

we provide a closed form solution of the Linear ETT Model.

To make our notation more tractable, we introduce variables §; = biBi(t) 0, =

1-2b; Ai(t)?
b B;(t) _ 14b,A5(8) _ 1
e and 03 = s wraE (1-26; A, (0) °

Theorem 2.9 Assume that

mazx

|&un<<;ﬁxy—%MJQ—%Jmoa+A»? (2.69)

The following holds,
(i) The Linear ETT Model possesses a solution,
(it) The link characteristic line functions s; are continuously differentiable and can

be ezpressed as a function of the link travel travel time functions, that is,

T;;’U,,Enax(]. — 2b@Az(t)) — Iy

i(Zi, t) = )
si(zi?) ure (1 — 2b; A (t) + 2b; B; (D) T,

(2.70)

52



(111) The link travel time functions T;(z;,t) are given by

69”* -1 01.’1?1;
i\Liy L) = 0 ’ :
(iv) If condition (2.45) holds, the link travel time functions T;(z;,t) are
1 Az t B,, t bi 2
Tiat) = —l(L+ Ab)e — DODOOS (2.72)

Proof: The analysis involved in this proof is quite tedious. For the sake of brevity,

we only include the key steps of the analysis.

(i) Note that equation (2.69) implies that equation (2.68) holds. Hence, the result of
Theorem 2.8 applies. This implies that the Linear ETT Model possesses a solution.

(ii) Using equation (2.67), equation (2.66) can be rewritten as

ZI;
w3 (1 — 2b;A(t) — 2b;B;(t)si(z:, t + T}))

si(zi,t+T;) =T, — (2.73)

Equation (2.73) leads to a second degree polynomial in terms of s;. Equation (2.69)
justifies a first order Taylor expansion of the solution to this polynomial. This Taylor

expansion leads to equation (2.70).

(iii) Using equations (2.67) and (2.70), we derive the following expression for the link

flow rate functions f;

B,;(t)Tiumaz — Bi(t).’l?i + Ai(t)u;naz(l — 2bzA, (t))

1

filzi,t +T3) = ue®(1 — 2b; A;(t) + 20, B; () T;

(2.74)

Replacing in equation (2.63) the link flow rate functions we found in equation (2.74)
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gives rise to the linear ordinary differential equation

dT; 01(1—2biAi(t)))T 1+ biAy(t) — 5%

( maz t maz )
dz; ur u;

(2.75)

with T;(0,t) = 0 as a boundary condition.

The integrating term I(z;) of this equation (see Bender and Orszag [9] for more

details) can be written as

01(1=2b4;(t))
-a0=2igi®) g,
I(z;)=e ™ .

Using the boundary condition 7;(0,¢) = 0, it follows that

1+bA() O
Ty, 1) I) / e duw, (2.76)

The calculation of the integral in equation (2.76), using an integration by parts, leads

to equation (2.71).

(iv) To make the link travel time function T; more tractable, we assume that condition
(2.45) holds. Condition (2.45) allows us to perform a second order Taylor expansion

of equation (2.71), which leads to a simpler form,

2

Ti(wi,1) = (03 + 5oz )i + Oy -

0
Y

Our definition of 6;, i € {1, 2, 3} leads to equation (2.72).

Example

Let us illustrate our results using the four-link network example. We consider for

A;(t) and B;(t) the four choices introduced earlier in the subsection.
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Using the first two choices 1) and 2), equation (2.72) gives rise to

Ti(Ly, t) = IOOOO[SAl(t) + 1000]
Ty(La, t) = 10(1)00[2A2(t) 1 2000],
Ty(Ls, t) = 10000[2A3(t) + 2400),
Ty(Ls,t) = m[.& 4(t) +2500),

while for the latter two choices 3) and 4), it follows that

(L) = 10(1)00[8,41( t) + 1000 — %],
Tr(Ly, t) = 10000[2142@) + 2000 — %],
T3(Ls,t) = 1—0(1]@[%13 (t) + 2400 — %],
Tu(Lat) = Toa5lz4a(0) + 2500 - OB,

It is not a coincidence that the above results exactly match the results we obtained

for the PTT model. Below, we will further clarify this similarity.

Equation (2.71) is an exponential family of travel time functions. In the following
subsection, we analyze the relationship between the exponential family of travel time
functions from this subsection and the one we obtained through the Linear PTT

Model and the Quadratic PTT Model.
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Examples and Models’ Comparison

In summary, we have so far derived two families of travel time functions. The Linear
PTT Model which leads to the polynomial family of travel time functions
i 2sz, (t).'Ez 1
Ti(z;,t) = 1 - .
{m0) = g + B (1 g )= ), (277)

)

and the Linear ETT Model which leads to the exponential family of travel time

functions

eom - 1) 91.’1.',‘
o) al

1

Ti(w;, t) = 05(

(2.78)

where, 6;, 1 € {1,2,3}, was defined earlier in the subsection.

It is very important to note that equations (2.77) and (2.78) coincide when |B;(t)] <<

% holds. That is, they possess the same second order Taylor expansion

et [(1+ Ai(t)bi)z; — Az(téljzngzz(bl)zxf] (2.79)

We refer to the travel time function above as the limit of the linear PTT and ETT.

This relationship shows that the assumptions made for both the Linear PTT Model
and the Linear ETT Model are indeed reasonable.
Furthermore, the Quadratic PTT Model gives rise to a more complicated expression

of link travel time functions. The third degree Taylor expansion leads to

Ti(zi,t) = uvllaz[(l + Ai(t)bi)zi — Ai(t)zlzirgz(bi)zw?
114;() Bi(£)*(h)*  44:i(1)*Ci(t) (by)? 3
et sapee ok (280

We observe that if the quadratic term is neglected (i.e. C; = 0), then a second order
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approximation of equation (2.80) leads to equation (2.79) and, as one would expect,
we fall in the case of the Linear PTT Model. Hence, it appears that the assumptions
made for the Quadratic PTT Model are also reasonable.

Below, we illustrate these families of travel time functions through numerical exam-

ples.
Example 1

We first consider a quadratic profile of a link depature flow rate function during a one
hour period. This profile is depicted in Figure 2-1. It corresponds in practice to a
rush hour period that starts at time zero and ends an hour later. Its peak is attained

after 30 minutes. The departure flow rate function is given by
£i(0,t) = 1600 — 6400.(t — 0.5)?,

where t is expressed in hours, and f;(0,t) is expressed in vehicles per hour.

We derive a piecewise quadratic approximation of the link departure flow rate as

follows

A;(t) = 1600 — 6400.(¢ — 0.5)2
B;(t) = —12800.(¢ — 0.5)
Cy(t) = —6400
fi(0,t +T;) = A;(t) + Bi(t).T; + Ci(¢). T2

We consider two scenarios. The first scenario corresponds to u[*** = 25 miles/hr,

k"*® =175 vehicles/mile and L; = 8 miles. In this case, B;(t) is of the same order of
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Figure 2-1: Profile of a Link Departure Flow Rate Function During One Hour
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mazx
u

magnitude as z;7-. As a result, we expect the PTT and the ETT models to lead to

different travel times.

1700
o 1600
=l
c
g 1500 |-~ Quadratic
c ~=---Limit of Linear
= 1400 PTT and ETT
E ------- Linear PTT
= 1300 ——LinearETT
S
S
= 1200

1100 T T T T T

0 600 1200 1800 2400 3000 3600
Departure Time (in seconds)

Figure 2-2: Link Traversal Time Functions

We discretize the time interval into intervals of 20 seconds. For each time interval,
we compute A;(t), B;(t), and C;(t). We also compute the link traversal times using
the expressions of the four travel time functions derived in this section. Figure 2-2
provides a plot of the Linear PTT, the Linear ETT, the limit of the linear PTT
and ETT, and the Quadratic PTT travel time functions during the one hour period.
Notice that a finer discretization would lead to the same plots. This example leads

us to the following observations:

e The travel time functions of the Linear PTT and the limit of the linear PTT

and ETT models almost coincide.

e Since the Quadratic PTT Model takes into account the quadratic term C;(t) in
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the departure flow rate function, the travel time of this model is more accurate

than the travel time of the Linear PTT Model.

e The Linear PTT, the limit of the linear PTT and ETT, and the Quadratic PTT
models lead to a symmetric quadratic shape that is similar to the profile of the
link departure flow rate function. However, the Linear ETT model displays an

asymmetric behavior.

e For moderate departure flow rates, the Linear ETT Model yields lower travel
times than the other three models. However, for high departure flow rates, the
Linear ETT Model yileds higher travel times than the other three models. The
asymmetric treatment of congestion depicted in Figure 2-2 by the Linear ETT
Model seems to correspond to what is experienced in transportation networks.
As a result, the Linear ETT Model seems to provide the most realistic travel

times.

The second scenario corresponds to u{*** = 40 miles/hr, £**® = 200 vehicles/mile
and L; = 4 miles. Furthermore, we consider the same discretization intervals of 20
seconds. In this case, B;(t) is very small compared to % As a result, we expect
the PTT and the ETT models to yield the same travel time function, that is, the
travel time function of the limit of the Linear PTT and ETT. Figure 2-3 illustrates

this observation.

Guochun Lin, a Master’s student in the Singapore-MIT Alliance Program, analyzed
the two scenarios above using two simulation methods. These methods attempt to
directly solve Model 1, introduced in Subsection 2.3.1, in the case of linear first-order
separable velocity functions. The first simulation method is based on an iterative
scheme. The second simulation method utilizes standard techniques used to solve
partial differential equations. While he was able to implement the two simulation

methods under Scenario 2, only the PDE method was able to provide results under
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Figure 2-3: Link Traversal Time Functions
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Scenario 1. The iterative method was not able to handle the over-saturation appeared

in this case.

Figure 2-4 and Figure 2-5 provide a plot of the preliminary results of this work. Note
that in both scenarios, the simulation methods provide higher travel times than the

PTT and ETT models.
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Figure 2-4: Comparison with Simulation Methods under Scenario 1

Example 2

We follow the same approach as in Example 1. We consider a piecewise quadratic
profile of a link depature flow rate function during a one hour period. This profile is
depicted in Figure 2-6. It corresponds in practice to a rush hour period that starts at

time zero and ends an hour later, with two peaks that are attained after 10 minutes
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Figure 2-5: Comparison with Simulation Methods under Scenario 2
and 50 minutes respectively. The departure flow rate function is given by
fi(0,t) = 1600 — 57600.(t — %)2, vt € [0, é)

= 1000+ 5400.(t — 0.5)%, ¥Vt € [%, %]

) 5

= 1600 - 57600.(t ~ o), Vi€ (5,1),

where t is expressed in hours, and f;(0,t) is expressed in vehicles per hour.

It is easy to derive a piecewise quadratic approximation of the link departure flow
rate as follows
1, 1
A;(t) = 1600 — 57600.(t — 6) , Vte [O’E)

1
= 1000+ 5400.(t — 0.5, Ve [z, %
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Figure 2-6: Profile of a Link Departure Flow Rate Function During One Hour

= 1600 — 57600.(t — 2)2, Vt e (g, 1).

Bi(t) = —115200.(t— %), vt e [0,%)
15

= 10800.(t — 0.5 Vte |-, =

( ), E [6, 6]

5
= —115200.(t—§), Vte(g,l]-

1
Ci(t) = -57600, Vte [0, 6)
15
= 5400, Vte [6, 6]

= —57600, Vte(%,l].
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It is easy to check that
[i(0,t +T;) = Ai(t) + Bi(t).T; + C;(t). T2

As in Example 1, we consider two scenarios. The first scenario corresponds to u%® =
30 miles/hr, k*** = 175 vehicles/mile and L; = 4 miles. In this case, B;(t) is of
the same order of magnitude as % As a result, we expect the PTT and the ETT

models to lead to different travel times.

870

850 -
§ 830 -
8 610 -
3 o e QUATEETC P TT
£ Limit of Li
£ | wee LMt 0 Linear
g 570 PTT andETT
E 550 A /i ----LinearPTT
S 5309 4
% ‘; ——LinearETT

490

470 4 T . T . u
0 800 1200 1800 2400 3000 3600

Departure Time (in seconds)

Figure 2-7: Link Traversal Time Functions

We discretize the time interval into intervals of 20 seconds. For each time interval,
we compute A,(t), B;(t), and C;(t). We also compute the link traversal times using
the expressions of the four travel time functions derived in this section. Figure 2-7
provides a plot of the Linear PTT, the Linear ETT, the limit of the linear PTT
and ETT, and the Quadratic PTT travel time functions during the one hour period.
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Notice once again that a finer discretization would lead to the same plots.

The observations we made in the first scenario of Example 1 apply here as well. In
particular, the travel times of the Quadratic PTT Model are more accurate than the
travel times of the Linear PTT Model. Furthermore, the Linear ETT Model seems

to provide the most realistic travel times.

The second scenario corresponds to u*** = 40 miles/hr, £** = 200 vehicles/mile
and L; = 4 miles. Furthermore, we consider the same discretization intervals of 20
seconds. In this case, B;(t) is very small compared to ;ﬁ:—’% As aresult, as in Example
1, we expect the PTT and the ETT models to yield the same travel time function,
that is, the travel time function of the limit of the Linear PTT and ETT. Figure 2-8

illustrates this observation.

This concludes our analysis of the separable case. In the following section, we study

the non-separable case of this problem.

2.4.2 A Non-Separable Model

In this section, we generalize the Polynomial Travel Time Model (PTT Model) to the
case of non-separable velocity functions. We show how the results obtained for the
separable case extend to the non-separable case. The proofs are similar to the ones

of Subsection 2.4.1.

In order to ease the transition to the non-separable PTT Model, we first consider the
case of a two-link network. After that, we extend our results to the more general case

of acyclic networks.

Two Links Interaction
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Figure 2-8: Link Traversal Time Functions

Link i

X ;- detector

Figure 2-9: A network with two links
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In this subsection, we consider the case of two links: link 1 and link 2, as shown in
Figure 2-9. We consider the case of non-separable velocity functions. We model the
two-link network interaction by considering that the velocity of link 2, at position z»

and at time ¢, can be expressed as in Subsection 2.3.1 by
Ug = ’lflj(kz(l'g, t)) = u;na.:z: - bg(ugmz)zkg(.’ﬂg, t) + Qo1 (.’1:2)R21 (Tl, t— AZI), (281)

where o) (13) is the density correlation function between link 2 and link 1 and depends
on the position z; on link 2; Ry; is a function of k; and Vk;; T, is a fixed position
of a detector of density on link 1; and Ay, is a propagation time between link 1 and

link 2.

For the sake of simplicity, let us consider Ry;(.) = k;(.). Moreover, for the sake of

simplifying notation, we introduce the term J; = %%Zkl (Z1,t — Ag).

Lemma 2.2 from Subsection 2.3.2, that relates the density on a link to the link flow

rate, extends to this case as well. Using a similar proof, we derive

f2 bz(f uma:z:)
’U,gmz(l + J21) (,u72nax(1 + ng)) '

(2.82)

Furthermore, through similar arguments as in Subsection 2.4.1, we show that the

general framework of Theorem 2.5 (see equation (2.34)) leads to the conservation law

Ofz 1 2bs f: Ofs __
Oz2 + u"“” (1+le 1+3zf)3) =0.

Therefore, the Non-Separable PTT Model for link 2 becomes:

Non-Separable Polynomial Travel Time Model
For all t € [0, T1,

2bafs \Of2 _
b_z%_'- muz(1+J2l (1+3zf)3)3T2 —O>

f2(0,t + T3) = hi(Ty),
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ko — fe b2 (f2uge")?
27 wpem(14Jz1) | (uPeE(14Ja1))3

a5 (z2,t) — 1

dzo ug’

Ty(0, 1) = 0.

Similarly to the separable case, we can express the link flow rate function f;(zq,t+1T5)

as

B
faloa, ¢ Ty) = 2O = TR 4 Ax(t)uge
2 (42, 2) — 'u,’énaz n 2b232£t21‘2 ’

(1+J21)3

(2.83)

and consider a linear ordinary differential equation for determining link travel times

T, by Bs(t) -
d.’L'g (1 + J21)3u5’m + 2b2$232(t) 2
bazo Ba(t) mazx 2,,mazx
% + bgAg(t)’U.z + (1 + JQl) Uy —o (284)

UG ((1 4 J21)3uf" + 2bex2 By (1))

The complexity of equation (2.84) depends on the complexity of the density correla-
tion function ag (z3) expressed through the term .J»;. Notice that we can establish
similar results as in Subsection 2.4.1 if @y (z2) is a constant. However, deriving ana-
lytical closed form solutions is more complex if ag; (z2) is linear in z, and too difficult
in other cases. If aj;(x2) is neither constant nor linear, numerical methods seem to

be the only approach to solve differential equation (2.84) and determine travel times.

We are now ready to extend our results to acyclic networks.
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Acyclic Networks

In this subsection, we consider an acyclic network. The acyclicity assumption will
enable us to extend the results of Subsection 2.4.1 to the case of non-separable velocity
functions. We model link interactions by assuming that the velocity of link i, at

position z; and at time ¢, can be expressed as in Subsection 2.3.1 by

Ui(k, VE) = ul® — b;(u]™**)k; + Y (i) Rij (T, t — Ayy), (2.85)
JeB(i)

where B(i) is the set of predecessors of link s.

A predecessor of a link 7 is any link that comes before ¢ on a path. It does not restrict
to only the immediate parent of a link. Note that since we consider the case of acyclic
networks, we can talk of predecessors of a link as shown in Figure 5. Note as well that
the results we will establish for the case where we consider the set of predecessors,
also apply to the case where we consider the set of successors instead.

For the sake of simplicity, let us consider R;;(.) = k;(.). Moreover, for the sake of

simplifying notation, we introduce J; = 1 + 2_jeB() u,,ff;)k (Tt — Ayj).

Therefore, the Non-Separable PTT Model becomes:

Non-Separable Polynomial Travel Time Model
For all ¢ € [0, T,

o+ e (5 + B =0, for all i € I, (2.86)
fi(0,t+T3) = hY(T), foralli e I, (2.87)

ki = u;"{'w, + u:w{;ﬁ’ forallie I, (2.88)

u; = 3, forallie I, (2.89)

o) = 1, for all i € I, (2.90)

T;(0,t) = 0, for all 4 € I, (2.91)



Ty(Lp,t) = Sier Ti(Liyt + Tip(Lip, £))6;p, for all p € P. (2.92)

Next, we show how the general framework (see Subsection 2.4.1) for analyzing the

Separable PTT Model, extends to the non-separable model.
General Framework for Constant Density Correlation Functions

In this subsection, we assume that the density correlation function ;;(z;) between
link 7 and link j is a constant function of z;. In this case, J; is also a constant function

of Z;.

As in Subsection 2.4.1, we introduce two new variables m;(.) and g¢;(.) defined by

mi(s;) = é—lﬁ(hf(sl) — A;) and g;(z;,t) = T;(z;,t) — %‘%xz

Theorem 2.10 (A General Framework for Constant Density Correlation Functions)
If the density correlation functions are constant, the Non-Separable PTT Model re-

duces to solving the ordinary differential equation:

ds;  —milsi) — Sk

dz;  J3 + 2zmi(s;)

: (2.93)

with s;(0) = 0 as an nitial condition. The link flow rate functions and the link travel

time functions follow from:

filzit) = hi(s:) (2.94)
JL+2biht'(5i)
E(.’Ez,t) = Si+$ileﬂ:i—. (295)

Proof:

In the non-separable case, equations (2.33) and (2.30) become

. 2b;z:hl(si (T t+T3))
AT _ Ti LN\ S\ T,y 1
Eu’l J; J;?‘
Si(x‘bt"'ﬂ) = umes ’
)
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bi fi

dTy(z:, 1) 1 7t

and, ——— = — = :
dz; Uu; u;ter

After introducing g;, m; and A;, we derive the following two relations:

S = Gi— 73 - wmas J3 T, (2.96)
dg; . m;(s;)
do, 75 (2.97)

with 5;(0) = g;(0) = m;(0) = 0.

From equations (2.96) and (2.97), it follows that

ds; dg;  2mi(s:) B 2$ij—;fm§(3i) b4
dz; dz; J? J3 umez J3
_mi(s,-) 21‘1; dSi ’ blA.L

e Sy

2z,m’(s;)

Hence, g—;i-(]. + =) = —m—}as—) — —biliy. The results of the theorem follow.

O

We now assume that during a time period [¢, t+ A], travelers make the approximation
that the link flow rate for subsequent times ¢ + T; is linear in terms of the travel time
T;. That is, f;(0,t + T3) = h{(T3) = As(t) + Bi(t)T:.

The following theorem is an extension of Theorem 2.6 to the non-separable case with

constant density correlation functions.

maz 13

Theorem 2.11 If B; > —=5— holds, then:
(i) The Non-Separable Linearized PTT Model possesses a solution,
(i1) The link flow rate functions fi(z;,t + T;) are continuously differentiable, and we

have:

By(t)upoT; — Bz 4 A, ()uymos

maz 2b; B;(t)z; ’
ey B
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(vii) The link travel time functions T;(x;,t) are given by:

Ti(.’lii, t) _ T; n A,;(t) 2szz(t)-’L'z

ey, T By T g )P

Proof: The proof is fairly similar to the one of Theorem 2.6.

Since hi(s;) = Ai+ B;s;, it follows that m;(s;) = 2Bts;. Replacing in equation (2.93),

we obtain
b;B; b A,
L Tuhess — gGE
ds;  TymesSi T i
= 5B, °
dz; JE’ +2$i_u_utnw

1

The above equation can be written as the following separable equation:

dsi ___ufeeds (2.98)
si+ 4 JP+2om B '
.s~+ﬁ
Integrating both parts gives rise to —=t = L. Therefore it follows that
El.‘ (1+2m$i)§

A; 1
5 = — -1). 2.99
’ B,-((l + 208 g,)3 ) (299)

Using equations (2.94) and (2.95), we easily derive the results of the theorem.

O

Note that when the density correlation functions are set to zero, we have J; = 1.
The results of Theorem 2.11 then reduce to the results of Theorem 2.6 introduced in

Subsection 2.4.1.
Linear Density Correlation Functions
In this subsection, we consider the more complex case of linear density correlation

functions. That is, for every link j € B(i), a;j(%;) = ai + bijzi. In addition
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to the acyclicity assumption we imposed on the network, we further assume that
the influence of neighboring links only has a first order effect. This translates into
> jeB) %kj (T7,t — Aij) << 1. Therefore, we can make the following first-order

approximation

Bal43 G PN (2.100)

ma,:l:
jeB(i) %

For every integer n, let 6;, = n Y jeBG) bijk; and v = ul*%® + n Y jen(i) dijk;. The
following result provides a linear ordinary differential equation satisfied by link travel

time functions T} for the case of linear density correlation functions.

Theorem 2.12 If B; > — 2b L holds, then:
(1) The Linear PTT Model possesses a solution,

(it) The link travel time functions T;(z;,t) satisfy

dT; b;Bi(t) - BB 4 b Ai(t)ufo® + ufee J?
;s t O+ 20 B (D)7 © |l (w2, z;B;(t))

=0, (2.101)

Proof: Equation (2.101) is an easy extension of equation (2.84). We can obtain a
complicated closed form solution of equation (2.101). Its derivation is too compli-
cated and involves several integration by parts that we do not include for the sake of

simplicity.
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2.5 Spillback Models

2.5.1 A General Travel Time Model and Two Approximation
Models

A General Travel Time Model

In this subsection, we propose a general model for travel time functions that directly

accounts for spillback and bottleneck phenomena.

