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ABSTRACT

The irreducible representations of the double cover of SL(m) with infinitesmal character 1p
having a maximal primitive ideal are determined. We investigate whether these representa-
tions are attached to a nilpotent orbit and use the orbit method to speculate their K types.
We conclude with a character formula expressing the representations as a sum of simpler
virtual representions.

Thesis Supervisor: David Vogan
Title: Professor of Mathematics



3

To my mother and Mei-Lai



4

Acknowledgments

My years at MIT have been an extremely fruitful and rewarding time in my life. There
are many people I have to thank for this. First, I have to thank my mother who sacrificed
everything to guarantee my success at MIT. Without her emotional and financial support
my studies would not have been possible. I must also thank my best friend, Mei-Lai, who
has been a pillar of support during my graduate years. During the numerous times that I
felt self doubt she was my inspiration and my sunshine. I also am tremendously grateful
to my father for all of his encouragement and help over the years. Whatever breadth of
knowledge I have in science is due to him.

My thesis certainly wouldn't have been possible without the generousity, kindness, self-
lessness, and brilliance of my advisor, David Vogan. There was never a day when I didn't
feel welcome to talk with him about my work. The notes I took during my meetings with
him I will forever reference.

I made some truly incredible friends at MIT who I wish to thank. My mathematical
conversations with Paul Loya were intellectually some of the most rewarding experiences I
have had as a graduate student. During my first year, we worked together through books
in representation theory and analysis. The agreement was that he would teach me analysis
while I taught him representation theory. Of course the way it turned out was that he
taught me analysis and we figured out the representation theory together. We had a great
time. Paul is the most giving person I have ever met. He stayed up all night with me on
numerous occassions to help latex my thesis and meet job application deadlines. I wouldn't
have been able to graduate in four years without his help. I wish also to thank my classmate
Philip Bradley. Phil has been my role model for somone who can juggle mathematics, home
life, and athletics. Phil introduced me to the sport of rowing which has become an integral
part of my daily life at MIT. I will always cherish the memory of those (painful) workouts
together leading to the Crash Bs. Let me also thank Sirano Dhepaganon for his continuing
friendship and support since our years at McGill.

I also would like to thank Dana Pascovici, Tom Pietraho, Monica Nevins, Peter Trapa,
Gustavo Granja, Collin Ingalls, Guiseppe Castellacci, Daniel Chan and my officemate,
Catalin Zara, for their friendship and making my daily life at MIT so enjoyable. In partic-
ular, I am indebted to Peter Trapa for looking out for me during my early years and being
a wonderful real Lie groups ally. I feel truly blessed to have studied in the company of so
many great people.



Contents

1 Introduction 7
1.1 Outline of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Langlands quotients for SL(m) 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The group SL(m ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The Clifford algebra and Spin(m) . . . . . . . . . . . . . . . . . . . . 10
2.3 The genuine discrete series of M . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The cuspidal parabolic subgroups of SL(m) . . . . . . . . . . . . . . 11

2.3.2 The discrete series of SL(2) . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 The genuine discrete series of Mmin for minimal parabolics . . . . . 13
2.3.4 The genuine discrete series of M for nonminimal cuspidal parabolics 14

2.3.5 Isomorphisms among the genuine discrete series of M for nonminimal
cuspidal parabolics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Coherent families and maximal primitive ideals . . . . . . . . . . . . . . . . 17
2.4.1 The infinitesimal character of an irreducible (g, K) module . . . . . 17
2.4.2 The Langlands quotient of a generalized principal series representation 18

2.4.3 An example: The Langlands quotients for SL(2) with infinitesimal
character ......................... 19chara ter 2p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.4.4 Coherent families of virtual (g, K) modules . . . . . . . . . . . . . . 19
2.4.5 Translation functors and r invariance . . . . . . . . . . . . . . . . . 21

2.4.6 Maximal primitive ideals . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Langlands quotients with a maximal primitive ideal . . . . . . . . . . . . . 24

3 The orbit method picture 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Attaching a nilpotent orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 K C orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Admissible K C orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Orbit method prediction of K types . . . . . . . . . . . . . . . . . . . . . . 39

5



6 CONTENTS

4 A character formula 43
4.1 Lowest K types . . . . . . . ... . . .. . . . . . . . . . . . . . . . . . . . 43
4.2 Characters of virtual representations . . . . . . . . . . . . . . . . . . . . . . 47



Chapter 1

Introduction

This thesis investigates the structure of a certain set of representations which are small in

the sense that their annhilator in the universal enveloping algebra is maximal. The small-
ness of these representations make them good candidates for studying via orbit method
techniques. As well, their smallness allows them to be written as a sum of virtual represen-
tations, leading to a character formula for their K-types.

The representations we consider are the Langlands quotients of the double cover of
SL(m) at infinitesmal character 1p. These representations are known to be unitary [18]

21
(Theorem 4.2), and hence are of interest. The infinitesmal character lp was chosen so that
the generalized principal series would be reducible. We expected this would be a good place
to look for small representations.

1.1 Outline of the problem

The structure of infinite dimensional representations is often studied by an investigation of
their restriction to a maximal compact subgroup. The objective of this thesis is to work
towards determining the K type spectrum for those Langlands quotients of the double cover
of SL(m) with infinitesmal character jp possessing a maximal primitive ideal. Although an
explicit description of the K types can only be conjectured at this time, a character formula
for the restriction of these Langlands quotients is given. We also wish to understand whether
these representations are unipotent and to determine their place in the orbit method.

1.2 Outline of the thesis

The goal in chapter one is to determine which genuine Langlands quotients of the double
cover of SL(m) have a maximal primitive ideal. This takes considerable preparation. We
first determine what are the isomorphism classes of genuine discrete series for the subgroups
M of cuspidal parabolics P = MAN. Next we use the notion of coherent families of vir-
tual (g, K) modules and Vogan's theorem on T invariance to count the number of genuine

7



CHAPTER 1. INTRODUCTION

Langlands quotients with infinitesmal character jp having a maximal primitive ideal. We
find this number is 4 in the case of the double cover of SL(21) and is 1 in the case of the
double cover of SL(21 + 1). In SL(21) two of the Langlands quotients have minimal parabol-
ics and two have maximal parabolics. For SL(21 + 1) the genuine Langlands quotient with
infinitesmal character jp having a maximal primitive ideal is the quotient of a principal
series representation.

In Chapter 3, we determine the place of those representations of chapter 1, in the orbit
method. First we identify the nilpotent orbit the representations are "attached" to. We
find there are 2 and 4 genuine admissible orbit data for the nilpotent orbit in the case of the
double cover of SL(21 + 1) and the double cover of SL(21) respectively. The orbit method
conjectures that under certain conditions, the representations attached to the orbit may be
realized as algebraic sections of an algebraic vector bundle. The conditions are satisfied for
the orbit in the case of SL(21 + 1) and we explicitly determine the K types of the algebraic
representation.

In Chapter 4, we prove a character formula for Langlands quotients with infinitesmal
character jp having a maximal primitive ideal. We write the Langlands quotients as a
sum of virtual representions. The K types of these virtual representations can be explicitly
determined by Blattner's formula. In deriving the character formula we first determine
the lowest K types of the Langlands quotients under consideration. For the Langlands
quotients of principal series we use the fact that the lowest K type of these representations
are the highest weight of fine representations of the maximal compact subgroup. For the
Langlands quotients with maximal parabolic we find the lowest K type directly. We then
turn to certain sums of virtual characters which we prove to be irreducible and having
maximal primitive ideal. By matching lowest K types we prove the character formula. An
explicit multiplicity free formula for the K types of our representations is conjectured.

8



Chapter 2

Langlands quotients for SL(m)

2.1 Introduction

In this chapter we explicitly determine the Langlands quotients for SL(m) with infinitesmal
character 2p having a maximal primitive ideal. This result will be crucial for the orbit
method results and character formula derivation in chapters 3 and 4. Unless otherwise
specified G will be a connected real semisimple Lie group with with maximal compact
subgroup K and complexified Lie algebra g. We write the Cartan decomposition of g as

g = .

2.2 The group SL(m)

Let SL(m) be the group of determinant one real m x m matrices. We begin with a familiar
structure theorem.

Proposition 2.1 (Iwasawa decompostion for SL(m)) Let K = SO(m), A the subgroup of
SL(m) of diagonal matrices with positive diagonal entries, and let N be the upper triangular
group with 1 in each diagonal entry. Then SL(m) = KAN in the sense that multiplication
K x A x N -* SL(m) is a diffeomorphism onto.

The fundamental group of SL(m), r 1 (SL(m)), is Z or Z/2Z depending whether m = 2
or m > 3 respectively. The covers of SL(m) are the quotients of the universal cover SL(m)
by subgroups of 7i(SL (m)). We note that all such subgroups are central and hence normal
in the universal cover so the quotient is a group. Because wi (SL(m)) has a unique subgroup

of index 2, SL(m) has a unique double cover which we denote by SL(m).

The subgroup K = SO(m) in the Iwasawa decompositon contains all of the nontrivial

topology of SL(m). Identifying A and N with one of their two leaves in KAN allows us to
write KAN as the double cover of SL(m). The double cover of K is the group Spin(m),
which we describe next.

9



CHAPTER 2. LANGLANDS QUOTIENTS FOR SL(M)

2.2.1 The Clifford algebra and Spin(m)

Given a symmetric bilinear form Q on a vector space V, the Clifford algebra, c(Q), is an
associative algebra with identity, eo, which contains and is generated by V, with the relation
vw + wv = -2Q(v, w)eo, for all v, w E V. The Clifford algebra can be constructed quickly
by taking the tensor algebra T*(V) =EDno V®' and setting c(Q) = T*(V)/I(Q), where
I(Q) is the two-sided ideal generated by all elements of the form v 0 v + Q(v, v)eo.

We will be interested in the case where V = Rm and Q is a positive definite quadratic
form. If ei,... ,em is the standard basis for V = Rm then we define Q(ei, ej) = 0 if i : j
for 1 < ij < m, and Q(e-, e) = 1 for 1 < i < m. With this form the Clifford algebra has
the following relations: eoeo = eo, e0ei = eieo = ei, eiej + e ei = 0 (i f i), and e? = -eo.
The products egi ... eik, with 1 < i1 < i 2 < ... < ir < m together with eo form a basis for
c(Q) making c a 2m dimensional vector space.

The Clifford algebra has a natural Z/2Z grading given by c(Q) = c(Q)"ven e c(Q),dd,
where c(Q)e'e" is spanned by products of an even number of basis elements in V and c(Q),dd
is spanned by products of an odd number. The algebra c(Q)"ve" is a 2 m-1 dimension sub-
algebra of c(Q).

The Clifford algebra has an anti-involution x F- x*, determined by

(Vi - - - - -Vr)* = (-1)rr. - - - - V1

for any vi, . . . , v, in V. The Clifford algebra also has an involution a which is the identity
on c(Q)"ven and minus the identity on c(Q)odd; i.e.,

a(vi V ) = (-1)-Vl Vr.

Spin(Q) consists of the following subalgebra of invertible elements in c(Q):

Spin(Q) = { E c(Q)e'ven : x -x* = 1 and x -V -x* C V}.

We will need the following:

Lemma 2.2 The centralizer of V in Spin(Q) is ±eo

Proof. Let V be an m dimensional vector space over R with symmetric positive defi-
nite bilinear form Q. To prove the claim let x E Spin(Q). Suppose that x - v = v -x for
all v E V. Letting ej be a monomial in Spin(Q), We may write x = E ale,. We have
eiej = (-1)I' eje, if j V I whereas eiej = (-1)1I'-lejej if j E I. So if E aiei centralizes
ej, then necessarily j V I whenever al = 0. So the centralizer of V in c(Q)"ven is R - eo.
The only elements of R - eo in Spin(Q) are ±eo. U
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2.3. THE GENUINE DISCRETE SERIES OF M

Any x in Spin(Q) determines an endomorphism p(x) of V by

p(x)(v) = x -v -x*v V.

We have the following:

Proposition 2.3 Let V be a vector space with dimension at least two having a symmetric

bilinear form Q. For x C Spin(Q), p(x) is in SO(Q). The mapping

p: Spin(Q) -+ SO(Q)

is a homomorphism, making Spin(Q) a connected two-sheeted covering of SO(Q). The

kernel of p is {±eo}.

