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Abstract

The interfaces between polymeric biomaterials and physiological environments medi-
ate numerous phenomena such as protein adsorption, cell adhesion/clotting, foreign
body response, and effects of the medium on the material such as degradation. Fur-
thermore, it is the molecular-level structure of the material on which the responses
are predicated. For this reason, a molecular-level description of the structure of poly-
meric materials and the response of this structure to external contacting media is
relevant in the context of predicting the material performance.

One subclass of polymeric biomaterials which has exhibited great potential has
been that of bioresorbable polymers of which the polyesters of alpha-hydroxy acids,
polylactic (PLA) and polyglycolic (PGA) have found a secure niche as suture ma-
terials, matrices for drug delivery systems (in conjuction with derivatives), and as
matrices for cell transplantation/tissue engineering applications. The present work
undertakes a study of the liquid-vapor and liquid-liquid interfaces of these materials,
the latter involving contact with water, via molecular dynamics simulations. Towards
understanding the interfaces of these polymers, and in particular, the interfacial be-
havior of the carbonyl functionality defining this class of materials, we first investigate
the liquid-vapor interface, or free surface, of small-molecule esters, namely methyl ac-
etate. Liquid free surfaces have been studied extensively via theory, simulation, and
experiment; they demonstrate unique properties, and, in this respect, are interesting
'states' of matter in and of themselves.

The molecular dynamics method is applied to study the liquid-vapor interface of
methyl acetate. The OPLS (Optimized Potentials for Liquids Simulation) interaction
model is applied. The model is augmented with bond angle bending and out-of-
plane angle bending potentials parameterized as part of this work. It is one of a
few forcefields capturing the bulk liquid energetics (enthalpy of vaporization to the
ideal gas state) and intramolecular physics (conformational energetics). The systeIm
establishes a stable interface. The bulk liquid is structureless as observed in earlier
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computations. The interface is monotonic, with a 10-90 thickness of 0.6 nanometers.
The carbonyl methyl group orients towards the vapor phase in order to minimize
energetic losses. This orientation is confirmed by longitudinal profiles of the order
parameters P and P2. These indicate that the carbonyl-carbon/carbonyl-oxygen
bond vector aligns antiparallel to the interface normal in the interfacial region with
the oxygen adopting an orientation away from the vapor phase. For methyl acetate, a
liquid not known to associate in the bulk, the interface induces a strong orientational
order; effectively, the ester behaves almost as a 'surfactant'. Atomic and molecular
surface tensions of 22.70 and 21.06 dyne/cm, respectively, are obtained; these values
are within 15 percent of the experimental measurements (the atomic virial calculation
is within 10 percent). This inadequacy of the parameter set is not too surprising
as interfacial thermodynamic properties for liquids have traditionally proved to be
intractable via molecular simulations; nevertheless, this result gives a base parameter
set to which refinements can be made.

We have performed molecular dynamics simulations of the methyl acetate/water
system using the OPLS potential model for the ester and the SPC model for wa-
ter. Starting from a two-phase configuration, the system shows no mixing of the two
species ( the acetate and water are not present uniformly throughout the simulation
cell); we thus report that the interaction is incapable of reproducing the experimen-
tal solubility at 298 K. An interesting result of this simulation, nevertheless, is the
reversal of the orientation of methyl acetate molecules in the vicinity of the water,
the 'interfacial' region, relative to the free surface case. This reorientation suggests
of some association between ester and water, and this is corroborated by analysis for
hydrogen bonding interactions between the species. Radial distribution functions for
the carbonyl oxygen - water hydrogen show a first peak around 1.9 angstroms; the
angle made by the triplet of the carbonyl oxygen, water hydrogen, and water oxygen
averages to 160 degrees. This geometry is remarkably close to the geometrical results
of density functional calculations on methyl acetate - water bimolecular complexes
which yield hydrogen-bond distances of 1.938 and 1.916 angstroms and corresponding
angles of 170.8 and 164.5 degrees.

Prior to investigating the liquid-vapor interface of an oligomer model of polylac-
tic acid (PLA), the need to fit an internal torsion potential arose as a united-atom
parameter set for this degree of freedom was not available in the literature. In fact it
is quite surprising that a full model describing the internals of such a simple system
as studied here, a simple linear aliphatic polyester, is not found in the literature.
With this being the case, the following approach is implemented. An ab initio tor-
sion angle profile is generated for a model molecule possessing the pertinent internal;
several levels of Hartree-Fock theory including corrections for electron correlation are
applied. Next, the CFF91 all-atom potential (which itself did not have the parame-
terization for the needd torsion) was used to generate the same torsion profile; in this
case, the contribution of the required torsion is missing. Thus, the CFF91 profile is
subtracted from the total ab initio profile, leaving the residual torsion profile repre-
senting the missing component. A standard torsion potential model was fitted to this
profile. This potential was then added to the CFF91 model, which was used to gen-
erate distributions of all internals. United-atom potentials were then fitted to these
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distributions, giving the final set of internals which could be used in the subsequent
oligomer simulations.

We next begin a study of the liquid-vapor interface of the oligomer model of PLA.
Center-of-mass and atom density profiles show an interfacial structure distinct from
that of the bulk. We observe a segregation of chain end and middle segments as
reported in earlier MD simulations of chain molecules and predicted by mean-field
theories. With respect to the nature of the orientations of the carbonyl functionality,
two distinct behaviors arise. The end carbonyl vectors tend to orient with the oxy-
gen atoms toward the vapor, with the internal groups orienting essentially randomly.
Although the middle group orientation is consistent with the trends observed for
the methyl acetate free surface, the end carbonyl groups tend to orient in reverse of
what the earlier simulations indicate. Although this appears counter-intuitive, ener-
getic arguments suggest that this molecular conformation coupled with the individual
bond vector orientations is in response to the drive for free energy minimization. The
energetic loss of having two carbonyls in a high energy state is recovered with the
screening of the middle carbonyl groups away from the vapor phase, more in prox-
imity to the bulk. Again, chain connectivity now plays a big role in dictating the
molecular structure relative to the case of the free surface of the small molecule,
methyl acetate. From a biomaterials perspective, this result indicates that the free
surface of the PLA oligomer model is polar and hydrophilic, thus able to facilitate
adsorption of components of the physiological millieu such as water and importantly,
proteins (which in a global sense can be viewed as large micellar entities).

Thesis Supervisor: Jonathan G. Harris
Title: Visiting Professor

Thesis Supervisor: Linda Griffith
Title: Associate Professor
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Chapter 1

Introduction and Motivation

1.1 Introduction

Numerous biomaterials, such as polymers, metals, ceramics, reconstituted or spe-

cially treated natural tissues, and composites of these, are used clinically as elements

of implants or devices for diagnosis and therapy. Synthetic polymers constitute the

most diverse class of biomaterials, mainly because they provide a wide variety of

compositions, properties, and forms as well as the ability to be fabricated into nu-

merous geometries [1]. The applications of polymeric biomaterials as a class range

over an extensive gamut. Table 1.1 lists some of the major applications of polymeric

biomaterials within the last half century.

One subclass of polymeric biomaterials which has exhibited great potential has

been that of bioresorbable polymers. Bioresorbable materials are known for their ap-

Table 1.1: Selected Biomedical Applications of Polymeric Materials

25

Medical Applications of Polymeric Materials

Vascular Grafts - Arterial Repair

Internal Supports - Bone Replacement, Joints, Pins, Screws
Components of Artificial Hearts - Valves

Drug Delivery Systems

Cell Transplantation - Scaffolds, Matrices
Tissue Engineering - Scaffolds, Matrices



plication as suture materials (DEXON, Medifit, VICRYL, a copolymer of glycolic and

lactic acid), internal fixation devices for bone fracture repair (pins, screws, staples,

high strength orthopedic implants), reconstructive substitutes, intraluminal grafts

(devices implanted into coronary arteries following procedures such as balloon angio-

plasty in order to prevent the collapse and reblocking of these blood vessels), tempo-

rary vascular grafts, artificial skin, sheets for preventing adhesion, matrices for drug

delivery systems, and as matrices for cell support in tissue engineering applications

[2]. Among the bioresorbable polymers, the most successful have been polyesters of

alpha-hydroxy acids, polylactic acid (PLA) and polyglycolic acid (PGA). These poly-

mers enjoy a long clinical history, elicit minimal tissue response, and through a variety

of compositions as copolymers, provide a wide range of properties and degradation

behavior (the degradation behavior referring to the kinetics of degradation which can

be customized for a particular application by variation of composition or crystallinity,

for example) [3].

Structurally, PLA and PGA are represented as [4]

0
C

Polylac
P

CH 3  0 H

0 - C C - C

H n H nHJ HJ

tic Acid Polyglycolic Acid
LA PGA

Figure 1-1: PLA and PGA Repeat Units

The ends may be capped with hydroxyl groups. Lactic acid is a chiral com-

pound, and thus the homopolymer can exist in two enantiomeric forms-the L and D

forms. The two enantiomers have equivalent intrinsic chemical properties but differ-

ent structural and optical properties [5]. The synthesis of PGA and PLA is possible
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through simple polycondensation reactions of the parent glycolic and lactic acids in

the presence of Sb2o3; the product polymer, however, has low molecular weight and

sub-optimal properties [4]. High molecular weight polymers are prepared via cationic

ring-opening polymerization of the parent lactide or glycolide (the cyclic dimeric es-

ters) in the presence of a long-chain alcohol, such as lauryl alcohol, using a metal

catalyst such as antimony, zinc, lead, or preferably tin as shown in Figure 1-2 [4, 6]:

R 0 0

Sn++
T=220 C
P<< 1 atm

0 R
C R

II IC-0-C

H

R= CH 3 ' PLA

R = H ,PGA

Figure 1-2: Polymerization of Glycolid/Lactide to the Polyester

Following the reaction, residual monomers are removed via precipitation of the

polymer from methylene chloride solution with methanol [6]. This of course introduces

the need for rigorous separation and purification procedures as the final product will

be introduced into a physiological environment.

Tables 1.2 and 1.3 show the physico-chemical and mechanical properties of PGA

(MW = 50000) and PLA of varying stereoregularity and molecular weight [2]. Both

PGA and the L stereoregular PLA are semi-crystalline, fiber- and film-forming poly-

mers. Due to its relatively high crystallinity (ranging from 46-52Copolymers of PLA

27



and PGA can be synthesized from appropriate mixtures of the parent glycolides.

Morphologically, the copolymers are less crystalline than the homopolymers, and for

the GA/LA ranges between 25-70 mole percent of GA monomer, the copolymers are

amorphous. If the D,L-LA stereoisomer is used, the amorphous region is extended to

0-70 mole percent GA as shown in Figure 1 [7]. Note that all compositions can be

make amorphous through melting and rapid quenching.

Table 1.2: PGA, PLA: Physical and Thermal Properties

Polymer Molecular Weight T9  Tmelt Tdecomp Hf ormation Crystallinity
(Celsius) (Celsius) (Celsius) (J/g) (Percent)

PGA 50000 35 210 254 71 52
L-PLA 50000 54 170 242 41 30
L-PLA 100000 58 159 235 20 15
L-PLA 300000 59 178 255 39 29

D,L-PLA 21000 50 - 255 amorphous -
D,L-PLA 107000 51 254 amorphous
D,L-PLA 550000 53 - 255 amorphous

Table 1.3: PGA, PLA: Mechanical Properties

Polymer Molecular Weight Tensile Strength Tensile Modulus Flexural Modulus Elongation Yield Elongation Break
(MPa) (MPa) (MPa) (Percent) (Percent)

PGA 50000 - - --

L-PLA 50000 28 1200 1400 3.7 6
L-PLA 100000 50 2700 3000 2.6 3.3
L-PLA 300000 48 3000 3250 1.8 2

D,L-PLA 21000 - - --

D,L-PLA 107000 29 1900 1950 4 6
D,L-PLA 550000 35 2400 2350 3.5 5

The success of the polyesters PLA and PGA as bioresorbable polymers is due

to the fact that the degradation products are normal body metabolites which can

be eliminated through the Krebs Cycle [3]. This obviates the need for invasive pro-

cedures to remove foreign materials introduced into the body, for example. The

degradation mechanism of aliphatic polyesters has been studied by many researchers,

and at present, the degradation is regarded as depending on chemical hydrolysis of

the ester linkage (Figure 1-3); nevertheless, in vivo the contribution of enzymatic
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action has been considered, and the question of the effects of enzymes on degradation

is not fully answered [5]. Furthermore, it is maintained that the hydrolysis occurs

preferentially in the amorphous regions of the polymers into which water is able to

penetrate more rapidly as compared to the crystalline regions. Following degrada-

tion of the amorphous regions, the hydrolysis proceeds to the crystalline areas [5].

Various groups have reported studies on the kinetics, or more specifically, time de-

pendence of bulk degradation and the factors which ap pear to influence this rate.

The major factors affecting degradation rates of the homopolymers and copolymers

are polymer morphology (crystalline versus amorphous), copolymer composition, hy-

drophillic/hydrophobic characteristics, and molecular weight [6].

74H
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8~ H

Hydrolytic Scission
of Ester Linkage

Ester Linkage

C OH
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Figure 1-3: Hydrolytic Degradation of Ester Linkage:
droxyl Group

OHN

Alcohol

Nucleophilic Attack by Hy-

Both bulk and surface structure play key roles in the properties and behavior of

the final device in physiological environments. Factors such as polymer morphology,

homogeneity, composition, and molecular structure are invariably interlinked and sig-

nificantly influence polymer characteristics and performance. Moreover, introducing

a polymeric material into a physiological environment creates a dynamic interface at

which important phenomena appear [8]. In the presence of a physiological millieu,

the interface will accommodate adsorption of native proteins followed possibly by

29
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cell adhesion, organization, and proliferation. The philosophy behind tissue engineer-

ing/cell transplantation is based on these fundamental mechanisms. The nature of

the interface is in large part influenced by the surface characteristics of the polymer.

Surface mobility (ability of chains to reorient/reconfigure upon change in environ-

ment), surface tension, surface free energy, the hydrophillic or hydrophobic nature

of the polymer surface, and surface structure play an important role in defining the

in vivo performance of the biopolymer. It is without question that a knowledge

of the structure and thermodynamic factors influencing the bulk and surface is of

paramount importance to understand ing the properties and performance of these

polymers; furthermore, from a design and development perspective, knowledge of the

dependence of performance on structure would facilitate synthesis of novel polymers

with optimum performance properties.

Computer simulations of polymeric materials have become helpful tools for inves-

tigation of polymer macroscopic structure and properties via application of statistical

mechanical methods [9, 10, 11, 12]. With information on the fundamental interactions

of a many particle system, computer simulations provide exact solutions to the prob-

lem of the statistical physics of many-body systems. They are a means of validating

theories and models of matter, the former via comparison of theoretically obtained

results to simulation results, and the latter through comparison of simulation results

to experimental data [13].

1.2 Background and Rationale

1.2.1 Biopolymers: General Considerations on Biocompat-

ibility

Researchers are considering the use of synthetic biodegradable polymers as scaffolding,

or matrix support structures, for cell implantation. Viable cells would be loaded onto

a polymer matrix which would then be surgically implanted into the body. Growth

of vasculature into the implant and concomitant degradation of the polymer matrix
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would follow. In a successful attempt, the implanted cells will continue to proliferate

and differentiate into a properly functioning substitute of the original tissue [14]. The

behavior of cells on the surface of the polymer is crucial. Cells must adhere to the

surface (or in the looses sense be anchored to the matrix surface) and simultaneously

maintain proper geometry and tissue-specific functions. Several studies have indicated

that normal cell geometry is influential to cell growth and function. Variations in cell

shape, it is contended, translate to alterations in cytoskeletal architecture which in

turn can affect gene expression [15]. One author has shown that differences in cell

shape, induced as a results of varying the density of extracellular matrix proteins on

the cell attachment substrate, led to changes in cell function. Surface structure of

biomaterials, for cell-transplantation technology, appears to be of prime importance

[15].

Once a foreign material is placed in a physiological environment, a major concern

is that of biocompatibility, that the implant not evoke any unwanted reactions and

that the physiological environment not damage the implant. Reactions to foreign

materials generally involve aggregation of multifarious cells on the material surface.

A layer of adsorbed proteins such as fibrinogen, fibronectin, and von Willebrand factor

mediates the adhesion of cells to the surface [16]. Protein adsorption is widely held

as the first readily observable event at the interface between a foreign material and

physiological fluid [17].

Protein adsorption is an inevitable event for systems in which protein containing

fluids are in contact with surfaces. The composition of this layer of surface-adsorbed

proteins depends upon the material's surface properties, the nature of the proteins,

their concentration, and their relative affinities for the surface [8]. Also, as there

exists a complex mixture of proteins in blood plasma and intercellular fluids, adsorp-

tion is a competitive kinetic process. Knowledge of parameters such as adsorption

coefficients for different proteins would prove useful in design purposes. Researchers

have elucidated several factors which influence protein adsorptino. These include

electrostatic interactions, isoelectric point, pH, surface charge, coadsorption of low

molecular weight species (ions and molecules), solute-solvent interactions, strength of
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bonding to surface functional groups, the chemistry, topology, and morphology of the

surface, and the presence of other proteins in the ambient fluid with which a given

protein my interact, both away from the surface and once adsorbed on to the surface

[8]. The attachment of cells, such as bacterial cells, to surfaces of biomaterials is

also important because of the possible means of infection it provides [18]. Variables

such as critical surface tension, surface free energy, charge, and hydrophobicity play

important roles in this phenomenon.

1.2.2 Characteristics of Poly-Lactic Acid, Poly-glycolic Acid,

and Copolymers

The biodegradability of PLA, PGA, and their copolymers makes them attractive for

biomedical applications. Thus, the degradation process is an important characteristic

of these polymers, and the effect of morphology and copolymer composition, molecu-

lar weight, macroscopic shape, macromolecular orientation, and extent of blockiness

of copolymers, on degradation rate is an important consideration. The influence of the

former two on degradation rate has been documented in the literature. Miller et al [19]

determined the differences in degradation rates between the pure homopolymers and

copolymers of varying monomer compositions. They presented graphically the ap-

proximate half-life for different copolymer ratios. The equi-compositional copolymer

yielded the highest degradation rate, with a half-life of about one week. Furthermore,

through differential isotopic labeling of the glycolic and lactic units, they indicated

that the copolymer degrades as a homogeneous copolymer rather t han as a mixture

of two polymers degrading at different rates [19].

Gilding and Reed [7] demonstrated that crystallinities of the copolymers vary with

varying monomer ratios. Consequently, one may expect correlation between degrada-

tion rate and morphology as well as with copolymer composition. The crystallinity

variation with monomer ratio has been attributed to the difference in crystallinities of

the homopolymers, PGA being approximately 46-52 percent and PLA about 37per-

cent crystalline. A further influence on degradation rate in copolymers suggested by
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Dunn et al [3] is the extent of blockiness ('segmentedness') of the copolymer, a con-

sideration arising from the estimation of reactivity ratios of the monomers by Gilding

and Reed. At a reaction temperature of 200 C, the reactivity of the glycolide and

lactide monomer units was determined as Rg - 2.8 and RI = 0.2. Based on these

values, it was concluded that a chain with a terminal glycolide unit has a three to

one preference for adding glycolide [7]. This behavior leads, effectively, to bloc ks of

glycolide separated by single lactide units. Because the two polymers demonstrate

significantly different properties, the extent of blockiness, and its control, is of interest

in synthesizing these polymers.

1.2.3 Polymer Surface Reconfiguration and Surface Chain

Mobility

An important aspect of the practical application of bioresorbable polymers is that the

ultimate physiological environment in which the polymers are used is dramatically

different than that under which they are fabricated, processed, and characterized.

Thus, by implanting these polymers into the body, one is significantly modifying

their environment. In recent years, several authors have proposed that, contrary to

the conventional assumption that polymer surfaces are rigid, unperturbable planes

on which substances may adsorb and chemical reactions take place, glassy polymer

surfaces are highly mobile and that the surface configuration is sensitive to the im-

mediate surroundings [20]. That is , the conformational state of macromolecules at

an interface responds to a variation in the contacting medium. Surface configuration

is the specific spatial arrangement of chemical functionalities of a macromolecule at

the polymer-fluid interface [21].

One may question at this point why surface dynamics would exist in a glassy state

in which large-scale molecular motion is arrested. The answer lies in the question-that

is, below the glass transition temperature of glass-forming polymers, only large-scale

motions are quenched, whereas surface reconfiguration is held to occur via short-

ranged motions such as rotations around bounds (or through concerted motion in
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different chains over very small length scales). Moreover, as large segmental motions

are certainly arrested, there still exist molecular modes of motion below the glass

transition. The transitions associated with these modes are labeled as &e, /, with

the glass transition being the former and subsequent labels pertaining to transitions

at lower and lower temperatures [20]. Furthermore, when the molecular interactions

experienced by the chains at the surface change, surface chain segments experience

varying degrees of motion.

The phenomenon of surface reconfiguration has been documented in the litera-

ture for several systems. Holly and Refojo [22] investigated the water wettability of

PHEMA hydrogels of varying water content. They performed contact angle measure-

ments using the sessile droplet and captive bubble techniques. Their results indicated

an unexpectedly high advancing contact angle (thus low wettability), and a large dif-

ference between the advancing and receding angles, a phenomenon known as contact

angle hysteresis. The authors offered the following interpretation. When polymer

chain segments orient themselves so as to expose the hydrophobic moieties to the air

and bury the hydrophilic elements in the aqueous phase within the gel. The gel sur-

face thus exhibits hydrophobic character via a high advancing contact angle. Once

the hydrophobic gel surface is immersed in water, the polymer segments reorient

so as to expose more of the hydrophilic moieties, thus lowering the surface tension

and equivalently the contact angle. Furthermore, results based on ESCA and Auger

spectroscopy indicate a surface reconfiguration of polymers below the glass transition

[23]. Also, Tezuka et al [24] studied contact angles via the captive bubble technique

on surfaces of block and graft copolymers of polyurethane and polysiloxane. The au-

thors observed that a change of contacting medium from a dry to an aqueous phase

induces a dynamic surface reconfiguration causing a polysiloxane segment dominated

surface to become polyurethane enriched. This is intuitive if one considers that the

polyurethane component, containing polar ester linkages, is more hydrophillic than

the siloxane block, which includes significantly more methyl groups. Hence, overall,

the driving force for the surface rearrangement process is held to be the minimization

of interfacial free energy in response to a change in contacting medium. Further-
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more, the authors showed variation of contact angles and contact angle hysteresis

with varying blockiness of the copolymer-specifically, with varying siloxane segment

lengths.

An interesting phenomenon associated with the structural rearrangement of the

polymer is the effect of the polymer structure on the structure of the contacting

medium which in this specific case will be water. The properties of liquid water in

the vicinity of solid interfaces have been observed to differ from those in the bulk

phases. This line of reasoning is extended to mean that the structure of water near

an interface will differ from its structure in the bulk; this 'modified' water, referred

to as vicinal water [25], has been studied experimentally and theoretically, and it has

been ascribed physical properties such as density, viscosity, heat capacity, and ion

selectivity which differ from the analogs in the bulk. Furthermore, there is evidence to

suggest that the vicinal structure decays exponentially over a range of 3-6 nanometers

from an interface [26]. This is a rather long-ranged ordering phenomenon and has

been shown to significantly influence biological systems. In the context of the present

work, it would be interesting to determine what the vicinal structure of water is as

captured from a simulation model of the esters and water.

1.3 Objectives

Based on the above considerations of the importance of the interface within the con-

text of biomedical applications, this thesis will attempt to investigate the nature of

the surface (both free and that in contact with an aqueous medium) of an oligomeric

model of polylactic acid using the molecular dynamics method. More specifically,

this work will focus primarily on the molecular-level structure of the ester interface

in terms of the orientation of particular functional groups along the backbone of the

molecule. As discussed above, the nature of the interface, specifically in terms of its

chemical composition (e.g., what chemical species does the interface present to the

contacting medium) which in turn is directly related to the orientational structure

of the constituent molecules. For example, as discussed earlier, the site of hydrolytic
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scission of the ester linkage is the carbonyl carbon, and for this reason, it is logical

to discern the behavior of this functionality. Moreover, of profound interest is the

response of this orientation to a change in the contact medium, as well as any effects,

structural or otherwise, induced in the contacting medium, the latter representative

of phenomena such as those associated with vicinal water. Furthermore, the con-

formational distributions of bond, torsion, and out-of-plane angles will be studied in

order to derive a clearer picture of the molecular geometry in the interface relative to

the bulk. The fluid structure will also be studied by noting the behavior of pair corre-

lation functions in the bulk and interfacial regions. As for thermodynamic properties,

the surface tension of the liquid-vapor and interfacial free energy of the liquid-liquid

interface will be computed, although quantitative agreement with experimental data

is not expected based on the large inherent errors associated with the computations

and the anticipated deficiencies (with respect to predictive capabilities of interfacial

properties) of the potential models used. It is emphasized here that the primary

objective of this work is not to develop a potential model de novo for the materials

studied; rather, one would like to apply an existing model to a novel system, in this

case the ester- and ester-water interfaces. This is not to say that modifications or

additions to existing potentials will not be considered; on the contrary, when needed,

selected models will be modified to conform to experimental observations. Thus, is-

sues concerning selection and validation of suitable models will be initially addressed

in this work.
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Chapter 2

Molecular Dynamics: Theory,

Methodology, Application

2.1 Fundamentals

The molecular dynamics method (MD) is one approach to probing the phase-space of

a many-body system by exploiting Newton's physics, although the implementations

are invariably formulated in a Hamiltonian sense (more on this below). By generating

phase-space trajectories of a defined system, a set of macroscopic properties is derived

from the trajectories as raw data [27]. The phase-space trajectory is computed using

classical mechanics and analyzed via concepts of kinetic theory, statistical mechanics,

and sampling theory. Along the way, classical nonlinear dynamical theory must be

invoked to address issues of ergodicity, and the testing of the trajectory is left for

conservation principles. The following sections briefly address these topics, and the

reader is referred to the relevant literature for more detailed discussions.

2.1.1 Classical Mechanics: Newtonian and Hamiltonian Dy-

namics

Fundamentally, MD is numerical integration of Newton's equations of motion; how-

ever, as the next section will describe, based on the concept of a 'constant of the
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motion', the Hamiltonian formulation is more illustrative. Thus, descriptions of both

perspectives are given. In Newtonian dynamics, the force on a particle 'i' is related

to its translational motion - namely the acceleration, via Newton's' Second Law:

Fj = mij (2.1)

where m is the constant mass of the particle and the acceleration is given as:

'd d2 r (2.2)
dt2

in which ri is the vector giving the location of particle 'i' relative to a laboratory

fixed reference frame [27]. For N particles, Newton's second law gives 3N second-

order, ordinary differential equations of motion. Finally, Newton's third law gives the

relation between the forces between a pair of particles in isolated system; use of this

concept is central to the computational approach to MD as will be discussed below.

For the present, the third law is:

Fj = -Fj (2.3)

where 'i' and 'j' are particles in an isolated system (no external forces acting on

system constituents) [27].

Now, since the functional form of Newton's second law is time-independent, e.g.

the form is invariant under time translations, there is expected to be a function of

positions and velocities (or momenta) which is conserved [28]. This function is called

the Hamiltonian, which is taken to be a function of the particle positions and momenta

'pi

P1 = mi (2.4)

For isolated systems, the Hamiltonian is identically the total system energy, kinetic

plus potential; thus, the Hamiltonian becomes more specifically:

38



H(rN, pN)
1

- 1 p 2 + U(rN) =Etot2m
(2.5)

To obtain the equations of motion, one first takes the total time derivative of the

general Hamiltonian:

dH OH . OH
dt 19pi i Ori

OH
+

at
(2.6)

With no explicit time dependence for H , the last term is identically zero, and the

total time derivative vanishes giving the general result:

dH _OH

= t -. idt Opi
OH .
O ri 0

Taking the total time derivative of the isolated-system Hamiltonian gives:

dH 1 OU.
dt m i i ri

Comparing Equation 2.7 and Equation 2.8 gives:

OH

Opi
pi- - i
m

OH OU
Or i Ori

(2.7)

(2.8)

(2.9)

(2.10)

The partial derivative of H with respect to the particle positions is obtained by

substituting Equation 2.9 into Equation 2.7 which gives:

-n +
OH

ari ' ri = 0 (2.11)

O H
( j + OHy ) - is = 0 (2.12)

Or ,

With all velocities independent of one another, each term in parentheses vanishes,
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giving for each particle:

- _i (2.13)
Ori

Thus, Equation 2.9 and Equation 2.13 are the Hamiltonian equations of motion,

and for a system of N particles, give 6N first-order differential equations which are

equivalent to the 3N second order Newtonian equations [27]. Thus, both descriptions

give the same dynamics albeit in different ways. The Newtonian perspective gives

rise to motion as a result of applied forces, while the Hamiltonian description does

not include forces explicitly; motion occurs in a way to conserve the Hamiltonian.

Note in passing the assumptions leading to the Hamiltonian results. Firstly, for the

present derivation, an isolated system was employed, although more useful systems

would allow energy and mass transfer across boundaries. Even still, the Hamiltonian,

which would then include extra terms to describe these interactions, would be a

conserved quantity. It would not necessarily equal the total system energy, which

would not necessarily be a constant as a result of the interactions. This is an important

point to note as extended Hamiltonian formulations of MD are used to construct

simulations which generate phase-space trajectories in various ensembles (NPT, NVT,

NPH, etc). These will be addressed below. Secondly, the relation between velocities

and momenta is given by a relation such as Equation 2.9. Finally, there is no explicit

time-dependence attributed to the Hamiltonian itself [27].

2.1.2 Sampling of Phase Space: Ergodicity

The previous sections described the machinery which allows one to compute a phase

space trajectory for an N-body system in general terms. It should be kept in mind

that although a system has an inherent total phase space available to it, external

conditions imposed on the system (e.g.. isolation, constant temperature or pressure)

limit the volume of this space which is available to any given phase point. Thus, it is

this restriction of phase space which is the mechanism by which external constraints

are related to specific values of macroscopic state variables [27]. Now, the phase-space
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trajectory is used to obtain macroscopic observables by defining the experimentally

observable property Aobs in terms of the instantaneous value dependent on the phase

point of the trajectory (the set of momenta and positions) A(F(t)) as:

1 tobs
Aobs = < A >time < A(pt)) >time = limjtobsbI A(r(t))dt (2.14)

tobs 0

where tobs is a sufficiently long time interval. Since the upper limit of integration

cannot be extended to infinite time, a long finite time is used for the averaging, and

the time average is written as

1 robs
Aobs =< A >time - E A(F(T)) (2.15)

Tobs =1

where Tobs is a large, finite number of time steps used for the numerical integration

of the equations of motion.

The question now is whether the system trajectory will traverse a sufficient region

of the available phase space over which there is a significant probability density to give

satisfactory time averages within a tractable computational time. Thus, the problem

is now whether the system trajectory samples sufficiently the relevant volume of phase

space.

This is relevant to the notion of system equilibration since the system must evolve

from a non-equilibrium to an equilibrium state as it moves along a trajectory. De-

pending on the initial conditions and the nature of the trajectory, the final equilibrium

state may or may not be reached; it is this equilibrium state over which the time av-

erages must be taken. Thus, the concepts of nonlinear dynamical theory must be

applied to describe the trajectory, and ultimately, place necessary criteria on it to

substantiate the MD approach.

Without delving into the details of dynamical theory, suffice it to say that the

standard assumption made about the nature of MD trajectories is that they are

ergodic (or undergo ergodic motion). That is, over a sufficiently long time, each phase

point passes through all locations of the constant-Hamiltonian surface. Although
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this is not a rigorous definition of ergodicity, and in fact, leads to an inconsistency

in the classification of real dynamical systems [27], the modified use of the ergodic

hypothesis is that the time average introduced above is equivalent to an ensemble

average, the ensemble defined as the collection of identical systems (identical in terms

of the external constraints imposed on each) each representing a distinct microscopic

state in phase space. Now, instead of following a single point as it moves along the

ergodic trajectory (visiting all configurations of phase space), the ergodic hypothesis

allows one to look at a single 'snapshot' of all the members of the ensemble (each

representing a distinct point in phase space), and taking the macroscopic observable

property as an average over the instantaneous value of each member. Statistical

mechanics gives observables as ensemble averages of instantaneous properties [13].

Thus, the macroscopic observable Aob, can be set equivalent to the ensemble av-

erage

Aob = < A >ens < AIPens > Z A(F)pens(F) (2.16)
r

where Pens is the phase-space probability distribution for the given ensemble, the

ensemble being determined by the external constraints on the system. Along an MD

trajectory, each configuration generated via numerical integration of the equations of

motion can be considered a 'distinct' state, or member of the ensemble, captured at

a given time (with the initial time being equal for all configurations) , thus allowing

for averaging static properties such as temperature, pressure , structure factors [13].

It should be noted that one can question the validity of the assumption that a

finite interval time average is equal to the infinite time average, an equivalence which

is central to the MD method and introduced above. Pure statistical mechanics avoids

the calculation of time averages by resorting to the ensemble picture; but MD attacks

the problem directly by computing a time average for a finite system over a finite time.

By the Birkhoff-von Neumann theorems [29, 30, 31, 32], the assumption is valid under

circumstances where a limiting average value < A > exists for all trajectories and

that for any trajectory, the average < A > is independent of the initial conditions
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[27]. This is always taken to be the case for MD trajectories.

Finally, it is mentioned in passing that the stability of the trajectories also is

important in terms of the ability of the system to move from non-equilibrium to

equilibrium states. Note that an ergodic trajectory can be stable with the resultant

trajectory of a perturbation remaining close to and in close correlation with the

parent trajectory. Thus, ergodicity does not tell whether a system starting from an

arbitrary non-equilibrium state will irreversibility tend towards equilibrium states.

For this evolution to occur, the trajectory must be unstable to perturbations. The

reader is referred to the literature for details into the stability analysis of various types

of trajectories, but it is mentioned here that for system evolution towards equilibrium,

all of phase-space must be accessible, and the trajectory motion must be mixing so as

to allow divergence of a perturbed trajectory from the unperturbed parent trajectory

[27].

For details on statistical thermodynamic properties and ensemble theory, the

reader is referred to the plethora of treatises available in the literature.

2.2 Integration Schemes

2.2.1 Introduction: Finite Difference Methods

The set of 3N ordinary second-order differential equations representing the equations

of motion in MD are invariably solved via finite difference methods. The general

idea is that given particle positions, velocities, and other dynamic information at a

particular time t, the same values are determined for a later time, t + 6t to a desired

level of accuracy (the desired level of accuracy is an ambiguous term as there will

ultimately be a level of inaccuracy which must be accepted due to machine round-off

and algorithmic error effects; these will be addressed below). The difference equations

are solved step-by-step using a timestep that is significantly smaller than some char-

acteristic time-scale of the system such as the time required for the molecule to move

a distance equal to one molecular length. The time step is also determined by the
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numerical algorithm chosen via requirements on the stability of the integrator. There

are a host of classes of methods such as Runge-Kutta, predictor-corrector, leapfrog

methods for solving finite difference equations. Selection from among these is facili-

tated by examining some desirable traits for a successful simulation algorithm. First,

the algorithm should be fast and require little memory. Second, a large timestep

should be applicable without incurring too large an error. Third, it should closely

describe the classical trajectory. Fourth, it should be time-reversible and satisfy the

conservation laws for energy (more rigorously, the system Hamiltonian) and momen-

tum. Finally, it should be simple in form and straightforward to program [13].

For MD, some of these requirements are more severe than others. In terms of the

speed requirement (1), as the force/energy computations are the most cpu-intensive,

the absolute speed of the integration algorithm is not of too much concern. As for the

last requirement, simplicity is advantageous in terms of the amount of data required to

be stored, such as coordinates, velocities, and perhaps accelerations (depending on the

algorithm). There is little value in programming complicated integration algorithms

for an MD application when the overwhelming time is spent in the force/energy

calculations. Thus, a simple method is much preferred over a more cumbersome one

[13].

The major issues concerning the integration algorithm of choice are its ability to

reproduce faithfully the classical trajectory associated with the initial conditions of

the simulation, its stability, and the size of the time-step allowed by the algorithm.

These issues all are tied together by the concept of truncation and round-off errors

encountered during an MD run [27].

Truncation errors refer to the accuracy with which a finite difference method

approximates the true solution to a differential equation. For example, when the

finite difference is represented by an Taylor expansion (as is done in the more widely

used methods), the local truncation error is taken to be the order of the first non-zero

term neglected in the expansion. Thus, for a Taylor expansion such as [27]
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dx 1ld 2 x(t) dox (t)
x(t + At) = x(t) + -- At + I dt) At 2 + - At +3 ± (2.17)

dt 2 dt2 31 dt3

which is truncated as follows,

dx
x(t + At) = x(t) + -At + O(At 2 ) (2.18)

dt

the local truncation error is second-order in the timestep (as shown).

In general, an algorithm whose truncation error goes as (At)n+' is considered an

n'th-order method. Since the magnitude of At is standard MD units is such that

At < 1 , for a given timestep, higher order methods have a smaller local truncation

error than lower order methods. Note that truncation error is an inherent entity; it

is present in every approximate finite difference algorithm regardless of the manner

in which the computation is carried out, whether on a computer, calculator, or paper

[27].

A further concept to reckon with is that of global error. Local error is that incurred

during one time step of the calculation, while global error is that accumulated over

the total duration of the simulation run. Local error is used to define the order

of a method, but it is the global error which (being larger) is more important to

acknowledge when considering an algorithm. The global error is generally an order

of magnitude less than the local error as can be shown as follows. For an n-th order

algorithm with local truncation error [27]

lite = kxn+lAtn+l (2.19)

where k is a constant and Xn+ 1 equals the (n+1)'th derivative of x. Over M

integration steps, the global truncation error is taken as the sum of the individual

local errors:

M M
gte = k x+ kAtn+1 +1 (2.20)

i=1 i=1
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Although the derivatives in the sum will vary from iteration to iteration, applying

a mean-value theorem, the M-term sum can be replaced by M times the average to

give

gte = kAtn+1M < xn+1 > (2.21)

The number of timesteps M is related to the timestep by M = t/At, so the global

error becomes

tgte - kAtn~ A < xn > -kAtnt < xn+ > (2.22)

showing that global truncation error does indeed vary as (At)" while local error

goes as (At)n+1 [27].

Along with the truncation errors introduced by the approximations in the finite

difference method, MD suffers from round-off errors resulting from the manner in

which the calculations are performed. Specifically, round-off errors is influenced by the

number of significant figures maintained at each step, the order of specific calculations,

and by approximations made in calculating functions such as exponentials or square

roots (for example, using tabulated values for a square-root or exponential function

in the interest of time-saving) [27].

Both global truncation and round-off error depend on the timestep At chosen for

the integration, and so for a chosen algorithm, one must manipulate the magnitude of

At in order to achieve acceptable error. Complicating the matter is the fact that global

truncation error (gte) and global round-off error (gre) vary oppositely to changes in

timestep. Global truncation error decreases with decreasing time step as discussed

above. Global round-off error decreases with increasing timestep (for a given total

simulation time). This is because global round-off error depends on the total number

of calculations, and for a given total time, increasing the time step means decreasing

the number of times a calculation is performed (and thus a round-off error is incurred);

thus, globally, the round-off error decreases with increasing time step [27].

In application, a time step that yields the lowest total error is usually too small
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to be useful, giving rise to too much time required for a simulation. Consequently, a

larger time step is used with the acceptance of a level of error within desired bounds,

the value being chosen via test calculations. The measure of the acceptability of the

time step is now tied to another concept, the stability of the integrator.

The stability properties of a method describe the manner in which the algorithm

propagates truncation and round-off errors iteration to iteration. An unstable algo-

rithm amplifies errors step to step, whereas a stable algorithm does not. Realistically,

and practically, the algorithms used for MD simulations are invariably conditionally

stable - stable for certain time steps, but becoming unstable at a certain 'critical'

value (thus leading to perhaps numerical overflow in the computation) [27].

For linear ordinary differential equations, one can perform analytic stability anal-

ysis; however, for the non-linear equations encountered in MD, analytic stability

analysis cannot be used [27], and so one can resort to approximate methods such as

linearizing the differential equations, or applying Lyapunov methods [27]. As these

are generally clumsy when applied to the equations of motion used in MD, a nu-

merical analysis using various values of At is used. Specifically, a series of short test

runs (all at constant total simulation time) are performed with varying timesteps; the

limiting value of At beyond which the algorithm becomes unstable is identified, and

a timestep within this limit is chosen such that the integration is stable and allows

conservation of the relevant Hamiltonian [27].

2.2.2 Integration Algorithms

There exist a variety of numerical methods for integrating the equations of motion if

the only concern is to arrive at a solution in and of itself. However, with MD, one is

concerned with computational economy, an algorithm which allows a large time step

so as to probe more of phase-space in a shorter time. On this basis, many schemes,

although stable and robust, can be neglected. This is due to the fact that algorithms

such as Runge-Kutta or adaptive timestep methods, which have good stability char-

acteristics, require multiple force calculations per interaction per particle. As the

force/energy calculation is the heaviest load in the MD prescription, these methods
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are overall less desirable, and in general, any integration method needing more than

one force calculation per time step is wasteful unless it offers a commensurate increase

in the timestep allowable while maintaining the same accuracy [33].

Based on the above considerations, two classes of method have attained widespread

use, a low-order leapfrog technique and predictor-corrector approaches. As the MD

work presented in this work exclusively uses the velocity Verlet algorithm (with the

RATTLE formalism) and variants thereof, the next section describes this algorithm,

an example of leapfrog type methods, and the reader is referred to the literature for

discussions of other methods [27, 33].

The Verlet Algorithm

The simplest widely used finite difference method is the Verlet algorithm [27]. It is

derived simply from the combination of two Taylor series for the position, one for t

to t + At , and the second for t to t - At. The first expansion is:

_ dx l d2 x(t)2 ± d3 x)3 O(t) 2.)x(t + At) - x(t) + -At + At, + 1 At + O(At4) (2.23)
dt 2 dt2  3! dt3

and the second for the reverse evolution is:

x(t -At) = x(t) - dAt + I dX(t)At2 - - 3X(At3 + O(At 4 ) (2.24)
dt 2 dt2  3! dt3

Adding the above two equations eliminates the odd-order terms giving,

d2x (t)
x(t + At) = 2x(t) - x(t - At) + dt2 At 2 + O(At 4) (2.25)

This is the position Verlet algorithm with a local truncation error which goes as

(At)4 and hence a global error of third order in the timestep [27]. As the velocities

are not present in this prescription, various schemes to estimate the velocity have

been applied. For instance, the velocity at the half-step is estimated as:
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v(t + At/2) - [x(t + At) - x(t)] (2.26)
At

or first-order central difference estimator used by Verlet originally [27],

1
v(t) = [x(t + At) - x(t - At)] (2.27)

2At

The Verlet algorithm as described here has several drawbacks [34]. The velocities

are not explicitly included in the integration scheme and thus required is extra effort

and/or storage to compute them (as mentioned with the approximating schemes

above). Starting the algorithm is difficult since the values of the positions are required

from the previous steps as well as the current; initial conditions [ x(O),v(O) ] are not

sufficient to begin a calculation, and invariably something special must be done at the

beginning of the simulation. Furthermore, because of this dependence on the previous

time step, it is difficult to restart the simulation with a different time step. Finally,

precision is difficult to maintain since quantities of differing orders of magnitude are

added at each step (Andersen). Consider that in Equation 2.25, quantities of order

(At)0 and (At)2 are added, the latter involving the force. With the timestep being less

than unity (in the standard units ), this means that only a few significant figures of the

computed force are used with a resultant inevitable deterioration in precision. Note

also that it is difficult to implement the extended Hamiltonian methods for constant

temperature and pressure, velocity scaling methods for constant temperature MD,

and some non-equilibrium MD schemes which require velocities at each timestep [34].

In response to these disadvantages of the position Verlet algorithm, the velocity

Verlet scheme is popularly implemented [35]. The velocity Verlet equations are:

x(t + At) = x(t) + dxAt + t2 (2.28)
dt 2 dt 2

(t ±At) (t) + At( dX(t) + d2X(t + At) (2.29)
2 dt 2  dt 2

The local error is third order in timestep [34]. The global error is of order At 2,
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the same as for the position Verlet algorithm to which it is equivalent. With the

velocity formulation, one can start with the positions and velocities at time t and

compute trajectories forward with no difficulties. This scheme explicitly includes

velocities making extended Hamiltonian and velocity rescaling algorithms more easily

implementable. Precision is increased on a given machine since terms of order At and

At2 are added (for the positions), and At0 and At' for the velocities [34].

Algorithms for Molecular Systems with Internal Constraints: SHAKE and

RATTLE

The traditional Verlet algorithms are not applicable to systems with internal con-

straints such as bond-lengths or bond-angles (these are further classified as holonomic

constraints [28]). For such systems (and for the molecular models used in this work),

algorithms derived from the Verlet schemes have been developed. The two commonly

used methods are SHAKE [36] and RATTLE [34], the former being analogous to the

position Verlet algorithm for systems with constraints, and the latter improving on

the deficiencies of the original. The following is a brief discussion of SHAKE and

RATTLE without delving into the rigorous mathematics of the methods. The reader

is referred to the literature for derivations and further discussion.

The SHAKE algorithm, as mentioned, was introduced by Ryckaert etal to treat

molecular systems with internal constraints while maintaining the dynamical descrip-

tion in Cartesian coordinates. The forces are given as [36]:

dsb(t) - f[x(t)] + g[x(t),M(t)] (2.30)
dt

where f contains all the forces arising from intermolecular and intramolecular n-

body interactions, and g contains the constraint forces. The Verlet scheme for this

differential equation is:

x(t + At) = 2x(t) - x(t - At) + At 2(f [x(t)] + g[x(t), (t)]) (2.31)

Since the intramolecular constraints would eventually be violated due to the in-
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exactness of the algorithm, the authors stipulated the use of a gs function (that is

an approximation to the exact g) requiring that the coordinates at the next time

step exactly (or to within a preset tolerance) meet the constraints. The requirement

is satisfied by the proper choice of time-dependent Lagrange multipliers which are

determined iteratively so as to ensure the new configuration satisfies the constraints.

The SHAKE algorithm is thus [36]:

x(t +At) = 2x(t) - x(t - At)+ At 2(f[x(t)] + gs[x(t),±(t)] (2.32)

where gs is the SHAKE approximation for the constraint force.

SHAKE suffers from the same maladies as the position Verlet algorithm. A 've-

locity' form of the SHAKE equations such as:

At2

x(t ± At) = x(t) + (t)At + 2 (f[x(t)] + g[x(t), <t)]) (2.33)

-(t+At) = 1(t) + (f[x(t)]+g[x(t), (t)]+ f [x(t + At)]+ g[x(t + At)(t + At)])
2

(2.34)

is inconsistent as an iterative procedure since the above two equations suggest

that one needs to know ±(t+ At) before calculating g(t), but needs g(t+ At) in order

to get 1(t + At) [34]. RATTLE overcomes this obstacle by proposing two different

approximations to the exact g, one for the position equation and the second for the

velocity equation [34].

The position is given as [34]:

At 2

x(t + At) = x(t) + (t)At + 2 (f[x(t)] + gRR(t)) (2.35)

with the gRR(t) being selected to make sure the position constraints are met

The velocity is computed with [34]:
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At
1(t + At) =W1) + 2 (f [x(t)] + YRR(t) + f[X(t + At)] + gRV(t)) (2-36)

where the forces at the next time step are computed using the new positions, and

the YRV is another approximate constraint force function which makes sure that the

new velocities satisfy the time derivatives of the constraints exactly.

Thus, RATTLE can be used to integrate the equations of motion for systems with

molecular internal constraints. It computes both positions and velocities one step

forward with a knowledge of the positions and velocities at the current time step

only, without having to resort to earlier data. The coordinates satisfy the constraints

at each time step, the velocities also meet constraint conditions at every step, and

the precision is comparable to the velocity Verlet algorithm. The algorithm incurs

second-order global error and is easily applicable to extended Hamiltonian meth-

ods. Although RATTLE requires two force calculations per iteration compared to

SHAKE's one, since the bulk of the cpu time is spent on the force/energy calcula-

tions, the difference is virtually negligible [34]. The RATTLE integrator is used for

the current research purposes.

2.3 Extended Hamiltonian Methods

In the following sections, brief descriptions of the approaches used to probe dynamics

in the canonical and constant temperature-constant pressure ensembles are given. A

further review for constant temperature and pressure methods is given in the reference

by Andersen et al [37].

2.3.1 Constant Temperature Methods

Stochastic Methods

From a statistical mechanical point of view, the physical system corresponding to

the canonical ensemble is one in thermal contact with a heat bath/reservoir allow-
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ing random interactions of the system particles with particles of the bath. In this

manner, there is an interchange of energy across system boundaries. In Andersen's

method [38], the velocity of a randomly selected particle is replaced with a value from

the appropriate Maxwell-Boltzmann distribution; this corresponds to a collision event

and subsequent energy transfer between the thermal bath particle. The system under

study continues to move along a constant energy surface until the next 'collision' at

which point it jumps to another constant-energy hypersurface. This allows the system

to sample regions of phase-space in a Markov fashion, and the limiting probability

distribution of the trajectory is the canonical phase-space density. Hence, the ran-

dom velocity changes introduce the stochastic element which effectively facilitates the

sampling of phase-space (this is in much the same philosophy of hybrid Monte Carlo

techniques used in polymer dynamics simulations - see Chapter 3 for a discussion of

Hybrid Monte Carlo as applied to the current research work). The collision frequency

is determined by selecting time between collisions from a Poisson distribution cen-

tered about a desired mean collision time. As for the frequency at which collisions are

made, if collisions occur infrequently, kinetic energy fluctuations will occur slowly and

in much the same manner as conventional MD. With frequent collisions, the energy

fluctuates dramatically, and the systematic fluctuations are overpowered by those as-

sociated with the underlying collisions. To simulate a volume element in a real fluid

in thermal contact with some sort of heat bath, Andersen proposes a collision rate

[38]

AT
fcossion = 1 2  (2.37)

where AT is the thermal conductivity.

Instead of altering the velocity of a single particle, 'massive' stochastic collisions

can be used to change the velocities of all particles at once; the collisions occur less

frequently and at equally spaced intervals [39].