Assumption (A4), introduced in Subsection 2.3.2, provides an approximation of link
entrance flow rates by continuously differentiable functions. In this subsection, we
consider instead an approximation of the flow rates at the exit of a link. That is, we
replace Assumption (A4) by the following:

A5 For all ¢, the exit link flow rate f;(L;,t + 7;) can be approximated by hl(r;), a

continuously differentiable function of 7;.

Our analysis is based on a family of first-order velocity functions. We consider the gen-
eral case of non-separable velocity functions and model link interactions as in Subsec-
tion 2.4.2 by considering that the velocity of link ¢, at position z; and at time ¢, can be
expressed as a function 4;(k, Vk) = ul***—b;(u**)2ki+ 3 e gy 0ij (z:) Rij (5, — Ayj),
where b; is a constant; a;;(z;) is the density correlation function between link 7 and
link j and depends on the position z; on link 7; R;; is a function of k; and Vk;; Z; is a
fixed position of a detector of density on link j; A;; is a propagation time between link
7 and link 7; and B(¢) denotes a set of links neighboring link 7. In Subsection 2.5.2,
we consider separable velocity functions (e.g. ;;(.) = 0). In Subsection 2.5.3, we

revisit the more general case of non-separable velocity functions for acyclic networks.

Below, we provide a general model:

Model 2
For all ¢ € [0, 7], we have:
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af’g:;T) + (Z“T) =0, foralli e I, (2.102)

fi(Li, t + T3) = min(hi(T;), C2¥(¢)), forallic I, (2.103)
£:(0,t) < Cin(2), for all 4 € I, (2.104)

fi(miy t) = ki, t)ui(zs, t), for all i € I, (2.105)

u; = u;(k, Vk), forall i € I, (2.106)

S forall i € I, (2.107)

T,(0,t) = 0, for all i € I, (2.108)

Tp(Lp,t) = Xier Ti(Li, t + Tip(Lip, t))0ip, forallp e P. (2.109)

Notice in Model 2 that given exit link flow rate functions f;(L;,t), 1 € I, inflow
and outflow link capacity functions C!"(t) and C?*(t), i € I, and a density velocity
relationship u; = 4;(k, Vk), 1 € I, the Dynamic Travel Time Problem is the problem
of determining f;(x;,t) ¢ € I, us(zi,t) ¢ € I, ki(;,t) i € I, Ti(zi,t) ¢ € I, and T,(zp, 1)
p € P as functions of z; i € I, z, p € P and t € [0, T}.

Modeling Flexibility

As in the case of Model 2 and as we will illustrate next for the SPTT and the SETT
models, our models rely on Assumption (A5), that is, that at departure time ¢, the
exit flow rates f;(L;,t + 7;) on link i of length L; can be approximated by piecewise
continuously differentiable functions hf(7;). This analysis differs from the one in
Kachani and Perakis [41] where the same assumption was made on the entrance (i.e.
position 0 on link ¢) link flow rates f;(0,t + 7;). While the two assumptions seem to
be similar, the assumption in this subsection enables us to:

- Account directly for spillback and bottleneck phenomena. Spillback of queues is a

common phenomenon in transportation networks. Such phenomena might occur in
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the case of congested traffic (e.g. rush hour) or accidents, where queues form and
may backward propagate from a link to its upstream link. This happens whenever
the head of a queue reaches the head of a link and the inflow capacity of that link
is lower than the flow coming from upstream. The assumption we make on the exit
link flow rates f;(L;,t) at the tail of link ¢ will enable us to take into account link
inflow rate and outflow rate capacities more easily. Our previous model accounts for
spillback and bottleneck phenomena only implicitly via approximations.

- Determine travel times not only for drivers who are entering a link but also for
drivers who are already in the link. In the latter case, we may need to update our
estimates of travel times due to a significant change in traffic conditions. Indeed, once
we determine the travel time for a driver entering a link, if spillback occurs while this
driver is still in the link, then the travel time might change dramatically. Hence
there is a need to re-compute it based on the new traffic conditions. To the best of
our knowledge, the current literature of macroscopic analytical dynamic travel time
models does not address these issues, and as a result does not allow the computation

of travel times for drivers who are already in a link.

Moreover, capacity constraints (2.104) and (2.103) enable us to realistically model
the inflow and outflow link capacity rates Ci"(t) and C?“*(t). These capacities are
functions of time as they may depend on traffic conditions. Furthermore, the hydro-
dynamic theory of traffic flow implicitly accounts for the link storage capacity rate
fi"**. This storage capacity, also called road capacity (see Haberman [34]), is positive

and always bounded from above by u[*** k™M,

To illustrate our modeling flexibility, let us consider the case of a three-link network
(as shown in Figure 1) with two paths: p; = (i1,%2) and py = (41,143). We assume that
during a time period [¢, ¢ + A], travelers on link i; make the approximation that the

exit link flow rate for subsequent times t +T;, is linear in terms of the travel time Tj, .
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Figure 2-10: A three-link network example

That is,
fil (Liut + Tll) = hfl (TM) = Ai1 (t) + Bil (t)T'il .

We also assume that during the time period [¢t,t + A], the inflow and outflow link

capacity rates C"(t) and C?*(¢) are constant.

The simplest case would be to assume that the exit link flow rate is constant (e.g.

B;,(t) = 0). For instance we can have:

fi1 (Liut + Tn) = Ail (t) = min(CﬁUt(t), mm(fm (0, t)’ Czl;n(t)) + mzn(fza (0’ t)a Cz?(t)))

Another situation could correspond to the case where the exit flow rate on link i; is
below the outflow capacity rate CP**(t), the departure flow rate on link 4, is below
the inflow capacity rate C*(t), while the departure flow rate on link 75 is below the
inflow capacity rate C;*(t). In this case, drivers in link 4, might consider that the

exit flow rate is linear in the following form:

» df,., (0, ¢
Lyt +T) = O (0) + i (0,8) + L2007,
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A third situation could correspond to the case where the exit flow rate on link 7; is
below the outflow capacity rate C{*(t), and the departure flow rates on links i, and
i3 are respectively below the inflow capacity rates C?(t) and Ci*(¢). In this case,

drivers in link 4, might consider that the exit flow rate is linear in the following form:

dfil (Lil ) t)

fil(Lil’t+7}1)=f'i1(L'il7t)+ dt

T,,.

Model 2 is hard to analyze in its current form. For this reason, as in Section 2.4,
we consider two simplified models in the case of separable velocity functions (where
@;j(.) = 0). This will give rise to the Separable Spillback Polynomial Travel Time
Model (Separable SPTT Model) and the Separable Spillback Exponential Travel Time
Model (Separable SETT Model). In Subsection 2.5.2, we provide a detailed analysis

of the two models.

Separable Spillback Polynomial Travel Time Model

Below, we introduce the SPPT Model. To explicitly account for spillback and bottle-
neck phenomena in this model, we introduce a boundary condition at the end of the
link (see Equation (2.111)). This boundary condition will allow us to solve partial

differential equation (2.110). Theorem 2.1 gives rise to the following formulation:

SPTT Model
For all ¢t € [0,T):

% + Fr k=0, forallie I, (2.110)

fi(Li,t + T;) = min(RY(T;), Co¥(t)),  foralli € I, (2.111)
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£i(0,¢) < Ci(¢), for alli eI, (2.112)

ko= ohe + %ﬁ for all i € I, (2.113)

u; = £, for all i € I, (2.114)

Lzt = 1 foralli eI, (2.115)

T;(0,t) = 0, for all i € I, (2.116)

Tp(Lp,t) = Xier Ti(List + Tip(Lip, t))dsp, for all p € P. (2.117)

As we discussed above, equation (2.111) allows us to explicitly account for spillback
and bottleneck phenomena. This analysis differs from the one in Section 2.4 where a
similar assumption, f;(0,t+ T;) = hi(T;), was made on the entrance link flow rates
fi(0,t). Equation (2.110) is a first-order partial differential equation in the link flow
rate f;. Solving this PDE is the bottleneck operation in the solution of this model.

If we assume that equations (2.110) and (2.111) possess a continuously differentiable
solution f;, then, equations (2.113) and (2.114) determine the density function k; and
the velocity function u;. The ordinary differential equation (2.115), under boundary
condition (2.116), determines travel times on the network’s links. Finally, path travel
times follow from equation (2.117). Therefore, if we assume that equations (2.110)
and (2.111) possess a continuously differentiable solution f;, the SPTT Model, as

formulated by equations (2.110)-(2.117), also possesses a solution.
Remark: Note that equations (2.113) and (2.114) simplify the travel time differential

equation (2.115) to

dz; | upe

(2.118)
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Separable Spillback Exponential Travel Time Model

Theorem 2.2 gives rise to the following formulation:

SETT Model
For all t € [0, T7:

8 4 upre(1 - 2b:f;) 9L = 0, foralliel, (2.119)
fi(Li,t + T;) = min(hi(T;), Co4(t)),  foralli eI, (2.120)
fi(0,t) < Cin(¢), for all i € I, (2.121)

ki = i + 2, for all i € I, (2.122)

w = £, forallic I, (2.123)

Ml = 1 for all i € I, (2.124)

T:(0,t) =0, forallie I, (2.125)

Tp(Lp,t) = Yier Ti(Liy t + Tip(Lip, 1))6;p, forall p € P. (2.126)

Equation (2.119) is a first-order partial differential equation in the link flow rate f;.
Solving this PDE is the bottleneck operation in the solution of this model. Moreover,
equation (2.120) provides the boundary condition for this equation. It explicitly
accounts for spillback and bottleneck phenomena by assuming that the exit link flow

rates f;(L;,t) can be approximated by continuously differentiable functions hi(t).

Assuming that equations (2.119) and (2.120) possess a continuously differentiable
solution f;, equations (2.121) and (2.123) determine the density k; and the velocity
u;. The ordinary differential equation (2.124) under its boundary condition (2.125)
determines travel times on the network’s links. Finally, path travel times follow from
equation (2.126). Therefore, if we assume that equations (2.119) and (2.120) possess
a continuously differentiable solution f;, the SETT Model, as formulated by equations
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(2.119)-(2.126), also possesses a solution.
Remark: Replacing equations (2.121) and (2.123) in equation (2.124), leads to the
same equation as for the SPTT Model, that is

dT;(zi,t) _ 1+bifi

dz; uter

(2.127)

2.5.2 Analysis of Separable Velocity Functions

In this subsection, we study the SPTT and the SETT Models in further details.

In particular, we extensively analyze the SPTT Model for piecewise linear and piece-
wise quadratic functions hf(7;). We show how Model 2 reduces in this case to the
analysis of a single ordinary differential equation. We provide families of travel time

functions.

Furthermore, we analyze the SETT Model by approximating the initial flow rate with
piecewise linear functions hf(7;). Moreover, we show why the analysis of the SETT
Model is more complex than the one of the SPTT Model. In addition, we propose a
family of travel time functions. Finally, we summarize our results and show how the

families of travel time functions we propose relate.

Separable SPTT Model

Below, we analyze the SPTT Model for piecewise linear and piecewise quadratic
approximations of exit flow rates. We provide families of travel time functions under

a variety of assumptions.
A General Framework for the Analysis of the SPTT Model

The purpose of this subsection is to provide a general framework for the analysis of
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the SPTT Model that reduces the problem to solving a single ordinary differential

equation.

As a first step towards establishing the main result of this subsection, we introduce
the classical method of characteristics in fluid dynamics. Haberman [34] provides a
detailed analysis of this method. Along the characteristic line that passes through
(zi,t + T;) with slope 1;—3,’,’,;&, the solution f;(z;,t + T;) of equation (2.110) remains

constant. If (L;,t + s;(z;,¢t + T;)) denotes a point on this characteristic line, we have
fi(l‘i,t-l-’I;‘) = hf(s,(zz,t-f-Tz)) (2128)

Note that this definition of the characteristic function s;(.) differs from the one of
Haberman [34] and Perakis [68]. Indeed, in this subsection, to explicitly account for
spillback and bottleneck phenomena, the boundary condition is on the exit link flow
rates fi(L;,t). Therefore, we consider that (L;,t + s;i(z;,t + T3)) is a point of the
characteristic line. In Perakis [68], the boundary condition was on the departure link
flow rates f;(0,t) instead and as a result, (0,¢ + s;(x;,t + T;)) was considered as a
point of the characteristic line. By using similar arguments as in [68], one can easily

establish that

silwnt 4+ T) = B = (@i = Lo) = 2bi(ai = Lhi(si(es, t+ T)

s (2.129)

We introduce two new variables m;(.) and g;(.) defined by m;(s;) = bz (hi(s;) — A;)

and g;(z;,t) = T;(z;, t) — lui,,'i:él(xz —L;).

Theorem 2.13 (General framework) The SPTT Model reduces to solving the follow-

ing ordinary differential equation:

dSi —my (S'L) - £m“41u:

dz; 1+ 2(z; — L)mi(s;)’

(2.130)
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. - 2b; A; e iy
with s;(zo,t) = u’-’(%‘”—z;g'%-'-(b—xl) as an initial condition, and where x, denotes the

position of a driver on link i. The link flow rate functions and the link travel time

functions follow from:

filzit) = hi(s) (2.131)

i — Li) + 2b;(z; — Li)hi(s;
Tz t) = s+ &= L)+ 2@ Lohils:) (2.132)

mar
u;

Proof: Introducing g;, m; and A; in equations (2.129) and (2.118), we derive the

following two relations:

si = gi—2zmy(s;) — ——u;, (2.133)
dg:
di- = mi(si). (2.134)
From equations (2.133) and (2.134), it follows that
ds; dg; ds; b; A;
i z_2ii_2i_z/_i_z1,
dil?i diL‘.L m (S ) o d.’l?z m,(s ) u;naz
ds; b; A;
= —my(s;) = 2zi5—mi(s;) — —t.
m;(s;) — 2z d:cim’(s) e
Hence, $2(1 + 2x;mj(s;)) = —m;(s;) — 2iat. Then the results of the theorem follow.
a

Piecewise Linear Exit Link Flow Rate Functions

In this subsection, we apply the general framework to simplify the analysis of the

piecewise linear approximation of exit flow rates.

We assume that during a time period [¢, ¢+ A], drivers make the approximation that

the exit link flow rate for subsequent times ¢ + T; is linear in terms of the travel time
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T;. That is,

fili,t + T) = hi(T;) = Ai(t) + B,(t)Ts. (2.135)

Link Exit Flow
Rate f(L ,t+T)
J §

T

Figure 2-11: A possible profile of approximated exit flow rates

Over the time period [0, T, this results into a piecewise linear approximation of link

exit flow rates as shown in Figure 2-11.

Remark:
Note that using the method of characteristics, a necessary and sufficient condition for

the existence of solution of the SPTT Model in this case is:

max

U

We call the system of equations (2.110)-(2.117) and (2.135) the Linear SPTT Model.

Next, we provide a closed form solution for the Linear SPTT Model.
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Theorem 2.14 If (2.1536) holds, then:
(i) The Linear SPTT Model possesses a solution,
(i) The link flow rate functions f;(z;,t + T;) are continuously differentiable,

Bi(t)umazﬂ — B,,(t) (.’L'l — L,) + Ai(t)um'”
1\ t T!L = : : ) .
filzi,t+T) T Y P (2.137)

(i4i) The link travel time T;(zo, z;,t) to reach position x; of a driver initially at position

To at time t is given by:

i L; - A; i 1
T(ao, o t) = 20 (L2 AWy mmg g o5
u;_'nax u;_‘nam Bz(t) %E - (Lz — CL‘O)

Proof:  Since h{(s;) = A; + B;s;, it follows that m;(s;) = 2i8ts;. Replacing in

equation (2.130), we obtain

biB;i o _ biA;
dsi - ymazc 57, ymaz
% i

dz; 1+ 2(z — L)2B

The above equation can be written as the following separable equation:

b; B;

dSi umaT dzz
=— : . 2.139
si+ & 1+2(z; — L;) 2B (2.139)

(Li—z0)(142b; A;)
u***—2b; B;(L; —z0)

Integrating both parts using s;(zo,t) = (see Bender and Orszag [9])

gives rise to

. b;B;
S; + %L 1- 2(LZ - :L"L')umaz
1 —_— 2
Aumas . — B 1l
(Li—wo)+%‘i— (1 - 2(L,; — I; ui,‘n—e'z-)z'
1

w™e% 25, B; (L;—0)
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Therefore it follows that

L; — o) + 2 1 A
Si(:L'i,t) = ( : 0) B; - — —z. (2140)
u I — Qb,'Bi(Li - .’Eo) (]_ + om0 B;

7,5; ~(Li=20)

B[

Using equations (2.131) and (2.132), the results of the theorem follow.

O
Corollary 2.2 Assume that
IB()] << o 2.141
‘ 2b;L; (2.141)
Then:
(i) The Linear SPTT Model possesses a solution,
(ii) The link travel time functions T;(zo, z;,t) simplify as follows:
L+ Ai(t)b; — il
Tji y L = . i .
(zo, s, t) o = 3(L, = 20 B (D) (i — 20) (2.142)
1 2 (Bi(t)b)*(Li — zo) 2
z(u;r:naz)Q (A'L(t)Bl(t) (bl) + ’U,Enam )(l’z — l‘o) .
Proof:

(i) Note that equation (2.141) implies that equation (2.136) holds. Hence, part (i)
follows.
(ii) Relationship (2.141) allows us to use a second order Taylor expansion of equation

(2.138). This leads to equation (2.142).

Piecewise Quadratic Exit Link Flow Rate Functions
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In this subsection, we assume that during a time period [¢, ¢ + A], drivers make the
approximation that the exit link flow rate for subsequent times ¢ + T; is quadratic in

terms of the travel time 7;. That is,

fi(Li,t + T;) = Bi(T;) = Ai(t) + Bi(t)T; + Ci(t)(T3)*. (2.143)

Over the time period [0, T, this results into a piecewise quadratic approximation of

link exit flow rates as shown in Figure 2-12.

Link Exit Flow
Rate f(L t+T)
A

Figure 2-12: A possible profile of approximated exit flow rates

Note that a necessary and sufficient condition for existence of a solution, is in this

case:

maz

Bi(t) + 2C;(t)(t + A) < ;_bf (2.144)

We call the system of equations (2.110)-(2.117) and (2.143) the Quadratic SPTT
Model. Next, we provide a closed form solution to the Quadratic SPTT Model. Note

88



that when the quadratic term is neglected (i.e. C; = 0), we capture the previously

studied case of piecewise linear exit link flow rate functions.

Theorem 2.15 Assume that

maxr

Bi(t) + 2C,(t)(t + A)| << ;b - (2.145)

Then, the following holds
(i) The Quadratic SPTT Model possesses a solution.

(ii) The third degree Taylor expansion of the link travel time functions T;(x;,t) becomes

1+ Ay(t)b; — LimzolbsBilt)

u;naz

T%(.’L'(),Ii,t) = u:;na:c — Q(L,L — .’Eo)ble(t) (171' - .'1,'0) (2146)
N W(Ai(t)Bi(t)(bi)z + & (t)bgm%" — %))(xz‘ — o)”
N (11Az’(t)(Bi(t))2(bi)3 11(B;(8))° (6:)*(Li — o)
6(uymew)3 6(upe)!
4(A:i(0)*Ci(H)(6:)°  24:(t) Bi(t)Ci(t) (bi)*(L; — xO))(x- — xp)3
3(upre)? (upes)s P

Proof: The analysis involved in this proof is very tedious and very similar to the

one in Subsection 2.4.1. We do not include it for the sake of brevity.

Separable SETT Model

In this subsection, we study the SETT Model. We show that the analysis of the
SETT Model is more complex than the SPTT Model, and propose a different class

of travel time functions for piecewise linear approximations of exit flow rates.
Piecewise Linear Exit Link Flow Rate Functions

We assume that during a time period [¢, ¢ + A], drivers make the approximation that

the exit link flow rate for subsequent times ¢ + T; is linear in terms of the travel time
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T; (see Figure 2-11). That is,

filLi,t + To) = hi(Ty) = Ay(t) + B;(t)T:. (2.147)

A necessary and sufficient condition for the existence of a solution, is in this case:

marT

By(t) < ;"b £ (1= 20Ai(t) — 20:Bi(0) (¢ + A))” (2.148)

We call the system of equations (2.119)-(2.126) and (2.147) the Linear SETT Model.
Next, we provide a closed form solution of the Linear SETT Model.

To make our notation more tractable, we introduce variables §; = %%, 0y =
T 2
Bt 1+b; As(t)+ LW PO
bl-rB;zazt and 03 - max - L maz A .
u’ ul u"% (1-2b; A;(t))

(2

Theorem 2.16 Assume that

mazT

Bi(t)| << ;‘b £ (1= A1) — BB (¢ + A))” (2.149)

The following holds,

(i) The Linear SETT Model possesses a solution,

(ii) The link characteristic line functions s;(.) are continuously differentiable and can
be ezpressed as a function of the link travel time functions, that is,

T (1 — 26;44(t)) — (2: — Ly)
uzma.z‘(]_ — QbZAz(t) + 2b1,Bl(t)T;) ,

si(xi,t) = (2150)
(ii1) The link travel time T;(zo, T;, t) to reach position x; of a driver initially at position

To at time t 1s given by:

eoz(zi—IO) —1 01 (-'1:'1, - 1'0)

Tzi(xia t) = 03( 92 gz(ugnaz)2 )

(2.151)
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(i) If condition (2.141) holds, the link travel time function T;(xo, z;,t) is

1+Az(t)bz— !Li—-zo!biB,;!t!

u;naz — 2(Lz — xo)ble(t) (zi - 1'0)

s OB + B e

(3

ﬂ(a:O;xi)t) = (2152)

Proof: The analysis involved in this proof is quite tedious and similar to [41]. For

the sake of brevity, we do not include it.

Summary and Models Comparison

In summary, we have so far derived two families of travel time functions. The Linear

SPTT Model which leads to the polynomial family of travel time functions

(.’L‘i - 1130) L,; — Ty A,(t) I — Ip 1
3 [ = 1 mazc - 5 .
Tt = St + Gt + G+ )= 12459

and the Linear SETT Model which leads to the exponential family of travel time

functions

602(1‘«;—1‘0) -1 01 (1'7, - xO)
92 02(u7_na:c)2 4

K3

T;;(J?o,.’Ei,t) = 93( (2154)

where, 6;, 1 € {1, 2,3} defined above.