Proof. It is easy to check that p(x) preserves the quadradic form Q (i.e. Q(p(x)(v), p(x)(v)) =

Q(v,v)) using the fact that Q(v,v) = v - v = -v - v*, for v E V. This shows that

p(Spin(Q)) C SO(Q). From Lemma 2.2, we see that the kernel of p is ±eo. To show

that p is surjective we use the fact that SO(Q) is a reflection group, consisting of prod-

ucts of an even number of reflections. If R E SO(Q) is written as a product of reflections

Rvi o ... o V2,I then the two elements in p-(R) are ±V1 -- - --v2r. To complete the proof, we
must check that Spin(Q) is connected, or equivalently (using the connectivity of SO(Q)),
that the two elements in the kernel of p are connected. The elements ±eo are connected by
the path eo cos(t) + ele2 sin(t), 0 < t < 7r in Spin(Q). E

2.3 The genuine discrete series of M

2.3.1 The cuspidal parabolic subgroups of SL(m)

The Langlands decomposition describes a parabolic subgroup, P, of SL(m) as a product

P = MAN. Here A = exp a, where a is a maximal abelian subalgebra of p n s. N is the
unipotent radical of P and the Levi subgroup, MA, is the centralizer of A in G. The double
cover of the parabolic is written as P = MAN.

The parabolic subgroups of SL(m) are in one to one correspondence with the set of
subsets of simple roots of -s(m). The subgroup M for each parabolic consists of blocks
of determinant plus or minus one, SL(ni)±, SL(n 2),..., SL(nr) along the diagonal of
SL(m), such that ni + - - + nr = m and M has deteminant one.

A parabolic subgroup P is cuspidal if M in the Langlands decomposition of P contains
a compact Cartan subgroup. Since M is a product of SL(ni)±, each ni must be less than
or equal to two in that case. Here we are using the fact that SL(n) has a compact Cartan
subgroup iff n equals 1 or 2.

Next we describe M for the cuspidal parabolics.

11



CHAPTER 2. LANGLANDS QUOTIENTS FOR SL(M)

Lemma 2.4 Let Mmin denote the group M for the minimal parabolic of SL(m). Then
Mmin is a finite group of order 2 m equal to all even monomials in Spin(m).

Proof. The group M consists of ±1 along the diagonal with an even number of signs.
Hence the order of M is 2 m-1. The preimage of a pair of negative signs in the i th and /th

diagonal entries are ±eie3 in Spin(m). The claim follows. U

Lemma 2.5 Let e be the nontrivial element in the kernel of the projection homomorphism

of SL(2) to SL(2). Let Mo be the identity component of M for a nonminimal parabolic

consisting of b SL(2)1 diagonal blocks. Then Mo = (SL(2))b/A where A is the subgroup of

{1, e}b of elements (x 1 ,..., Xb), with Uxi = 1. Furthermore, if the SL(2), diagonal blocks
in M are consecutive from the top then eo and the set of monomials e 1,,,. . . , -ei2 k , having
ZE {2, 4,... , 2b,2b + 1,2b + 2,...,m} and %i < ... i2k are a complete set of coset
representatives for M/MO.

Proof. In Mo each SL(2)± block has determinant one and all other diagonal entries are

one. Thinking of SL(2) as SL(2), we have (SL(2))b/{1, e}b. The description of Mo in the
claim follows.

The group M is the product of Mo with the set of diagonal matrices with ±1 along the
diagonal having an even number of signs. Because minus the identity is in SL(2) we may
choose our set to have the first odd diagonal entries equal to 1. The kernel of the projection

homomorphism of M to M, namely ±1, is in SL(2) so the coefficients of the monomials
in Spin(m) must be positive. The preimage of this set is the finite set of order 2-b-1 in
Spin(m) given in the statement of the lemma. U

2.3.2 The discrete series of SL(2)

For a unimodular group G, an irreducible unitary representation 7 is in the discrete series
if every nonzero matrix coefficient (7r(g)vi, v'2) is in L 2  Harish-Chandra showed that a
connected semisimple Lie group has a non-empty discrete series exactly when it contains
a compact Cartan subgroup. Harish Chandra parameterized the discrete series by A E *,
dominant with respect to a positive imaginary root system A+ (g, t). We will denote the
discrete series with Harish Chandra parameter A by 6A.

The unimodular group SL(2) has a compact Cartan subgroup, Spin(2), and hence a
discrete series 6A. Letting A+(g, t) = el - e2 and A = 1(el - e2 ) = (!, -i), for a positive
integer n, the discrete series 6 _ has lowest K type 1 + 1. With the opposite choice of

positive imaginary roots, the discrete series 6 (_ m) has lowest K type -i - 1.4 2

12



2.3. THE GENUINE DISCRETE SERIES OF M

2.3.3 The genuine discrete series of Mmn for minimal parabolics

We will be interested in discrete series of M, associated with cuspidal parabolics, which
do not descend to discrete series of the linear group M. To make this precise we want our
discrete series to send the non trivial element of the projection homomorphism M -+ M
to -1. The kernel of the projection homomorphism is ±1, and so we require 6(-1) = -1.
Such representations are called genuine.

First we will describe the genuine discrete series for Mmin, associated with the minimal
parabolic. The group is finite and the discrete series are just the finite group representations
of Mmin. To find these we use the following fact about finite group representations.

Lemma 2.6 Let G be a finite group of order N, let p1, p2,... represent the distinct iso-
morphism classes of irreducible representations of G.

(a) There are finitely many isomorphism classes of irreducible representations, the same

as the number of conjugacy classes in the group.
(b)Let di be the dimension of the irreducible representation pi, and let r be the number

of irreducible representations. Then N = d2 + - + dr.

Proof. The first part of the claim follows directly from the Peter-Weyl theorem for
compact groups which says that the irreducible characters are an orthonormal basis for
the space of class functions. The second part of the claim follows from the fact that any
irreducible representation pi of G appears in the regular representation dimp times. M

We will use this lemma to prove the following.

Proposition 2.7 For SL(2n + 1) there are 2 2n one-dimensional nongenuine representa-

tions and one 2'-dimensional genuine irreducible represention of Mmin.

Proof. By Lemma 2.4 the order of M in is 2 2n+1. The group Mmin consists of all
monomials in Spin(2n + 1). The center of this group is ±eo and it is not difficult to verify
that there are 22n + 1 conjugacy classes consisting of each element of the center and ± each
monomial e.1 -. .- ei22 with i1 < ... < i2k in Spin(2n + 1). By lemma 2.6 we conclude that

there are 2 2n + 1 irreducible representations of Mmin. The group Mmin is an abelian group
of order 2 2n and so it has 22n one-dimensional representations. These representations lift to

representations of Mmin. There is only one way to write 2 2n+1 as a sum of 2 2n + 1 squares
where 2 2n of the squares are the square of one, namely 2 2n+1 = 12+. .. 12 + (2 n)2. It follows

from lemma 2.6 that Mmin has 22n one-dimensional representations and one 2n-dimensional
irreducible representation. The 2n-dimensional irreducible representation doesn't descend
to a representation of M and hence must be genuine. The one dimensional representations
do descend and are not genuine.

13



CHAPTER 2. LANGLANDS QUOTIENTS FOR SL(M)

Proposition 2.8 For SL(2n) there are 2 2,-1 non genuine one-dimensional representations

and two 2 -1-dimensional genuine irreducible representions of Mmin.

Proof. The proof is analogous to the above proposition. The order of Mmin is 22n and it
consists of all monomials in Spin(2n). The center for this group is ±eo and ±e1 -e 2 .  e2n
and there are 2 2n-1 + 2 conjugacy classes. There are 2 2n-1 one dimensional represenations
of the abelian group Mmin which lift to Mmin. There is only one way to write 22' as
a sum of 2 2n-1 + 2 squares where 2 2n-1 of the squares are the square of one, namely
2 2n = 12 + . . . 12 + (2 n1)2 + ( 2 n1)2. The two 2n- 1 -dimensional irreducible representations
don't descend to representations of M and hence must be genuine. The one dimensional
representations do descend and are not genuine. U

We will need to be able to distinguish the two genuine irreducible representations of

Mmin. This is achieved below.

Proposition 2.9 The two genuine irreducible representations of Mmin in SL(2n) are dis-

tinguished by their restriction to the center of Mmin.

Proof. The center Z of Mmin consists of the four element abelian group {±eo, +ei . ...

e2n}. There are two genuine irreducible representations, +, c- of Z sending eN = e- 1  e2n
to ( /-1)n and -(-1 )n respectively. The representations + and ; can be extended
to irreducible genuine representations + and - respectively (for example by taking an

irreducible component of the induced representation). Because eN is central in Mmin, by
Schur's lemma +(eN) and (CN) are a scalar times the identity with scalar equal to

c+(es) and (y (eN) respectively. The representations -+ and - are not isomorphic since
their restrictions to Z are not isomorphic. By lemma 2.8 there are exactly two genuine

irreducible representations of Mmin, and so these representations must be + and ~. U

In the sequel we will write (* for the two genuine irreducible representations of Mmin in

SL(2n). We will also sometimes write * for the single genuine irreducible representations

of Mmin in SL(2n + 1) with the understanding that +

2.3.4 The genuine discrete series of M for nonminimal cuspidal parabolics

We will first establish what are the genuine discrete series of SL(2). We may write Spin(2) as

cos(')+eie2 sin(!) for 0 < t < 41r. The discrete series restricted to Spin(2), i(,)(cos(i)+
(n+2)it (n+6)it

eie2 sin()), have K types e' 2 ,e 2 ,....Evaluating the discrete series at -1
amounts to setting t = 27r. Then 6a(,-)(-1) equals e±(2+n)i7, e (n+6)i7r. It follows
that n must be odd for a- to be genuine.

14



2.3. THE GENUINE DISCRETE SERIES OF M

b
By Lemma 2.5 M, = SL(2) /A where A is the subgroup of {1, E}b of elements (xi,... 

with Ixi = 1. For a discrete series of M to be genuine it should be genuine for each SL(2)
in the product, thereby sending the subgroup A to 1.

A discrete series of the product of SL(2) is the product of discrete series for each SL(2).

The genuine discrete series for the identity component of M has Harish-Chandra parameter
A = (211+1 2

11+1 212+1 212+1,...), for integers li.
4 4'4' 4

Let ZFj(MO) be the centralizer of Mo in M for SL(m). We extend 6AIZ(), where

Z(Mo) = ZH(M) n Mo, to a representation of ZH(M). In the case where m = 21, by a
statement analogous to Proposition 2.9 there are precisely two genuine irreducible represen-
tations of ZKI(MO) distinguished by their evaluation at the central element eN = (el'' - '-em)

in Z W(Mo). Although these representations are defined in terms of 6A we abuse nota-

tion and write these two representations of ZFJ(Mo) as 1 where +(eN) = -1 and

-(eN) = -V - In the case where m = 21 + 1 by a statement analogous to Propo-

sition 2.7 there is one genuine irreducible representation of Zgj(Mo) extending 6AIZ( Z-
For convenience, will denote this representation by (* with the understanding that + =-.

We are finally ready to describe the genuine discrete series for the disconnected group
M. Let 6A be a genuine discrete series for MO and let ' be a genuine representation of
Zj(MO). Then 6 A 6g is a genuine discrete series of ZjW(Mo) - Mo. We denote the genuine

discrete series of M by 6' where 6: = Ind a

2.3.5 Isomorphisms among the genuine discrete series of M for nonmin-
imal cuspidal parabolics

Due to the disconnectedness of M for nonminimal cuspidal parabolics there are isomor-
phisms among the genuine discrete series we need to be aware of. In what follows let b be

the number of SL(2) blocks in M. The Harish-Chandra parameter

2li +1 2l 1 + 1 212 + 1 212 + 1 2 lb + 1 2lb + I
4 ' 4 ' 4 ' 4 4 ' 4

where l is an integer, will be abbreviated (±A1 , ±A2 , . ±.. , iA) where Ai is the positive half

integer lli+. The genuine discrete series representations of M in SL(m) are 61( .A

Indm 0

First a general isomorphism statement about induced spaces.

Lemma 2.10 Let H C G be a subgroup of G and let ,r be a representation of H. Let
g (E NH the normalizer of H in G. Then IndGir ~ Indig , where (g - ir)(h) = ,r(ghg 1)

15



CHAPTER 2. LANGLANDS QUOTIENTS FOR SL(M)

Proof. By definition IndGir is the space of functions on G which transform as f(xh)
wr(h- 1 )f(x) for x c G and h E H. Our isomorphism will take a function f from IndiF
and send it to a function f' from IndGg . where f'(x) = f(xg- 1 ). To show that this
function is well defined note that f'(xh) = f(xhg- 1 ) = f(xg- 1 (ghg- 1)). Since g is in
the normalizer of H, ghg- 1 E H and f(xg- 1 (ghg1 )) = r(gh1g-1)f (xg- 1 ) which equals
(g - r)(h-1 )f'(x) as required. All steps in the above derivation are reversible so our map is
a bijection. Furthermore right translation commutes with left translation by g so our map
is an isomorphism.

To apply this proposition below we will let ir = (A1,...,Ab), the subgroup H =

ZH(M0 ) - Mo, and G = M. We will need to find elements g E Ng and understand how
they change 7 under conjugation.