Heyes [40] proposes a scheme in which all particle velocities are rescaled and an

acceptance/rejection criterion is applied to probe phase-space.
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Note here that the above methods do not begin with a well-defined Hamiltonian

and thus are not as rigorous as extended Hamiltonian methods in averaging for equi-

librium properties.

Extended Hamiltonian Methods

Extended system methods treat constant temperature simulations by introducing an

extra degree of freedom representing the external heat reservoir to the Hamiltonian

and carrying out a simulation of this extended system [13]. The extended Hamiltonian

is conserved (the extended system is essentially an isolated system), and the dynamics

of the original physical system probe the canonical phase-space. The extra degree of

freedom is denoted by s and has a conjugate momentum ps The real particle velocities

are scaled by s as

v = si = s(p/m) (2.38)

The potential energy associated with s is

U, = (f + 1)kBTIns (2.39)

where f is the number of degrees of freedom of the actual system and T is the

desired temperature. This choice of potential energy allows the canonical ensemble

averages to be recovered [41]. The kinetic energy associated with s is taken to be:

KE = Q2 PS (2.40)
2 2Q (.0

in which Q is a thermal inertia parameter with units of (energy)(time)2. The

extended Hamiltonian is:

H, = KE + KEs + U + U, (2.41)

with the extended system density function begin microcanonical (as alluded to

earlier)
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6H - E8 )
PNVE,(r, p, s,ps) =f drdpdsdp8 (H8 - Es ) (2.42)

As Nose shows, by eliminating the variables associated with s, one recovers the

canonical distribution function. The conservation of H, acts as a check on the stability

and accuracy of the algorithm [41].

The thermal inertia parameter, Q is chosen by trial and error so as to achieve

equilibration rapidly without entailing long-lived correlations in energy [41].

The detailed dynamics of the extended system dependes on the value of Q, the

thermal inertia parameter, selected. With small Q values, the s degree of freedom

decouples from the real system, while large Q values result in inefficient sampling of

phase space. The optimum scenario is one in which the time scales for fluctuations

of the physical system and the s variable are of the same order of magnitude. The

frequency for the s oscillation is determined from its equation of motion (generated

from the extended system Lagrangian) [41]:

2

Qg = Pi (2.43)
i mis3 - f+kbTeq

where f is the number of degrees of freedom of the real system (excluding the s

degree of freedom). Assuming the extended system to be in equilibrium, and that s

fluctuates around an average value, < s >, as s = < s > +6s [41]. Combining this

relation for s with Equation 2.43 gives

< S > 2 1 2f kbTq6Q(69) = f kbTeq ( 3> - -) - (2.44)

which is the equation of a harmonic oscillator with frequency [41]

w = kbTe) 1 /2  
(2.45)

Q < s >2

and period,

2 -r Q < s >2 1/2

t - 2ir (2.46)
W ( 2fkbTeq
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The Q value can be chosen such that the oscillation frequency is the same order of

magnitude as the second moment of the frequency spectrum of the velocity autocor-

relation function of the real system. This time scale approximates the time it would

take a sound wave to travel the nearest neighbor distance in the fluid.

It is noted in passing here that other methods such as those of Berendsen et

al, Hoover, and Langevin methods [42, 43] exist and are popular for equilibration

purposes. The reader is referred to the literature for further details.

2.3.2 Constant Pressure Methods

Extended Hamiltonian Methods

A popular extended system method for constant pressure MD is that proposed by

Andersen [38] in which the actual system is coupled to an external variable, V rep-

resenting the volume of the simulation cell. The coupling is considered akin to the

action of a piston of 'mass' W on a container of the fluid, the volume V giving the

coordinate of the piston. Note that this picture is not totally true, as the 'piston'

is not of the usual cylindrical type which contracts or expands the system along one

dimension, but rather, changes in V cause an isotropic change in the system volume

(contraction/expansion) [38]. The piston degree of freedom is given a kinetic energy,

1
KEv = -WV 2  (2.47)

2

and a potential energy,

Uv= PV (2.48)

with P the desired pressure [38].

The constant pressure and constant temperature extended system methods are

generally combined to generate trajectories sampling the constant NPT phase-space.

The extended system variables, also called virtual variables, are related to the real

system variables (q', p , s, V, t') by scaling of the coordinates by V1 / 3 and scaling of
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the time by s as follows (note that the values of the coordinates, qi are limited to

[0,1]),

q' = V1/3qi (2.49)

P'= Pi/V1/1s (2.50)

,t dt
t = - (2.51)

The extended system Hamiltonian is

2 2 2

H + (V113q) + + gkTins + Pv + PeV (2.52)
2miV 2 /3s 2  2Q 2W

The equations of motion are given elsewhere [44]. Importantly, the averages of

functions of p', q', andV over the extended system trajectory are equivalent to equi-

librium properties of the constant NPT ensemble.

The choice of the pressure inertial parameter, W, is again governed by a balance of

the fluctuations of the real system and the pressure inertial degree of freedom. A low

value for W will lead to reapid box size oscillations that are not damped efficiently

by particle motions. A large value explores volume-space sluggishly, and an infinite

value retrieves conventional MD. To simulate a small volume element of fluid, again,

the time scale for box-size fluctuations should be close to the time needed for a sound

wave to traverse the simulation box length [38].

Again, the attractiveness of this method is that one has a well-defined Hamiltonian

function which is a constant of the motion over the microcanonical extended system;

this property is useful for checking the stability and accuracy of the algorithm as well

as computing equilibrium NPT properties.
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2.4 Molecular Dynamics: Further Issues

The previous sections have introduced the reader to some of the fundamental concepts

associated with the MD method. From an implementation perspective, there are a

host of so-called 'tricks of the trade' that are applied within specific MD applications.

These techniques are used to expedite the computations and/or, address some of

the obstacles encountered during implementation. Ideas such as periodic boundary

conditions, minimum image convention, neighbor lists and linked cells, lookup tables,

shifted-force potentials, and techniques for long-range interactions (just to mention a

few) are thoroughly reviewed in the extensive literature describing the MD technique

and will not be addressed here. Furthermore, aspects of parallel processing and

the implementation of MD within this framework are not discussed here. Parallel

methods were not adopted for the current research although it is strongly felt that

such methods would certainly have benefitted the computations. Larger system sizes

would be possible, a strong advantage for interfacial simulations which suffer from low

statistical precision (or require very long simulation trajectories for proper statistics).

This is naturally a result of the fact that only particles at the interface contribute

to its properties, and for a given system, the number of particles at the interface is

much less than in the bulk phases.

Before concluding this chapter with a discussion on forcefields, we mention that

MD is completely deterministic approach to generating phase-space trajectories. There

is a temporal correlation between particle positions, and this is the mechanism which

yields a dynamic picture of the system. On the other end of the spectrum are Monte

Carlo techniques which generate trajectories via stochastic events; each phase point is

then determined by the phase point before it (on any given trajectory), and the whole

process is termed Markovian. Both the totally deterministic and totally stochastic ap-

proaches have their benefits and drawbacks, and of course, there are hybrid methods

which try to exploit the advantages of both extremes.

Molecular dynamics suffers from the limitations of computational hardware, namely,

speed and storage. Thus, studies are generally performed on system sizes ranging in
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the 102 to 103 particle number range, although Swope et al report a simulation study

for 106 particles. Because of speed limitations, short-lived phenomena are generally

targeted for study; these include events on the timescale of 100 to 1000 picoseconds.

The characteristic relaxation for relevant phenomena must be small enough so that

several relaxation times are sampled over the total simulation duration. Note that

this limitation, however, MD is suitable for studying fast events which may not be

accessible experimentally, and allows a test of theories for these types of phenomena.

2.5 Interaction Potentials

To understand interaction potentials and their place within the MD approach, one

must begin by examining the non-relativistic time-independent Schrodinger, equation:

H I(R, r) = ET(R, r) (2.53)

where H is the quantum mechanical Hamiltonian operator, T is a stationary wave-

function, and E is the energy eigenvalue associated with the system state IF . Note

that rigorously, the complete description of a molecular system would be given by a

relativistic, quantum mechanical model of a system of particles, albeit the solution

of such a problem would be a formidable task [45]. Unfortunately, as there currently

exists no full relativistic quantum mechanical theory to suitably describe molecular

systems, the starting point is taken as above; in the final analysis, classical methods

such as MD and molecular mechanics incorporate quantum and relativistic effects

via the empirical data on which they are in part based. Referring back to Equa-

tion 2.53, the wavefunction T depends on the nuclear and electronic coordinates. As

this equation is essentially unsolvable in a practical and exact sense for any but the

smallest systems, approximations are invoked to allow a tractable solution. The clas-

sic approximation in this case is that of Born-Oppenheimer [46] which exploits the

disparity in the nuclear and electronic masses, and subsequent differences in the time

scales of their motions, to decouple the nuclear and electronic motions. This leads to

two separate equations describing the dynamics of the electrons and the nuclei. The
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electronic motion is given by [47]

Hejecpeeec(r : R) = Eeieceiec(r : R) (2.54)

where the electronic wavefunction now depends explicitly on the electron coor-

dinates and parametrically on the nuclear coordinates. This is akin to solving for

the dynamics of electrons within the field of stationary, heavy nuclei (the Born-

Oppenheimer approximation). Importantly, the energy defined here is a function of

the nuclear coordinates only, and is termed the potential energy surface [47].

The nuclear motion is then given by [47]

HncoD(R) = Enuc(P(R) (2.55)

See Appendix A for a more detailed discussion of the quantum mechanical aspects

and definitions of the operators introduced here (also given is a brief introduction to

applied quantum mechanical methods used in the work presented in Chapter 6).

Ab initio quantum mechanics deals with the solution of the electronic equation,

the computation the electronic energy as a function of nuclear coordinates. Also

available for this goal are semi-empirical methods which approximate the integrals

generated within the mathematical framework of ab initio schemes by empirically fit

functions [48].

Now, to obtain a dynamical picture of the molecular system, one can solve for the

potential energy surface, Equation 2.54, and then solve the nuclear equation for the

dynamics of the nuclei on this surface. But since the computational cost to derive the

potential energy surface is immense (especially for practical systems), some empirical

potential is fit to the potential energy surface (and/or in part to experimental data)

and instead of solving the quantum dynamical equation for the nuclear dynamics, one

takes a classical approach to the nuclear motion, thus arriving at molecular dynamics.

Newton's equations of motion,

dU d2 R
= m (2.56)

dR dt2
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are solved for the nuclear dynamics. Note here that central to the method is

the empirical (or semi-empirical) function, U, fit to the underlying (true) potential

energy surface. The function U is the forcefield (or interaction potential, or potential if

encountered in the MD literature). It defines the coordinates in which the dynamics is

framed, gives the functional form of the equations describing the physical interactions

within the system, and proposes a set of parameters for the functions which yield the

best fit of the forcefield to the potential energy surface [48].

Concerning the functional form of the interaction potential, several comments

must be made. For a general N-particle system, the potential energy is a complicated

entity composed of a progression of many-body interactions as [13]

U = E 1(ri) + Z 1 u2(ri, rj) + E E Z u3(ri, rj, rk) + - (2.57)
i ~ i j>i i j>i k>j>i

The first term represents the interaction of each particle with an external field.

The second term is the two-body interaction, or the pair potential. This turns out

to be the most important contributor in terms of computational implementation. An

example of this type of interaction is the Lennard-Jones pair potential which realisti-

cally describe the repulsive, close-range forces and the longer ranged dispersion/van

der Waals interactions [13]. The attractive long range tail arises from the electronic

correlation effects, while the steep short-ranged wall is due to overlapping of electron

clouds. The third term is the three-body, or triplet interaction term. The three-body

energy is documented to account for up to 10 percent of the potential energy (in

lattice and liquid systems), and so these contributions are fairly significant. Higher

order terms are generally taken to be negligible, although in long-chain molecular sys-

tems, intramolecular interactions such as torsions and improper torsions (out-of-plane

angles) can be considered to be a special type of four-body interaction.

Despite the acknowledged contribution of three-body effects in simulations, these

are not universally included in computations because of the high cost incurred by

the sum over triplets. In short, the trade off between including these contributions
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and computational time is one that is weighed case by case. It can be said that the

two-body interaction can then be considered an 'effective' potential, effective in the

sense that it includes the three-body influence [13]:

U = E u(ri) + EEue f (ri, rj) (2.58)
2 i j>i

It should be noted that as a consequence of including higher order effects in the

effective pair potential, there may be incurred a density and temperature dependence,

whereas the inherent two-body interaction does not depend on thermodynamic state

[13].

Molecular forcefields include two types of coordinates to describe the potential

energy surface; the first are internal coordinates such as bond distances, angles, and

torsions and the second are non-bonded distances defining the dispersive and elec-

trostatic interactions. The functional forms for each type of interaction run over a

gamut depending on the philosophy espoused by the developer of the forcefield (just

consider the many commercial forcefields available and focus on the diversity in the

functional forms of the internal coordinates used). These can be simple quadratic

forms to higher order polynomials to Morse functions, Fourier expansions, and the

above-mentioned Lennard-Jones pair potential. The forcefield attempts to describe

an entire class of compounds with the same functional form with a high degree of

accuracy in terms of reproducibility of experimental and theoretical observations.

This section concludes with a final note concerning forcefields. The forcefield is an

attempt to understand fundamental quantum mechanical physics in a classical sense

as this is computationally tractable (again, this tractability is a relative concept).

One can question whether the MD approach with its classical description is reason-

able to apply in describing what are fundamentally quantum effects. For example,

consider the classical and quantum harmonic oscillator probability density functions-

for the quantum oscillator, there is a finite probability of finding the particle outside

the region defined by the conservation of its total energy, a phenomenon known as

tunneling. This obviously cannot be captured by any classical approach. However,
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the numerous experimental properties such as vibrational frequencies, vaporization

energies, and crystal structures contain the quantum effects, and as the forcefield

is fitted to these quantities, it in effect has incorporated within it the fundamental

quantum nature of all systems.

2.6 Application of MD to Investigations of Inter-

facial Phenomena: Liquid-Vapor and Liquid-

Liquid Interfaces

Complementary to the host of experimental methods (see Appendix B) currently

applied to the study of interfacial systems, computational approaches to the study

of interfacial systems have established themselves mainly due to the phenomenal

advances in computing resources (hardware and algorithms) over the last decade

[49]. Computer simulations have been used to probe the molecular-level physics

of bulk liquids, and liquid-vapor, liquid-liquid, and liquid-solid interfaces. One of

the earliest applications of computer simulations was the Monte Carlo study of the

benzene-water interface by Linse [50]. This work demonstrated the feasibility of

simulating the liquid-liquid interface in much the same manner as the liquid-vapor

had been studied up to that time; the step forward was in the use of periodic boundary

conditions in all three dimensions. Furthermore, this work showed that the model

potentials used for simulations could indeed reflect the experimental data, particularly

with respect to preserving a two-phase system (in effect, in agreement with observed

mutual solubilities). Finally, Linse showed that with an atomistically detailed model,

one could observe preferential molecular orientation at the interface. In this regard,

Linse reports that the water structure in the interfacial region is distinct from that

in the bulk; the nonpolar benzene phase induces water dipoles to align parallel to the

interface; this structural arrangement is limited to within the interfacial region. This

orientational ordering is much the same as that observed by Gubbins and Thompson

51] for molecular dipoles (e.g., chlorine). Meyer et al [52] explored reported the effect
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of interaction strength between molecules on liquid-liquid miscibility; furthermore,

they also observed that diffusion in the interface is anisotropic.

The study of small-molecule liquid-liquid and liquid-vapor interfacial systems has

since led to a large body of literature on various aspects of these types of systems.

The liquid-vapor interface of water has been the subject of numerous studies probing

thermodynamic and structural aspects of water at this interface; furthermore, these

studies use a wide range of potential models for water. Townsend and Rice [53]

report on molecular dynamics simulations of the water liquid-vapor interface using

the ST-2 and Lemberg-Stillinger-Rahman potentials. The authors compute density

profiles and an liquid-vapor interfacial "10-90" thickness of 3.45 angstroms in good

agreement with an experimental value of 3.30 from X-ray reflectance measurements.

They also report on the water orientation at the interface, claiming that the water

molecules prefer to lie with the HOH bisector in the interfacial plane with one OH

bond jutting out into the vapor phase. Furthermore, the authors report that the bulk

structure (from pair correlation functions computed as a function of position from the

interface) varies with position, transitioning from the bulk tetrahedral configuration

to a dimerized state in the interface.

Taylor et al [54] have performed MD simulations of the liquid-vapor interface of

SPC/E water reporting a bimodal distribution of water orientation at the interface

as well as an increased self-diffusion constant relative to the bulk.

Matsumoto and Kataoka [55] also have reported on MD simulations of the water

liquid-vapor interface. Their simulations use the Carravetta-Clementi potential. The

authors find orientational structuring of water near the interface, with the vapor

side being dominated with water molecules projecting one hydrogen atom toward

the vapor phase, and the liquid side consisting of molecules close to parallel to the

interface with the hydrogens slightly directed towards the bulk liquid. These results

are in much the same spirit of the Taylor et al results.

The same authors also present an MD study of the liquid-vapor interface of

methanol which indicates orientational ordering in the interface with the methanol

methyl group projecting towards the vapor phase, thus allowing for more energetically
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stabilizing hydrogen-bonding in the vicinity of the interface [56].

Zhang et al [57] discuss their MD simulations of the octane-water liquid-liquid

interface. The authors report surface tension values for the octane-water, octane-

vacuum, and water-vacuum interfaces calculated with the CHARMM PARM22b4b

parameter set to be in good to excellent agreement with experimental data. They

also report of water ordering in the interfacial region.

van Buuren et al [58] report a molecular dynamics of the decane-water interface.

They study the sensitivity of the surface properties to the van der Waals parame-

ters, noting the change in the sharpness of the interface with changing interaction

strengths. Furthermore, the authors report an orientational preference for water in

the interface, while the decane molecules orient more parallel with the surface.

Carpenter and Hehre [59] performed molecular dynamics simulations of the hexane-

water interface, reporting much the same flavor of information as mentioned above.

Finally, it is mentioned that more complex systems at interfaces have also been

probed with computational techniques. Harris investigated the free surface of alkane

oligomers using chemically realistic models [60]. Tarek et al [61] studied tetrade-

cyltrimethylammonium bromide monolayers at an air/water interface using MD. Oth-

ers have offered simulations on hexadecane between two nickel plates [623, hydrocar-

bons between impenetrable hard walls [63], and an energy minimized amorphous

polypropylene glass at the free surface and at the polymer-graphite interface [64].
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Chapter 3

Forcefield Selection and Validation

3.1 Introduction

As our research approach involves the simulation of lactic and glycolic acid polyesters

via molecular dynamics, the initial task was to select and validate a suitable force-

field/potential model for the systems of interest. Moreover, as structural properties

such as molecular conformations,orientations of specific groups (e.g. carbonyl oxy-

gens, terminal methyl groups), etc. are of prime interest, the initial requisite crite-

ria for the potential were of a geometrical nature. More specifically, the potential

model was required to reproduce experimental and theoretical geometries and energy

differences between conformational states. Concerning thermodynamic properties,

enthalpies of vaporization were computed using different potential models. These

computations also afforded an opportunity to investigate two approaches for han-

dling long- range electrostatic interactions-the Ewald summation and Reaction Field

methods.

3.1.1 Forcefields

As alluded to earlier, the potential or forcefield model to be input to a molecular

dynamics simulation lies at the heart of the approach. Numerous factors affect the

qualitative and quantitative accuracy of a simulation (for example, system size, treat-
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ment of long-range forces which may lead to long-range structural artifacts, etc.). Un-

fortunately, despite any pains to minimize deficiencies with respect to these factors,

simulation accuracy will suffer due to insufficiencies in the underlying forcefield [65].

With this in mind, some effort was spent to determine a suitable forcefield model for

small molecule esters which could then be extended to longer chain entities such as

oligomers.

It is pointed out that attention has been limited to forcefields focused more on

biological applications. There are a host of forcefields dedicated to studying a myriad

of systems ranging from zeolite structures, metallic liquids, semi-conductor crystals

(and other non-organic crystalline systems), to the simple yet surprisingly complex

liquid, water! The potentials for water represent a class of forcefields in themselves

and will be discussed further below.

Several general observations concerning the nature of forcefields are worth not-

ing. Fundamentally, the forcefield model is an attempt to model the potential energy

surface of an arbitrary arrangement of atoms or molecules (in the case where there

is unambiguously definable molecular entity). The physics it tries to capture is the

motion of heavy nuclei in the electronic field of the much lighter and faster electrons

(within the Born-Oppenheimer approximation). As traditional molecular dynamics

implementations are of a classical nature, quantum effects are not explicitly addressed.

Thus, the dynamics of the system is governed by classical Newtonian dynamics, and

classical statistical mechanics provides the connection from the microscopic system

properties to macroscopic observables. Note that the classical approximation is jus-

tified as long as the thermal de Broglie wavelength,

h
A = (3.1)

(27rmkT)1/2

is much less than some characteristic spacing, a, between system entities [66]. For

instance, in the case of argon near its triple point, A/a is roughly 0.08 and quantum

effects are negligible. In lighter liquids such as neon and helium, with ratios of 0.26

and unity, quantum effects are dominant and warrant care [663. For the present work,
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the thermal de Broglie wavelength is small enough to validate a classical description of

our system. As a simple demonstration, the wavelength can be calculated as follows,

with the shown typical values for relevant parameters. As a stringent test, the lightest

mass, that of hydrogen, is used; the volume is taken to be a that which would be used

for a typical small molecule bulk molecular dynamics simulation

A << 
(3.2)

V1/3 «

A = h (3.3)
(27rmkT)1/2

h = Planck'sConstant , mhydrogen =1.00797amu , T = 298K (3.4)

V = 30nm3  (3.5)

Thus,

A
- = 0.046 (3.6)
L

which is sufficiently small in the limiting case for the current purposes. The

classical approximation (high temperature, high mass limit) is safely applied.

In terms of derivation, first-generation forcefields were all established through

fitting parametrical forms to properties obtained experimentally. These properties

include thermodynamic properties (PVT equations of state, enthalpies of vaporization

and sublimation, etc..), vibrational frequencies, gas-phase molecular structures, and

crystal structures [65]. This reliance on experimental data has plagued the art of

forcefield development since in instances where there is a lack of such experimental

data, the parameterizing and testing of accurate potential energy functions become

impossible [65]. In response to this situation, newer, Class II forcefields have been

introduced. These potentials attempt to generate observables to which functional

parameters are fit through ab initio calculations of equilibrium and non-equilibrium
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energies, forces (first derivatives of the potential surface), and force constants (second-

derivatives). From this approach to forcefield development, one also gains insight to

the functionalform of the various contributions to the potential energy surface [65].

3.1.2 Forcefields Specific for Molecules Containing the Es-

ter Functionality

At the start of this research, very little work on forcefields specific to simple ester

molecules or aliphatic polyesters had been published. The major forcefields proposed

for esters include the OPLS potentials by Jorgensen and coworkers (based on MC

simulations of acetic acid and methyl acetate) [67], a forcefield for conformational

energy calculations on aliphatic polyesters parameterized by Boyd and Smith [68],

the CFF91 class II forcefield [65, 69] and the CVFF [70, 71, 72, 73] forcefield for

organic systems, and the traditional protein and nucleic acid forcefields including

CHARMM [74], AMBER [75, 76], and MM3 [77, 78, 79]. For the present study, the

OPLS, CFF91, AMBER, CVFF forcefields were considered initially, although a host

of other models were available. These four are chosen since they collectively represent

the major types of forcefields used in biomolecular/organic materials simulations (the

nature of these types will become apparent in the discussions of the specific forcefields

presented in the next sections); furthermore, on a more simplistic level, these partic-

ular forcefields were readily available. For comparisons, the test molecule was chosen

to be methyl acetate as experimental data on gas-phase molecular structures and

energetic properties was available readily. It is emphasized here that the forcefield

selected was required to be transferable, and in this respect, highly flexible for simu-

lating ester type compounds. Furthermore, the necessary physics should be included

in the model without necessarily encumbering the description of the energy surface.

Finally, the forcefield should reproduce experimental and theoretical gas-phase ge-

ometries and energy differences between conformational states as well as enthalpies

of vaporization. The fidelity to experimental conformational energetics results is em-

phasized as it is the goal of this work to probe the transitions of long-chain molecules
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between conformational states in response to external environments. In particular,

the transitions due to rotations of the carbonyl oxygen atom are of interest as this is

a relevant site in the hydrolytic degradation of the polymers in vivo.

3.1.3 Optimized Potentials for Liquids Simulation (OPLS)

Jorgensen and coworkers have developed an extensive parameter set for molecular

simulations of a broad spectrum of organic liquids [67, 80, 81, 82, 83]. In considering

this work, emphasis is placed on the fact that the potentials developed in this lab

are for liquids specifically. Up until the time of Jorgensen's work, potentials were

parameterized and tested with crystal data on hydrocarbons and proteins and their

nucleic acids. These were then applied to liquids as well as solids, an extension

whose validity is often quite tenuous. Thus, the work of Jorgensen's groups has

been to develop potentials that reproduce experimental data on liquids (solutions or

organic and biochemical substrates) and which are transferable to molecules outside

the sample used for fitting [80].

Within the OPLS framework, molecules are represented by interaction sites lo-

cated on the nuclei. The interaction energy between two molecular entities is de-

termined by Coulombic and Lennard-Jones interactions between all intermolecular

site-pairs as [80]:

nan qq A-- C--
U(rij) = + - - (3.7)

S rij ri? r

where the sums are over the atoms on different molecules. The first term represents

the Coulombic electrostatic interaction, and the second and third terms account for

the intermolecular dispersion (van der Waals) and repulsion interactions.

A geometric mean (Lorentz-Berthelot) combining rule is used to obtain the pa-

rameters A and C [80]:

Aij = V~iiAjj (3.8)
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Ci C = C ,i~is (3.9)

Alternatively, the A and C parameters can be expressed in terms of Lennard-Jones

c and -as:

Ai = 4eo' 2  (3.10)

C -= 4ciu (3.11)

Hydrogens on carbon are implicit, while those on heteroatoms (atoms other than

carbon) are explicitly considered [80]. This is the united-atom approximation which

has been found to be sufficient in the study of a range of small molecules, bio-organic

compounds, and polymers. In general, the united-atom models are parameterized

("calibrated") to fit the thermodynamic properties of the material under study, and

in particular, it is the Lennard-Jones type interaction parameters o and f that are op-

timized to obtain satisfactory fits to experimental P-V-T data, for instance. Though

it is an attractively simple model, the united-atom approach does have several draw-

backs as noted in the literature [84, 85, 86]. Toxvaerd reports that the P-V-T behavior

of united-atom models of n-alkanes (specifically, propane, pentane, and decane) does

not reproduce the experimental isotherms; the molecular dynamics pressures for the

series of alkanes scale systematically differently than the experments, with the MD

pressure for propane being higher than experiment, and that for the pentane and de-

cane being much lower [85]. The agreement with experiment for all test compounds

can be improved by adjustment of the Lennard-Jones (or other relevant interparticle

interaction parameters) parameters for each liquid; however, this contradicts the ex-

perimental observation that at room temperature, the molecular volume of n-alkanes

increases proportionally with the chain length-a result which indicates that the mean

volume of a methylene group in an alkane fluid is independent of the chain length

[85]. This implies that if a united-atom model were correct, the value of the a pa-

rameter would be consistently the same for all n-alkanes. The fact that the above
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mentioned isotherms scale differently and can be make to agree with experiment by

using different parameter values, argues Toxvaerd, seems to indicate that deficiency

of the united-atom model [85]. Note that this is a deficiency with respect to the bulk

thermodynamic properties of the materials studied, and should not be generalized

to include all properties such as structural and dynamic. Toxvaerd claims that the

united-atom model oversimplifies the underlying details of molecular structure which

add anisotropy to the atomistic picture of liquids; the argument is that the full-atomic

model influences the pressure through the anisotropy, or orientational dependence, of

the site-site interactions-that is, the net interaction between two methylene units be-

comes orientation-dependent when one goes from a united-atom model to an explicit-

atom model [85]. Thus, since a full model would be computationally expensive, he

proposes an anisotropic united-atom model as a better approximation to the actual

molecular physics [85].

Although the concept of an anisotropic united-atom model does have merit in the

molecular physics it attempts to describe, and, as Toxvaerd shows, can faithfully re-

produce the equation of state for linear alkanes, the AUA model has not been widely

adopted, particularly for simulation work of polymeric materials. Boyd and coworkers

have extensively used and studied the application of AUA potentials to simulations

of polymers such as polyethylene and polystyrene with respect to reproducibility of

P-V-T behavior, molecular packing in crystalline environments, and small-molecule

diffusion within such systems [86, 87, 88]. Boyd and Pant report an adjusted set of

AUA potential parameters which result in P-V isotherms and enthalpies of vapor-

ization (as a function of temperature) for polyethylene that are in agreement with

experimental data; the parameter set is an improvement over the initial Toxvaerd

set [86]. As satisfying as the performance of the AUA model is with respect to the

properties of polyethylene, there is no definitive evidence that this is universal. In

a study of small-molecule diffusion in polystyrene, Han and Boyd report that for

the aromatic CH groups used in the potential model, united atom model better re-

produced the cohesive energy density and temperature/specific volume curves; more

specifically, smaller values of the AUA offset distance resulted in better agreement of
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the V-T curve and cohesive density. Thus, for this work, the authors adopted a zero

offset, effectively giving a united-atom structure for these groups [87]. This certainly

seems to indicate that the AUA formalism may not be universally applicable.

After considering the previous thoughts, one must keep in mind that no matter

what pains are taken to reproduce certain experimental observations, there will be

other data that will not be captured exactly by the forcefield model (to be more

precise, one can say that not all properties will be faithfully reproduced to within

some preset tolerance for error). One must decide what propoerties are of interest and

proceed with the model which will afford the most efficient path to studying them. In

the present case, the specific orientations of certain functional groups along a chain

backbone are of primary importance; furthermore, the response of this orientation

to changing interfacial environments is to be investigated. Thus, we opt to accept

the cited deficiencies of this approach and employ it to the studies of orientations

at interfaces. Moreover, the primary goal of this work is not to create a potential

model de novo, and so again, the most expedient approach, to modify existing models,

is taken. Finally, one can note the broad range of commercial and free forcefields

available that employ a united-atom approach with satisfactory results. Thus, as a

matter of simplicity and practicality, the nuclear-centered united-atom approximation

is retained in the OPLS as well as the current research [80].

For intramolecular potentials, the OPLS models only four-body interactions by a

Fourier series in the dihedral angle, q as:

1 1 1
Utorsion(#) = -V1 (1 + cos #) + -V 2(1 - cos 2#) + -V 3(1 + cos 3#) (3.12)

2 2 2

No other intramolecular interactions are considered in the original OPLS forcefield,

and as will be discussed below, this necessitates having to determine parameters for

intramolecular motions to perform molecular dynamics simulations.

Since the parameterization of ester compounds was done after a bulk of data on

parameters for related compounds such as ethers and amides [80, 81, 82] had been
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completed, the Lennard-Jones parameters for the hydroxy and alkoxy oxygens were

adopted from ether oxygens, and the parameters for the carbonyl and methyl groups

were transferred from those for amides. Initial charges were computed via Mulliken

population analyses of 6-31G(d) wave functions for the molecule in its optimized

experimental geometry [67, 80, 81, 82, 83]. Charges were adjusted to yield reasonable

agreement to experimental dipole moments. The final charge values give a dipole

moment of 1.44D for the Z conformer of methyl acetate; the experimental value is

1.72D [67].

3.1.4 AMBER

The AMBER forcefield was developed specifically for molecular mechanical/dynamical

simulations of nucleic acids and proteins [75] following the cartesian-coordinate en-

ergy refinement approach of Lifson and Warshel [89]. This is the second generation

forcefield developed by Lifson and coworkers. A brief description of the forcefield

follows.

The total interaction energy (including inter- and intramolecular contributions) is

[75]:

3 v2 +~ 2:KOUtotal = Kr - req) + 2 Ko(9 - O4) + n E f[i + cos(nb - #$.1-)
bonds angles dihedrals n=1

A-- B-- &] + CJ - D (3.14)
RP - + qj +R - M9]

j<j J 23 23 H -bonds 2R

Bond stretching and bond-angle bending functions are quadratic, allowing suffi-

cient description of the energy surface of slightly strained proteins and nucleic acids.

The third term is a Fourier series representation of the torsional energy. A 6-12

function is used for the non-bond dispersion/repulsion interaction. Electrostatic in-

teractions derive from an atom-centered monopole model, with point charges derived

from fits to quantum mechanical electrostatic potential calculations. Note that a

distance dependent dielectric is used for purposes of including solvation effects when
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water is not explicitly modelled in the simulation. This is to incorporate the polar-

ization effect in attractive interactions (e.g., interactions at shorter separations are

weighted more heavily than those at larger separations). This does not present a

difficulty when including water explicitly as a constant dielectric is allowable (and

more appropriate) and consistent with the same set of charges. A united-atom rep-

resentation for -CH, -CH 2 , and - CH3 units is invoked for computational efficiency

(although the united-atom model yields (D, I maps of alanyl and glycyl dipeptides

similar to those from an all-atom model) [75].

The approach to developing the parameters for this potential model is given here

in brief. The reader is referred to the original paper and references therein for further

details [75]. The fitting procedure is begun by obtaining equilibrium bond lengths

and bond angles from experimental measurements including microwave spectroscopy

and neutron diffraction and from earlier molecular mechanics calculation. Torsional

constants were obtained from microwave spectroscopy, NMR spectroscopic measure-

ments, and molecular mechanics computations. Non-bonded parameters were initially

taken from prior forcefield parameter sets and crystal packing calculations. A par-

tial atomic charge model was fitted to quantum mechanical electrostatic potentials.

These parameters are then optimized via molecular mechanics performed on model

compounds to reproduce structures, energies, and vibrational frequencies [75].

3.1.5 CVFF: Consistent Valence Forcefield

The CVFF forcefield is an intermediate type (diagonal plus some off-diagonal ele-

ments) forcefield developed by Dauber and Osguthorpe [73]. It is a generalized valence

forcefield with parameters for amino acids, water, and other functional groups.

The functional forms for the diagonal terms are:

Bond angle bending, represented via a Morse potential:

Ub = D[1 - e-a(b-bo) 2] (3.15)
b

Bond angle bending:
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E9 = H(0 - 3.)12

The potential energy function for dihedrals, q is given by:

E, = HO(1 + s cos no) (3.17)

The out-of-plane bending is:

(3.18)EX = EHX 2

x

The off-diagonal elements include bond-bond, angle-angle, bond-angle, torsion-

angle-angle, and out-of-plane/out-of-plane coupling:

Bond/bond coupling goes as:

Ebb, = Kbb' (b - bo)(b' - b'0)

Bond/angle coupling is:

Ebo = Kbo(b - bo)(0 - Oo)

Angle/angle cross terms are of the form:

E I = K 9, (0 - 00) (0' - 0',)

Angle/angle/torsion coupling is:

E00, = Koo, (0 - Oo)(0' - 0') cos#

Coupling of out-of-plane angles is:

ZZE Fxx'XX'
x x

The non-bond dispersion and electrostatic terms are:
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(3.22)
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Edispersion = (( 1  - 2(L_)6] (3.24)
r r

Eeec = qqj (3.25)

3.1.6 CFF91: Class II Consistent Forcefield from BIOSYM

Technologies

The CFF91 forcefield is an all-atom, class II forcefield developed primarily from ab

initio data on the quantum mechanical potential energy surface of a sample of model

compounds [65, 69]. The philosophy of this and class II forcefields in general is to

exploit the information available from ab inito methods to complement available ex-

perimental data with the aim of parameterizing quantitative, transferrable empirical

energy functions as well as determining the optimum functional forms for these po-

tentials. Quantum mechanical 'observables' are the computed equilibrium energies,

first energy derivatives, and second energy derivatives (force constants). The energy

derivatives are determined from quantum mechanical calculations on molecules dis-

torted from equilibrium by moving atoms along the normal modes. The forcefield

is an all-atom model with an extensive list of atom types (atomic environments).

The functional form includes several contributions which are given here individually

[65, 69].

The diagonal contributions for bond stretching are given as:

Eb = K 2 ,b(b - bo) 2 + K 3 ,b(b - bo) 3 +K 4 ,b(b - bo) 4  (3.26)

where b is the bond length coordinate and b the equilibrium value.

The diagonal contributions for bond-angle bending are:

E = K 2 ,0(0 - Oo)2 + K 3,0(0 - 00)3 + K 4 ,o(0 - 00)4 (3.27)

The potential energy function for dihedrals, 0' is given by:
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E, = K 1,0 (1 - cos q) + K 2,$(1 - cos 2#) + K 3,0(1 - cos 30)

The non-bond interactions between atoms i and j (separated by at least three

bonds within a molecule) at a separation of r are:

Enb =_ qjq' + c[ *-9r r
3( )6]r

(3.29)

The combination rules for relating the individual atomic parameters to the pair-

wise potential are [65, 69, 90]:

(3.30)(r:)6 + (r;*)6
1 2

2(jeje) 1/2 (r*r)3

[(ri) 6 + (r')6]
(3.31)

The next series of functional forms represent the off-diagonal contributions to the

intramolecular potential energy.

Bond/bond coupling goes as:

Ebb' = Kbb (b - bo)(b' - b') (3.32)

Bond/angle coupling is:

Ebo = Kbo(b - bo)(0 - Oo) (3.33)

Angle/angle cross terms are of the form:

E00, = Koo, (0 - Oo)(0' - 0') (3.34)

Angle/angle/torsion coupling is:

E00r,= Koor, (0 - Oo)(0' - 0') cos (3.35)
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Finally, bond/torsion and angle/torsion coupling are given by:

Egb = (b - b,)[K,,b cos 0+ K 2 ,,,bcos2 + K3,,bbcos 30] (3.36)

E00 = (0 - 0)[K1,,o cos 0 + K 2,0,o cos 20 + K 3,0,o cos 30] (3.37)

3.1.7 Conformational Energetics Test of Ester Potentials

As the focus of this work is to study the torsional changes in the backbone structure

of long-chain aliphatic esters, the forcefield selected for use in molecular dynamics

simulations had to describe the rotation about the Carbon-Oxygen bond adjacent

to the carbonyl group faithfully. As a test of this requirement, the dihedral profiles

about C-O bond were calculated for the selected forcefields, the resulting data being

compared to experimental and computational/theoretical data on the behavior of this

torsion. Molecules of the group X - C(O) - 0 - X' where X, X' = H, CH 3 can

exist in two conformational states, namely, the syn periplanar and the anti periplanar,

Figure 3-1 [91, 92, 93, 94].

0 X0 0

C 0 C 0

X X X'

syn periplanar anti periplanar

Figure 3-1: Syn and Anti-Periplanar Configurations of Methyl Acetate

The molecules are almost exclusively found in the syn conformation [94, 91, 93]

where the 0 - X' bond vector is periplanar to the C = 0 bond of the carbonyl func-

tionality; this gives essentially a planar heavy-atom skeleton in the syn conformation

[91, 92, 93, 94]. This planarity will be important in interpreting the molecular-level
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picture of ester interfaces to be presented later. In the case where the substituent is

a methyl group, the preferred conformation of the methyl of the 0 - CH 3 group has

the hydrogens staggered with respect to the carbonyl C = 0 bond [95]. Moreover,

the preferred syn conformation is rationalized through resonance arguments; with the

methyl group syn to the carbonyl oxygen, there is charge transfer from teh ether oxy-

gen to the carbonyl oxygen, thus leading to the stability of this conformer Figure 3-2

[95].

0 0

C X

X' Xf +

Figure 3-2: Resonance Structures for the Ester Carbonyl Functionality

Furthermore, from infrared intensities and ab initio calculations, there is reported

a hyperconjugation effect in the acetyl group; negative electronic charge is pumped

from the methyl group towards the 7r system of the adjacent carbonyl group [96]. Low-

temperature matrix infrared spectroscopic measurements indicate that the energy

difference between the anti and syn conformers is about 8.5 ± 1.0 kcal mol- [91].

This is for methyl acetate specifically. A barrier height for crossing from one state

to another was not directly measured for methyl acetate, but from the value for

methyl formate, it is estimated to be in the range from 10-15 kcal mol- 1 [91, 95].

As for computed values for the conformational energetics, the most sophisticated

calculations are the ab initio simulations of methyl acetate using Hartree-Fock theory

with correction for electron correlation by Wiberg et al [95]. The authors find the

energy difference between the E (anti periplanar) and Z (syn periplanar) conformers

to be 8.6 kcal molb which is in excellent agreement with the matrix IR data. The

authors report geometry optimizations at the Hartree-Fock 6-31G* level followed by

electron correlation correction via Moller-Plesset perturbation theory through third
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order (MP3) [95].

Furthermore, the experimental and theoretical data seem to indicate that the

torsional profile is twofold, with only two minima and a large barrier to rotation.

This is to be kept in mind when comparing various forcefields.

Figure 3-3 shows graphically the torsional profile about the central axis of the

methyl acetate molecule (torsion about the C, 2 - 0 bond). Also shown is a curve

representing semi-empirical calculations performed as part of this research. These

calculations were performed with the AM1 model Hamiltonian for MNDO theory. It

is evident from this plot and Table 3.1 that the CFF91 potential faithfully reproduces

experimental and calculated profiles. Note that the OPLS potential, although fitted

to ester simulations, uses a somewhat smaller value for the cis-trans energy difference

(AE=5 kcal/mole) as well as a lower value for the barrier heights (8.9kcal/mole), for

which the experimental values are 8.5 kcal/mole and 13.0 kcal/mole, respectively [67].

However, the barrier height is still large enough to remain valid at the temperatures

we are interested in; that is, the energetic barrier to crossing from one conformer

to the other is greater than the thermal energy, kT. The MM3 value is also within

acceptable bounds with respect to the experimental data, but in essence, the MM3

model is a class II forcefield much like the CFF91. A comparison of the absolute

values would lead one to accept the CFF91 forcefield over the MM3. For this reason,

the MM3 forcefield was discarded from further consideration as the CFF91 is an

equivalent (if not better) forcefield of the same genre. The AMBER forcefield is

clearly unacceptable, as not only does it err on the prediction of conformational

energy differences, it misrepresents the form of the torsional energy surface.

Based on the above considerations, the OPLS and CFF91 forcefield models for

methyl acetate were selected to represent the ester functionality for the present work.

As the next step, the ability of these models to reproduce bulk liquid energetics was

studied as a prelude to applying a forcefield model to the study of the ester interface.
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Figure 3-3: Methyl Acetate Phi Torsion Profile: Forcefield Dependence
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Table 3.1: Methyl Acetate: Cis-Trans Energy Differences and Torsional Barriers

AEcis,trans
(Kcal/mole)

5

2.6

5.31
7.21

8.5±1.0

8.71

7.8

8.6

8.67
4.98

Source

AMBER Forcefield (DISCOVER)
constant dielectric, / = 1

no 1-4 non-bonded interaction scaling
AMBER Forcefield (DISCOVER)

distance dependent dielectric, p = 4 * r
1-4 non-bonded interaction scaling by 0.5

MOPAC (AMI Hamiltonian)
SCF-Hartree Fock (TURBOMOLE)

STO-3G basis set
Blom and Gunthard
matrix IR spectra

Allinger
MM3

Allinger
MM2

Wiberg and Laidig
SCF-Hartree Fock

MP3/6-311+G**//6-31G*
CFF91 Forcefield (DISCOVER)

OPLS
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3.2 Bulk Liquid Energetics I. Computational Meth-

ods

Along with structural and geometrical properties, thermodynamic observables are

also of interest. A fundamental measure of the soundness of a potential is its abil-

ity to reproduce experimental thermophysical properties, although in practicality,

researchers have employed other tests such as reproducibility of vibrational frequen-

cies, crystal structures, zero-point lattice energies, phonon frequencies, and dispersion

curves (crystals). In the final analysis, as there are a myriad number of observable

properties which can be used to develop a potential model, one usually chooses a

subset typical of the properties of interest for a given study. From this perspective,

no one potential model can give fully accurate reproduction of all properties for a

given class of materials. One hopes at best that relevant observables are reproduced

to within acceptable error. With this in mind, in the present work, the enthalpy of

vaporization to the ideal gas is calculated as a test of the validity of the potential.

The enthalpy of vaporization is directly connected to the internal energy of the liquid,

which in turn is reflective of the energetic interaction between the constituent molec-

ular entities. It has been reported that details of structural and dynamic properties of

chain molecules at interfaces depend on accurate descriptions of the polymer-polymer

interaction; thus, capturing the nature of the intermolecular interaction as accurately

as possible is of prime importance [97]. For the purpose of validating a forcefield,

bulk simulations for the flexible OPLS model and the CFF91 models were performed.

Enthalpies of vaporization to the ideal gas were computed from the following

equation [67]:

H = Eintra(gas) - [Eintra(1) + Einter (l)] + RT (3.38)

Eintra (gas) is the gas-phase intramolecular potential energy, Eintra (1) the liquid-phase

intramolecular potential energy,Einter(l) the liquid-phase inter- molecular potential

energy, and RT is the standard ideal gas enthalpy. This view considers the kinetic

and zero-point vibrational eneries of the liquid and vapor to be equivalent [80]. The
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gas-phase quantities were computed using a Hybrid Monte Carlo algorithm. This

involved running a single-molecule molecular dynamics sequence for a large number of

Monte Carlo steps. At the beginning of each Monte Carlo cycle, the particle velocities

are re-selected from a Boltzmann distribution of velocities at the desired temperature

(in the present simulations, T=298.OK). A single- molecule simulation is justified in

this case as the vapor is essentially at low pressure, low density (physically). Thus, in

the vapor phase, any given molecule 'sees' no other molecule and the only interactions

are intramolecular.

At this point note that the CFF91 potential is an all-atom model, while the OPLS

model specific for methyl acetate is a united-atom model. This is an important dis-

tinction in terms of the computational tractability of simulations, particularly when

system size increases as with polymer simulations. To perform actual test simulations

using the CFF91 model, a multiple time step algorithm was implemented. This is

briefly described in the next section. Next, a brief discussion of the Hybrid Monte

Carlo algorithm follows. This technique is applied in the present work as a tool in

parameter fitting for internals distributions, and more relevant to the calculation of

enthalpy of vaporization calculations, for determining single-molecule energetic prop-

erties. The ensuing section describes the algorithms used to compute the electrostatic

interactions, a need arising from the partial charges assigned as part of the forcefield

model. Finally, we describe a procedure for parameterizing an intramolecular bond

angle and out- of-plane potential function for the OPLS model. This is necessary since

the original OPLS model is rigid, constraining bond lengths and bond angles. As we

are dealing with heavy-atom motions (soft modes) characterized by force constants

lower than that for C-H stretching (low frequency modes), we cannot represent these

motions as rigid ( in a time-averaged sense) over the time-scales we probe during an

MD simulation. Thus, before presenting bulk liquid simulation details and results,

the parameterization of bond-angle and out-of-plane potentials to be merged with the

OPLS parameter set is presented.
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3.2.1 Reversible Multiple Time Step Molecular Dynamics

(r-Respa)

As mentioned above, the CFF91 potential is an all-atom forcefield which models

all atomic sites including light atoms such as hydrogen. The low mass of hydrogens

leads to difficulties as the dynamics associated with these light particles is much more

rapid compared to the dynamics of heavier atoms. More specifically, as the motions

involving hydrogens (or light particles in general) are of high frequency, the timestep

used in the numerical integration of the equations of motion must be small enough so

as to capture the full dynamics (e.g., one must sample sufficiently within the period

of the motion). Furthermore, in general, intramolecular dynamics are inherently

of differing time-scales. For example, bondstretching is more rapid than bond-angle

bending which in turn is more rapid than dihedral motion, which ultimately occurs on

a shorter time scale compared to overall molecular translation and rotation [98]. The

underlying problem this discussion suggests is that in standard molecular dynamics

simulations of systems with dynamical modes of widely differing time-scales, the fast

(hard) modes limit the magnitude of the time step that can be used for the numerical

integration of the equations of motion, or in other words, propagating the trajectory

through phase space. This can be computationally costly particularly when the slow

(soft) modes are of primary interest.

Several approaches to circumvent this obstacle are widely used [98]. Constraints

are applied to bond-stretching and bond angle bending modes so that a large timestep

can be used for integrating the equations of motion for the remaining degrees of

freedom. However, bond angle constraints are difficult to apply for macromolecular

systems (small molecules are sufficiently treated with bond-angle and bond-length

constraints) [98]. A second method reduces the system to internal coordinate space

and allows only the dihedral modes to propagate [98]. A further 'trick' is to increase

the mass of light atoms (hydrogen) to allow a larger time step. This, of course, will

perturb the dynamics away from the true dynamics, but in cases where dynamical

information is not of primary interest (diffusion constants), this approach is adequate
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[98].

The approach applied in the present case is a multiple-time step technique devel-

oped by Berne and coworkers termed r-RESPA (reversible Reference System Propa-

gator Algorithm); this is a reversible integrator method based upon the multiple-scale

algorithms developed by Berne and coworkers [99, 100, 101, 102, 103, 104]. This ap-

proach includes all degrees of freedom, but uses different time steps to propagate the

differing modes inherent in the system. It is based on Trotter factorization of the

system Liouvillean and a carefully chosen separation of the forces [99]. The essence

of the method is to integrate the faster motions more frequently than slower ones.

At regular intervals, the slower degrees of freedom are updated. This approach yields

a time reversible propagator, a requirement for the present work as this molecular

dynamics scheme will be incorporated into a Hybrid Monte Carlo algorithm which

requires strict reversibility in the dynamics to meet the requirement of detailed bal-

ance (other multiple timestep algorithms are available, but suffer from irreversibility

[100, 101, 102]). Furthermore, this approach is applicable to extended hamiltonians

such as Nose thermostats, thus allowing molecular dynamics in the canonical ensemble

[99].

In the following subsection is presented in brief the formalism of a reversible

multiple timestep propagator after which the current implementation is described.