It is very important to note that equations (2.153) and (2.154) coincide when |B;(t)| <<

;;:1;: holds. That is, they possess the same second order Taylor expansion

14+ A;(t)b; — (Li—z0)bi B;(t)

Ti(%o, x4, t) = umez — (L, — Io;g;a;z(t) (z; — o) (2.155)
- _z(u;;az)z(Ai(t)Bi(t) (B) + (Bi(t)bi)zngfi — xo))(xi — zo)?.
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This relationship seems to indicate that the assumptions made for both the Linear
SPTT Model and the Linear SETT Model are indeed reasonable.
Furthermore, the Quadratic SPTT Model gives rise to a more complicated expression

of link travel time functions. The third degree Taylor expansion leads to

L+ Ai(t)b — LB

ar
uf"

T:(zo, z;,t) = N =N T (z; — o) (2.156)
- s B + B Sy g e
11A4;(8)(Bi(4))*(5:)* | 11(Bi(t))*(b:)* (Ls — o)
L o o 6(urez )3
4(Ai(8)Ci(t) (6:)°  2A4(8) Bi(t) Ci(t) (b:)* (L; — wO))(x_ — )’
3(uper)? (upres)t o

We observe that

o If the quadratic term is neglected (i.e. C; = 0), then a second order approxi-
mation of equation (2.156) leads to equation (2.155) and, as one would expect,
we fall in the case of the Linear SPTT Model. Hence, it appears that the as-

sumptions made for the Quadratic SPTT Model are also reasonable.

o If the constant term is neglected (i.e. A; = 0), equation (2.156) provides us

with a non-zero third order degree term.

This concludes our analysis of the separable case. In the following subsection, we

study the non-separable case of this problem.

2.5.3 A Non-Separable Model

In this subsection, we generalize the Spillback Polynomial Travel Time Model (SPTT

Model) we presented in Subsection 2.5.1 to the case of non-separable velocity func-
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tions. We show how the results obtained for the separable case extend to the non-

separable case.

In this subsection, we consider an acyclic network. The acyclicity assumption will
enable us to extend the results of subsubsection 2.5.2 to the case of non-separable
velocity functions. We model link interactions by considering that the velocity of link

i, at position z; and at time ¢, can be expressed as in Subsection 2.5.1 by

Ui(k, VE) = ul"® — b;(ul**) ki + > aui(z:) Rij(Tj,t — Ay), (2.157)

j€B()
where o () is the density correlation function between link j and link i and depends
on the position z; on link j; R;; is a function of k; and Vk;; T; is a fixed position of
a detector of density on link j; A;; is a propagation time between link j and link 7;
and B(i) is the set of predecessors of link ¢ (See Figure 2-9 in Subsection 2.4.2 for an

illustration of the notation in the case of a two-link-network).

For the sake of simplicity, let us consider, as in Subsection 2.4.2, that R;;(.) = k;(.).
Moreover, for the sake of simplifying notation, we similarly introduce J; = 1 +
Sien) heitks (Tt — Ay).

The Non-Separable SPTT Model becomes:

Non-Separable Spillback Polynomial Travel Time Model
For all t € [0,T],

o+ e (3 + BB =0, for all i € I, (2.158)
fi(Li,t + T;) = min(h4(T;), C2(t)),  forallie I, (2.159)
£i(0,8) < Cin(e), for all s € I, (2.160)

ki = e + u;ﬁ?, for alli € I, (2.161)

u = £, for alli € I, (2.162)
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dT;(zi,t 1

= for all 7 € I, (2.163)
T,(0,¢) = 0, for all i € I, (2.164)
Ty(Lp,t) = Yier Ti(Liyt + Typ(Lip, )65, for all p € P. (2.165)

Note that boundary condition (2.159) allows us to explicitly account for spillback and

bottleneck phenomena.

We assume that the density correlation function a;;(z;) between link 7 and link j is

a constant function of z;. In this case, J; is also a constant function of z;.

We also assume that during a time period [¢, ¢ + A], drivers make the approximation
that the link flow rate for subsequent times ¢ + 7; is linear in terms of the travel time

T;. That is, fi(0,t + T;) = hi(T;) = Ai(t) + B;(t)T;.

The following theorem is an extension of Theorem 4 to the non-separable case with

constant density correlation functions.

maz J3

Theorem 2.17 If B; < Ezzb_z,f holds, then:

(i) The Non-Separable Linearized SPTT Model possesses a solution,
(ii) The link flow rate functions f;(z;,t + T;) are continuously differentiable, and we

have:

Bj(tyupesT; — BOG=L) 4 g, (4)qymos

1

2b; B;(t)(zi—L;) )
u:naa:_i_ 1 z(}(w Lz

fi(zi,t +T;) =

(iii) The link travel time T;(zo, z;, ) to reach position ; of a driver initially at position

xo at time t is given by:

(IL',' - .’Eo) L, — Xy Az(t) I; — Xy 1
) i,t = mac - .
flan s t) = Sy * O Y0 o) Y

(2.166)

Proof: The proof is similar to the one of Theorem 2.14.
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Note that when the density correlation functions are set to zero, it follows that J; =
1. The results of Theorem 2.17 then reduce to the results of Theorem 2.14 from

subsubsection 2.5.2.

2.5.4 Connection with the Dynamic Network Equilibrium
Problem

As in Perakis [68], we assume in this subsection that the drivers in the network

operate under Wardrop’s user-optimizing principle. The user-equilibrium property

holds if no driver can decrease his/her travel time by making a unilateral decision to

change his/her travel path. We further assume that every user has full information

over the departure time period [0, 7.

The dynamic user-equilibrium problem is then the problem of determining a distri-
bution of the demand rate functions d,,(t) of each O/D pair w in the set of paths P,
so that for each time ¢ € [0, 7], the user-equilibrium property holds (see Bernstein et

al. [11] and [10]).

The following three equations express the equilibrium conditions in a dynamic setting
T1,(L1,,t) = ... = Ty (Lmy ) < Ty 41 (Ling+1, ) < oo < Ty (L y 1)
for all w € W and t € [0, T, satisfying:

Flw(O, t), ,me(O,t) > 0, me+1(0,t) =..= an(O,t) = 0, for all w € W/,
Svepy, Fp(0,t) = dy(t), for all w € W,

and subject to any model from Sections 2.3, 2.4 and 2.5.

In the new model we introduce, we will not assume that we know the travel time
functions in advance. Rather, we will include travel times by incorporating a dynamic

travel time model.
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For the sake of generality, we present the dynamic user-equilibrium model that cor-

responds to Model 1 introduced in Subsection 2.3.1.

A User-Equilibrium Model

T (Lo, t) = o = T (L s ) < Tt (L1, ) < oo < T (L ) (2.167)

for all w € W and ¢ € [0, T}, satisfying for all ¢ € [0, T:

Fi1y(0,), eesy Fry (0,8) > 0, Fypy 41 (0,8) = ... = F, (0,£) = 0, for all w € 1{2.168)
Spep, Fp(0,t) = dy (), for all w € W, (2.169)

Ty(Lpyt) = Yier Ti(Liyt + Tip(Lip, t))6ip, for all p € P, (2.170)

Fi@i,t) = Syep Fy(2, )0y, for all i € T, (2.171)

ui(z, t) = u;(k, VE), (2.172)

fi(zi, t) = ki(zi, t)ui(zi, t), foralli € I, (2.173)

O | Fuleedd) — 0, for all i € 1, (2.174)

izt = 1 forallie I, (2.175)

T:(0,t) =0, foralls € I. (2.176)

The user-equilibrium problem seeks to determine the path flow rates F,(0,t), p € P,
the link flow rates f;(0,t), ¢ € I, and the densities k;(0,¢), 7 € I, that satisfy equation
(2.167) and the feasibility conditions (2.168) to (2.176).

Therefore, the analysis of the dynamic travel time problems proposed in this subsec-
tion is relevant to the analysis of the dynamic user-equilibrium (DUE) problem. In
particular, deriving closed-form solutions for travel time functions allows us to solve

the DUE problem directly. In Chapter 4, we examine and study the anticipatory route
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guidance problem, which is an extension of the dynamic user-equilibrium problem.
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Chapter 3

A Fluid Model of Dynamic Pricing
and Inventory Management for
Make-to-Stock Manufacturing
Systems

3.1 Introduction and Motivation

3.1.1 Introduction

In this chapter, we propose and study a fluid model of pricing and inventory manage-
ment for make-to-stock manufacturing systems. Instead of considering a traditional
model that relies on how price affects demand, we consider a new model that is based
on how price and level of inventory affect the time a unit of product remains in

inventory. The model applies to non-perishable products.

Our motivation is based on the observation that in inventory systems, a unit of prod-
uct incurs a delay before being sold. This delay depends on the unit price of the

product, prices of competitors, and the level of inventory of this product. Further-
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more, we believe that delay data is easy to acquire. This delay is similar to travel

times incurred in a transportation network.

The model of this chapter includes joint pricing, production and inventory decisions in
a competitive multi-product environment. We apply ideas borrowed from transporta-
tion to inventory control and supply chain in order to capture a variety of insightful

phenomena that are harder to capture using current models in the literature.

3.1.2 Motivation

In recent years, pricing has become very important in a variety of areas including
airline revenue management, inventory control and supply chain management. For
instance, in the airline industry, revenue management has demonstrated its potential
to dramatically improve revenue. Smith et al. discuss in [74] how revenue manage-
- ment enabled American Airlines to increase its yearly revenue by nearly 5%, which
led to a $1.4 billion profit improvement over a period of three years. Moreover, the
rapid development of information technology, the Internet and E-commerce has had

a very strong influence on the development of pricing.

As a result, pricing theory has been extensively studied by researchers from a variety
of fields. These fields include, among others, economics (see for example, [79]), mar-
keting (see for example, [50]), telecommunications (see for example, [44], [45], [66]),
and revenue management and supply chain management (see for example, [5], [13],
[20], [28], [31], [47], [83]). The paper by McGill and Van Ryzin [57], and the references

therein, provide a thorough review of revenue management and pricing models.

As the nature of pricing is becoming more dynamic and tactical, companies are faced
with the challenge of reacting to and taking advantage of these changes. A study by
McKinsey and Company on the cost structure of Fortune 1000 companies in the year
2000 shows that pricing is a more powerful lever than variable cost, fixed cost or sales

volume improvements. An improvement of 1% in pricing yields an average of 8.6%
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in operating margin improvement (see Figure 3-1). Therefore, companies’ ability to
survive in this very competitive environment depends on the development of efficient

pricing models.

A 1% improvement ... improves operating
imn ... margin b

Price

.6%
Variable cost
Sales volume
Fixed cost
*Based on Compustat cost structures of 1,000 companies, 2000. WcKinsey & Co
Figure 3-1: Price as a powerful lever to improve profitability

Make-to-stock manufacturing is the standard for a very large number of industries
such as retail (see Ha [33] and Wein [77] for more details on make-to-stock models).
Furthermore, a motivation for the use of fluid models is that these models have shown
to provide good production and inventory policies in a variety of settings, as illustrated
in Avram, Bertsimas and Ricard [4], Bertsimas and Paschalidis [12], Harrison [36],
and Meyn [59]. Nevertheless, these models do not address the pricing aspect of the

problem.

In this chapter, we consider (i) a multi-product and dynamic environment, (ii) a
dynamic production capacity shared amongst all products, (iii) the presence of com-
petition, and (iv) non-perishable products. We address the joint pricing, production
and inventory problem, without assuming any fixed relationship between price and in-

ventory. Subsequently, for better numerical tractability, we study the model assuming
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a specific price-inventory relationship.

Instead of considering a traditional model that assumes an a priori relationship be-
tween price and demand with fixed parameters, we consider a model that relies on
how price and level of inventory affect the time a unit of product remains in inventory.

We refer to this time spent in inventory as delay or sojourn time.

The impetus of considering delay data is motivated from: (1) The widespread record-
ing, by barcode readers, of entrance times and exit times of products in inventory
systems, which makes this delay data available. (2)The delay data being internal
and easily extractable from data warehouses, as opposed to demand data, which is
external, and therefore not controlled by the manufacturer. As a result, there are
issues of missing data when dealing with demand estimation, which is not as much
present when dealing with delay and inventory data. (3) In an environment where
price does not vary a lot with time, the estimation of the relationship between price
and demand, which is used as an input to the pricing models in the literature, can be
quite inaccurate. However, because of the moderate to high variability of inventories
with time, the estimation of the relationship between inventory level and sojourn time

can be more accurate.

Furthermore, unlike the pricing models described above, we consider a continuous-
time formulation of the problem. We provide insightful analytical properties of this
model. In addition, in an effort to provide a numerical example and to establish a link
between tradititional demands models and the delay model of this paper, we consider

a discretized version of the model.

The structure of the chapter is as follows. In Section 3.2, we provide the nota-
tion and some definitions. In Section 3.3, we formulate the Dynamic Pricing Model
as a continuous-time nonlinear optimization problem. In Section 3.4, we present
a solution algorithm for a discretized version of the model, test it on a small case

example, and report on the computational results. In Section 3.5, we consider the
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general Dynamic Pricing Model. In particular, we study the analytical properties of
its feasible region, and establish, under weak assumptions, the existence of a pric-
ing/production/inventory control policy that maximizes the profit of the company
under study over the feasible region. Finally, in Section 3.6, we provide conclusions

and discuss future steps.

3.2 Notation and Definitions

In this section, we present the notation and some definitions that we use throughout

the chapter.

3.2.1 Notation

In this chapter, we study a multi-product inventory system that we represent con-
ceptually by a directed network with two nodes O and D, and n links joining these
two nodes. Node O represents the arrival of a product to the warehouse and node
D represents the delivery of this product to the customer. Each link joining O and
D corresponds to a distinct product that the company is selling and is indexed by
i, 1 € {1,...,n}. We assume that the company under study is a Stackelberg leader,
and as a result is a price setter. Therefore, competitors’ prices are functions of the
price of the company under study. These functions can be estimated in practice using
regression on the competitors’ prices and the prices of the company under study, as
illustrated in Subsection 3.3.2. Below, we describe the inputs and the outputs of the
Dynamic Pricing Model. Figure 3-2 provides a network illustration of the notation

introduced below.

Inputs of the Dynamic Pricing Model

Product variables:
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Product !
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Figure 3-2: Network representation of the multi-product inventory system

CFR(t) = Shared production capacity rate at time t;

0) — (9, (Bi())seqs,..o0), vector of price functions
of companies competing on product i;

D;(I;) = T;(L;, p;, p¢) : product sojourn time function, that is the total
time a newly produced unit of product 1,
spends in the inventory system, given an
inventory I;, a unit price p;(I;), and a set
of competitors’ price functions p¢(.);
A(L) : average product delay function, that is the

average time needed to sell a newly produced unit

of product i (i.e. 4;(;) = ﬂlf_l),
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By; : alower bound on the derivative D.(.) of the
product sojourn time function D;(.);

By; : an upper bound on the derivative Dj(.) of the
product sojourn time function D;(.);

¢;(t) : production cost of product 7 at time ;

hi(t) : inventory holding cost of product i at time ¢.
Time variables:

t : index for continuous time;
[0,7] : production period. After time T, the company under study ceases

producing.

Outputs of the Dynamic Pricing Model

Product variables:

Ui(t) : cumulative production flow of product 7 during interval [0, ¢];
u; (1) production flow rate of product 7 at time ¢;
Vi(t) : cumulative sales flow of product ¢ during interval [0, ¢];
v;(t) sales flow rate of product 7 at time ¢;
Ii(t) : inventory (number of units of product) + at time ¢;

pi(I;(t)) : sales price of one unit of product 7 given an inventory I;(t);
si(t) : exit time of a production flow of product type i entering

at time t (s;(t) =t + D;(I;(2))).
Time variables:
[0,T] : analysis period. It is the interval of time from when the first unit
of product is produced to the first instant all products have
been sold.

Notice that the control variables are the production flow rates u;(.) and the unit price

functions p;(1;)-
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3.2.2 Definitions

The following definitions express different types of First In First Out (FIFO) proper-
ties. The FIFO property will play a key role in the analysis of our model in Section
3.5.

Definition 1 A product verifies the FIFO property if and only if:
V(tl,tz) c [0,T]2, Zf tl S t2, then.‘ Si(tl) S Si(tg). (31)

The above property expresses that a newly produced unit of product cannot be sold
before its predecessors. Similarly, a product verifies the Strict FIFO property if and

only if the product exit time function is striclty increasing.

Definition 2 A product verifies the strong FIFO property if and only if:

360 > 0 such that ¥(t,t5) € [0,T)%, if t1 < to, then: si(ta) — si(t1) > 0(t2 — t1).
(3.2)

3.3 Formulation of the Dynamic Pricing Model

3.3.1 Modeling Assumptions

Before formulating the model, we describe the setting and the assumptions.

We consider a competitive setting where:

A1) The company under study is a Stackelberg leader (a monopoly is a special case
of a Stackelberg leader).

A2) There are multiple products. These products are non-perishable.

A3) The total production capacity rate is bounded by a non-negative capacity flow
rate function CFR(.).

A4) There is no substitution between products.
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A5) The company under study faces holding costs but no setup costs.
A6) The demand is deterministic.

A7) The unit price p;(.) is a function of the inventory I;.

Assumption A7 allows us to consider a variety of models for the unit price p;(.)

as a function of the inventory. Examples of such models include linear functions
pmaz_pmin

C;

of the type p;i(L;)) = p["** —
pi(li) =

I; as well as nonlinear functions of the type

i é’; " where C; denotes the inventory capacity, p7** the maximum
allowable grice, and p/™" the minimum allowable price. Notice that the unit price
function p;(/;(t)) depends on time only through the time-dependence of the inventory
I;(t). Furthermore, the examples we state consider the case where the unit price

decreases as inventory increases.

We consider a sojourn time function D;(I;(t)) = T;(L:(¢t), pi(Li(?)), pS(pi(1;(t)))) that
represents the total time it takes to sell, at time ¢, a newly produced unit of product
i, given a level of inventory I;(t), a unit price p;([;(t)) and a set of competitors’ prices
p5(pi(;(t))). Notice that the product sojourn time function D;(I;(t)) resembles the

time to traverse a link in a transportation network.

3.3.2 Estimation of Sojourn Times in Practice

A few companies such as Amazon.com utilize the sojourn time information to control
their inventory levels and adjust their pricing policies. A key motivation for intro-
ducing sojourn times in the model of this chapter is the availability of sojourn time
information in almost every company’s data warehouse. Indeed, as a unit of product
enters the inventory system, a barcode reader records its entrance time. When this
unit is sold, a barcode reader records its exit time. The lag between the entrance

time and the exit time is the sojourn time.

Below, we describe how to estimate the sojourn times D;(Z;) in practice:
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e Extract entrance times ¢; and exit times s;(¢;) of units of product 4 from the

data warehouse and record sojourn times D;(t;) = s;(¢;) — t;.

e Record the inventory levels I;(¢;) and the unit prices p;(¢;) at entrance times t;.

Fit the triplets (£;(t;) , pi(t:) , ﬁi(ti) ) into a parametric function D;(I;(t;), pi(t;)).

e Assume a parametric shape for the unit price function p;(I;) and plug it in

D;(I;(t;), pi(t;)) to derive the sojourn time function D;(I;).

Notice that since the vector of competitors’ price functions p§(p;(.)) is assumed to be
a function of the unit price function p;(.) of the company under study, it follows that

the function D;(I;(t;), pi(t;)) takes into account the effect of competition.

Finally, notice that the estimation procedure outlined above is easy to implement.
The parameters of the sojourn time functions D;(I;) can be recalibrated regularly to

account for changes in customer behavior and in competitors’ pricing policies.

3.3.3 Model Formulation

We are now ready to propose a continuous-time analytical model for the dynamic
pricing problem. We take a fluid dynamics approach by expressing link dynamics, flow
conservation, flow propagation and boundary constraints. This formulation resembles
the formulation of the Dynamic Network Loading (DNL) model used in the context
of the dynamic traffic equilibrium problem (see Friesz et al. [30], Wu et al. [81], Xu
et al. [82], and Kachani [39] for more details).
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Link dynamics equations

The link dynamics equations express the relationship between the flow variables of
a link. That is, the change in inventory at time ¢ is the difference between the
production and the sales flow rates:

L)

G~ ul =), Vie(l,.,n) (3:3)

Flow propagation equations

The flow propagation equations below describe the flow progression over time. Note
that a production flow entering link 4 at time # will be sold at time s;(t) = t+D;(1;(¢)).
Therefore, by time ¢, the cumulative sales flow of link ¢ should be equal to the integral
of all production inflow rates which would have entered link ¢ at some earlier time
w and would have been sold by time ¢t. This relationship is expressed through the

following equation:

V}(t):/wewui(w)dw, Vi€ {l,.,n}, where W ={w:sw) <t} (34)

If the product exit time functions s4(.) are continuous and satisfy the strict First-In-
First-Out (FIFO) property, then the flow propagation equations (3.4) can be equiva-

lently rewritten as
s71()
Vi(t) = /O ui(w) dw, Vi e {1,..,n}. (3.5)

Notice that s;'(¢) is the time at which a unit of product 7 needs to be produced so
that it is sold at time ¢. Furthermore, under the strict FIFO condition, a unit of
product ¢, entering the queue at time ¢, will be sold only after the units of product 7,

that entered the queue before it, are all sold. In mathematical terms, this is equivalent
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to the product exit time functions s;(.) being strictly increasing. As a result, defining

the production time s; '(t) makes sense.

Boundary equations
Since we assume that the network is empty at ¢ = 0, we impose the following boundary

conditions
U;(0) =0, Vi(0)=0, I(0)=0, Vie{l,..,n} (3.6)

Note that it is not necessary to assume that I;(0) = 0. Instead, we could assume that
I;(0) = Io > 0. However, we consider zero-level inventories at t = 0 for simplicity of

notation.

Capacity constraint
We assume that at each time ¢, the total production flow rate is no more than the

total capacity flow rate CFR(t). This can be expressed as:

S ui(t) < CFR(). (3.7)

i=1
Non-negativity conditions
We further assume that the production flow rate functions u;(.) are non-negative:

u;(.) >0, Vie{l,..,n}. (3.8)

Objective function
The objective of the company is to maximize its profits. Profits are obtained by
substracting production costs and inventory costs from sales. As a result, the objective

function can be expressed as the sum over all products of the difference between the

109



revenue of sales and the cost of both production and inventory:

i /OTw[PiUi(t))vxt) — G(®)ui(t) ~ hi(t)Li(t)]dt. (3.9)

In summary, the continuous-time Dynamic Pricing Model (DPM) is formulated as
maximizing objective function (3.9) subject to constraints (3-3)-(3.8). In general, the
DPM Model is a continuous-time non-linear optimization problem. The non-linearity
of the model comes from the unit price as a function of the inventory, as well as
the integral equation (3.4). In this formulation, the known variables are the product
sojourn time functions D;(.), the production and inventory costs ¢;(.) and hi(.), and
the total capacity flow rate function CFR(.). The unknown variables we wish to
determine are w,(t), v;(t), Ui(t), Vi(t), L(t) and pi(1;). Notice that integral equation
(3.4), which connects the production to the sales schedules through the delays incurred

in the system due to price and inventory, makes this problem hard to solve,
Dynamic Pricing Model:

Maximize éAwai(Ii(t))vi(t) = G(t)ui(t) — hi(t)I(t)]dt

s.t. %igtl:ui(t) = ui(t), Vie{l,..,n}

Vz-(t)z/wewui(w)dw, Vic{l.n}  where W ={w:sw) <)
V0)=0,  Vi0)=0 ,  L(0)=0, Vie{1,.n)
Su(®) < CFR@,
ui(.) >0, Vie{zlz,l...,n} , CFR(.) > 0.