In proving Proposition 2.12 about the isomorphism of genuine discrete series of M for
a non minimal parabolic it is enough to consider the case when the b diagonal SL(2) blocks
in M are consecutive from the top left.

Let

Jev {Ji,... J2r} be a subset of {2, 4,... , 2b},
Kev = {ki,... Ikb-2r} be the set {2,4,. .. , 2b}\{ji,. .. r

J odd {Ji,..., J2r-1} be a subset of {2,4,...,2b},
Kodd {ki,. ... ,kb-2r+1} be the set {2,4,...,2b}\{ji,...

And let

ejev = ej1  ej 2 , ev eki .  j2b-2r , eJ1dd ' ''ej 2r-1, eKOdd = ek 1 . ek2 b- 2r+l.

Let ti cos(?L) + ei-iei sin(-') in Spin(m) for 1 < 2i K b and 0 < 62 K 47 and write

tJev t2, tKeJ = tk1 " tj2b-2r t, Jodd == tkt k2b-2,-1

To further simplify notation we will write the Harish-Chandra parameter (A1 ,. .. , Ab)
as (A Jv,AKv) or (AJaddAKodd).

Lemma 2.11 Let b be the number of copies of SL(2) in Mo inside SL(m). The result of
conjugating the genuine irreducible representations of Zyj(Ko)Mo by e j when (2b = m)

and by eJodde2b+1, when 2b < m is:

eje, - (+ ® 6 (AjevAKev)) = ® e AK) (m = 2b)

and

nJodde2b+1 ( (AjddIAKdd)) h (-A ae Ahodd) (m K 2b)

In the case where mn is odd or m=2b, + = -

16
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Proof. We first consider the action of ej, and eJodde2b+1 on the side of the tensor
product involving the discrete series of Mo. We have (ejg, - J(AJ eA ))(tJetKev) equals

6 (Ajev,AKev) (t-' tKe_) '(-A ev,AK) (tJev tKev). A similar statement holds for the action of

eJdde2b+1-
Note that because ' was defined as an extension of JAIz(M0 ) the * in * 0 6 (AjeAe)

is different from the (* in '(9 6( Aj ,AK I etc. We apologize for the notation.
The action of eje, and eJOdde2b+1 on ' sends + to itself and -- to itself since * are

distinguished by a central element.
When m is odd then there is just a single extension of JAIZ(M,) to Z(M0 ) = ZM(Mo).

In the case where m = 2b, Z(Mo) = ZM(Mo) so no extension is necessary. U
From Lemmas 2.10 and 2.11, we immediately have the following isomorphism statement

for genuine discrete series of M for nonminimal cuspidal parabolics.

Proposition 2.12 Let b be the number of copies of SL(2) in M inside SL(m). We have,

(Ai.A) (--Ai ..±A) (±A1 'IA 2 ,..., +Ab) has an even number of signs or2b < m.

In the case where m is odd or m = 2b, +

2.4 Coherent families and maximal primitive ideals

2.4.1 The infinitesimal character of an irreducible (g, K) module

The action of the center of the universal enveloping algebra plays an important role in un-
derstanding the structure of irreducible admissible (g, K) modules. This action is described
by a representation's infinitesimal character, which we make precise below.

Let us fix a Cartan subalgebra j of g and a Borel subalgebra b = I + n (with nilrad-
ical n). Let n- denote the opposite nilradical, so that g = n- + l + n. The Poincare-
Birkhoff-Witt theorem gives us a decomposition of the universal enveloping algebra of g as

U() = U() (n-U(g) + U(g)n).

Let Z(g) be the center of the universal enveloping algebra and let X' : Z(g) -+ U([)
be the projection on U(j) in the above decomposition of U(g). Let p be one half the sum
of the positive roots given by b. We regard U(() as the algebra of polynomial functions on

[ *, and define Tpf(A) = f(A - p) for f E U(O) and A E *. The Harish-Chandra map from
Z(g) into U([) is by definition X = Tp o X'. Here Tp depends on b and X is independent of
b. For A C [*, let XA : Z(g) -+ C be the composition of X with evaluation at A.

We have the following result of Harish-Chandra [2],

17
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Theorem 2.13 (Harish-Chandra) Every homomorphism from Zm(MQ)(g) to C is of the

form xA for some A c fj. Furthermore, XA = X' iff there is a w G W(g, [) such that
A'=wA.

The center Z(g) is known to act by scalars on any irreducible (g, K) module X. The
corresponding homomorphism xA : Z(g) -+ C defined by xA(z)x = z - x, (X E X, z E
Z(g)) is called the infinitesimal character of X. We often abuse notation and say X has
infinitesimal character A. By Theorem 2.13 we see that elements in the Weyl group orbit
of A all define the same infinitesimal character.

2.4.2 The Langlands quotient of a generalized principal series represen-
tation

Let P = MAN be a cuspidal parabolic of G, 6A a discrete series for M, and v an irreducible
character on A with Re v weakly dominant with respect to P.

The Langlands quotient, Jp(6) 0 V), is the largest completely reducible quotient of
Indp (6A 0 v). The infinitesimal character of JP (6A 0 v) is A + v. If v is weakly antidominant
with respect to P, Jp(6 0 v) is the maximal submodule of IndF,(6A & v) and is called a
Langland subrepresentation.

The parameter A E (m n t)* and v are called the Harish-Chandra parameter, and the
continuous parameter respectively. These two pieces of data together, y = (A, v), called
the Langlands parameter, specify the Langlands quotient Jp(65\ 0 DV). If 6A is the genuine
discrete series 61 we will often write the Langlands quotient as Jp:(-y). When +
we write Jp(y). Note that A doesn't distinguish between 61 so the Langlands parameter
doesn't uniquely specify the Langlands quotient here.

We will be concerned with the case where G = SL(m), and 6A is a genuine discrete series

representation of M, and A + v = 1p.

The following theorem places the Langlands quotient at the heart of representation
theory of real groups [7].

Theorem 2.14 (Langlands Classification theorem) Let G be a connected semisimple Lie
group and let X be an irreducible (g, K) module. Then there is a cuspidal parabolic subgroup
P = MAN of G, a discrete series representation 6A of M, and an irreducible character v of
A weakly positive with respect to P, such that X is equivalent to a summand of Jp(( 0 v).
Furthermore, the pair (P, (50 v) is unique up to conjugation in G when v is strictly positive
with respect to P..

In the case where P is a minimal parabolic, the Langlands quotient, Jp (( 0 v), is called
a principal series representation. For nonminimal parabolics it is called a principal, gener-

18
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discrete series subrepresentation

-11/2 -7/2 -3/2

Langlands quotient

1/2

Langlands quotient

-9/2 -5/2 - 1/

5/2 9/2

discrete series subrepresentation

_2 3/2
2

7/2 11/2

Figure 2.1: The four genuine irreducible representations

principal series Indpmi 0+ @ 1p) and IndPmin (6 01p).
of SL(2) are shown inside of the

alized series.

2.4.3 An example: The Langlands quotients
character -p

for SL(2) with infinitesimal

The group SL(2) has two cuspidal parabolics, namely the minimal parabolic, P .., and the

whole group, Pm, . Let ' be the two genuine irreducible representions of Mmin and ( 1)
43 4

( ii) the genuine irreducible representations of Mma, with Harish-Chandra parameter

±ip. There are four Langlands quotients of SL(2) with infinitesimal character (p: the two
quotients of principal series JPmin (g+0p), and Jpmin (- 0 1p), and two discrete series with

Harish-Chandra parameter ± 1p. The two discrete series can be realized as subquotients in

JPmn ( 3 - 1p). Figure 2.1 shows how the K types for the two principal series contain

the k types of their Langlands quotient and submodule.

2.4.4 Coherent families of virtual (g, K) modules

For every irreducible (g, K) module of G there is the notion of a coherent family of virtual
(g, K) modules based at that representation. The properties of coherent families will be
important for all that follows. We begin with some definitions.

19
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Let V(g, K) be the Grothendieck group of virtual (g, K) modules. A virtual (g, K) mod-
ule is a linear combination of irreducible (g, K) modules with integer coefficients. We will
also need a lattice of weights. For this let H C G be a Cartan subgroup of G and let H be
the irreducible characters of H. The weight lattice in H is the subgroup A of H consisting
of weights of finite dimensional representations of G. By identifying A with a subgroup of

we write + A E *.

Fix a weight E j* and write + A = { + AIA E A}. A coherent family of virtual
(g, K) modules (based on H and + A) is a map D : -+ A -+ V(g, K) satisfying

a) <( + A) has infinitesimal character + A E [*, and

b) If F is any finite dimensional representation of G with weights A(F) then

#(+ A) & F = E ((+ (A + p)
pEA(F)

From this point we will abuse notation and say that a coherent family 4 is based at an
irreducible (g, K) module.Furthermore we will embed H in 0* and write + A E 0*.

We have the following result stating the existence of a coherent family based at a rep-
resentation [7].

Proposition 2.15 Given an irreducible (g, K) module X of regular infinitesimal character
(, there exists a unique coherent family (D on + A such that =(() X

The members of the coherent family we will be most interested in are parameterized
by a cone in the weight lattice. Let R( ) = {a E A( ) : 2 E Z} be the integral roots(a,a)
with respect to and let R+(() = {a e R( ) ((,a) > 0} be the positive integral roots with
respect to . The integral roots are a root system in [. The integral Weyl group, denoted
W(R( )), is a subgroup of the Weyl group W(A( )), generated by reflections s, about the
positive integral roots. We say that a weight is dominant regular if it lies properly inside the
dominant Weyl chamber (i.e. the weight doesn't lie on a wall). The relationship between
the dominant A+(Ip) Weyl chamber and the dominant R+(lp) Weyl chamber in 0* for
s[(3) are illustrated in figure 2.2.

We will be primarily interested only in those members of a coherent family parameterized
by a cone in a lattice. The following result can be found in [7].

Proposition 2.16 A coherent family based at an irreducible (g, K) module with regular
infinitesimal character has the property that if -y G + A is dominant regular with respect
to R+( ) then 4(-y) is an irreducible (g, K) module.
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(0 1 - 1) wall dominant A+(Ip) (1 - 1 0)

2o

21

wall

mi ant R+(Ip)

(1 0 - 1) wall

Figure 2.2: Dominant A+(lp) and R+(Ip) chambers in [* for s[(3).

To describe the behavior of the coherent family outside the R+ ( ) dominant Weyl cham-
ber we need to introduce the idea of a (g, K) module's T invariant.

2.4.5 Translation functors and T invariance

We now introduce Zuckerman's exact translation functor, ' from the category of Harish-
Chandra modules with regular infinitesimal character to the category of Harish-Chandra
modules with infinitesimal character + A E + A.

We define a projection functor, PA, on the category of Harish Chandra modules. Let X
be a Harish-Chandra module, then P\X is the maximal subspace of X on which z - xA(z)
acts nilpotently for every z E Z(g). Given any Harish-Chandra module we have X =

&o P,X, where the sum is finite and each P)X is a Harish-Chandra submodule of X.

Let FA be a finite dimensional representation with extremal weight A. We define the Zuck-
erman translation functor to be 'IF± A(X) = P+,x(FA 0 P (X)).

We use Zuckerman functors to define the T invariant of a Harish-Chandra module, X,
with regular infinitesimal character . Let R+ be a positive set of integral roots with
respect to and let oz be a simple root in R+ . Let 4D be a coherent family based at X.
The Borho-Jantzen-Duflo r invariant of X consists of the simple integral roots a such that

qj (X) = 0 whenever + A lies on an a wall. Another way to say this is that for every
A c A such that (a, + A) = 0 and ( +, + A) > 0, for 3 c R+(() - a, 4( + A) is zero.

From the definition of the T invariant of X it is clear that any irreducible (g, K) module
in the coherent family based at X has the same r invariant.

The following alternative definition of r invariant will be useful to us [2].
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irr a ( A

a - (1, 0, -1) wall

-irrep if a E T((1)())
irrep + - - - if a r((()).

Figure 2.3: Picture for s[(3): R+( ) dominant regular lattice points in + A parameterize
irreducible representations in the coherent family. There is a dichotomy in the case of non
R+( ) dominant regular lattice points.

Proposition 2.17 Let X be an irreducible (g, K) module with regular infinitesimal char-
acter . Let a be a simple root of R+(). Then a G T(X) iff ID(s8y) = -<D(y), for all
-y E +A.

If X is a virtual (g, K) module with regular infinitesimal character -Y we say that a
simple root a E R+ (-y) is in the T invariant of X if it is the T invariant of each irreducible
term of X. Next we have a proposition describing the coherent family based at outside
of the R+( ) dominant integral chamber [7].