Reversible Multiple Time Step Propagator (r-RESPA) Formalism

As molecular dynamics is fundamentally probing the underlying phase (configuration)

space of a system, the starting point for generating a propagator is the classical

Liouville operator. The Liouville operator for a system of N degrees of freedom in

Cartesian coordinates is [99, 98]:

N= + [---,H] (3.39)

__(, 1 Fp)

where xi and pi are the position and conjugate momentum for degree of freedom

i, xi is the time derivative of xi, F is the force on degree of freedom i, and the
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brackets denote the Poisson bracket (not the quantum mechanical commutator!) of

the system. The state of the system is represented as J[xi, pi] in terms of degree

of freedom coordinates and momenta. Note that the Liouville operator is a linear

Hermitian operator on the space of square integrable functions of F. The classical

propagator is then [99, 98]

U(At) eiLAt (3.40)

so that starting with a system at state F(0) at time zero, the state at a time

interval At later is:

F(At) = U(At)(0) (3.41)

Note here that since the classical Liouville operator is self-adjoint, its propagator

is unitary:

U(-At) = U 1 (At) (3.42)

and the time development of the system throughout phase space is reversible

[99, 98].

Also note here that the propagator can be expressed as a series in iLAt , a

representation which is useful to the application of Trotter's theorem [105] later [99,

98]:

0(At)n(At) = E , - ) (3.43)
n=O n.

Now, the Liouville operator is decomposed (the manner of decomposition is ir-

relevant for the present purposes; it will be discussed further below) into two parts

as:

iL = iLi + iL 2  (3.44)

Applying Trotter factorization:
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ei(Ll+L2) ei(L1+L2)At/P 1P (3.45)

= iLl(At/2) CiL2At e iLl (At/2)] P (.6

+0((At)3 ) (3.47)

Here the error is indicated as third order in the timestep.

The second term eiL2At can be further factorized to yield:

eiL2At (eiL2AT n ((At) 3 ) (3.48)

where AT At/n. The smaller timestep AT and the integer value n are chosen

so as to guarantee a stable dynamics for the system. From the above progression, the

concept of multiple timesteps is quite evident and appears as a natural consequence

of the factorization of the propagator following the decomposition of the Liouville

operator. Thus, in a system composed of several time scales, a proper splitting of the

Liouvillean will allow one to effectively sample the modes of interest by separating

them out. One must now consider the decomposition of the Liouville operator. How-

ever, the above derivation is first generalized for a splitting of the operator into more

than two components.

If the system Liouvillian is a sum of individual operators of the form

iL =ZiLk (3.49)
k=1

the propagator is expressed as:

n-1 At (At)3
eiLAt =[[i Uk( 2 ]Un(t)[fl U 2 k( 2 A]+P 2) (3.50)

k=1 k=1

where Uk(h) = eiLk h . This is a continuous representation as the propagator is

applied P times. One defines a discrete time propagator as:
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At At
G(At) = [H7 Uk(-]Un(At)[11 Un-k(] (3.51)

k=1 2 k=1 2

This leads to a time-reversible propagator given that each Lk is Hermitian so that

for each Uk(At)

Uk(At) = U- 1 (At) = Uk(- At) (3.52)

Thus, G(At) G(-At) = 1 and G(At) gives rise to reversible dynamics [99] .

In applying the r-RESPA algorithm to complex flexible molecules, it is not con-

venient to separate the fast and slow (hard and soft) degrees of freedom as they

are defined in terms of internal coordinates (bond length, bond angles) whereas the

dynamics is computed exclusively in Cartesian coordinate space. Consequently, the

natural decomposition scheme is to separate the Liouvillian according to type of force,

specifically, hard forces, Fh, and soft forces, F, [98]. For the present work, the hard

forces are considered to be bond-stretching, bond-angle bending, and out-of-plane

angle bending forces. The remaining forces - dispersion forces, electrostatic forces,

and dihedral forces - are lumped as soft forces. The next section describes the present

implementation of r-RESPA.

Reversible Multiple Timestep Algorithm for Nose Dynamics: Application

to CFF91 Forcefield Model

As the bulk simulations for the methyl acetate liquid energetics are performed at

constant temperature and density (canonical ensemble MD), a r-RESPA algorithm

for Nose dynamics is developed. The Nose equations of motion are [99]:

OH pX Op - in(3.53)
Op M's2

OH _ OV(3.54)
1- X OX
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OH p,

OpS Q

OH
as

1 p2
[ 2 (3N+1)kT]

These equations are generated from the Hamiltonian [99]

2
H = 2 + (3N +Ms

1)kT In s + V(x) +

Hoover introduced a time rescaling dt -+ dt/s and the change of variables p -+

p/s, p, -+ ps/s, along with the dynamical variable r/ =n s which gives the Nose-

Hoover equations: [99]

x = -(3.58)
m

Ov

- OX
Pn,
Q (3.59)

(3.60)_ p17

~1 Q

2

Pn - 3NkT (3.61)
m

To derive a reversible propagator, one turns to the following Liouvillian: [99]

iL X-
Ox

+ F(x) +
OP

09 . 0 .0
F, (x)- -- p+ il

OP ap (977

where

and equivalently

91

(3.55)

(3.56)

(3.57)
2

2Q

0
+ F7(p) a

OP77
(3.62)

(P ) 
2

Fy~) =( --- 3NkT
m

(3.63)



Fn (i) = E mi2 - 3NkT

Note that the total force on the q coordinate is a function of the momenta of the

remaining degrees of freedom.

For the present case, the Liouville operator is separated as

iL =iL + iL 2 (3.65)

where

iL1 =77 - TIP
0r1 ap + (p)

ON,
±+ F. (x) a

OP
(3.66)

and

.0
iL 2 = X

Ox
++ Fh (X) a

ap
(3.67)

Thus, the discrete time propagator, G(At) becomes: [99]

G(At) - e F,(p)$ eAt/ 4 F(x)+ e t~ p- eAt/4F(x)-2 A estiL2

'- -- At/4F, (x) -2- -At 0 t/4F (x) F(p)x e 2 09 e Op e 2 Op e 4Pe2 a

(3.68)

(3.69)

We can further decompose the second operator, iL 2 to give two further operators:

iL 2 ,a = Fh(x)+ (3.70)

iL 2,b = X (3.71)
Ox

With the above two operators, an intermediate discrete time propagator can be

defined as:
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Gint-(A) = [eiL2a6 / 2 
eiL2,bt eiL2,a6 t/ 2]n (3.72)

where Rt = At/n.

The significance of the intermediate discrete time propagator is that it represents

the standard velocity Verlet integrator used widely in conventional molecular dynam-

ics simulations. [99]. Thus, embedded in the total propagator for Nose dynamics

is the Verlet algorithm. Furthermore, it is the hard forces which contribute to the

velocity Verlet integration. The hard forces serve as generating a reference system to

which the soft forces are a correction updated every n time steps of the integration

for the reference system. Applying the total discrete time propagator to an initial

state [X(0), p(0), r1(0), p 7 (0)] yields reversible Nose dynamics for constant temperature

molecular dynamics.

Performance of r-RESPA: Integrator Stability and Speedup

In the present implementation of r-RESPA, the hard forces are considered to arise

from bond stretching, bond-angle bending, and out-of-plane (improper torsion) mo-

tion. This is in keeping with reported approaches in the literature as well. Also,

based on the time periods of the relevant motions, it is evident that the faster modes

are generally the intramolecular modes excluding the torsions. The stability of the

integrator is measured by the fluctuation [98]:

A Erm - AEtotal (3.73)
AEkinetic

where AEtotal is the root-mean-square (rms) fluctuation of the total energy (this

is the extended Hamiltonian in cases where baths are used) and AEinetic is the

rms fluctuation of the kinetic energy. The criterion for a stable integrator is that

AE""s < 0.1, although some would claim to use a looser bound [98].

To study the stability of the algorithm and select a working timestep for the bulk

methyl acetate simulations using the all-atom CFF91 forcefield, short simulations of a
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bulk system of methyl acetate were performed. Canonical ensemble (NVT) molecular

dynamics using a Nose thermostat at the experimental density of 0.927gr/cm3 were

performed in a cubic simulation box with periodic boundary conditions and minimum

image convention for non-bond interactions. The system consists of 216 molecules in

a box of dimensions L, = LY = LZ = 3.06nm. The non-bond interactions, dispersion

and electrostatic, are computed out to a spherical cutoff value of 1.2 nanometers. No

switching or smoothing function for the dispersion interactions was applied. Elec-

trostatic interactions were computed with a reaction field method to be discussed

below.

Figure 3-4 shows a plot of the AE' as a function of the larger timestep, At,

for a series of n values (n essentially giving the size of the smaller timestep). Also

shown is a curve representing conventional molecular dynamics. From this data it is

evident that the multiple time step algorithm allows a definitively larger timestep for

a given integrator stability as demonstrated by the value of AE'. More specifically,

for a AE'rs within 10 percent, the time step increases from 0.001 to roughly 0.004, a

fourfold speedup. Furthermore, the effect of the smaller step size on stability reflects

the same behavior, as the stability for the larger n values is greater than for lesser

values. Also, the data seems to indicate no great difference between n = 5 and

n = 10 for the smaller time steps, with a slight deviation at larger values. This is all

in keeping with the fact that a 1 fs timestep is the limiting case for the dynamics for

the hard modes as evidenced by the conventional MD runs.

Finally, Figure 3-5 shows the time requirements for a one picosecond simulation

run using a series of large time steps with various n values. Again, for acceptable

integrator stability at large time steps, the r-RESPA algorithm yields appreciable

speedup over conventional MD.

One may argue that simulations with constraints are just as reasonable for MD

simulations. This is true; however, for forcefields not parameterized with constraints,

it is necessary to account explicitly for the faster motions. Furthermore, it may be

that the fast modes are of primary interest to the scientist in terms of validating a

forcefield through frequency calculations. In this case, the utility of multiple time
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step methods is unquestionable.
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Integrator Stability Comparison: r-RESPA vs. Conventional MD
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Figure 3-4: Stability Comparison: r-RESPA versus Conventional Molecular Dynamics
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Figure 3-5: Time Comparison: r-RESPA versus Conventional Molecular Dynamics
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3.2.2 Hybrid Monte Carlo: Formalism and Implementation

The Hybrid Monte Carlo (HMC) method is used for determining the single-molecule

energetic components. In this section, a brief discussion of the formalism and current

implementation of HMC is given. For details not given here, the reader is referred

to the literature cited [106, 107, 108]. The method originally was applied to quan-

tum chromodynamics simulations of the behavior of quarks in nucleons [106]. Its

fundamental use is in effectively sampling the phase space representing a many-body

system. The raison d'etre for the method is to combine the best features of Monte

Carlo and Molecular Dynamics simulations to arrive at an algorithm which samples

more of phase space efficiently; that is, the algorithm allows the system to escape

limit cycles and attractor points encountered via MD sampling by the action of the

random walk nature of the MC rejection/acceptance test [106].

To discuss the theoretical foundations of HMC, one begins with the Hamiltonian

of a N-particle system with interaction potential V (V is a function of position) [106]:

N 2 N

H(x, p) = E + ZV(Xi) (3.74)
i-1 2mi

where mi, xi, and pi are the mass, position, and momentum of particle i. The

equations of motion derived from the Hamiltonian are:

-i = (3.75)
Mi

S= (x ) (3.76)
p9xi

Standard molecular dynamics simulation involves integration of the equations of

motion with a suitable integrator with initial conditions on positions and momenta

(velocities) given as input. This integration generates the phase space trajectory;

note, however, that the trajectory is dependent on the initial configuration (initial

conditions) and the ergodicity of the trajectory will be compromised if it so happens

that the initial phase point is near a local minimum , limit cycle, or attractor [106].
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The Monte Carlo algorithm generates phase space trajectories which are random

walks. The probability of a phase point (any given set of positions and momenta) is

the Boltzmann probability [106]:

1
P(x, p) dx dp = - dx dp e-OH(x,p) (377)

Z

where 3 = 1/kT and the convention adopted is that dx = FIN dxi . Starting

from an initial configuration, a Markov chain of states is generated through random

changes in the positions and/or momenta; the probability of accepting a new state

(configuration) is given by the Metropolis probability [106]:

Pacc = min(1, e-#AH (3.78)

where

A H = H(x'p') - H(x, p) (3.79)

The acceptance probability, Pacc , satisfies detailed balance which allows the al-

gorithm to generate states with the desired equilibrium probability distribution. In

theory, the number of coordinates or momenta that are changed simultaneously is

irrelevant; also the order in which the changes are made is unimportant. However,

in practice, the convergence (the rate at which the configurations decorrelate) and

the acceptance rate rely heavily on the above parameters. If changes are made to all

particles, the new configurations will have a low probability due to a large unfavor-

able energy change (thus low acceptance rate). If many small changes are made, the

acceptance rate will increase, but the decorrelation will take longer and phase space

will be sampled much more slowly [106].

The Hybrid Monte Carlo method combines the advantages of both MD (fast phase

space sampling) and MC (sampling of a larger portion of phase space through escaping

from local equilibrium points). The algorithm is in essence Monte Carlo with MD

'sandwiched' in between. A single HMC step involves first reassigning the velocities of

all particles with values sampled from the relevant equilibrium distribution P(pi) =>
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exp(-3p'/2mi) . Next, a reversible integrator is used to propagate the system (MD).

Finally, after L steps of MD, the Metropolis acceptance criteria is applied and the

final state is rejected or accepted. These steps are then repeated for the necessary

number of MC steps.

Note that it is essential to have a reversible integrator to meet the detailed balance

requirement. Figure 3-6 shows a schematic of the HMC algorithm [106].
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3.2.3 Long-Range Interactions: Electrostatic Energies and

Forces in Molecular Simulation

Ewald Summation

Polar systems and systems with ionic species pose a difficult problem for molecular

dynamics simulations. The electrostatic Hamiltonian,

1N N
H = E [ZZ $(rij + Ln) (3.80)

2n _i=1 j=1

represents a sum of the Coulomb potential over all the simple cubic lattice points

with integer coordinates n = (1, m, n), th e n = 0 terms omitted [109]. As the

Coulomb potential is long-ranged and fails to satisfy

1#(r) < A Ir--31 (3.81)

the lattice sum in the Hamiltonian is not absolutely convergent, but rather condi-

tionally convergent, depending on the nature of the summation [109]. The difficulty

thus is that to achieve convergence, and thus an accurate accounting of all the interac-

tions, one must include a large number of terms in the summation. From a simulation

standpoint, this is costly as the pairwise interactions and forces consume the most

time during the dynamics. Over the decades, researchers have developed approaches

to circumvent this difficulty. The Ewald summation technique, first developed for sim-

ulations of crystalline solids, is widely used in condensed matter simulations ranging

from crystals to proteins and organic solutions [13].

The Ewald summation technique essentially decomposes the Hamiltonian into

short and long range components which are summed in real and reciprocal (Fourier)

space, respectively. An associated convergence factor converts the conditionally con-

vergent summation to an absolutely convergent one [109]. For a given system of

charges, a screening charge distribution is introduced about each initial point charge.

To retrieve the original system, a canceling charge distribution is also introduced. The

interactions between the initial and screening charge distributions are summed in real
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space (explicitly), and the interactions of the canceling distribution are summed in

fourier space. One can with proper selection of parameters, restrict the real space

summation to the original simulation box, and carry out the Fourier space summation

over a minimal number of wavevectors(reciprocal lattice vectors) [13]. The Coulomb

potential representing the Ewald summation approach is [13]:

1 N erfc(a rj +±n)
Ucoulomb __ I |LI

L ES qj 5
zij a,b nl Eij +f n

iN a erfc(aInI)
+ 2 L nEE(qi )1 a n00 n

1 erf c(a 1+ n ) _ 1

2 L .d rrab

+ E Eex q 2  + LI)ILi=1 ab n$O + n

i=1 j=1 a,b n:AO

a N 272w
E (q )2 + _ENx 2 (3.82)

V 7L j= a

The parameter a results from the conversion to an absolutely convergent sum

and controls the relative rate at which the two sums converge [13]. Increasing its

value causes the direct space summation to converge more rapidly at the expense of a

slower convergence of the reciprocal sum. Furthermore, if one considers the screening

charge cloud invoked about each initial point charge, the a parameter represents the

width, or diffuseness, of the cloud [13]. With a large enough value, the only term

which contributes to the direct space term is the n=0, or the conventional minimum

image representation. Thus, in practice, a is chosen large enough so that the direct

space sum is computed with the minimum image convention, and the summation

in reciprocal space is truncated at an appropriate number of k-vectors at which the

summation converges to within a present tolerance. Rigorously , the full Hamiltonian

is independent of the value of a [13].
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Reaction Field

The reaction field technique is a cutoff-based approach to evaluating long-range elec-

trostatic interactions. The reaction field approach combines a cutoff methodology

with a 'correction' due to material outside of the cutoff sphere via a continuum dielec-

tric model of the substance. Within the cutoff sphere, interactions between charged

sites are explicitly calculated. As there will develop a net dipole moment due to the

arrangement of charges, there will be an interaction of this cavity dipole with the

surrounding dielectric medium which in turn will induce a reaction field acting on the

charges in the sphere [110]. Note that the original formulation of this method was

developed by Onsager for point dipoles, but one can show that it is equally applicable

to an arrangement of point charges [111]. Also note that the reaction field approach

yields a Coulombic interaction for which both the potential and force are continuous

at the cutoff separation. With this said, we model the Coulombic interaction via

reaction field as follows:

qq[1 r?. 3]~
ulomb" (rij) =j qj - + - -' , rij < RC (3.83)Uij 47rco rij 2R3 2Re_

Uiu"omb(rij) = 4, rij > Rc (3.84)

The cutoff radius, Rc is taken to be 1.2 nanometers.

One can derive the reaction field based on Gauss' Law applied to a distribution

of charges, each surrounded by a sphere of uniform charge density which acts to

neutralize the point charge. Refer to Figure 3-7 for the system geometry relevant for

the following discussion.

Gauss' law for a charge density, p(x) enclosed within a surface of arbitrary geom-
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etry is:

E -da = 47r ' p(x)d3x (3.85)

where V is the volume enclosed by the surface, S.

The left-hand side represents the electric flux and the right-hand side integral is

the TOTAL charge enclosed within the closed surface. The uniform charge density

is:
-q

PO 4 3 (3.86)
-iTr
3 C

Consider two cases for computation of the electric field: 1. a Gaussian surface

within the cutoff, r. and 2. a Gaussian surface outside the cutoff. For the present

analysis, the Gaussian surface is naturally a sphere.

For the region r > rc, the enclosed charge is zero and there is no need for further

consideration.

For the region r < rc, the enclosed charge becomes a function of position as

follows:

Qenc q - jrpo dT (3.87)

= q - I 47rr2dr (3.88)
47r o rc

= q - - r r2dr (3.89)

Sq - 3 (3.90)
rc

Thus, Gauss' theorem becomes:

-da [q - r3] (3.91)

Invoking spherical symmetry, the electric field is taken as always directed radially,

and thus, along the normal to any differential surface area element; further, taking

the electric field to be constant at a given radial position, the resulting simplification
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is:

Eda - [q - r3]
fo r3

4Er2
-1 r

E0 r

E = q r]
47e, I 2 r3

Thus,

(3.92)

(3.93)

(3.94)

Now, from elementary electrostatics, the force on a charge, j, is derived from the

electric field, E, as:

F= q3E

1 qiqj
[2

qiqj r
r3 I

(3.95)

(3.96)

With the force defined by the above equation, the electrostatic potential is easily

obtained as:

dU
dr

U(r) = -JFdr

Integrating with the shown boundary conditions:

U(r) = [ 1ir
47F-0 r2

-ir]dr + C
r3a

U = 0, r = rc

yields the site-site reaction field equation as given above:
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oulomb qj [1 + r j 3 ,ri < R, (3.101)
4w 0EL rij 2R3 2Re 3 --

U4,""uomb(rij) 0, ri > Rc (3.102)

In terms of dipole-dipole interactions, the reaction field potential corresponds to

the modified dipole-dipole tensor [111]

T (r) = Ta 2(ERF - 1) 6 r rc (3.103)TRF (r) + 2 ERF + 1 r3

where

1
Ta, (r) = VaV7 - (3.104)

r

Taking an infinite dielectric constant, ERF = oo, gives:

Ta (r) - Ta3 (r) + r r (3-105)

Note that the reaction field method gives energies and forces which are continuous

at the cutoff distance, rc. Furthermore, the site-site formalism presented here is

equivalent to the reaction field applied from a molecular perspective. The reader is

referred to the literature for further discussion of this equivalence [111].

Finally, we note here that polarization effects are not considered explicitly in this

work, as the models used for ester, water, and oligomers (in subsequent chapters)

neglect direct treatment of molecular or atomic polarizability.
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Site-Site Reaction Field Model
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Figure 3-7: Site-Site Reaction Field Geometry
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3.2.4 Bond Angle and Out-of-Plane Potentials

As mentioned above, molecular dynamics of the OPLS model requires explicit mod-

eling of internal degrees of freedom. Specifically, to the original OPLS model need to

be added bond angle and out-of-plane components. This is due to the fact that the

intramolecular modes represented by these motions are observable on the time-scales

probed by the MD technique. For example, consider the force constant for a typical

CH 2 - CH 2 - CH 2 bond angle bending mode in a harmonic approximation:

1
U(O) = Ko(0 - 00)2 (3.106)

2

k J
ko,CH2 -CH 2 -CH 2 = 527.2 2 (3.107)

mol'r ad2  317

Within the harmonic approximation, the fundamental frequency for an internal

mode is given as:

k (3.108)

where k is an effective force constant and 1t is an associated reduced mass for the

mode of interest.

For a configuration of L particles, the reduced mass is defined by [66]:

= Z~(3.109)

One can compare the frequencies for bond-stretching and bond-angle bending

modes for frequently-occurring bonds and angles to get a feel for the time scales

involved.

Applying a harmonic approximation for small angle changes away from equilibrium

gives (united-atom CH 2 units ):

143
14 14 +14(3.110)
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WO = 6 X 10"sec- 1 = O(1013)seC- 1

f W = 9 X 10 12 seC- = O(10 12)seC- 1  (3.112)
27r

Thus,

1
- = O(102)fsec (3.113)
f

The bond stretching modes are an order of magnitude faster (sometimes regarded

as hard modes) and are often constrained; the approach taken in the present work is

to use bond length constraints. This also allows for a larger timestep (as discussed

in reference to the multiple timestep methods above).

Thus, this section briefly discusses the procedure for obtaining flexible bond angle

and out-of-plane potentials for OPLS methyl acetate.

In the interest of simplicity, a quadratic bond-angle and out-of-plane potential

are desired. However, the preference for this form goes deeper than computational

simplicity. Despite the need to account for bond-angle bending anharmonicity in

highly strained molecules such as those containing three- and four-membered rings

(cyclopropane, cyclobutane), the anharmonic contribution for linear systems is small

and adds little physics to the picture. Furthermore, studies comparing the fits of

various functional forms for empirical forcefields to ab initio calculations of equi-

librium energies and first and second energy derivatives indicate that inclusion of

angle-bending anharmonicity does not contribute to reproducing the quantum en-

ergy surface (Maple, Hwang, et al). Thus, in the present work, a quadratic bond-

angle bending functional form is retained. Table 3.2 shows the angle and out-of-plane

(Wilson definition, [112]) types required to describe the internals for a united-atom

OPLS methyl acetate . There are four bond angles and a single out-of-plane mode (

Figure 3-8 ).

After a search for the required angle potentials in existing all- and united-atom

forcefields (e.g. CHARMm, AMBER,MM3), which led to still missing potentials,

109

(3.111)



3) C H3OC H

0)2 OPLS Methyl Acetate
OPLS Methyl Acetate Out-of-Plane

Bond Angles (Wilson Definition)

Figure 3-8: Definition of the Bond Angles and Out-of-Plane Angle for OPLS Methyl

Acetate

it was decided to fit functions to the bond-angle and out-of-plane potentials of the

CFF91 potential. Furthermore, the parameterization was oriented towards repro-

ducing probability distributions of various angles, not the potentials directly. This

approach is rigorous as it allows the incorporation of the effects of other internal

modes (coupling effects) without having to perform a direct parameterization of all

internals.

Parameterization of Bond-Angle and Out-of-Plane Functions: Procedure

This section describes the procedure followed to obtain a set of force constants for

the OPLS bond-angle and out-of-plane angle bending modes.

First, a single-molecule Hybrid Monte Carlo simulation using the CFF91 all-atom

forcefield was performed to generate a sample of bond and out-of-plane angles. Next

the probability distributions for each of the internal angles was computed by nor-

malizing a histogram of number of angles of a particular value, the histogram being

calculated from all configurations.

Next, these distributions were used to determine force constants for the internal

modes.

The functional form for the angle bending is:

1
U = -KO (0 - 00)2 (3.114)

2

and that for the Wilson out-of-plane motion [112]:
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Ux KxX 2 (1

The potentials were parameterized in the variables Ko and Kx by performing a

least-squares fit of the Boltzmann distribution of angles:

P(6 = 1 [-Ke (0-0)2 )/RT]P(O) I l2
No

P(X) =1 e[(- IKy (X2)/RT]
PW Nx

(3.116)

(3.117)

where the No and Nx are normalizing factors:

No = (e[(-Ko (0i-0) 2)/RT])

Ny= Z(e[(-K(x
2 )/RT])

i=1

(3.118)

(3.119)

The fitting involved:

1. Picking a value of K

2. Calculating P(9) or P(X)

3. Calculating sum of squares (of deviations)

4. Minimizing sum of squares with respect to K

Initial values of K were selected based on typical values of similar bond angles

found in the literature.

Figures 3-9 and 3-10 show curves of the sum-of-squares error versus force constant

for the relevant internals.
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Figure 3-9: Sum of Squares versus Bond Angle Bending Force Constant

Out-of-Plane Force Constant versus Sum of Squares: OPLS Methyl Acetate

0

0

0.002

.0018

0016

0014

C 0.0012

0

0

0

001

.0008

0.0006

0.0004
200 300 400 500 600

K (KJ/mol-rad2)
700 800 900 1000

Figure 3-10: Sum of Squares versus Out-of-Plane Force Constant
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Bond Angle and Out-of-Plane Parameterization: Results

Figures 3-11, 3-13, 3-15, 3-17, and 3-19 show the CFF91 all-atom bond angle and out-

of-plane angle distributions computed from a series of single molecule Hybrid Monte

Carlo simulations runs (solid line) along with the fitted distributions (points). The

abscissa show the relevant internal (bond or out-of-plane angle) in units of radians,

and the ordinate values are the probabilities. The distributions are well-behaved, with

well-defined maxima near the most probable values of the internal. Figures 3-9 and 3-

10 show the results from a simple least-squares fitting of the distributions of Figures 3-

11, 3-13, 3-15, 3-17, and 3-19 with the above described functional forms. The plots

show the values of the residual sum of squares as a function of the force constant KO

and Kx. From this data, the minimum of the curve was taken as the optimum value

for the force constant. Using these values, a second set of single-molecule Hybrid

Monte Carlo simulations (using the revised OPLS united-atom forcefield model) were

performed and the results of these experiments are shown in Figures 3-12, 3-14, 3-16,

3-18, and 3-20. These plots show the angle distributions obtained with the CFF91

all-atom forcefield (solid line) and with the united-atom OPLS forcefield with angle

potentials (points), parameterized in this work. The fits are reasonable within the

error of the computations. Table 3.2 gives the values for the relevant internals along

with some literature values for those angles on which there is published data.
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Table 3.2: Angle Parameters for OPLS Methyl Acetate United-Atom Model

Angle Type Equilibrium Angle Ko,x
(Degrees) (mkJd)

CH3 - C -0 124.037 721.0
CH 3 - C -Oe 110.514 684.25
0 - C - Oe 125.243 1023.0

C - Oe - CH 3  116.812 508.25
CH3 -C-Oe-0 0.0 418.3

(Out-of-Plane Angle)

Angle Probability Distribution: CFF91 (All-Atom) vs. Fitted OPLS
0.3

0.25

0.2 I-

.0
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Figure 3-11:
united-atom

Angle 213 Fitted: This is the all-atom
potential form is fitted (line)

distribution (points) to which a
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Angle Probability Distribution: CFF91 (All-Atom) vs. Simulation OPLS
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Angle (radians)
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Figure 3-12: Angle 213 Simulation: This is the distribution of bond angle values
computed from the results of a simulation using the parameters obtained via fitting
to the all-atom distribution shown in the previous Figure
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Figure 3-13: Angle 413 Fitted (see caption for Angle 213 fitted for details)
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Angle Probability Distribution: CFF91 (All-Atom) vs. Simulation OPLS
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Figure 3-14: Angle 413 Simulation (see caption for Angle 213 simulation for details)
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Figure 3-15: Angle 412 Fitted (see caption for Angle 213 fitted for details)
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Figure 3-16: Angle 412 Simulation (see caption for Angle 213 simulation for details)

Angle Probability Distribution: CFF91 (All-Atom) vs. Fitted OPLS

1.5 2
Theta (Radians)

Figure 3-17: Angle 138 Fitted (see caption for Angle 213 fitted for details)
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Figure 3-18: Angle 138 Simulation (see caption for Angle 213 simulation for details)

Angle Probability Distribution: CFF91 (All-Atom) vs. Fitted OPLS
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Figure 3-19: Out-of-Plane Angle 4132 Fitted (see caption for Angle 213 fitted for

details)
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Angle Probability Distribution: CFF91 (All-Atom) vs. Simulation OPLS
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Figure 3-20: Bond Angle 4132 Simulation (see caption for Angle 213 simulation for
details)
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3.3 Gas Phase Simulations: Single Molecule Hy-

brid Monte Carlo

To compute the values for the vapor-phase intramolecular energy to be used in Equa-

tion 3.38, single molecule Hybrid Monte Carlo simulations were performed. Four sets

of simulations were required to study the OPLS and CFF91 parameter sets using the

reaction field and Ewald summation techniques. For the OPLS potential, standard

molecular dynamics was performed for each Monte Carlo step; for the CFF91 (all-

atom) forcefield, the r-RESPA algorithm was implemented for the MD portion of the

hybrid technique. For the OPLS runs, a timestep of 0.004 picoseconds was used; for

the CFF91 potential with r-RESPA, a large timestep of 0.0025 picoseconds and a

small step of 0.0005 picoseconds with n=5 was used. For the Hybrid Monte Carlo

algorithm, 100,000 MC steps were performed; for each MC step, two hundred MD

steps were performed. A single molecule was place within a cubic box of dimensions

of 10.0 nanometers. For the Ewald summation, the direct space sum is truncated to

the minimum image; the a parameter is 5.0 and the reciprocal space summation is

over 1147 vectors.

3.4 Bulk Liquid Energetics II.: Simulation De-

tails and Results

3.4.1 Bulk Simulations with Reaction Field Electrostatics

OPLS Methyl Acetate

The bulk liquid simulations for the OPLS methyl acetate model with reaction field

electrostatics are described in this section. The simulation cell is a cubic box of di-

mensions L. LY = L, = 3.060nm representing a density of 0.927gr/cm3 which

corresponds to the experimental density at 298K (216 OPLS molecules). A timestep

of 0.004 picoseconds allows for sufficient integration stability with a AErs of three
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percent over 20,000 simulation steps in a time of 5.2 hours (which yields about 0.94

seconds per time step). The r-RESPA algorithm was not used for the OPLS model

simulations since there are no bond-stretching modes due to the bond-length con-

straints used; thus, a fairly large timestep is employable without any further consid-

eration. A Nose-Andersen thermostat (as opposed to the Nose-Hoover used in the

r-RESPA simulations using the CFF91 potential) is used to maintain temperature at

298K for canonical ensemble (NVT) simulations; a time constant of 5.5 is used. Data

for statistical analysis is collected every 20 simulation steps (every 0.08 picoseconds).

A spherical cutoff is applied to both dispersion and electrostatic interactions; a value

of 1.2 nm is used. A lookup table which holds the non-bond energies as a function

of r 2 as well as an atomic neighbor list are used to expedite the force/energy calcu-

lations. Forces are computed from the tabulated energies via interpolation using the

Newton-Gregory forward difference method [13]. Long-range corrections for pressure

and energy are computed from standard analytic expressions [13],

Uiong-range = 27rNp j r2u(r) dr (3.120)

(PV)iong-range 2 7rnp r 2w (r) dr (3.121)
3 rc

These equations assume that in the region beyond the spherical cutoff, the pair

correlation is unity. The long-range corrections given here are applied only for the non-

bond dispersion contributions to the energy and pressure (long-range being outside

the cutoff radius of 1.2 nm). The electrostatic contributions are effectively accounted

for by the reaction field approach. The need for the above two equations to be applied

in the case of the dispersion interactions is that these components do not go to zero at

the cutoff (and remain so beyond it) as in the case of the reaction field electrostatics.

The parameters used for the simulation are given in Table 3.3.
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Table 3.3: OPLS Non-Bond Parameters: Methyl Acetate United-Atom Model

CFF91 Methyl Acetate

This section describes the bulk liquid simulations for the CFF91 methyl acetate model

with reaction field electrostatics. The simulation cell is a cubic box of dimensions

LX = L, = L, = 3.060389593nm representing a density of 0.927gr/cm3 w hich cor-

responds to the experimental density at 298K (216 OPLS molecules). The r-RESPA

multiple timestep algorithm for Nose dynamics is used to carry out the integration.

A large timestep of 0.0025 picoseconds and a small step of 0.0005 picoseconds with

n=5 is used. This choice of parameter values leads to stable integration with a AE'11

of 1.7 percent over 10000 simulation steps in a time of 22 hours (which yields about

7.9 seconds per time step). Data for statistical analysis is collected every 20 simula-

tion steps (every 0.05 picoseconds). Further details are as for the OPLS simulations

discussed in the previous section. Table 3.4 gives the non-bond parameters for the

CFF91 methyl acetate model.

Table 3.4: CFF91 Non-Bond Parameters: Methyl Acetate All-Atom Model

122

Atom Type a- f Mass Charge

(nm) ( ) (amu) (e)
Carbonyl Carbon 0.375 1.75728 12.01115 0.550000
Carbonyl Oxygen 0.296 3.51456 15.9994 -0.450000

Ether Oxyen 0.30 2.84512 15.9994 -0.40
Carbonyl Methyl 0.391 2.67776 15.03506 0.050
Ether Methyl 0.380 2.84512 15.03506 0.250

Atom Type o- E Mass Charge

(nm (l (amu) (e)
Carbonyl Carbon 0.3308 0.502079 12.01115 0.3994
Carbonyl Oxygen 0.3535 1.117127 15.9994 -0.3964

Ether Oxyen 0.3535 1.004159 15.9994 -0.1163
Carbonyl Methyl Carbon 0.401 0.225936 12.011150 -0.159

Ether Methyl Carbon 0.401 0.225936 12.01115 -0.0457
Hydrogen 0.2995 0.08368 1.00797 0.053



3.4.2 Bulk Simulations with Ewald Summation Electrostat-

ics

OPLS Methyl Acetate

For the bulk simulations using the flexible OPLS model, the major simulation details

are the same as for the bulk reaction field computations. The major differences

are outlined. The timestep used for these runs is 0.002 picoseconds with the same

sampling frequency for statistics. The integration stability over 5000 simulation steps

is rather good, with a AE' of 1 percent. For the Ewald summation, the direct space

sum is truncated to the minimum image; the a parameter is 5.0 and the reciprocal

space summation is over 1147 vectors.

CFF91 Methyl Acetate

For this set of simulations, the a parameter was again set as 5.0 with the number of

k-vectors reduced to 501 in the interest of time. The same r-RESPA parameters are

used. A simulation of 20,000 MD timesteps is performed. The total time is roughly

3 days.

3.4.3 Results of Bulk Liquid Energetics Experiments

Table 3.6 shows the component energies computed from the bulk liquid and single

molecule Hybrid Monte Carlo simulations using the CFF91 forcefield; Table 3.7 shows

the analogous data for the OPLS model. The component energies include the non-

bond intermolecular energy (Van der Waals, dispersion), the intramolecular non-bond

energy, the angle-bending energy, out-of-plane angle bending energy, torsion energy,

bond-stretching energy, and the total electrostatic energy.

Table 3.5 presents the overall bulk liquid energetics results from the present calcu-

lations. Values of total bulk liquid potential energy, gas-phase intra molecular energy,

computed enthalpies, and deviations from experimental data are shown. Simulations

were run with the CFF91 and OPLS potentials as well as with varying methods of
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computing electrostatic interactions (as mentioned above). Two sets of data are in-

cluded to show the effect of including long-range corrections to non-bond energies

and pressures.

From the results shown in Table 3.5, it is evident that both the OPLS and CFF91

potentials provide reliable enthalpies of vaporization when the electrostatic interac-

tion is handled exactly via Ewald summation. With the Ewald method, the CFF91

model yields an enthalpy change within 2% of the experimental value. This high

fidelity to experiment comes for a significant price, as the computational expense to

achieve such accuracy is large; for the methyl acetate system, a 5ps simulation for 216

molecules requires approximately 16 hours of real time, as opposed to 2.4 hours for

a reaction field simulation of equal length. For dense, non-ordered macromolecular

systems, the Ewald method would not be practical for obtaining meaningful statistics

in respectable times.

An interesting point to note is the consistency of the calculated enthalpies using

the OPLS model with reaction field and Ewald summation. As the Ewald result

can be considered an exact result for the electrostatic model (i.e., charges for each

atom), we see that the reaction field performs fairly well in faithfully representing

the electrostatics of the system. The agreement between the reaction field and Ewald

methods has also been observed in simulations of spc (non-polarizable) water [113]

and a three-site C02 potential [114]. One can note that in all these cases, there

are no INTRAmolecular interactions of non-bonded nature, so we are led to believe

that there may be some inconsistency of the reaction field applied to systems with

intramolecular non-bond (both van der waals and electrostatic) interactions. More

specifically, the dependence of the reaction field energy on the choice of cutoff is of

concern since depending on the system and molecular geometry, the nature of in-

tramolecular contributions to the total electrostatic energy will change with cutoff;

the net charge within the cutoff radius is not necessarily zero for any given charge at

any given time. This is obviously true since the cutoff is simply a site-based spherical

region; there can by any number of particles (consistent with the system density of

course) within this region, and since no strict constraints on charge neutrality within
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the cutoff region are imposed, the net charge in the cutoff sphere does not have to

vanish. Hoever, the net system charge is zero as is the not dipole since we are deal-

ing with a bulk system. Furthermore, Table 3.6 shows that for the CFF91 forcefield

calculations, the largest discrepancy in the component energies is with respect to the

value of the electrostatic contribution; for the OPLS model, there is no significant

difference in component energies and hence both RF and Ewald summation yield

small errors. Further note that the agreement between the OPLS simulations and ex-

periment is not a big surprise since the parameterization of the non-bond parameters

involved fitting to the experimental enthalpy of vaporization to the ideal gas. Also

from Table 3.6 and 3.7 and note that the intramolecular energetics do not change

from the liquid to the vapor phase for both forcefield models.

Table 3.5 also shows a significant contribution from the long-range corrections

to intermolecular energy, lowering the deviation from experimental for both models.

This merely indicates the need to account for the long-range interactions neglected

by a cutoff treatment of the non-bond interactions. Unfortunately, the pressures pre-

dicted for the models are two orders of magnitude greater than experimental values.

Based on the results of the liquid simulations, the OPLS parameter set is selected

as the forcefield model to study aspects of interfaces of ester materials.
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Table 3.5: Bulk Liquid Energetics

Potential Density Pcatc < Utotal > < Uintra(gas) > AHO Error

gr/cm3  (bar) (kJ/mole) (kJ/mole) (kJ/mole) (percent)

LR*
CFF91(RF) 0.927 257.23 15.13 50.28 37.63 15.88
CFF91(EW) 0.927 123.55 4.35 35.00 33.13 2.04
OPLS(RF) 0.927 344.16 -23.82 6.30 32.60 0.39
OPLS(EW) 0.927 320.31 -24.09 6.18 32.74 0.84

OPLS(Monte Carlo) 0.905 1.0 -29.46 1.30 32.26 2.4
NLR**

CFF91(RF) 0.927 631.43 16.50 50.28 36.26 11.66
CFF91(EW) 0.927 464.60 5.72 35.00 31.76 2.18
OPLS(RF) 0.927 631.13 -22.67 6.30 31.45 3.15
OPLS(EW) 0.927 607.28 -22.94 6.18 31.60 2.69

Temp. = 298K
A H,*(expt.) = 32.47kJ/mole

LR* Long-Range Correction to Intermolecular Energy Included
NLR** Long-Range Correction to Intermolecular Energy Excluded

Table 3.6: CFF91 Component Energies

Type < Uinter > < Uintra > < Uoo > < Uangle > < Utor > < Ueiec >
(kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole)

Bulk: RF -32.401 13.011 1.323 38.031 2.632 -21.170
HyMC: RF 0.0 12.717 1.50 37.194 3.043 -17.989
Bulk: EW -32.408 13.009 1.333 38.051 2.608 -31.961

HyMC: EW 0.0 12.345 0.946 35.318 2.819 -28.617

Table 3.7: OPLS Component Energies

Type < Uinter > < Uintra > < Uoop > < Uangle > < Utor > < Ueiec >
(kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole) (kJ/mole)

Bulk: RF -26.747 0.0 1.308 3.860 1.460 -3.697
HyMC: RF 0.0 0.0 1.205 3.764 1.332 0.0
Bulk: EW -26.791 0.0 1.266 3.724 1.452 -3.737

HyMC: EW 0.0 0.0 1.150 3.694 1.337 0.00
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Chapter 4

Methyl Acetate Liquid-Vapor

Interface

4.1 Introduction and Objectives

This chapter describes the results of simulations of the methyl acetate liquid-vapor

interface. The liquid-vapor interface of small molecules and atomic fluids has been

studied in great detail via theory (such as van der Walls and Cahn-Hilliard theories),

density functional theories, lattice-based mean-field theories, integral equation theo-

ries, and molecular simulations. The molecular dynamics method has been applied

to the direct simulation of coexisting phases. The approach has been applied,for ex-

ample, to atomic liquids [115, 116], alkane oligomers [60], methanol [56], water [55],

and water-methanol mixture [117].

Esters are an important chemical species as they are used industrially for a range

of applications from fragrances/flavorings to the manufacture of nitrocellulose, acetyl

cellulose, and a variety of resins and oils [118]. Furthermore, aspects of the liquid-

vapor interface are relevant to the understanding of the use of esters in these ap-

plications. From a fundamental, physical viewpoint, the study of the liquid-vapor

interface of small-molecule esters is relevant and important to the process of un-

derstanding the nature and physics (structure, thermodynamics, dynamics) of more

complicated ester-group containing molecules and systems such as oligomers, poly-
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mers, surfactants and other complex fluids. In the simplest sense, there is only the

single monomeric (if one is to think of the small molecule as being some elemental

unit of a longer chain entity) species which captures the important structural and en-

ergetic components; there are no issues of chain connectivity, excluded volume effects,

intramolecular segmental correlations (in terms of conformations) to couple with more

fundamental physical mechanisms such as hydrogen-bonding which give rise to the

observed microscopic and macroscopic materials properties. Moreover, the methyl

acetate molecule by itself possesses a variety of physical elements. For instance, there

is the juxtaposition of what can be considered hydrophobic and hydrophillic groups

(the carbonyl oxygen and the methyl groups), the presence of a permanent dipole

moment, and a torsional degree of freedom (within the OPLS model) which allows

for molecular conformational changes which translates into the shifting of internal

components relative to one another in response to internal as well as external stimuli.

Now, one might ask why study the liquid-vapor interface (or equivalently, the free

surface) of methyl acetate; moreover, one may go so far as to ask why study the in-

terface of a liquid at all. Free surfaces have been extensively studied theoretically (as

mentioned in the opening of this Chapter) and experimentally. Interesting phenom-

ena occur only at the interfaces between the coexisting phases. These phenomena

are sometimes in contrast to the nature of the bulk fluid. For instance, strongly

associating liquids such as water, methanol, and higher n-alcohols seem to show a

strong orientational preference at the liquid free surface. This has been observed via

molecular dynamics simulations [55, 56] and non-linear surface vibrational spectro-

scopic methods (sum frequency and second harmonic generation) [119, 120, 121]. The

mechanism for this structuring is the maximization of favorable energetic interactions,

such as hydrogen bonds, which are characteristic of the bulk liquid. In essence, the

liquid 'order' is maintained right through to the surface. In the case of methanol, this

leads to the hydroxyl group orienting towards the bulk liquid, with the 'hydrophobic'

methyl group forced into the vapor. Much the same occurs with the normal alco-

hols up to C8 . Furthermore, Good [122] in 1957 published a set of data indicating

anamolously lower surface entropies of hydrogen-bonding liquids as compared to non-
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polar and polar, but non-hydrogen bonding fluids. This trend was associated to the

surface orientation induced by the maximization of hydrogen bonding interactions at

the surface. Fundamentally, the total free energy is minimized by the energetic gains

of strong association which dominate the entropic loss of orientation. On more than

one occasion, the behavior of these ordinarily simple liquids has been likened to that

of surfactants (surface active agents).

In the case of methyl acetate, there is no evidence (experimental or otherwise) of

strong association in the bulk. In fact, methyl acetate would be considered a normal

liquid in Good's jargon [122] (although, we note, Good does not specifically mention

the class of esters in his study). However, one can draw the analogy to a 'surfactant'

type molecule based on the juxtaposition of quite differing substituents. The polar

carbonyl oxygen shares a proximal location to what can be considered a 'hydrophobic'

methyl group (the alkoxy methyl group). Thus, it would be interesting to determine

the behavior of this low molecular weight liquid at the free surface. This will allow

one to examine the quality of the potential model employed (when compared with

the appropriate experiments), as well as provide insight as to the behavior of the

carbonyl functionality at the free surface. This information will be relevant to the

interpretation of the results of the oligomer free surface to be presented in Chapter

7.

In this chapter, the liquid-vapor interface of methyl acetate is studied via direct

molecular dynamics simulations. It is the aim of this work to investigate the struc-

ture of the interface in terms of the molecular geometry (bulk versus interface) and

thermodynamics. This will allow a test of the OPLS potential functions with respect

to its ability to predict surface tension; Chapter 3 details the soundness of this pa-

rameter set in sufficiently reproducing bulk liquid energetics, specifically, the heat of

vaporization. As it is widely accepted that prediction of surface tension with current

forcefields and techniques is prone to significant error, it is worthwhile to investigate

this phenomena with respect to the OPLS bulk parameters. Furthermore, molecular

orientation at the interface is targeted since this will provide insight on the structure

of the free ester interface in terms of what functionalities are present where spatially;
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this is directly related to the importance of the interface in biomedical applications.

The concept of unsymmetrical molecules orienting preferentially in the interfacial re-

gion is well-accepted in the surface science community [123]. The phenomenon is held

to be a result of the tendency to reduce total free energy by increasing the number of

favorable interactions. It has also been put forth that molecular orientation is a result

of the "principle of least abrupt change" in force fields; that is, molecules near and

within the interface orient in such a way so as to provide the most gradual transition

from the bulk environment of one phase (fluid) to that of the coexisting one [123].

Section 4.2 gives a description of the simulations and Section 4.3 gives the re-

sults of the simulations in terms of density profiles, bulk and interface radial distribu-

tion functions, orientational order parameters describing the orientations of molecular

bond vectors relative to the interface normal, and surface tensions calculated from

the atomic and molecular virials as well as from the Irving-Kirkwood definition of the

pressure tensor at a point.

4.2 System Description and Methods

The simulation cell consists of 648 OPLS united atom methyl acetate molecules. The

simulation geometry was established by placing three equilibrated bulk slabs of 216

molecules adjacent to each other. The configurations are from the bulk reaction field

runs for the energetics study of the previous chapter. The slabs are equilibrated at

the experimental density of 0.927 gr/cm3 at temperature of 298K. The interface is

generated by imposing an asymmetry in the box dimensions; the coordinate normal to

the planar interface is made roughly five times larger than the transverse dimensions

without rescaling particle coordinates. This ensures that a bulk region is established

in the center of the cell as well as preventing interactions between particles at the

two liquid-vapor interfaces. Periodic boundary conditions are applied in all Cartesian

dimensions; this is akin to having a reflecting wall normal to the z-direction, except

that here, molecules cross the wall and appear on the other equivalent side of the liquid

slab. The simulation box dimensions are L, = LY = 3.08483nm by L, = 15.Onm .
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This geometry along with a cutoff of 1.2 nm makes sure that the two interfaces

created do not interact with one another. NVT simulations were performed with

Nose-Andersen thermostat with time constant of 5.5 picoseconds. A time step of 4

femtoseconds was used, with the fluctuation in total energy being within 10 percent

that of the kinetic energy. The equations of motion are integrated using the RATTLE

algorithm for Velocity Verlet with bond constraints [34]. Intermolecular interactions

were computed using a Verlet neighbor list. Electrostatic interactions were computed

via reaction field with a spherical cutoff of 1.2 nanometers. Non-bond interactions

were also spherically truncated at the same separation. The system was equilibrated

for 440 picoseconds after which data for statistical analysis was collected for 1.2

nanoseconds. Instantaneous properties (pressure, temperature, energies) were saved

every 20 time steps (every 0.08 picoseconds) and configurations were saved every 500

timesteps. Figure 4-1 shows the system geometry and Table 4.1 gives the relevant

parameters.

Table 4.1: OPLS Non-Bond Parameters: Methyl Acetate United-Atom Model

Atom Type o- E Mass Charge
(nm) (0) (amu) (e)

Carbonyl Carbon 0.375 1.75728 12.01115 0.550000
Carbonyl Oxygen 0.296 3.51456 15.9994 -0.450000

Ether Oxygen 0.30 2.84512 15.9994 -0.40
Carbonyl Methyl 0.391 2.67776 15.03506 0.050

Ether Methyl 0.380 2.84512 15.03506 0.250

4.3 Results

In this section, the structural and thermodynamic results of the OPLS flexible methyl

acetate model liquid-vapor interface simulations are presented. For structural analy-

sis, various density profiles including total molecular number and component number

density profiles are discussed. All profiles are computed with respect to the center

of mass of the system, and the symmetry of the system is exploited for averaging

131



z

y

x Vapor

e Liquid

~17

Lz

LyVapor

Lx

Lx = Ly = 3.08483 nm
Lz = 15.0 nm

Figure 4-1: Liquid Vapor Interface Simulation Cell Geometry

purposes; thus, only the symmetrized profiles are shown. Also presented are the or-

der parameters P1 and P2 (first and second Legendre coefficients) representing the

orientation of various bond vectors relative to the interface normal. Again, these are

computed with respect to the system center of mass and the symmetrized profiles

are shown. Finally, radial distribution functions for the bulk and interfacial regions

are computed. We note that polarization effects are not considered in the present

work since the models used for the ester (and water in subsequent chapters) neglect

molecular polarizability.
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4.3.1 Density Profiles

The symmetrized total and component number density profiles are shown in Figure 4-

3 through Figure 4-5 . Figure 4-3 shows the total molecular number density. A sharp

interface is evident; the bulk density drops to essentially zero within one nanometer.