Notice that the model is general enough to account for the case where the FIFO
property, defined above, is not necessarily verified (notice that Equation (3.4) does

not assume that the FIFO property holds). Below, we investigate when the FIFO
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property holds. We examine conditions on the product sojourn time functions D;(.)
and on the production flow rates u;(.). When the FIFO property holds, the model

becomes more tractable.

In the remainder of the chapter, we will denote by F/(DPM) the feasible region of
the DPM Model. In Section 3.5, we study the analytical properties of this region.

In Section 3.4, we examine the solution of discretized version of the Dynamic Pricing

Model. In Section 3.5, we illustrate how our results extend to the general case.

3.4 Solution Algorithm and Computational Results

In this section, we consider a discretized version of the Dynamic Pricing Model. This
discretization allows us to study its solution. In particular, we propose and analyze
a relaxation algorithm, illustrate this algorithm on an example, and report some

preliminary computational results.

In the following two subsections, we do not make a direct assumption on the shape of
the sojourn time function. Instead, we provide a connection with traditional demand

models.

3.4.1 A Pricing Model

We consider a special case of unit price and demand arrival rate functions. We first
need to define the following primitive quantities that are the essential data for our
model. Let p™" denote a minimum allowable reference price. Let X, denote its
corresponding demand arrival rate, and p*** denote its corresponding reservation
price, that is, the minimum price for which there is no demand for product i. These

three quantities are input data in the model.

Moreover, in addition to Assumptions A1-A7 that we considered in Section 3.3, we

assume the following, for every product i:
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A8) The unit price function p;(f;) is linear in terms of the inventory level I; (see

Figure 3-3). As we discussed in Section 3.3, we assume that

TMoT TN

pil) =ppoe - B P (; A (3.10)

where C; denotes the storage capacity, p™" denotes the minimum allowable price,
and p*®® denotes the reservation price. Notice that this function is decreasing in

terms of inventory.

>

?

gz'

Figure 3-3: Linear unit price function p;(I;)

A9) The reservation price pj*** is a function of the minimum allowable price p™". To
illustrate this assumption, we consider the example of two retail stores competing on
a product ¢. If the minimum price of Store 1 is lower than that of Store 2 (that is,
p{y™ < pis™), then Store 1 will be perceived by customers as cheaper. As a result,
Store 1 can from time to time take advantage of this perception by having slightly
higher prices than Store 2. This observation illustrates that the reservation price of
Store 1 is higher than that of Store 2 (that is p[’** > p%*). Therefore, p*® is a
decreasing function of p/™". However, due to customers’ sensitivity to high prices, the
difference (in absolute value) between the reservation prices of the two stores needs to
be smaller than the difference (in absolute values) between their minimum allowable

prices. This can be achieved by assuming that the difference between reservation

prices is a concave function of the difference between minimum allowable prices. We
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consider the following reservation price function that verifies the condition above.
P (o) = B + sign(™ — pP).[p - g, (3.11)

where sign(z) = 1 when z > 0, and sign(z) = —1 when z < 0. Note that the
exponent term % can be replaced by any real r € (0,1) (since |#| — |¢|" is concave

for r € (0,1)).

A10) We assume that the storage capacity for each of the n products of the firm under
study is allocated so that the firm is able to satisfy the maximum demand rate A\7%®
within a fixed period of time § that is the same for all products. In mathematical

terms C; = A"**.6, Vi € {1,...,n}. Quantity § represents the minimum reserve time.

So far, we imposed assumptions on how pricing relates to inventory and the functional
form we consider for the pricing in the model. Our goal in this section is to model the
delay of a product waiting in inventory. To achieve this, we consider average delay
functions A;(I;(¢)) of the hyperbolic form L,L(t), where ¢ is the minimum reserve time,
and A;(Z;(t)) and A;(I;(t)) is defined in Subsection 3.2.1. This seems to imply that as
inventory increases, we price so that the average delay of a product decreases. In what
follows, we impose assumptions on the demand arrival rate (as done traditionally in
the literature) and demonstrate how these assumptions give rise to these hyperbolic

average product delay functions.

3.4.2 Delay and Demand Models

We assume the following, for every product i:
A11) To every pi™™ corresponds an arrival rate A™%®. This maximum arrival rate is

a hyperbolic function of the form

Ao () = AT B (3.12)

2 T min
Y2
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See Allen [3] and Tirole [76] for more details.

4 (0;)

Apax .

Apta=0__|
’ 2 rae TP

Figure 3-4: Linear arriva) rates \;(p;)

A12) A non-homogenous renewal demand arrival process, with rate \;(p;, ™) that
is linear as a function of the price p; (see Figure 3-4). Similarly to [3], [26], [76], and
[80], we assume that

min) — A:naa:(plmm) plr_nam(pgnin) ~ D

Ai(ps, P PR (pim) — (3.13)

Notice that when the inventory level hits its capacity level (i.e. J, = C;), then we
charge the minimum allowable price (i.e. p, (Z) = p™™), and we target the maximum
arrival rate (i.e. Ai(pi) = AMez). Op the other hand, when the inventory level is
zero (ie. I, = 0), then we charge the reservation price (ie. p,(I,) = pi"**), and we
target a zero arrival rate (ie N(p;) = 0). Figure 3-5 illustrates Assumptions A9 and
Al1-A12.

In practice, given a minimum allowable reference price R ts correponding demand
. ar . - . . . .
arrival X7 ig readily available in a datawarehouse. Furthermore, its corresponding
reservation price P™ can be estimated through customers’ Surveys. Therefore, the

parametric functions in Assumptions A8-A12 can be estimated in practice.
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Figure 3-5: Model for arrival rates, maximum arrival rates, and reservation prices

In order to provide a connection between demand and delay models, we consider the
approximation that Little’s law holds for every time ¢. That is, the inventory level
Li(t) = Xi(pi(1:(2)))-Di(1;(t)). We view I;(.) as the average length of the queue, A;(.)
as the arrival demand rate, and D;(.) as the average waiting time in the queue. As a
result, this approximation views the sojourn time D;(I;(¢)) as the expected value of

I;(t) interarrivals of the renewal process, that is ,\—(p{(%ﬁ

Notice that this approximation looks at the average state of the system. Indeed, the
expression X;(p;(1;(t))) = fl&% describes the average arrival rate for product 7. As
a result, it is indifferent about how far or close some of the I;(¢) units of product %
in the inventory system are from being sold at time t. However, by looking at the
system from the perspective of the sojourn time, that is the waiting in the system,
the fluid model formulated in Section 3.3 captures the dynamics of the I;(t) units of
product 7 in detail. Furthermore, quantity v;(t) describes the selling rate of product

¢ exactly and not on average. As a result, the two approaches are different and in
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general, A\i(pi(L;(t))) # vi(t). Nevertheless, in what follows, we will attempt to gain
some insight on the relationship between the two approaches. Figure 3-7 illustrates

this relationship in the case of the test example of Subsection 3.4.6.
In fact, the next lemma shows that the total amount sold in the analysis period [0, Ti]

is the same as the cumulative demand.

Lemma 3.1 For constant product sojourn time functions D;(I;(t)) = 6;, the total

cumulative demand is equal to the total cumulative sales:

[ M) = v (3.14)

Proof:

Since X;(p;(1i(1))) = prigy» it follows that

e L™ Ly
Mo = g [ Lo
1 Too Too
- 97'[/ [T vipa
1 [T Too
= 0—[ / U;(t)dt ; Ui(t — 6;)dt] (from equation (3.5))
1 . [T+6: l
= / U;(t)dt — / Uy(t)dt] (since Too = 5;(T) = T + 6)
1 T+9
= /
= 01 0;.U;(T') (since production ends at time T')
= Vi(Tw) (from equation (3.5)).

3.4.3 Discretized DPM Model

Below, we discretize the time space by introducing N = L%J We consider N + 1

intervals of time of length § and assume that for every discretization interval index
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7 €{0,1,..., N} and for every time ¢t € 54, (j + 1)d), the following variables in each
interval are constant: CFR(t) = CFR;, ui(t) = wy, ¢i(t) = cij, and hy(t) = hy;.
The decision variables are the production levels u;; for every product ¢ and for every

discretization interval index j, as well as the unit price function parameter p/™".

Remarks:

e Notice that we can have a finer discretization by choosing intervals of length %,
where M is a positive integer that represents the discretization accuracy. This
does not add any complexity in the formulation of the discretized model and
in the solution algorithm. Furthermore, the computational burden increases
linearly with M. However, for the sake of clarity and brevity, in what follows

we choose M = 1.

e As discussed in Subsection 3.2.1, in addition to prices, the control variables are

the production levels.

Let u = ((ugj)ie(1,...n}gefo,.n) and p™" = (D™ ieqr,...np)-

Proposition 3.1 Under Assumptions A8-A12, the solution of the Dynamic Pricing

Model is equivalent to solving the following quadratic optimization problem:

Discretized Quadratic Pricing Model (DQPM):

Ming gmin S5y (ki SN0" ijusger + Z?fzo u] + X0 gijuig)
S uy; < CFR;, Yje{0,1,..,N}
u;; >0, Vie{1,2,..,n}, Vje{0,1,..,N}

— hij+hij 1 €62

where  g;; = —6(p[**® — ¢i; — ZFEELS), k= s,
mazT _ pmin
and ¢, = 5P

C;

Proof:

The capacity constraint above follows directly from its continuous analogue (3.7) in
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Section 3.3. Moreover, the non-negativity constraint also follows from its continuous
analogue (3.8). Next, we establish that the objective function in the DPM Model (see
equation (3.9)) simplifies to the quadratic objective of the DQPM Model formulated
above. Notice that we converted the problem to a minimization problem by changing
the signs. As a result, in what follows, we will illustrate that the optimal objective
value of the original DPM Model is the opposite of the optimal objective value of the
DQPM Model.

For j € {0,1,...,N}, and ¢t € [j6, (j + 1)d), the previous assumptions together with
relations (3.3)-(3.8) imply that U;(t) = w;;.(t — j6) + 6. X020 ug, vi(t) = uij—1, and
Ii(t) = uy.(t — j6) + wij—1.(( + 1) — ¢) (3.14b). Furthermore, replacing the unit
price as a function of the inventory in equation (3.9) yields the following objective

function:

Obj = —Mmz/ —pi(T(8))vs(t) + ¢ (2)us(t) + ha(8) I, (£t
- —MmZ; /0 &L ()ui(t) — (P v;(t) — ci(t)ualt) — ha(t)L:(2))dt.

(3.15)
Moreover, replacing v;(t) and I;(¢) from (3.14b) gives rise to:
Too N+l r(G+1)8 _
61'/ Ii(t)'u,-(t)dt = € Z /6 ( + 1)6?.&1] 1 Jduij_luij + ’U,ij_l(’u,,;j — uij_l)tdt
0 =i
N-1 N—
= ezdz[z j+2)u Z (G + D
=0 =
N—1
+0.5 Z (2] + 3)u,-j(uz-j+1 - ’U;ij) + 05“1,2N]
=0
N-1 N
= k,L[Z UijUij41 + Z U?j], (316)

.52
where k; = 5’5‘—.
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Furthermore, notice that JiTeo P (t)dt = d.pmaz, N Uiz (3.16b). In addition, it is
easy to see that [~ ci(t)u;(t)dt = g o cijougg (3.16¢). Replacing 1;(t) from (3.14b)

gives rise to:

N+1

Too (J+1)6 ) )
/0 h,(t)],(t)dt = Z .4‘6 hij[(] -+ 1)5’114_7'_1 — jJ’Ufij + (U,‘j - Uij_l)t]dt
=0

N-1 N-1
= 8[0.5hioun + ¥ (5 + Dhijirui; — 3 (5 + Dhijiauije
Jj=0 Jj=0
N-1
+0.5 Z (2] -+ 3)h,-,—+1(u,-]-+1 - uij) -+ 0.5hi1v+1’uz-1v]
=0

2N
= 5 2 (ki + by ). (3.17)
P

Replacing equations (3.16), (3.16b), (3.16¢), and (3.17) in (3.15) gives rise to the

result of the proposition.

3.4.4 An Iterative Relaxation Algorithm

In this subsection, we focus on the solution of the DQPM Model introduced in Propo-
sition 3.1. In particular, we bropose a solution algorithm that determines optimal
production levels for fixed unit price function (that is, when P and as a result
Pt are fixed). In the next subsection, we also will illustrate how to incorporate

pricing decisions in the solution algorithm.

Below, we propose a solution algorithm that applies the iterative relaxation scheme
of Dafermos [21] and Nagurney [60], and the equilibration scheme of Dafermos and
Sparrow ([22] and [23]), to the pricing problem. This solution method is an equili-
bration approach that is extensively used in static traffic equilibrium problems (see
Florian and Hearn [29], and Sheffi [73] for more details).

To illustrate this equilibration approach, we need to introduce some additional nota-
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tion. We define C;; as the opposite of the marginal profit of product i for discretization
interval index j. In mathematical terms:
—00bj

Cy = = 2kyuij + ki(uijg1 + uij—1) + gij, (3.18)
8’1111;]'

where Obj is defined in equation (3.15).

We define m;; as the opposite of the marginal profit of product 7 for discretization
interval index j at a zero production level. That is, m; = ki(us41+usj—1)+g;;. There-
fore, C;; = my; + 2k;;. We further introduce the upperscript index k£ to denote the
number of iterations of the algorithm. Hence, at iteration k, our goal is to determine,
for every product 7, and for every discretization interval index j, the production levels

. Moreover, we introduce C”c = 2k;uf; + mk,, where m =k (um+1 +ufi_ ) + g3
Note that the production levels u-- will be computed in increasing order of the dis-

cretization interval index j in the algorithm. Hence, in the expression of sz’ Ujj—1 1S

evaluated at iteration £ while u;; 4, is evaluated at iteration k& — 1.

We introduce an n x (N +1) matrix with elements order(, j) that sorts the opposite

of the zero-production marginal profits m¥, « € {1,2,...,n} in a non-decreasing order.

'L]’

That is, for j and k fixed, m® <. . <mk

<m k
order(1,j)j — arder(Z,j)j = order(n,j)j*
At every iteration k, the equilibration algorithm computes for every discretization
interval index j, an index I; and a vector afj by equilibrating the corresponding

opposite of the marginal profits, that is,

k . _ k _ k k k
Corder(l,j)j e Corde'r(lj,j)j = Qorder(l;,1)j < Corder(lj+1,j)j7 e < Corder(n,j)j
Lj
k k k .
Uorder(1,3)j > 05+ Yorder(t;.i); > 05 Zumder(i,j)j = CFR;
i=1
k _ k _ ok .
Uorder(ij+1,5)j — Yorder(lj+2,5)i — = — Uorder(n.j)j = 0.

Figure 3-6 provides a network representation of the equilibration algorithm described

above. There is an interesting analogy between this equilibration algorithm and static
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traffic equilibrium (see [29], [73]). Indeed, for a fixed discretization interval index j,
we select (i) which products we should produce, and (ii) how much of each of the
selected products we should be producing, so that all selected products have equal
and minimum opposite marginal profit. In static traffic equilibrium, we select (i)
which paths should be used, and (ii) how much traffic should flow on each of the

selected paths, so that all selected paths have equal and minimum travel times.

Pj=N i

0 oM 25M  38M N&/M (N+1)8/M
CFR

Figure 3-6: Network representation of the discretized Dynamic Pricing Model

Let € be our tolerance level:

Iterative Relaxation Algorithm:

Step 0: for every time index j € {0,1,..., N} and product i € {1,2, ...,n}

ul, = CFR;
J n

Step k: for every time index j € {0,1,..., N},
mk oy e
CFRj"‘Zi order(p,j)j

p=1 2k j
Lot a,;rder(i N _ 1 lorder(P,J) .
3 Ep:l m
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If eq; = argmin{i such that a’jrder(i'j)j < m’jrder(i +1,4);} exists, then

set [; = eg;.

Otherwise, set [; = n.

If ¢ > 1, then u 0.

k —
order(4,5)7 —

k
k _ aorder(lj )3 _morder(i,j)j
order(i,j)j — 2Korder(i,j)

Otherwise, u

Convergence criterion:
If for all j € {0,1,..., N} and : € {1,2,...,n},
all uf; = 0 satisfy C; > a4, ;); — € then stop.
Otherwise, set k = k£ + 1 and go to Step k.

Below, we establish that this algorithm converges to the optimal solution of the

DQPM Model.

Theorem 3.2 The Iterative Relazation Algorithm converges to the unique optimal

solution of the DQPM Model.

Proof:
The Iterative Relaxation Algorithm is based on considering a separable approxima-
tion of C;; (equation (3.18)) in terms of production levels u;;. For j fixed, let vector

W;(u) = (2.u15, 2.ug;, ..., 2.up;) and let Z; be the n X n matrix defined by
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10 0
1010. .. .0
0101
010

Z; =

10
1010
0101
(00 010

-----

Notice that matrix Z; = Vu[(%i)ie{l n}) is the Jacobian matrix of the opposite
of the zero-production marginal profits at time j and W;(u) = (912,—’1),&{1 n}- We
will use the following result from Nagurney [60] to prove that the Iterative Relaxation

Algorithm converges.

Lemma 3.2 ([21], [60]) Assume that there ezist a scalary > 0 and a scalar A € (0,1)
such that:
(F1) For every i € {1,...,n}, %V&(,i >

(F2) 1 Z;]l| < A, (where [1Z;||| denotes the mazimum eigenvalue of matriz Z;).

Then, the Iterative Relazation Algorithm converges to an optimal solution.

We will show that vector Wj(u) and matrix Z; verify conditions (F1) and (F2) of
Lemma 3.2 with v = 2.

For every 7 € {1, ...,n}, notice that % = 2. Hence, condition (F1) is verified with
v = 2. Since Z; is a symmetric matrix, it has at most n distinct eigenvalues. To show

that condition (F2) is verified, it suffices to show that every eigenvalue o of matrix

Z; is strictly less than 2.
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If o is an eigenvalue of matrix Z;, there exists a vector * # 0 such that

Z;z™ = az®. (3.19)

We will assume that o > 2 and try to reach a contradiction. If z verifies equation
(3.19), then —z also verifies it. Hence, without loss of generality, we can assume
that z¥ > 0. Using an induction over the rows of equation (3.19), it follows that

0 <zf <z§ <..< 2 Therefore, 2% is a non-negative vector.

Summing up the rows of the vectors in both sides of equation (3.19) gives rise to

n—1 n
T +2.) wF=a) zf
=2 i=1
Therefore, (o — 1)(z¢ + 22) + (o — 2). ="' ¢ = 0. Since o > 2 and z“ is non-
1 n

negative, it follows that z§ = 2% = 0. Through an induction argument over the rows
of equation (3.19), it follows that z§ = 2§ = ... = 2z%_; = 0. Hence, 2* = 0, which

contradicts our earlier assumption that z® # 0.

Therefore, a < 2, which in turn implies that |||Z;]|| < 2. Therefore, there exists a
scalar A € (0,1) such that condition (F2) is verified. Lemma 3.2 implies that the

Iterative Relaxation Algorithm converges to an optimal solution.
Furthermore, the quadratic terms of the objective function can be rewritten as

N-1
[Z Ufj + 2Uijig + ufjy) + ufy + uly]

NE

Qu) =

«.
Il
—
2“‘
,_.o

[ (wi + wi1)? + ulo + uiy).
J

I
NE
oS oS

-,
Il
—
Il
=)

Notice that Q(u) is a strictly convex quadratic function in terms of the production
levels u;;. Hence, the DQPM Model has a unique optimal solution. Therefore, the

Iterative Relaxation Algorithm converges to the unique optimal solution.
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O

Notice that the iterative relaxation algorithm belongs to a family of linearly converg-
ing algorithms (see [22], [60] for more details). It easy to see that by enhancing the
algorithm with a binary search, each iteration of the algorithm requires computations

of the order of N.n.log(n).

3.4.5 Determining Optimal Production/Pricing Policies

In this subsection, we show how we can extend the Iterative Relaxation Algorithm to

determine both the optimal production levels and the optimal pricing policies.

We introduce the minimum allowable price parameter ¢ defined as ¢ = p™» — pyn,

Assumptions A7-A11 give rise to the following relations:

Pt o= M+ ¢,

pr =~ sign(¢)|eld,

aper =3 B
1 2 Z_jgm’"+¢,
_ . 1 pPaT — BN — sign(e)|¢li — ¢
pi(I) = P — sign(@)olt — — Ry
Al '5’irn,'n'|.+¢

As a result, in the formulation of the DQPM Model in Proposition 3.1, the objective
function depends on the minimum allowable price parameter ¢ through the parame-

ters k; and g;; that can be rewritten as:

and

o8 BT Pt — sign(9)|élt ~ ¢
e 2 ’ —Xmaz Fm'n ;
1 '5;71111+¢
hi' h,
gij = —J(p;naz — szgn(¢)|¢|% - Cj— L2J+_15)

Hence, for every value of the minimum allowable price parameter ¢, we can perform

the Iterative Relaxation Algorithm (IRA) and obtain an optimal production policy
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u(¢) that yields a profit IRA,(¢). Therefore, solving the overall DQPM Model is
equivalent to maximizing IR Ap(¢) for ¢ € (—py™™, p** — p") such that pf*™(¢) <

mMar

p7***(¢). Notice that this problem is a one-dimensional maximization problem.

As a result, by embedding the Iterative Relaxation Algorithm in a line search pro-
cedure for the one-dimensional objective function TRA,.(¢$), we are able to solve
the Discretized Dynamic Pricing Model and determine optimal production levels and

pricing policies.

3.4.6 Test Example

In this subsection, we apply the Iterative Relaxation Algorithm in a small test exam-
ple. We consider 5 products and 10 discretization intervals (i.e. n =5 and N = 9).
We use as inputs the minimum allowable reference prices ™" and their correspond-
ing reservation prices p/*** outlined in Table 3.1, the shared capacity flow rate vector
CF R outlined in Table 3.2, the production costs c;; and the holding costs h;; provided
in Tables 3.3 and 3.4 respectively.

"4y max T, min
7, 7,

16.25 12.56 1§ Product 1

13.25 9.56 Product 2
13.25 9 36 Product 3
13.23 9.56 Product 4

14.85 11.16 | Product 5

Table 3.1: Minimum allowable unit reference prices and their corresponding reserva-
tion prices

We first assume that the unit price function is fixed (that is, p™® = p™" and

pi?® = p;®®). We apply the steps of the Iterative Relaxation Algorithm outlined
i i g
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Discretization
Interval Index

CFR,

19

21123125

2712931

33135

37

Table 3.2: Shared capacity flow rate per discretization interval

0 1 2 3 4 5 6 7 8 9
€; 185938 8.7500 8.8698 8.9709 9.0599 9.1405 9.2144 9.2833 9.3481 9.4093
€; i 54000 5.6209 5.7905 5.9333 6.0593 6.1731 6.2778 6.3751 6.4667 6.5533
€3 {41698 4.4405 4.6481 4.8231 49772 5.1167 5.2449 53642 54762 5.5823
€5 49209 5.2333 5.4731 5.6751 5.8533 6.0142 6.1622 6.3000 6.4293 6.5517
€5 i 7.6599 8.0093 8.2772 8.5033 87022 8.8823 9.0478 9.2017 9.3465 9.4833

Table 3.3: Production costs c;;

0 1 2 3 4 5 6 7 8 9
h]j 1.6037 1.5135 1.4865 1.4236 14107 1.3568 1.3504 1.3013 1.2987 1.2528
th 14138 1.2862 1.2482 1.1591 1.1409 1.0647 1.0556 09861 0.9825 0.9176
h3j 1.2331 1.0770 1.0302 0.9213 0.8989 0.8057 0.7944 0.7095 0.7049 0.6254
h4j 1.0574 0.8770 0.8230 0.6972 0.6714 0.5637 0.5507 0.4526 0.4474 0.3556
hsj 0.8846 0.6830 0.6226 0.4820 0.4532 0.3326 0.3182 0.2085 0.2027 0.1000

Table 3.4: Holding costs h;;
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in the previous subsection. For our computations, we used a PC with a Pentium 111,
366 MHz, 128 MB RAM, and implemented the algorithm in MATLAB. We chose a
tolerance level of e = 1079 in the convergence criterion. In this example, the algorithm
converged in 102 iterations. The running time was 4.2 seconds. Table 3.5 provides
the optimal production levels. The optimal profit associated with these production

levels is $1,539.