Proposition 2.18 Fix a simple root a E R+( ). Let -y C + A be a member of the weight
lattice based at with (-y, 3 ) > 0 for all 3 E R+( ). We have the following dichotomy.
(a) <D(soy) = -b(y), if a E T(X)

(b) (D(sQy) = 1({y)+ character of a representation, if a V T(X)

Figure 2.3 illustrates a coherent family based at an irreducible (g, K) module for g
MI(3).

In computing the T invariants of a Langlands quotient we will make use of a theorem
by Vogan [7]. We will need the following definition. Suppose a is a real root for a 0-

stable Cartan H. Let oc : .5(2, R) -+ g be an injection so that Ha = ( 0 -1 ) E a,

Oa(tX) = Opa(X). Set ma = exp(a 0 G T.
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Theorem 2.19 (Vogan) Let G be a semisimple Lie group, with a e-invariant Cartan sub-
group H = TA, and let P = MAN be a cuspidal parabolic subgroup. Let JP( 6 A 0 v) be a
Langlands quotient having nonsingular Langlands parameter y = (A, v) C * (i. e. (-y, a) : 0
for all a E A(-y)). Suppose that a C R+(y) is simple in A+(y) and 2(v, a)/(a, a) c Z.

a) If a is a real root (i.e.®(a) = -a ), then a necessary and sufficient condition for
a G T(JP(6 0AV)) is that the eigenvalues of 6x(m,) be of the form e, exp (±27ri(v, a)/(a, a))
where e, is ±1 depending on a condition described in [2].

b) If a is a complex root (i.e. E(a) $ ±a) then a necessary and sufficient condition for
a T(Jp(6A 0 )) is that 0a 0 R+(y).

c) If a is compact imaginary then a E T(Jp(A 0 v)). If a is noncompact imaginary
then a 0 -r(Jp(h 0 v)).

Corollary 2.20 Let G = SL(m), H = TA be a 0-invariant Cartan subgroup, and P -

MAN be a cuspidal parabolic subgroup. Let JP(6A 0 v) be a genuine Langlands quotient
having nonsingular Langlands parameter y = (A,v) C t*. Then no real root can be in the r
invariant of JP(60 0 v).

Proof. Suppose that a C R+(-y) is simple in A+(-y) and 2(v, a)/(a, a) E Z. Then
ea exp (±27ri(v, a)/(a, a)) is ±1. However, m, is a monomial in Spin(m) and hence m. -
-1. We have 6)(-1) = -1 since 6A is genuine and it follows that 6)(ma) has eigenvalues
± -1. Therefore the eigenvalues of 6A(ma) are not of the form ± exp (t27i(v, a)/(a, a)).

2.4.6 Maximal primitive ideals

The primitive ideal of an irreducible (g, K) module, X, is the annihilator of X in the uni-
versal enveloping algebra U(g). We say that a primitive ideal, ann(X), has infinitesimal
character A if X does. A theorem of Duflo [3] says that every primitive ideal of infinitesimal
character A is the annihilator of an irreducible highest weight module L(A') where A' E 0*
is in the Weyl group orbit of A. Here L(A') is the unique irreducible quotient of the Verma
module M(A') = U(g) ®U(b) CA, _p with highest weight A' - p for a fixed Cartan subalgebra
contained in a Borel subalgebra b. There are exactly |W/WAI non-isomorphic simple high-
est weight modules with infinitesimal character A, namely L(wA) for w C W. It follows that
the number of primitive ideals with a given infinitesimal character is finite. We denote this
set by Prim),U(g). If A' is dominant and regular integral than L(A') is a finite dimensional
representation and its annihilator is the unique maximal primitive ideal having infinitesi-
mal character A. The annihilator of the irreducible Verma module, L(woA') = M(woA'),
where wo is the longest element in W(R+(A)) is the unique minimal primitive ideal with
infinitesimal character A. We shall denote the maximal, and minimal primitive ideals with
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infinitesimal character A by Ima"(A) and Imin(A).

Duflo, Borho-Jantzen showed that the "almost" minimal primitive ideals with a given

infinitesimal character A (i.e. primitive ideals properly containing only the minimal primi-

tive ideal), denoted by Imin(s,, A) are parameterized by the simple integral roots a C R+A.

Similarly, the "almost" maximal primitive ideals (i.e. primitive ideals properly contained in

only the maximal primitive ideal), denoted by Iax (se, A) are parameterized by the simple

integral roots a E R+A.

Proposition 2.21 (B-J-Duflo) Let X be an irreducible (g, K) module with regular infinites-

imal character A. The following conditions on a simple integral root a G R+(A) are equiva-

lent.

a) I'+ X = 0 (definition for a T (X))

b) annX D Im 2i(s, A)

c) annX _ Ina,(sc, A)

Corollary 2.22 The T invariant is an order preserving map from PrimAU(g) to subsets

of simple roots in R+A. A primitive ideal is maximal iff every simple root of R+A is in T.

Proof. Suppose I, and 12 are primitive ideals with -1 C 12. By Proposition 2.21, T(I 1 ) C

T(12). Furthermore, since the maximal primitive ideal contains the "almost" minimal prim-

itive ideals, its T invariant contains all of the simple roots of R+ (A). To prove the converse,
suppose that I is not a maximal primitive ideal, then I 4 CIax(A). It follows that

I C Iax(s 0 , A) for some a, and hence a 0 T (I).
U

2.5 Langlands quotients with a maximal primitive ideal

We wish to determine the Langlands quotients for SL(m) with infinitesimal character !p
having a maximal primitive ideal (i.e. where all simple integral roots with respect to are

T invariants for our representation). Theorem 2.19 provides a way to check that an integral

root a is a T invariant. However, one cannot apply Theorem 2.19 directly unless the integral

root a is a simple root for A+( p). Unfortunately for jp = (m 1 , '-1 + , . m-1) none

of the integral roots of R+(Ip) are simple roots in A+(lp).

We propose to find the Langlands quotients with infinitesimal character jp having a

maximal primitive ideal, by first determining how many of them there are. It suffices to

determine the number of Langlands quotients with maximal primitive ideal at an infinites-

imal character in the dominant regular R+(-) chamber. This follows from the fact that
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irreducible members of a coherent family based at infinitesimal character 2p all have the
same T invariants.

We need to find an infinitesimal character p + A in the dominant regular integral Weyl
chamber based at -p with respect to which all simple integral roots are simple in A(' p+ A).

Proposition 2.23 Let G = SL(21), I > 1 and let -y be a Weyl group representative of the
infinitesimal character (Pl-1,pl-2, -- -,po, no , n1 ,... , ni-1), where

Po = and pi = po +i
no = -1+3 and ni =no-i, for i E{,1,...,l-1}

The weight -y lies in the dominant regular R+( p) chamber based at lp and the simple
integral roots in R+(-y) are simple in A+-y.

Proof. -y is a representative of the infinitesimal character lp+(2l, -2,2,-21,... ,21, -21).
It is easy to check that pi and ni have the values given in the claim. The pi are all positive
and differ from one another by an integer. Similarly, the ni are all negative and differ
from one another by an integer. Because of the descending ordering pl-i > P1-2 > ... >
po > no > - > ni- 1 of its entries, -y lies in the dominant regular R+(Ip) chamber based
at lp and {ei - e 2 ..., elI - e., eI1l - ei12, e2 1 1 - e21} are simple integral roots for
both R+(y) and A+-y. Taking another Weyl group representative of 7, say w - y makes
w - {ei - e2 ,- , el-1 - el, el+1 - e1+2, . -, 2 -1 - e21} simple integral roots for R+(w -') and

Proposition 2.24 Let G = SL(2l + 1), l > 1), and let -y' be a Weyl group representative
of the infinitesimal character (p',p 1 ,... nn .,n 2 ,n 1  where

Po = and p' =po+ ' for E {0,1,..,1
n' = -2 1 l and n'= no-i, for i C {0,1,...,l -2,31-1}

The weight -y' lies in the dominant regular R+(Ip) chamber based at 1p and the simple
integral roots in R+(-y') are simple in A+-y'.

Proof. The statement is less symmetric looking than Proposition 2.23 because of the
odd number of entries in 'y'. The proof however is no different than Proposition 2.23 except
that -y' is a representative of the infinitesimal character p+ (21, -2l, 2l, -21,... , 2l, -4l, 2l).
Professor Vogan has informed me that translating by the (l, -(I + 1), . . . , -(I + 1), l) would
have made the formulas prettier. Due to time constraints we have chosen however to stick
with (2l, -21, 21, -21, ... ,2l, -41,21). N

For the purpose of counting the number of maximal primitive ideals we will study
the Langlands quotients having infinitesimal character (pl-I1,p-2, - ,po, no,n i ,.. , ni- 1)
in the even case and (p,pl_1 , ... , ,n 2 , n31 -1) in the odd case. The following
will help us determine which Weyl group representatives of an infinitesimal character can
be Langlands parameters.
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Lemma 2.25 With ni, p- as in Proposition 2.23 the inequalities, ni > Pj+nk and Pj+"i >
_ 2 2 -

pi are impossible for any i, j, k E {0,1,... , 1 - 1}.

Proof. To prove the first inequality it suffices to show that p0 +2- - > no since po+n- 1 =
min{pj + nk : j,k {0,... ,l - 1}} and no = max{ni : i E {0,... ,l - 1}}. Indeed,
po+ni-i - po+no-l+l _ -1+1 > -61-3 _

2 2 2 4 n

To prove the second inequality it suffices to show that pl- 2 +no < po since pl-1 + no =

max{pj + nk : j,k E {0,... ,l - 1}} and po = min{pj : i E {0,.... ,l - 1}}. Indeed,
Pl-1+no - po+I-1+no _ 1-1 61+3 _

2 2 ~ 2 4 -Po-

Lemma 2.26 With n' p' as in Proposition 2.24 the inequalities, n' > Pj+ k and P+nk >i 2 2 -

Pi are impossible for all pi, pj c {po, .. . , pl } and all nz, nk no, . -2, n31-1

Proof. To prove the first inequality it suffices to show that 0 2 31-1 > no. Indeed,
p0+n -3+1- _ 3+ 1 3 1 -

2 2 2 4 2 2 0

To prove the second inequality it suffices to show that p2+o < P'j. Indeed, p+no -

S31
- < -=Po.

We are now ready to count the number of Langlands quotients having maximal primitive

ideal. We start by considering Langlands quotients with minimal parabolics. This is the
easiest case.

Proposition 2.27 Langlands quotients of principal series representations with infinitesi-

mal character (pl_ 1,p1-2,..., po, no, ni,..., ni- 1) or (App1, ... , p' , n' , n' . . , n -2 n-
as defined in Proposition 2.23 and Proposition 2.24, do not have a maximal primitive ideal.

Proof. The real form of the Cartan subalgebra [j C M[(m) associated with a mini-

mal parabolic is a diagonal matrix with real entries. It follows that all integral roots are
real. For the infinitesimal characters given in the claim, all integral roots are simple in

A+-y(Proposition 2.23 and Proposition 2.24), and by Corollary 2.20 cannot be a T invari-
ant. U

Next we consider Langlands quotients with nonminimal parabolics. We begin with a
lemma about Langlands parameters for Langlands quotients with a nonminimal parabolic.

Lemma 2.28 Let (a 1 ,... ,an) be a Langlands parameter of a genuine Langlands quotient

with cuspidal parabolic P = MAN. If the linear group M has an SL(2) block along the

{J, i + 1} diagonal entries then a3 - aj+1  N. When immediately followed by another SL(2)

block the Langlands parameter must satisfy aj3 aj+i > aj+2+aj+ 3 , otherwise aj+aj+i2 - 2 othewis
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If the SL(2) block along the {1, j + 1} diagonal entries is immediately preceded by an SL(2)
block the Langlands parameter must satisfy a-2+a_1 > aj+a+, otherwise aj1 > aj+aj+i

2 - 2 ' _ 2
If no SL(2) block begins or ends at the {j,j + 1} diagonal entries then a3 > aj+1-

Proof. Suppose that M has an SL(2) block along the {jl + 1} diagonal entries. Then
entries] and j+ 1 of the Harish-Chandra parameter are (..., j2j+1 _ (ai-aj+1) ... ) and
entries] and j + 1 of the continuous parameter, v are (... aj+aj+, a+aj+ .i. ). We must1 2 ' 2
have aj - aj+ 1 N for our Harish-Chandra parameter to belong to a genuine discrete series.
For v to be the continous parameter of a Langlands quotient it must be weakly dominant
with respect to P. As a result we must have the (I + 2) entry of the continous parameter
be less than or equal to the J + 1 entry. When our SL(2) block is immediately followed by
another SL(2) block this translates to the condition that a j+a1+l > aj+2+aj+3 . When our2 - 2
SL(2) block is not immediately followed by another SL(2) block we have aj+aj+l > aj+2-
The other parts of the lemma follow in the same way. U

Proposition 2.29 Let G = SL(21) and let P MAN be a non minimal cuspidal parabolic
subgroup of G. With notation as in Proposition 2.23 let (Pl-1,PI-2,... ,Pol no, n1 , ... , u-1)
be the infinitesimal character of a Langlands quotient with parabolic P. The diagonal SL(2)
blocks in the linear group M must be consecutive and centered in the matrix. For the
Langlands quotient to have a maximal primitive ideal, the number of blocks, b, must equal
l - 1 or l.