This is typical of small molecule liquid-vapor interfaces at temperatures far from

the critical point. More importantly, this is a substantial result in that a stable

heterogeneous system is established (at the temperature selected) without any need

to modify the intermolecular interaction component of the OPLS potential model.

We observe no significant deterioration of the system structure as a function of time.

We confirm this by monitoring the positions of the Gibbs dividing surfaces during the

simulation. Arising from the symmetry of the simulation cell are two dividing surfaces.

The z-coordinate of the Gibbs dividing plane is computed for each configuration as,

ZG = Zcom k LL pbulk (4.1)

where ZG is the Gibbs dividing surface, Zcom is the center of mass of the total system

(all molecules), N+ represents the number of molecules whose centers of mass are

located at higher z-coordinate values than the system center of mass ( N_ is anal-

ogous), Lx and Ly are the in-plane dimensions, and pbulk is the bulk density. This

equation derives directly from the definition of the Gibbs dividing surface as being

the location which gives no surface excess of material; that is, for a given density

profile, the areas between the actual density profile and the constant bulk values on

either side of the dividing surface are equal. That is, we have the equality

I ZG 1

Spbulk - P J dz - J p - pvapor ] dz (4.2)
Ze fZG

wherep bulkis the bulk liquid denstiy and p"aPor is the bulk vapor density. Taking the

bulk liquid density to be a constant, p bulk and the bulk vapor density for the present

simulation configuration to be zero, pvaPor = 0, the equality becomes,
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ZG D

pbulk (ZG - Zcomn) - p(z)dz = p(z)dz (4.3)

Rearranging so as to place both integrals on the same side of the equality, we get

pbulk (ZG - Zcomn) = p(z)dz + J p(z)dz (4.4)

The two integrals can be combined as

/ ZG 0 0
p(z)dz + p(z)dz = f p(z)dz = N+ (4.5)

ZCOM ZG ZCOmn

We have introduced the value N+ which is used in Equation 4.1 which represents the

density profile averaged number of molecules per unit area. We can now rearrange

and obtain straightforwardly Equation 4.1.

Figure 4-2 shows the time profiles for the last 800 picoseconds of the simulation.

The surface for z-coordinate values less than zero has been shifted up by 9.0 nanome-

ters for clarity. The profiles demonstrate that the positions of the dividing surface

fluctuate about a mean value (and hence signify the stability of the interface); the

fluctuation clearly indicates the density fluctuations at the interface. The average

bulk density is 7.109 nm- 3 which is 0.874 gr/cm3 (0.0026), a value approximately

5.7 percent too low compared to the experimental value at the same temperature;

however, this is within the general order of magnitude error found for bulk densities

in interfacial simulations ( consider the 12 percent error obtained in bulk densities of

methanol by Matsumoto and Kataoka [56]); furthermore, this drop in density results

from imposing a finite cutoff on the distance over which intermolecular interactions

are accounted, as well as the increase in the longitudinal simulation cell dimension

which allows the system to expand in this dimension. The interface is reached within

4.5 nanometers from the bulk center and extends out to about 5.5 nanometers. The

10-90 thickness is computed to be 0.6 nanometers (6 angstroms). This is the thick-

ness over which the ester density changes from 90 percent to 10 percent of its bulk

liquid value (here taken as the average value of 7.109 nm- 3). The 10-90 thickness

corresponds to roughly 1.2 molecular diameters (the molecular diameter is taken to
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be 0.4936 nm [124]); this is in keeping with the interfacial thicknesses observed for the

free surfaces of water and methanol at approximately equivalent absolute tempera-

tures [53, 55, 56, 125, 126, 54]. When compared on the basis of reduced temperature,

T/T, where T, is the critical temperature, we also find that the computed thickness

is consistent with previous simulations of molecular systems. We note, however, that

the model fluids simulated are just that-they are approximate models. Due to the

fact that not all the models have been characterized with respect to the associated

critical points, we have used experimental values and accept the uncertainty in so

doing.

Comparison of the 10-90 thickness to experimental data from ellipsometry and

X-ray reflectivity is often difficult as simulations systematically underestimate the

10-90 thickness due to the lack of capillary waves being included in the simulation.

Capillary waves are inherent in experimental setups and in theory will broaden the

interface, giving higher interfacial thickness measurements [54]. Figure 4-4 shows a

component number density profile. Here there is no strong structuring at the interface

per se. There is a slight difference in the regions where certain functionalites are

present. In the bulk region, there is obviously no preferential spatial separation of

the various groups. Moving out towards the interfacial region, there appears to be a

slightly higher tendency for the more electronegative carbonyl and ether oxygens to

segregate to this region, while in the outermost regions of the interface, the methyl

group density is only very slightly enriched. Figure 4-5 shows a magnified region of

the component density profile to more clearly demonstrate the above observations.

Finally, the total molecular number density profile over various time intervals during

the production run are presented in Figure 4-6. These show a quite stable behavior

over the time of the simulation. Also, Figure 4-7 shows a time profile of the bulk

density (with the time average value shown as a straight line).

Finally note that the interface shown here is more likely representative of the

inherent/intrinsic interface due to suppression of long wavelength capillary waves in

MD simulations. Capillary waves, originating from the thermal motions of particles,

tend to widen (or analogously, 'roughen') the interface (both experimentally and

135



via simulation), and so one can expect that the true width is somewhat wider than

computed [50]. Continuum theory of interfaces indicate two characteristic interfacial

widths, 1). the intrinsic width over which the density at a planar interface changes

from one bulk value to the coexisting value, and 2). the amplitude of capillary

waves on the inherent planar surface; thus, capillary waves can be thought of as

being superimposed upon the inherent interface which has its own thickness [127].

Capillary wave broadening is more pronounced at liquid-liquid rather than liquid-

vapor interfaces since in general the mass density and surface tension are smaller in

the liquid-liquid case [50]. Since the computational limitations restrict the number of

particles that are included in the simulation system, and thus the size of the interface

indirectly, for an interface of dimensions L x L, only the short wavelength modes will

be visible via molecular dynamics simulation. That is, only those capillary waves with

wavelength longer than order L will not be described via molecular simulation for the

system sizes commonly used [50]. Furthermore, the major contribution of capillary

waves to interfacial broadening is from small k waves, or those with large wavelengths

[128]. For example, for a system with L = 1cm, a surface tension of -y = 50dyne/cm,

T = 300K, and im = 5 x 10- 8cm, typically, 75 percent of the contribution to the

capillary amplitude is from waves of length greater than 100 times 1m, the minimum

wavelength definable for the interface (which for the present discussion is taken to be

a characteristic molecular diameter) [128]. In the final analysis, the simulated system

can be viewed as a locally 'flat' area of a long-wavelength, periodic structure (the

dimensions of the simulated system are such that in effect, the radius of curvature of

the wave structure is immensely large) [61]. The section 'Capillary Wave Theory and

Fluid Interfacial Broadening' goes into a little more theoretical detail concerning the

capillary wave picture of interfaces.

At this time, we have not found any experimental data on the methyl acetate free

surface thickness; however, based on literature reports of computed interfacial thick-

nesses, we believe that the present computations will fare no better in reproducing

experimental observations [61, 50, 126, 54, 56]. One can estimate the capillary wave

broadening of the interface by the mean square amplitude of capillary waves given by
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[57]

< (6()2 > In( L) (4.6)

where -y is the surface tension, L is the upper wavelength limit determined by the

size of the surface, and 1 is the lower limit which is taken to be of the order of a

molecular diameter. The surface tension is computed from the molecular and atomic

virials as well as from the Irving-Kirkwood formula as will be discussed below.

For the present case, L = 3.085nm, 1, an estimate of the ester molecular diameter,

is taken to be 3.8 angstroms (0.38 nm) (calculated from the geometry with all internals

at equilibrium values), T = 298K, and the surface tension, y is that calculated from

the molecular virial route, 21.061 dyne/cm. This gives for a rough estimate of the

interface broadening:

< (6()2>298.0 kB 3.085 (4.7)
27r (21.061 dyne/cm) 0.38

< (6() >= 2.5 angstroms (4.8)

This value is within the range of typical values reported in the literature for

capillary wave amplitudes of small molecules and oligomeric species [60, 50, 57]. An

interesting note is that continuum theory gives an expression for I as [129],

12 7 4.9)
(P1 - P2)g

where the pi are the densities of the coexisting liquids, and g is the gravitational

constant. In the limit of vanishing gravity, we see that the capillary wave amplitude

diverges, suggesting that no interface exists in this situation [129].
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Methyl Acetate Liquid-Vapor Interface: Symmetrized Density Profile
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Ester Atomic Temperature versus Time
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4-8: Time profile of the ester atomic temperature. The average is computed
atoms over all configurations.

Ester Molecular Temperature versus Time
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Figure 4-9: Time profile of the ester molecular temperature. The average is computed
over all molecules over all configurations.
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Capillary Wave Theory and Fluid Interfacial Broadening

This section provides a brief overview of capillary wave theory as applied to fluid-fluid

interfaces of molecular fluids; the discussion closely follows the work of Davis [128]

which in turn follows the original work of Buff, Lovett, and Stillinger [130]. The notion

of capillary waves is invoked to ascribe a density fluctuation to an interface since local

fluctuations of density occur at all points of a macroscopic, homogeneous fluid [129].

A simple and natural approach to impose density fluctuations at an interface is to

introduce the description of the interface in terms of a spectrum of capillary waves

superimposed on a bare, or intrinsic, density profile [129]; this will become apparent

in the following discussion.

Consider an equimolar dividing surface in the x-y plance, ((x, y), between fluids of

density p, and p2; ( is a measure of the vertical distance of the interface from the x-y

plane which is taken to be the interfacial plane. Now, taking the interfacial tension

between the two fluids to be -y, and considering an external potential (gravitational) of

v(z) = mgz which acts to maintain the planarity of the interface [129], the reversible

work to create the dividing surface ((x, y) is [128]

Wreversible = (P1 - p2 ) '1 [1 mgzdz dx dy + -y, J2J + + + ±4 2 )1 / 2 dx dy

(4.10)

where A is the interfacial plane area, and (x and (y are the x- and y-derivatives

of ((x, y), respectively. The gravitational potential energy term in Equation 4.10 is

calculated relative to that of a flat (planar) interface at z = 0. Furthermore, the

system is restricted to be square in the interfacial plane with area, A = L2 , with L

being the length of a side of the square [128].

The dividing surface is now represented as a combination of decoupled harmonic

surface waves as [128],

((x, y) = ZA(k)eik-s (4.11)
k
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S = xi + j

Note that the sum here is infinite, but will later be bounded based on physical

arguments.

Now, substituting Equation 4.11 into Equation 4.10 and expanding (1 + ( + (2)1/2

keeping terms up to second order in (x and (, only ( this is because the fluctuations

are anticipated to be small in amplitude, or of long wavelength) gives [129, 1281,

Wreversible = 7oA+ 1 - A(k)A(k')
2 k,k' I0 LIo L

ei(k+k')-s [(PI - p2)g - +- (kxk + k k )I dx dy

(4.13)

The allowed values of k are obtained from the periodic boundary conditions im-

posed in the planar dimensions,

((0, y) = ((L, y)

((x, 0) = ((x, L)

(4.14)

(4.15)

The resulting vectors are,

k = -(nxi + ny) nx, ny = 0, +1, ±2, - - -

Substituting the allowable vectors into Equation 4.13, and noting that only terms

with k = -k' contribute to the integral over the area gives for the reversible work

[128],

Wreversible = 'oA + Z|A(k) 2  1 - p2 )g
k

+ AOk A

For a set of amplitudes A(k), the average value of (, ( is,
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f- (dxdy = A(0) (4.18)
A

and the mean square fluctuation is,

S2fy = A(k) 24.19)

Note that as ( is the fluctuation of a planar dividing surface about z = 0, the

average value of ( must vanish, thus implying A(k = 0) = 0; consequently, the sum

in Equation 4.17 is taken over non-zero vectors [128].

The probability for an occurrence of a given set of amplitudes A(k) through ther-

mal fluctuations is given by the Boltzmann factor e--Wreversible, where 0 = T (and

kb is Boltzmann's constant), and T is the absolute temperature. The thermal (canon-

ical) average of the mean square amplitude computed by averaging over all sets of

amplitudes, A(k), gives the mean-square capillary wave dispersion [128],

2 (,L 2  (PI - P2)g + 'k (4.20)
k>o 2 P

The sum over k is transformed to an integral using the relation 1 6nri6ny =

(L/27r) 2 6k-6ky to obtain

2 2 + kf2-1d2k (4.21)
C (2wr)7 o3J~I)I

2 1 (2 + (27/lm)2(
- 41Ty-, 12 + (27/L)2

where

2-2 (4.23)

Note that the sum in Equation 4.20 is bounded by a minimum and maximum

value for the k-vectors. The sum begins at (27r/L), the lowest value of k. The

maximum value is determined by the physical dimensions of the system; that is, for
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a wave to be defined in a molecular system, the upper bound for k is 27r/im, where

1m is a minimum wavelength definable for the interface. Although in the original

proposition of capillary wave theory, Buff et al took the value of im to be the mean

thickness < (2 >1/2>, an equivalent choice is a length of the order of hte diameter

of a molecule, and thus on the order of the mean nearest neighbor separation in the

liquid [128].

One can see from Equation 4.22 that in the thermodynamic limit, L -± oc, the

mean square capillary amplitude is [129],

02 = 1 01n 1 + (27r/lm) 2-y (4.24)
47r-y, (PI - P2)g

As the gravitational potential diminishes to zero, the capillary wave amplitude

diverges (in the thermodynamic limit) as (-in g)1/2 [129].

For a system of finite size (typically which is what one is limited to in a simulation),

the maximum value of the capillary amplitude is [128]

Umax = [1Ln )] 1 2  (4.25)
27r-y,,# im

This is the zero gravity value of the amplitude for a finite sized system; notice that

in this case, the finiteness of the system suppresses the divergence as zero gravity is

approached [128].

4.3.2 Bulk vs. Interfacial Structure I. Radial Distribution

Functions

The pair correlation function for a slice is calculated from the histogram of the sep-

arations between all pairs of particle types within the slice. The normalized pair

correlation function is given by [131] :

g(R) 2N(R, AR) s (4.26)
Vint s N

where N(R, AR) is the average number of pairs of particles within the section with
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separation between R and R + AR , Vst is the average volume of the intersection of

the section with the space between spheres of radii R and R + AR , V, is the total

slice volume, and NT is the average number of particles in the slice.

Figure 4-10 through Figure 4-14 show the radial distribution functions com-

puted for various site-type pairs, these specifically being the carbonyl oxygen to car-

bonyl oxygen rdf (0-0), the ether oxygen to ether oxygen rdf(Oe-Oe), the carbonyl

oxygen to ether oxygen(Oe-0) rdf, the carbonyl oxygen to carbonyl methyl group

rdf(0-MeE), and the ether oxygen to carbonyl methyl group rdf (Oe-MeE). The

radial distribution profiles are for the central bulk region defined as that in which

-3.00nm < R, < 3.00nm . For the interfacial region, 4.4nm < R, < 5.3nm and

likewise for the mirror side of the simulation cell; the symmetry of the system is taken

advantage of for averaging purposes, and the profiles for the interface are averaged

over the symmetric halves of the cell. The profiles are computed in 100 bins out to a

separation of 1.2 nm (which was the spherical cutoff used for non-bond interactions).

Averages are from the last 1.2 nanoseconds of the simulation (production phase).

All the bulk radial distribution functions show relatively structureless homoge-

neous fluids, a result which is in keeping with the rdf's calculated by Jorgensen etal

based on NPT Monte Carlo computations of bulk methyl acetate at 298K and 1

atmosphere [67]. Although the density reported by Jorgensen et al is 0.905 gr/cm3

compared to the 0.874 gr/cm3 value obtained for the bulk ester region, the present

simulation does not show any fundamental difference in the structure of the bulk

fluid. One can note that based on the first peak in the functions for the carbonyl

methyl group, there is a tendency for the more electronegative carbonyl oxygen to

attract the carbonyl methyl group more so than the ether oxygen does.

Finally, comparing the bulk and interfacial pair distribution functions, it is evident

that the liquid structure is not lost as one moves from the bulk to interface. The peaks

in general are higher due to the lower density of the interface.

At this point, some comments are made about the behavior of the radial distri-

bution functions as the interface is approached from the bulk region. Figures 4-10

through 4-14 show an increasing first peak in pair correlation functions with de-
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creasing density moving from the bulk to the interface (note that for such a rapidly

decreasing density profile, one must keep in mind the nominal density of the region

being considered).

This same effect is seen for two water models, the ST2 and LSR (Lemberg-

Stillinger- Rahman) potentials, applied to the study of clusters of water molecules

by Townsend and Rice [53]. The auth ors present oxygen-oxygen, oxygen-hydrogen,

and hydrogen-hydrogen radial distribution functions for shells encompass ing a bulk

region and various positions within the inhomogeneous region (the interfacial region

characterized by monotically decreasing density profiles). For both po tentials stud-

ied by the authors, the oxygen-oxygen correlations became stronger as the density

decreased, with a threshold for increasing amplitude of the first peak of the oxygen-

oxygen distribution being about ninety percent of the bulk density. Furthermore, the

second peak of the oxygen-oxygen distribution is independent of the density, showing

a slight enhancement for densities less than 25 percent of the bulk. The oxygen-

hydrogen and hydrogen-hydrogen functions are shown to parallel the oxygen-oxygen

functions. Based on these results, the authors claim that the behavior of the dis-

tribution functions suggest that with a breakup of the hydrogen-bonded structure

of the bulk liquid in the lower density interfacial region, there is precipitated dimer

formation; it is this dimerized structure which yields the stark enhancement in the

first peaks of radial distribution functions.

For methyl acetate, the radial distribution functions presented seem to indicate a

similar phenomenon; whether this is a result of 'dimerization' or some higher-order

'clustering' is not clear from the data shown. Based on Monte Carlo simulations of

bulk methyl acetate [67], one does not observe strong structure in the bulk liquid

(as demonstrated by the relatively featureless rdf's shown for the bulk region). Fur-

thermore, the Monte Carlo simulations did not reveal any strong interaction-induced

structure as in the case of acetic acid, for which the bulk fluid structure incorporated

strong hydrogen-bonding interactions. At this point, we suggest the possibility of

some type of clustering occuring at the liquid-vapor interface. From an energetic

argument, this may be the result of two (or more) ester molecules, within the low-
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density region of the interface, coming together and proceeding along a trajectory for

some characteristic time after which the 'cluster' breaks up. With the current poten-

tial model, it may be that the energetic gains compensate for the overall entropic loss

of forming the cluster. To more accurately analyze the results of the pair correlation

function calculations, we see the need to determine first, the nature, if any, of the

clustering at the interface, and second, the dynamical aspect of the association in

terms of the mean time over which the cluster remains a stable entity.

One caveat to this analysis is the fact that there is an inherent limitation in the

nature of the calculation of the interfacial radial distribution functions. One can

note that the density over a small section within the monotonically decaying section

of the density profile is dramatically changing. Now, the calculation of the rdf for

this region requires normalizing the histogram of pair separations; this is done by

employing a uniform density for this region. In so doing, the smaller pair separations

are weighted more, and thus, one observes an enhancement in the first peak of the rdf

in the interfacial region relative to the bulk. This effect becomes more pronounced as

the degree of inhomogeneity within the region becomes more severe, since this causes

the uniform density used for normalization to decrease substantially. This is a topic

for further investigation and will not be considered further in this work; it would be

interesting to reinvestigate the phenomenon of water clustering at the free surface

(based on the previous studies which seem to show very similar results in terms of

the rdf behavior) with the intent to consider if this effect is indeed 'real'.

148



Methyl Acetate Liquid-Vapor Interface: Radial Distribution Functions
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Figure 4-10: Methyl acetate carbonyl oxygen / carbonyl oxygen radial distribution
functions. The bulk region is taken to be the central 6.0 nm of the simulation cell.
The interfacial distributions are computed for a region from 4.4 to 5.3 from the center
of mass of the simulation box (in both the positive and negative directions); the two
profiles are then averaged.

149

1.6

1.4

1. 2 I-

I

-,
0.8 r
0.6

0.4

0.2

0
0 0.2 0.4 0.6

Pair Separation (nm)



Methyl Acetate Liquid-Vapor Interface: Radial Distribution Functions
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Figure 4-11: Methyl acetate ether oxygen / ether oxygen radial distribution functions

(see carbonyl oxygen / carbonyl ogygen rdf for details)

Methyl Acetate Liquid-Vapor Interface: Radial Distribution Functions
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Figure 4-12: Methyl acetate ether oxygen / carbonyl oxygen radial distribution func-
tions (see carbonyl oxygen / carbonyl oxygen rdf for details
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Methyl Acetate Liquid-Vapor Interface: Radial Distribution Functions1.4

1.2

0.8 -

0.6

0.4

0.2 Bulk Carbonvl o-Carbony Methyl
Interface: Carbonyl 0 - Carbonyl Methyl ----

0
0 0.2 0.4 0.6 0.8 1

Pair Separation (nm)

Figure 4-13: Methyl acetate carbonyl oxygen / methoxy methyl radial distribution
functions (see carbonyl oxygen / carbonyl oxygen rdf for details)
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Figure 4-14: Methyl acetate ether oxygen / methoxy methyl radial distribution func-
tions (see carbonyl oxygen / carbonyl oxygen rdf for details)
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4.3.3 Bulk vs. Interfacial Structure II. Torsion and Out-of-

Plane Distributions

Figure 4-16 shows the distribution of the out-of-plane angle averaged over all molecules

in the bulk region as defined above. Also, shown is the distribution for the interfacial

region. As expected, the distributions are sharply peaked around zero, signifying a

flat trigonal center at the carbonyl carbon atom. Furthermore, the distribution of the

central torsion angle is seen to be peaked again at zero degrees in Figure 4-15; this

coupled with the out-of-plane angle distribution confirms the average planar molec-

ular structure of the molecule. This is useful in interpreting the orientational order

parameters in terms of the spatial relation of the various bond vectors and how this

relation is part of the structure shown by the order parameters.
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Methyl Acetate Liquid-Vapor Interface: Torsion Distribution
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Figure 4-15: Torsion angle distribution for the bulk and liquid-vapor interface.
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Bulk
Interface ----

IA

-80 -60 -40 -20 0 20
Out-of-Plane Angle (degrees)

40 60 80 100

Figure 4-16: Out-of-plane angle distribution for the bulk and liquid-vapor interface.
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4.3.4 Bulk vs. Interfacial Structure III. Orientational Or-

der Parameters

The effect of the interface on the orientations of various bond vectors is studied

through orientational order parameters (first and second Legendre coefficients) defined

as [60, 50]:

P(z) = < cos O > (4.27)

and

P2 (z) = < 3(cos 2 0) - 1 > (4.28)
2

where 0 is defined as the angle between the interface normal (along the positive

and negative z-axes) and a bond vector associated with a specific functional group.

For the present case, the carbonyl carbon - carbonyl oxygen bond vector, rco, the

carbonyl carbon - methyl bond vector, rC-CH3, and the e ther oxygen - methyl group

bond vector, TO-CH3, are considered for methyl acetate. The average is over all

vectors and time steps within a thin slab perpendicular to the interface normal. If

the vectors in a region are completely randomly oriented, P2 = 0. If there is a

prevalent orientation parallel to the interface normal, P2 = 1.0; with an orientation

perpendicular to the normal, the order parameter goes as -0.5. Note that the bond

vector is defined as rij= ri - rj . Thus, for methyl acetate, the relevant bond vectors

are such that the rCo vector points from the carbonyl oxygen to the carbonyl carbon,

the rO-CH3 vector is directed from the methoxy methyl group to the ether oxygen ,

and the rC-CH3 vector points from the carbonyl methyl group to the carbonyl carbon.

Figure 4-17 shows symmetrized P1 profiles for the noted bond vectors. In the bulk

region, there is virtually no preferential orientation of the bond vectors. In theory,

this should be zero, but the fluctuation is a result of the finite sample size. Note that

in the bulk region, the oscillatory behavior of the carbonyl methyl group - carbonyl

carbon bond vector is out of phase relative to the other two profiles. This is in
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keeping with the observation that the predominant (essentially the only ) conformer

present in the bulk neat liquid is the syn periplanar form in which the carbonyl

methyl group is trans to the ether methyl group. With this molecular geometry,

one anticipates the observed behavior. Interesting is the dramatic divergence in the

profiles once the interfacial region is encountered beginning around 4 nanometers out

from the bulk center. Thus, we see that the anisotropic field generated simply by

the heterogeneity of the density gives rise to an order of magnitude change in the

orientational preference. The P1 profile shows that in the interface both the C-O

and Oe-CH3 bond vectors tend to point inwards to the bulk, while the carbonyl

methyl group juts towards the vapor phase. This tendency is acceptable from an

energetic perspective as the electrostatic interaction loss is minimized as only the less

electropositive carbonyl methyl group (0.05e as opposed to the ether methyl group

with charge of 0.25e) is forced to give up interactions. This is also consistent with

the results of MD simulations of the methanol liquid-vapor interface presented by

Matsumoto and Kataoka [56]. In their study to address the anamolous behavior of

strongly hydrogen-bonding molecules at the liquid-vapor interface, the authors report

the evolution of a strong tendency of the methanol molecule to show orientational

ordering at the interface, even more so than water. Based on distributions of internal

angles, the authors conclude that a methanol molecule near the interface prefers to

project the methyl group towards the vapor phase. The physical reasoning for this

phenomenon is that the methyl group, which is essentially a hydrophobic element

unable to participate in hydrogen bonding, is pushed towards the vapor phase so that

energetically, the liquid phase is stabilized through more opportunities for hydrogen

bonding; the authors thus claim that in this sense, methanol can be regarded as one

of the simplest representations of surfactant molecules-although this is by no way

a rigorous use of the definition of surfactants, the manifest phenomenon is the same.

Now, Matsumoto and Kataoka use Jorgensen's TIPS united atom model for methanol

in which the methyl group is attributed a charge of 0.285e (with e being the elementary

charge); for the methyl acetate OPLS model, the carbonyl methyl group, as noted, has

a partial charge of 0.05e. Thus, although the ester system is not a hydrogen bonded
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system, the fundamental mechanism for the orientation, which is the electrostatic

interaction which contributes more to the energetic stabilization of the liquid, is still

at work. Furthermore, we note that the authors of the previous study use Ewald

summation for tracking the electrostatic energy and forces; the present study uses

a much simpler (both conceptually and programming-wise) reaction field. In effect,

both approaches seem to indicate the same phenomena at the interface. This is not

altogether unexpected since the orientation is a local event, basically confined to the

inhomogeneous region. Thus, we expect that both approaches should yield the same

physics, as they apparently do.

Figure 4-18 shows the P2 profiles for the relevant bond vectors. This figure shows

that the distributions of the cosine of the angle are diffuse about the average value

indicated by P1. There is a slightly favored orientation along the interface normal,

but within the precision of the simulation, this is a small effect. In the very outer

regions of the interface, the fluctuations for the individual bins become very large as

the number of molecules present in the vapor is insignificant to accumulate sufficient

statistics over the simulation time covered in the present work.
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Methyl Acetate Liquid-Vapor Interface: Symmetrized P1 Profile
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Figure 4-17: Symmetrized P1 profiles for the indicated bond vectors of methyl acetate.
The longitudinal position is relative to the center of mass of the simulation cell.

Methyl Acetate Liquid-Vapor Interface: Symmetrized P2 Profile
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Figure 4-18: Symmetrized P2 profiles for the indicated bond vectors of methyl acetate.
The longitudinal position is relative to the center of mass of the simulation cell.
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4.4 Surface Tension

In order to evaluate the accuracy of the OPLS ester potential parameters for interfacial

thermodynamics, the molecular virial is computed to obtain the molecular surface

tension via [60, 126]:

1
7y =2(2VZ - Vx - V~Y) (4.29)

where V,, is the diagonal molecular virial component and A = 2LxLY is the total

surface area of the slab. The molecular virial is:

VCan =Z FabRa= FaRa (4.30)
a<b a

where the sum is over all molecules a and b and Rc' and Fa are the a = x, y, orz

component of the molecular center of mass separation and total force,

F a = - E ,(rabkl) (4.31)
ab k,1=1 1rabklI

An alternate and theoretically equivalent route to the surface tension is the atomic

virial [36],

a = Z'frak (4.32)
a k

where the f's and the r's now indicate the forces acting upon, and the positions

of, the individual atoms.

The atomic virial includes contributions from intramolecular interactions such as

constraint forces, bond angle forces, torsional forces, intramolecular Lennard-Jones

type forces, and bond-stretching forces (although not in the present case). Although

the total contribution from these sources is in theory zero, the contributions to the

individual components of the pressure tensor do not necessarily cancel, thus giving

non-zero values for these components. Note that although the molecular and atomic

virials should result in equivalent ensemble average values of the surface tension, the
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instantaneous values and fluctuations can differ dramatically [36]. The atomic and

molecular virials do yield different values for the individual V00, but the atomic and

molecular kinetic contributions to the total pressure tensor components cancel this

difference.

Furthermore, the differential between the normal and tangential components of

the molecular pressure tensor is computed as a function of longitudinal position. This

is done as a check on equilibration as the normal and tangential components should

be equivalent away from the interfaces and the normal component should be constant

throughout the system. Furthermore, analyzing the components of the pressure ten-

sor acts a check on the 'appropriateness' of the potential parameters. If the potential

model is correct at the state point under study, the average normal component of

the pressure tensor (normal to the interface) should essentially be atmospheric pres-

sure (and constant throughout the longitudinal profile), and the tangential (in-plane)

components give rise to the surface tension which can be compared to experimental

data. The off-diagonal elements of the pressure tensor should be zero (or 'small'). It

is im portant to note that simulation surface tensions for systems containing charges

or hydrogen-bond interactions are plagued by large errors; surface tension estima-

tion even for simple alkane oligomers is subject to large inaccuracies. Thus one does

not anticipate great accuracy in the surface tension computed. However, it is reiter-

ated that analyzing the pressure tensor components does have merit as a check on

equilibration and consistency of potential model [61].

The profile of the normal-tangential pressure differential is computed as:

Y(z) = dz (PN(z) - PT(z)) (4.33)
2 -_w

where PN(Z) and PT(z) are the normal and tangential components of the stress

across a plane parallel to the interface at the longitudinal position z. 'y(oo) is the

surface tension.

The normal and tangential components are computed via the Irving-Kirkwood

definition of the pressure tensor [60, 132, 126]
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T(Z) =kT -N < (i XXiajb + YijYiajb) dU(riajb) 1 Z - Z Z - Z
A < j a b 2 riajb driajb Izi| Zi1  ZZJ

(4.34)

and

PI Nr ijZiajb dU(riajb) I Z -Zi zj - ZPN(z) = < p(z) > kT 1 ZijiabUij) 1 - Zi) 0 ( Z) >
A j a b Tiajb driajb |zij| Zig Zig

(4.35)

In these equations, p(z) is the total molecular density at z (its average over all

configurations is used), k is Boltzmann's constant, and T is the absolute temperature.

0(q) is the Heavyside step function which is zero for arguments less than zero and

equal to unity for arguments greater than or equal to zero. For clarification, the xij ,

yij , and zij are the molecular center of mass separation components, while the Xiajb

, Yiajb , and Ziajb are the site-site separation components. The sums are over all N

molecule pairs and over the m sites on each molecule (here, all molecules are taken

to be equivalent).

The molecular virial route to the surface tension yields a value of 21.06 (0.87)

dyne/cm which is about 17 percent lower than the experimental value of 24.73

dyne/cm at 298 K. The atomic virial calculation yields a value of 22.70 (1.09) dyne/cm.

Both computed values exclude long-range corrections beyond the cutoff for Lennard-

Jones interactions. Although there is a slight difference between the two values, note

that both yield a consistent measure of the standard deviation of the virial (pres-

sure) which is related to the compressibility. Furthermore, the error estimates imply

that the distribution of atomic surface tension values is more diffuse relative to the

molecular distribution for a given sampling frequency. This trend is also observed in

the computation of surface tensions for eicosane at 400 K [60]. As to the accuracy of

the potential in predicting surface tensions, it is noted that although the uncorrected

surface tension values underestimate the experimental data, trends indicate that the

corrections simply for the Lennard-Jones contributions can amount to almost half of
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the total value [60], and thus lead to an overestimation of the surface tension. Surely

for the present case, a correction of such magnitude will not prove any better.

Figure 4-20 shows the longitudinal profile of the differential of the normal and tan-

gential components of the pressure tensor. The pressure components are in program

units of kJ/molcm3. There are two clearly defined interfacial regions giving roughly

the same contribution to the stress differential. Although the bulk region does not

show that the differential identically vanishes in the average sense, we accept this to

be a limitation of the statistics accumulated during the simulations. The sampling

frequency for configurations (every 500 time steps) is too low to provide any better

precision thus resulting in the deviations from zero average pressure differential in

the bulk.

Figure 4-19 shows the integrated profile of the differential of the normal and

tangential components of the pressure tensor. Although there is a non-uniformity

in the bulk region, the two interfaces essentially contribute equally to the surface

tension. Also, the surface tension obtained from this curve is 22.852dyne/cm which

is well within the error bounds of the surface tension reported above calculated from

the atomic virial. The level of precision indicated by this curve is consistent with the

results of the virial calculations of the surface tension presented above.

4.5 Conclusions

We have performed direct molecular dynamics simulations of the methyl acetate

liquid-vapor interface using the OPLS forcefield augmented with bond angle and

out-of-plane potentials. Our computations indicate the evolution of a sharp, sta-

ble interface with a 10-90 thickness of 6 angstroms. This is characteristic of the

interfaces of small molecules studied by simulation techinques, although somewhat

larger as compared to hydrogen-bonding systems. In terms of liquid structure, we

observe that the bulk fluid is rather structureless (as has been reported earlier based

on Monte Carlo simulations) and retains the same structure within the interfacial

region. Molecular and atomic species density profiles indicate a layering effect in
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the interfacial region, with the carbonyl oxygen atoms being enriched in a layer just

beneath the outermost surface regions, e.g., that closest to the vapor phase. Consis-

tent with this picture, we observe that the P orientational order parameter profile

indicates that the carbonyl carbon/carbonyl oxygen bond vector aligns antiparallel to

the interface normal within the interfacial region. The oxygen tends to orient toward

the bulk liquid phase while the less electronegative methyl groups are exposed to

the vapor; this is understandable if one considers the energetic interactions retained

for the oxygen by taking such a spatial orientation. An interesting of this work will

be to observe the response of the interfacial structure to a change in the contacting

medium. We plan to present simulations of the methyl acetate/water liquid-liquid

interface in the future. We expect to find that the orientations of the carbonyl bond

vector will change due to the enhanced opportunities for hydrogen bonding due to

the presence of water. This phenomenon has interesting implications with respect to

biomaterials, and in particular, those which are used in applications requiring con-

tacting with physiological fluids containing a vast variety of proteins, small-molecule

solutes, and the like. Finally, our work shows that the OPLS non-bond parameters

cannot predict liquid-vapor surface tension to any better than within 10 percent of

the experimental measurements, and we believe that this will hold true for the whole

class of simple esters.
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Figure 4-20: The integral of the difference between the normal and tangential com-
ponents of the pressure tensor.
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5.1 Introduction

Ultimately this study is interested in probing the oligomer-water interface; thus, with

the small-molecule model at hand, it is worth delving into the equilibrium properties

of the liquid-liquid interface for small molecules, in this case methyl acetate and

water. In a general sense, the study of properties of liquid-liquid interfaces is of

great interest in numerous ares of science, engineering, and medicine. Apart from

the physiological effects of the interface as discussed in the introduction (from the

perspective of long-chain molecules), interfaces of small molecules are important in

cases where the transport mechanisms of materials across interfaces directly depends

on structural, thermodynamic, and/or dynamic properties of the interface [49].

Despite their fundamental importance, liquid-liquid interfaces have proven diffi-

cult to study on a molecular level via both theoretical and experimental approaches

[49]. Traditionally, experiments on liquid-liquid interfaces dealt with interfacial ther-

modynamical aspects such as surface tension or surface potential [121]. These types

of experiments can only provide limited information on the orientations of molecules

at an interface [121]. Furthermore, typical surface analysis techniques used to probe

solid surfaces in ultrahigh vacuum are intractable for liquid systems [120]. From a

theoretical standpoint, liquid-liquid interfaces have been treated with continuum ap-

proaches, thus offering very little insight to the molecular level detail [49]. Recent

advances in experimental and computational technologies such as second harmonic

generation (SHG) or sum frequency generation (SFG) [120, 121, 133] and multipro-

cessor, parallel architectures and codes, respectively, have allowed access to more

detailed information about the liquid-liquid interface [49]. Note, however, that even

SFG/SHG techniques are not straightforwardly applicable to the study of liquid-liquid

interfaces primarily due to, for example, IR signal loss in one liquid-phase before the

interface is reached [120, 121]. Computationally, simulations on the molecular-level

have greatly elucidated some of the fundamental aspects of liquid-liquid, liquid-vapor,

and liquid-solid interfacial thermodynamics, structure and dynamics. Early work on

computer simulation of the liquid-liquid interface is that of Linse who reported on
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the structure and thermodynamics of the benzene-water interface via Monte Carlo

methods [50]. Linse reports the formation of a stable interface as well as of a pre-

ferred orientation of water molecules near the interface; furthermore, he indicates the

reinforced hydrogen bonding at the interface. Gao and Jorgensen [134] report Monte

Carlo simulations of the 1-hexanol, water interface in monolayer, bilayer, and double

bilayer configurations; they conclude that the water penetrates very little into the

amphiphilic aggregates. Molecular dynamics studies on the hexane-water interface

[45], water-1,2-dichloroethane interface [135], and decane-water interface [58] hav e

recently shed light on the structure and thermodynamics of pure liquid-liquid inter-

faces. Going beyond the study of the interface itself, phenomena occurring at/across

the interface. For example, water transport across a lipid membrane was studied

by Berendsen and coworkers [136]; Hayoun et al [137] studied transfer of a solute

across a liquid-liquid interface; and Benjamin et al [138] studied the mechanism of

ion transport across the water/dichloroethane liquid-liquid interface.

This Chapter presents work probing the methyl acetate - water liquid-liquid in-

terface, with particular interest in the structure of the interface in terms of ester and

water orientations. Furthermore, we are interested in comparing the structure of the

liquid-liquid interface to the liquid-vapor interface for both species-that is, how does

the molecular orientation of a water molecule change on going from its own vapor

as contact medium to a second liquid ester phase as contact medium? Furthermore,

we are concerned with hydrogen bonding effects which will tend to reinforce any

preferential orientation at the interface.

One aspect of our understanding of the molecular interactions between the two

species will be the quality of the OPLS-SPC interaction model. That is, does the

interaction model we use, based on standard combination rules for forcefields (which

will be discussed below), accurately describe the two-phase behavior of the ester-water

system? A priori it is difficult to judge the accuracy of the potential, particularly

as the two models are generated based on optimizations to individual species prop-

erties, and more specifically, bulk properties. If anything, one expects the potential

model to fail; however, this pre-judgement is applicable to any available (commercial
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or academic) potential model; the question is to what extent does any model fail.

Thus, we proceed with the investigation of the ester-water system with this in mind.

Furthermore, as it is not the ultimate goal of this work to refine the potentials for the

low molecular weight systems, we will note the inadequacies and leave it to future

researchers to develop accurate quantitative models for this system. The next section

presents the details of the simulations, and the following sections describe results.

5.2 Simulation Details and Methodology

This section discusses the details of the simulations performed for the methyl

acetate-water liquid-liquid interface. More specifically, the system and the various

techniques implemented are given. The system geometry is shown in Figure 5-1.

Here we have placed a bulk methyl acetate layer in between two slabs of SPC water.

The methyl acetate layer is an equilibrated system from a simulation of the bulk ester.

The water layers are from a simulation of bulk SPC water well after equilibration has

been reached. The SPC configurations are for T=298K and p = 0.97gr/cm3 . For

SPC water, this corresponds to a system at pressure of 1 bar. This discrepancy in

the equilibrium SPC water densities is well documented in the literature [113]. We

feel however, that this is not a significant discrepancy when looking at the structural

nature of the interface. We anticipate that any thermodynamic properties of the

interface will suffer due to this flaw in the potential. The same argument holds for

the deficiencies in the ester potential.

The overall system contains 648 methyl acetate molecules and 1999 SPC water

molecules. As Figure 5-1 shows, the system is rectangular in geometry. The ester

layer is 'sandwiched' by the two water layers. Beyond the water layers, a region of

space is allowed so that the water phase can evolve a 'vapor' region associated with

it. This in effect allows a water/water vapor interface. This is quite useful as it

allows a simultaneous comparison of the nature of the water at the water-water vapor

interface and at the water-ester interface. One would anticipate a disparity in the

structure and thermodynamics of the two interfaces a priori. We note here that the
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dimensions of the simulation cell are L, = LY = 3.084829966nm and L, = 23.0nm.

The lengths of the simulation cell are maintained constant for the duration of the

runs. The longitudinal length, L, was chosen to be larger than the lateral lengths

so as to create the water vapor region as well as to prevent interaction between the

two water-water vapor interfaces. Furthermore, as the width of the interface was not

known prior to the simulation, it was necessary to select a dimension which would

allow for a bulk ester region. Finally, we introduce periodic boundary conditions

in all three Cartesian coordinates. This approach is standard fare for NVT simula-

tions of liquid-liquid, liquid-vapor interfaces. Note that the literature tends to favor

the choice of periodic boundary conditions for all cartesian dimensions for studying

liquid interfaces, particularly if the surface tension is desired [139]. Unfortunately,

when electrostatics are concerned, the choice of which boundary conditions are most

effective is not well-understood.

Finally, the model parameters for OPLS methyl acetate are not given here; the

reader is referred to Chapter 4 which gives the detailed information. The water

model adopted for this work, as just mentioned, is the Simple Point Charge (SPC)

model of Berendsen et al which consists of a Lennard-Jones center located on the

oxygen atom, and three point charges, one located on each of the three atoms.

The oxygen is of charge -0.82e, and the hydrogens each carry +0.41e. The oxygen-

hydrogen bond length is constrained to 0.1 nanometers, and the lone bond angle is

constrained to 109.47 degrees. The Lennard-Jones well-depth for the oxygen center

is f- = 0.648kJ/mole, and the core diameter is a- = 0.3166nm. The SPC water

hydrogen atoms interact with other system species via Coulombic interactions only.

We note that the present water potential does not explicitly incorporate hydrogen

bonding interactions-any indications of a hydrogen bonded structure resulting from

simulations is attributed to the physical dispersion and electrostatic interactions in-

cluded. We feel that this is a more rigorous approach since this allows the system

to evolve a 'hydrogen-bonded' structure without any prior bias (as introduced by

a 'hydrogen-bonding' potential). Finally, the SPC model neglects dissociation ef-

fects; thus, issues associated with the water ions present (such as acid catalysis of
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de-esterification) cannot be addressed directly. This is an accepted limitation of the

current models used.

z

x

Lx = 3.08483 nm

Ly = 3.08483 nm

Lz = 23.0 nm

1999 Water Molecules

648 Ester Molecules

3-D Periodic Boundary
Conditions

Water Vapor

Water Vapor

Lx

Figure 5-1: Methyl Acetate / Water Simulation Cell
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5.3 Results: Methyl Acetate-Water Liquid-Liquid

Interface

In this section, we present structural and thermodynamic results from the molecular

dynamics simulations of the methyl acetate-water interface. In terms of structural

data, we present plots of the orientational order parameters,Pi(z) and P2(z), which

describe the spatial orientation of specific bonds (bond vectors) relative to the inter-

face normal. In particular, order parameters for the carbonyl carbon/carbonyl oxygen

bond ( C = 0), the carbonyl carbon/methyl group bond (C - CH 3), the ester oxy-

gen/methyl group bond (0 - CH 3), and the water molecular dipole moment vector

are presented. The results shown are based on averages over configurations following

equilibration. This translates to the last 600 picoseconds of the simulation as shown

in the density-time profile and time-temperature plots. The behavior of the P(z)

and P2 (z) order parameters for the methyl acetate in the case of the liquid-vapor and

the liquid-liquid interfaces show dramatically different behavior, thus providing some

insight into the effect of the external environment on the nature of the interface. Also

presented are radial distribution functions for the bulk and interfacial regions of the

ester. This should act as a check for the bulk since the radial distribution function

for this region should be similar to that of the bulk liquid (in this case there will be

a slight difference between the bulk rdf's and those computed from NVT simulations

of the bulk at the experimental density due to the lower density of the bulk region

derived from the interfacial simulations). Furthermore, the distributions of various

internal degrees of freedom including the central torsion angles and the out-of-plane

angle are presented for the bulk and interfacial regions. These serve to indicate the

nature of the molecular geometry which when coupled with the order parameters for

the individual bond components, allows a detailed picture of the nature of the inter-

facial structure. Specifically, the atomistic description of the system allows a view of

the molecular orientation and the effect of the anisotropic environment on it.

In terms of thermodynamic results, we present density profiles for total molec-

ular number density and individual molecular component ( e.g. atom or group in
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an united-atom sense) densities. We also present longitudinal profiles of the excess

chemical potential of water in methyl acetate as a check on equilibration. Further-

more, the differential between the normal and tangential components of the molecular

pressure tensor is computed as a function of longitudinal position. This is done as a

check on equilibration as the normal and tangential components should be equivalent

away from the interfaces and the normal component should be constant throughout

the system. Furthermore, analyzing the components of the pressure tensor acts a

check on the 'appropriateness' of the potential parameters. If the potential model is

correct at the state point under study, the average normal component of the pressure

tensor (normal to the interface) should essentially be atmospheric pressure (and con-

stant throughout the longitudinal profile), and the tangential (in-plane) components

should give rise to the surface tension which can be compared to experimental data.

The off diagonal elements of the pressure tensor should be zero (or 'small').

5.3.1 Density Profiles

Figure 5-2 shows the symmetrized total molecular number densities (molecules/nm3)

with respect to the system center of mass for methyl acetate and water. These pro-

files are computed by averaging over blocks of 100 configurations, with a configuration

sampling frequency of every 0.4 picoseconds (every 100 configurations). The abscissa

represents the longitudinal position along the interface normal, with the zero being

in the bulk ester. The total molecular density profiles are typical of small-molecule

interfaces between immiscible fluids such as hexane-water or benzene-water reported

in the literature. This observation is the first indication of the inadequacy of the

current combination of the OPLS-SPC interaction models to describe the methyl

acetate - water system. Experimentally, the two liquids are soluble, so one should

expect a binary system at 298 K. For the methyl acetate - water system, there are

published solubility data for a range of temperatures at atmospheric pressure. Ta-

bles reftbl:esterinwater and 5.2 show some characteristic values of the solubilities of
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the ester in water (and water in ester) at several temperatures; also shown are the

mole fraction compositions [?].

Table 5.1: Solubilites of Methyl Acetate (1) in Water (2)

Table 5.2: Solubilities of Water (2) in Methyl Acetate (1)

Temperature (K) gr(2)/100 gr soln. Mole Fraction (2)
273 6.4 0.219
283 6.8 0.231
293 7.6 ± 0.3 0.253
298 8.1 ± 0.1 0.266
303 8.5 ± 0.2 0.276
313 9.7 ± 0.8 0.306
323 11.1± 1.4 0.339

At 298 K, both the water-rich and ester-rich phases show appreciable solubilities

of the other species; thus, if the current combination of interaction parameters is

to any extent correct, one should observe a 'mixing' over time (as we have started

from a configuration with three equilibrated slabs of the pure liquids). However,

we do not observe any mixing with time apart from the intermingling of the two

species at the pseudo-interface formed due to the inadequacy of the potential to

describe the solubility (this will be addressed in more detail further below). This

is demonstrated by computing the Gibbs dividing surface for the individual liquids

as a function of time. The same relations are used as in Chapter 4 for the analysis

of the methyl acetate free surface stability. Figure 5-3 and Figure 5-4 show the

time profiles over the last 800 picoseconds of the simulation of the ester and water
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278 23.7 ± 1.1 7.02
283 23.5 ± 1.1 6.95
293 23.9 ± 0.6 7.10
298 23.1 ± 0.2 6.81
303 22.9 ± 0.4 6.74
313 22.7 ± 0.8 6.67
323 22.9 ± 0.8 6.74



Gibbs dividing surface locations. The plots indicate the expected thermal fluctuations

(capillary fluctuations) leading to surface roughness. However, there is no systematic

drift of either dividing plane over a rather lengthy simulation time which is much

longer than the time required for diffusion of either species over a length of several

molecular diameters. In fact, the density profile is much like that of an immiscible

system [50, 59]. We can further compute the bulk concentrations of water in ester

and ester in water as a function of time. Figure 5-5 shows the ester mole fraction

in the bulk SPC water phase (the middle 10 angstroms), and Figure 5-6 shows the

water mole fraction in the bulk ester phase (the middle 40 angstroms). For the ester

in water case, there is essentially no significant solubility of the ester in the water.

There appears to be an interval of time over which there is some ester present, but

this quickly diminishes and we observe no appreciable solubility. For the water in

ester case, there appears to be some presence of water molecules in the bulk ester,

but even at the maximum composition, the water is two orders of magnitude less

concentrated than that predicted by experiment. In the experimental system, the

solubilities correspond to having 3 molecules of ester for every one molecule of water

in the ester-rich phase, and 14 molecules of water for every one molecule of ester in

the water-rich phase.

Finally, we note that density profiles of both the ester and water taken over

intervals show no consistent mixing of the two phases. So we are confident that

the system has equilibrated with respect to compositions. The final verdict is that

the OPLS-SPC interaction model we have used is deficient in terms of modeling the

two-phase mixture system. However, at this point, we accept this fallacy.