0 1 2 3 4 5 6 7 8 9
iy 0 0 0 0 11412 00627 37224 0.0544 62184 0
1y 0 01635 27467 08509 4.8769 14403 6.3578 2.0120 7.7943 2.5721

31136804 11.6337 13.5364 14.4020 12.9029 17.1538 11.6776 19.9317 10,4424 227265
Hgi 53196 9.2028 67169 9.7471 77320 10.3432 82041 11.0020 8 6957 11.7015
g 0 0 0 0 0.3469 0 1.0381 0 1.8492 0

Table 3.5: Optimal production levels

Furthermore, Figure 3-7 illustrates, in this example, the corresponding demand rate
A3(t) and the corresponding sales flow rate v3(t) for product 3. Note that, as estab-
lished in Lemma 3.1, while the profiles of the demand rate and the sales flow rate are
different, the two areas under the curves of A3(t) and vs(t), depicted in Figure 3-7,

are equal.

Next, we incorporate the pricing aspect in the algorithm as we described in Subsection
3.4.4. We perform a line search procedure by varying the minimum allowable price
parameter ¢. For every value of ¢, we run the Iterative Relaxation Algorithm to

obtain an optimal objective value 0bj(9).

Figures 3-8 and 3-9 show that the profit of the company under study, for this instance
of the Discretized Dynamic Pricing Model, is a quasi-concave function of the slope of

the unit price function, and a quasi-concave function of the minimum allowable price
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Figure 3-7: Profile of Demand Rate and Sales Flow Rate of Product 3

of product 1. Notice that the optimal profit is attained for a slope of 0.025 at a value
of $1,549.5.

3.5 The General Dynamic Pricing Fluid Model

In this section, we consider the General Dynamic Pricing Model without imposing
any of the assumptions of Section 3.4. In particular, in Subsection 3.5.1 we ex-
amine the analytical properties of the feasible region of the model. Furthermore,
in Subsection 3.5.2, we establish, under weak assumptions, the existence of a pric-
ing/production/inventory control policy that maximizes the profit of the company

under study over the feasible region.
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Figure 3-8: Optimal profit as a function of the slope of the unit price function
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Figure 3-9: Optimal profit as a function of the minimum allowable price of product 1
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3.5.1 Properties of the Feasible Region of the Dynamic Pric-
ing Model

Preliminary Results

In the model presented in Section 3.3, the production flow rate functions u;(.) are
control variables. In an effort to establish very general results, we assume that these
functions are Lebesgue integrable. A function is said to be Lebesgue integrable if
the set of points where this function is discontinuous is Lebesgue negligible. A set is

Lebesgue negligible if its Lebesgue measure is 0.

Definition 3 A solution to a problem is unique (or respectively differentiable) al-
most everywhere if and only if the set of points where this solution is not unique (or

respectively not differentiable) is Lebesque negligible.

Later in this chapter, we show that the cumulative flow variables are differentiable
and the solution to the problem is unique “almost everywhere”. We refer to “almost

everywhere” by “a.e.”.

A diffeomorphism is a continuously differentiable function that has a continuously
differentiable inverse. The following lemma gives sufficient conditions for a function
to be a diffcomorphism. This result will be used to establish, under certain assump-
tions, that the Dynamic Pricing Model leads to product exit time functions that are

diffeormorphisms.

Lemma 3.3 Let g(.) be a continuously differentiable function on [0,T). If for every
scalar T € [0,T] g'(z) # 0, then g(.) is invertible on [0, T, its inverse function g~'(.)
is continuously differentiable on [min(g(0), g(T)), maz(g(0), g(T))] and, g~V(z) =

9'(g7 (=)

Proof: Since g(.) is a continuously differentiable function, then ¢'(.) is continuous.

Since for every z € [0,T], ¢'(z) # 0, then ¢'(.) has a constant sign. Hence, g(.) is
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either strictly increasing or strictly decreasing. Since every strictly monotone function

is invertible, it follows that g(.) is invertible. Let g~!(.) denote the inverse function

of g(.). Then, g(¢g~'(z)) = z. If we differentiate both sides of the above equality, we

obtain: ¢7"(z)g'(¢7"(z)) = 1. Since ¢'(z) # 0 on [0,T], ¢'(¢7'(z)) # 0. It follows
gy — 1

O

Remark: In the proof of Theorems 3.3 and 3.4, we use Lemma 3.3 where g(.) is

replaced with the product exit time function s;(.).

Lemma 3.4 Let f(.) be a continuous and strictly increasing function on interval
la,bl. For x € [f(a), f(b)], the set W, = {w € [a,b]|f(w) < z} is the interval
[a, ().

Proof: The proof follows easily.

Lemma 3.5 If g;(.) is a continuously differentiable function over a compact set [0,Y],

then, there ezists a scalar By; such that: By = Maz{gl(z),s € [0,Y]}.

Proof:
Since g;(.) is continuously differentiable, g;(.) is continuous over the compact set [0,Y].

Therefore, gj(.) attains its maximum.
O

Remark: In the proof of Theorems 3.3 and 3.4, we use Lemma 3.5 where g;(.) is
replaced with the product sojourn time function D;(.) and z is replaced with the

inventory level I.
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Unifying Analysis for Non-linear and Linear Sojourn Time Functions

Under sufficient conditions on the production flow rate functions and the sojourn time
functions, we prove in this subsection that the feasible region of the Dynamic Pricing
Model (F(DPM)) is not empty. Furthermore, we provide a unifying analysis of the
F(DPM) region for both non-linear and linear sojourn time functions. We also show
that if the conditions of Theorem 3.4 are violated, then the FIFO property is also

violated. In this sense, the conditions of Theorem 3.4 are tight.

Theorem 3.3 If the pair (D;(.),ui(.)) satisfies the following conditions:

(A1) The product sojourn time function D;(.) is continuously differentiable, and there
exist two non-negative scalars By; and B, such that for every inventory level I,
0 < By; < Di(I;) < By;.

(A2) The production flow rate function u;(.) is Lebesgue integrable, non-negative and

bounded from above by M; = TJr—g{'M on [0, T|, where M; is a positive scalar.
(A3) M; < —BZ;B“.

Then, the feasible region F(DPM) has the following properties:
(1) F(DPM) is well defined (that is, the product inventory I;(.), the sales flow rate
vi(.), and the cumulative variables can be uniquely determined by the product sojourn

time function D;(.) and the production rate u;(.) on the analysis period [0, Ty)).
(2) The Strong FIFO property holds.

Proof:

Before providing the proof of Theorem 3.3, we establish additional preliminary results.

Condition (A3) of Theorem 3.3 can either hold as an equality or as a strict inequality.

The following lemma shows that the proof of Theorem 3.3 can be reduced to an easier
1

proof where condition (iii) can be replaced by By; — By; = 0

Lemma 3.6 In Theorem 3.3, one can assume that By, — By; = L

M; "
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Proof: If B,; — B;; < -Alz_, let B3; = By; + Ml—, For every scalar I;, it follows that
0< Bli < D;(Iz) < Bga, since By; < B31;.

d

Consider the following sequence of time instants defined by: o = 0, ¢; = s;(¢;) and
tjr1 = si(t;). We prove the results of Theorem 3.3 by induction over the index j of

interval [t;,t;41). We first establish that the induction proof is valid.

Lemma 3.7 For every non-negative integer j, tj41 —t; > D;(0) > 0. Furthermore,

there ezists an integer n, such that T € [t,, tat1).

Proof: For a given non-negative integer j, t;11 = si(t;) = t; + D;(L;(¢;)). Therefore,
tir1 —t; = Di(I;(t;)). Since Dy(.) is a nondecreasing function and since for every
t, Ii(t) > 0, it follows that D;(I;(t;)) > D;(0). Since by assumption D;(0) > 0, it
follows that t;., —t; > D;(0) > 0.

If ng = [D_L@], it follows that ¢,, > T. Hence, Max{j|t; < T} exists. Let n =
Max{j|t; < T}. It follows that n < ng and T € [t,, tny1).

Let YV be defined by Y = [] u;(w)dw. Y represents the total number of units
of product ¢ that are produced. Since the product delay function D;(.) is con-
tinuously differentiable and bounded, using Lemma 3.5, there exists Bs; such that
By = Maz{g}(z),z € R}. Below is a series of three lemmas that we need in the
induction proof of Theorem 3.3. The following lemma shows that there exists a con-

stant 6 that will serve to construct a lower bound on the product exit time function

Lemma 3.8 For every By € [in,Bzi) and for every t € [0,T), it follows that 6 +
Bawui(t) € (0,1], where § = BB

1+ By M;
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Proof: Since for every I; € [0,Y], Di(;) < By, and since By; = Maz{D\(L),I; €
[0,Y]}, it follows that Bo; < Ba;. Let By € [Bai, Bai). From condition (A2) of

Theorem 3.3, 0 < u;(t) < Therefore,

_1_
1+By; M; "
N By M,
1<1+ Bou(t) <14 —2"1
= 2iti(t) < 1+ By M,

By subtracting ;74 from each side of these inequalities, it follows that:

By M; By M; N
o outli oy BaMi om0y <1
T B = T T B T B <

Using Lemma 3.6, we can assume that By, = By; + M Since By; < B,;, it follows

< 1. Thus 1-— Fg—'— > 0. Therefore,

/\

that Bg,; < By; + E' Hence, 1+B M

By M; < 1+ (B — BQi)Mi ~

1-— Biit<1.
O<1=17B S 1+ BuM + Baui(t) <

It follows that 0 < 6 + Bysu,(t) < 1.

O

Lemma 3.9 For every t € [ty,t1), the set W = {w]s;(w) < t} is empty and hence
Vi(t) = 0.

Proof: For every t € [ty,t1) and for every w € [0, 1],
S,’(U)) =w+ DZ(I,(’UJ)) > 0+ Dz(O) >t >t

Hence, the set W defined by W = {w : s;(w) < t} is empty for ¢ € [t,t,). From
equation (3.4), it follows that V;(¢) = 0, for t € [tg,#,).
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The following lemma is needed in the induction step of the proof of Theorem 3.3.

Lemma 3.10 Fort € [tj41,tj+42),

’U,,;(S-_l(t)) Mi 1+£B ._ﬁ )M
— ? < , he e 0 — 1: 21 i . 320
Boui(s7'(t))+60 — 1+ Bub (wher TEh (3.20)

Proof: Let t € [tj41,tj+2). From condition (A2) of Theorem 3.3, u;(s; ) <M, =

3fi-. By multiplying each side of the inequality by By; — Ba;, we obtain that

(By — Ba)M;

1+ ByuM;
o 14+(Bu—Ba)M;
- 1+ BuM;
< 6, (by definition of 8).

(Bai — Ba)ui(s;'(t) <

( from Lemma 3.6 )

~ (5=t

Since @ > 0 and Byui(s;*(t)) > 0, it follows that: ;—2’—1‘{(—_‘1(4% > 1. Hence, from
2iui (8]

ui(s (1)) 1 M;

Lemma 3.6, we obtain that Brao ()70 = B = TTBuMG”

We are now ready to provide an induction proof that establishes the results of Theo-

rem 3.3.

Proof of Theorem 3.3:

The induction proof is over the index j of interval [t;, ;41). The induction hypothesis
for interval [t;,t;41) is that the following properties hold:

(i) s:(.) is differentiable (a.e.) and continuous over [t;,tj11), and si(t) > Boui(t) +
0 >0

(it) vi(.) is differentiable (a.e.) over [t;, i+ 1);

(iii) For every t € [t;,t;j41), vi(t) < Mj; and

(iv) the F(DPM) has a solution on [0,t;41) and this solution is unique (a.e.).
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We first examine the base case on interval [to, t;). We then assume that the induction
hypothesis holds for [t;,%;41) and prove that it holds for [t;11,%;42). The proof of the

base case is an easy application of Lemma, 3.9.

We assume that the production flow rate functions u,(.) are given. Hence, they are
unique (a.e.). Since the integral operator is unique, the integral U;(.) is also unique
(a.e.). In order to prove the uniqueness (a.e.) of a solution to the F(DPM) on each
interval of the induction, it remains to prove that V;(.) and s,(.) are unique (a.e.)
on these intervals. Then by uniqueness of the differentiation operator, v;(.) is unique
(a.e.). Furthermore, using equations (3.3) and (3.6), it follows that I;(.) = U;(.)=V;(.).

Hence, I;(.) is unique (a.e.).

Base Case: Time interval [to,t1).

Fort € [to,t1),

L) = U() - Vi(t)
= Ui(t) -0 (Vi(t) =0, from Lemma 3.9 )
= /Ot u;(w)dw.

Hence, I;(.) is differentiable (a.e.) and continuous on [tg,?;). Moreover, since the
integral operator is unique and U;(.) is unique (a.e.), it follows that I;(.) is unique
(a.e.). Furthermore, the function s;(t) = ¢ + D;([;(t)) is continuous, since I;(.) and
D;(.) are continuous. The exit time function s;(.) is differentiable and unique (a.e.)
on [to,t1), since I;(.) is differentiable and unique (a.e.) and Djy(.) is differentiable
and unique. By differentiating each term in the expression of s;(t), we obtain, for
t € [to, t1):
i) = 14 D)

= 1+ uw(t)Di(L(2)).
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Since u;(t) > 0 and D;(I;(t)) > 0, it follows that si(t) > 1. Using Lemma 3.8, we
obtain: s}(t) > 0 + Byu;(t) > 0. Therefore, the product exit time function si(.) is
differentiable (a.e.) and strictly increasing on [to, ¢;). Furthermore, from Lemma 3.9,
Vi(.) = 0. Thus, Vj(.) is both differentiable and unique (a.e.) over [to,t;) and for
t € [to, 1), vi(.) is unique (a.e.) and v;(t) = 0 < M]. Hence, the F(DPM) has a

solution on interval [0,¢;) and this solution is unique (a.e.).

Induction Step: Time interval [t;;1,%;42).

From the induction hypothesis, we know that the product exit time function s;(.) is
differentiable and unique (a.e.), continuous and strictly increasing on [¢;,%;41). From
Lemma 3.3, it follows that s;'(.) is differentiable and unique (a.e.), and continuous
over [s;(t;), si(tj+1)) = [tj+1,tj+2)- Using Equation (3.5) in the model formulation, it

follows that:
57 (1)
V€ [t, tite), Yi(t) = /0 wi(w)dw.
Since s; () is differentiable and unique (a.e.) on [t;11,t;19), V;(.) is differentiable and

unique (a.e.). By differentiating V;(.), we obtain: v;(t) = (s;1)'(t)us(s; (). Using

Lemma 3.3, s;V(t) = s’(_s_lim Therefore,

(3.21)

si(si ' (2))
Furthermore, from the induction hypothesis, si(s;!(t)) > 6 + By; > 0. Hence, 0 <
s;(s;ll(t)) < Bziui(s;I(t))+0' Since for every ¢t € [tji1,tj42), 0 < wi(s;'(t)) < M, it

follows that:

Vt € [tis1,tjsz2), wmgA_: (3.22)

Using Lemma 3.10, it follows that v;(.) is unique (a.e.) and v;(t) < M. Therefore,

both the production and sales flow rate functions u;(.) and v;(.) are bounded from
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above by M;. This shows that if an upper bound is verified at the entrance of a link,

it is also maintained at its exit.

If tj41 > T, the induction ends and the proof is complete. Otherwise, t;1; < 7T, and

L) = /Otu,-(w)dw— /  vi(w)duw.

Hence, I;(.) is differentiable (a.e.) and continuous on [¢;41,%;42). Moreover, since the
integral operator is unique and both u;(.) and v;(.) are unique (a.e.), it follows that
I;(.) is unique (a.e.). Furthermore, the function s;(t) = ¢ + D;([;(t)) is continuous,
since both I;(.) and D;(.) are continuous. The exit time function s;(.) is differentiable
and unique (a.e.) on [t;1,%;42), since I;(.) is differentiable and unique (a.e.) and

D;(.) is differentiable and unique. By differentiating each term in s;(¢), we obtain:

si(t) =1+ D:(I,(t))%Q =14 (ui(t) — v (t))D;(L(t)), (from equation (3.3) ).

We discuss two cases: u;(t) — v;(t) > 0 and u;(t) — v;(t) < 0. First, we consider the
case u;(t) — v;(t) > 0. Since Di(I;(t)) > By; > 0, from Lemma 3.8, it follows that:

si(t) > 1> Bous(t) +6 > 0.

Now, consider the case u;(t) — v;(t) < 0. Since D}(I;(t)) < By < By, it follows that:
si(t) > 1+ Byi(ui(t) — vi(2)).

we obtain:

. 1 _ M;
Since ’Ui(t) < M = 1+ B M;?

si(t) > 1+ Boyuy(t) —
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1+ (By; — By)M;
1+ BliM'i
S!(t) > ﬁzi’ui(t) +60>0.

Bgiui(t) +

%\
P
o~
~—
\%

Hence, we have showed that properties (i)-(iii) of the induction hypothesis hold on
interval [tj;1,%j42). Furthermore, we have proved that the F(DPM) has a solution

on interval [0,%;;2) and that this solution is unique (a.e.).

d

Next, we show that the induction terminates after a finite number steps. This means
that a construction algorithm, based on the induction proof of Theorem 3.3, will

determine a feasible point of the F(DPM) region in a finite number of steps.

Lemma 3.11 The induction terminates after a finite number of steps, i.e. To 1is

finite.

Proof: Let ng = Maz{n € N,t, < T}. From Lemma 3.7, ny exists and T €
[tno, tno+1)- The induction proof, at all steps 7 < ny, ensures that s;(.) is continuous
and strictly increasing over [0,%n,41). Hence, Maz{s;(t),t € [0,T]} = s;(T) exists
and is finite. Since Too = Maz{s;(t),t € [0,T]}, it follows that T, is finite. Hence

the induction terminates after a finite number of steps.
O

Remark: Below, we provide an intuitive interpretation of conditions similar to Con-

ditions (A1)-(A3). In what follows, we provide a unifying analysis for both linear and

nonlinear sojourn time functions. Moreover, Corollary 3.1 shows how linear sojourn
time functions can be interpreted as a limit case of nonlinear sojourn time functions

and why linear sojourn time functions lead to stronger results.
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Theorem 3.4 If the pair (D;(.), u;(.)) satisfies the following conditions:

(B1) The product sojourn time function D;(.) is continuously differentiable, and there
ezxist two non-negative constants By; and By such that for every iventory level I,
0 < By; < DII;) < By;.

(B2) The production flow rate function u;(.) is Lebesgque integrable, non-negative and
bounded from above by a positive real number M; on [0, T].

(B3) M; < 525

Then, the feasible region F(DPM) has the following properties:
(1) F(DPM) is well-defined, (that is, the product inventory I;(.), the sales flow rate

vi(.), and the cumulative variables can be uniquely (a.e.) determined by the prod-
uct sojourn time function D;(.) and the production rate u;(.) on the analysis period
[0, Tw))-

(2) The Strong FIFO property holds.

Proof:

If By; =0, then M/ = M;. In this case, both Theorem 3.3 and Theorem 3.4 have the
same conditions and provide the same result of existence and uniqueness (a.e.) of a

solution to the F(DPM). Next, we only consider the case where By; > 0.

Since Theorem 3.3 and 3.4 have in common the first and the third conditions, using
Lemma 3.6, one can assume By; = Bj; + M% in the proof of Theorem 3.4. In the proof

to follow, we will assume that: By; > 0 and By; = By; + ML,

Consider now the following sequence of time instants defined by: ty = 0, t; = s;(t)
and tj11 = s;(t;). We prove the results of Theorem 3.4 by induction over the index
j of interval [t;,%;11). Let Y be the defined by Y = [T u;(w)dw. Below, we provide

two preliminary results that we use in the proof of Theorem 3.4.

Lemma 3.12 There ezists By, € [B2i, B;) such that 0; = 1+B1L(f§§2"();” T
1i pea(B2i
(0,1).
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Proof: From condition (B1) of Theorem 3.4, VI; € [0,Y], D{(I;) < Bs. Using
Lemma 35, Egi < BZi-

~ = <4 By;
Let By, = Maw(gﬁ;—Bﬁ,%:—z). From Lemma 3.6, we can assume that B, =
By + ML Since By; > 0, it follows that By; > ML, Hence, By; € [Ba;, B).

Since By < By, it follows that By — By < By — By;. Using Condition (B3) of
Theorem 3.4, we obtain that .§2i —Bi; < 1‘\/11_ Thus, 1+ (By; — Egz)M > 0. Since By;,
Bs; and M are positive, it follows that the denominator of 6; is greater than 1, and

hence 6; > 0. Furthermore,

1+ (B — Boy)M <1+ ByM < 1+ BuM + 3" (By M)~
k=2

14+(B1;—Ba)M

Since §; = T BuMEY_ (BarD it follows that 0; < 1.
g
Lemma 3.13 is essential for the induction step in the proof of Theorem 3.4.
Lemma 3.13 For any interval index j, and for every t € [tji1,t;12),
-1
u;(s; (T
(s (1)) Qit1, (3.23)

_ . <
Baui(s; (t)) + 0

Mz;;o(ﬁglM)k

1+B1 M+, (BaiM)k’

where o =

Proof: By replacing a;; with its value given above, inequality (3.23) is equivalent

to:

ui(s; (1)) < MY _o(BuM):
Bojui(s7' () +0; ~ 1+ BuM + Yi(Ba M)

142



Therefore, u;(s; ' (t)) (L4+BuM+X 55 (Bo M)*) < (ui(s7(£)) Boi+0;) Mo (Bo; M)*.
Through algebraic manipulations of the above expression, inequality (3.23) can be

equivalently rewritten as

ui(s;7(8)) (1 + BuM + ii(ﬁziM)k) < Ui(Sfl(t))lil(BziM)k + ejMXi:(BZiM)k-
k=2 k=1 k=0

Hence, u;(s7'(£))(1 + Bi,M) < ui(s7'(t)) ByiM + 0, M _(Ba:M)*. Thus, it follows
that:

u,(s;l(t))(l + (Bh — BQZ)M) - OJMi(EQ,M)k S 0.