Proof. Our Langlands parameter is in the Weyl group orbit of the infinitesimal character
(Pl-1, Pl-2, .. ,Po, no, n 1 , -, ni- 1). By Lemma 2.28 for there to be a SL(2) block in the

{j,] + 1} diagonal entry of M the difference between the j and J+ 1 entry of the Langlands
parameter must be a half integer. It follows that one of the two entries must be positive
and the other one negative. By Lemma 2.25, if the SL(2) block in M is not immediately
followed by another SL(2) block then the j + 2 entry of the Langlands parameter must be
negative. If there is another SL(2) block further down the diagonal of M then we would
have a situation where ni > Pjn, or Pj+k > pi for some i,]', k E {O, 1, ... , 1. This is
impossible by Proposition 2.27. If the SL(2) block in the {Jj + 1} diagonal entry of M is
not immediately preceeded by another SL(2) block then the j - 1 entry of the Langlands
parameter must be positive. Were there to be another SL(2) block further up the diagonal
of M then we again would have a situation where ni > 2jgn or 2 -n > pi for some
i,], k c {0, 1, ... , l - 1}. It follows that the SL(2) blocks must be consecutive in M.

Suppose the SL(2) blocks lie along the ] through j + 2b - 1 diagonal entries in M. Each
pair of entries between j and j + 2b + 1 in the Langlands parameter contains a positive
and a negative entry. Furthermore, entries 1 through ] - 1 of the Langlands parameter are
descending positive numbers while entries ] + 2b + 2 through 2l are des cending negative
numbers. Since there are an equal number of positive and negative entries in the Langlands
parameters, the SL(2) blocks must be centered in M (i.e. b = l - ).

Finally we show that to have a maximal primitive ideal, then b must equal l - 1 or l.
Indeed if this were not the case than either a simple integral root would be a real root or the
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positive entry of the first SL(2) block would be greater than one of the preceding positive

entries (for example (p2, po, p1, nI, no, n2).. By Corollary 2.20, a simple integral root cannot

be real if the Langlands quotient has a maximal primitive idea. As well, the second scenario

is ruled out by an easy tau invariant computation.

Proposition 2.30 Let G = SL(2l + 1) and let P = MAN be a non minimal cuspidal

parabolic subgroup of G. Let (pp1,...,p n n , 2 ,n 3 -1 ) be the infinitesimal

character of a Langlands quotient with parabolic P, with notation as in Proposition 2.24 .
The diagonal SL(2) blocks in the linear group M must be consecutive and centered along the

lower 21 diagonal entries of M. For the Langlands quotient to have a maximal primitive

ideal, the number of blocks, b, must equal 1.

Proof. The proof is almost identical to the proof of Proposition 2.29. Because the

Langlands parameter contains 1 + 1 positive entries, the SL(2) blocks in the linear group M

must be one off the center of the diagonal. E

Proposition 2.31 In the notation of Proposition 2.23, there are four Langlands quotients

of SL(21) with infinitesimal character (pl-1,pl-2,... ,, n0, 1,- - -,ni- 1) having a maximi-

mal primitive ideal.

Proof. By Proposition 2.29 there are only two subgroups M we need to consider, namely

when the linear group M contains b = I - 1 and b = I diagonal SL(2) blocks centered in

M. In the case where b = I - 1 by Proposition 2.12 the genuine discrete series of M are,

up to isomorphism, 6 , where A2 are positive half integers. In the case where b = I

by Proposition 2.12 the genuine discrete series of M are, up to isomorphism, 6 and(AI . Ab)

o(A.-,)' where A. are positive half integers and +

We first prove the proposition for SL(4). Let M contain one SL(2) block along the second

and third diagonal entries. The Langlands parameters we are considering are permutations

of (pi, po, no, ni). Because the Harish-Chandra parameter is a positive half integer, we

must have a positive and a negative entry in the second and third entries respectively of

the Langlands parameter. Furthermore, by Lemma 2.25 the first entry of the Langlands

parameter must be positive and the fourth entry negative. Any permutation with these

restrictions is a Langlands parameter for our parabolic. However requiring the simple

integral roots to be T invariant pins things down. The root, el - e2 is simple and integral

for the Langlands parameter (pi,po, no, ni) and E(ei - e2 ) = -e 1 + e3 E A (Y). Also for

the other simple integral root, O(e 3 - e4) = -e 2 + e4 C A(y). Hence ei - e2 and e3 - e4
are T invariants and so the Langlands quotient with Langlands parameter (pi,po, no, n i )

has a maximal primitive ideal. It is easy to check that the three other possible Langlands

parameters don't have both simple roots as T invariants. We have two genuine Langlands

quotients with this Langlands parameter, J+ (pi, po, no, ni).
Pb=1
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Next we consider the case for SL(4) where M contain two SL(2) blocks. By Propo-
sition 2.12, up to isomorphism of the discrete series of M, the first and second entries of
the Langlands parameter must be positive and negative respectively, but the third and
fourth entries can be positive or negative in any order. There are four permutations of
(pi, no, po, ni) where positive entries can be interchanged and negative entries can be inter-
changed. The simple integral roots are ±(ei - e3 ) and ±(e2 - e4). Suppose that el - e3 is
simple. Then 0(ei - e3) = -e2 + e4 . Hence for el - e3 to be a T invariant, e2 + e4 must be a
simple root. It follows that the Langlands quotient with Langlands parameter (pi, no, po, ni)
has r invariants el - e3 and e 2 - e 4. If on the otherhand e 3 - el is simple, then to be a T

invariant, e 4 - e2 would have to be simple. However by Lemma 2.28, (po, ni, pi, no) isn't a
Langlands parameter because p21n, < p,"n. Switching the third and fourth entries in the
above argument shows (pi, no, ni,po) is also a Langlands parameter with simple integral
roots which are T invariant. The two resulting Langlands quotients with maximal primitive
ideal are Jpb=2 (p1, no, po, n1) and JP= 2(P1, no, n1, po)-

For SL(21), investigation of Langlands parameters whose simple integral roots are T in-
variants does not require us to look at more than two integral roots at a time, and hence the
above arguments directly generalize. The four Langlands quotients with a maximal primi-
tive ideal are Jt. (p1_1,p1-2, no,. - -,po, n1-2, nl-1) and J- (pi_1, no,PI-2, ni,.. .,po, ni-1),
and J- (pi1, no,p1-2,ni,... ,pi,ni- 2,nll-,po).

Proposition 2.32 In the notation of Proposition 2.24, there is one Langlands quotient
of SL(21 + 1) with infinitesimal character (p',p_1 ,... ,p', n', n'I,... , n- 2 , '4-1) having a
maximimal primitive ideal.

Proof. The proof is almost identical to Proposition 2.31. The Langlands quotient with
maximal primitive ideal is J -(p, p-_1 , n',I .. ,n -2,p , In 1 - 1 )-

Corollary 2.33 SL(2l) has four representations with maximal primitive ideals with in-

finitesimal character 2p, and SL(2l + 1) has one representation with maximal primitive
ideals with infnitesimal character Ap.

Proof. This follows from what was said just prior to Proposition 2.23. U

We now identify the Langlands quotients at infinitesimal character lp having a maximal
primitive ideal. To do this we will need to translate our Langlands quotient in the coherent
family. We begin with a statement that tells us how to do this.

Lemma 2.34 Let G be a semisimple group, with Cartan subgroup H and parabolic subgroup
MAN. Let (y (A, v) G [* be a Langlands parameter. Let IndMAN(V,) be a generalized
principal series representation. Let y' = (A', v') C [* be an extremal weight of a finite
dimensional representation F?' of G. Then ' , IndAN AN(^ ± y'-
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Proof. One has ' ,IdGAN(y) =JInd GAN (+' (-y)) following an arguement of Zuck-

erman [4]. Then ,(V) = p, (Vy ® F'|MAN) = V 7+-'.

Next we need to introduce the notion of induction-in-stages [5].

Lemma 2.35 (Induction-in-stages) Let G be a semisimple Lie group with parabolic sub-

group MAN. Let IndMAN( , A) be a generalized principal series representation with Lang-

lands parameter ( , A). Given a parabolic subgroup M'A'N' D MAN we have the following

induction-in-stages formula,

IndMAN V) =nd A' N' ([IndAN(, a a'),

where M" = M n M', A" = A n M', N" = N n M' and a" = orthogonal complement of a'

in a, so that a = a' ( a".

Theorem 2.36 The Langlands quotients of SL(2l) with infinitesimal character lp having

a maximal primitive ideal are J , (1p), Jp, ('p), and JPbI(s(e2 _ -e 2 l) p)

Proof. To simplify the notation we will write P instead of P=1. For each of the

representations in the claim there exists a coherent family based at that representation. We

will translate each representation to the member of the coherent family with infinitesimal

character jp + (21, -21, ... , 2l, -2l). The translated representation will be a Langlands

quotient from Proposition 2.31 having a maximal primitive ideal.

We start with the representations J. ( p). By Corollary 2.34,

2 P Jnd-( -12 1
-Ip+(2,-2l,...,2,-21) Indf (( , p + (21, -21, . . . , 2l, -2)).

Because Ind is an exact functor 1 p+( 2 2 1., 2 2 ) (J,- (Qp)) is an irreducible quotient

in Indp- (- , p + (2l, -2l,... , 2l, -21)). However, because the continous parameter V =

p+ (21, -2l, ... ,21, -2l) is not weakly dominant with respect to Pmin, it is not a Langlands

quotient.
To find the irreducible quotient in Indj] (; , - p + (21, -21,..., 21, -21)) it is help-

ful to write this representation in another way using the induction-in-stages formula of

Lemma 2.35. Let Pmin = MminAN be the Iwasawa decomposition of the minimal parabolic,
and let P1_ 1 = Mj_1 A'N' be the Iwasawa decomposition of the parabolic where M 1 1

has l - 1 SL(2) blocks centered along the diagonal. Letting A" = A n M 1 _1 and N" =

N n Mj_1 , the subgroup MA"N" consists of I - 1 upper triangular 2 x 2 blocks centered

along the diagonal. In the notation of Proposition 2.23 we write lp+ (21, -21,... , 2l, -2l) =

(pil, no, P-2, ... , nl- 2,po, ni- 1 ). We have the identity

Ind 7 - ( , v) = Indp- _1 (Ind " VI'al ) a
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where

V = (pj_1, no,P1- 2, ni, .. -- ,po, nj-),
V|al = (0 no-p1 - 2  (no-P1-2) ni-2-Po (nl-PO) 10)

2 2 ' 2 2 ")
Via' (P-1-i no+P 1- 2 lo+P1-2 nli-2+Po nl-2+PO njij)

vla - Pl 13 2 7 2 7 > 2 2 " 1-

The irreducible quotient of Id 1  ((*,v) is the irreducible quotient of Ind ( irre-

ducible quotient of Ind -~A"IN"(±, via")). This follows from the fact that Ind is exact,
but Ind of an irreducible quotient isn't necessarily irreducible. The irreducible quotient
of Ind j~A"IN" (W±, Via") is the genuine discrete series . - . It follows that

the Langlands quotient Jp11 (Pl-1, P-2, no,. -. ,Po, ni- 2 , ni- 1) is the irreducible quotient of
Indj- ( ', v). We know from Proposition 2.31 that this representation has a maximal
primitive ideal.

Proving that the Langlands quotients having nonminimal parabolic have a maximal
primitive ideal is much easier since their translation to an irreducible with infintesmal
character 1p + (21, -21, ... , 21, -21) is a Langlands quotient. We have

21
Xp+(2l,-2l.., 2 ,- 2 )Indp- (_p) = Indp (-p + (21, -21, ... ,2l, -21)).

As jp + (2l, -2l, ... ,2l, -2l) is dominant with respect to P1 , T2P J_ (1p)
............................. ... ,21,-21) P(P

is a Langlands quotient in Indp,(jp + (2l, -21,... ,2l, -2l)). From Proposition 2.31 we
know that this Langlands quotient has a maximal primitive ideal. Similarly we find that

2! J (21
Wp+(,-2I.2,-21 J- (Pe21-1 -el jP) = J- (Se 2 1-e 2 ( p + (21, -21, ... ,21, -21)) which we

showed in Proposition 2.31 to have a maximal primitive ideal.

Theorem 2.37 The Langlands quotient of SL(21 + 1) with infinitesimal character jp hav-
ing a maximal primitive ideal is Jpmin (1p).