The interface is sharp with a 10-90 width of 0.745 nm (the average interface is

thus located within roughly a 1 nm region). Since the width of the interface between

two immiscible liquids is difficult to unambiguously specify, the 10-90 width is taken

to be the distance over which the SPC water density falls from 90 percent to 10

percent of its bulk value. This is also done as it is the water density profile in the

interfacial region that encompasses the larger width. The bulk ester density is 0.871

gr/cm3 which is lower than the expected value for the OPLS parameter set at 298K
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and lower than the experimental density by about 6 percent. The 10-90 width for

the water liquid-vapor interface is 0.465 nm. This smaller width is generally regarded

as a consequence of the hydrogen bonding which tends to compact the interface

in order to minimize energetic losses [56]. Figure 5-7 shows the symmetrized ester

atomic component densities plotted as a function of longitudinal position, with the

center of the bulk at zero longitudinal position. The curves represent the carbonyl

oxygen, the carbonyl methyl group, and the ether (or methoxy) methyl group density

profiles. This data shows a structuring effect at the interface as there develops a

spatial separation of the various components. The carbonyl oxygen is suppressed

between 4 and 4.5 nanometers out from the bulk, but is dominant in the outer layer

of the interface. Furthermore, the methoxy methyl group appears to be in closer

proximity to the carbonyl oxygen than the carbonyl methyl group at it density hovers

in between the other two components. This is consistent with the fact that due to

the torsional potential favoring the syn periplanar conformation (the Z conformer of

methyl acetate is the dominant species in both the liquid and vapor [67] ) the methoxy

methyl is closer to the carbonyl oxygen. Further evidence in favor of the molecular

planarity is given below via out-of-plane angle and torsion angle distributions. It is

interesting that such a significant structuring is observed in the case of such a small

molecule system, and indicates that the potential model used does allow for a physical

mechanism to manifest itself at the interface. In this case, the major contributor

to the physics and structure at the interface is the electrostatic component of the

interaction.

Finally, Figure 5-8 and Figure 5-9 show the time profiles of the bulk ester and water

densities. These show that two stable bulk regions are established and maintained

over the time period of the simulation. The average bulk methyl acetate density

is 0.871 gr/cm3 , roughly 6.02 percent lower than the experimental density at 298K

(0.927 gr/cm3). This is within the error quite often reported in the literature for

bulk densities computed from interfacial simulations. This also is in keeping with the

slightly negative system pressure computed for the current simulations. The average

bulk water density is 1.078 gr/cm3 for the SPC water model with deuterium atoms
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replacing the hydrogens (as done in this work); for reference, this density corresponds

to 0.97 gr/cm3 for SPC water with hydrogens which is in keeping with the PVT

behavior of SPC water at 298K (the discrepancy between experimental and model

densities is well documented in the literature).

Figure 5-11, Figure 5-12, Figure 5-13, and Figure 5-14 show the atomic and molec-

ular temperature time profiles for the ester and water in order to ascertain that one

component is not 'hotter' than the other as may happen if the system has not equi-

librated properly.

175



6 8 10
Longitudinal Position (nm)

12 14 16

Figure 5-2: Symmetrized molecular density profiles of water and methyl acetate.

Longitudinal position is relative to the center of mass of the simulation cell.
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Figure 5-3: Time profile of the location of the Gibbs dividing surface: Methyl Acetate
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Figure 5-4: Time profile of the location of the Gibbs dividing surface: Water
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Figure 5-5: Time profile of the mole fraction of ester in bulk water
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Figure 5-6: Time profile of the mole fraction of water in bulk ester
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Figure 5-7: Symmetrized ester atom density profiles.
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Symmetrized Ester Component Density Profiles
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Figure 5-8: Methyl acetate bulk density as a function of time.
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Figure 5-9: Water bulk density as a function of time.
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Bulk Density Time Profiles
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Figure 5-10:

Methyl Acetate Temperature vs. Time Profile: Atomic Temperature
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Figure 5-11: Methyl acetate atomic temperature time profile.
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Methyl Acetate Temperature vs. Time Profile: Molecular Temperature
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5-12: Methyl acetate molecular temperature time profile.
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Water Temperature vs. Time Profile: Molecular Temperature
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Figure 5-14: Water molecular temperature time profile.

182

0

olecular Temperature -

II -I

I I I I I - I I I I

|> I. . 1 11 1h i I|.

I I 1 111 1' ' "



5.3.2 Effect of Interface on Molecular Orientation: Orien-

tational Order Parameters

Despite the fact that the Lorentz-Berthelot mixing rules we have applied to derive

the ester-water interaction from the pure component parameters fail to capture the

equilibrium solubility properties of the ester-water binary, out of curiosity, we proceed

to consider some interfacial aspects of the system-that is, we will concern ourselves

with the structural aspects of the ester and water in the vicinity of the region where

the two species come together. This is motivated by the intuition that possibly the

change in contact medium may elicit a response of the ester orientation; one may say

that, in an exaggerated sense, we are substituting the ester vapor phase with a dense

vapor with high moisture content.

The effect of the interface on the orientations of various bond vector is studied

through orientational order parameters (first and second Legendre coefficients) defined

as [60, 58]:

P1(z) = < cos O > (z) (5.1)

and

1
P2 (z) = - <3(cos2O) - 1 > (z) (5.2)

2

where 0 is defined as the angle between the interface normal (along the positive

and negative z-axes) and a bond vector associated with a specific functional group.

For the present case, the carbonyl carbon - carbonyl oxygen bond vector, rco, the

carbonyl carbon - methyl bond vector, rc-cH3, and the ether oxygen - methyl group

bond vector, rO-CH3, are considered for methyl acetate. For the SPC water, the

vector directed from the bisection point of the line joining the two hydrogen atoms

to the oxygen atom (a vector antiparallel to the molecular dipole moment vector) is

the relevant vector. The average is a over all vectors and time steps within a thin

slab perpendicular to the interface normal. If the vectors in a region are completely
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randomly oriented, P2 = 0. If there is a prevalent orientation parallel to the interface

normal, P2= 1.0; with an orientation perpendicular to the normal, the order param-

eter goes as -0.5. Note that the bond vector is defined as rij = ri - rj . Thus, for

methyl acetate, the relevant bond vectors are such that the rCo vector points from

the carbonyl oxygen to the carbonyl carbon, the T-0-CH3 vector is directed from the

methoxy methyl group to the ether oxygen, and the rC-CH3 vector points from the

carbonyl methyl group to the carbonyl carbon.

Figure 5-19 shows theP order parameter as a function of longitudinal position

along the interface normal starting from the bulk ester liquid and moving outwards

to the ester-water interface. The shown profile is symmetrized with respect to the

center of mass of the total system. The Piparameter represents the average value

of the cosine of the angle between the interface normal and the bond vector, and

as Figures 5-19 and 5-20 show, even with this small-molecule system, the interface

displays a significant structuring, the nature of which is dictated by the surrounding

environment. In the bulk ester liquid region, all the bond vectors more or less show

no preferential orientation and the local environment is isotropic. As the interfacial

region is approached, the loss of isotropy induces a marked divergence in the order

parameters. The carbonyl carbon - carbonyl oxygen bond vector preferentially directs

towards the bulk ester, with the oxygen extending towards the water layer. Commen-

surately, the methoxy methyl - ether oxygen vector orients in much the same way as

the former. However, due to the molecular geometry, the average angle is smaller,

hence giving a slightly more positive value for P1. Finally, the carbonyl methyl group

- carbonyl carbon vector shows the opposite behavior, directing towards the water

layer, with an average angle close to that made by the ether methyl group. Again

this is in keeping with the molecular geometry.

Much has been said of the molecular geometry, and at this point, some comments

are made as to what that geometry is. This knowledge coupled with the P and

P2 profiles gives a very nice picture of the average orientation of the ester interface.

Firstly, the individual molecular geometry is essentially planar as evidenced by the

out-of-plane and central torsion angle profiles shown in Figure 5-17 and Figure 5-
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18. The out-of-plane angle distribution is sharply peaked at zero degrees for both

the molecules considered in the bulk region and those in the total interfacial region.

Thus, the carbonyl carbon is at the center of a planar arrangement (this is in keeping

with the sp2 nature of this atomic environment). The planarity of the molecule as

a whole is realized once the central torsion angle distributions for bulk and interface

are considered. The dihedral under consideration is that giving the angle between the

planes containing the carbonyl carbon - carbonyl oxygen bond vector and the ether

oxygen - methoxy methyl group bond vector. Figure 5-17 shows a sharply peaked

distribution around the syn conformation (q$ = 0.0 ). Thus, on average, the molecule

is in a planar state.

Next, the P2 order parameter is considered as it gives information on the width

of the distribution of the angle cosine about the average value given by P1. P2 gives

an indication of the degree to which a certain vector is aligned with the interface

normal. For instance, the difference between an angle of 10 degrees and an angle of

50 degrees between the normal is picked up in the P2 profile. Again, a P2 value of zero

signifies completely randomly oriented vectors. Values towards -0.5 indicate a more

planar orientation, while positive values indicate vector orientation more parallel to

the normal. Figure 5-20 shows the symmetrized P2 profiles for the aforementioned

ester bond vectors. The carbonyl carbon - carbonyl oxygen profile indicates a signifi-

cant orientation along the interface normal quite distinct from the randomness of the

bulk. Note that the minor fluctuations in the bulk (deviations from random orienta-

tion) are an artifact of the finite sample size; fortunately, these deviations are much

smaller than those in the interface (this phenomena is also reported in the literature

[60]). In the outer interface, there is a slight tendency for a parallel orientation. This

results from the increased water density in the outer region, which lessens the need

for the carbonyl oxygen to be normal to the interface. Concurrently, the remaining

bond vectors follow suit and also tend towards a more planar orientation in the outer

interface.

As alluded to above, the orientational changes on going from bulk to interface

are induced by the environment, in this case, the water layer adjacent to the ester.
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Reciprocally, the ester has an influence on the structure of the water in the interfacial

region which is detected through the Pi and P2 profiles for the water dipole moment

vector. Figure 5-21 shows the symmetrized P profile for the water plotted as a

function of the longitudinal position. In the vicinity of the ester-water interface

between 4 and 5 nanometers from the center of mass, Pi indicates that the preferred

orientation of the water molecule is such that the hydrogens are directed towards the

ester layer, and more specifically, attracted to the more electronegative field generated

by the higher number density of the carbonyl oxygen relative to the water oxygen.

This disproportion in densities in the interfacial region is shown by the density plots.

Furthermore, the orientational order becomes less pronounced moving towards the

outer interfacial layer between 4.5 and 5.0 nanometers, finally become random in

the bulk of the water film. There is a decreasing trend in the P profile and this

suggests a long-range correlation in the orientation; this is most probably due to

the finite thickness of the water layer, which probably should have been made larger

in order to allow for damping of this correlation. An alternative explanation which

is motivated by experimental observations is that water near interfaces is known to

possess differing structural and thermodynamic properties than the pure bulk liquid

[26, 25]. A vicinal structure is observed to extend 3 to 6 nanometers from the interface

[26]; this is the same spatial range over which we observe the decreasing trend in the

water P profile. This seems to suggest that the SPC model does capture the structure

of vicinal water and that the spatial orientational correlation we observe via the water

P profile may not be an artifact of insufficient equilibration. A definitive answer to

this question would most probably result from a simulation with a thicker water layer.

A very interesting phenomenon is the reversal of the preferred orientation at the water

liquid-vapor interface beyond 8.0 nanometers out. The P behavior indicates that now

the dipole vector is slightly protruding towards the vapor region. The P2 profile for

water shown in Figure 5-22 shows that in the inner ester-water interface (closer to

the ester layer), the orientation of the water dipole moment vector is perpendicular to

the interface and becomes more planar traversing through to the outer interface. The

isotropic bulk gives the random orientation expected. At the liquid-vapor interface,
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there is a marked difference in P2, as it shows a planar orientation. Thus, at the

liquid-vapor interface, the water is slightly displaced from planarity, with at least one

hydrogen jutting into the vapor phase, allowing the dipole moment vector to have a

non-zero average value (as demonstrated by the P profile).

We can further analyze the orientation of water molecules at the liquid-vapor and

liquid-liquid interfaces by computing distributions of the angles made by 1). the water

dipole moment vector with the interface normal and 2). by the O-H bond vector and

the interface normal. More specifically, one can look at the distributions of the cosines

of these angles. First, consider the water liquid-vapor interface. Figure 5-23 and 5-24

show the distribution of the cosine of the angle between the interface normal and

the water dipole moment vector for three regions. The vapor side corresponds to the

outermost region of the interface, here taken to be between 8.1 and 8.5 nm (in the

symmetrized sense). The region represented by the curve labelled with delta = 0.2

nm spans the width from 7.9 nm to 8.1 nm; the remaining region spans 7.8 nm to 7.9

nm. Distributions were computed simply by normalizing histograms of the number

of angles falling within evenly spaced intervals between -1 and 1 values of the cosine

of the angle. From Figure 5-23, we see that in the outermost, 'vapor' region of the

interface (8.1-8.5 nm), the dipole vector juts out towards the vapor phase with the

peak in the cosine distribution being at about 0.4; this corresponds to an angle of 66

degrees from the interface normal. Moving in to the liquid phase, Figure 5-24 shows

that the distribution shifts to lower values of the cosine, indicating that the molecules

in this region are preferentially lying in the plane of the interface. This behavior is

analogous to that described by Taylor et al and Matsumoto and coworkers [54, 55] as

will be discussed below.

Next, one can consider the distribution of the angle, 4, between the O-H bond

vector and the interface normal to get a more detailed picture of the molecular ori-

entation. Figure 5-25 shows the distribution of q in the outer interfacial region. The

O-H bond vector is taken as that from the oxygen to the hydrogen atom. This profile

unequivocally shows a bimodal distribution of the O-H bond vector orientations, with

one orientation having the vector directed toward the bulk liquid phase (distribution
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peak at around cos(#) = -0.4 ) and the other with the vector pointing out into the

vapor phase ( peak at cos(#) = 1.0 ). Figure 5-26 shows the distributions of # mov-

ing into regions toward the bulk; the delta = 0.2 nm curve shows the distribution for

molecules located in a 0.2 nm slice away from the interface, and the delta = 0.3 nm

curve shows the same for molecules in an adjacent one nanometer slice further into the

bulk region. In the layer directly next to the outer interface, the distribution indicates

a planar orientation with the hydrogens lying in the plane of the interface. In the next

inner region, the distribution appears to split again, the water molecule adopting an

orientation that is slightly askew from the planar configuration. This appears to indi-

cate that one O-H vector aligns in the bulk and the other protudes towards the upper

layer; this is in essence a mirror image of the distribution of the outer interface (the

distribution being inverted through the origin, for instance). These curves indicate

that there is an alternating structure in the interfacial region and its vicinity. This

strucutre oscillates between layers of planar water molecules and molecules whose

dipole lies in the interfacial plane, but with the hydrogen atoms displaced from the

in-plane configuration. This structuring is shown in Figure 5-15. An interesting note

is that although similar distributions for the SPC/E potential model have been pub-

lished by Taylor et al [54], it seems that the interpretation differs. The authors claim

that in the liquid side of the interface, the hydrogens lie in the plane of the interface or

are directed into the bulk with an angle of 94 degrees relative to the interf ace normal.

This interpretation of the molecular orientation does not seem consistent with the

data presented.

Now, the same analysis of the distributions of the water dipole vector and 0-

H bond vectors is presented for the liquid-liquid interface. For this analysis, the

initial task was to determine how many distinct regions are definable at this interface.

This was rather straightforwardly done by taking 0.2 nm slices and computing the

distributions for each slice beginning at 4.0 nm from the center of mass and moving

out towards the bulk water phase. The results of these calculations essentially reveal

three zones in which one sees a characteristic structure. These are termed for the

present analysis the outer, inner, and bulk regions. The outer region extends from
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4.0 to 4.6 nm (it is referred to as the 'outer' region based on the perspective from the

bulk water phase). The next region, the inner region, spans from 4.6 to 5.0 nm, and

the final bulk region is taken here to be from 6.0 to 7.5 nm, although this could be

extended to lower values. Figures 5-28 and 5-27 shows the profiles computed over 600

configurations for slices of 0.2 nm thickness starting from 4.0 nm. These demonstrate

the regions just described.

Figure 5-30 and Figure 5-29 show the average dipole vector and O-H bond vector

orientation distributions for the regions delineated in the figures. In the outer region,

the water dipole vector highly prefers to orient along the interface normal in a con-

figuration which allows the hydrogens to be protruding towards the ester phase. This

is sensible from the perspective that this configuration allows for a sufficient extent

of hydrogen bonding interaction between the water hydrogens and the ester carbonyl

oxyen. The ester-water hydrogen bonding is indicated by the hydrogen-oxygen radial

distribution functions to be presented further below. Furthermore, the orientation

of the dipole vector along the interface normal is also suggested by the P and P2

profiles shown in Figure 5-21 and Figure 5-22. In these figures, within the region

from 4.0 to 4.6 nm, the P profile is shows a marked orientation perpendicular to the

interface (the P1 profile is positive here since this curve is computed for the vector

antiparallel to the dipole vector). The average negative value of P1 corresponds to

the distribution being peaked at -1. Also, the P2 profile indicates that the orienta-

tion is perpendicular to the interface, and this again is consistent with the computed

distributons.

Now, in the inner interfacial region, spanning from 4.6 to 5.0 nm the dipole vector

distribution shifts to a higher cosine value indicating that the vector is no longer

directed identically along the interface normal, but adopts an orientation slightly

skewed from the vertical with the dipole vector jutting towards the ester phase (but

not as dramatically as in the outer region). This behavior corresponds to the behavior

of the P1 and P2 curves in this region as well. The P1 profile increases moving

in towards the bulk water (again, remember, to compare the distribution and P1

profile curves, the P1 curve should be flipped); this corresponds to the shifting to
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higher values of the cosine distribution. Furthermore, the P2 profile dips slightly

below zero to about -0.5; this suggests that the orientation in this region is more

planar than in the outer region and this again is consistent with the behavior of the

distribution. The O-H bond vector distribution for the inner region shows a slightly

bimodal distribution. One hydrogen is essentially jutting towards the outer interfacial

region (which should have an excess of oxygen atoms for hydrogen bonding), and the

other is in the plane of the interface, an orientation which allows the latter hydrogen

and the oxygen to also take part in hydrogen bonding interactions with the bulk.

Finally, in the bulk, the orientations are essentially random.

Figure 5-16 shows the possible configurations suggested by the above data.

We note here similar results reported in the literature for simulations of water at

different interfaces and described with varying potential models. Per Linse [50] reports

in an early work of the preferential orientation of water molecules at the benzene-

water interface. Using PI and P2 order parameters, the first and second Legendre

polynomials of the projection of the water dipole vector along the interface normal,

Linse reports that at the water-benzene interface, the water dipole moment vector

prefers an orientation lying in the plane of the interface; this is based on a the P2 value

being negative in the interfacial regions. This is similar to water at the liquid-vapor

interface since there is an energetic penalty in addition to the entropic loss of ordering,

due to the loss of hydrogen bonding if the dipole vector were to deviate too much from

planarity. Thus, the current results appear to corroborate Linse's interpretation of the

preferential structuring of water in the interfacial region. Studying the water liquid-

vapor interface using the Lemberg-Stillinger-Rahman (LSR) potential, Townsend and

Rice [53] reported that the bisector of the HOH angle tends to lie in the plane of the

interface; however, since specification of only the bisector-normal angle is not sufficient

to unambiguously define the molecular orientation, the authors calculate the angle

between the molecular plane and a specified fixed plane to pinpoint the orientation

of the oxygen-hydrogen bonds. From their analysis, they report that although the

molecular dipole vector lies in the interfacial plane, the molecule orients such that one

O-H bond vector lies outside the interface, and the other within. Similar behavior
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was reported by Matsumoto and Kataoka using the Carravetta-Clementi potential

[55]. These authors, in an earlier study, proposed two typical molecular orientations

for the water-one corresponding to the inner interface and a second pertaining to

the outer interface. I n the vapor (outer) region of the interface, the water molecule

orients with one O-H bond projecting out of the interface and the other into the bulk.

In the liquid side, the molecule adopts a planar orientation with both hydrogens in

the plane of , or slightly projecting inwards from, the interface. Zhang et al [57]

report the bimodal distribution of water orientation in simulations of water-octane

interfaces. Taylor, Dang, Garrett [54] also report the bimodal water structuring at

the liquid-vapor interface. They claim that on the vapor side of the interface, the

most probable orientation of that with the water dipole directed out of the liquid at

an angle of 74 degrees relative to the interface normal; on the liquid side the water

molecules are oriented such that the dipoles are in the plane of the interface. They

also show that on the vapor side, one of the O-H bonds is protruding into the vapor

phase, while in the next layer closer to the liquid, both bonds lie in the interfacial

plane. The present work does indicate the more planar orientation of water at the

liquid-vapor interface as evidenced by the P2 profile. The negative P1 profile at the

liquid-vapor interface simply means that there is a tendency for the molecular dipole

moment vector to be point ing out into the vapor ( this is consistent with the report of

Talyor et al). Considering the present results closely, the liquid-vapor interface does

indicate a two-region splitting for the water. Consider the the outer liquid-vapor

interface. In the outermost region, the P deviates most from zero, indicating the

dipole vector jutting in to the vapor phase. The P2 shows that this vector is planar,

but, as one moves into the inner region, the P2 becomes more negative, signifying

that the vector is progressing towards a more planar orientation; commensurately,

the P is increasing, signifying that the vector is moving towards a planar orientation

before randomizing in the bulk.

Thus, in considering the results of the water orientation at the liquid-liquid and

liquid-vapor interfaces, we are confident of the orientation we see based on the re-

ported literature. Furthermore, what is more interesting is the fact that such local

192



behavior is observed irrespective of the type of method used to account for electro-

static interactions which are fundamentally at the root of the observed phenomena.

For instance, Zhang et al [57] use simple coulomb potential shifted to zero at a spheri-

cal cutoff value of 12 angstroms. Matsumoto and Kataoka [55] use Ewald summation.

The current work uses reaction field.
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Figure 5-16: Schematic description of the water molecular orientation at the ester-
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Methyl Acetate Central Torsion Angle Distribution: Bulk vs. Interface
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Figure 5-17: Methyl acetate torsion angle distributions for the bulk and interfacial
regions

Methyl Acetate Out-of-Plane Angle Distributions: Bulk vs. Interface
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Figure 5-18: Methyl acetate out-of-plane angle distributions for the bulk and inter-
facial regions
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Figure 5-19: Symmetrized P1 profile for methyl acetate. The longitudinal position is
relative to the total simulation cell center of mass.

Symmetrized Orientational Order Parameter, P2: Methyl Acetate
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Figure 5-20: Symmetrized P2 profile for methyl acetate. The longitudinal position is
relative to the total simulation cell center of mass.
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Symmetrized Orientational Order Parameter, P1: SPC Water
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5-21: Symmetrized P1 profile for SPC water. The longit
to the total simulation cell center of mass.

Symmetrized Orientational Order Parameter, P2: SPC Water
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Figure 5-22: Symmetrized P2 profile for SPC water. The longitudinal position is
relative to the total simulation cell center of mass.
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Figure 5-23: Distribution of the angle between the water dipole and interface normal:
vapor side of the liquid-vapor interface
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Figure 5-24: Distribution of the angle between the water dipole and interface normal:
2 and 3 angstroms from the outer interfacial region
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Figure 5-25: Distribution of the angle between the 0-H bond and liquid-vapor inter-
face normal: vapor side of the L-V interface
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Figure 5-26: Distribution of the angle between the 0-H bond and interface normal:
2 and 3 angstroms from the outer interfacial region
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Figure 5-27: Distributions of the angle between the water dipole and interface normal
showing the evolution of three distinct regions of characteristic structure.
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Figure 5-28: Distributions of the angle between the 0-H bond and interface normal
showing the evolution of three distinct regions of characteristic structure.
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SPC Water O-H Bond Orientation Distributions: Liquid-Liquid Interface
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Figure 5-29: Distribution of the angle between the 0-H bond and interface normal
at the ester/water liquid-liquid interface.
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Figure 5-30: Distribution of the angle between the water dipole and interface normal
at the ester/water liquid-liquid interface.
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Comparison of Orientation at Liquid-Liquid and Liquid-Vapor Interfaces

Much like the effect of the type of interface on the water molecular orientation, Fig-

ures 5-31 though 5-36 demonstrate the change in orientation of the methyl acetate

bond vectors. As discussed earlier, the reorientation of the surface groups is driven by

the electrostatic interactions. The carbonyl oxygen - carbonyl carbon bond vector is

dramatically flipped between the two interfaces, as the increased hydrogen-bonding is

energetically favorable, overcompensating for any entropic loss due to the structuring.
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Figure 5-31: Symmetrized Methyl Acetate P1 profiles for
vapor interfaces: Carbonyl Bond Vector.
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Figure 5-33: Symmetrized methyl acetate P1 profiles for the liquid-liquid and liquid-
vapor interfaces: Carbonyl Methyl Group.

Symmetrized Orientational order Parameter, P2: L-L vs. L-V Interface
0.08 I

0.06

C-CH3: Ester-Water
C-CH3: Ester (LV) --

0.04

0.02

ra

0

0-0.028

0-0.0412

20



Symmetrized Orientational Order Parameter, Pl: L-L vs. L-V Interface
0.15 1

0-CH3: Ester-Water
O-CH3: Ester (LV) ----

0.1

P4

4- 0.05

4-41

0 . -

0

-0.05

0

.. 0

(a 0.045

4-I

0

-0.1

-0.15
0 1 2 3 4 5 6

Longitudinal Position, nm

Figure 5-35: Symmetrized methyl acetate P1 profiles for the liquid-liquid and liquid-
vapor interfaces: Methoxy Methyl Group.
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Figure 5-36: Symmetrized methyl acetate P2 profiles for the liquid-liquid and liquid-
vapor interfaces: Methoxy Methyl Group.
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5.3.3 Radial Distribution Functions

In this section the radial distribution functions computed for various slices along the

normal direction are presented in order to investigate the local environment changes

in moving from the bulk to the interface region. Furthermore, the emergence of ester

carbonyl oxygen and water hydrogen pair correlations further elaborates the picture of

the orientation of molecules in the interface via a hydrogen bonding mechanism. The

pair correlation function for a slice is calculated from the histogram of the separations

between all pairs of particle types within the slice. The normalized pair correlation

function is given by [131]:

g(R) = 2N(R, AR) (
g(R)= ' Es(5.3)VintNT2

where N(R, AR) is the average number of pairs of particles within the section with

separation between R and R + AR , Vi,t is the average volume of the intersection of

the section with the space between spheres of radii R and R + AR , V, is the total

slice volume, and NT is the average number of particles in the slice. Note that for

proper analysis, section widths should be equal when comparing the distributions in

different regions of a system.

For methyl acetate, radial distribution functions (rdf's) are calculated for the bulk

(the central cubic section of the system with dimensions 3.085 nm by 3.085 nm by

0.5 nm, an intermediate slice from 3.25 nm to 3.75 nm out from the center of mass,

the inner interface region from 4.0 to 4.5 nm, and the outer interface region from 4.5

to 5.0 nm. Rdf's are computed for the following types of pairs: carbonyl oxygen -

carbonyl oxygen (0-0), ether oxygen - ether oxygen (Oe-Oe), carbonyl oxygen - ether

oxygen (Oe-0), carbonyl oxygen - ester methyl group (0-MeE), and ether oxygen -

ester methyl group (Oe-MeE). In the interfacial regions, rdf's with water atom types

are also computed. These are: carbonyl oxygen - water hydrogen (Hw-0) and ether

oxygen - water hydrogen (Hw-0e). Figures 5-38 through 5-42 show the methyl acetate

rdf's for the defined slices. These are typical liquid state rdf's, quite featureless, and as

Jorgensen reports, show a lack of any significant organized structure. The bulk rdf's
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for all pair types show good agreement with those computed by Jorgensen from Monte

Carlo simulations of bulk methyl acetate [67]. Thus,structurally, one is confident that

the bulk region is equilibrated. Furthermore, as the interface is approached from the

bulk, the rdf's reflect the fall in density with the increasing peak heights, but the liquid

structure is not lost. Within the statistical error of the computation, the profiles for

the bulk, intermediate, and inner interfacial regions are practically equivalent. This

is consistent with the observation that the average densities in these regions are not

too disparate from one another. Once the outer interfacial region is encountered, one

sees a dramatic increase in the first peak (for the profiles for all pair distributions).

Furthermore, it is the first peak which is enhanced the greatest; subsequent peaks

are not affected significantly. The peak enhancment effect has been observed in prior

simulations of water clusters, as will be discussed below with respect to the water

radial distributions functions which also display such behavior.

More interesting to note are the ester-water rdf's shown in Figures 5-44 and 5-

45 . Figure 5-45 clearly indicates hydrogen bonding interactions between the ester

carbonyl oxygen and the water hydrogen with a characteristic strong first peak at

0.19 nm with a first minimum at 0.25 nm. This interpretation of enhanced hydrogen

bonding within the interfacial region is further supported by a set of interesting theo-

retical calculations by Rablen and coworkers [140]. This group has performed density

functional ab initio calculations with the Becke3LYP method [140, 141, 142] using

the correlation functional of Lee,Yang, and Parr [142, 143, 140]. The authors report

hydrogen-bonding geometries for two anti-periplanar geometries of methyl acetate,

the Zi and Z2 structures as shown in Figure 5-37,

The hydrogen-bond geometry for the Zi structure is such that the carbonyl oxy-

gen to water hydrogen distance is 0.1938 nm and the angle made by the carbonyl

oxygen, water hydrogen, and water oxygen is 170.8; for the Z2 structure, the hy-

drogen bond distance is 0.1916 nm and the bond angle is 164.5. The water is the

hydrogen donor to the ester carbonyl in both complexes. The distortion of the geom-

etry from the idealized "linear/trigonal planar" structure is reported for the class of

compounds containing the carbonyl functionalities including carboxylic acids, esters,
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Figure 5-37: Becke3LYP/6-31+G(d(X+),p) optimized geometries of the Z1 and Z2
Hydrogen-Bond Complexes of Methyl Actate and Water
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amides, aldehydes, and ketones. It is proffered that the interaction of the individ-

ual total molecular dipoles affects the resulting geometries. For hydrogen-bonded

complexes of these functionalities with water, the water molecule distorts from the

idealized geometry (with the 0 - H - - - 0 angle being 180 degrees and the

C = 0 ... H angle being 120 degrees in the position of the sp2-hybridized lone pair)

to one in which the water molecule's dipole moment aligns more closely antiparallel

to that of the carbonyl bond. The present MD simulations reveal the hydrogen bond

distance to be 0.19 nm which is in excellent agreement with these higher level cal-

culations; furtheremore, calculated distributions of the angle made by the carbonyl

oxygen, the water hydrogen, and the water oxygen are peaked at an angle of 160.1

degrees. This result supports the picture of a hydrogen bonded structure based on

interactions between the ester carbonyl oxygen and water in the interfacial region.

From the P and P2 profiles for the three methyl acetate bond vectors discussed

earlier, one would anticipate that the typical conformation of the hydrogen bond com-

plex is of the Z2 type as described by Rablen and coworkers. This is by no means

an absolute structure in the sense that the Z2 geometry as given by the abinitio

calculations should be the one resulting from the MD simulations; the theoretical ge-

ometries are strongly indicative of gas-phase hydrogen-bond complexes as the effects

of surrounding media are neglected in these calculations (incorporation of these types

of interactions may perhaps be affected by reaction field calculations on such sys-

tems). The fact that the present values of the first peak in the carbonyl oxygen-water

hydrogen radial distribution function and the peak in the angle distribution profiles

are in such agreement (at the very least in a qualitative sense) with the theoreti-

cal geometries is strong indication of a hydrogen-bonding effect contributing to the

structure evident at the interface. Fundamentally, it is evident that the drive for the

structuring, which leads to entropic losses, is the energetic gain due to maximization

of interactions; the mechanism through which this occurs is the hydrogen-bonding.

This element of structure adds to the picture of the water and ester orientation at

the interface resulting from the favorable hydrogen bonding type interaction between

the species. Furthermore, there is virtually no hydrogen-bonding type interaction
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with the ether oxygen as shown by Figure 5-44, an observation also reported by

Jorgensen et al [67] for monte carlo simulations of acetic acid bulk liquid. Finally,

one can note that there are fewer hydrogen bonds with the carbonyl oxygen as one

moves to the outer interface where the ester density falls off sharply.

For water, radial distribution functions (rdf's) are calculated for the bulk (the

central rectangular slice with dimensions of 3.085 nm by 3.085 nm by 0.5 nm) starting

with a z-coordinate value of 6.25 and moving outward to a value of 6.75 nm from

the center of mass, the inner and outer ester-water interface regions, and the water

liquid-vapor interface which is here taken to extend from 8.0 to 8.5 nm from the

center of mass. Figure 5-43, Figure 5-46, and Figure 5-47 show the water rdf's

between the oxygen-oxygen and hydrogen and oxygen. Here there is nothing out

of the ordinary in terms of the structure signified by the curves. They hydrogen-

oxygen rdf's indicate hydrogen-bonding interaction via the strong first peak. Even

the liquid-vapor interface retains the characteristic liquid structure, and in terms of

local environment, is not much different from the inner ester-water interface region.

At this point, some comments are made about the behavior of the radial distri-

bution functions as the interface is approached from the bulk region. In the case

of the SPC water, Figure 5-46 and Figure 5-47 show the increase in the first peak

heights as one moves to lower density regions. This same effect is seen for two other

water models, the ST2 and LSR (Lemberg-Stillinger-Rahman) potentials, applied to

the study of clusters of water molecules by Townsend and Rice [53]. The authors

present oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen radial distribution

functions for shells encompassing a bulk region and various positions within the in-

homogeneous region (the interfacial region characterized by monotically decreasing

density profiles). For both potentials studied by the authors, the oxygen-oxygen cor-

relations became stronger as the density decreased, with a threshold for increasing

amplitude of the first peak of the oxygen-oxygen distribution being about ninety

percent of the bulk density. Furthermore, the second peak of the oxygen-oxygen

distribution is independent of the position, showing a slight enhancement for densi-

ties less than 25 percent of the bulk. The oxygen-hydrogen and hydrogen-hydrogen
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functions are shown to parallel the oxygen-oxygen functions. Based on these results,

the authors claim that the behavior of the distribution functions suggest that with

a breakup of the hydrogen-bonded structure of the bulk liquid in the lower density

interfacial region, there is precipitated dimer formation; it is this dimerized structure

which yields the stark enhancement in the first peaks of radial distribution functions.

In the present case, we observe very much the same effects. Figure 5-47 shows

the oxygen-oxygen distributions for the bulk water region, the inner and outer liquid-

liquid interfacial regions, and the water liquid-vapor interface. For the inner liquid-

liquid region, the first and second peaks are dramatically enhanced relative to the

bulk; this is a manifestation of the low average water density of this region (this region

has the lowest average water density of the regions for which profiles are shown in this

figure). As one moves into the outer liquid-liquid interface, where the water density

is higher, the first peak is still enhanced, but the second peak shows a much smaller

enhancement. Finally, the liquid-vapor region again shows enhancement of the first

peak, much as the outer liquid-liquid region. The first peak is higher for the liquid-

vapor region simply because of the lower density associated with this region. The

general qualitative effect is the same. In the case of the oxygen-hydrogen distribution

functions, Figure 5-46,we find that the density affects the first two peaks, with the

third peak showing enhancement at very low densities as encountered in the inner

liquid-liquid interface. For the present study, we have not proceeded to quantify the

bounds on the density where the effects on the first, second, and higher peaks occur.

The fact that this behavior seems to be an inherent characteristic of water potentials

is an interesting result nevertheless.

Finally, turning to ester site distribution functions, Figures 5-38 to Figure 5-42,

we observe a similar peak enhancing effect with decreasing density. Furthermore,

these figures show a greater affect on all but the carbonyl oxygen - carbonyl oxygen

function. This is understood if one notes the component density profile. This shows

that the carbonyl oxygen is enriched in the outer interfacial region compared to the

other substituents; thus, we are confident to see this smaller density difference of the

carbonyl oxygen reflected in the associated radial distribution function. Now, as for
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the underlying mechanism giving rise to this structure, we can say little with the

information presented. It would be interesting to determine if, even in the case of the

ester, there was a dimerization phenomenon taking place (or in a very general sense,

some type of clustering event). This would tend to suggest that such a 'clustering'

phenomenon may be a general characteristic of structural changes as a function of

density in inhomogeneous systems.

At the end of this Chapter, we present the same radial distribution functions pre-

sented up to this point, but given with the associated statistical errors to demonstrate

that the phenomena we see are actually significant. The reader is referred to that

section, but its omission will not incur any loss of meaning for the rest of the Thesis.

One caveat to this analysis is the fact that there is an inherent limitation in the

nature of the calculation of the interfacial radial distribution functions. One can

note that the density over a small section within the monotonically decaying section

of the density profile is dramatically changing. Now, the calculation of the rdf for

this region requires normalizing the histogram of pair separations; this is done by

employing a uniform density for this region. In so doing, the smaller pair separations

are weighted more, and thus, one observes an enhancement in the first peak of the rdf

in the interfacial region relative to the bulk. This effect becomes more pronounced as

the degree of inhomogeneity within the region becomes more severe, since this causes

the uniform density used for normalization to decrease substantially. This is a topic

for further investigation and will not be considered further in this work; it would be

interesting to reinvestigate the phenomenon of water clustering at the free surface

(based on the previous studies which seem to show very similar results in terms of

the rdf behavior) with the intent to consider if this effect is indeed 'real'.
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5.4 Excess Chemical Potential Via Widom Inser-

tion Molecular Dynamics

As one measure of the equilibration of the system, the excess chemical potential of

water is computed as a function of longitudinal position. This calculation gives an

energetic description of the nature of the fluid along the system geometry. In the

following sections, the theory, implementation, testing, and results of the Widom

insertion calculations are presented.

5.4.1 Widom Insertion Formalism

Fundamental thermodynamics tells us that the chemical potential of a species is

constant through a system (single or multiphase) at equilibrium [144]. Furthermore, it

is the total chemical potential that is constant; its contributing elements, the ideal and

excess chemical potentials can vary with system inhomogeneity (density fluctuation,

compositional fluctuation, and external potential interaction) [145]:

A = Pid + Pexcess(z) (5.4)

By applying Widom's insertion theory (also called potential distribution theory),

one can compute the excess chemical potential as a function of spatial position. Note

that the effect of system heterogeneities on the chemical potential arises due to the

interaction potential between constituents, and it is this dependence which is exploited

in the computation of excess (or residual) chemical potential. To see this, formally,

one begins with the configurational partition function for a fluid of N particles in a

volume V at temperature T [146]:

QN = J.. . e kTl ... dTN (5.5)

where k is Boltzmann's constant, dTri-d.N is a volume element of the configuration

space of the N particles, 4 N is the total potential energy of interaction of the N

particles (a function of particle positions). This expression can be rewritten as:
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- ±f j N-1

QN ' ] ' ' e kte kt d-l ... dTN (5.6)

= QN-IV ( e (5.7)

where 0 is the interaction of a single particle with the remaining N - 1 particles.

The brackets denote a canonical ensemble average over the N-particle system [146].

An elucidative interpretation of the average is as follows. Consider a fluid in ther-

modynamic equilibrium in which the motion of all particles suddenly stops. Now, an

(N + 1)'th particle is introduced and allowed to sample the entire volume of the N

particle system. At each point of this 'wandering', the interaction of the particle with

the rest of the system as well as the corresponding Boltzmann factor is computed.

The average value of this function of position is thus given by the bracket notation

[147].

Now, the connection to the excess chemical potential is made by noting that the

chemical potential for the canonical ensemble is:

PeNcess V lim (A(N, V, T) - A(N - 1, V, T)) (5.8)
(aN VT N-+oo

Pexcess = -k T lim in QN (5.9)

The limit of taking large N is simply the thermodynamic limit.

Combining Equations 5.7 and 5.9, an expression for the excess chemical potential

results:

Pexcess - -kTlin (ek) (5.10)

For an inhomogeneous system, the spatial dependence is given by:

Pexcess(r) = -kTIn e )(5.11)
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and for a z-dependent heterogeneity, the r is replaced with a z-dependence [146].

5.4.2 Widom Insertion Molecular Dynamics: Implementa-

tion and Testing

The approach to calculating the excess chemical potential as a function of position

within an inhomogeneous system involves insertions of the relevant particle/molecule

within a selected slice of the slab; the insertion locations may be random or can be

predetermined as in the case of a grid of points at which insertions are to be made

(the grid obviously detailed enough to sufficiently represent the entire simulation

volume). For the ester-water system studied in this chapter, we have selected to

perform water insertions into both the water and ester phases. This is based on a

practical consideration as water is the smaller molecule of the two components, thus

not presenting any problems with respect to convergence of the insertions into the

less dense ester; it is felt that attempting to insert methyl acetate into the fairly dense

water phase would require a longer convergence time (as a result of higher overlap

probablilites in the water phase). For water insertion, the oxygen atom is placed at

a random point and the molecular orientation is chosen randomly. For the analysis

of the methyl acetate/water system, insertions were made into configurations saved

every 100 timesteps during the simulation. For testing purposes, calculations on a

shift-force Lennard-Jones system (following the work of Powles et al [146] ) were

performed on configurations from short simulations of the LJ-SF3 fluid. Note that

the LJ-SF3 fluid is simply a system of Lennard-Jones spheres, with the interparticle

interactions shifted such that the interaction energy and resulting particle-particle

force go to zero at the spherical cutoff distance. The cutoff is taken to be three times

the Lennard-Jones diameter, o-, from which the numerical value of 3 derives in the

name.

The shifted force Lennard-Jones potential is given as:
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ULjF = ULJ(rij) - ULj(Tsj= rc) - OULJ (rij - rc) rij < rc (5.12)
ULJrj ) rij ==rc

and is zero for separations outside of the cutoff. The cutoff is 3-, where c- is the

Lennard-Jones diameter. The potential and force (negative gradient of the potential)

are both continuous and zero at the cutoff distance.

To make sure that the present coding for the LJ-SF3 fluid was correct and that the

proper state points were being considered, a pressure-density isotherm was reproduced

from the Powles et al work [146]. Bulk LJ-SF3 fluid MD simulations were performed

for a system of 256 particles in a cubic simulation cell of dimensions to give the

required density. Canonical ensemble (NVT) simulations at a reduced temperature of

1.28 (153.3 Kelvin) were performed using a Nose-Andersen thermostat with thermal

inertia parameter of 2.5 and a timestep of 10 femtoseconds; simulations of 50,000

timesteps were sufficient to equilibrate the systems and generate acceptable statistics

for equilibrium property calculation. Figure 5-48 shows the P(p) isotherm (all in

Lennard-Jones reduced units) at a reduced temperature of 1.28. Note that the reduced

units for the Lennard-Jones system are defined as

p* = Pa (5.13)

T* =kBT (5.14)

P* =P 3  (5.15)
E

Also shown is the curve for the pure Lennard-Jones fluid with the standard analytic

corrections for pressure [13, 146]. The points represent the work of Powles et al.

Furthermore, the system energy per particle as a function of reduced density is shown

in Figure 5-49 and is seen to be an almost linear function of density over a wide range

of densities; this result is equivalent to those presented by Powles [146].
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To evaluate the insertion algorithm, first the two distribution functions, f(u) and

g(u), for the fictitious inserted particles and the real particles, are computed for a

reduced density of 0.05 and reduced temperature of 1.02 as shown in Figure 5-50 .

These distribution functions are integral components within the formalism of po-

tential distribution theory and a slight digression is presented here. The fictitious and

real particle energy distribution functions, f(uf) and g(ur) , respectively, are defined

as

f (uf) -f 6(uf - u(N : N - 1))e-OUN-1dq N (516)
f e-OUN-1 dq.N

and

g (Ur) f 6 (Ur - u (N; N - 1))e-UNdqN (5.17)
QN

The energies Uf and ur represent the fictitious and real particle energies. For the

fictitious particle, i.e. the particle which is allowed to explore the phase space of

the (N-1)-particle system, the energy is the resultant of all the interactions of the

fictitious particle with the rest of the system. For the real particle, the energy gives

the interaction of the N'th particle with the N-i particles of the N-particle system.

For both cases, the energy is the negative of the energy required to extract the N'th

particle leaving the (N-1) fixed; this energy is equal to twice the 'shared energy'

arising from all pairwise interactions.

Now, the relevance of the distributions becomes evident if one follows a route to

the chemical potential that is different than the formulation presented in the previous

section. Consider the ratio of the partition functions of two systems with N particles

each, one which is called system 0 and the other system 1,

Q0 f e-Ouodq N

Q1 f e-OUodqN 
(5.18)

Equation 5.18 can be recast in a form resulting in an average over each system as

222



f e e(UO- U1 dqN

f e-3udqN
- KeO(UOU1))i

Qo f e-OuodqN 1

f eP-(U1-Uo)e-OUodqN (e+O(Uo-Ui))O
(5.20)

Introducing a normalized distribution function for the coordinate-dependent quantity

(UO - U1) for each system gives,

fi(UO - U1) =

fO(U - U1 ) =

f J[(UO -U1) - (Uo(qN) - U1(qN e-/U1(qN d N

-1

f 6[(Uo - U1 ) - (Uo(qN) - U1 (qN) )]-3Uo(qN q N

Q0

The 6 's represent the Dirac delta function. Now, writing u = (Uo - U1)

the two distributions, fi and fo gives the important general relation,

fo(u) _ e_ 1 _Q

fi(u) Qo

the ratio of

(5.23)

For the case where one is considering two systems, one of N particles and the other

of N-1 particles, the definitions and distributions can be more specifically delineated.

Consider,

UO = UN (qN)

U1 = UN- 1 (qN--1)

(5.24)

(5.25)
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for which case

Uo - U = UN-UN-1 = u(N; N - 1)

where u(N; N - 1) is the energy of the N'th particle in the N-particle system.

The ratio of the partition functions of the two systems then becomes,

Q0 oQN
Q1 QN-1

f CUN-1 [Vl~e~UdqN]dqN-1

f e-/UN-1dqN-1

Note that this is simply the canonical average of the factor e-Ou over the system of

N - 1 particles,

Q0 _ QN

Q1 QN-1
(5.28)- -ou )N-1

Furthermore, in the thermodynamic limit (N -+ oo) , we have

Q0
Q1

_ QN

QN-1

.-= yr

The distribution functions for the N and N-1 particle systems are

fN(Ur) =
f 6[u, - u(N; N - 1)]e-3UNdq N

QN
(5.30)

(5.31)fN-1(Uf) f 6[uf - u(N; N - 1)]e-UN-1 dqN-

QN-1

At this point, we call the fo distribution the real particle energy distribution, g(u),

and the fi distribution the fictitious particle energy distribution, f(u).

From Equation 5.23, we obtain the relation,

9(u) _ QN-1 -p"

f(u) QN
(5.32)

Substituting Equation 5.29 into the last equation gives the result

e,--4rg(u) = e-,uf(u) (5.33)
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Thus, we can see that the excess/residual chemcial potential, p', may be deter-

mined from a knowledge of f(u) and g(u), and furthermore, for a value of u where

the two distributions overlap significantly [146].

Rearranging Equation 5.33 gives,

e-01L = e -'3 U (5.34)
g(u)

A convenient form to extract the residual chemical potential is

L(u) =ln (U) u - 11' (5.35)
(g(u)

which shows that a plot of L(u) versus u gives the slope as 3 and the intercept as

In the present study, the excess chemical potential is determined from the Widom

result, namely, from a canonical average of the Boltzmann factor for a water insertion,

but the above digression points out the significance and relevance of the distributions

that will be computed in order to test the algorithm. Note, however, that it is reported

in the literature that the distribution function approach suffers more from statistical

uncertainty due to the inherently substantitial statistical uncertainties in f(u) for

u large and negative and in g(u) for u large and positive. The former arises from

the physical picture that a fictitious particle randomly inserted into a bulk fluid will

have difficulty finding a hole surrounded by many particles at a sufficient separation

to give rise to a large, negative (favorable) overall energetic interaction. The latter,

quite analogously, is indicative of the fact that in a finite system, a real particle will

not explore that portion of phase space in which there is a resultant large, positive

interaction energy (as in the case of overlaps). Thus, from a practical standpoint, the

Widom result is invariably applied in some modified form or other.

The two distribution functions, f(u) and g(u), for the fictitious inserted parti-

cles and the real particles, are computed for a reduced density of 0.05 and reduced

temperature of 1.02 as shown in Figure 5-50.

Note that the computed energy distribution functions are in excellent agreement
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with those of Powles et al given in Figure 5-50.

For the low particle density case, Preduced = 0.05, f((u) tends to peak at u = 0,

indicating test particles inserted outside the range of interaction (beyond the specified

cutoff). For the real particle energy distribution, g(ur), there is a similar peak at

U = 0, but this is accompanied by a secondary peak at u = -1 corresponding to an

energetically favorable situation of a pair of particles separated at the appropriate

separation.

Finally, Figure 5-51 shows the excess chemical potential, in the form of pu1 . The

modified chemical potential, p1 is:

3
Pi = Pexcess + Tinp - -TinT (5.36)

2

In the figures, the points represent the results of Powles et al. The agreement

with the calculations of Powles is not exact, but this is attributed to the fact that

the previous work uses a temperature correction for [11 due to the fact that there is

a temperature fluctuation even for constant temperature molecular dynamics. In the

present case, the correction is neglected, and it is evident that the error generated is

not great. With these results, there is confidence in the current implementation of

the insertion code. In the next section the results of the insertions in the ester-water

system are shown.

5.4.3 Widom Insertion: Results

Longitudinal profiles of the residual chemical potential of water were computed over

blocks of 100 configurations. For each configuration, the simulation cell was divided

into 72 layers into which the water molecule was inserted; each layer was of thickness

2.5 angstroms with the transverse dimensions being equal to the box lengths in these

directions. For each layer, 100 random water insertions were performed. The position

of the water oxygen was selected randomly, and the locations of the hydrogens were

determined so as to achieve random orientations of the water dipole relative to the

simulation cell-centered frame of reference.