USiIlg Lemma 36, 1+ (Bli — EQZ)M = (BgZ — Egl)M Since ﬁgi S Bgi = Bli + ML,-’ it
g (BaiM)*

fOl].OWS that 1+B11M+Z;,112(B21M)k

< 1. Hence, we obtain:
(571 (t))(Bai — Bai)M — (1 + (B — Bo) M)M < 0.

Thus, wu;(s;*(t))(Ba — Ba) — (By — By)M < 0. By dividing each term of the
inequality by the positive scalar By; — Bay;, it follows that u;(s;'(t)) < M. Using
Condition (B3) of Theorem 3.4, we verify the inequality.

We are now ready to provide an induction proof that establishes Theorem 3.4.

Proof of Theorem 3.4:

Recall that the induction proof is over the index j of interval [¢;,t;11). The induction
hypothesis for interval [t;,¢,41) is that the following properties hold:

(i) si() is differentiable (a.e.) and continuous over [t;,t;41), and si(t) > Bosu;(t)+6;;
(ii) Vi(.) is differentiable (a.e.) over [tj,t;41);

(iii) Yt € [t;,tj41), vi(t) < aj; and

(iv) the F(DPM) has a solution on [0,t;41) and this solution is unique (a.e.).
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Base Case: Time interval [to, ?1).

From Lemma 3.9, for every t € [to,t1), Vi(t) = 0. The proof of this Base Case is
similar to the proof of the first Base Case of Theorem 3.3. As a result, we do not

provide it here.

Induction Step: Time interval [t;41,¢,42).

From the induction hypothesis, we know that the link exit time function s;(.) is
differentiable and unique (a.e.), continuous, and strictly increasing on [t;,#;4,). From
Lemma 3.3, it follows that s;'(.) is differentiable and unique (a.e.), and continuous
over [s;(t;), si(tj+1)) = [tj+1,tj+2). Using equation 3.5 in the model formulation, it

follows that
st
Vi € [tj+1,tj+2), ‘/z(t) = /0 u,(w)dw
Since s;'(.) is differentiable and unique (a.e.) on [tj;1,t;42), Vi(.) is differentiable and

unique (a.e.). By differentiating V;(.), we obtain: v;(¢) = (s; ') (t)us(s;*(t)). Using
Lemma 3.3, it follows that:

Furthermore, from the induction hypothesis, si(s;7'(t)) > 8; + Bayui(s;(¢)) > 0.

Hence, 0 < L Note that for every t € [tj11,t42), 0 <

L - <
si(s71(0) = Baui(s] ()48
ui(s71(t)) < M. Thus,

Vi € [tjs, tisa), v;(t) < ui(si (1))

- BZiui(S.i_l(t)) +6; (3.24)

Using Lemma 3.13, it follows that v;(.) is unique (a.e.) and v;(t) < ;.
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If t;+1 > T, the induction ends and the proof is complete. Otherwise, ¢;,; < T, and

L) =/0tui(w)dw—/0tvi(w)dw.

Hence, [;(.) is differentiable (a.e.) and continuous on [t;41,%;42). Moreover, since the
integral operator is unique and both w;(.) and v;(.) are unique (a.e.), it follows that
I;(.) is unique (a.e.). Furthermore, the function s;(¢t) = t + D;(I;(¢)) is continuous,
since both I;(.) and D;(.) are continuous. The exit time function s;(.) is differentiable
and unique (a.e.) on [tj41,%j4+2), since [;(.) is differentiable and unique (a.e.), and

D,(.) is differentiable and unique. By differentiating each term in s;(¢), we obtain:

40 = 1+ D) =Y

= 1+ (u(t) — v(t) Dj(L(t).

We discuss two cases: u;(t) — v;(t) > 0 and u;(t) — v;(¢) < 0. First, consider the
case u;(t) — v;(t) > 0. Since D{(I;(t)) > By; > 0, it follows that sj(¢t) > 1 > 6,.
Now, consider the case u(t) — v;(t) < 0. Since D}(I;(t)) < By < By, it follows that:
si(t) > 1+ Byi(ui(t) — vi(t)). Since v;(t) < aiy1, we obtain:

M ¥ _o(BuM)*

1+ BuM + YL (By M)E
1+ (By — By)M

14 BuM + Y (By M)k’

si(t) > Boiug(t) + 0ipq > 0.

s;(t) > 1+ BQiui(t) — By,

§2iui (t) +

CIJ‘
N
o~
N’
\%

Hence, we have showed that properties (i)-(iii) of the induction hypothesis hold on
interval [t;41,t42). Furthermore, we have proved that the F(DPM) has a solution
on interval [0, %;12) and that this solution is unique (a.e.). The proof of Theorem 3.4

is now complete.
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From Lemma 3.11, T, is finite and the induction terminates after a finite number
of steps. This means that a construction algorithm, based on the induction proof
of Theorem 3.4, will determine a feasible point of the F(DPM) region in a finite

number of steps.

Remarks:

e Intuitively, Conditions (B1)-(B3) are the minimal conditions to ensure that the
FIFO property is verified. Indeed, By; — By; represents the maximum variation
of the sojourn time in terms of inventory. During a time interval At of inventory
decrease, the variation of inventory I;(t) — I;(t + At) is bounded by the quan-
tity M;.At. Therefore, the variation of sojourn time D;(1;(t)) — D;(L;(t + At))
is bounded by (Bgy; — Bi;).M;.At. Using Condition (B3), this variation is also
bounded by At. Hence, s;(t) = t+D;(I;(t)) < t+At+D;(L;(t+At)) = s;(t+At),
which is the FIFO property. Moreover, during a time interval At of inven-
tory increase, since the sojourn time functions are non-decreasing, D;(I;(t)) <

D;(I;(t + At)). Thereofre, s;(t) < s;(¢t + At), which is the FIFO property.

e Notice that if the product sojourn time function D;(.) is linear, then condi-
tions (B1)-(B3) of Theorem 3.4 simplify significantly. Indeed, in this case,
Di(.) = cst = By;. Moreover, for any arbitrarily small positive scalar €, by
introducing By; = By; + €, Condition (B1) of Theorem 3.4 is verified. Further-
more, since Condition (B3) can be rewritten as M; < %, M, can be arbitrarily

large. Therefore, the following corollary follows.

Corollary 3.1 If the pair (D;(.),u;(.)) satisfies the following conditions:

(C1) The product sojourn time function D;(.) is linear and non-negative.

146



(C2) The production flow rate function u;(.) is Lebesgue integrable and non-negative.

Then, conditions (B1)-(B3) of Theorem 8.4 also hold.

In summary, the results of this subsection establish that by constraining the produc-

tion capacity with the maximum variation of sojourn time with inventory:

e The effect of the variation of inventory with time can be limited, so that the

FIFO property holds.

e When the FIFO property holds, the feasible region F(DPM) is non-empty,
and we can uniquely determine the sales flow rate and inventory in terms of the

production flow rate.

Tightness of the Conditions of Theorem 3.4

In this subsection, we illustrate using a counter-example that conditions (B1)-(B3)

in Theorem 3.4 are tight.

Theorem 3.5 For any arbitrarily small positive scalar §, there exist a product so-
journ time function D;(.) and a production flow rate function u;(.) that verify the
following conditions

(D1) D,(.) is continuously differentiable and nondecreasing;

(D2) u;(.) is non-negative, Lebesgue integrable and bounded from above by M;;

(D3) 3 < Maz{D{(L;), I; € R} - Min{D(L),I; € R} < 3 +36,

violating the FIFO property.

Proof: To show this, we will construct a production flow rate function u;(.) and a

product sojourn time function D;(.) such that (u;(.), D;(.)) verify conditions (D1)-
(D3) of Theorem 3.5, violating the FIFO property.
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Let 6 and M; be any positive scalars, By; and B be any non-negative scalars, and ¢
and o be any two positive scalars such that: € < o. Let w be a positive scalar such

that w € (o, 2a — ¢).

We first construct the product sojourn time function D;(.). We define D;(.) on three
contiguous intervals: [0, (a—¢)M;], ((a—€)M;, aM;) and [, +00). On the first and
third intervals, D;(.) is affine with a slope on its first affine piece less than the slope on
its second affine piece. On the second interva, D;(.) is an exponential, nondecreasing

and continuously differentiable function. Let Ly, yi, Lia, %i2, v and 7,2 be given by:

Iﬂ = (a — E)J\dZ and, Yi1 = D,(Izl) =qa+ Bli(a — €)Mi,
Lis = aM; and,  yi2 = Di(li2) = B+ (By + 37 + 6)aM;,
Bli+‘1\%+5 ) 2

_ By
and, Y2 = ;zlil T In-In

T = Yi2 Lip—I

Consider the following product sojourn time function D;(.):

o+ BliIi , on [0, Iil]
Di(]i) = yi2(ﬁ)2em(h—h2) + yﬂ(ffi‘lc_%)%’m(h— i1) , on (]ﬂ’]z. )
ﬂ -+ (Bu =+ 1_%1_: + 5).[,, , On [Iiz, +OO)

Notice that D;(.) is continuously differentiable and nondecreasing on [0, +00).

Consider the production flow rate function u;(.) given by:

M; ,if te[0,w),
ui(t) = 0.
0 ,if te€w,+00).

Notice that functions u;(.) and D;(.), as defined above, verify conditions (D1)-(D3)
of Theorem 3.5.

In what follows, we solve constraints (3.3)-(3.8) of the F(DPM ) on intervals [0, o — €)
and [, w]. That is, we express the variables Uj(.), vi(.), Vi(.), 1i(.), and s;(.) in terms
of the data above. Then, we show that the FIFO property is violated at ¢t = w.
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Notice that for t € [0,a — €), u;(t) = M;. Hence, U;(t) = M;t. Furthermore, since
a — e < a= D;y(0) = t,, it follows that V;(t) = 0. Thus, [;(t) = U;(¢) — Vi(t) = M;t.

For t € [a,w], there exists z € [0, a — €) such that s;(z) = ¢. Hence z + D;(I;(2)) = t.

Thus, z + a + By;M;z = t. It follows that z = 57 () = 1+tB_:M,-' Using equation (3.5)

of the DPM formulation, that describes the relationship between the cumulative sales

and the production flow rate, we obtain

s e Ty (t— @)
Vi) = [ wwdw = [T Mdw = 2,
(1) 0 us(w)dw 0 T B
Hence, v;(t) = 557 Therefore, we obtain I;(t) = Mt — ; 5 Mi = —*—“]'ff;fj}\fzt

Since ¢t > a, it follows that I;(t) > aM,;. Hence, by definition of D;(.), it follows that
Dj(Ii(t)) = (Bu + 3 +6).

Next, we show that sj(w) < 0. Indeed, since s;(t) = 1 + D;(L;(t))(ui(t) — vi(t)), it
follows that

siw) = 1+ Di(Li(w))(ui(w) — vi(w))

1 M;
= B+ —+60—- ——
14 1+Mi+ ) 1T B,

M;

——— < 0.
1+ B M;

) =

This implies that the exit time function s;(.) is strictly decreasing at t = w. Hence,

the FIFO property is violated for ¢t = w.

Properties of the Feasible Region

In this subsection, we present some properties of the F/(DPM). These properties are
not only useful in understanding the structure of the model, but will also be useful in

Subsection 3.5.2 in order to prove the existence of a solution to the Dynamic Pricing

Model.
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Let D = (Dy,...,Dy), p = (p1,....0n), and u = (uy, ..., u,) denote respectively a
vector of product sojourn time functions, a vector of unit price functions, and a
vector of production flow rate functions. (D(.), p(.), u(.)) is feasible if each component
(Di, pi, ui(.)) verifies conditions (B1)-(B3) of Theorem 3.4 as well as capacity equation
(3.8). In this case, using Theorem 3.4, the product inventory functions I;(.), the sales
flow rates v;(.), and the cumulative variables can be uniquely determined through the
product sojourn time functions D;(.), the unit price functions p;(.), and the production

rates u;(.) on the analysis period [0, T

Proposition 3.6 Assume that for every product i, the unit price function p; is
bounded by a scalar p**®. Then, the feasible region F(DPM) is non-empty and
bounded.

Proof:
First, notice that (D(.),p(.),0) lies in the feasible region F(DPM).

Further, let CF R denote the minimum total capacity, i.e. CFR = minycjo)(CFR(t)).
We assume, without loss of generality, that CFR > 0, and show that we can con-
struct a feasible solution (D(.),p(.),u(.)) with u(.) # 0. Given a vector of product
sojourn time functions D(.), and a vector of unit price functions p(.), let M denote

the scalar M = min(CFR, L )- Let (@, ..., ) denote a fi-

maz( gz (B2i—B1i) (i:By;— By; >0}

nite sequence of non-negative scalars such that >°;' ; a; = 1. For every i € {1,...,n},

and for every t € [0,T], let u;(t) = a; M. It follows that vector (D(.),p(.),u(.)) as
well as every vector (D(.),p(.),u(.)), with 0 < u(.) < u(.), are feasible.

Moreover, from the proof of Theorem 3.4, it follows that the flow rate functions u;(.)
and v; are bounded by CFR, the cumulative flow rate functions U;(.), Vi(.) and
I;(.) are bounded by CFR.T, and the sojourn time functions D;(.) and the exit
time functions s;(.) are bounded by T, Furthermore, by assumption, the unit price

functions p;(.) are bounded. Therefore, the F(DPM) region is bounded.
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Proposition 3.7 If vectors (D(.),p(.),u(.)) and (D(.),q(.),w(.)) are feasible, then,
for every X € [0, 1], vector (D(.), Ap(.)+(1—=X)g(.), Au(.)+(1=N)w(.)) is also feasible.
In this sense, the feasible region F(DPM) is conver.

Proof: '

We assume that (D(.), p(.),u(.)) and (D(.),q(.), w(.)) are feasible. For any X € [0, 1],
it is easy to see that (D(.), Ap(.) + (1 — AN)g(.), Mu(.) + (1 — M)w(.)) verifies conditions
(B1)-(B3) of Theorem 3.4 as well as capacity equation (3.7).

g

Proposition 3.8 If a sequence (p’(.));ex of vectors of unit price functions converges
to (p(.)), and a sequence (u?(.))jen of vectors of production flow rates converges
to (u(.)), and, if for every j, vector (D(.),p’(.),uw(.)) is feasible, then, the limit
(D(.),p(.),u(.)) is also feasible. In this sense, the F(DPM) region is closed.

Proof:
Let us assume that for all j € R, vectors (D(.),p’(.),u’(.)) are feasible. Then, it is
easy to see that the limit (D(.), p(.), u(.)) verifies conditions (B1)-(B3) of Theorem 3.4

as well as capacity equation (3.7).

3.5.2 Existence of an Optimal Production/Inventory Control
Policy
A Variational Inequality Formulation for the Dynamic Pricing Model

In this subsection, we formulate the DPM Model as a variational inequality prob-
lem. Using this variational inequality formulation, in the next subsection, we will
establish the existence of an optimal production/inventory control policy under weak

assumptions.
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The DPM Model introduced in Section 3.3 can be summarized as the problem of
finding a vector e*(.) = (u;(.),v;(.), I7 (), p;(.))icqr,...ny € F(DPM) that maximizes

the objective function:
F(e(.) Z / files(t))dt
= 3 [ R0  abu) - Lo
If G;(t,e;(t)) denotes the gradient V f;(e;(t)) of fi(e;(t)), then notice that
Gu(t, () = (ai(8), PL(), AL (E)oi(t) — h(®), )

Therefore, the DPM Model is equivalent to solving the following variational inequality

problem: Find a vector e* € F(DPM) satisfying

?:1 gm(_Q(t)vpi(I:(t)))p;(-[:(t)v;(t) - hi(t)a ’U,’(t)).
(ui(t) — ui (t), vi(t) — i (1), Li(t) — L7 (t), pi(Lu(t)) — P} (I(2)))Tdt < 0, (3.25)

for all vectors e(.) € F(DPM).

Variational inequality (3.25) can be written in compact form as: Find a vector e* €

F(DPM), such that for all vectors e(.) € F(DPM),
< G(e*),e* —e ><0, (3.26)

where < z,y > denotes the scalar product X7 ; [T z;(t).y;(¢)dt of two vectors z and
Y.

In what follows, we will refer to G(.) as the Dynamic Pricing Map.
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Properties of the Dynamic Pricing Map

In this subsection, we establish some properties of the Dynamic Pricing Map G(.).
These properties will be useful in establishing that the general Dynamic Pricing Model
has a solution. We first introduce a definition from functional analysis (for more

details, see Kirillov [46], Kolmogorov and Fomin [48], and Rudin [72]).

Definition 4 (Weak Continuity):

(i) A sequence (uy)nex in @ normed space is said to converge weakly to u, if, for every
bounded linear map LM(.), (LM (un))nex converges to LM (u).

(%) A map MP from a normed space to another is said to be weakly continuous if, for
every sequence of functions (un)nex weakly converging to u, the sequence (|| M P(u,)—

MP(u)||)nex converges to 0.
We establish the weak continuity of the Dynamic Pricing Map.

Theorem 3.9 If the price inventory functions p;(I;) are continuously differentiable
and bounded from above by scalars p[***, then conditions (B1)-(B3) of Theorem 3.4
imply that the Dynamic Pricing Map G(.) is weakly continuous.

Proof:

The proposition below summarizes some results from functional analysis that are
useful to prove Theorem 3.9 (for more details, see Kirillov [46], and Kolmogorov and

Fomin [48]).

Proposition 3.10 [46], [48]

(i) If f and g are two weakly continuous maps, then the maps f + g, f.g and f(g)
are weakly continuous.

(1) If f is a weakly continuous map on the set of real numbers and has a constant
sign, then the map % is weakly continuous.

(i4) The integral operator from the space of bounded functions on L'([0,Tw)]) to
L2([0,Tw)) defined as u(.) = [§ u(w)dw is weakly continuous.
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Proof of Theorem 3.9: Property (iii) of Proposition 3.10 implies that u;(.) — U;(.)
is weakly continuous. We will prove by induction over the time intervals [¢;,%;4;)
(defined in the proof of Theorem 3.4), that the maps w;(.) — Vi(.), u:(.) = L(),

w;(.) = si(), i) — vi(), wi(L) = s71() and w (L) = (s71)'(.) are weakly continuous.

We first need to establish a preliminary result.

Lemma 3.14 Under conditions (B1)-(B3) of Theorem 3.4, if the product exit time
operator u; — s;(.) is weakly continuous on the interval [t;,t;11), then its inverse

operator u; — s; () is weakly continuous on the interval [tj 1, t;42).

Proof: We assume that the product exit time operator u; — s;(.) is weakly contin-

uous on the interval [t;,¢;41).
From the proof of Theorem 3.4 in Subsection 3.5.1, we know that for every ¢ &
[t tj41), si(t) < 65, where 6; € (0,1) as defined in Lemma 3.12. Hence, s;'(.) is

Lipschitz continuous on [t;11,t;12) With parameter alj-

Furthermore, for every t € [t;,t;41),

si(t) = 1+ Di(L:(1))(ws(t) —vi(t)) < 1+ Di(Li(t))ui(?),

< 1+ ByM,.

Hence, s;(.) is Lipschitz continuous on [t;,%;41) with parameter 1 + By; M;.

Let (uf(.))rex denote a weakly converging sequence of product flow rate functions to

u;(.). Let s¥(.) denote the product exit time function corresponding to u*(.).

Furthermore,

si(tig1)

/tti+2 |(S§)_1(7~U) _ si—l(’w)lzd'w — /s |(3f)—1(w) - S,-_l(’w)lzdw

i1 i(t:)

= [ ) — 57 ) P

¢
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J t

1

Since u; +> s;(.) is weakly continuous on the interval [t;,%;4;), it follows that wu;

s; '(.) is weakly continuous on the interval [t;1,%;.).

Induction Proof:

Base Case: Time interval [to, ?1).

On [to,t1), vi(t) = Vi(t) = 0 and I;(t) = U;(t). Hence, the maps u;(.) — Vi(.),
ui(-) = Ii(.), and u;(.) — v(.) are weakly continuous. Furthermore, since s;(t) =
t + D;(I;(t)), and D;(.) are continuous functions (and therefore weakly continuous),
using property (i) of Proposition 3.10, it follows that the map u;(.) = s;(.) is weakly
continuous. Using Lemma 3.14 and property (i) of Proposition 3.10, it follows that

the map u;(.) — s;!(.) is also weakly continuous on [t;, ;).

Moreover (s;')(t) =

1 _ 1 . . .
@) DI OGOy USR8 properties (i)
and (ii) of Proposition 3.10, we obtain that u;(.) = (s;1)'(.) is also weakly continuous

on [t1,t2).

Induction Step: Time interval [t;;1,%,42). From the induction hypothesis, we
know that the maps u;(.) = s;'(.) and u;(.) + (s71)(.) are weakly continuous on
[tj+1,tj4+2). Since v;(w) = u;(s; (w)).(s;!) (w), using property (i) of Proposition 3.10,
it follows that the map u;(.) — v;(.) is weakly continuous. Property (iii) of Proposi-
tion 3.10 implies that u;(.) — V;(.) is weakly continuous. Since [;(.) = U;(.) — V;(.)
and s;(t) =t + D;(I;(t)), property (i) of Proposition 3.10 implies that u;(.) — I;(.)

and u;(.) — s;(.) are weakly continuous.
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Using Lemma 3.14, it follows that u;(.) +~ s;!(.) is also weakly continuous on in-

terval [tjy2,t;43). Moreover, since (s;')(t) = using

1+D}(Fi(s; o (o7 () —vi (571 (1)
properties (i) and (ii) of Proposition 3.10, we obtain that u;(.) — (s;!)(.) is also
weakly continuous on [tj12,%;43). The induction proof is now complete. Since the
price inventory function p;(I;) is continuously differentiable, both p;(I;) and p}(I;) are
continuous (and hence weakly continuous). Property (i) of Proposition 3.10 implies

that the Dynamic Pricing Map G(.) is weakly continuous.
O

We now define the notion of pseudo-monotonicity introduced by Brezis [18] and show

that the Dynamic Pricing Map G(.) is pseudo-monotone.

Definition 5 (Pseudo-monotonicity) A bounded map M P is pseudo-monotone over
X if, whenever a sequence (u*)rex € X® weakly converging to u satisfies limsup <
MPuF),u* —z >< 0, Vz € X, it also satisfies liminf < MP(u¥),u* — z >><

MP(u),u—z >, Vz € X.

Lemma 3.15 The Dynamic Pricing Map G(.) is pseudo-monotone over the F(DPM)

Tegion.

Proof: Notice that G(.) is weakly continuous on the F(DPM) region, and from
Proposition 1, the F/(DPM) region is bounded. Therefore, G(.) is a bounded map.
Let diam(F(DPM)) denote the diameter of the F(DPM) region and let (ex)ren
denote a sequence of elements of the F'(DPM) region weakly converging to e. Then,

fory € F(DPM),

< Glex) —G(e),ek —y > < ||G(ex) — Gle)|]-]lex — yll
< diam(F(DPM)).||G(ex) — G(e)|].

Since G(.) is weakly continuous on the F(DPM), it follows that the sequence (||G(e;)—

G(e)||)kex converges to 0. Hence limy_0o < G(ex) — G(e),er —y >= 0. It follows
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that:

limpseo < Gleg),ex —y > = limg_ o < Ge),ep —y >

< G(e),e—y>.