Proof. The proof is analogous to the proof that J (hp) has a maximal primitive
ideal. We choose a coherent family based at this representation and translate to the irre-
ducible representation having infinitesimal character jp+ (21, -21, ... , 21, -4l, 21). Using an
induction-in-stages argument we find that

1
p -(21,-21.,-41,21)J Pmi ( P) = JP 1 (PI, P; 1 , - 0 -1' , 1 2, 31-1)

where J 1 (pp i,. .. , 1 2 , 31-1) is the Langlands quotient shown to have a
maximal primitive ideal in Proposition 2.32. E
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Chapter 3

The orbit method picture

3.1 Introduction

Because the Langlands quotients considered in chapter 1 have a maximal primitive ideal,
they provide a good paradigm for how unitary representations can be "attached" to nilpo-
tent coadjoint orbits. By saying that a representation is attached to a nilpotent orbit, we
roughly mean that the associated variety of the annhilator of the representation is the clo-
sure of the nilpotent orbit. There may be several representations attached in this sense. The
orbit method conjectures that when the orbit satisfies a certain condition on the codimen-
sion of its boundary then the set of representations attached to the orbit is parameterized
by the set of admissible orbit data. With each admissible orbit datum, the orbit method
gives a realisation of the locally finite K types of the attached representation.

To establish notation, we will let G denote a real semisimple Lie group with Lie algebra
go. Gc will be the complexification of G with Lie algebra g. K will be a maximal compact
subgroup of G with complexification KC

Let Oc be a Cartan involution on g fixing t, the Lie algebra of Kc. If Z = X + \/7 IY

in g, then EC(Z) = -(-Z) = -X - v/- Y , where a is complex conjugation with respect
to the real form (i.e. o-(X + -1Y) = X - -IY). Let t and q be the 1 and -1 eigenspace
of Or.

In the case where g = z[(m, C) and the real form is s(m), then EcZ = -Zt. We have
t and s equal to the skew symmetric and symmetric matrices in s[(m, C) respectively.

3.2 Attaching a nilpotent orbit

We outline below how one finds the nilpotent orbit "attached" to our Langlands quotients,
having a maximal primitive ideal and infintesmal character {p.
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Let I C U(g) be a primitive ideal. Then the quotient ring U(g)/I is a finitely generated
U(g)-module. The natural grading on U(g) defines a filtration on U(g)/I and makes the
associated graded algebra gr(U(g)/I). Regarding S(g) as an algebra of polynomial func-
tions on g we define the associated variety of I to be V(I) = {A E g* p(A) = 0 whenever
p G grf}.

The orbit of an element of g* under the action of Ad* (Gv) is called a coadjoint nilpotent
orbit or nilpotent orbit if its closure is a cone. Formally,

N* = {A E g*I for allt E C', tA E Gc - A}.

We have the following result (Corollary 4.7 [12]).

Proposition 3.1 Let I C U(g) be a primitive ideal. The associated variety V(I) is the
closure of a single coadjoint nilpotent orbit in g*.

Because of the identification of g with g*, we will not distinguish between nilpotent
coadjoint orbits and nilpotent adjoint orbits. If the primitive ideal I is maximal and has
infinitesimal character A then we write Oc(A) for the nilpotent orbit whose closure is V(I).
We wish to identify Oc(lp) for g = [(m, C) in the case where I is a maximal primitive ideal.

One ingredient for identifying the nilpotent orbit is the Springer correspondence between
nilpotent orbits and Weyl group representations. The nilpotent orbits for '[(m, C) are in
one to one correspondence with the partitions of m. To a partition of m = [mi, ... , md] we
associate the nilpotent orbit

0
[ Jm 1 1 0

O[m SL(m, C) . where Ji 1 0

1.m] .Jmj 1_ whr-m 2 - 1
-1 0

-i mXmi

The irreducible representations of the symmetric group on M letters, Sm, are in one to
one correspondence with the partitions of n ( partitions of m correspond to the conjugacy
classes of Sm which in turn correspond to the irreducible representations of Sm).

We will need the following characterization of the representations of the symmetric group
due to Young [13].

Proposition 3.2 Let [mi,... ,Md] be a partition of m and [mi,... ,md]t = [fi,... , fd] the
conjugate partition. A representation of Sm is characterized by two properties: its restriction
to the subgroup Hi 1 Smi contains the trivial representation, while its restriction to H1dI S
contains a copy of the sign representation.
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The Weyl group for _5(m, C) is Sm. The integral Weyl group with respect to lp is

Si x S and S1+1 x S, for m = 21 and m = 21+ 1 respectively. This group acts on a coherent

family of virtual (g, K) modules by the coherent continuation representation, defined as

follows. Given a coherent family (D based at an irreducible (g, K) module, X, with regular

infinitesmal character -y, then sA (A) = 4(s 0 A) for a E R+(7) a simple integral root and

A E -y + A. If X has a maximal primitive ideal then by Proposition 2.17, 8,4(7) = -- D(7).

We wish to extend this representation of the integral Weyl group to the entire Weyl

group. There is no well defined representation of the Weyl group on the coherent family

of (g, K) modules for SL(m). There is however an integral Weyl group equivariant map

between the virtual (g, K) modules having a maximal primitive ideal and the symmetric

algebra, Sd(*), where d is the number of positive integral roots [15](Theorem 4.2.2). The

integral Weyl group acts by the sign representation on Hl0 lCR+ a E Sd( *). This charac-

terizes a Weyl group representation on Sd(*) with conjugacy classes [n, n]t or [n + 1, n ]t

by Proposition 3.2 (verification that S2 contains the trivial representation is left to the

reader ). By the Springer Correspondence this Weyl group representation corresponds to

the nilpotent orbit O[n,nlt or O[n+1,n]t. Rossman shows that this is the nilpotent orbit

Oc(Ip) [14].

3.3 KC orbits

In connection with determining admissible orbit data we will be concerned with action of

Kc on (g/t)* (i.e KC orbits). The corresponding nilpotent cone is A,* = A* n (0/t)

We have the following result [12] (Corollary 5.20).

Proposition 3.3 Let A E g*. The intersection Oc(A) n (g/t)* is a finite union of KC

orbits.

We will need to explicitly determine the Kr orbits associated with Oc(1p). The Kostant-

Sekiguchi correspondence relates KC orbits on nilpotent elements in . to G orbits on nilpo-

tent elements in go. By finding the decomposition of Oc(1p) n go into G orbits, we may use

the Kostant-Sekiguchi correspondence to determine the KC orbits.

To find the SL(m) nilpotent orbits we begin by first finding the GL(m) nilpotent orbits.

We note that adjoint orbits of a linear group and its double cover coincide so we will not

write SL(m) orbits.

Proposition 3.4 The GL(m) nilpotent orbits correspond to the partitions of m. To a

partition of m = [m 1 ,... , md] we associate the nilpotent orbit
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0[m1,..,md] = GL(m) -[

0
1 1

where Jm=

Jmd.

0
1 0

1 0
rn mxmrn

Proof. This follows directly from the theorem on rational canonical form. U

Each GL(m) nilpotent orbit as given in Proposition 3.4 may decompose as a sum of
SL(m) nilpotent orbits. For example we have

GL(2)- 0 0 =SL(2)- U SL(2) - 1

The next statement indicates that example generalizes to SL(2n).

Proposition 3.5 The SL(2n + 1) nilpotent orbits are the same as the GL(2n + 1) nilpotent
orbits. The GL(2n) nilpotent orbits splits as a union of at most two SL(2n) nilpotent orbits.
If the rows of the partition are all even, then there are two SL(m) orbits, otherwise there is
just one.

Proof. Let X E GL(2n) and J be a nilpotent matrix in Jordan canonical form. Conjugating
J by X and by 2p -tx are equivalent and 2X+--- E SL(2n + 1). For the second

det x det X
part of the claim define GL(2n)+ {x E GL(2n) : detX > 0} and GL(2n)- {x E
GL(2n) : det X < 0}. Indeed, the action of GL(2n)+ and SL(2n) coincide by the above

argument. Further we have GL(2n)- = GL(2n)+ .+. It follows that the

action of GL(2n)- and

SL(2n) coincide. For the last part of the claim one

whether . J E SL(2n) - J. This we leave to the reader.

L1

must determine

E

Let J[m..,m)d] be a nilpotent element of SL(m) in canonical Jordan form.
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Corollary 3.6 The SL(2n) nilpotent orbits are SL(2n) -J[m1,...,M and

SL(2n).([ md) ..

for all partitions [Mi, ... ,md] of 2n. The SL(2n+1) nilpotent orbits are SL(2n+1)-J[mi,..,md]
for all partitions [M1.... , md] of 2n + 1.

Proof. This follows immediately from the proof of Proposition 3.5. M

Next we use the Kostant-Sekiguchi correspondence [12] to find the corresponding Kc

orbits.

Theorem 3.7 (Kostant-Sekiguchi Correspondence) Let # : M(2,C) -+ g be a homomor-

phism respecting notions of complex conjugation in .6(2,C) and g and respecting Cartan

involution. Then there is a one to one correspondence between G nilpotent orbits and KC

nilpotent orbits given by,

0V f
G -40 Kc-4[2 2 ]

- V 2 2 .

An important example is for g =M(2). Here q is the identity map and the SL(2) orbits

SL(2). U SL(2). corresponds to the SO(2, C) orbits SO(2, C)- 2 2 u
2 2 U

SO(2, C)- - 1 .
12 '2.

Corollary 3.8 For SL(21),

1
Oc(-) n (/t) =2

-i -1

1 1--2

1 -i 1 -i
-i -1 _-i -1.

For SL(21 + 1),
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1 _i
--i -1

1 -2

1 1 -i -1
Oc(-p) n (/t)*= Kc -

2 2
1 -i

-i -1
0

Proof. This follows immediately from Theorem 3.7 and Corollary 3.6. U

To find KB we write the centralizer of a nonzero nilpotent element in V as the direct sum
of a nilpotent ideal and a reductive subalgebra. Let x be a nonzero nilpotent element of B,
and {x, y, h} a standard s[(2) triple containing x. We have Kcx {g E Kr : Ad(g)x = x},
with Levi subgroup, K j 2 ,c, of elements of Kc commuting with the image of s[(2). We can
write Kx = K ( . Ux as a semidirect product of K (,) and the unipotent radical, Ux
as in [13] (Lemma 3.7.3). To find Ux we let u be the nilpotent subalgebra of t consisting of
the sum of the positive eigenspaces of ad(h). We let U = exp u and UX be the centralizer
of x in U. The Levi decomposition of Kx can be written as F = )c D ux. The reductive

part of the Levi decomposition, t2 in o (21 + E, C), is a diagonal embedding of so(l, C).
We will denote this diagonal subalgebra by so(l, C).

Lemma 3.9 The identity component of K in SO(21 + e, C), e E {0, 1}, is isomorphic
to its double cover. The full group can be realised as {±1, ±e1e 2} . SO(l, C).

Proof. The identity component of the linear group with Lie algebra so (1, C) consists of
two copies of SO(1, C). In the case where e = 1 the lower diagonal entry is 1. We denote this
diagonal group by SO(l, C). In the double cover, the non trivial element in the projection
homomorphism onto the linear group, -1, is multiplied in both copies giving 1. The first
statement in the claim follows from this. The linear group with Lie algebra so(l, C) is the
semidirect product of the matrices with -1 along the first two diagonal entries and 1 along
all other diagonal entries, with SO(l, C). Identifying SO(l, C) with its double cover, we have
K 2= f1, ±eIe 2} SO(l, C).

We will write O(l, C) for the group K .

3.4 Admissible KC orbits

Let x E V* and define -y(x) to be the character by which K acts on top degree differential
forms at x:

-y(x) : K -+ C' , -(x)(k) = det(Ad*(k))J(eeg
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A represention of KB is called admissible if the differential of is ldy(x). We have

detAd*(k)J(t/x)* = (detAd(k)t/ex)- 1 and trad*(k)(e/ex)* = -trad(k)e/ex. Hence the test

for admissibility is

d(k) = ad(k)e for all k E t

Lemma 3.10 For t = .o(m, C), tr adkec/t= 0 for all k E V.

Proof. We have the Levi decomposition so(2l + e, C)x = so(l, C) o ux for e E {0, 1}.

For l > 2, o(l, C) is semisimple so its one dimensional representation d-y must be zero. It

follows that ad(k) is traceless since ad-nilpotent elements are. One can check directly that

the claim holds true for the case l = 1 and 1 = 2.

It follows from Lemma 3.10 that an irreducible representation of SO(m, C)x is admissible

if its differential is zero.

Lemma 3.11 Let 7 be an irreducible algebraic representation of Kc = O(l, C) - Ux. Then

Ux acts by the trivial representation.