226



Figures 5-52 through 5-54 show the results of the insertion calculations. Figures 5-

52 and 5-53 show the time evolution of the excess chemical potential profiles over the

system length. Figure 5-52 shows the initial time intervals over which the system is

equilibrating. Comparing the two figures, the system appears to have equilibrated

by about 250 picoseconds, and certainly the profiles after 300 picoseconds show no

changing trend. Finally, Figure 5-54 shows the average insertion energy of a single

water molecule which is seen to be symmetric across the system profile. Furthermore,

the average insertion energy into water is roughly one third that for insertion into the

ester which translates to a low solubility of water in ester (the experimental solubility

is 0.266 mole fraction water in methyl acetate corresponding to 8.1 ± 0.1 grams of

water per 100 grams of solution at 298K and atmospheric pressure, Solubility Data

Series, volume 48, pp 8.). For the present work, a quantitative analysis of the solubility

is not made as this is used mainly as one check on equilibration. The proper trend

in the excess chemical potential is noted as well as the invariance with time for the

duration of the sampling period.
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Figure 5-48: Pressure-Density isotherm for the Lennard-Jones SF3 fluid at a reduced
temperature of 1.28

Energy per Particle: LJ-SF3, T=1.28

0.3
Reduced Density
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Energy Distribution Functions: LJ-SF3, Rho=0.05,T=1.02
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Figure 5-50: Real and fictitious particle energy distribution functions for the Lennard-
Jones SF3 fluid at p* = 0.05 and T* = 1.02.
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Figure 5-51: Modified excess chemical potential, p, versus reduced density for the
Lennard-Jones SF3 fluid

229

0.8

0.7

0.6

0.5

Fictitious Particle -0-
Real Particle -+--

-- -A

- 4

- +'

0

0.4

0.3

0.2

0.1

0
-3 -2.5

8)

0
6
b

'-4

6

-0.5

-1

-1.5

-2

-2 .5

-3

-3.5

-4

-4.5

I - - -



Excess Chemical Potential vs. Longitudinal Position: Ester-Water Interface
80
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Figure 5-52: Excess chemical potential for the ester-water system: profiles are aver-
ages over blocks of 100 configurations spanning the shown time periods of the simu-
lation.
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Figure 5-53: Same as previous figure but applies for later time periods

230

60

40

20

0

.4

(a

4)L

'i

M0

0

t (-p ) 12.6 ? 5 .7
t(ps)=132.67-172.27 ---
t (ps)=252.67-292.27 -

t (ps'-=92,671-332.27

-I

- - -IaL

V I \t~
-- - - - - t --

-t

-~O It~'~tL

10 V
-20

-40

-r
-10

60

40

20

0

U

En

0

-20

-40

- -

-- -- I V

t(ps)=412.7-452.3 ----
t(ps)=532.7-572.3 ----

- (ps)=652.7- 692-3

tips)=1012.7-1052.3
i psi;=10,92.7 -111.32 .3 --

-60
10



Excess Chemical Potential vs. Longitudinal Position: Ester-Water Interface
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Figure 5-54: Profiles of the average insertion energy of a water molecule for various

time periods of the simulation.
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5.5 Pressure Tensor Component Profiles

In order to evaluate the consistency of the OPLS ester potential parameters for in-

terfacial thermodynamics, the molecular virial is computed to obtain the molecular

surface tension via [60, 126, 132]:

7 = 2 (2Vz - Vx - Vy) (5.37)

where Va, is the diagonal molecular virial component and A = 2LxLY is the total

surface area of the slab. The molecular virial is:

(5.38)Va= ZFabRaEb =FaRa
a<b a

where the sum is over all molecules a and b and R' and Fab are the a =x,y,orz

component of the molecular center of mass separation and total force,

Fa _ k E
kj=1

ra
Tab ki '(rabk)

rabkl (
(5.39)

The profile of the normal-tangential pressure differential is computed as:

1
2

Z dz (PN(z) - PT(z)) (5.40)

where PN(z) and PT(z) are the normal and tangential components of the stress

across a plane parallel to the interface at the longitudinal position z. -y(inf) is the

surface tension.

The pressure tensor components following the Irving-Kirkwood definition of the

pressure tensor are [132, 60]

PT(Z) =< p(z) > kT -
A

N m m

< EE
ju a b

(XijXiajb + YijYiajb) dU(riajb) 1 Z( Z- Zi Z -- Z
2 riajb driajb Z j ZId

(5.41)

and
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± ( m < ZijZiajbdU(Tiajb) 1 -_Zi)(Z - -Z)PNz)) T A j a b riajb driajb Zij Zij Zi3

(5.42)

In these equations, p(z) is the total molecular density at z (its average over all

configurations is used), k is Boltzmann's constant, and T is the absolute temperature.

0(q) is the Heavyside step function which is zero for arguments less than zero and

equal to unity for arguments greater than or equal to zero. For clarification, the xij ,

yij , and zij are the molecular center of mass separation components, whi le the Xiajb

, Yiajb , and Ziajb are the site-site separation components. The sums are over all N

molecule pairs and over the m sites on each molecule (as shown here, these equations

reflect a system where, all molecules are taken to be equivalent, but the extension to

a multi-component system is straightforward ).

Figures 5-56 and 5-55 show the results of the Irving-Kirkwood calculations. Fig-

ure 5-55 shows the longitudinal profile of the differential of the normal and tangential

components of the pressure tensor. The pressure compoents are given in program

units of kJ/mol cm 3 . There are two clearly defined interfacial regions for the water

liquid-vapor region, and two interfacial regions for the ester-water inhomogeneous

zones. The former spans the range from about 17.5nm to 18.0nmI. For the ester-

water interface, the relevant region is centered about I5nml. The profile is computed

over blocks of 100 configurations spanning the last picoseconds of the production run.

The rather large fluctuations in this profile is indicative of two things. First, the

nature of the computed pressure is that of a strongly fluctuating property; this is an

inherent drawback of the MD method. Secondly, the fluctuation is representative of

the small sample used for the computation. Again, one is interested in the difference

of the tangential stress at the interfacial regions. This requires accounting of the force

interactions between molecules in the interfacial region. For a simulation of this type,

since such a small fraction of the total number of molecules are resident in this region,

one is relegated to accumulating exorbitant amounts of data. In the present case, not

all of the data from the production run is computed since we are not interested in a
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quantitative analysis of the surface tension. We accept a priori that the combination

of the OPLS and SPC potentials will most likely not quantitatively reproduce ex-

perimental surface tension data. Nevertheless, this computation indicates that with

the models selected, we are able to develop a stable interfacial system which most

importantly captures the requisite physics-that is, we don't observe mixing of the

two phases.

Figure 5-56 represents the integrated normal-tangential pressure differential curve.

Although the curve is not completely flat in the bulk regions, we still obtain a nice

indication that the system has equilibrated for the purposes of this investigation.

Based on the limited sample size, one must accept the observed fluctuations. Note

that the contributions from the two pairs of interfaces is self-consistent; that is, the

contributions from the two water liquid-vapor interfaces are equivalent to one another

as are those from the two liquid-liquid interfaces.

5.6 Conclusions

This Chapter has presented results of direct molecular dynamics simulations of

the methyl acetate/water liquid-liquid interface to probe the molecular level structure

and orientation within the interfacial region. One observes the evolution of a stable

interface using the OPLS intermolecular potentials for the methyl acetate and the

Simple Point Charge model for water. In terms of molecular structure, one observes

the ester molecules adopting an average orientation in which the carbonyl oxygen

atom extends towards the water bulk phase. Complementary to the ester orientation,

the water molecules within the interfacial region adopt a configuration which allows

the hydrogen atoms to participate in hydrogen bonding interactions with the carbonyl

oxygen of the ester. Moreover, the water orientation varies across three regions of the

interface. Again, in the outer region closest to the ester, the water dipole is aligned

with the interface normal and the hydrogens extending into the ester phase. In the

inner region of the interface (more in proximity to the bulk water), the water dipole

aligns further away from the interface normal with one hydrogen atom extending into
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the outer interfacial region where there is a layer of water oxygens available for hydro-

gen bonding. Radial distribution functions indicate a hydrogen bonding interaction

with the first peak in the carbonyl oxygen - water hydrogen rdf at 0.19 nanometers.

This corresponds to density functional calculations of gas phase bimolecular com-

plexes of water and methyl acetate. Note however, that the hydrogen bonding angle

is smaller than that computed via theory; this may be due to the fact that the present

calculations are for the condensed phase.

The orientation of the water in the interfacial region relative to that in the bulk is

interesting in the context that it is observed both theoretically (molecular dynamics

simulations) and experimentally [25, 26] that the properties of liquid water in the

vicinity of solid interfaces differ from those in the bulk phase. The vicinal structure

of water is held to extend 3-6 nanometers from the interface [26], and as such, this

long-ranged ordering phenomenon is critical in biological systems, for example. In

the context of the present work, we observe a rich vicinal structure for SPC water.

One can consider the interfacial structure of the ester as a similar phenomenon, as we

see not only a variation in molecular orientation from bulk to liquid-liquid interface,

but also a difference between the liquid-liquid and liquid-vapor interface; this equally

applies to the water/vapor surface as well.
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5.7 Statistical Significance of Observed Radial Dis-

tribution Function Profiles

Figures 5-57 through 5-66 show the various pair correlation functions discussed ear-

lier along with the associated error bounds. The average profiles are calculated as

block averages over blocks of 100 configurations (each configuration stored every 100

timesteps, with a timestep being 0.004 picoseconds). The average is at the 95 percent

confidence level.

For methyl acetate, the bulk region is taken from -1.0 to 1.0 nanometers relative

to the simulation cell center of mass. The 'inner interface' spans from 4.0 to 4.5 (and

analogously from -4.0 to -4.5 for the z i 0 regions) nanometers from the cell center of

mass. The 'outer interface' extends from 4.5 to 5.0 nanometers (again the symmetry

applies). Finally, the 'extreme outer' interface reaches from 4.8 to 5.3 nanometers.

For the water layer, the bulk is taken to be from 6.0 to 7.0 nanometers, and the

liquid-vapor interface is lumped into one region from 8.0 to 8.5 nanometers.
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Figure 5-60: Water hydrogen - ester carbonyl oxygen radial distribution functions
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Figure 5-61: Water hydrogen - ester ether oxygen radial distribution functions

Methyl Acetate RDF's
2.5 1

Bulk 0-0--
Inner Interface 0-0

Erem Oue --

2-

1.5

0.5

-0.5 -
0.2 0.4 0.6 0.8 1 1.2

Riu (nm)

Figure 5-62: Methyl acetate radial distribution functions: carbonyl oxygen - carbonyl
oxygen

240



Methyl Acetate RDF's

Bulk Oe-Oe
Inner Interface Oe-Oe.
Outer Interface Oe-Oe --

Extreme Outer Oe-Oe ----

kiIL

Y.- T T -r

0.80.6
Rij (rnm)

Figure 5-63: Methyl Acetate radial distribution functions: ether oxygen - ether oxygen

Methyl Acetate RDF's

Bulk 0-Oe ---
Inner Interface O-Oe .-
Outer Interface O-Oe --

Extreme Outer O-Oe ----

T

0.6
Rij (rim)

0.8 1

Figure 5-64: Methyl Acetate radial distribution functions: ether oxygen - carbonyl
oxygen

241

II'hT~I~
T

I

2.5

2

1.5

1

0.5

0

-0.5

J.I

-E4UU

0.2 0.4

2.5

2

1.2

1.5 I-

-. . . .

0.5 I

-0.5
0.2 0.4 1.2

3

I - -f -L -[ I -L if- I - &.r rl

I



Methyl Acetate RDF'S

Bulk O-MeE ---
Inner Interface O-MeE.
Outer Interface 0-MCE ...

Extreme Outer 0-MeE ....1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2
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Chapter 6

Parameterization of United-Atom

Oligomer Model

6.1 Background and Motivation

The previous three chapters have dealt with small molecule ester interfaces, both the

liquid-vapor and liquid-liquid; based on these computations, the interfacial structure

in terms of the orientation of functional groups and hydrogen bonding characteristics

is seen to be rich and dependent on the nature of the interface. The fact that such

effects are seen for small molecules is quite interesting, and more importantly, bodes

well for the appearance of a more complex structure for longer chain molecules where

the effects of functional group character and chain connectivity can interact. A rich

interfacial structure is observed from simulations of alkane oligomers [60] and similar

phenomena are predicted by Monte Carlo simulations of lattice polymer models [148].

Furthermore, theoretical studies of compressible diblock and triblock chain molecules

in the vane of self-consistent models also show a very rich interfacial structure in terms

of surface segregation caused by differences in the interaction energies between two

components [149, 150]. With this in mind, the next segment of work attempts to study

the interface of simple linear ester oligomers representative of PLA as introduced in

Chapter 1.

As the interface is studied via molecular dynamics simulation, as discussed in

243



Chapter 2, a forcefield representation of the molecular system is required. For the

PLA ester oligomer, this requires a set of non-bond parameters (to handle both inter-

and intramolecular dispersion and electrostatic interactions) and a set of internals

to represent two-, three-, and four-body interactions within the molecule (these are

the standard bond, angle, torsion, and out-of-plane potentials discussed earlier). For

the present study, the dispersion and electrostatic interactions are modeled using the

OPLS parameters used in the small molecule simulations of the previous chapters. For

the internals, it was initially considered that parameters for simple potentials from

existing forcefields would be applied and merged with the OPLS non-bond parameters

to arrive at a total ester oligomer forcefield. This approach of merging parameters

is not new, having been applied in the literature and even in the development of the

more common forcefields available.

Figure 6-1 shows the PLA ester oligomer model targeted for study. Based on a

simple persistence length calculation using a repeat unit length of 1" = 0.37 nanome-

ters calculated by Flory et al [151] and a characteristic ratio of Cinfty = 2.0 determined

from light scattering and intrinsic viscosity measurements of solutions of two different

molecular weight polymers [151],

L = lu(COO+1) (6.1)

L = 0.555nm = 1.54, (6.2)

(the persistence length is roughly 1.5 times the repeat unit length), the oligomer

is taken to be five repeat units, the repeat unit shown in Figure 6-1. This is felt to be

a good trade-off between the need to represent a true 'chain-like' structure (for which

conformational properties averaged over the entire chain will have statistical mean-

ing) and the need to maintain the total number of particles involved to a tractable

value. This is not to say that this chain length will be representative of much larger

chains, but it will at least afford a model from which are derived statistically sig-

nificant conformational properties. The relevant internal coordinates (bond angles,
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Table 6.1: United-Atom Internals for Ester Oligomer Model

Type Atoms Quantity
Bond Angles CH 3 - C* - O' 1

CH 3 -C* -0 1
O' - C* - 0 5

C* -O-CH 4
O-CH-CH 4
0 -CH-C* 4

CH 3 -CH - C* 4
CH -C* -o 4
CH-C*-0 4
C* - O - CH 3  1

Torsion Angles CH 3 - C* - 0 - CH 1
CH 3 - CH - C* - 0' 4
CH 3- CH - C* - 0 4
CH-C*-O-CH 3
0'- C* - 0O - CH 4

C* - 0O - CH - CH3 4
C* - 0O - CH - C* 4
0O - CH - C* - O 4
0 - CH - C* - 0 4

CH-C*-O-CH3  1
0'- C* - 0O - CH3  1

Out-of-Plane Angles * CH - C* - 0 - o' 1

CH 3- C* - 0 o' 1

torsions, and out-of-plane angles) are shown in Table 6.1 along with a description of

the nomenclature used to define the internals.

Unfortunately, a search of the available united-atom forcefields yielded an incom-

plete set of parameters for the internal potentials. This was surprising as the system

under study is a fairly simple one relative to the types currently studied using molec-

ular simulation approaches. Consider that aromatic polymers, cyclic aromatic and

non-aromatic group containing polymers, nylons, polyamides, DNA, proteins, and the

like are routinely investigated via MD. Yet for the simple linear esters studied here,

one cannot find the relevant internals in the literature. With this being the situation,

the methodology espoused was that introduced in Chapter 3 for the parameterization

of the internals for methyl acetate. An all-atom forcefield would be used to generate

distributions for the required internals, and united-atom potentials would be fit to
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Figure 6-1: Oligomer Model
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these distributions. The all-atom forcefield selected for the parameterization was the

CFF91 potential; however, as it turns out, even this Class II next-generation forcefield

was lacking in a particular torsion parameter set. At this point, several options were

available. First, it was suggested [152] that an analogous torsion parameter set within

the CFF91 forcefield be used to model the torsion. Second, one could attempt to find

another all-atom parameter set to use for the fitting; this option was rejected as the

CFF91 forcefield was felt to be adequate in terms of its ability to model the internals

accurately. Thirdly, the missing torsion could be generated via ab initio computations

on a model compound, this torsion then to be introduced into the CFF91 parameter

set which would be used to generate internals distributions to which a united-atom

parameter set would be fitted. This last is the approach taken for the current work.

The remainder of this chapter discusses 1), the ab initio computations, 2), the fitting

of a potential to the quantum mechanically derived torsional profile, 3), the integra-

tion of the ab initio torsion into the CFF91 forcefield and subsequent generation of

internals distributions via single-molecule Hybrid Monte Carlo, and 4), the fitting of

a united-atom potential to the distributions.

The flow diagram for the torsion parameterization is shown pictorially in Figure 6-

2 . The following sections discuss aspects of this flow diagram.
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All-Atom Torsion Fitting Algorithm

Goal: Develop a United-Atom model for PLA type species

Merge OPLS Non-Bond Parameter Set with Fitted Internals

Compute ab initio torsion profile for selected molecule

01I

Compute empirical torsion profile

Extract relevant torsion profile

KGenerate distributions of internals using all-atom model
(Hybrid Monte Carlo) 2

Fit United-Atom model for internals to distributions

C
4 OPLS Non-Bond (LJ, charges)

OLIGOMER SIMULATION 11
Figure 6-2: United Atom Model for Ester Oligomer Simulation: Fitting Algorithm
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6.2 Ab Initio Computations: Quantum Mechan-

ical Torsion Profile for Model Ester Com-

pound

6.2.1 Applied Quantum Mechanics: Application of ab initio

Methods to Chain Conformational Energetics

Over the last decade, the methods of ab initio quantum mechanics have been increas-

ingly applied to the study of chain molecules and polymers. Moreover, information ac-

cessible via these techniques has been used to ascertain functional forms of the various

contributions to the molecular potential energy surface, especially with respect to the

development and validation of more flexible, highly transferrable force fields. Relevant

to polymers, as well as medium to large molecules and oligomeric/macromolecular

species, in the liquid and solid phases, is the chain conformation; it is this compo-

nent which directly relates to the bulk structure which in turn dictates macroscopic,

rather 'practical', properties such as optical, mechanical, and electrical properties.

Thus, from a theoretical/computational perspective, one requires a sound, accurate

description of the rotational behavior of the molecule; more specifically, the energetic

differences between stable energy conformers and the relevant barrier heights between

them. Experimentally, data on conformational energetics for small molecules comes

from microwave spectra of the gas phase, infrared spectroscopy of both gas and liquid

phases, and vibrational spectra and dielectric and/or mechanical relaxation phenom-

ena. The latter approach entails tedious work in assigning observed loss peaks to

specific molecular rotations. Vibrational spectra require assignment of all relevant

vibrational frequencies as well as study of deuterated species. Furthermore, the ex-

perimental techniques will not give information about the 'exact' form of the potential

energy curve describing the conformational energy surface. Thus, applied quantum

mechanical methods allow one to extract a detailed potential energy profile which can

then be compared to quantitative experimental data.
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The literature is replete with ab initio studies of the conformational energetics

of a wide range of molecules. Ab initio studies on perfluoroalkanes, alkyl ethers,

1,2-dimethoxyethane [153], poly(p-hydroxybenzoic acid) (PHBA) and poly(ethylene

terephthalate) (PET) [154]. In general, these investigations do not generate the full

potential energy profile, focusing more on relative energies between low-lying con-

formers which can then be used in rotational isomeric state (RIS) type models [155].

Even force field development work invariably neglects the full torsional profile, opting

instead to determine the stable configurations and fitting parameters to a selected

model to represent the energy profile (this is necessarily due to the large number of

time-intensive calculations that would be needed).

6.2.2 Model System and Computational Details

In this section, the model ester compound used in the abinitio calculations is pre-

sented. Also discussed are the details of the computations in terms of basis sets,

minimization algorithms, algorithm performance.

Figure 6-3 shows the ester compound selected to probe the o-c-c*-o torsion (in-

dicated by the arrow in the same figure). This was selected as it is small enough

to capture the local environment of the torsion while keeping the number of heavy

atoms small enough to make the computation tractable. Furthermore, since the spe-

cific torsional component was to be extracted by subtraction of the CFF91 partial

forcefield from the total electronic torsion profile, no new unparameterized torsions

could be introduced in the model compound. All the necessary potential parameters

for this compound were available in the CFF91 forcefield.

The ab initio calculations were performed using the GAUSSIAN92 software pack-

age. Calculations were performed at the Hartree-Fock self-consistent field (SCF) level

with 6-31G** and 6-311G** basis sets. For polar systems, the conformational ener-

getics are substantially influenced by the size of the basis set as well as inclusion of

electron correlation effects. Naturally, the time required for a given calculation varies

with the size of the basis set as well-computational time scales as the fourth power

of the number of basis functions describing the system. These computations involved
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Ab Initio Ester Compound Model

o H 0

II I II
H 3 C CC H

CH 3

Figure 6-3: Ab Initio model ester compound for torsion fitting. The arrow indicates
the O-C-C*-O torsion.

geometry optimizations at a constant value of the dihedral angle. Electron correla-

tion corrections were computed via Moller-Plesset perturbation theory (many-body

perturbation theory) up to second order using the 6-311G** and D95+ basis sets;

the electron correlation calculations were performed only for the 6-311G** optimized

geometries. Calculations of the harmonic normal mode vibrational frequencies for

each of the energy minimizations were used to confirm that an energy minimum was

reached; all normal mode eigenvalues are positive at the energy minimum (positive

definite diagonalized Hessian matrix). The basis functions applied are split valence

with polarization functions added for all atoms. The use of polarization functions has

been cited in the literature as being important for an accurate description of disper-

sion interactions. Further concerning electron correlation effects, for conformational

energetics studies, the primary contribution comes from dispersion energy which is

sufficiently handled by second order perturbation theory; for instance, the inclusion

of higher levels of perturbation does not seem to enhance the trans-gauche energy

difference for 1,2-difluoroethane [153]. Thus, for the present work, only second or-

251



der contributions are considered. Furthermore, test calculations at the MP4 level of

correction performed as part of the current work show that the fourth order correc-

tions are two orders of magnitude smaller than second-order contributions, and thus

substantiate the neglect of these terms.

At this point, some mention is made of the basis sets used and the number of

such functions involved for the various basis sets employed in this work. The basis

functions used, as mentioned above, are the split-valence sets of 6-31G**, 6-311G**,

and Dunning's D95+ basis set.

The simplest basis set, or the minimal basis set, is the STO-3G set, which is a

Slater-type spatial orbital represented as a linear combination of 3 primitive gaussian

functions. The minimal basis set, although useful qualitatively, comes with several

inherent inadequacies. One of the major drawbacks is that such basis sets cannot

account rigorously for anisotropy of the molecular charge distribution (i.e., polariza-

tion of the electron cloud). In response to these deficiencies, split-valence basis sets

with polarization functions are used to describe systems with polar character (as well

as systems in which resonance plays a significant role in stabilization). These are

composed of inner, core, electron shells similar to the equivalent to the minimal basis

set, and valence shells separated into two or three spatial regions determined by the

exponent of the radial component. For the present case, we consider the 6-31G** and

6-311G** basis sets. For the former, inner shells are represented by contractions, or

linear combinations, of 6 primitive gaussian functions, or gaussian primitives (much

in the vane of STO-KG basis sets, with K - 6 in this case). The valence shells are

split into two regions, the inner region represented by a contracted gaussian of 3 prim-

itives, and the outer region by a single primitive. The double asterisks indicate that

hydrogen atoms are given 3 additional p-type gaussian primitives in the valence shell,

and heavy atoms are given 6 3d-type gaussian primitives in the valence shell. For the

latter basis set (6-311G**), the inner shells are again represented by contractions of

6 gaussian primitives while the valence shells are split into three regions, the inner

region a contraction of 3 gaussian primitives, and the middle and outer regions single

gaussians. Hydrogen atoms again receive an additional 3 p-type gaussian primitives
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in the valence shell; however, heavy atoms are assigned

opposed to the 6 for the 6-31G** set.

The basis functions for the 6-31G set are as follow:

6

0is(r) = d, 1sgis(ceji, r)

3

ji=1

2s(r) = d'l,2(a', 2 p, r)

3

0'2px(r) =dis'i'2 r

=2>r)= d ,2pxg 2px(ce, 28 , r)

q0"x(r) = g2px(a 2 sp, r)

3

)

)

2py (r)= dyg2py (ai,2spr

#(r) = 92py (ce",,, r)

3

2 - ,2pzg2pz( ,spr

02pz (r) - g2pz (c'2s, r)

)nly 5 d-type gaussians as

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

There are 6 d-type polarization functions for heavy atoms and 3 p-type functions for

hydrogens; this description gives the 6-31G** basis set. Thus, for hydrogen atoms,

there are five basis functions with 7 gaussian primitives; for carbon atoms, there

are 15 basis functions with 28 gaussian primitives; and for oxygen atoms, there are

similarly 15 basis functions with 28 gaussian primitives. These figures include the
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requisite polarization functions for the atom. For the oligomer model, there are thus

a total of 175 contracted basis functions with a total of 308 primitive gaussians.

For the 6-311G basis set, the individual basis functions are similar to the 6-31G

functions given above with the addition of an additional gaussian primitive for the

valence shell (thus giving a triple valence shell).

0'2,(r) =gis(2spr) (6.12)

0'2'p()= g2py (a 2", r) (6.13)

#p, (r)= g2py(a 2 .P, r) (6.14)

0pz = 92py (a 2s, r) (6.15)

Thus, for the 6-311G** basis, hydrogens have 6 basis functions with 8 gaussian

primitives; carbons and oxygens have 18 basis functions with 31 gaussian primitives.

For the oligomer model, there are thus a total of 210 contracted basis functions with

a total of 343 primitive gaussians.

The D95+ basis set, developed by Dunning and coworkers [156], is a split-valence,

double-zeta basis set. Double zeta basis sets are the next level of sophistication above

minimal STO-3G type sets; the double-zeta nomenclature refers to the fact that two

functions are used for each function of the mininal basis. The orbital exponents

of the two functions are taken to be slightly above and below the optimal minimal

basis set exponent. This allows for expansion or contraction of the orbital spatial

extent by variation of the linear coefficients rather than non-linearly through the

exponents. The SCF algorithm will weight the contributions of the two functions

so as to effect a contraction of expansion of the molecular orbital depending on the

molecular environment. For the present oligomer model, the D95+ basis set entails

220 basis functions with 362 primitive gaussians. For further detailed discussion of
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basis functions and ab initio theory, the reader is referred to Appendix A and the

references therein.

Computationally, each of the constrained minimizations cost roughly 14 hours of

CPU time on a DEC Alpha 600 at the 6-311G** SCF level. Each MP2 calculation

using the same basis set cost approximately 7957.9 cpu seconds. Standard exponents

and contractions for each basis set were employed; these are given in Appendix C

[157, 158, 159].

6.2.3 Ab Initio Torsion Profile: Results

Figure 6-4 shows the o-c-c*-o torsion profile computed at the HF-SCF level using the

6-31G** and 6-311G** basis functions along with the electron correlation calculations

on the 6-311G** data. The MP2 results are for 6-311G** and D95+* basis functions.

Table 6.2 shows results of total geometry optimizations at the HF-SCF 6-31G**, 6-

311G**, 6-31G+**, and 6-311G+** levels. This table shows that for the present

system, addition of the diffuse functions (signified by (+) ) does not give rise to

as significant a change in the electronic energy as does the inclusion of polarization

functions (signified by (*) ). This is reassuring since diffuse functions are generally

important in cases where electronic charge is significant far away from the atomic

center, as in the case of anions. Based on calculations at the 3-21G, 3-21+G, 6-31G*,

and 6-31+G* levels of one-heavy-atom hydrides, Hehre et al show that the energy-

lowering effect is dramatically more significant for the negatively charged species

(deprotonated) of the associated neutral parent hydride. Thus, based on this result,

further consideration was given to the 6-311G** profile.

Figure 6-5 shows the conformations of the model compound at various values of

the torsion for illustrative purposes. In each configuration shown, the carbonyl carbon

to backbone aliphatic carbon bond is projecting out at an angle from the plane of

the figure. The four atoms comprising the dihedral are labelled respectively. The

conformations at -180 and +40 degrees correspond to the two minimum energy regions

on the ensuing torsion energy profiles, and the conformations at -60 and +120 degrees

represent the structures at the barrier heights. From this data it is evident that the
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Table 6.2: Effect of Polarization and Diffuse Functions

Ester Oligomer: Phi Torsion Profiles

100 -50 0 50
Phi Torsion Angle (Degrees)

Figure 6-4: AbInitio Torsion Profiles at Varying Levels of Theory
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minimum energy conformer corresponds to the ether oxygens almost trans to each

other. There is not much difference between the 6-311G** and 6-31G** profiles, but

the addition of the electron correlation energy for the 6-311G** geometry significantly

reduces the barrier heights while leaving the relative minimum energy difference less

perturbed. The D95+* MP2 correlation correction dramatically reduces the barrier

heights to about half of the HF-SCF values, and gives virtually two equally stable

conformers, the gauche form at 50 degrees becoming equivalent to the trans form at

-175 degrees. This reduction in the energy difference is documented in the literature

for this basis set. There is a slight difference of roughly 5 degrees in the location

of the higher energy minimum computed for the RHF/6-311G** and MP2 levels.

However, the difference in the energies of the two conformers is a small fraction of a

kJ/mole, and a difference of such small magnitude is not overly debilitating for the

purposes of the current work. More importantly, both levels of theory agree very well

on the energy difference between the minima. Based on the current calculations, the

MP2/6-311G**//HF/6-311G** profile is used for the torsion development.

6.3 Treatment of Electron Correlation in Molec-

ular Conformation Studies

As there has arisen some controversy in the literature as to the correct approach

to inclusion of electron correlation in optimization calculations, some thoughts are

presented here. The paradigm at the time of this work involved the methodology

employed; full optimizations are performed at a lower level of theory followed by the

calculation of an estimate of the correlation effects using configuration interaction or

perturbation theoretical methods. Some researchers suggest that this approach leads

to inconsistencies and inaccuracies since the geometric and energetic properties eval-

uated using full MP2 optimization are different than those computed by performing

electron correlation calculations after Hartree-Fock computations [160]. However, full

MP2 optimizations are practical only for small systems, on the order of 10 or fewer
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heavy atoms [161]. Thus, one is forced to weigh computational resources against

desired level of theory. Although it has been suggested in the literature that non-

bond dispersion interactions giving rise to correlation effects are important in the

study of conformational energetics of large molecules [161], thus implying that full

optimizations are more rigorous, the current work has accepted this drawback in the

methodology in order to perform the necessary computations in a reasonable amount

of time. We note that it has also been cited in the literature that the effects of electron

correlation on rotation barriers is small (on the order of 0.1 kcal/mole); we however,

do not see this to be true from the data presented earlier, and thus have opted to

account for correlation at some level. It would be interesting to perform the torsion

profile calculations again using density functional methods which have in the last five

years come to be a powerful tool in studying electronic and structural properties of

metals and polymeric materials, chemical reactions and related processes, molecular

geometries, and relative conformational energies [162]. These methods are faster rela-

tive to ab initio methods, even in the case where full optimizations including electron

correlation are performed. Furthermore, in the case of n-alkanes, DFT conformational

energies and internal rotation barrier heights agreed better with experimental data

than did ab initio calculations [163]. Another study suggested that gradient-corrected

density functional methods led to more accurate conformational energetics (with re-

spect to experimental data) than corresponding ab initio-based methods [162, 164]; it

is held that the non-local correction is required to accurately account for dispersion

interactions.

6.4 Fitting of Torsion Potential to ab initio Calcu-

lations

In this section, the fitting of a functional form to the inherent torsion profile is dis-

cussed. Having computed a quantum mechanical torsion profile as outlined in the

previous section, the same model compound was simulated using the DISCOVER
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Figure 6-5: Ab initio Model Compound Shown with Varying Values of the O-C-C*-O
Torsion Angle
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Ester Oligomer: Phi Torsion Profiles
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Figure 6-6: A b Initio Residual Torsion Profile for All-Atom Dihedral Model

software package [48] to arrive at a profile based on the incomplete empirical force-

field. For the forcefield calculations, energy minimizations using conjugate gradients

were performed in one-degree intervals over the range of -180 to 180 degrees. The

empirical profile of the torsional energy was subtracted from the abinitio profile to

yield a residual profile which is taken to be the inherent profile for the o-c-c*-o torsion.

Figure 6-6 shows the abinitio , empirical, and residual profiles.

The functional form of the torsion potential is chosen to be:

U (#) = A (I + cos (0 +01,)) + B (I + cos (20 +02o)) + C(1 + cos(30+03o)) (6.16)

The functional form of the CFF91 forcefield is retained. The fitting of the param-

eters A , B , C , #1o , 02o , and0#3owas performed via weighted linear least-squares

using a singular value decomposition algorithm [165]. The approach involved system-

atically varying the angle variables for which the X 2 error was computed. That is,
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Table 6.3: All-Atom Torsion Parameters

Parameter Value
A -0.3092 kJ/mole -

B 14.187 kJ/mole -

C 5.586 kJ/mole -
010 0.6807 rad 39.35
02o 2.862 rad 164.0
030 3.14159 rad 180.0

each of the phase angles was varied in the range of -r to +7r in increments of one

degree. At each set of phase angle values, the linear least squares fit for the linear

parameters A, B, and C was performed; this calculation resulted in a value for X2

as a function of the parameters. The weighting scheme involved using a Boltzmann

weight for each torsion angle; the energy used in the exponential factor was actually

relative to the mininum (in the global sense over the domain of the torsion profile) ,

WO = exp ( k -Umin) (6.17)

The set of values of the three phase angles and three linear parameters giving

the lowest x 2 error was accepted as the best fit in the chi-squared sense. One may

question the choice of interval in the angle search, in this case one degree. We feel

that this is not too coarse a value since the error of a fraction of a degree incurred

with this selection is negligible relative to the magnitude of the cumulative errors in

the preceding calculations-the ab initio and MP2 correction calculations. For the

MP2 corrected profile, the fitting gives the parameters shown in Table 6.3 .

Figure 6-7 shows a plot of the MP2 residual profile and the fitted function,

U(#) = A(1 + cos(q$+0 1,)) + B(1 + cos(2q$+0 20 )) + C(1 + cos(3$+03o)) (6.18)

The fit to the residual profile is quite good, particularly in the region of the barrier

heights. This is a significant outcome in light of the fact that an exponential (Boltz-
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mann) weight was assigned to each computed energy point; this scheme is necessary

in order to ensure that the regions in the vicinity of the local minima are well-fit since

the molecule will for the most part reside in these low-lying conformational states at

the conditions we are considering. Note though, how well the singular value decom-

position algorithm has allowed fitting of the curve over the energy barriers. We note

here that the barrier heights are overestimated and this may be cause for concern

with respect to reaching conformational equilibrium. However, we feel that this does

not pose a terrible problem based on the following reasoning. Since two barriers are

present, with one being lower than the other, equilibration will not suffer. There

is a pathway between the two local minima. Furthermore, very few molecules will

reside in conformational states along the barriers, and practically none at the barrier

heights. Thus, the current fit is accepted.

Thus, at this point, a complete all-atom CFF91 parameter set for the ester

oligomer is available and the next step is to perform a single molecule Hybrid Monte

Carlo simulation to generate distributions of the internals to which united-atom dis-

tributions will be fit.

6.5 Single Molecule Hybrid Monte Carlo: All-

Atom Internal Coordinate Distributions

To generate the distributions of bond angles, out-of-plane angles, and torsion an-

gles, a single molecule hybrid Monte Carlo calculation of the sort described in Chapter

3 was performed. A slight addition to the algorithm included a crankshaft move to

allow the various torsions to jump barriers to other minima along the respective en-

ergy surfaces. The crankshaft follows the standard move found in the literature; the

current implementation utilizes a local Flory coordinate system [166] to perform a

random move of the relevant site along the circumference of a cone. A brief discussion

of the torsion angle selection algorithm is given here. Figure 6-8 shows the schematic

of the Flory local coordinate system used as reference for the following discussion.
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Ester Oligomer: Phi Torsion Profiles
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Figure 6-7: MP2 Residual Profile (points) and Fitted Function (solid lineO

To perform a random change in a particular torsion, the algorithm first selects at

random one of the torsions defined in the molecular topology of the molecule. This

definition consists of the four atoms which make up the four-body interaction; for the

present case, we are dealing with sites h, i, j, k. Next, the Flory local coordinate system

for the bond vector directed from site i to site k is established, and the coordinates

of site j are determined within this system. We are interested in moving the selected

site j along the circumference of a cone whose axis is the vector connecting sites i and

k; this is the k-i bond vector and contains the x-coordinate in the local coordinate

system of site i.

Once the coordinates of the j particle are determined in the reference frame of the

k-i bond vector, a matrix operation is used to transform from the local coordinates

to those in the laboratory, fixed-frame coordinate system. The matrix which allows

this transformation is [167],
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Tla = (xik, i zi ) (6.19)

where the column matrices Xik, Yik, Zik are defined as,

Xik -- Uk =rk - rhi (6.20)
IrikI

Yik = Zik XXik (6.21)

UikZ XUhi
Zik sin(Ohi) (6.22)

The vectors subscripted with ik pertain to the bond vector i-k. The Yik and Zik

vectors represent the local coordinate axes; the x-axis is directed along the i k bond

vector. The supplement of the bond angle at skeletal element h is given by 0 hi; it

derives from the relation,

COSOhi - Uhi - Uik (6.23)

The coordinates of the j site after the move are given simply by,

rlaboratory frame -_ Tlabrlocal (6.24)r - ik

Before moving on, we offer some words on the recipe by which a random position

of the fth particle is obtained.

From simple geometric relations, the projection of the k-i bond on the local y-

and z-axes are determined. The projections allow the calculation of the angle between

the y-z plane projection of the bond and the local y-axis ( see Figure 6-9). This angle

is then changed by a random amount (the value of the change ranges from +7r to

-r). The new local projections of the bond are now known, and the transformation

matrix is applied to obtain the final fixed, laboratory frame coordinates.

The fitting procedure for bond angles, out-of-plane angles, and torsion angles is
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Figure 6-8: Local coordinate system for performing crankshaft move
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Figure 6-9: Y- and Z-axis projections of j'th particle. The locus of valid points resides

on the circular edge of the cone
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briefly described here, as much of it follows the algorithm prescribed in Chapter 3

(for the bond angles and out-of-plane angles).

The functional form for the angle bending is:

1
UO = -- KO ( - 00)2

2
(6.25)

and that for the Wilson out-of-plane motion:

Ux = K x2 (6.26)

The potentials were parameterized in the variables KO and K. by performing a

least-squares fit of the Boltzmann distribution of angles:

P(O) = e[(--iKe(-60)2)/RT]
No

P(x) 1 e[(-Kx(x2)/RT]
Nx

(6.27)

(6.28)

where the No and Nx are normalizing factors:

NO =O E ~{-~ (0 -0)2)/RT]No=

= (e[(-Kx(x 2 )/RT])
i=1

(6.29)

(6.30)

The fitting involved:

1. Picking a value of K

2. Calculating P(O)

3. Calculating sum of squares (of deviations)

4. Minimizing sum of squares with respect to K

Initial values of K were selected based on typical values of similar bond angles

found in the literature.
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The functional form for the torsions was taken as a Fourier cosine series:

3

U(#) = Ancos(n + 6,) (6.31)
n=1

Again, for values of the Aj, the sum of squares of the error between the all-atom

distribution and the fitted distribution were computed, and the set yielding the lowest

sum of squares is taken as the fit.

The distributions and normalization factors are computed straightforwardly as:

P = e[-(E3=1 Ancos(n*+62))/RT] (6.32)

M= eH(E =1 Ancos(n+J5))/RT] (6.33)

Figures 6-10 through 6-31 show the all-atom torsion, angle, and out-of-plane dis-

tributions along with the fitted distributions. Tables 7.3, 7.2, 7.4 give the parameters

for the functional forms of the various internals.

Figures 6-32 through 6-53 show comparisons of the distributions of internals de-

rived from single molecule hybrid monte carlo simulations using the CFF91 all-atom

forcefield and the united-atom parameter set obtained from fitting to the former dis-

tributions.

Finally, Table 7.1 shows the Lennard-Jones and charge parameters for the oligomer

model. Figure 6-1 shows the neutral repeat unit for the oligomer model. The ends

are capped with a united-atom methyl group on each end. The repeating chemistry is

neutral and allows a constant residual charge before end-capping (this is not depen-

dent on chain-length, thus allowing one to probe multiple molecular weights). Local

neutrality is robust and less vulnerable to erratic electrostatic effects during simula-

tion [168]. Hence, the electrostatic model is built up from a repeat unit perspective.

The bond lengths are constrained at the values taken for the OPLS methyl acetate

model from Chapters 3, 4, and 5. The Lennard-Jones parameters are taken from

OPLS parameters for alkanes and esters, and the charges are from the alkane, ether,

and methyl acetate parameter set [67, 80, 82].
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Table 6.4: United-Atom Non-Bond Parameters: Ester Oligomer Model

Table 6.5: United-Atom Bond Angle Parameters: Ester Oligomer Model

Bond Angle Ko 0
kJ degrees

rnni ad-

CH3 - C* - o' 801.1 123.9308
CH 3 - C* - 0 704.7 110.3288

O' - C* - 0 1079.2 124.1247
C* - 0 - CH 582.2 118.2380
0-CH-CH3  577.8 111.2130
O-CH-C* 770.9 108.8752

CH 3 - CH - C* 341.1 113.0788
CH - C* - o' 812.6 124.6914
CH-C*-O 687.0 111.2485
C* - O - CH 3  553.2 117.4483

Table 6.6: United-Atom Torsion Angle Parameters: Ester Oligomer Model

Torsion Angle A A2 A3 0. 62 63

;TT degrees degrees degrees
CH3 - C* - O - CH 25.0 -22.0 -5.0 0.0 0.0 0.0
C H3 - C H - C* - 0' 5.0 1.0 -2.0 -30.0 -30.0 -30.0
C H3- CH - C* - 0 -6.0 1.0 2.0 -25.0 -25.0 -25.0
CH-C*-O-CH 34.0 15.0 12.0 0.0 0.0 0.0
OH - C* - 0 - CH -46.0 25.0 -17.0 0.0 0.0 0.0

C* - O- CH - CH 3  6.0 10.0 3.0 0.0 0.0 0.0
C* - 0 -- CH - C* 11.0 -11.0 -10.0 0.0 0.0 0.0
0 - CH - C* - o' -3.0 -3.0 -1.0 -23.0 -23.0 -23.0
S- C H -C* - 4.0 -4.0 0.0 0.0 0.0 0.0

C H -C*-- O- CH 3 50.0 -50.0 -21.0 0.0 0.0 0.0
0' - C* - 0 - CH3 -49.0 23.0 -15.0 0.0 0.0 0.0

269

Group Type 6 o- charge mass

unm e (a.m.u.)
C* Carbonyl Carbon 0.375 0.55 12.01115
0', Carbonyl Oxygen 0.296 -0.45 15.9994

0, Ether 0.3 -0.4 15.9994
CH 0.38 0.30 13.01912

CH 3, pendant 0.391 0.0 15.03506
CH 3, carbonyl 0.391 0.05 15.03506

CH 3, ether 0.380 0.25 15.03506



Table 6.7: United-Atom Out-of-Plane Angle Parameters: Ester Oligomer Model

Out-of-Plane Angle Kx X0

ml degrees
CH-C* -0-O 444.6 0.0
CH3-C*-0-0' 444.6 0.0
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Ester Oligomer: CFF91 vs. Fitted Dihedral Angle Distributions
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Figure 6-14: CFF91 all-atom torsion angle distribution (points) and fitted function
(dashed line)

Ester Oligomer: CFF91 vs. Fitted Dihedral Angle Distributions

v,

4c

-150 -100

c C*-O-CH-CH3 (fit) --

0

<A

-50 0 50 100 150 200
Torsion Angle (Degrees)

Figure 6-15: CFF91 all-atom torsion angle distribution (points) and fitted function
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Ester Oligomer: CFF91 vs. Fitted Dihedral Angle Distributions
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Ester Oligomer: CFF91 vs. Fitted Dihedral Angle Distributions
0.025

0-CH-C*-0 (fit) -

0k

01i

OW0

-150 -100 -50 0 50

Torsion Angle (Degrees)
100 150 200

Figure 6-18: CFF91 all-atom torsion angle distribution (points) and fitted function
(dashed line)
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Ester Oligomer: CFF91 vs. Fitted Dihedral Angle Distributions
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Figure 6-20: CFF91 all-atom torsion angle distribution (points) and fitted function
(dashed line)

0.07 ,

0
0

V~

.0

'0
M

0.06

0.05

0.04

0.03

0.02

0.01

0

Ester Oligomer: CFF91 vs. Fitted Bond Angle Distributions

0 20 40 60 80 100
Bond Angle (Degrees)

120 140

Figure 6-21: CFF91 all-atom bond angle distribution (points) and fitted function

(dashed line)

276

0.08

0.07

0

0

0.04

0
0

-4
4-I

0

0

0

0

0

0'-C*-O-CH3 (fit) ---

<VA

03 -

02 -

01 -

0
-20 0

CH3-C'-O CCFF911 0
00 CH3-C*-O' (fit) - -

-:

-q

-

-I

160 180

06 -

05 -



0 20 40 60 80 100
Bond Angle (Degrees)

120 140 160 180

Figure 6-22: CFF91 all-atom bond angle distribution (points) and fitted function
(dashed line)
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Ester Oligomer: CFF91 vs. Fitted Bond Angle Distributions
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Ester Oligomer: CFF91 vs. Fitted Bond Angle Distributions
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Figure 6-26: CFF91 all-atom bond angle distribution (points) and fitted function
(dashed line)
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Figure 6-28: CFF91 all-atom bond angle distribution (points) and fitted function
(dashed line)
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Figure 6-29: CFF91 all-atom bond angle distribution (points) and fitted function
(dashed line)
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Ester Oligomer: All-Atom vs. United-Atom Dihedral Angle Distributions
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Figure 6-32: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-33: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-34: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-35: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Ester Oligomer: All-Atom vs. United-Atom Dihedral Angle Distributions
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Figure 6-36: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-37: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-38: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-39: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Ester Oligomer: All-Atom vs. United-Atom Dihedral Angle Distributions
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Figure 6-40: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-41: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-42: CFF91 all-atom versus fitted united-atom torsion angle distributions
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Figure 6-43: CFF91 all-atom versus fitted united-atom bond angle distributions
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Ester Oligomer: All-Atom vs. United-Atom Bond Angle Distributions
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Figure 6-46: CFF91 all-atom versus fitted united-atom bond angle distributions
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Chapter 7

Bulk and Interfacial Aspects of

PLA Oligomers via Molecular

Dynamics Simulation

7.1 Introduction and Objectives

Numerous oligomeric species have been studied via molecular dynamics simulations

with respect to their bulk and interfacial properties. These systems allow one to

probe certain phenomena within the time constraints imposed by the molecular dy-

namics method while still maintaining the essence of the polymeric species in terms

of important functional groups. Thus, one can investigate the effect of connectivity

and long-chain character on very local molecular properties such as structure, ori-

entation, dynamics, as well as intramolecular phenomena such as group relaxations.

Furthermore, in the particular case of interfacial properties, oligomeric models have

been shown to capture polymeric physics such as surface segregation of chain ends

from computational [60] and theoretical [149, 150, 60] approaches.

This chapter addresses the bulk and interfacial properties of a PLA ester oligomer

via molecular dynamics simulations using the forcefield model described in Chapter

6. The aims of the current study are as follows. First, having established a set
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of intermolecular and intramolecular potential parameters, we will determine the P-

V-T behavior of the model; in particular, we are concerned with the density of the

model at ambient conditions of 1 atmosphere pressure and temperature of 298K. This

will entail constant-pressure, constant-temperature molecular dynamics simulations

to determine the equilibrium density. From this data, further canonical ensemble

simulations for the bulk and interfacial properties will be performed.

Second, for the bulk PLA oligomer liquid, several properties will be determined.

Radial distribution functions will be computed to determine bulk liquid structure.

Further quantities of interest will be bulk radius of gyration and the mean end-to-

end distance of chains in the bulk. These can be compared to results of theory, and

thus offer insight into the chain configurations in the bulk. An important quantity

will be a collective order parameter describing the orientational distribution of the

collection of molecules; this will be used to assess the time requirement for the decay

of temporal orientational correlation. This will be a useful check for the equilibration

of the interfacial simulations.

Finally, the liquid-vapor interface of the PLA oligomer will be analyzed from MD

data. Again, as in previous studies of the liquid-vapor interface, we will be concerned

with density profiles (molecular, component, chain segment), orientational order pa-

rameter profiles (P1 and P2), overall molecular orientations at the bulk compared to

the interface, radial distributions in the bulk and interface, and in terms of a ther-

modynamic property, the surface tension of this model with no corrections will be

computed.

7.2 Model and Methods

7.2.1 Molecular Model

The PLA oligomer model is a five-mer of the repeating unit shown in Figure 6-1 with

the ends capped with methyl groups. The model is a united-atom ester oligomer

model with the CH3 and CH groups treated as single units (explicit hydrogens are
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excluded). With the united-atom approximation, the number of "atoms" per oligomer

molecule is drastically reduced from 47 to 25, almost a fifty percent reduction; this is

attractive from the force/energy computation aspect of the MD method.

Intermolecular atom pairs and intramolecular pairs beyond torsion quartets inter-

act via a Lennard-Jones potential:

[r) 12 -(r)-6](71

bjj(r) = 4E[(-) -((-~]7-1

where o- is the Lennard-Jones core diameter, E is the well depth, and r is the

interatomic distance. Interaction parameters for atoms of different types are gener-

ated from the homogeneous parameters via a geometric mean. For computational

efficiency, the interactions are truncated at a cutoff of R, = 1.2nm.

Electrostatic interactions are computed via a reaction field treatment with a spher-

ical cutoff of the same magnitude as that for the Lennard-Jones interactions; the

intramolecular treatment is handled analogously:

Uoulom""(rij) = - ri < R (7.2)
47rE, rij3  2R3 2R, R

Uf,"ulomb(ri) = 0, rij > Rc (7.3)

Bond lengths are constrained to the appropriate values. The intramolecular po-

tential, as described in Chapter 6, includes bond angle bending, out-of-plane bending,

and dihedral angle interactions. The bond angle potential is quadratic

1
O = -ko(6 - 00)2 (7.4)

2

where the parameters ko and 6 are those parameterized by fits to internals distri-

butions of an all-atom potential, namely the CFF91 potential (see Chapter 6). The

out-of-plane angle is defined in the Wilson sense (reference) and is also quadratic,

O = kxX2 (7.5)
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where the force constant kx is again derived from fits to an all-atom potential.