Hence, the Dynamic Pricing Map G(.) is pseudo-monotone over the F(DPM) region.

O

Existence of An Optimal Solution for the Dynamic Pricing Model

In this subsection, we establish one of the fundamental results of this chapter. That
is, we illustrate that under weak assumptions, the DPM Model possesses an optimal

solution.

Theorem 3.11 Assume that the following conditions hold:

(E1) The price inventory functions pi(L;) are continuously differentiable and bounded
from above by scalars pee.

(B2) The product sojourn time functions Di(.) are continuously differentiable, and
there exist two non-negative constants By; and Bs; such that for every inventory level
I;, 0 < By; < DU(I;) < By,

(E3) The shared capacity flow rate function CFR(.) is Lebesgue integrable, non-
negatie and bounded from above by a positive real number CFR on [0,T].

(E4) CFR< ¥ 1

By —By; -

Then, the Dynamic Pricing Model has an optimal solution.

Proof: Under conditions (E1)-(E4), Theorem 3.9 holds, that is, the Dynamic Pricing
Map G(.) is weakly continuous. Using Lemma 3.15, it follows that the Dynamic Pric-
ing Map G(.) is pseudo-monotone over the F(DPM) region. From Propositions 3.6-
3.8, the F(DPM) region is non-empty, bounded, closed and convex. Using Lemma
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3.16 with K = F(DPM), A(.) = G(.) and z = 0, and the variational inequality for-

mulation (3.26), it follows that the Dynamic Pricing Model has an optimal solution.

Lemma 3.16 (Brezis [18], [19])

Let K be an non-empty, bounded, convez and closed set. Let A(.) denote a map from
K to L that is pseudo-monotone map over K. Then, for every vector z € L, there
ezists a vector e* € K such that < A(e*),e —e* >>< z,e — e* > is verified for every

vector e € K.

For more details on the above lemma, see [18], [19], [52], [53], and [54].
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Chapter 4

The Anticipatory Route Guidance
Problem: Formulations and

Analysis

4.1 Introduction and motivation

4.1.1 Introduction

The anticipatory route guidance problem (ARG), an extension of the dynamic traffic
user-equilibrium problem, consists of providing messages to drivers, based on forecasts
of traffic conditions, to assist them in their path choice decisions. Guidance becomes
inconsistent when the forecasts on which it is based are violated after drivers react

to the provided messages.

In this chapter, we consider the problem of generating consistent anticipatory guid-
ance that ensures that the messages based on dynamic shortest path criteria do not
become self-defeating prophecies. We design a framework for the analysis of the ARG

problem based on a fixed-point formulation of the problem.

We also provide an infinite-dimensional variational inequality (VI) formulation. These
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equivalent formulations are to the best of our knowledge the first general analytical
formulations of this problem. Furthermore, we establish, under weak assumptions,

the existence of a solution to the ARG problem.

4.1.2 Motivation

An important characteristic of road traffic congestion is its randomness. Data suggest
that roughly 60% of congestion-related delays on urban freeways in the U.S. are
due to specific random incidents such as accidents, vehicle breakdowns and the like
(see Lindley [51] for more details). Even without such incidents, congestion has
a random component that comes from the variability in demand patterns and in
network performance. Because of this randomness, a driver’s past experience can
be an unreliable basis for predicting the conditions associated with various travel

options, and as a result, for making good travel choices.

Advanced traveler information systems (ATIS) attempt to provide tripmakers with
data intended to help them make better travel decisions. In this chapter, such data
will be referred to as messages. Messages may have an arbitrary content. They may
be available to all tripmakers (for example by radio or television broadcasts) or only to
some: for example, those who pass near a particular infrastructure (such as variable
message signs) or who have special receivers. Tripmakers, of course, may react to the

messages in any way they choose.

Traveler information systems may be distinguished on the basis of the type of informa-
tion they provide in messages. Static systems furnish information that changes only
infrequently, such as locations of and directions to trip attractions such as cultural
centers or restaurants. Reactive systems estimate prevailing travel conditions from
real-time measurements and provide messages directly based on these estimates: for
example, information about current travel times. Predictive or anticipatory systems

use real-time measurements to forecast travel conditions in the near-term future (up
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to a few hours), and present messages based on these predictions. As a result, a trip-
maker can make a decision based on what conditions would be at network locations
at the time he/she would actually be there, rather than on (possibly very different)

currently prevailing conditions.

This chapter focuses on predictive traveler information systems that provide messages
intended to facilitate drivers’ path choice decisions before and during a trip. The
messages may inform drivers about anticipated traffic conditions on different available
paths, or (based on these conditions) recommend a specific path to follow, or both.

Such systems are sometimes called route guidance systems.

If only a few drivers receive route guidance messages, they may benefit from it by
making better path choice decisions. Nevertheless, the choices they make will not
impact overall network traffic conditions. On the other hand, when more drivers
receive guidance, their reactions to the guidance may have a significant effect on traffic
conditions. The key issue in generating guidance messages based on traffic condition
forecasts is to ensure that drivers’ reactions to the guidance do not invalidate the
forecasts and render the guidance irrelevant or worse. Messages predicting impending
congestion on one road, for example, may cause drivers to switch en masse to a parallel
road less able to accommodate them, leaving the original road free flowing and overall
producing worse traffic conditions. Guidance is consistent when the forecasts on which

it is based are indeed experienced by drivers after they react to it.

Generation of anticipatory guidance clearly requires the application of some kind of a
traffic prediction model. Deterministic traffic assignment models assume that drivers
departing from their origin have full information about network conditions on the
paths available to them, choose one accordingly, and follow it unswervingly to their
destination. Stochastic assignment models account for driver perception errors by
assuming that drivers at the origin choose a path based on a randomly perturbed
version of actual network conditions. A full information assumption underlies even

these models in the sense that, as the magnitude of the perception error decreases, the
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stochastic equilibrium path choices increasingly resemble those that would be made

in a full information deterministic setting.

However, the applicability of the full information assumption to general route guid-
ance modeling is questionable. Consider a guidance system consisting of a variable
message sign (VMS) located somewhere on a network. Drivers leaving their origins
make a path choice based on assumptions about traffic conditions that may be more
or less accurate. Drivers whose path choice happens to take them by the VMS receive
guidance messages and may decide to switch to another path for the remainder of
their trip; those who do not presumably pursue the path they chose earlier to their
destination. The information available to a driver, and the resulting en route path
switches, depend on the path taken through the network and the guidance informa-
tion available at locations along that path. This path dependency of information

availability and driver behavior has no counterpart in full information models.

Some network-level analyses of route guidance systems have assumed that the effect
of guidance will be to establish conventional equilibrium conditions (see Kaufman et
al. [43] and Engelson [27] for more details). Others have modeled guidance effects via
a reduction in the perception error of guided drivers using a stochastic assignment
model (see Lotan and Koutsopoulos [55] and Hamerslag and van Berkum [35] for more
details). These approaches may be appropriate if guidance (in some cases, perfect
guidance) is available to drivers at all decision points. More generally, however, where
a guidance system provides limited information at certain network locations, there
is no reason to expect that the resulting flow patterns and traffic conditions would

correspond to those of a conventional network equilibrium solution.

A number of traffic simulation models, such as DYNASMART by Mahmassani and
co-workers (Mahmassani et al. [56]), MITSIM and DynaMIT by Ben-Akiva and co-
workers (Ben-Akiva et al. [8] and Bottom [14]), can represent a variety of guidance
technologies, including limited-range systems such as VMS. These models attempt

to achieve consistency, often using methods that explicitly or implicitly determine a
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fixed point. However, to the best of our knowledge, no analytical results are available

regarding their solutions.

Bovy and van der Zijpp [16], and Bottom [14] proposed a time-dependent frame-
work for the Anticipatory Route Guidance (ARG) Problem. The variables are the
network conditions, the path splitting rates at control nodes (i.e. the rates of flow
splits between paths at control nodes) and the guidance messages. The relationships
are the dynamic network loading map, which transforms the path splits into network
conditions (see Kachani [39] for a detailed analysis); the guidance map, which trans-
forms the network conditions into guidance messages; and the routing map, which
transforms guidance messages into path splits. These three relationships can then be
combined into three alternative composite maps that model the ARG Problem and
that lead to three equivalent fixed-point formulations. Finding consistent guidance
is equivalent to finding a fixed point of a composite map. However, since these com-
posite maps are discontinuous, the standard existence results of fixed-point theory
do not apply in this case. As a result, it is still an open question whether the ARG

Problem even possesses a solution.

One of our main goals in this chapter is to formulate and establish the existence of a
solution to the ARG problem under weak assumptions. To achieve this, we propose
the first analytical formulation of the ARG Problem. We hope these results will lay
the foundations for the use of numerical methods for solving fixed-point formulations
and variational inequality formulations of this problem in practice. Such numerical

results can be found in Bottom, Kachani and Perakis [15].

The chapter is organized as follows. In Section 4.2, we start by introducing the
notation and the feasibility conditions of the ARG problem. We then provide a
variational inequality (VI) formulation of this problem. We also present a fixed-point
formulation of the problem and establish equivalence of the two formulations. We
discuss two special cases: the static ARG problem and the Dynamic User-Equilibrium

problem. In Section 4.3, we study the mathematical properties of the problem. Under
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sufficient conditions on the path flow rate functions and the travel time functions,
we establish that the feasible region F/(ARG) of the Anticipatory Route Guidance
problem is non-empty, and that the FIFO property holds. We provide a generic
counterekample illustrating that the assumptions we imposed, to ensure that FIFO
holds, are the tightest possible. We establish key properties of the feasible region,
as a function of the path flow rate functions, such as boundedness, closedness and

convexity. Finally, we establish the existence of a solution to the ARG problem.

4.2 Problem Formulations

In Subsection 4.2.1, we introduce the notation we use throughout the chapter. In
Subsection 4.2.2, we state the feasibility conditions of the ARG problem. In Subsec-
tion 4.2.3, we then provide a variational inequality (VI) formulation of the problem.
Furthermore, in Subsection 4.2.4, we connect this formulation with a fixed-point
formulation. In Subsection 4.2.5, we establish equivalence of the two formulations.
Finally, in Subsection 4.2.6, we discuss how the model simplifies in the case of the

Dynamic User-Equilibrium problem.

4.2.1 Notation

In this section, we introduce the necessary notation to formulate the ARG problem.
The notation we introduce is quite tedious. However, much of the contribution of
this work is in identifying the minimum set of notation that enable us to formulate

the ARG Problem analytically.

The physical traffic network is represented conceptually by a directed network G =
(IV, A), where N is the set of nodes and A is the set of directed links. N; denotes the
set of origin nodes, N, the set of control nodes (i.e. nodes at which vehicle messaging

display systems are placed), and P the set of paths.

In practice, the number of control nodes in a transportation network is small relative

164



to the total number of nodes. As a result of their path choice decision, drivers might
not go through control nodels. Therefore, we distinguish between two categories of
drivers. Drivers in the first category do not receive any information. These drivers
have an estimate of flows in the network that they utilize to select their paths. On
the other hand, drivers in the second category go through control nodes. As a result,

these drivers receive full information about the network traffic conditions.

In the following, the index r denotes an origin node, the index s denotes a destination
node and the index p denotes a path between Origin-Destination (O-D) pair (r, s).
The subset of paths between O-D pair (r,s) is denoted by K,;. Below, we provide
the inputs and outputs of the ARG problem.

Inputs of the ARG problem

Path variables:

|P| : number of paths in the network;
RS(p) : (O-D) pair associated with path p;
pt : first link of path p;
P . last link of path p;
fr(t) : departure flow rate on path p at time ¢;

fESP)(¢) :  departure flow rate on O-D pair RS(p) at time ¢;

f : vector of path departure flow rate functions (f,(.))pep for
all times ¢;
M, : upper bound on the departure path flow rate function f,(.).

Link variables:
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head(a) : head node of link a;
tail(a) : tail node of link a;
D,(y) : travel time function of link a, where y is the number of
vehicles on link a;

Bi. : lower bound on the derivative D (.) of the travel time function D,(.);

)

B;, : upper bound on the derivative D/(.) of the travel time function D,(.).

Link-path flow variables:

(a,p) : a link-path pair;
dop = 1if link a belongs to path p, and 0 otherwise.

Time variables:

t : index for continuous time;
[0,7] : O-D traffic demand period. After time T, the flow rate

functions are zero.

Outputs of the ARG problem

Path variables:

fmES®)(t) : flow rate on O-D pair RS(p) traversing node n at time ¢;

Brp(t) : path splitting rate of path p at node n at time ¢;
B : vector of path splitting rate functions Sn,(.);
Sp(t,f) : travel time on path p of a vector of flows f(.)

departing at time .

Link variables:
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M, : upper bound on the entrance link flow rate function u,(.);

uo(t) : entrance flow rate on link a at time ¢;
ve(t) @ exit flow rate on link a at time ¢;
Us(t) : cumulative entrance flow on link a during time interval [0, t];
Vu(t) : cumulative exit flow on link a during time interval [0, ¢];
Xo(t) : load (number of vehicles) of link a at time t;
sq(t) : exit time of a flow entering link a at time ¢

= t+ Do(Xa)(t))-

Link-path flow variables:

ugp(t) : entrance flow rate on link a traveling on path p at time ¢;
vgp(t) : exit flow rate on link a traveling on path p at time ¢;
Uwp(t) : cumulative entrance flow on link a traveling on path p during time

interval [0, t];
Vap(t) : cumulative exit flow on link a traveling on path p during time
interval [0, ¢];

Xap(t) : partial link load on link a induced by flow on path p at time ¢.
Time variables:

[0,T] : analysis period. It is the interval of time from the instant
when flows enter the network to the first instant when
all flows exit the network.
Below, we perform a network transformation that will enable us to define decision
variables that are equivalent to the path-node splitting rates f,,(t). This network

transformation is the basis of all our results in this chapter.

We divide every path p € (r,s) that goes through a control node into subpaths, in
the following manner. Subpaths can either (i) originate at r and end at the first
control node on path p, or (ii) originate at a control node and end at the following

control node on path p, or (iii) originate at the last control node on path p and end
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at s. Let P, denote the set of subpaths we have Just created. Note that we allow
Py to contain several copies of the same subpath. However, these copies come from
different paths. Let P, denote the set of paths that do not go through control nodes

(but might originate at control nodes).

Let P = PLUP,. Also, let P, be the set of subpaths that originate at control
nodes and hence receive information about the network conditions. It follows that
P1 = {p € Plhead(p') € N,}, where head(p') denotes the head of the first link of
path p, that is the origin node of path p. Let P, = P\ P,.

Let p(p) denote the path containing subpath p (for example, this could be path p
itself if p € P,). s(p) will denote the first subpath on path p (this could be path p

itself if p € ;). Finally, f -

»7(p)(t) denotes the subpath flow rate at time ¢ on subpath

p of path p(p).

In the example of Figure 4-1, we consider a network of 9 nodes and one O-D pair
(O,D). Applying the network transformation defined above on this network, we

obtain:

Py ={(1,3,6,D),(1,4), (1,4),(4,6,D), (4,6, D), (4,7, D), (4,7, D)},
P, ={(0,1),(0,1), (0, 1), (0,2,4),(0,2,4),(0,2,5,7,D)}.

Notice for instance that there are two copies of subpath (4,6, D) in P, since both
path (0,1,4,6, D) and path (O, 2,4,6, D) contain this subpath.

4.2.2 Feasibility Conditions of the ARG Problem

The objective of this subsection is to present an analytical formulation of the feasibil-
ity conditions of the ARG problem. Each point in F(ARG), the feasible region of the
ARG problem, is obtained as a solution of a dynamic network loading (DNL) problem.
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N=(0,1,2,3,4,5,6,7,D}
N~O) N1}

Figure 4-1: Network Example

In the context of the ARG problem, the DNL problem consists of determining the
time-varying network flows and travel times that result from the movement of given
origin-destination flows over the network in accordance with particular splitting rates
at the origins and at intermediate control nodes. For a fixed set of origin-destination
flows, the ARG DNL problem can thus be viewed as a map from the domain of path

splitting rates to the range of network flows and travel times.

Similar to the DNL maps by Friesz et al. [30], by Wu et al. [81] and by Kachani
[39] in the context of the Dynamic User-Equilibrium problem (DUE), the DNL map
of this chapter is formulated as a system of equations expressing link dynamics, flow
conservation, flow propagation, non-negativity and boundary constraints. Unlike the
DUE DNL problem, in which flows departing the origin on a particular path always
remain on that path, the ARG DNL problem allows flow to change from one path to
another at intermediate locations. Furthermore, the ARG DNL map has two added

features: (i) the model is formulated in terms of subpath flow rates instead of path
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flow rates, and (ii) the path-node splitting rates are explicitly used.

Note that, for every node and every time instant, the set of feasible splitting rates form
a simplex. Therefore, the set of all feasible splitting rates is a product of simplices.
The ARG feasible region, F/(ARG), is then the set of flows and travel times that

result as the splitting rates vary across their feasible region.

Link dynamics equations
The link dynamics equations express the relationship between the flow variables of a

link. They are given by:

= Ugp(t) — vgp(2), V(r,s),Vp € K,s,Va € p. (4.1)

Flow conservation equations
For every link a that has a head node which is neither an origin node nor a control
node (i.e. head(a) € N\ (N1 UNz)), the flow conservation equations can be expressed

as

Ugp(t) = Varp(t), (4.2)

where o' is the link preceeding link a on path p.

For every link a that has a head node n which is an origin node (i.e. n € N;) and for

all paths p originating at n, the flow conservation equations can be expressed as

Uap(t) = Fswyp(t) (4.3)
= ,Bnp(t)fRS(p)(t):

where the (O-D) pair departure flow rates f75®)(t) are given.
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For every link a that has a head node n which is a control node (i.e. n € N,) and
for all paths p that do not originate at n, the flow conservation equations can be

expressed as

Ugp(t) = fopip)(t) (4.4)
= Bup(t)fPFP(1),

where fPESP)(t) = Yo ps(p) aeitait(@y=n Vap(t)-

The path-node splitting rates Sny(t) (or equivalently the subpath flow rates f,5,(¢))
are the unknown variables in the ARG Problem. In fact, notice that there is a one-to-
one mapping between the path-node splitting rates §,,(t) (exogenous variables) and
the subpath flow rates f 5, (t) (endogenous variables). Furthermore, one can directly
compute one quantity from the other, provided that the O-D pair flow rates f#5®)(¢)

are given and the node/O-D pair flow rates f»#5()(t) are computed.

Link-path flow relationships
The following relationships express that the link flow variables are the sum of their

corresponding link-path variables:

ug(.) = zpla&p uap(-): vo(.) = Ep|a€p 'Ua;n(-)a

Ua(') = Zplaép Uap(')a Va() = Zplaep V:lp('): (4'5)

Xa() = Zplaep Xap(-), V(r,s),Yp € K,,,Va € p.

Flow propagation equations

Flow propagation equations are used to describe the flow progression over time. Note

that a flow entering link a at time ¢ will exit the link at time s,(¢). Therefore, by
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time ¢, the cumulative exit flow of link a should be equal to the integral of all inflow
rates which would have entered link a at some earlier time w and exited link a by

time ¢. This relationship is expressed by the following equation:

Vip(2) = / | ap W) V(r, s),¥p € K,s,Va € p, (4.6)

we

where W = {w : s,(w) < t}.
If the link exit time functions s,(.) are continuous and satisfy the strict FIFO property,

then the flow propagation equations (4.6) can be equivalently rewritten as

sa ()
Vip(t) = /0 Uap (W) dw, Y(r, s),¥p € K,q,Va € p. (4.7)

The strict FIFO condition implies that a car entering link a at time ¢, will exit only
after the cars that entered link a before it, have all exited. In mathematical terms,

this is equivalent to the link exit time functions s,(.) being strictly increasing.

Link exit time functions s,(t) are obtained from link travel time functions using the

following definitional constraint:
Sa(t) =t + Do (Xa(t)).

Valid expressions of D,(X,(t)) can be found in Kachani and Perakis [40], [41] and
[42].

Non-negativity constraints

We further assume that the departure path flow rates are non-negative:

fP() 2 0 V(T7 3)7Vp € Krs- (48)

Boundary equations
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Since we assume that the network is empty at ¢t = 0, the following boundary conditions

are required:

Up(0) =0, V4(0) =0, X,,(00=0, VY(r,s),Vp€ K, Va € p. (4.9)

Notice that the above formulation of the DNL map is general enough to account for
the case where the FIFO property, defined above, is not necessarily verified (notice
that Equation (4.6) does not assume that the FIFO property holds). In Section 4.3,
we investigate when the FIFO property holds. We examine conditions on the link
travel time functions D,(.) and on the departure path flow rates f,(.). When the
FIFO property holds, the model becomes more tractable.

In the remainder of the chapter, we will denote by F'(ARG) the feasible region of the

ARG problem. In the next subsection, we provide a variational inequality formulation

of the ARG problem.

4.2.3 A Variational Inequality Formulation

Similarly to the work of Friesz et al. [30] on variational inequality formulations for the
Dynamic User-Equilibrium Problem in terms of the path flow rates, we can formulate

the ARG Problem in terms of the subpath flow rates.

As we discussed in Subsection 4.2.1, we have two types of drivers in the network:

e Drivers who travel on subpaths p € P, do not receive any information. These
drivers have a certain estimate f of the vector of flows in the network. We
assume that these drivers utilize these flow estimates to estimate the vector
of path travel times S(¢, f). Such estimate could be the travel times experi-
enced by these users in the past (e.g. the day before or the week before) or

a weighted average of past experiences. We further assume that these drivers
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use this estimate to select paths that minimize their travel times. The simplest
case corresponds to the vector of free-flow path travel times S(¢,0). In this case,

drivers follow the static shortest path from their origin to their destination.

e Drivers who travel on subpaths p € P; (that originate at control nodes) receive
full information about the network traffic conditions. We assume that these
drivers behave “rationally” in the sense that they select paths that minimize

their flow-dependent dynamic travel times.

In what follows, we consider these two categories of drivers traveling in the same
network. As a result of the above two categories of drivers, solving the ARG problem
is equivalent to solving the following variational inequality problem: Find a vector of

time-dependent flows f* € F(ARG) satisfying

S X S0, F) Uy a0) — iy () + (4.10)

rs pEPz

> 2 / o (W, 1) () (W) = FgyW))dw >0, Vf € F(ARG).

™S pePy

Notice that the first part of this variational inequality formulation describes the first
type of drivers while the second part describes the second type of drivers. For the

sake of simplicity of notation, in the remainder of the chapter, we will denote by
< h’ g>= Er,s Zpe? fO = hp(w)gp(w)dw

The above infinite-dimensional variational inequality formulation can be rewritten in

a more compact form as: Find a vector of flows f* = ( f|’;—,1, fl*?z) € F(ARQG) satisfying
<S() fip, = fip, > + < SUs s fis ) fip, — fi, > 20,
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(4.11)
Vi = (i, fi5,) € F(ARG).