Proof. Let 7r: K - GL(V). Then r(Ux) is a unipotent algebraic group in GL(V). By

Engel's theorem 3v E V fixed by Ux. Because Ux is a normal subgroup, VUx is a nonzero

Kx invariant subspace of V. By the irreducibility of lr, VUx = V, so Ux acts trivially. *

Theorem 3.12 There are 4 genuine admissible Spin(2l, C) orbit data, and 2 genuine ad-

missible Spin(21 + 1,C) orbit data for O( p).

Proof. Let 7r be an irreducible representation of Kx. By Lemma 3.11, 7r acts by the

trivial representation on Ux. For 7r to be admissible, by Lemma 3.10, its differential must be

zero. This forces 7r to be the trivial representation on SO(l, C). Hence we may think of 7r as

an irreducible representation of {±1, ±eie2}. There are two such genuine representations,
7r+ and 7r- defined by 7r+(eie 2 ) = V'-1 and 7r-(eie 2 ) = -/-1. Because there are two

Spin(21, C) orbits, O[I,1]t has 4 admissible orbit data (7, x) and (7r±, x'). Because there is

one Spin(2l + 1, C) orbits 0[1,1]t has 2 admissible orbit data (7r*, x). U

3.5 Orbit method prediction of K types

The following statement lies at the heart of attaching representations to nilpotent orbits [12]

(Conjecture 12.1).

Conjecture 3.13 Suppose X is an irreducible unipotent Harish-Chandra module and 0 a

nilpotent coadjoint orbit with V(gr AnnX) = 0 and assume the codimension of 0 in 0 is
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at least 4 . Then there is an element x E o n (g/t)* and an admissible representation , of
the stabilizer Kc such that, as a representation of KC,

X 2 Ind (7r)

We wish to use Conjecture 3.13 to determine the K types of our Langlands quotient
with maximal primitive ideal and infinitesmal character 'p attached to Oc(p). We first
check whether Oc(lp) satisfies the codimension hypothesis of the conjecture.

Lemma 3.14 The codimension of the boundary of the complex nilpotent orbit O[,1gt of
s[(2l, C) is 2 and the the codimension of the boundary of the complex nilpotent orbit 0[1+1,1]t
of -6[(21 + 1, C) is 4.

Proof. We use the formula of Corollary 6.1.4 in [13] to compute the dimension of a
complex nilpotent orbit of s[(m). The boundary of 0[l,I]t is 0[1+1,1-1]t. It has codimension
2. The boundary of 0[1+1,1]t is O[l+2,l-1]t. It has codimension 4. N

The codimension condition of Conjecture 3.13, is satisfied for the nilpotent orbit 0[1+1,1]t
of sf(2l + 1, C). Then the algebraic representation in Conjecture 3.13 is our Langlands quo-
tient Jpmin (hp)IK from chapter one thought of as a representation of KC. We note that

O[1+1,1]t has two admissible orbits but SL(m) has only one Langlands quotient with maxi-
mal primitive ideal and infinitesmal character jp. We thus have an example where there the
orbit method overestimates the number of irreducible representions attached to an orbit.
Indeed Torasso observed this for the case of SL(3) [17].

In hope that one of the algebraic representations given in the conjecture is our Langlands
quotient, we will proceed to determine the KC types of the algebraic representation. To
investigate the K types of Ind, (w) it will be convenient to use the transitivity property
of induction. Let {x, y, h}, be a [(2, C) triple and tF as above Lemma 3.9. By Lemma
3.8.4 in [13], the sum of the non-negative ad(h) weight spaces is a parabolic subalgebra
of t containing tF. This parabolic subalgebra is g[(l, C) e u. Here gf(l, C) is a diagonal
subalgebra of t containing o(l, C). At the group level we write the parabolic subgroup as

GL(l, C) - U. Because the unipotent groups U and Ux play no role in the representation,
we will omit them from the notation. By the transitivity property of induction we have,

Ind!(7r) = IndK- Gn ) 7
KxC GL(l,C) O(l,C)

To analyse the K types we will use the Borel-Weil Theorem [5]

Theorem 3.15 (Borel-Weil Theorem) For a compact connected Lie group K, if A (- *
is dominant and analytically integral and 6, denotes the corresponding homomorphic one-
dimensional representation of B, then a realization of an irreducible representation of K
with highest weight A is the space IndKc
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We see that to determine the K types of IndK (7ri) it suffices to determine the irre-
-C

GL(IC)±
ducible representations A of GL(l, C) in IndG C

O(I,C)

Proposition 3.16 For admissible representations ,rk of K the K types of Ind (f+)

are (2k 1 + i,...,2k, + }) and the K types of Ind (7r) are (2k 1 + ,... ,2ki +) for
k 1 > - - k, > 0.

Proof. The det 2 cover of GL (l, C), is GL(, C) = {(g, z) C GL (l, C) x CX det g z2 }. The

subgroup 0(1, C) {(x, y) : det x = z 2 } has 2 genuine characters: det2, det . We note
1 3

that deti =r+ and deti = r- in the statement of the proposition.

We have the identity IndGLC) (det)a ~ (det')aIndG-C)1 for a E {1, 3}. IndG ) 1
O(I,C) O(1,C) O(I,C)

consists of algebraic functions on GL(l, C) containing an O(l, C) fixed vector. By Helga-

son's theorem on spherical representations [19] (theorem 4.12) the K types of IndG 0IC) 1
O(l,C)

are (2k,,... , 2k,). Twisting by deti adds (k,..., j) and twisting by deti adds (i,...
proving the claim. U
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Chapter 4

A character formula

4.1 Lowest K types

In chapter one we showed that there are four Langlands quotients of SL(21) with infintesmal

character lp having a maximal primitive ideal. For SL(2l + 1) we showed that there is a

single Langlands quotient with infintesmal character lp having a maximal primitive ideal.

We maintain the same notation as chapter 1 except that we suppose that G is split (the

group G being split allows us to consider a real root space decomposition of g). Our aim

in this chapter is to give a character formula for the K types of these Langlands quotients.

We turn now to the determination of their lowest K types.

We can assign a non-negative real number to each 7r E K, roughly the length of the

highest weight of 7r. The lowest K types of a non-zero (g, K) module,X, are the irreducible

representations of K, with non zero multiplicity in X, minimal with respect to this "norm"

on K.

We begin by determining the lowest K types for those Langlands quotients induced from

a minimal parabolic subgroup. To do this will involve a discussion of fine representations

of K as presented in [9].

For each positive root a C A(g, [j) let <p, : M(2) - g be an injection so that H, =

Pa -10 ) E , p(tX) = O 0 p(X), and X = 0 ) lies in the a root space
(~~ 01

of a in g. Let Z, = p E t. Note that the bracket relations on H 0 , X±, and
1 0

the relation OX, = X- only determines X±,, and hence Z,, up to a sign. We say that
an irreducible representation p of K is fine if p(iZ0 ) has eigenvalues between -1 and 1 for
each positive root a. (We abuse notation and denote the differential of p as p).

Proposition 4.1 Let G = SL(m) for m = 2n or m = 2n + 1. The fine representations of
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K = Spin(m) have highest weight (mi, m 2 ,. . . , mn) with |m1\ < 1.

Proof. For each root a ofs1(m) we determine which representations p of so(m) evaluated
at iZ, take eigenvalues between -1 and 1. We will see below that we only need to consider
the root a = e 1 - e 2 . The roots el - e 2 and e2 - el of -s(m) have the unit matrices E 12 ,
E 2 1 respectively as their root vectors. Together with their bracket, [E 12 , E 21], these root
vectors span a copy of s[(2) sitting inside of sf(m). Zei-e 2 equals ±(E12 - E 2 1 ) and spans
a copy of so(2) sitting inside of t.

We would like to extend the action of the Weyl group of 5[(m) to Za, and establish

their conjugacy under the Weyl group. We identify the analytic Weyl group of SL(m)
with the analytic Weyl group of the linear group. The analytic Weyl group of SL(m) is
the normalizer of [) in SO(m) modulo the centralizer of (j in SO(m). This consists of all
monomial matrices (i.e. matrices with one nonzero entry in every row and column) in
SO(m), modulo all diagonal matrices with entries ±1 having an even number of negative
signs. Coset representatives are n x n permutation matrices with the nonzero entry in the
first column negated if the permutation matrix has determinant minus one. The Weyl group
acts on tj by conjugation. Because E 12 - E 2 1 is not in the Cartan subalgebra of -5(2) the
Weyl group action on E12 - E 2 1 is only well defined if we identify E12 - E 2 1 with E 2 1 - E 12.
This sign problem occurs because different coset representatives of the identity element of
the Weyl group map E 12 - E 2 1 to different signs of E 12 - E 2 1 . For example in S1(3, R)
the identity matrix and the diagonal matrix with 1 in the first diagonal entry and -1 in
the last two diagonal entries map E 12 - E21 to E 12 - E 2 1 and E 2 1 - E 12 respectively. We
can extend the action to Zei-e 2 however since Ze1e 2 is defined only up to a sign. In this
way we get a well defined action of the Weyl group on Zc, for every positive root a. The
Weyl group permutes Z, according to the fomula wZw- 1 = Zw,, where w is an element
of the Weyl group. To see this one can first use the bracket relations on Ha, Xa,, together
with the formula wHcw- 1 = Hw, to show that wXQw- 1 is a root vector of wa ( wXcw- 1

makes sense since X, is only defined up to a sign). Each root space being one dimensional
imples that the Weyl group maps Z, into a multiple of Z,,. Then wZw- 1 = Zv,, follows
from the Weyl group consisting of monomial matrices with entries ±1. Because the Weyl
group acts transitively on the roots of sl(m) the Z, are all conjugate to one another by an
element of the Weyl group. This indicates that to check the fineness of a representation p
of so(m) it suffices to check that the eigenvalues of p(iZei-e 2 ) are between -1 and 1.

If A = (Mi, M2..., mn) is a highest weight of a representation [ of 5o(m), then for
m = 2n, the lowest weight is (-min, -m 2 , .. . , -mn) and for m = 2n + 1 the lowest weight
is (-min, -n 2 ,... , -mn-1, m). These weights are in the 6o(m) Weyl group orbit of the
highest weight of p. By the theorem of highest weight, the weights of p are A - E a for
positive roots a. It is important to note that the weights of p have a smaller el coefficient
than that of the highest weight. Since iZei -e2 is i times an element of the Cartan subalgebra
of -o(m), the weights of p applied to (iZeie 2 ) are the eigenvalues of p(iZeie 2 ). Applying
a weight 13 (i, ... , ln) to ZZei-e 2 picks off the first coefficient up to a sign. In other words,
3(iZei-e2 ) = liei(iZei-e2 ) = ±11 is an eigenvalue of p(iZei-e2). This implies that the el
coefficient of the highest and lowest weights of p give a bound on the size of the eigenvalues

44



4.1. LOWEST K TYPES

of p(iZi-e2) namely the eigenvalues necessarily have absolute value less than i 1 . M

Taking into account what the dominant analytically integral forms are for Spin(m) we
immediately get the following result.

Corollary 4.2 The fine representations of Spin(2n) have highest weights: (1, 0, ... ,0),

(1,1,0, ... ,10), . .,(1,...,1,0,0), ((,.. i , ) ...,. 1) and ( . .. 1, -"). The fine rep-
resentations of Spin(2n+1), have highest weights (1, 0,..., 0), (1,1,0, ... ,0), ... , (1, ... ,1)

and (11,...,.)

Let IndMAN( 6 0 v) be a generalized principal series of a semisimple Lie group G. Its K

types are independent of v since we have the equality IndMAN ( v) K= IndMnK(6). Let

A(6) be the set of lowest K types of IndMAN(6 0 v).

We have the following theorems of Vogan [91.

Theorem 4.3 Suppose G is split and P is minimal and 6 e M, then A(6) consists of fine

representations of K.

It follows from Theorem 4.3 that the lowest K type of the principal series of SL(m) are

fine representations. A generalized principal series can have many irreducible constituents,
known as Langlands subquotients. The next result states that the lowest K types of these

quotients taken together is precisely the set of lowest K types of the generalized principal

series.

Theorem 4.4 (Corollary 4.6 in [10]) Let Indp(6, v) be a generalized principal series of a

connected split semisimple Lie group. Each subquotient of Indp(6, v) has lowest K type in

A(6) and every p G A(6) is the lowest K type for a Langlands subquotient of Indp(6, v).

The number of Langlands subquotients is one unless v annihilates some real root.

We now determine the lowest K types of the Langlands quotients having a minimal

parabolic.

Lemma 4.5 With notation as below Proposition 2.9 let p+ and p- be fine representations

of K = Spin(21) whose restriction to M contains + and - respectively. Then p+ and p-

have highest weights (. .. , -) and (1,..., 1, -) respectively.