For the dihedral interactions, a Fourier series of the form

0 = kphi,[1+Cos(+#1,O] + kphi,2 [1+cos(2#+ 2,o]+ +kphi, 3 [1+cos(30+03,o] (7.6)

Note that with the current model, intramolecular interaction between the end sites

of a dihedral angle are implicitly included in the torsion description, thus untreated

with any Lennard-Jones type interaction.

Tables 7.1, 7.2, 7.3, 7.4 list the Lennard-Jones, charge, and intramolecular poten-

tial parameters.
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Table 7.1: United-Atom Non-Bond Parameters: Ester Oligomer Model

Table 7.2: United-Atom Bond Angle Parameters: Ester Oligomer Model

Bond Angle Ko 00
kr degrees

mol md.2

CH 3 - C* - 0' 801.1 123.9308
CH 3 - * -- 0 704.7 110.3288
O - C* -0 1079.2 124.1247

C* - O - CH 582.2 118.2380
0 - CH - CH 3  577.8 111.2130
O-CH-C* 770.9 108.8752

CH 3  CH - C* 341.1 113.0788
CH - C* - o' 812.6 124.6914
CH-C*-0 687.0 111.2485
C* - 0 - CH3  553.2 117.4483

Table 7.3: United-Atom Torsion Angle Parameters: Ester Oligomer Model

Torsion Angle A1  A 2  A3  61 62 63
kJ k k degrees degrees degrees

CH 3 - C* - 0 - CH 25.0 -22.0 -5.0 0.0 0.0 0.0
CH 3 - CH - C* - 0' 5.0 1.0 -2.0 -30.0 -30.0 -30.0
CH 3 - CH - C* - 0 -6.0 1.0 2.0 -25.0 -25.0 -25.0
CH - C* - O - CH 34.0 15.0 12.0 0.0 0.0 0.0
0' - C* - 0 - CH -46.0 25.0 -17.0 0.0 0.0 0.0

C* - 0 - CH - CH 3  6.0 10.0 3.0 0.0 0.0 0.0
C* - 0 - CH - C* 11.0 -11.0 -10.0 0.0 0.0 0.0
0 - CH - C* - 0' -3.0 -3.0 -1.0 -23.0 -23.0 -23.0
0 CH-C*-0 4.0 -4.0 0.0 0.0 0.0 0.0

CH - C* - 0 - CH 3  50.0 -50.0 -21.0 0.0 0.0 0.0
0' - C* - 0 - CH3 -49.0 23.0 -15.0 0.0 0.0 0.0
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Group Type E o- charge mass
kJ n

mole n e (a.m.u.)
C* , Carbonyl Carbon 0.375 0.55 12.01115
0', Carbonyl Oxygen 0.296 -0.45 15.9994

0, Ether 0.3 -0.4 15.9994
CH 0.38 0.30 13.01912

CH 3 , pendant 0.391 0.0 15.03506
CH 3, carbonyl 0.391 0.05 15.03506

CH 3, ether 0.380 0.25 15.03506



Table 7.4: United-Atom Out-of-Plane Angle Parameters: Ester Oligomer Model

Out-of-Plane Angle Kx Xo

k 2rad degrees
CH -C*-O-O' 444.6 0.0
CH 3 - C* - O - O' 444.6 0.0
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7.2.2 Simulation Technique

Bulk Simulations: Constant Pressure and Temperature

In order to determine the density of the model at a temperature of 298 K and at-

mospheric pressure, constant-pressure, constant-temperature MD simulations were

performed on a system of 64 oligomer molecules.

For the bulk PLA oligomer simulations, a system of 64 molecules (1600 "atoms")

enclosed in a cubic box with periodic boundary conditions is used. A Nose-Andersen

thermostat [44] with thermal inertia parameter, W, of 1 0 0 .0 kJpS2 and pressure inertia

parameter, Q, of 10.0 kJps2 for temperature. The choice of the inertia parameters is

made more-or-less by trial and error. One must make sure that the selected parameter

set allows proper damping of the fluctuations in the pressure and temperature over a

relevant time scale. Furthermore, in the case of NPT simulations, care must be taken

to select parameters such that the time-scale for the system temperature to equilibrate

following each volume change(as per the constant-pressure algorithm) is sufficient

to attain overall system temperature equilibrium. There is offered a rationale for

selecting these parameters based on the speed of sound in the fluid. It is suggested

that in order to approximate a small volume element of a fluid, the time scale for

box size fluctuations should be on the order of the speed of sound in the fluid [38].

This criterion, of course, requires a priori knowledge of fluid properties. In the final

analysis, one often turns to a trial and error approach or selects parameters based on

experience with similar systems. RATTLE, the velocity Verlet method for systems

with bond constraints is used to integrate the equations of motion; a timestep of

0.003 ps is used. A spherical cutoff of 1.2 nanometers is applied for both the non-

bond Lennard-Jones and reaction field electrostatic interactions. A Verlet neighbor

list is used to track 0 within a spherical volume of 1.4 nanometers around each particle.

The initial configuration was a cubic lattice with individual molecules located at

evenly-spaced separations in a cube of dimensions of L =L = L = 5.Onm.

All the chains are started from the same conformational geometry, which is itself a

random distribution of torsion and bond angles; there was no effort made to start all
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chains from an all-trans or all-gauche type conformation as is often done. This will not

affect the final outcome of the distribution of internal coordinates in the equilibrium

bulk; this can be verified by computing the internals distributions in the equilibrium

bulk generated from different starting configurations. The initial system is much

larger than the equilibrium volume attained; this was done so as not to collapse the

system initially via interparticle overlaps, as well as to allow the molecules to explore

conformational states (essentially traversing a gas-phase trajectory) before settling

into an average liquid-state conformation.

Results of Constant-Pressure, Constant-Temperature Bulk Simulations

This section gives the results of the bulk MD simulations of the 64-molecule oligomer

system described in the previous section. The results of average pressure, average

temperature, and average system volume are given in Table 7.6 along with the asso-

ciated errors. The averages are computed by blocking the time data into segments of

100 data points, with every two data point being 0.03 picoseconds in separation. Each

block thus represents 0.3 picoseconds of simulation time. The total simulation time

over which the average is computed is roughly 200 picoseconds. The time-average

system volume is 31.859 cubic nanometers which corresponds to a density of 1.209

gr cm-3 . For the purposes of applying the oligomer system as a model for the PLA

polymer, this value of the density is in excellent agreement with the experimental

range of densities, 1.1 to 1.3 grcm-3, reported for PLA (Table 7.5 shows a range

of the values determined by some groups using methods such as air-comparison pyc-

nometer).

One anticipates some fluctuation of this value upon using a different ensemble

method for MD simulations of the model, but the value thus obtained is well within an

acceptable range of values and we are hopeful that upon going to a canonical ensemble

will not introduce much change in the density. Note that the canonical ensemble is

chosen since the preferred geometry for performing the interface simulations (oligomer

liquid-vapor) will be a constant volume, rectangular simulation box. This will be

further described below within the appropriate section.
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Table 7.5: Experimental Values of Bulk PLA, PGA, and PLGA Densities

The computed pressure, which averages to somewhat higher than the desired 1

bar value, is well within the error bounds associated with NPT molecular dynamics.

The pressure is notoriously vulnerable to large fluctuations (since the quantities from

which it derives fluctuate significantly and are quite sensitive to timestep-this last

ultimately is an unavoidable consequence of the numerical integration) and is often

very difficult to control within the extended Hamiltonian formulation of system dy-

namics. The system dynamics are sensitive to the choice of inertia parameters used

(more so to the pressure parameter for constant pressure dynamics) and this often

requires accepting a certain level of fluctuation in the pressure rather than performing

a rather tedious, and invariably time-consuming optimization of the inertia parame-

ter. Furthermore, the nature of the origin of the computed pressure-the sum of the

forces between interacting particles-is itself inherently extremely sensitive to quite

small fluctuations in density. Overwhelmingly large pressure fluctuations are a well-

documented phenomenon associated with molecular dynamics [61, 60, 126]. Thus, in

the final analysis, the results of the present simulations are quite acceptable.

Table 7.6: Temperature, Pressure, Volume for 64-Oligomer Bulk System: NPT MD

Temperature (K) Pressure (bar) Volume (nm )
Average 298.03 1.65 31.859

Standard Deviation 0.374 39.9 0.074
Standard Deviation (Mean) 0.040 3.72 0.0079
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Material Density (gr/cm3 )
PLA (amorphous)a 1.25
PLA (crystalline)a 1.36

PLGA 50:50, PLGA 75 :25b 1.29
PLAb 1.26

L-PLAC 1.24
DL-PLAC 1.25

PGAC 1.53
PLAd 1.05-1.1



Bulk Simulations: Constant Volume and Temperature

Having determined a system density based on NPT molecular dynamics, canonical

ensemble (NVT) molecular dynamics was performed for a system of 64 oligomer

molecules at the average density of 1.2091217 gr cm-3 . A cubic simulation cell of

edge lengths of 3.17 nm was used to contain the molecules. The initial configuration

was taken to be the final configuration from the NPT simulation described in the last

section. A Nose-Andersen thermostat with thermal inertia parameter of 1 0 0 .0ljps2

mol

was used to maintain the temperature at 298 K. The dynamics trajectory was gen-

erated using RATTLE with a timestep of 0.003 picoseconds. A production run of

96 picoseconds resulted in the average values for pressure and temperature listed in

Table 7.7. The pressure obtained at this value of the bulk density averages to -37.93

bar, well out of the physical bounds of this thermodynamic variable. One could in

theory accept this value if it were within the statistical error of the NPT simulations;

however, the lower statistical bound for the NPT pressure is around -2.0 bar, while

the upper statistical limit for the NVT simulations at a density of 1.209 gr cm- 3 is

-22.6 bar. Clearly, even the large pressure fluctuations do not allow the two results to

remain statistically equivalent for the purposes of determining a self-consistent set of

thermodynamic variables defining the state point of interest, namely, standard condi-

tions of temperature and pressure (T = 298K, and P = 1 bar) and the corresponding

bulk density.

From a theoretical viewpoint, the ensemble averages of properties should be in-

dependent of the ensembles which are used to calculate them; this is rigorous in the

thermodynamic limit. An equivalent statement is that the thermodynamic potentials

used to represent an equilibrium system all contain the same information. Trans-

forming between the different ensembles simply represents alternate (but equivalent)

ways of describing a system in terms of conjugate extensive and intensive variables.

In classical thermodynamics, the Legendre transformation presents the mathematical

framework within which one transforms between the various ensembles. We note here

that for a finite system, the equivalence is not obvious unless one considers the formal
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statistical thermodynamic formalism to transformations between ensembles. Without

delving into the details of the derivation [13], the error incurred for finite systems is

evident by comparing the average values of a property computed in constant-F and

constant-f ensembles [13],

(A)F =(A)1 ±1 ( ff (A) (7.7)A)F2 O 2f OF Of

With the stipulation that F is an extensive quantity and f intensive (the two being

a conjugate pair), the magnitude of the correction term (second term) in Equation 7.7

amounts to O(N- 1 ), where N is the system size. Thus, for a small, finite system,

one should not be surprised to observe inconsistencies in average properties computed

in various ensembles. Certainly, in the present case, one can argue that the system

size of 64 molecules may not be sufficient to mitigate finite-size effects on averages

between ensembles. However, as mentioned above, the average value of a property

is computed within the fluctuation bounds of other variables; in this case, the bulk

system pressure is computed within the bounds of the fluctuations in the system

volume. Thus, before trying to determine in detail the contribution to the error

in Equation 7.7, the current approach will be to evaluate the effect of the volume

fluctuation on the system pressure.

Table 7.7: Temperature, Pressure Results for 64-Oligomer Bulk System: NVT MD
p = 1.2091217 9

Temperature (K) Pressure (bar)

Average 298.05 -37.9
Standard Deviation 0.285 87.2

Standard Deviation (Mean) 0.050 15.4

Based on the fact that the pressure at the specified density was too low (and

in fact, negative), a second simulation was performed at the lower bound of the

system volume (or equivalently, a higher bulk system density) computed from the

NPT simulations. Although negative pressures are physically feasible, for a bulk

liquid system one must obtain a positive pressure under the conditions considered in
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this work. As a first guess (and for lack of a better approach to estimate what would

be an acceptable density), the value for the system volume was chosen to be 31.85077

gr cm~3, which corresponds to the block average volume of the NPT simulation less

the standard deviation of the mean (for exact values, refer to Table 7.6 ). Thus,

once again, a cubic simulation cell was used to simulate 64 oligomer molecules. The

initial configuration for the simulations was taken to be the last configuration from

the NPT calculations. Since the volume had to be reduced, an isotropic scaling of

the box dimensions was performed to obtain a cubic cell of length 3.1699 nm. A

Nose-Andersen thermostat with thermal inertia parameter of 100. 0 kJp, 2 was used tomot

maintain a temperature of 298 K. The equations of motion were integrated using

the RATTLE algorithm with a timestep of 0.003 picoseconds; the calculations were

performed for 150 picoseconds of simulation time.

The simulation results for temperature and pressure are shown in Table 7.8. With

the slightly higher density representing the upper statistical bound of the NPT den-

sity, we approach a pressure close to the desired 1 bar; at this point, we feel that this

is sufficiently representative of the desired state point. Again, the absolute average

pressure obtained is slightly lower than 1 bar, but desired value is well within the

statistical limits shown in Table 7.8. Thus, for further work with the oligomer sys-

tem, we shall use the results of this simulation. It is worth noting that the effected

order of magnitude increase in the system pressure was the result of a change in total

system volume of less than 0.05 percent. This quite nicely shows the sensitivity of

the pressure, as calculated from MD methods, to volume (density); this has critical

implications in controlling system pressure as is well known.

Table 7.8: Temperature, Pressure Results for 64-Oligomer Bulk System: NVT MD,
p = 1.209434

Temperature (K) Pressure (bar)
Average 297.99 0.979

Standard Deviation 0.307 81.8
Standard Deviation (Mean) 0.042 11.3
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7.3 PLA Oligomer Liquid-Vapor Interface: Con-

stant Volume and Temperature I.

Canonical ensemble (NVT) simulations of the PLA Oligomer model were performed

using a rectangular simulation cell of dimensions L,,= Lu = 4.5nm and L, = 20.0nm,

the longitudinal (z-coordinate) dimension being roughly 4-5 times the size of the tan-

gential dimensions; L, is selected to be large enough so as to prevent interactions

between molecules at opposite surfaces across the vapor phase. Figure 7-1 shows the

cell geometry used for the current simulations. The equations of motion are inte-

grated using RATTLE, the velocity Verlet algorithm adapted to systems with bond

constraints; a timestep of 0.003 picoseconds is used. A Verlet neighbor list is used

to monitor neighbors of each particle; an outer skin thickness of 0.2 nm is used to

generate the list of neighbors. A Nose-Andersen thermostat with thermal inertia pa-

rameter of 100. 0 kJps2 is used to maintain the temperature about a mean of 298.0

Kelvin. The geometry of the liquid-vapor interface simulation is generated by situ-

ating two equilibrated bulk slabs of the oligomer liquid (both slabs of dimensions 4.5

by 4.5 by 4.718 nanometers) adjacent to each other to generate a system from which

will evolve two liquid-vapor interfaces and a definitive bulk region. The interfaces are

established once again by imposing an asymmetry in the box dimension along the

longitudinal axis (perpendicular to the interface).

7.3.1 PLA Oligomer Liquid-Vapor Interface Results I.

This section will give some results of the MD simulation of the liquid-vapor interface,

and the discussion is prefaced by several comments. The ensuing results indicated

that the system size was rather too large; that is, a smaller system size would have

sufficed in the analysis of the oligomer interface. Also, the diffusion of the molecules

was observed to be quite slow. In the time available, the combination of large system

size and slow molecular diffusion would have been unfeasible. In the next sections,

we briefly discuss these results, and then move on to describing a modified system
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PLA Oligomer Liquid-Vapor Interface: Simulation Cell

Figure 7-1: PLA Oligomer Liquid-Vapor Interface: Simulation Cell Geometry

and the MD results for that system.

Figure 7-2 shows total molecular number density profiles averaged over several

distinct time intervals. Each profile is an average over 200 configurations (representing

60 picoseconds of simulation time). It is apparent that the profiles do not change

significantly over the span of the simulation. Also, the bulk density is consistently

lower than the required density of 1.209434 gr cm-3. The average of the bulk density

over the last 150 picoseconds is 1.188 gr cm- 3 ; the bulk region is taken to be the

within 1.5 nanometers from the center of mass. Furthermore, Figure 7-3 shows the

root mean squared center-of-mass displacement profile averaged over all molecules.

This curve indicates an extremely small self-diffusion coefficient. Consequently, at this
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Figure 7-2: Molecular density profiles averaged over the time intervals indicated. The
longitudinal position is relative to the system center of mass.

point, we felt that the best route forward was to select a smaller system size. This is

reasonable since the density profiles show that the current size is more than enough to

allow a bulk and interfacial region to evolve. Furthermore, to simulate 6 picoseconds

requires 6.8 hours of real time. This translates to about 47 days (barring any system

failures and assuming constant operation) to simulate one nanosecond of simulation

time. This may not seem too extravagant, but considering the time scales associated

with the diffusion of molecules, it seems that one would not see much motion from

the initial state after such a long run time. This is an exorbitant computational

expense for very little gains in information by using such a large system. Thus, the

next section describes a smaller system selected for study and the preliminary results

obtained from the simulations of that system.
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Figure 7-3: Center-of-Mass root-mean-squared displacement profile for oligomer.

7.4 PLA Oligomer Liquid-Vapor Interface: Con-

stant Volume and Temperature II.

A smaller system consisting of 231 oligomer molecules was generated by randomly

placing molecules in a total volume so as to give a density slightly smaller than that

determined earlier for 298K and 1 bar pressure. The density chosen was 1.144 gr cm3;

this presented no problems in terms of the final density as the system was equilibrat-

ing towards a higher density as expected (this will be shown below). Furthermore,

with a lower initial density, it was felt that the system would be able to equilibrate

more rapidly in terms of orientational and translational order with a higher degree of

individual molecule motion possible due to the reduction in density.

As for the simulation cell, all was kept exactly as before except that the longi-

tudinal dimension was reduced to 12 nanometers from the original 20. This again

presented no inconsistencies in the approach. Thus, this modified system contains
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5775 particles instead of the original 9600, and in the longitudinal dimension spans 6

nanometers as compared to the original 10. The simulation methodology is retained

from the first simulation (larger system). The reader is referred to that section for

details.

7.4.1 PLA Oligomer Liquid-Vapor Interface: Results II.

This section describes preliminary results of simulations of the liquid-vapor interface

of PLA oligomers. Profiles of the total molecular center of mass, total site, and

individual group number densities are presented. Profiles of the components of the

radius of gyration are reported. Bulk density time profiles are shown to indicate the

equilibration of the system; furthermore, we show the translational order parameter

as a further check on whether a liquid state is achieved. We note here that these are

preliminary results since they are based on short simulation times. Due to constraints

in real time, this study is restricted to roughly 1000 picoseconds. To be rigorous,

one must actually sample such a system for at least a nanosecond to obtain sound

statistics. In the present case, however, some interesting behavior and trends can be

discussed, noting the context within which they emerge.

Density Profiles and Bulk Density

Number density profiles for molecular center of mass and atom number density (all

relative to the simulation cell center of mass) are computed as averages over 500

configurations (representing 30 picoseconds of simulation time) which are then block

averaged; that is, profiles computed as averages over 500 configurations are averaged

to obtain the final block-averaged profile. Furthermore, exploiting the system sym-

metry, the profiles are symmetrized; only the symmetrized profiles are shown for the

density profile discussion.

Figure 7-4 shows the symmetrized molecular center of mass number density profile.

The bulk center of mass density averages to 1.980nm--3(0.011); this is 1.5 percent less

than the molecular density determined from the upper statistical limit of the density
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from NPT simulations at a temperature of 298 Kelvin and 1 bar pressure. However,

again, this decrease in density is typical and expected due in part to the relaxation

allowed by extending the longitudinal system dimension and because of the spherical

truncation applied in the calculation of the non-bond interactions; in fact, this result

is quite acceptable in terms of reproducibility of the density. Although there appears

a very slight shoulder within the interfacial region, this is most probably due to

insufficient statistics to smooth out the profile; one observes a great deal of fluctuation

in the profile throughout the whole range. Overall, the profile is monotonic over the

region. Figure 7-5 shows the symmetrized total site and center of mass number

density profiles; the center of mass profile is scaled to fit on the same axis as the

site density profile. This figure serves to show the inherent noise in the two data

sets; this is a result of the fact that for each center of mass, there are 25 individual

sites, thus leading to better statistical averaging for the site density profile. Note in

this figure how the center of mass density is more compact relative to the total site

density. This, of course, is to be expected since the center of mass cannot be farther

out than any individual component of the molecule. Finally, we note that the 10-90

width of the total density profile is 0.45 nanometers. This is a very compact region,

particularly compared to the methyl acetate liquid-vapor interface (10-90 thickness of

0.6 nm). The width is computed as the longitudinal distance over which the total site

density falls from 90 percent of its average bulk value to 10 percent of the same. The

bulk average is computed, once again, as a block average over 18,000 configurations

spanning roughly the last 1.0 nanosecond of the simulation. Figure 7-9 shows the time

profile of the total site number density in the central 3.0 nanometers of the simulation

cell (bulk). The average over the last nanosecond is 49.38 (0.073) nm 3 , an error of

1.7 percent relative to the NPT value of 50.23.

Figure 7-6 shows the symmetrized density profiles of the individual atoms of the

oligomer. The definition of the atoms considered is derived from Figure 6-1 showing

the PLA oligomer model. The carbonyl methyl group is that terminating the 'left'

side of the chain represented in the Figure; it corresponds to the 'X' group. The

end carbonyl oxygen atoms refer to the first and last carbonyl oxygens of the chain
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(I being the first and II the last). The ether oxygen and -CH groups represent the

middle of the chain. Finally, the end methoxy methyl group refers to the methyl

group terminating the 'right' end of the chain in Figure 6-1. The ordering of the

profiles in the interfacial region shows a marked spatial distribution of the various

atoms (in an average sense) which is also distinct from the random nature of the

bulk. Based on earlier MD simulations of alkane oligomers [60], one would interpret

this ordering as indicating that the ends of the chain (in this case, the carbonyl oxygen

atoms and the methyl groups) are enriched in the outer region of the interface, while

the middle segments (in this case the -CH and ether oxygen atom) reside in the

layer just beneath (note also that the carbonyl oxygen atoms are counter-intuitively

'segregated' in the outer region of the interface). For normal alkanes, structure is

held to be more energetically favorable (both based on simulation and theoretical

arguments). In the present case, we do observe that the middle segments, represented

by atoms located in the more central regions of the chain, are enriched in the region

between 2.5 and 3.0 nanometers from the center of mass (immediately underneath the

outer interfacial region). In the outer interface, the end segments seem to be more

concentrated. This spatial distribution is also predicted by mean-field approaches

[169]. Figure 7-7 shows the number density profiles of the middle groups along with

the total site density; Figure 7-8 shows the analogous for the end groups. These

two figures further show that up to 3 nanometers from the cell center of mass, the

total site density is dominated by the middle groups, Figure 7-7 (which interestingly

follow rather close to the molecular center of mass profile), beyond which the total

density is weighted towards the end groups,Figure 7-8. The overall conformation of

the chain is apparently of a horseshoe nature, with the middle of the chain more-or-

less parallel to the interfacial plane and the ends oriented normal to it. In order to

investigate the validity of this interpretation, one can look at quantitative measures

of the orientation of sections of the chain as well as that of the entire chain. For

this purpose, we consider in the next section the orientational order parameter P2 (z)

which describes the effect of the interface on the chain orientation.

Finally, we show a profile of the translational order parameter profile which is
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Figure 7-5: Total site and molecular center of mass number density profile. The
longitudinal position is relative to the system center of mass.

useful in interpreting the nature of the fluid studied. For a liquid, the profile should

fluctuate about zero; Figure 7-10 shows this to be the case. We are thus satisfied

that we are not trapped in a 'solid' type structure which has long-range translational

structure (such as a crystal).

Molecular Conformational Behavior: Orientational Order Parameter Pro-

files

In this section, we consider the effect of the interface on chain conformation. An

informative order parameter for this is the orientational order parameter, P2 (z) de-

fined by the angle between the interface normal and a local vector. For the present

work, the vector is taken to be that connecting atoms j and j+2 along the backbone

of the chain. This definition excludes the carbonyl oxygens and the pendant methyl

groups (which here are considered as side-groups). With 0 being the angle betwccn

the interface normal and a given vector, the order parameter P2(z) is taken to be,
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Figure 7-7: Total site and middle group number density profiles. The longitudinal
position is relative to the system center of mass.
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Figure 7-8: Total site and end group number density profiles. The longitudinal posi-
tion is relative to the system center of mass.

315

Symmetrized Total and Individual Middle Atom Density Profiles

Total Site Density -
Ether Oxygen (middle) ----

-CH (middle)
Center of Mass.

-. J
-

- -1

- -

80

70

60

50

40

30

20

10

0
a
D

0

Total Site Density -
Carbonyl Methyl Group --
End Carbonyl Oxygen I

End Carbonyl Oxygen II
End Methoxy Methyl Group

A
V 1 i

VV

q-

0

80

70



Bulk Total Site Number Density Time Profile
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Figure 7-9: Total site number density time profile.

Time Profile of System Translational Order Parameter
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Figure 7-10: Time profile of system translational order parameter. A profile fluctu-

ating about z ero indicates equilibration to a liquid state.
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P2(z) = K3(coso) 2 - 1.0) (7.8)

where the average is taken over all vectors and configurations. The region a vector is

assigned to is determined by the location of the midpoint of the two atoms defining

the vector. If the vectors in a region are on average randomly oriented, P2 = 0.

If they are normal to the interface, P2 = 1, and if they lie in the interfacial plane,

P2 = -0.5.

We first consider vectors located at the ends of the chain; if the notion that the

ends are jutting out towards the vapor is correct, these vectors should yield positive

order parameters. The vectors considered are those between atoms 1 and 4 (end 1) and

25 and 22 (end 2). See Figure 7-13 for a schematic describing the vectors discussed.

Due to the fact that the oligomer model does not possess molecular symmetry, we

must consider each vector independently. We also target vectors in the middle region

of the chain. In this case, we look at one vector between atoms 10 and 14 (middle

1) and 15 and 12 (middle 2) (refer to Figure 7-13 for description). Again, we look at

these independently. Finally, we compute the order parameter profiles averaging over

all vectors of the molecule. Figure 7-11 shows the order parameter profiles for the

end vectors and the average over all vectors. These profiles unequivocally indicate

a planar orientation for the two end vectors, and an average planar conformation of

the entire molecule. It is interesting that the ends do not strongly segregate to the

outer interface. Figure 7-12 shows the analogous profiles for the two middle vectors

and the average profile over all vectors. Although both middle vector profiles show

rather large fluctuations in the bulk, there is a discernible tendency of the vectors to

adopt a planar orientation within the interfacial region. This means locally, the chain

is flattened. Thus, based on this information, we are inclined to regard the interfacial

chain conformation as being rather flattened; chain ends do not segregate to the outer

surface with the middle sections of the chain (due to connectivity) enriched in the

layer immediately beneath. This is in contrast to MD simulations [60] of the free

interface of decane and eicosane, which indicate that in the outer interfacial layer,
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Figure 7-11: Order parameter profiles averaged over the end vectors and all vectors

there is an anisotropy in the behavior of chain ends and middle segments. Here,

one sees that the ends are normal to the interface ('poking out'), and the middle

segments are parallel to it. This is also observed in mean-field theories [170] and

off-lattice Monte Carlo simulations [148].

With respect to the issue of chain flattening, we can compute components of the

radius of gyration as a function of position from the system center of mass. Fig-

ure 7-14 shows the profiles of the x-, y-, and z-components of the radius of gyration

in symmetrized form. Again, the final profile is a block average of profiles computed

as averages over 500 configurations. In the interfacial region near 3 nanometers out

from the center of mass, one observes a flattening effect of the molecule, with the

longitudinal component of the radius of gyration smaller than either of the transverse

components. Similar effects are seen in off-lattice MD simulations of alkane oligomers

[60] as well as in equilibrium simulations of lattice models [148]. Interestingly, simu-

lations of decane and eicosane performed by Harris [60] show what appears to be a
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Figure 7-12: Order parameter profiles averaged over the middle vectors and all vectors

richer structuring in terms of chain conformational behavior. He shows that in the

outer interfacial region of the alkane liquid-vapor interface, there is indeed a flatten-

ing of the chain as evidenced by similar radius of gyration profiles. However, in the

region immediately beneath this outer region, he observes a layer in which the chains

are more extended along the interface normal. In the present simulations, we fail

to see this inner layer. It could be that the present system of 5-mers is still short

enough to not allow such an effect; there may be some critical chain length where

this phenomenon arises. Of course, there is the possibility that continuing the pro-

duction phase of the simulation to much longer times may allow the evolution of this

structuring.

One can further explore the question of chain flattening by examining the behavior

of the mean squared direction cosines as one moves longitudinally from the bulk to the

interface. Figure 7-15 shows the average of the squares of the direction cosines of the

chain end-to-end vectors as a function of position from the bulk. The direction cosines
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Figure 7-13: Schematic depicting the end and middle vectors.

are defined for a given chain end-to-end vector with Cartesian vector components, v,

vY, and v,

cos 2() = (79)

(csci) = 2 + V2 + V2(.0

cos2 = (7.10)

In a three-dimensional,isotropic environment, these three parameters average to -,

while in a two-dimensional space, the existing dimensions would give parameters

of value } with the third parameter vanishing [148]. Figure 7-15 shows nicely the2

anisotropic behavior of the three parameters in the interfacial region between 2.5 and

3.0 nanometers from the bulk center. Despite the strong fluctuations in the bulk

(which apparently do fluctuate about a value of one-third as expected), the difference

in behaviors at the surface is evident; the transverse parameters (in the x and y-

dimensions) tend to deviate towards a larger value, while the normal component

attenuates. In the two-dimensional limit, the transverse parameters would take on

values of .

Now, with the picture of flattened chains at the interface compared to the bulk,

one can ask whether the chains are 'extended' (elongated) in the interfacial plane,

320



0.08
Symmetrized Profiles of Components of Molecular Radius of Gyration

I I I

X-Component
Y-Component ----
Z-Component -----

0.07 -

0.06 -A

0.05 -,-

4 0.024

>1 tit 1

4Al 04A V , I

0.03

0.02

0.01

0 0.5 1 1.5 2 2.5 3 3.5
Longitudinal Position (nm)

Figure 7-14: X-, y-, and z-components of the radius of gyration

or adopt a more compact planar structure such as a ring or a compressed spiral

(much like a spring under compression). To answer this question, we look at the

profile of the chain end-to-end vector, and more specifically, its transverse and lon-

gitudinal components. Figure 7-16 show symmetrized, block-averaged profiles of the

three components of the chain end-to-end vector. We observe that in the interfacial

region, the longitudinal component (z-component) decreases sharply. Concurrently,

the transverse components, x- and y-components, rise sharply, or in the case of the y-

component, hold the average bulk value well into the interfacial region; this indicates

an average elongation of the chain relative to the bulk. This emphatically describes

an extended chain at the interface. Again, this is in sharp contrast to previous MD

simulations of alkane chains which show chains flattening but with their ends 'poking'

out into the vapor region. Here we do not observe a strong chain end segregation.

Finally, returning to the interpretation of the density profiles of Figure 7-6, we

now abandon the earlier notion of chain ends jutting into the vapor region and proffer
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Figure 7-15: Mean squared direction cosines of the chain end-to-end vector as a
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Figure 7-16: X-, y-, and z-components of the chain end-to-end vector

an alternative. The chains within the interface on average are elongated, but tilted

at an angle to the interface. This allows one end of the chain to remain at a lower

longitudinal position relative to the other end; furthermore, due to local conformations

about individual dihedral angles, there is allowed the possibility for certain middle

segments to lie lower longitudinally than either of the ends, albeit not too much

lower. This interpretation appears consistent with the observed density profiles. The

nature of the chain tilt can be seen in Figure 7-17 which shows the P2(z) profile for the

chain end-to-end vector along with the P (z) profile which in this case gives simply the

cosine of the angle between the interface normal and the end-to-end vector. This figure

shows that this vector is more or less planar, with slight deviations as shown by the P

curve. This deviation from total planarity results in the proposed average tilt of the

chain. One can argue that despite the indication of the orientational order parameter

profiles of the end and middle vectors being on average in a planar configuration, the

chain may still be exhibiting end-segregation; it may be that the degree to which this
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Figure 7-17: Order parameter profile of the chain end-to-end vector

segregation is occurring in this system is not strong enough to be dominated by the

local orientational nature of the chain. It could well be that simulating a longer chain

will give more unequivocal indication of chain-end segregation; at least one would

hope that for much longer chains, the entropic effect associated with end segregation

would be the more dominant.

For the present work, the observations discussed thus far are interesting, but from

the point of view of biomaterials, one would like to inquire as to the nature of the

interface with respect to what types of functional groups are present. With this in

mind, in the next section, we investigate the 'appearance' of the surface (as let's say,

an ambient peptide might see) via the behavior of orientations of carbonyl bonds in

the bulk and at the interface.
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7.5 The Nature of the Oligomer Liquid-Vapor In-

terface: Carbonyl Bond Vector Orientations

At this point, we can ask about the local orientations of bond vectors of the molecule.

In particular, we are interested in the orientation of the carbonyl bonds as these are

the focal point of hydrolytic processes in the actual polymer. Again, to study the

bond orientation, we compute profiles of the average angle between the interface

normal and the carbonyl bond vector, as well as the orientational order parameter,

P2 associated with this angle (and defined above). Note that the carbonyl bond

vector is defined as rco = rc - ro with the vector directed toward the carbonyl

carbon atom. Once again, a P2 value of 1 indicates a sharp orientation along the

interface normal, while a value tending toward -0.5 demonstrates orientation in the

interfacial plane; an average value of zero implies a random orientation. Furthermore,

concerning the angle between the interface normal and an individual bond vector, a

positive value indicates the carbon atom to be in closer proximity to the vapor phase

than the oxygen; a negative value indicates the opposite.

Figure 7-18 shows the orientational order parameter profile for the five individual

carbonyl bond vectors along the chain. The end vectors represent the two outermost

groups; the middle vectors are the internal groups. The figure shows a distinct group-

ing of the vectors with respect to orientational behavior. The two end vectors show

a significant orientation along the interface normal, while the inner bonds are either

in the interfacial plane (this is probably more a small magnitude fluctuation from

the planar orientation) or protruding slightly out of it. Furthermore, based on the P

profiles shown in Figure 7-19, we see that the end carbonyl oxygen atoms are oriented

towards the vapor phase, while for the internal atoms, the degree of orientation out of

the interfacial plane is smaller (and relatively insignificant based on the P2 profiles).

The behavior of the end carbonyl groups seems to be counterintuitive, particularly

based on the results of the methyl acetate simulations showing that at the free in-

terface, the carbonyl groups tend to orient with the oxygens situated away from the

vapor side. Furthermore, if one considers the notion of the system minimizing uncom-
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pensated charge, the more favorable conformation would be to have all the carbonyl

oxygen atoms orienting towards the bulk (or in the very least, away from the vapor

phase), with the end and pendant methyl groups showing a greater tendency for ori-

enting towards the vapor phase. At this point, it is difficult to say what the driving

force for this orientational behavior is specifically, although a few factors may be in-

volved. First, we note the possibility of the intramolecular potentials being deficient

in terms of contributing the correct physics; that is, the the parameterized torsion

and angle potentials could be totally inappropriate for this system as they are all

based on parameterizations of small molecule systems. Second, there is the possibil-

ity of the intramolecular non-bond interactions contributing erroneously to the total

physics. This indeed is not too implausible since, for example, the charges assigned

on the associated groups are adjusted simply based on arguments of balancing total

molecular charge to maintain neutrality. There is no a priori justification, for this

specific system, why the charges must be those that are employed. Again, these were

taken, along with the intramolecular Lennard-Jones interaction parameters, from fits

to small molecule physical properties. Furthermore, we have made no allowance for

the fact that possibly the intramolecular interactions may be slightly different than

intermolecular interactions. Finally, there is the problem of a coupling between the

two-the effect of the non-bond and bonded interactions which has been treated in

a 'lumped' manner via the fits to internals distributions. At this point, we offer for

the current model that at the free interface, the end carbonyl oxygen atoms tend

to orient towards the vapor phase with the internal atoms showing a more expected

behavior in orienting, on average, in the interfacial plane (or very slightly out of it

due to thermal fluctuations). Interestingly, if one considers chain-length effects, one

may find that for longer chains, the effect of the ends becomes negligible and so this

anomalous behavior of the end oxygen atoms would be inconsequential to the total

energetics of the system, particularly if the chains remain in an elongated conforma-

tion. In the same manner, however, with a longer chain, end segregation effects may

become more pronounced; in this case, the surface would be dominated by chain ends.

In this case, one might expect to observe the opposite behavior from end carbonyl
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Figure 7-18: Symmetrized order parameter profile of the individual C=O vectors

groups. The above comments are quite speculative, and only by rigorous testing of

the potential and further simulations (using longer chains, different contact media)

can one be obtain a more precise view of the interfacial physics for this material.

7.6 Conclusions

This chapter has addressed an oligomer system selected as a model for polylactic

acid (PLA). Based on roughly one nanosecond fo simulation time (production phase

of simulations), preliminary data indicates that the surface chains orient, on average,

in the interfacial plane; furthermore, there is a trend toward chains being more ex-

tended in this region relative to the bulk as evidenced by longitudinal profiles of the

molecular radius of gyration and end-to-end vector. This observation is in keeping

with previous simulations (MD and Monte Carlo) and mean-field theories for alkane

chains interacting via Van der Waals or hard-sphere potentials. The interesting aspect

here is that we see a similar effect for a system with a strong electrostatic interaction.
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Figure 7-20: Proposed average molecular structure of interfacial oligomer chains
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However, we fail to see a region of chains orienting normal to the interfacial plane

as observed in the same previous MD and Monte Carlo simulations; this is also not

observed in mean-field theories. The results of the present simulations also depart

from earlier simulations and theoretical work with respect to the absence of chain-

end segregation effects. The segregation of chain ends is accepted as the result of the

interplay between entropic and enthalpic losses and gains; we note that both simula-

tions and theory tend to predict this phenomenon for systems lacking strong dipolar

character. The driving force for the observed surface enhancement in chain ends is

the minimization of interfacial free energy through the minimization of enthalpic and

entropic penalties for introducing a species into the interfacial region. Accommodat-

ing a chain end in the lower density interfacial region entails a smaller cohesive energy

loss compared to a middle segment due to the connectivity of the latter with a greater

number of neighbors [170]. Moreover, there is a less severe conformation restriction

in having an end jutting into the interface instead of a larger middle portion of the

chain; this is intimately related to the conformational entropy of the system [170]. We

note here that in the case of the lattice model, the surface enhancement becomes more

dramatic as one moves from an n-decane system to a 50-unit poly(dimethylsiloxane)

system; for the n-decane system, 69 percent of the segments in the interface are chain

ends (with ends making up 17 percent of the total chain mass), while in the PDMS

case, 51.5 percent of the interfacial population is chain ends despite the fact that

only 0.8 percent of the total polymer mass is represented by the ends [170]. This is

an interesting observation, as it tends to suggest that the chain length selected for

this study may be too short for such an effect to be strongly manifest. Furthermore,

lattice Monte Carlo simulations of the melt-vacuum interface of a lattice polymer

suggest that at a constant total bead density, the conformational structure of longer

chains is more significantly affected than that of shorter chains [148]. In light of

these observations, it would be interesting to determine whether there is associated

a 'critical' chain length above which such structural phenomena are seen within the

interfacial region. We do note that experimentally, there is evidence that contra-

dicts this hypothesis. For example, in the case of polystyrene with perfluorinated
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end groups, that there is an excess of perfluoro end groups at the interface that is

inversely proportional to the chain length; these results are based on ion scattering

spectroscopy (ISS), static secondary ion mass spectroscopy (static SIMS), and x-ray

photoelectron spectroscopy (XPS) [171].

A further issue of contention in comparing the present results to previous work

is the influence of the energetic characteristics of the constituents of the chain. For

example, it is not hard to imagine that if a particular site on the chain is a high-

energy site, the system would incur a large energetic penalty by forcing it to the

low-density region, where essentially, it would not be sufficiently 'energetically com-

pensated'; and in particular, if it is a high-energy end, one should not be too surprised

to observe a suppression of this end segregating to the surface. In the present case,

we employ a model with strong partial charge assignments; the energetic penalty of

having uncompensated charge jutting toward the vapor phase may be sufficient to

prevent chain-end segregation. Adding to this vane of thought are experimental ob-

servations. Consider that x-ray photoelectron spectroscopy and neutron reflectivitty

measurements on fluorocarbon-capped polystyrenes show a surface excess of the low-

energy fluorocarbon ends with a simultaneous lowering of surface tension [172]. On

the other hand, for polystyrenes terminated with high-energy components such as

carboxylic acid end groups, a surface depletion is observed [172].

Finally, with respect to the orientation of individual functional groups, and in

particular the carbonyl groups, we assert that our model seems to suggest that there

are two characteristic orientational behaviors associated with the end and internal

carbonyl groups. We observe that the carbonyl vectors associated with each chain

end are preferentially oriented towards the vapor phase-that is, the carbonyl oxygen

atom is directed towards the low-density region. The vectors along the 'middle'

section of the oligomer chain on average lie in the interfacial plane. This result seems

counter-intuitive in light of the results of orientational behavior of the carbonyl vector

in methyl acetate. At this time, we can only offer the possibility that our potential

model suffers from severe deficiencies. Furthermore, we must actually determine

experimentally the nature of the ester surface in order to assess the validity of the
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model.
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Chapter 8

Conclusions and Future Work
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8.1 Recapitulation of Goals

This thesis has attempted to study the interfacial structure of small-molecule and

oligomeric esters. The motivation for such an endeavor stems from the importance of

the nature of the interface in biomedical applications, and in particular, where foreign

materials are introduced into environments composed of aqueous media containing

various and sundry physiological components (proteins, ions, cells, etc.). Further-

more, this work has addressed the structure and, in part, the thermodynamics of the

liquid-liquid and liquid-vapor interfaces of a small molecule ester (methyl acetate) as

well as the liquid-vapor interface of an ester oligomer representing PLA via molecular

dynamics simulations. Toward this end, suitable models to represent the relevant

physics of ester molecules have been selected, tested, and validated. The results of

simulations provide information on the molecular-level structure of the ester interface

in terms of orientations of particular functional groups, spatial distributions of molec-

ular components, and the response of these to changes in contacting medium (in the

present work, from a vapor to water medium); in parallel, the effect of the interface

on the contacting medium is studied. Furthermore, the conformational distributions

of bond, torsion, and out-of-plane angles have been studied in order to derive a clearer

picture of molecular geometry in the interface relative to the bulk. Fluid structure has

been investigated via analysis of pair correlation functions in the bulk and interfacial

regions; these have been used to determine hydrogen-bonding interactions in systems

including aqueous media. In terms of interfacial thermodynamics, the surface tension

of methyl acetate is computed.

8.2 Major Findings and Conclusions

Along the road to ultimately investigating the interfaces of an oligomer model of

polylactic acid ester (PLA), several topics have been broached, each providing some

interesting and important finding allowing the next step along the journey. Chapter

3 discusses the selection and validation of a forcefield for molecular dynamics simula-
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tions of methyl acetate in the condensed state. Based on the criteria that the chosen

forcefield efficiently and accurately reproduces experimental conformational energy

differences and barrier heights between rotational conformers, as well as reproduces

experimental enthalpies of vaporization, the OPLS model was chosen as the potential

for use in the subsequent small-molecule liquid-vapor and liquid-liquid simulations.

An interesting finding of the work on bulk liquid energetics is the discrepancy between

the reaction field and Ewald summation approaches to accounting for electrostatics

in the prediction of bulk liquid enthalpy of vaporization for the case of a system with

intramolecular non-bond interactions.

Chapter 4 discusses the MD simulations of the methyl acetate liquid-vapor inter-

face using the OPLS potential. This is the first such study to be reported ( manuscript

submitted) in the literature. The work of this chapter shows that the OPLS model

does indeed allow the evolution of a stable interfacial system defined by a molec-

ularly sharp interface (typical of small-molecule interfaces resulting from forcefield

calculations as reported in the literature) with a 10-90 thickness of 6 angstroms. A

significant structuring is apparent at the interface, even for this small molecule. The

carbonyl carbon - carbonyl oxygen bond vector align antiparallel to the interface nor-

mal with the oxygen adopting an orientation away from the vapor phase. In terms

of interfacial thermodynamics, the atomic and molecular surface tensions of 22.7 and

21.06 dyne/cm are within 10 and 15 percent, respectively, of the experimental value

of 24.73 dyne/cm. This inadequacy of the parameter set is not too surprising as inter-

facial thermodynamics, and in particular surface tensions, have traditionally proved

to be intractable via molecular simulations, especially in the case of polymers and

oligmers.

Chapter 5 details results of MD simulations of the methyl acetate / water liquid-

liquid interface using the OPLS and SPC potential for the ester and water, respec-

tively. The results of this work demonstrate that the applied potentials are sufficient

to allow the evolution of a stable liquid-liquid interface with a 10-90 thickness of

7.45 angstroms (based on the water density profile). More importantly, we observe a

change in interfacial structure of the ester and the water relative to the liquid-vapor
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interface (for both species). For the ester, we observe the reorientation of the carbonyl

oxygen more towards the aqueous layer, the opposite to the orientation adopted at

the liquid-vapor interface as seen in Chapter 4. Furthermore, the SPC water model

captures a rich surface structuring of the water molecules, again showing the rever-

sal of molecular orientation from the liquid-vapor to the liquid-liquid interface. This

mutual effect of the presence of each species on the other is driven by hydrogen bond-

ing interactions evidenced by the first peak in the carbonyl oxygen - water hydrogen

radial distribution functions; furthermore, the angle formed by the carbonyl oxygen,

hydrogen, and water oxygen prefers a value of 160.1 degrees, which is close to the

value of this angle computed for gas-phase complexes of water and methyl acetate

via density functional theory.

Chapter 7 addresses the oligomer system selected as a model for polylactic acid

(PLA). Based on roughly one nanosecond of simulation time (for the production

phase of the simulation), preliminary data indicates that the surface chains orient,

on average, in the interfacial plane; furthermore, there is a trend toward chains being

more extended in this region relative to the bulk. This behavior is in contrast to

prior MD simulations of alkane liquid-vapor interfaces which show that chains adopt

a configuration in which the ends jut towards the vapor region, aligned more along

the interface normal. The middle segments align more in the plane of the interface.

In the present case, we observe a slight tilt which allows for the slight longitudinal

separation of atomic species seen in the component density profiles. It is difficult

to say at this point whether this is just an artifact of the short simulation time, or

whether this phenomenon is the equilibrium behavior.

8.3 Future Work

Although this thesis has attempted to shed light on some aspects of the interfaces of

ester compounds, many questions can still be posed and many aspects of the work

could be extended or refined. In this section, we offer some words to this effect.

Concerning the methyl acetate liquid-vapor interface, connection of the results

335



of molecular structure to experimental observations would prove a rigorous test of

the potential model. Although molecular-level detail of liquid-vapor interfaces has

been traditionally difficult to achieve (at least to the level where one can obtain

detail of molecular bond orientation), recent advances in non-linear optical techinques,

particularly sum frequency generation and second harmonic generation would be able

to provide the complementary data. These techniques generate infrared spectra of

the interface molecules; spectra computed from dynamics trajectories could be used

to directly compare to experimental data. This type of analysis has been used in the

study of water and methanol liquid-vapor interfaces. A further study would be to

study the effect of the method used for electrostatics accounting; Ewald summation

in two dimensions (or a derivative such as particle mesh ewald [173], which we have

shown for bulk methyl acetate gives equivalent results to the reaction field but is still

slower by a factor of two-thirds). This study would be relevant to all the simulations

performed in this work. The motivation for this work is the discrepancy between the

reaction field and Ewald results for the bulk liquid energetics study, as well as the

fact that the reaction field assumes an isotropic dielectric medium around each point

charge; the latter is certainly not the case when considering an interface and as such,

the effects of this assumption need to be further studied via comparison to these more

rigorous (yet more computationally intensive) techinques.

Concerning the ab initio work, only one test molecule was targeted for generating

the requisite torsion profile. It would be more rigorous to study several compounds

and determine a more general torsion profile. Furthermore, noting the discussion

on the effects of electron correlation and its inclusion in traditional Hartree-Fock

approaches to ab initio electronic structure calculations, it would be interesting to

perform the next set of calculations using the newer density functional methods.

These have been documented to yield equivalent if not superior results relative to

Hartree-Fock theory in a fraction of the time. Moreover, the fidelity of the torsion

potential in reproducing experimental IR spectrometric data should be investigated.

From powerspectra computed as Fourier transforms of selected velocity autocorrela-

tion function, one effectively has a spectrum to which to compare to. By varying the
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parameters of the potential, one can pinpoint the wavelength of the associated mode

and proceed with the analysis.

With respect to the oligomer simulations, several recommendations for future work

arise. First, it appears that the current chain size is probably too small to observe

any of the behavior of truly long-chain molecules. Thus, perhaps trying simulations

of chains of 10 or 20 repeat units would prove more useful. Second, with respect to

the results presented in this work, it is imperative to allow further simulation time

to accumulate statistics. The results shown at present are obtained from simulations

of roughly one nanosecond, whereas the timescale of relevance is on the order of two

or three nanoseconds. Third, moving on to one of the goals of this research, one

could perform simulations of the oligomer-water interface. This would be interesting

in the sense of allowing one to observe the effect of the water on the orientations of

individual bonds and molecules as a whole. Furthermore, one could also attempt to

look at the dynamics associated with this phenomenon. This dynamical aspect of

surface reorientation has been neglected for the small-molecule systems in this thesis.

It is felt that the time-scales for such processes would be quite short; however, with

the presence of chain connectivity induced by the oligomers, a longer time-scale is

more practical.