In summary, the continuous-time Anticipatory Route Guidance problem (ARG) is
equivalent to the variational inequality formulation (4.11) subject to the system of
equations (4.1)-(4.9). In general, the ARG problem is a continuous-time non-linear
optimization problem. The non-linearity of the model comes from the path flow
dependence of the path travel times in the variational inequality, as well as the integral
equation (4.6). In this formulation, the input parameters consist of the link travel
times D,(X,) as functions of the number of vehicles in the link, and the (O-D) pair
departure flow rates f™*(¢). The unknown variables we wish to determine are the link
and path entrance flow rates u,(.) and f,(.), the link exit flow rates v,(.), the link
cumulative entrance and exit flows U,(.) and V,(.), the link loads X,(.), and the link
and path exit time functions s,(.) and S,(.). Notice that due to the integral equation

(4.6), this problem is hard to solve.

Furthermore, notice that solving Variational Inequality (4.11) is equivalent to solving
the following two variational inequalities in sequence: Find a vector of flows fl*?z €

F(ARG)p, satisfying
<S(Nfp,— f,> >0 Vi, € F(ARG)q,. (4.12)

Then, find a vector of flows f|*ﬁ1 € F(ARG)p, satisfying

< S(fl%wfl%z)’flﬁ - I*E > 20, Vflﬁl = F(ARG)FI' (4.13)

In the next subsection, we provide an alternative formulation of the ARG problem
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based on a fixed-point approach to the problem.

4.2.4 A Fixed-Point Formulation

In this subsection we argue that the ARG problem can also be formulated as a fixed
point problem in the subpath flow rates. The following subsection will show that the

fixed point and variational inequality formulations are equivalent.
The fixed-point approach solves the following two sub-problems in sequence:

Sub-problem 1: Drivers who do not receive any information, follow shortest time
paths based on travel times determined from some default (and fixed) estimate of the
vector f of network flows. For these drivers, the fixed-point approach attempts to
find flows that are a fixed-point solution of the travel time minimization problem with
S(t, f) as the vector of path travel times. In mathematical terms, this sub-problem

is equivalent to: Find a vector of flows fl%z € F(ARG) 5, satisfying

~

fl5, € ArgMin ;o ¢ purc);, < S(f), fip, > (4.14)

P2

Sub-problem 2: Drivers who receive full information about the network traffic con-
ditions, follow shortest time paths based on travel times determined from the actual
flows of both uninformed and other informed drivers. For these drivers, the fixed-point
approach attempts to find flows that are a fixed-point solution of the flow-dependent
travel time minimization problem. In mathematical terms, this sub-problem is equiv-

alent to: Find a vector of flows fl%l € F(ARG), satisfying

fip, € ArgMin ;o ¢ rare)p, < S(f5, fi5,): 5, > - (4.15)
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4.2.5 Relationship between the Variational Inequality and

the Fixed-Point Formulations

In this subsection, we establish equivalence of the variational inequality formulation

in Subsection 4.2.3 and the fixed-point formulation in Subsection 4.2.4.

Proposition 4.1 The variational inequality formulation in Subsection 4.2.3 and the

fized-point formulation in Subsection 4.2.4 are equivalent.

Proof:

It is easy to see that Equation (4.14) in Subsection 4.2.4 is equivalent to Equation
(4.12) defined in Subsection 4.2.3. Furthermore, Equation (4.15) in Subsection 4.2.4
is also equivalent to Equation (4.13) defined in Subsection 4.2.3. Since solving Equa-
tion (4.12) and Equation (4.13) in sequence is equivalent to solving the variational

inequality formulation, the result of the proposition follows.

4.2.6 A Special Case: The Dynamic User-Equilibrium Prob-

lem

The ARG Problem is a generalization of the Dynamic User-Equilibrium (DUE) Prob-
lem. As we discussed in Section 4.1, the DUE problem assumes that flows departing
the origin on a particular path always remain on that path. However, in the ARG
problem, we allow flow to change from one path to another at intermediate locations.
Furthermore, the DUE Problem assumes that all drivers while departing from their
origin have full information about the network conditions on the paths available to
them (i.e the set of control nodes is exactly is the set of origin nodes). As a result,

these drivers choose a path that minimizes their flow-dependent travel time.

In this special case, the ARG problem simplifies significantly. Instead of two types

of drivers as discussed in Subsection 4.2.3, the only type of drivers we have in this
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case are drivers who receive full information. As a result, all paths belong to P;,
the set P, is empty, and the network transformation introduced in Subsection 4.2.1
is no more needed. Furthermore, out of the three types of conservation equations
(4.2), (4.4) and (4.5), only equations (4.2) and (4.4) apply in this case. Finally, the
variational inequality formulation (4.11) reduces in this case to: Find a vector of flows

f* € F(DUE) satisfying

<S(f*)f-f*> >0, VfeF(DUE). (4.16)

Variational inequality formulation (4.16) can be interpreted as the problem of de-
termining feasible path flows f* so that, at each time ¢, Wardrop’s first principle is
verified. In other terms, it consists of determining feasible path flows f* so that, at
every time ¢, and for every origin-destination pair (r, s), all used paths belonging to
(r, s) have equal and minimum travel times. Over the past decade, the DUE Problem
has attracted the attention of many researchers in the transportation area interested
in both theoretical and applied research. We hope that our work in this chapter on

the ARG problem will contribute to this literature.

4.3 Mathematical Properties of the ARG Problem

In this section, we examine the mathematical properties of the ARG problem. In
Subsection 4.3.1, we introduce some definitions and preliminary results. In Subsection
4.3.2, we establish key properties of the feasible region F(ARG). In Subsection 4.3.3,

we establish the existence of a solution to the ARG problem.
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4.3.1 Definitions

In this subsection, we present some important definitions. In particular, the following
three definitions express three different types of First In First Out (FIFO) properties.
These definitions are similar to the ones introduced for product sales functions in
Subsection 3.2.2 of Chapter 3. The FIFO property will play a key role in the analysis

of our model in Subsection 4.3.2.

A link verifies the FIFO property if and only if the link exit time function is non-
decreasing. This means that a car that enters link a at time ¢ cannot exit before the

cars that entered earlier. In particular,

Definition 6 (FIFO 1): A link verifies the FIFO property if and only if:
V(t1,t2) € [0, T if t1 < to, then: s,(t1) < so(ta). (4.17)

A link verifies the strict FIFO property if and only if the link exit time function is
strictly increasing. This means that, a car on a link a cannot exit before or at the

same time as other cars that entered the same link earlier. In particular,

Definition 7 (FIFO 2): A link verifies the strict FIFO property if and only if:
V(tl,tg) € [0,T]2, Zf tl < t2, then: Sa(tl) < Sa(tg). (418)
Definition 8 (FIFO 3): A link verifies the strong FIFO property if and only if:

30 > 0 such that V(t1,t2) € [0,T)?, if t1 < t3, then: so(t2) — sq(t1) > (ks — ).
(4.19)

In the model presented in Section 4.2, the path departure flow rate functions f,(.)
are control variables. In an effort to establish general results, we assume that these

functions are Lebesgue integrable.
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4.3.2 Properties of the Feasible Region of the ARG Problem

In this subsection, we establish key properties of the feasible region F/(ARG) of the
ARG problem. In particular, we summarize results due to Kachani [39] that determine
the tighest assumptions for the F(ARG) region to be non-empty and for the FIFO
property to hold. We start with a network of one link. Then, we show how the
results extend to a general network. We also establish the boundedness, closedness

and convexity of the F'(ARG) region in terms of the path flow rates f,(.).

Network of One Link

Unifying Analysis of Non-Linear and Linear travel time Functions

In this subsection, we consider a network of one link a. Below, we report on a
result that establishes that the feasible region of the ARG problem is not empty.
This result provides a unifying analysis for both linear and non-linear travel time
functions. Corollary 4.1 shows how linear travel time functions can be interpreted as
a limit case of non-linear travel time functions and why linear travel time functions

lead to stronger results.

Theorem 4.2 [39] If the pair (D,(.),u.(.)) satisfies the following conditions:

(A1) The link travel time function D,(.) is continuously differentiable, and there exist
two non-negative constants By, and Ba, such that for every link load X,, 0 < By, <
D! (X,) < Ba,.

(A2) The link entrance flow rate function u,(.) is Lebesgue integrable, non negative

and bounded from above by a positive real number M, on [0,T)].

(A3) My < 525~

Then, the feasible region F(ARG) has the following properties:

(1) F(ARG) is well defined, that is, the link load X,(.), the ezit flow rate v,(.), and
the cumulative variables can be uniquely determined by the link travel time function

D,(.) and the link entrance flow rate u,(.) on the analysis period [0, Ty).
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(2) The Strong FIFO property holds.

Remarks:

e Intuitively, Conditions (A1)-(A3) are the minimal conditions to ensure that the
FIFO property is verified. Indeed, By, — B, represents the maximum variation
of travel time in terms of X, (that is, the total number of vehicles in the link).
During a time interval At of decrease in the number of vehicles in the link, the
variation in the number of vehicles X, (t) — X, (¢t + At) is bounded by the quan-
tity M,.At. Therefore, the variation of travel time D,(X,(t)) — Do (X, (¢ + At))
is bounded by (Bae — Bia).M,.At. Using Condition (A3), it is also bounded by
At. Hence, s,(t) = t + Do(Xo(t)) < t+ At + Do(Xo(t + At)) = s4(t + At).
Therefore, the FIFO property is verified in this case. On the other hand, dur-
ing a time interval At of increase in the number of vehicles, since the travel
time functions are non-decreasing, Do(X,(t)) < Dy(X,(t + At)). Therefore,
Sq(t) < sq(t + At), and the FIFO property is also verified in this case.

e Notice that if the link travel time function D,(.) is linear, then conditions
(A1)-(A3) of Theorem 4.2 simplify significantly. Indeed, in this case, D(.) =
cst = Bi,. Moreover, for any arbitrarily small positive scalar €, by introduc-
ing By, = Bi, + ¢, Condition (Al) of Theorem 4.2 is verified. Furthermore,
since Condition (A3) can be rewritten as M, < %, M, can be arbitrarily large.

Therefore, the following corollary follows.

Corollary 4.1 [39] If the pair (Da(.), uq(.)) satisfies the following conditions:
(B1) The link travel time function D,(.) is linear and non-negative.
(B2) The link entrance flow rate function u,(.) is Lebesgue integrable and non-negative.

Then, conditions (A1)-(A3) of Theorem 4.2 also hold.
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In summary, Theorem 4.2 establishes that by constraining the link entrance capacity
to the variation of travel time with respect to the number of vehicles in the link, we
limit the effect of the variation of the number of vehicles with respect to time, and
ensure that the FIFO property holds. Furthermore, when the FIFO property holds,
the feasible region F(ARG) is non-empty and we can uniquely determine the exit

flow rate in terms of the link entrance flow rate.
Tightness of the Conditions of Theorem 4.2

Below, we illustrate using a counter-example that conditions (A1)-(A3) in Theo-

rem 4.2 are tight.

Theorem 4.3 For any arbitrarily small positive scalar §, there ezist a link travel
time function Dy(.) and a production flow rate function u,(.) that verify the following
conditions

(C1) D,(.) is continuously differentiable and nondecreasing;

(C2) uy(.) is non-negative, Lebesgue integrable and bounded from above by M,;

(C3) Mia < Maz{D)(X,), X, € R} - Min{D!(X,),X, € R} < M%L +9,

and that violate the FIFO property.

Proof: The proof of this result is the same as the proof of Theorem 3.5 in Subsection

3.5.1.

Extension to a General Network

In this subsection, we generalize the results we obtained for a single link network to

the case of a general network. The following theorem illustrates this generalization.

Theorem 4.4 [39]
Assume that for every (O-D) pair (r,s), the (O-D) pair departure flow rate function
f(.) is Lebesgue integrable, non-negative, and bounded from above by M,,. Then,

there exists a vector (]\7.7 o)aca > 0 such that:
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If the link travel time functions (D,(.))aca satisfy the following conditions:

(D1) D,(.) is continuously differentiable,

(D2) Yz € R, 0 < By, < D,(z) < Ba,, and,

(D3) Bay — Bia < 3';:;

then, the feasible region F(ARG) has the following properties:

(1) F(ARG) is well defined (that is, the link entrance flow rates u,(.), the link exit
flow rates v,(.), the link cumulative entrance and ezit flows U,(.) and V,(.), the link
loads X,(.), and the link and path ezit time functions s,(.) and S,(.), can be uniquely
determined by the link travel time functions D,(.) and the path departure flow rates
fp(.) on the analysis period [0, Ty]),

(2) The Strong FIFO property holds.

Non-Emptiness, Boundedness, Convexity and Closedness of the Feasible

Region

In this subsection, we present some properties of the F(ARG) region. These proper-
ties are not only useful in understanding the structure of the model, but will also be

useful in Subsection 4.3.3 for proving the existence of a solution to the ARG problem.

Let D = (Dg)sca and f = (fp)pcp denote a vector of link travel time functions and a
vector of path departure flow rate functions respectively. Vector (D(.), f(.)) is feasible
if it verifies conditions (D1)-(D3) of Theorem 4.4. In this case, using Theorem 4.4,
the link entrance flow rates u,(.), the link exit flow rates v,(.), the link cumulative
entrance and exit flows U,(.) and V,(.), the link loads X,(.), and the link and path
exit time functions s,(.) and Sp,(.), can be uniquely determined by the link travel time

functions D,(.) and the path departure flow rates f,(.) on the analysis period [0, 7).
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Proposition 4.5 The feasible region F(ARG) 1is non-empty and bounded.

Proof: This result follows directly from Theorem 4.4.

Proposition 4.6 If vectors (D(.), 51(.).f(.)) and (D(.), B2(.).f(.)) are feasible, then,
for every A € [0,1], vector (D(.), (AB1(.) + (1 — X)B2(.)-f(.)) is also feasible. In this
sense, the feasible region F(ARG) is conver.

Since the two vectors 8 and f have the same dimension, note that 3(.).f(.) denotes
the vector whose elements are obtained from multiplying each component S,,(.) of

the splitting rate §(.) with its correponding node/O-D pair flow rates f»#S®)().

Proof: The result of this proposition follows from the observation that, for every node
and every time instant, the set of feasible splitting rates form a simplex. Therefore,

the set of all feasible splitting rates is a product of simplices, which is convex.

Proposition 4.7 If a sequence (f7(.))jex of vectors of path departure flow rates con-
verges to (f(.)), and, if for every j, vector (D(.), fi(.)) is feasible, then, the limit
(D(.), f(.)) is also feasible. In this sense, the F(ARG) region is closed.

Proof: The proof is the same as the proof of Proposition 3.8 in Subsection 3.5.1.

4.3.3 Existence of a Solution to the Anticipatory Route Guid-

ance Problem

In this subsection, we study key properties of the ARG problem that enable us to
establish the existence of a solution to the ARG problem. To this end, we follow the

same approach as in Subsection 3.5.2 of Chapter 3.

As established in Subsection 4.2.3, the ARG problem is equivalent to solving the

following two variational inequalities in sequence: Find a vector of flows fl’;—,z €
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F(ARG) 5, satisfying

-~

Then, find a vector of flows fI*Fl € F(ARG)p, satisfying

<SUppo I fm = S > 20, Vg, € F(ARG)p,- - (4.21)

The existence of a vector of flows fl%z € F(ARG’)@ satisfying variational inequality
formulation (4.20) follows immediately from the continuity of the scalar product <

S(f),. > in (4.20), and the non-emptiness, boundedness, convexity and closedness

results of the F(ARG) region established in the previous subsection.

However, the complexity of establishing the existence of a solution to the ARG prob-
lem lies in proving the existence of a vector of flows fl*?l € F(ARG)lp1 satisfying

variational inequality formulation (4.21). We will refer to the functional operator

S()s, =S f|*ﬁ2) as the ARG operator.

Properties of the ARG Operator

In this subsection, we establish some properties of the ARG operator S (')IE' These

properties will be useful in establishing that the ARG problem has a solution.

We establish the weak continuity of the ARG operator. Weak continuity is defined
in Subsection 3.5.2.

Theorem 4.8 Conditions (D1)-(D3) of Theorem 4.4 imply that the ARG operator

S(.)ip, is weakly continuous.

Proof: The proof of this result is the same as the proof of Theorem 3.9 in Subsection

3.5.2.
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Lemma 4.1 The ARG operator S(.)p, is pseudo-monotone over the F(ARG) re-

gion.

Proof: The proof of this result is the same as the proof of Theorem 3.15 in Subsection

3.5.2.

Existence of a Solution to the ARG problem

In this subsection, we establish one of the fundamental results of this chapter. That

is, we illustrate that under weak assumptions, the ARG problem has a solution.

Theorem 4.9 Under conditions (D1)-(D8) of Theorem 4.4, the ARG problem has a

solution.

Proof: The proof of this result is the same as the proof of Theorem 3.11 in Subsection

3.5.2.
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Chapter 5

Conclusions and Future Steps

5.1 Summary of Contributions and Future Steps

5.1.1 Travel Time Models for Dynamic Transportation Net-

works

In Chapter 2, we took a fluid dynamics approach to determine the delay (travel time)

of a traveler in traversing a network’s link. The main contributions were the following:

1. We proposed a variety of models for determining travel times in transportation

networks.
2. We proposed analytical forms (closed-form solutions) of travel times.

3. We captured a variety of flow patterns such as formation and dissipation of queues,

drivers’ reaction time and response to upstream congestion or decongestion.

4. We accounted explicitly for splillback, bottleneck phenomena, and link interaction.

5. We incoporated inflow, outflow and storage capacity constraints.

187



In particular:

e We proposed first-order and second-order fluid models for determining travel

time functions.

e We proposed two simplified models to estimate travel times as functions of the
entrance flow rates: the Polynomial Travel Time (PTT) Model and Exponential
Travel Time (ETT) Model.

e We designed enhancements of our models in order to account explicitly for
spillback and bottleneck phenomena and to incorporate inflow, outflow and

storage capacity constraints.

e We proposed two simplified models to estimate travel times as functions of
the ezit flow rates: the Spillback Polynomial Travel Time (SPTT) Model and
Spillback Exponential Travel Time (SETT) Model.

e We proposed a general framework for the analysis of the PTT Model and the
SPTT Model that reduces the analysis of these models to solving a single ordi-

nary differential equation.

e Based on piecewise linear and piecewise quadratic approximations of the flow

rates, we proposed several classes of travel time functions for the separable PTT,

SPTT, ETT and SETT models.

e We extended the analysis of the PTT and SPTT Model to second-order non-

separable velocity functions in the case of acyclic networks.

Continuing this work, we intend to examine other fluid dynamics models. For ex-
ample, consider a different model for relating speed and density. Moreover, we will
investigate alternate approaches including queuing models. We wish to connect these
models with the dynamic user-equilibrium problem. We plan to investigate the solu-

tion to this problem and propose algorithms for computing the solution to our models.
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We also intend to perform a numerical study for realistic networks using the models
and the analysis that we already performed in order to show how a numerical solution

approach compares to an analytical one.

5.1.2 A Fluid Model of Pricing and Inventory Management
for Make-to-Stock Manufacturing Systems

In Chapter 3, we took a fluid dynamics approach to determine optimal pricing and
inventory policies for make-to-stock manufacturing systems. The main contributions

were the following:

e We proposed a fluid model of pricing and inventory management for make-to-
stock manufacturing systems. A key novel characteristic of this model is that
it incorporates the delay of price and level of inventory in affecting demand for
non-perishable products. We formulated the model as a continuous-time non-

linear optimization problem:.

e We analyzed the feasible region (F(DPM)) of the general DPM Model. In
particular, we provided a unifying analysis for both linear and non-linear prod-
uct delay functions. Under sufficient conditions on the production flow rate
functions and the product sojourn time functions, we established that the
(F(DPM)) region is non-empty, and that the FIFO property holds. We showed
that in the case of linear product sojourn time functions, the assumptions we
imposed for non-linear product sojourn time functions simplify significantly. We
showed that the conditions we imposed are the tightest possible. We established
key properties of the feasible region, as a function of the production flow rate

functions u;(.), such as boundedness, closedness and convexity.
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e We established under weak assumptions the existence of an optimal produc-
tion/inventory control policy that maximizes the profit of the firm over the

feasible region.

e We proposed a solution algorithm that solves the DPM Model in special cases of
demand arrival rates );, production cost functions ¢;(t), inventory cost functions

hi(t), unit price functions p;(;(t)), and shared production capacity CFR(.).

In summary, some of the insights obtained from the analysis of Chapter 3 are the

following:

e We considered a fluid model that describes the selling rate of a unit of product
through its sojourn time in the system. Our motivation is based on the belief
that delay (sojourn time) data is easier to acquire than demand data. This
approach allowed us to describe the system in greater detail by accounting

explicitly how each unit of product waits in inventory before being sold.

e We derived an optimal pricing/production/inventory control policy in a capaci-
tated environment for a discretized version of the model. This policy is dynamic

and is based on an equilibration of the marginal profit of products.
e Our model connects and is consistent with traditional demand models.

e Furthermore, we generalized our approach without considering a time discretiza-
tion. We established key properties of the general Dynamic Pricing Model that

allowed us to establish that the general model also has a solution.

Continuing this work, we intend to devise solution algorithms to solve more general
instances of the discretized version of the DPM model. We also intend to investigate

the extension of the model to incorporate product substitution and bundled offerings.
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We aim to consider stochastic delay functions. Finally, we intend to benchmark our
approach against industry practices and current literature in application areas such

as retail.

We hope that the results of this research will lay the foundations for the use of the
delay of price and level of inventory in affecting demand in supply chain and inventory

management systems.

5.1.3 The Anticipatory Route Guidance Problem: Formula-

tions and Analysis

In Chapter 4, we also took a fluid dynamics approach to study the anticipatory route

guidance problem. The main contributions were the following:

e We proposed a variational inequality (VI) formulation, the first general analyt-

ical formulation of this problem.

e We presented a fixed-point formulation of the problem and established equiva-

lence of the two formulations.

e We studied the feasible region F(ARG) of the ARG problem. We provided a
unifying analysis for both linear and non-linear travel time functions. Under
sufficient conditions on the path flow rate functions and the travel time func-
tions, we established that the F/(ARG) region is non-empty, and that the FIFO
property holds. We showed that the conditions we imposed are the tightest
possible. We established key properties of the feasible region, as a function of

the path flow rate functions, such as boundedness, closedness and convexity.
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e We established under weak assumptions the existence of a solution to the ARG

problem.

Continuing this work, we intend to devise solution algorithms to solve general in-
stances of the discretized version of the ARG problem. We also intend to investigate
the extension of the model to incorporate the effects of inaccurate guidance messages.
Furthermore, we aim to consider and study stochastic travel time functions. Finally,

we intend to apply the results of our work in practice.

5.2 Conclusions

This research has the potential to significantly impact inventory control and manufac-
turing as well as transportation planning. In the area of dynamic pricing, we believe
that our results will lay the foundations for the use of the delay of price in affecting
demand and fluid dynamics models in supply chain and inventory management sys-
tems. Furthermore, our results in transportation could play an important role in the
development of ATIS.

Our analysis in this research required an interdisciplinary approach, drawing upon
a broad collection of methodologies from areas such as differential equations, func-
tional analysis and dynamic optimization. Finally, this research addresses problems
arising in many diverse application areas including dynamic pricing, revenue man-
agement, inventory control, transportation planning and management, air traffic flow
management, routing messages in communication networks, mechanical systems and

electrical power systems.
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