Proof. Because p+ and p- are fine representations of k their hightest weight must be

among the set of I highest weights given in Corollary 4.2. The restriction of p+ and p

to M contains a genuine irreducible representations so p+ and p- must send -1 to the

scalar matrix -1. This rules out the possibility that they have highest weight with integer

coefficients. It remains to determine which of the half integer highest weight representations

contains + and which contains -. Recall that + and + are differentiated by their eval-

uation at the central element ei. We have +(eI) = /--1 and c-(eI) =-vT. Indeed,
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P(,..,)(r)=(exp RI')' = /f +(ej) and P11 (e)=(exp j/-I)1-2

- = -(el) proving the claim.

From Lemma 4.5 we immediately have the following statements.

Corollary 4.6 The Langlands quotients Jj+ (1p) and J- *, (-1p) for SL(21) have lowest
K types (i,... ,) and (i,..., j, -i), respectively.

Corollary 4.7 The lowest K type for the Langlands quotient JePm, ('p) of SL(21 + 1) is

Next we determine the lowest K types for the Langlands quotients of SL(21) having
nonminimal parabolic. Letting ao be the simple root ao = e 2 1- 1 - e 21 and so the simple
reflection with respect to ao. We showed in Chapter 1 that Jp1 (ip), and JP,(sa jp) have

a maximal cuspidal parabolic subgroup in SL(21). Let A+ (Ip) be the positive roots in
A+(lp) which lie in M (i.e. the imaginary roots) and pm half the sum of the roots in
A+(.p). We have the following result.

Proposition 4.8 Let P MAN be a maximal cuspidal parabolic subgroup of SL(21). Let
(A, v) be a Langlands parameter. For A = .. . , Al) and pm = (p1, ... , p), the lowest

K type for the generalized principal series Indp(A, v) has extremal weight (A1 + p1,..., A, +
pi).

Proof. For determining K types it suffices to restrict the generalized principal series
to k. We have Indp(A, v)Ik = Ind K(6AIk). The discrete series 6(\,...,A,) of M has
M U K types with highest weight (Ak , . . . , Akj) where Aki = A- - pi + sign(pi)2ki,

1 < i < I, for integers ki > 0. We have 6A 1j~n = Zk,.k 1 0(Aki,... , Ak,). Then,

Ind nk ( E (Aki, ... ,Akj)) = E Ind ~n(Aki ., Ak,).
ki,...,k,;>0 ki,...,k ;>0

To prove the proposition it then suffices to show that Indk (Aki, ... , Ak,) has lowest
K type with extremal weight (Aki,... , Ak,). By Frobenious reciprocity, the irreducible
representation of K with extremal weight (a,..., a,) is not in IndgwR(Akj,..., Ak1 ) if
ai <,A for 1 <i <l.

It remains to show that Ind n k(Aki,..., Ak,) has K type (Aki,..., Ak,). This follows
easily from Frobenious reciprocity. E

Corollary 4.9 With notation as in Proposition 4.8 the lowest K types of Jp1 (1p), and

JP,(sao p) for SL(21) have highest weight ( , ) and ( , respectively.
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Proof. The generalized principal series Indp, (1p), and Indp, (sao 1p) have a unique lowest

K type since P doesn't contain any real roots (see Theorem 4.4). Hence, the claim will

follow by showing that they have lowest K types (.... , 3) and (3,... , - 1) respectively. For

Langlands parameter (A, v) = p, we have A = (!,. . . , ) and pM =(1,..., 1). Similarly for

Langlands parameter (A, V) sa jp, we have A = (, .. ., -) and pM = (1,..., 1, -1).

The claim then follows immediately from Proposition 4.8.

4.2 Characters of virtual representations

By a virtual represenatation we will mean a formal finite combination of irreducible repre-

sentations with integer coefficients. In this section we will express the Langlands quotients

having maximal primitive ideal and infinitesmal character lp as a sum of virtual represen-

tations. Blattner's formula can be applied directly to compute the K types of the virtual

representations [11]. This provides a tractable way for determining the K types for our

Langlands quotients.

We begin by introducing the notion of the continued fundamental series for a semisimple

connected Lie group G [11]. Let T C K be a maximal torus, g = t + p be Cartan decompo-

sition of g, and A = Centp(T). Let H = CentG(T) = TA be a maximally compact Cartan.

Let MA = CentG(A) be a Levi subgroup. The subgroup M given by MA = CentG(A)

has a compact Cartan subgroup, T, and hence discrete series representations. Let 'I be a

e stable positive root system for [ in g. Define TM to be the roots of M in T (i.e. the

positive imaginary roots). For A E t*, dominant with respect to TM, we write EM(TM, A)

for the character of the discrete series 6, of M with Harish Chandra parameter A. Let

p be an extremal weight of a finite dimensional representation of M. Thinking of 6A as

a virtual (m, M n K) module we can form the coherent family 4bM based at 69. We de-

fine eM(IM, A + p) to be the character of the virtual representation 4M(A + P). For

(A, v) E [*, we define the character of a continued fundamental series for G to be

e(T, -y) = IndMAN (EM(T'M, A) 0 v 0 1). Here MAN is a maximal cuspidal parabolic sub-

group of G and EM(qIM, A) is notation for the corresponding virtual (m, K n M) module.

We have the following result [101

Theorem 4.10 If -y = (A, v) E [* is strictly dominant for T then E(q', y) is the character

of the Langlands quotient with Langlands parameter -y. Letting 4 be a coherent family

based at this irreducible representation, and p be the extremal weight of a finite dimensional

representation of G, then E(xP,y+p) is the character of the virtual (g,K) module 1 (y+Ap).

There is a theory of coherent families of characters of virtual (g, K) modules paralleling

the theory of coherent families of virtual (g, K) modules described in chapter 1. We will

often blur the distinction between characters of virtual representations, E(T, y), and the

virtual representations themselves.

We have the following result describing the K types of the virtual characters for SL(2).
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Lemma 4.11 For SL(2) the K types of 0(4', A) are A + p + sign(p)(2k) for nonnegative
integers k.

Let T be the standard positive roots for s[(2l) or s[(2l+1) and define wo = s(ei-e2)S(e3-e4)
. . . .s(e 2 -1 -e 2 ) and sac =(e 21 1 -e 2 l). We will abbreviate various sums of virtual characters

as follows.

0(. A 1! E wW(R+ (1p))( w ) W P);

0(.) V11 Z wEW(R±(wo-1p))( 1)0o(4i'wo-IP);

0( - ) 1 wW(R+(saoWop)) l) 0(sIOP,w W woSaop);

0(3 3 3) wEW(R+(s, 0 1p))( 1) (S0 T, W - s 0 p)

We have the following result about lowest K types of a sum of virtual representations.
Note that the lowest K type of a virtual representation may have negative multiplicity.

Lemma 4.12 With notation as above,

1. .3 has lowest K type (, . ).., with multiplicity 1.

2. (. has lowest K type (1,. .. ,) with multiplicity ±1.

3.O(11) has lowest K type D,..., ,-{) with multiplicity ±1.

4. 0 has lowest K type (A,..., , -) with multiplicity 1.

Proof. Let A be an element in the integral Weyl group orbit of 1p. We have 0(T, A)|=

IndKM-n0M(IM, Alt*) Mnk. Let I' be the root ±(e2j-1-e2j) in 1 M so Tm - {P,. ..- , fT}

Also let Alt= (A 1,..., Al). Restricting OM(TM, Alt.) to the maximal torus T gives us
OM(NM, At*)I = (0(T , A1),... , 0(4'l, A,)). From Lemma 4.11 we know that the K
types of O(F' , Aj) are (Aj + p3M + sign(pJh)2kj) for nonnegative integers kj. Using Frobe-
nius reciprocity we find that 0(qf, A) has lowest K type with extremal weight A + pm.
Furthermore, among the sum of virtual representations EWCW(R+(A)) -10(*, wA), the vir-
tual representation 0(*, A) corresponding to w = 1 has the lowest K type. It follows that
EwGW(R+(A)) -Iw(*, wA) has lowest K type A+ pm. Applying this to the sums of virtual
representations in the claim gives the desired lowest K type.

Note that there are 1! elements in the integral Weyl group orbit, W(R+(lp)) . (1p),
all with the same sign, whose restriction to t* equals Iplt.. Hence, the lowest K type of
ZwEw(R+(!p))(-1)0(4', w - -p) has multiplicity ±1!. The multiplicity of the lowest K type
of the other sums of virtual representations is found analogously. Since the lowest K type of

WEW(R+(I p)) (-1) (RIw - 2p) lies in the discrete series character 0(T, 1p) it must have
positive multiplicity f!. Similarly the lowest K type for EweW(R+(s,, -))(-1)W0(so', w
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sa0 jp) must have positive multiplicity f!. It turns out that the lowest K types of the other

sums of virtual representations in the claim have positive multiplicity 1! but we will have to

wait till Theorem 4.14 to see this. U

A character version of Proposition 2.17 says that if E(7) is an irreducible character,
then a simple root a E R+(y) is a T invariant iff 6(s,-) = -(-). If O(T,-7) is a virtual

character, a simple root a E R+(y) is a T invariant iff O(I, say) = -0(',-y). Indeed

it is clear that if each genuine representation in O(P,-y) has a in its T invariant then

0(4', s 0-y) = -0(4,y). To show the converse we note that we can't have a situation

whereby the virtual represention equals X - Y, and sX = Y since if a -r(X) then by

Proposition 2.18 sX = X+ (nonzero representation).

We observe the following.

Lemma 4.13 The sums of virtual representations of Lemma 4.12 have a maximal primitive

ideal.

Proof. Indeed, the sums of virtual representations were constructed to have the property

that s,, acts by the sign representation, for every simple integral root. U

Theorem 4.14 With the notation introduced above Lemma 4.12 we have the following

character formulas for Langlands quotients of SL(21) with infintesmal character .1p, having

a maximal primitive ideal:

I. JP,( Gp) = .... 3
2(2, - 2)

2. J- (}p) = .)

2 '2'

4. Jr, (Fip) we o t )

Proof. First we show that )(3 3) is an irreducible representation. This sum of virtual

representations has infinitesmal character lp and by Lemma 4.13 has a maximal primitive

ideal. It must therefore be an integer linear combination of the four Langlands quotients

with infinitesmal character }p having a maximal primitive ideal. In Lemma 4.12 we showed

that . has lowest K type (),..., () with multiplicity 1. Because the four Langlands

quotients under consideration have lowest K types (3,. .. , 3,), ... , j), ( ,..., 2' 2),

and (i,..., , -i), our sum of virtual representations must be irreducible and equal to the

Langlands quotient with lowest K type ( ),..., j), namely Jp,(hp). The same argument

shows that Jp(s 0o p) = (3.... 3_ 3)
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We use a coherent continuation argument to show that the other two sums of virtual rep-
resentations are in fact irreducible representations. Consider a coherent family based at the
irreducible character ( . If H (-i, , . , -1, 1) is the extremal weight of a finite

dimensional representation of SL(21). Then 1p + P= wo ip is dominant with respect to the
integral roots with respect to jp. Using properties of translation functors on virtual charac-

ters [7] (Theorem 4.6) and [10] ( Lemmas 5.3 - 5.5) we have IW (3)) 0(1.
-p+p (2'.---2 (2 .---.. 2)

The translated irreducible representation is necessarily irreducible by Proposition 2.16. Sim-
ilary we have T (2 _ 3 ) 0( . . The dominance of s,0 p±palsoproves

the irreducibility of 0(1 1 1). Finally, matching lowest K types proves the claim. U
2,-- 2 2)

Theorem 4.15 With the notation introduced above Lemma 4.12 we have the following

character formula for the Langlands quotient of SL(21 + 1) with infintesmal character jp
having a maximal primitive ideal:

JPmI(}p) =I .

Proof: The proof is identical to the proof that Jp,(1p) = ) 3 3 in Theorem 4.14.
2  (2 -. 2)

The character formula of this chapter we believe comes close to giving away the K

types of the Langlands quotients under investigation. Based on our findings for SL(m) with
2 < m < 6 we conclude this thesis with a conjecture saying that the weights of our small
unitary representations are multiplicity free.

Conjecture 4.16 The Langlands quotients with minimal parabolic, J, ( p), of SL(21)
have K types( + 2k1,..., 1 + 2ki,±( + 2ki)) where k1 > k2  > ki > 0

The Langlands quotients with maximal cuspidal parabolic, Jp, (1p) and Jp, (s,, p), of

SL(21), have K types (I + 2k 1 ,..., 1 + 2kI_1 , ±(! + 2kl)) where k1 > k2 > ... > ki > 0

The Langlands quotient with minimal parabolic, Jrpmn (1p) of SL(21 + 1) has K types
(+ 2k1,... ,1 + 2ki) where ki > k2 > - -- > ki > 0.
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