8.4 Final Thoughts

Any undertaking such as a thesis begins with a simple question and inevitably ends

with orders of magnitude more; such is the nature of the beast. The work presented

in the preceding pages is not immune from such plagues. In attempting to study

the structure of the interface on a molecular level, of what I initially believed to be

a relatively simple system, I realized the complexity of the task at hand. Invari-

ably, this complexity begs of simplifications-in models, assumptions, and approaches.

With respect to models, one of the biggest assumptions required is that of what

interaction potential model to use; unfortunately, just about all that emerges from

subsequent simulations hinges on the accuracy of this model. At present, I feel that
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the state of the art is not at the point where one can take a generic model, or even

a model designed for a specific molecular (or even atomic system in the case of sim-

ple atomic crystals), and apply it to the study of all properties of the system, with

particular interest in the quantitative predictive abilities of the model. The situa-

tion is further complicated by the fact that in implementing the potential itself, one

adopts methods needed to facilitate the computation. Hence, we are adding more

assumptions/simplifications to the system. In the present case, one can look to the

electrostatic nature of the system and consider the use of the reaction field approach

a gross approximation with respect to a study of the interface. For rigor, it would

be one small step to investigate the same system using an alternative technique,

perhaps Ewald summation, or some more efficient algorithm such as particle mesh

or cell-multipole; however, these themselves introduce certain approximations and

assumptions, again adding to the convolution of the problem.

Returning to the issue of quantitative accuracy briefly. In part, this work has

shown the behavior of 'water' molecules at the liquid-vapor and water-ester interface.

Specifically, distributions of dipole moment vectors and O-H bond vectors have been

computed. In interpreting this data, one must always be wary of the effect of the

potential used. By this, I mean that we see a general, qualitative trend, for instance,

of one O-H vector jutting into the vapor and the other in the plane of the liquid-vapor

interface. However, the average value of the angle of orientation of this configuration

really makes no sense, or is irrelevant in the sense that if one were to use another

model for water, there is the possiblity of determining a different value, or maybe a

set of values (multimodal distribution). In the final analysis, what we learn from a

simulation such as those presented in this work, are general, fundamental behaviors

of the model systems we plug into the computer. To transfer these behaviors to real

systems is quite tenuous and requires a tremendous leap of faith in the assumptions

and simplifications underlying all results (although from the tone of this thesis, it

seems as though I claim to have 'modelled' PLA oligomers on the computer!).

The point I would like to argue is that I believe that for complex systems, simu-

lations are capable of providing information about very general phenomena; to seek
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high quantitative fidelity (with respect to experiment) with some 'universal' or 'trans-

ferrable' model is asking too much, particularly when this fidelity is with respect to

a spectrum of properties not necessarily related in any way (and as the complexity of

the system increases, one may as well forget about rigorous accuracy in all property

estimations-one only has to consider the trials and tribulations of modelling the

range of properties for water (bulk, interface, supercritical phase, solid phase) with

a single model). At the heart of the matter is probably an understanding of how to

correctly place in a model the fundamental underlying physics-and by this physics

I mean the fundamental physical mechanisms which determine the properties of a

class of materials; this can be further refined to a multi-scale perspective, where one

now considers the relevant physics over appropriate length and time scales (this is

currently an active and interesting area of research).

In the context of the chemical engineering discipline, I describe this work as a

miniscule step in understanding the interfacial behavior of one class of materials,

that of the simple polyesters typified by PLA. As a nucleation point for future study

of this class of materials via simulations, I believe this thesis has contributed a model

which must be more rigorously tested and refined before one can say that it has

any pretense of representing the true polyester system. However, along the way

to determining this model, some very interesting interfacial phenomena have been

encountered, and these for systems which are important industrially (small-molecule

esters are used in diverse applications from fragrances to flavorings to starting points

for making high-tech fabrics such at those used by elite (and not-so-elite) athletes).

From an engineering perspective, this work has demonstrated, I think, that molec-

ular modelling techinques can be a practical tool in gaining insight into materials

properties not experimentally accessible (at least without much difficulty and debil-

itating cost). This is nothing new; one only has to survey a small fraction of the

literature to come across similar investigations. The novelty comes from applying

existing methods (of course, modified to fit certain needs) to a new, practical system.

I must conclude with an apology if the above statements sound too grandiose in

describing the contributions of this work. Moreover, I refer to a recent article ad-
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dressing the question of the predictive value of computer simulations, with specific

focus on the properties of that ubiquitous and ever-elusive fluid, water [174]. The

author paints a very pessimistic picture of the art of molecular simulations as a pre-

dictive tool. The description of "...microscopic effects by classical potentials, and, in

particular, the description of hydrogen bonding, is simplistic and hopelessly naive...",

according to this esteemed researcher [174]. Furthermore, in answer to the question

of why, then, computer simulations have become so popular, the author adds, '...be-

cause of their conceptual simplicity. Such simulations allow one to solve almost every

important problem in the theory of water simulations, however complex, using skills

which are not much different from those necessary for computerized book-keeping. All

theoretical and experimental information of condensed state physics and chemistry

accumulated during the last two centuries is considered as practically unnecessary in

many of such calculations," [174]. Well, whether this is too harsh a judgment on the

state of the art and its application is open to intense debate. In the final analysis,

my hope is that this work is not received as merely glorified book-keeping.
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Appendix A

Applied Quantum Chemistry

A.1 Introduction

Quantum mechanics tells us that the energy and properties of a molecular stationary

state are given by the solution of the non-relativistic, time-independent Schrodinger

partial differential equation [45]

W = EX (A.1)

where 7 is the Hamiltonian operator whose operation on the stationary wave-

function T gives the total system Energy, E. The energy E itself is relative to that

of the state where the system particles, both nuclei and electrons, are infinitely sep-

arated and at rest. T is the stationary wavefunction dependent on the coordinates

of all particles and also spin coordinates which take on finite values according to the

projection of the spin angular momentum vector along a particular direction. Central

to the probabilistic interpretation of quantum mechanics is the identification of 2

or 'If2 if T is complex is a measure of the probability distribution of the particles

within the molecule [45].

The Hamiltonian 7 is the sum of kinetic and potential contributions for a system

of N electrons and M nuclei in atomic units is[47]
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N i M IN M Z N N i M M Z_,7Zl 2Z+Z EE _ Z+ ZAZB(A2
2l=-( 2MA J i RA Bi=1 A=1 A i=1 A1 IA i=1 j> TiJ A=1 B>A AB

This equation requires some description in terms of the geometrical definitions

used. The particle coordinates are given by position vectors RA and ri which are the

nuclear and electronic position vectors, respectively. The distance between the i'th

electron and A'th nucleus is riA = |riA I = Iri - RAI. The distance between the i'th

and j'th electrons is rij =ri - rj| , and similarly the separation between nuclei A

and B is RAB =IRA - RBI [47]

In Equation A.2, MA is the ratio of the mass of nucleus A to the mass of an

electron, and ZA is the atomic number of nucleus A. The Laplacian operators V?

and V2 signify differentiation with respect to the electronic and nuclear coordinates,

respectively. In Cartesian coordinates, the operators are [45]

2= + + (A.3)

The first and second terms in Equation A.2 represent the electronic and nuclear

kinetic energies, respectively. The third term is the coulomb potential between elec-

trons and nuclei, while the fourth term is the coulomb interaction between electrons

and the fifth term the coulomb interaction between nuclei. The coulomb terms are

generally referred to as the potential energy and the first two terms are the kinetic en-

ergy if a division of the Hamiltonian into these classes of contributions (as in classical

dynamics) must be made [45].

A.2 Decoupling of Nuclear and Electronic Mo-

tion: Born-Oppenheimer and Consequences

Solving the Schrodinger equation presents a formidable challenge, and to achieve a

solution for practical systems, simplifications must invariably be made. The starting
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point for all attempts at solving this problem is the separation of the nuclear and

electronic motions which ultimately leads to two sub-problems. This is the adiabatic

or Born-Oppenheimer approximation [45, 46]. Since the nuclei are three orders of

magnitude heavier than electrons, nuclear motion can be effectively neglected and at

any instant, the electrons can be considered moving in the fixed field of the nuclei. In

other words, the electrons in a molecule are able to respond instantaneously to any

change in nuclear positions, thus making it reasonable to take the electron distribution

to depend only on the instantaneous nuclear positions and not on their velocities.

Thus, the general problem can be first posed as an electronic problem-solving for the

electronic energy as a function of relative nuclear coordinates. This effective electronic

energy is then used as a potential for the nuclear motion. For a diatomic molecule,

there is only one relative nuclear coordinate, and the effective electronic energy is

given by a curve. For polyatomic systems, the effective electronic energy dependence

on relative nuclear coordinates is represented as the potential energy surface [45] .

With the Born-Oppenheimer approximation, the nuclear kinetic energy term in

the Hamiltonian can be neglected, and the nuclear repulsion term can be considered a

constant (for a given nuclear configuration). Note that since this is a matrix eigenvalue

problem, the presence of a constant in the operator does not affect the eigenvectors

(or electronic wavefunctions) and contributes a constant to the eigenvalues (effective

electronic energies) [47]. An electronic hamiltonian is now defined as [47, 45]

N N M Z N N 1
)(elec E ZV 2  ZZE A +E :(A.4)=12 i1A 1ri = i j

The eigenvalue problem now becomes

Reiec eiec = EelecIelec (A.5)

where the electronic wavefunction,

)elec = (Delec(((ri); (RA)) (A.6)
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describes the electronic dynamics, depending explicitly on the electronic positions

and parametrically on the nuclear coordinates; likewise, the electronic energy is also a

parametric function of the nuclear coordinates, by parametric meaning that for every

nuclear configuration, the electronic energy is a different function of the electronic

coordinates [47, 45].

The total energy is now just the electronic energy plus the constant nuclear re-

pulsion term. To now solve the nuclear problem, since the electrons are moving much

faster than the nuclei, the electronic coordinates are replaced by average values over

the wavefunction, thereby generating a nuclear Hamiltonian for the motion of the

nuclei in the average field of the electrons [47, 45],

M IN i N M Z N N iM ZB
M 12 <_ _V _2M 2 + >±+ZB

A=1 2MA i=1 2 i=1 A=1 riA i=1 ii rij A=1 B>A RAB

M M M zAZB

- 2 V + elec(RA) + RABA=1 MA A1 A

M I
= - V2 + tot(RA) (A.7)

A=I 2MA A

The total energy Etot is the potential energy surface for the nuclear dynamics.

Solutions to the nuclear Schrodinger equation

7 1nuciPnuci =_ S'nuci (A.8)

describe the vibration, rotation, and translation of the molecule, and the E gives

the electronic, vibrational, rotational, and electronic energy [47].

Applied quantum chemical methods generally only consider the electronic, search-

ing for the potential energy surface on which the nuclear dynamics evolve; this is

certainly the case for the current work, as ab initio methods are applied to study the

torsional profile of a model compound, the torsional profile representing the chang-

ing nuclear configurations for which the electronic problem is solved. Thus, for the

remaining discussion of this Appendix, only the electronic problem is considered.
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A.3 Molecular Orbital Theory

The solution of the electronic Schrodinger equation begins with some approximation

to the total wavefunction. In general, this amounts to writing the wavefunction as

an expansion in some primitive functions which incorporate the physics of the struc-

ture; the accuracy of the calculation then becomes a matter of the adequacy of the

functions in describing fundamental physics and the truncation of the expansion (an

infinite expansion is the limiting case of retrieving the true solution to the electronic

problem). Molecular orbital theory approaches the electronic problem by using one-

electron functions, or orbitals, to approximate the full wavefunction. A one-electron

wavefunction, or single-particle molecular orbital is a function of the coordinates and

spin of the particle. The spatial component is dependent only on the coordinates

and its square modulus is interpreted as the probability density distribution of the

particle in space (or within the molecular environment). If the spatial orbitals were

complete, any function can be expanded exactly in these functions as [45]

infty

f(r) = O a/'(r) (A.9)
i=l

with the ai constants representing the projection of the original function onto the

spatial functions. As shown, the set of functions would have to be infinite to be

complete; in practice, one works only with finite sets which span only a portion of the

total space represented by the exact function, and the solutions obtained with any

given set are exact within the subspace spanned by the finite set of spatial orbitals

[47].

The spin component depends on the spin coordinate which takes a value of t1;

this measures the z-component of the spin angular momentum. The spin functions

for spin aligned along the positive and negative z-axes are

1 1
a( ) = 1 a(---) = 0 (A.10)

2 2
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1 1
( ) = 0 0(- ) = 1 (A.11)

2 2

The complete single-particle wavefunction, the spin orbital, is thus

X (r, y/) =@(r)o(rn) (A.12)

X (r, n/) = (r)#3(TI) (A. 13)

Note that both the spatial and spin functions are orthogonal [45].

Now, the question of what an appropriate N-electron wavefunction arises. One

option is the simple product of N single-particle spin orbitals, referred to as a Hartree

product [47],

qfHP= X1(Xl)X2(X2) ... XN(XN) (A. 14)

where the xi represent the spatial and spin coordinates taken together as the

particle coordinates. Note that the Hartree product is an independent electron, or

uncorrelated wave-function because the square modulus of TJJHP, which is the simul-

taneous probability of finding electron one in volume element dx 1 centered at x1 ,

electron two is dx 2 , etc., is equivalent to the product of the individual probabilities

[47]

|,HpI 12 _ x(XI)2dx IXj(x 2 )12 dx 2 ... Xk(XN) 2dXN (A.15)

that electron one is in x1 times the probability that electron two is in dx1 , etc.

Assuming independent electrons as well as a Hamiltonian that is the sum of indi-

vidual electron hamiltonians, the Hartree product approximation to the wavefunction

is deficient in the sense that it fails to obey the antisymmetry principle for fermionic

particles (a generalization of the Pauli Exclusion principle) which requires that the

wavefunction be antisymmetric with respect to interchange of spatial and spin coor-

dinates of two particles. In other words, the Hartree product distinguishes between
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individual particles, whereas the antisymmetry principle does not call for this [47].

In response to this, the traditional procedure is to construct a determinantal form

for the wavefunction which obeys the antisymmetry principle. The Slater determinant

representing the full many-electron molecular orbital wavefunction for the closed-shell

ground state of a molecule is then [45]

Xi(Xi) Xj(xi) ... Xk(X1)

q' determinant = (N!)-1/ 2  Xi(X2) X(X2) ... Xk(X2) (A.16)

Xi(XN) Xj(XN) ... Xk(XN)

This determinant contains N electrons occupying N spin orbitals without specifi-

cally placing any one electron in a particular orbital. The rows determine the electron,

and the columns the spin orbital. The Slater determinant meets the requirement of

antisymmetry since changing the labels of any two electrons means interchanging the

rows of the determinant; this leads to a sign change of the determinant (and thus the

wavefunction) as required. Furthermore, having two electrons in the same spin orbital

corresponds to two equal columns of the determinant, and this lead to a vanishing de-

terminant/wavefunction. This is in keeping with the Pauli exclusion principle which

forbids any two electrons from occupying the same spin orbital.

Expanding the determinant gives a sum of products of spin orbitals [45]

qldeterminant = Z(-1)'P[Xi(xI)X2(x2) .- XN(XN)] (A.17)
P

where P is a permutation operator which reassigns the coordinates xi according

to any of the N! possible permutations among the N electrons, and (- 1 )P is ±1 for

even or odd permutations.

Finally, the Slater determinant is normalized with the factor (N!) 1/2
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A.3.1 Slater Determinants and Exchange Correlation

Although the Slater determinantal form of the full molecular orbital addresses the

issues of antisymmetry and Pauli exclusion, the single determinantal form given above

introduces exchange correlation effects. That is, the motion of two electrons with

parallel spins is correlated (as it should be); however, the motion of electrons of

opposite spins is uncorrelated, and for this reason, the single Slater determinant is

considered an uncorrelated wavefunction [47].

This is easily seen by comparing the probability distribution functions for the

cases where two electrons with same spin occupy different spatial orbitals and where

both have opposite spins in different spatial orbitals [47].

For the first case, expanding the full 2-electron determinant to get the modulus

gives

I| 2 Idxidx 2 = I|/1(r 1 )a(w1 )0 2 (r2 )3(W2 ) - 4 1(r 2)a(w2 )4'2 (rj)3(wi) 2dxidx 2 (A.18)

which gives the simultaneous probability of electron one being in dx1 and electron

two being in dx 2 . By integrating over the spin coordinates (the spin functions are

orthogonal) gives the simultaneous probability of finding electron one in dri and

electron two in dr 2 ; more importantly, the orthogonality of the spin functions forces

the contributions from the cross terms to vanish, leaving

P(ri, r 2)dridr 2  J dwidW2 If|2dridr2
= [V1 (ri) 1272(r2)2 + V1 (r2) 2 2(ri) 2dridr2  (A.19)2

The first term is the product of the probability of finding electron one in dri at r1

multiplying the probability of finding electron two in dr2 at r2 with electron one in

01 and electron two in 02 . The second term is the same, only now the electrons have

switched the spatial orbitals. Due to the indistinguishability of the two electrons, the
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final probability is the average of the two probabilities. The form of these probabilities

is that of the independent electron picture, so we see that for opposite spin electrons,

there is no spatial correlation. The deficiency is pronounced when one considers that

P(r1 , r1) # 0 which means that there is a finite probability of finding electrons of

opposite spin at the same point in space.

For the case where the electrons are of same spin, the probability P(ri, r2 ) has

cross terms [47]

P(ri, r2) = V) [(r)| 2 V2/(r2)12 + V)1(r2)1 2 02(r1)1 2

-2

- 0*(r 1 ) 2 (ri)4*(r 2 )1(r 2 ) + 01(r1)4*(r)V/2(r2)*(r2)] (A.20)

which signify the correlation. The cross terms arise from the non-orthogonality

of the parallel spin functions. A Fermi hole is created around an electron in which

another electron of same spin cannot be found. Thus, within the Slater determinantal

description of the full molecular orbital wavefunction, the motion of electrons of same

spin is correlated and of those with opposite spins is uncorrelated [47]. The methods

used to estimate the correlation correction will be addressed below.

A.4 Hartee-Fock Theory and Variational Solu-

tion of the Electronic Problem

Now that a form for the full molecular orbital has been set up, this section deals with

the theory of the solution of the electronic Schrodinger equation. For the present

discussion, we note in brief that each of the molecular orbitals used in the construction

of the Slater determinant is expressed as a linear combination of a finite set of N

prescribed one-electron functions called basis functions [47],

N

i cpO (A.21)
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where the cl are the molecular orbital expansion coefficients. More will be said

about the basis functions later. At present, we focus on the expansion coefficients and

how they are determined via Hartree-Fock calculations; it is the domain of Hartree-

Fock to determine these coefficients [47].

Hartree-Fock theory is founded on the variational method of quantum mechanics.

For any antisymmetric, normalized function of electronic coordinates, 41, the energy

expectation value corresponding to this wavefunction is [45, 47]

E = f* W<Ddr (A.22)

where the integration is over all electronic coordinates, and the asterisk denotes

complex conjugation. If <D is the exact wavefunction, T , for the ground state of the

system, it will satisfy the Schrodinger equation, and because of its normalization in

space, E' will identically be equal to E, the exact electronic ground state energy,

E' = E J *d = E (A.23)

If 4D is an antisymmetric, normalized wavefunction other than the exact, then

it can be shown that the variational energy, E' is higher than the exact energy, E

[45, 47],

E' = Jb*?<DdT > E (A.24)

It follows that if the normalized, antisymmetric function 4b is the Slater determi-

nant form introduced in the last section, then the variational energy associated with

it will be higher than the exact value.

Now, the variational principle can be applied to compute the optimum expansion

coefficients for the single-determinant wavefunctions. The approach is to defined a

basis set of which the orbitals are written as linear combinations, and to adjust the co-

efficients of the expansion to minimize the expectation energy, E'. The optimum value

of E' will be as close to the exact value within the confines of the single-determinant

wavefunction and the basis set applied. In effect, the variational method gives the
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'best' wavefunction of the form postulated (ie, represented as the linear expansion) in

terms of the energy, by a minimization of E' with respect to the expansion coefficients;

thus, the variational equations are generated with [45, 47]

_9E '= 0 (all , i) (A .25)

A.4.1 The Hartree-Fock Equations: Functional Variation

and Canonical Form

The two major types of calculations performed with ab initio methods are restricted

closed shell Hartree-Fock and unrestricted Hartree-Fock (open-shell) calculations.

The equations for each approach differ slightly, but start from the same initial ma-

chinery. In this section, the Hartree-Fock equations are presented, beginning with

the variational minimization of the single-determinant energy and leading up to the

canonical Hartree-Fock equations. Along the way the Fock operator is introduced.

For more detailed derivations, the reader is referred to the literature [45, 47].

Variational Minimization of the Slater Energy

For the single Slater determinant wavefunction

"'determinant = E(-1) P[Xi(X1)X 2 (x2) ... XN(XN)] (A.26)
P

the energy E' is a functional of the molecular spin orbitals, [Xi]. The Hartree-

Fock equations are derived by minimizing the E'[Xi] with respect to the spin orbitals

subject to the constraint that the spin orbitals are mutually orthogonal,

dx1X*(x1)Xb(x1) = [alb] = 6ab (A.27)

The constraints are framed in the form [45, 47]

[XalXb] - 6 ab = 0 (A.28)
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Thus, the functional of spin orbitals £[Xa] is considered for functional variation

(A.29)'AXa] = E'[Xa] - N bN[aXb n)Z aba([Xa=Xb1 - 6ab)
a=1l b=1

where the Cab are Lagrange multipliers. Their physical significance will be pointed

out below.

The energy E' is the expectation value for the single Slater determinant energy

N1 N N

E': [] = Xa2hXa] + ZZ [XXa|XbXb] - [XaXb|XbXa]
a= I

(A.30)

In the last equation, the bracketed terms are short-hand notation for one- and

two-electron integrals encountered and are introduced now for clarity.

The one-electron integral notation is [47]

[Xa hlXa dxiX*a(xi)h(ri)Xa(X1) (A.31)

where h(ri) is a one-electron core-hamiltonian

h(ri) = IV ZA
2 A1 n (A.32)

which gives the one-electron kinetic energy and electron-nuclear potential energy.

The two-electron integrals are [47]

[XaXalXbXb

[XbXa|XaXb] =

XlX2Xa(XI)Xb(X)TX2Xb 2)

X1X2Xa(x1)Xb(Xl)r12 Xb*(X2)Xa(X2)

The first integral represents the action of the coulomb operator and the second is

the result of the exchange operator.

Now, the minimization of E' with respect to the spin orbitals and subject to the

orthonormality constraints is performed by varying the spin orbitals by an arbitrary

infinitesimal amount,
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a=1 b=_1



Xa 4 Xa + 6 Xa (A.35)

and setting the first variation in C to zero

N N

6,C = SE' - ZZj Eba6[XajXb] = 0 (A.36)
a=1 b=1

After some straightforward manipulation [47], this gives the non-canonical form

of the Hartree-Fock equations:

N N

[h(ri) + E$b(xI) - Cb(X1)]Xa(X1) = EZtbaXb(x1) a = 1, 2, -N (A.37)
b=1 b=1

The quantity in square brackets is the Fock operator defined in terms of the one-

electron core hamiltonian and the coulomb and exchange operators [47],

N

f (xi) = h(ri) + E J(xi) - Kb(Xl) (A.38)
b=1

And so, in a more compact form, the non-canonical Hartree-Fock eigenvalue prob-

lem is

N

f(xi)Xa = EEbaXb (A.39)
b=1

The reason why the final result up to this point does not fit the standard (canon-

ical) eigenvalue form is that the single determinant wavefunction composed of the

sum of products of spin orbitals retains a flexibility in how the various orbitals are

mixed, each combination of mixing giving rise to the same variational energy. Thus,

the standard procedure is to find a unitary transformation matrix which allows the

transformation of the old set of spin orbitals to a new set and to make sure that the

Fock operator is invariant to such a transformation matrix. Finally, the Hermitian

matrix of Lagrange multipliers is shown to be diagonizable under the action of some

unitary transformation, thus allowing the Hartree-Fock equation to be rewritten in
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terms of the canonical spin orbitals [47],

I Xa =- EbXa (A.40)

or dropping the primed notation and understanding that we are dealing with

canonical spin orbitals,

fXa = CbaXa (A.41)

Some comments on the physical interpretation of the canonical representation of

the Hartree-Fock equations.

For a single determinant wavefunction, an expectation value is invariant to an

arbitrary unitary transformation of the spin orbitals. The importance of this is that

the spin orbitals which make the total energy stationary are not unique, - any set of

spin orbitals generated from a unitary transformation of another set are valid within

the single determinant description. Thus, the concept of 'localized' orbitals is not

rigorously correct, although none less 'physical' than the notion of delocalized spin

orbitals [47].

A.4.2 Closed-Shell Hartree-Fock: Restricted Spin Orbitals

The previous section introduced the Hartree-Fock equations in terms of a set of general

spin orbitals, [Xa]. In this section, more specific orbital functions are considered for the

actual calculation of the Hartree-Fock (HF) wavefunctions. The types of calculations

for which equations are presented in this section are those for systems with closed

electronic shells. The molecular states considered have only an even number of N

electrons, with all electrons paired such that there are n = N/2 spatial orbitals

which are doubly occupied. These are restricted spin orbitals which have the same

spatial orbital for spin up ( a ) and spin down ( /) electrons. Unrestricted calculations

with separate spatial functions for a and / electrons [45, 47].

Closed shell calculations are calculated using the closed-shell Fock operator which

is simply the spin orbital Fock operator introduced in the last section from which the
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spin coordinates are integrated over. Without going into the details of the integration,

the closed-shell Fock operator is obtained as [45, 47]:

N/2

f(ri) = h(ri) + dr2*(r2)(2 - 'P12 )r4'Oa(r 2 ) (A.42)

or, more compactly,

N/2

f(ri) = h(ri) + Z2Ja(ri) - Ka(ri) (A.43)
a

where the closed-shell coulomb and exchange operators are defined as

Ja(ri) = d(r 2 )0*(r 2 )r-' /a(r 2 ) (A.44)

Ka(ri)V'i(ri) = d(r 2)b*(r 2)r-ihP(r 2)]Oa(ri) (A.45)

This gives the closed-shell eigenvalue equation as [45, 47]

f(ri)'j(ri) = ce4'i(ri) (A.46)

Although this equation can be solved via numerical techniques, the standard ap-

proach to its solution is that of Roothan [175, 176] which converts the differential

equation into a set of algebraic equations which can be solved via standard matrix

techniques. The scheme begins by writing the spatial orbitals as linear expansions in

a set of given basis functions, the expansion coefficients being solved for as the results

of the calculation.

For the expansion

K

= E ceiOV (A.47)
v=1

one obtains a matrix equation for the expansion coefficients by substituting the

expansion in the closed-shell Hartree-Fock equations,

355



f (ri) 1:cujO,(ri) =- ci cujO#(ri) (A.48)
V V

By multiplying by 0* (ri) on the left and integrating over the spatial coordinates

of a single electron, the matrix equation emerges as

ZcVi dri)O*(r)f(r)v(r) = cE cv dri)*(ri)#,v(ri) (A.49)
V

The preceding equation generates two matrices, the overlap and Fock matrices.

The overlap matrix, S, is

Stv= dr4*(ri)#,(ri) (A.50)

It is Hermitian and represents the overlap between the generally non-orthogonal

basis functions. The diagonal elements are unity and the off-diagonal elements are

numbers in the range 0 < ISvj 1. This Hermitian property of the overlap matrix

will be exploited later to diagonalize the matrix via a unitary transformation.

The Fock matrix,F is

F, = dr14*$(ri){(ri)Ov(ri) (A.51)

The Fock matrix is the matrix representation of the Fock operator introduced

above,

N/2

f(ri) = h(ri) + 2Ja(ri) - Ka(ri) (A.52)
a

in the basis 0,.

The first term will give the core-Hamiltonian matrix representing the one-electron

kinetic and nuclear potential energies,

H cor = fdr1#*(ri)((ri)O,(ri) (A.53)

where the one-electron operator h(ri) is
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h(ri) = -V - ZA (A.54)
2 (r -5RA

The coulomb and exchange terms of the Fock operator give rise to the two-electron

part of the Fock matrix which is presented here in terms of the density matrix, P),

N/2

F =H" + Z cac*a[2(pvjorA) - (po-Ajv)] (A.55)
a Xo,

Hc ore + E PA,[(pvjo-) - I(pAIv)] (A.56)

H"'+ Go 4 (A.57)

The two-electron integrals are defined as,

(vIho-) = dridr2O* (ri)#v(ri)r- (r2)0,(r2) (A.58)

and the one-electron density matrix, P, is

N/2

PAU = 2 ZCpaC*a (A.59)
a

For all HF calculations, it is the two-electron integrals which require the most

cpu time and thus pose the most difficulty in terms of calculation and manipulation

(storage) during the computation. Also note that the Fock matrix depends on the

density matrix, or equivalently, on the expansion coefficients [45, 47].

The Roothan equations are non-linear since the Fock matrix is dependent on the

expansion coefficients via the density matrix. The solution is therefore iterative, and

since the resulting molecular orbitals are generated from their own effective potential,

the solution scheme is common known as self-consistent field (SCF) theory.

The integrated HF equations are now,

Faces = 6i YStLce z = 1, 2, ... , K (A.60)

or more compactly,
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FC = SCe (A.61)

In the next section, the equations for unrestricted, open-shell systems are pre-

sented, following which the solution procedure is outlined. Finally, the basis functions

commonly used are discussed.

A.4.3 Open-Shell Hartree-Fock: Unrestricted Spin Orbitals

The Roothan equations are modified for systems in which all electrons are not paired,

leading to doublet (one extra a electron) and triplet (two extra a electrons) states.

One type of molecular orbital theory commonly applied to such systems is spin-

unrestricted Hartree- Fock (UHF) theory. Within the UHF formalism, spatial or-

bitals associated with the a and 3 spin functions are independent-that is, different.

Consequently, there emerge two separate set of molecular orbitals, V)1 and O (where

i = 1, 2,., N ). Thus, the doubly occupied orbital 0 1 in restricted Hartree-Fock is

now replaced by two functions, /4 and 4{. Note that since the UHF wavefunctions

are composed of more basis functions, the UHF energy in the variational sense will

be lower than the RHF energy [45, 177].

The two sets of a and / spatial orbitals are,

N N

AI= c, = c3i 0 (A.62)
,i=1,=

The coefficients are optimized via functional variation leading to the UHF gener-

alizations of the Roothan equations [45, 177J,

N

= (F,, - c'S,,) c' = 0 , p = 1, 2, ... N (A.63)
V=1

N

= (F, - c$S,,,)c%- = 0 , p= 1, 2,. ., N (A.64)

The requisite Fock matrices are defined as,

358



N N

FV = Hcore + Z Z[U, + P )(pvjAu) -P (phjv7)] (A.65)
A=1 0-=1

N N

Hco[ + a+ P _)QivIAu) - P (,plvcr)] (A.66)
A=1 -=1

The density matrices are,

PtL= E ca*ca (A.67)
i=1

'
3

0cc

P = ZcOc3 (A.68)
i=1

The overlap, core-Hamiltonian, and (tvlAa) matrices are the same as those defined

for the closed-shell Roothan equations.

A.5 Computational Approach

In this section is presented a very brief discussion of the implementation of the

Hartree-Fock equations within an algorithmic scheme. As one would expect, there are

various and sundry details involved with the efficient implementation of the Roothan-

Hall equations, and the reader is referred to the literature for further discussion. As

we will be concerned with geometry optimization calculations, the scheme for such

computations is discussed.

Figure A-1 shows a schematic of the optimization of molecular geometry for a given

basis set. The calculation begins with the specification of a starting geometry, usually

in the form of a Z-matrix, the calculation of symmetry properties of the molecule,

and the specification of a basis set. Following, all one-electron overlap, kinetic energy,

and potential energy integrals, as well as the two-electron repulsion integrals are

computed. All one-electron integrals are stored as matrices in, while only the non-zero

elements of the two-electron integrals are sequentially stored with adequate labelling

information to identify a particular integral. Prior to the SCF calculations, an initial
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guess for the wavefunction and density matrix is made. The general approach for this

is to use a wavefunction from a semi-empirical molecular orbital procedure, ideally,

from a procedure which has been parameterized to the results of a particular ab initio

basis set. Less favorable from a computatio nal view is that one can use a wavefunction

generated from the diagonalized one-electron core-Hamiltonian. Next, a loop for the

geometry optimization is begun. The SCF equations are solved for the total energy

and wavefunction, which in turn is used to compute an energy gradient-the first

derivatives of the energy with respect to displacements in the nuclear coordinates.

If the gradient is within a preset tolerance, the loop is terminated and the post-

SCF calculations are performed. If the gradient is too large, the initial geometry

is varied (according to the rules of some search algorithm), and a new calculation

of integrals, SCF energy, and energy gradient follows. This loop continues until the

desired tolerance is achieved. Empirically, it is observed that for a system with n

degrees of freedom, it takes between n and 2n loops to achieve convergence in bond

lengths and bond angles to within 0.001 angstroms and 0.1 degrees, respectively [45].
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Figure A-1: Schematic of Hartree-Fock Self-Consistent Field Algorithm (adopted from
Hehre et al)
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A.6 Basis Functions

The Hartree-Fock single determinantal wavefunction is built up from a set of molec-

ular orbitals, Vi/, which in turn are represented as linear expansions in a set of basis

functions, and written as,

N

'ic = Z 0 (A.69)

where the pi are the individual nuclear-centered basis functions, and the cm are

the molecular orbital expansion coefficients. The basis functions are associated with

each nucleus and therefore depend only on the nuclear charge; the functions will

also have symmetry and angular properties representative of the atomic orbitals they

correspond to. Two fundamental types of basis functions historically applied in HF

calculations are Slater-type atomic orbitals (STO's) and gaussian-type atomic func-

tions [45, 47].

Slater-type orbitals have exponential radial components and are labelled like hy-

drogen atom orbitals, 1s, 2s, 2p,- - and are in normalized form,

is = (( )1/2 -(jr) (A.70)

=2 (2 C )1/2re(2) (A.71)
967r

and so on for functions or higher angular momentum. The ( values are constants

which influence the radial width of the orbitals. Although STO's are fairly accurate

representations of atomic orbitals, they are not computationally amenable and so are

not used so widely [45, 47].

Gaussian functions are polynomials of x, y, z, multiplied by a factor of e(-r 2 )

with a a constant setting the radial extent of the function. A few exemplary gaussian

functions of varying angular momentum are [45, 47],

g8 (a, r) = (2a)3/4(-2) (A.72)
ir
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128a 5 14 -a2
gX(a, r) = (13 )l/4 e(-r 2 ) (A.73)

gry (a, r) (2048a )114X y (-ar2) (A.74)
73

Gaussian type orbitals were introduced by Boys ( ref in Hehre, Pople, et al, p 19).

They are not as accurate a representation of atomic orbital functions as they do not

have a singularity at the origin (the gradient diverges at the origin). However, their

advantage lies in the fact that the gaussian function is analytically integrated [45, 47].

Finally, before moving on to discuss specific basis function sets, it is noted that

a third approach to basis sets is that of using linear combinations of gaussians of

certain angular momentum to build up an overall basis function. The overall function

is the contracted gaussian and the functions used in the linear expansion are primitive

gaussians [45, 47].

A.7 Minimal Basis Sets: STO-KG

The simplest level of ab initio theory uses minimal basis sets of nuclear-centered func-

tions. This model includes only enough functions to accommodate all of the electrons

of the atom and maintain spherical symmetry. Thus, with this framework, hydrogen

and helium, for example, would have one s-type function; lithium and beryllium a

pair of such functions; and second-row elements would have the 1s, 2s, 2p inner-shell

functions along with the appropriate valence shell s- and p-type functions. Although

this would be truly a minimal basis set, in practice, the low-lying p- and d-type

functions are added even though they are unoccupied. Consequently, hydrogen and

helium have one function, elements from lithium to neon have five functions, elements

sodium to argon have nine functions, potassium and calcium have 13 functions, ele-

ments scandium to krypton have 18 functions, and so on. The minimal basis set is

too small to be of practical value in a quantitative sense; however, for qualitative anal

ysis, it can be useful as a starting point for further, higher level calculations [45, 47].
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Because the expansion in a minimal basis set is quite short, the functions used for

the approximation must be accurate. For this reason, single Gaussian functions are

not used, but rather, contracted Gaussian functions which are expansions of gaussian

functions of given symmetry and angular properties fitted to Slater functions. These

contracted Gaussian functions are known as STO-LG ( Slater-type orbitals contracted

with 'L' Gaussian functions) [45, 47].

The Slater-type orbital in terms of 'K' primitive gaussian functions is:

K

n1 (r) = dnl,kgl (a.,k,r) (A.75)
k=1

where the subscripts n and I refer to the principal and angular quantum numbers,

and the gi are primitive gaussian functions having angular properties corresponding

to the 1 angular quantum number. Consider, for instance,

K

F =(( = ) di,isgis(ai,is) (A.76)
i=1

K

2s = 1.0) = 2s(a,2sp) (A.77)
i=1

K

2 = 10) = 2p92p(,2sp) (A.78)
i=1

which are the contracted gaussian expansions for the 1s, 2s, 2p Slater functions.

The contraction coefficients, d's, and exponents, a's are obtained via a least squares

fit to the Slater function which minimize the integral [45, 47],

Eni = dr[#$f(r) - #CGF (r) 2  (A.79)

For the example of the three functions introduced above, the error integrals are,

Eis / dr[q[(r) - qCGF (r)]2 (A.80)
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E2s + E2p f dr[O$SF(r) _ OCGF (r)]2 + dr iqSF (r) - OCGF(r)] 2

The important idea to note about the STO-KG fitting is that the contraction

exponents are common to the functions of a particular shell; this is done so that the

functions within a shell of quantum number n have identical radial behavior and can

be integrated as one function. The constant normalization factor is associated after

the radial integration is performed. This grouping adds tremendously to the efficiency

of the algorithm. Although longer contraction lengths would seem to yield better fits,

it is found empirically that a contraction length of K = 3 is sufficient to reproduce

faithfully all results of a Slater function calculation. The STO-3G is the standard for

minimal basis set calculations [45, 47].

Note that to fit Slater functions of different C values, all one has to do is scale the

o values fitting the ( = 1 Slater functions by a factor of (2 [45, 47].

A.8 Extended Basis Sets: Double Zeta and Split-

Valence Basis Functions

The minimal basis, although useful qualitatively, comes with several inherent inade-

quacies. Because fixed Gaussian exponents are used, the individual orbitals cannot

expand or contract spatially in response to changing molecular environments. This

is due to the single valence function used for each shell and the fact that there is

no exponent optimization that will allow the orbitals to adjust sizes . A second de-

ficiency of the minimal basis set is that it cannot account rigorously for anisotropy

of the molecular charge distribution (ie, polarization of the electron cloud). Finally,

since the number of atomic basis functions is not allocated according to number of

electrons, elements near the right of the Periodic Table tend to be less accurately

described relative to those further left [45, 47].

Remedies to these deficiencies include allowing more than one valence function for
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each symmetry and angular type in the basis set. This would increase the number of

basis functions of all elements beyond what is actually needed, and multiple valence

functions would introduce greater flexibility for the radial size to be determined via

different weighting of the individual functions in the variational scheme. For instance,

if an s-type function were replace by a more diffuse and a more contracted function,

the final description would be able to weight the two so as to attain a radial behavior in

between the contracted and diffuse extremes determined by the functions. To address

the issue of describing anisotropic molecular charge distributions, two approaches

are feasible. One is to allow the x,y, and z p-components of the valence region to

have different radial distributions-in effect, use anisotropic minimal basis sets. This

approach, which attributes different exponents for individual Cartesian directions,

is useful for molecules with high symmetry. The second, more attractive approach

is to use multiple valence p- and d-type functions of an isotropic nature. This is

equivalent to the remedy for the radial size problem. Again, the use of two or more

sets of isotropic valence functions with varying radial extents allows independent

optimization of the individual functions within the SCF procedure [45, 47].

Thus, although the isotropic minimal basis set constrains the radial behavior

of valence functions to be identical, the extended models allow more flexibility in

representing more realistically molecular environments due to the adjustability of

individual components in the variational scheme.

Two ways to extend the molecular orbital expansion are to double all the functions

of a minimal basis set or, to double only the valence the functions, leaving the inner,

core, functions as those for the minimal set. The first approach is commonly referred

to as a double zeta basis, and the latter a split valence basis. The split-valence

approach is justified by reasoning that although the core electrons are important to

the total energetics of the molecule, molecular bonding as well as dipole moments,

valence ionization potentials, charge densities, dissociation energies, etc. are not

affected [45, 47].

Commonly used split-valence representations are the 4-31G and 6-31G basis sets.

The 4-31G set, defined for all first-row elements and the second-row elements phos-
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phorous, sulfur, and chlorine, uses inner-shell expansions of four Gaussians and two

valence functions, one being a single primitive Gaussian, and the inner function a con-

traction of three Gaussian primitives. Related to this is the 6-31G basis set, which

differs in that the inner shells are contractions of six Gaussian primitives [45, 47].

As an example, for the atoms lithium to fluorine, the contractions for the 6-31G

basis set are,

6

01,(r) = E dsg s(a, r) (A.82)
i=1

3

2(r) = ,2,91,(',2,, r) (A.83)
i=1

2(r) = gis (a''2,p, r) (A.84)

3

= d',2 pg 2P(ai,2sp, r) (A.85)
i=1

()= 2p('i,2 sp, r) (A.86)

A.9 Polarization Basis Sets

Following split-valence basis sets, the next level of sophistication comes with polariza-

tion functions used to allow descript ion of highly polar molecules and small strained

ring systems by allowing nonuniform displacement of charge away from nuclear cen-

ters.

One approach would be to add basis functions not associated with any single

center, although this would not be size consistent (the number of non-nuclear centered

functions does not necessarily increase in direct proportion with molecular size). Also,

it may be difficult to unambiguously define where to place these functions. The

generally applied technique is to add functions of higher angular quantum number
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(d-type functions on heavy-atoms and p-type on hydrogen). Consider the mixing

of a valence s-function with a px function for the hydrogen atom. This would lead

to displacement of the function center away from the hydrogen nucleus along the

x-axis; analogously, mixing with py and p, functions would lead to displacements in

the corresponding directions. For shifting p-type functions away from their origins,

d-type functions can be added, and for displacing d-type functions, one adds f-type

functions [45, 47].

Thus, basis sets with functions of higher angular momentum than required by the

atomic ground state are termed polarization basis sets and these effectively allow for

charge polarization, the displacement of charge away from nuclear centers.

A.9.1 Polarized Basis Sets: 6-31G* and 6-31G**

The simplest polarization basis sets are the 6-31G* and 6-31G** representations.

These functions are built up by adding to the 6-31G split valence functions a set of

six second-order (d-type) Gaussian primitives on the heavy-atoms-the 6-31G* set, and

a single set of three Gaussian p-type primitives on hydrogen and helium-the 6-31G**

set. Note that the six d-type functions are uncontracted 3d primitive Gaussians.

There are six primitives per atom, the six being linear combinations of the usual five

3d functions and a single 3s function [45, 47].

A.9.2 Polarized Basis Sets: 6-311G* and 6-311G**

Two larger but totally analogous polarization function sets are the 6-311G* and 6-

311G** basis sets. For these functions, the inner-shell functions are contractions of 6

Gaussian primitives and a valence region split into three regions, one represented by

a contraction of three Gaussians, and the other two by two different single primitives.

The asterisks as before indicate the addition of valence d- and p-type functions for

heavy-atoms and hydrogen. The triple split allows for more flexibility and improved

description of the valence region. The valence d-functions added are a set of 5 primi-

tives instead of the six used in the split-valence sets. This is not a problem as the last
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d-type function represents an s-type symmetry and is effectively redundant [45, 47].

A.10 Electron Correlation Correction Methods:

Moller-Plesset Perturbation Theory

As discussed earlier, the Hartree-Fock approach neglects electron correlation between

particles of opposite spin-the HF treatment is thus uncorrelated. Configuration inter-

action (CI) methods attempt to incorporate these effects (ref), but they are not size

consistent and truly rigorous when all possible excitations are included in the trial

wavefunctions (full CI). A non-variational, size-consistent alternative is perturbation

theory (PT) in which the total, correct Hamiltonian is decomposed into a zeroth-order

part, W-, which has known eigenfunctions and eigenvalues, and a perturbation, V.

The exact energy and wavefunctions are then expressed as expansions of corrections

to the zeroth-order components. Terms of similar order are grouped together and

represent n-th order corrections to the energy and wavefunctions [45, 47].

The following is a brief discussion of Moller-Plesset theory.

The correct total Hamiltonian of a system may be written as

W4) = (WO + V)I = Eibi (A.87)

where the zero-th order eigenfunctions and eigenvalues of WO are,

= E(04( 0) (A.88)

If the perturbation V is small, the actual eigenfunctions and energies, 4I and

6i will be close to the zeroth-order eigenfunctions and energies. The perturbation

approach is a systematic way to obtain improvements to the zeroth-order components

to approach the correct total Hamiltonian eigenfunctions and eigenvalues. Thus, one

begins by writing the total Hamiltonian, W as,

W -= o + AV (A.89)
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The eigenfunctions and eigenvalues are expanded in Taylor series in A

,F = E(O) + AE 1 + A2E E) + - (A.90)

Di =- + A'I'f1 + A2IJ , 2) + - (A.91)

The energy -E, is the n-th order energy correction. The problem is now to express

the various order energies and eigenfunctions in terms of the zero'th order components

and matrix elements of the perturbation, V between the unperturbed wave functions.

The reader is referred to the literature for the mathematical details of the deriva-

tions, but the second-order energy is calculated as [45, 47]

(2) -< iVIn > 12 (A.92)Ei = E(O) - E(O) A.2

where the prime on the sum indicates that n = i and the squared term is the

matrix element of the perturbation between the zeroth-order wave functions TM and

n
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Appendix B

Experimental Techniques Probing

Liquid-Vapor and Liquid-Liquid

Interfacial System Properties

There are a host of surface analytical techniques currently applied in the study of

solid interfaces and surfaces. These include Auger electron spectroscopy (AES),

electron spectroscopy for chemical analysis (ESCA) or x-ray photoelectron spec-

troscopy (XPS), low energy electron diffraction (LEED), scanning tunneling mi-

croscopy (STM), and scanning probe microscopy (SPM) such a atomic force (AFM)

or lateral force (LFM) microscopy), as well as a host of others not mentioned here.

Although each of these methods is capable of giving compositional and/or struc-

tural information of the interfacial region, they are difficult to apply to liquid-vapor

or liquid-liquid interfaces. AES, ESCA, XPS, and STM must be carried out under

ultra-high vacuum conditions; furthermore, in the case of STM, the surface must be

electrically conducting so as to generate a tunneling current from the tip to sample.

Also, surface probing techniques such as STM and SPM require bringing a very fine

probe tip close to the sample, a feat that is virtually impossible with liquid surfaces

or interfaces between immiscible liquids. Techniques which are more amenable to

studying fluid interfaces, such as x-ray reflectometry, neutron and x-ray reflectivity,

and ellipsometry give information on interfacial or thin film thicknesses, roughness,
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density, and composition (and its profile as a function of depth in the interface or thin

film). Fundamentally, none of these techniques can give details as to the orientations

of molecules at an interface; furthermore, one is at a loss if the very specific atomistic

description of the system is desired. All these techniques give average pictures of the

underlying molecular/atomic structure. For this objective, one must turn to the more

recently applied non-linear optical techniques of sum frequency generation (SFG) and

second harmonic generation (SHG), the latter being a special case of the more general

sum frequency methods.

In the following, the SFG and SHG methods will be discussed briefly as they are an

important experimental tool complementing the results of theoretical/computational

studies of fluid-fluid interfaces to give a clearer understanding of the physics of these

inhomogeneous systems, particularly with respect to the orientation of molecules.

In non-linear media, the interaction of waves leads to wave mixing, thus generating

waves at sum and difference frequencies. Sum frequency generation is the technique

which uses the sum frequencies for analysis. Consider two laser pulses/beams at

frequencies w, and w2 interacting in a nonlinear medium to generate a polarization

(nonlinear itself) p(2 ) w3 = w1 + w2 . The polarization, itself being a collection of

oscillating dipoles, radiates at w3. Although in the general case this radiation can

occur in all directions, if the polarization is correlated in a certain direction, the

radiation pattern can be peaked in that direction. The direction is then determined

by phase-matching, which is essentially conservation of energy and momentum. The

energy conservation leads to w3 = w1 + w2 , and the momentum conservation requires

that the wave-vectors be related as k3 = k, + bfk 2 ; this is merely the phase-

matching direction in which the sum frequency radiation is most effectively generated.

For second harmonic generation, which is simply a special case of sum frequency

generation, the initial frequencies are equal, wi = W2 = w and the sum frequency

becomes the second harmonic, w3 = 2w.

The SFG and SHG methods are attractive spectroscopic techniques for studying

fluid-fluid interfaces because they are surface-sensitive techniques. A major difficulty

of conventional spectroscopic methods applied to liquid-liquid interfaces is the separa-
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Figure B-1: Schematic of the Sum Frequency Generation Method

tion of the optical signal from the bulk and interfacial regions; that is, decoupling the

optical response of the interface from the optical response of the bulk media is non-

trivial. However, SFG and SHG are electric-dipole forbidden in centrosymmetric

media; thus, liquids and gases, which are centrosymmetric (isotropic), as well as

some centrosymmetric solids, do not generate appreciable signals from the bulk. At

an interface, inversion symmetry is broken, and the secondary frequency becomes

dipole-allowed. In effect, only the contributions from the interface are observed. Fur-

thermore, in the electric-dipole approximation, for a molecular liquid, the interface

contributes to the SFG spectrum only if the molecules are polar-oriented; the po-

larization dependence of the SFG spectrum then gives information on the molecular

orientation of surface/interface molecules.

The SFG and SHG techniques have been applied to the study of numerous in-

terfacial systems ranging from the pure water-water vapor interface to molecular

adsorption at the interface between two immiscible electrolyte solutions (ref).

In terms of thermodynamic properties, the surface tension and surface potential

are often studied; these of course give very little information in terms of detailed

molecular structure. A widely-used non-optical method for obtaining surface ten-

sion is the measurement of contact angles of fluids on solid surfaces (Andrade, 1985).

Although the interpretation and analysis of results rests heavily on a set of controver-

sial assumptions, results afford at least a preliminary base for investigating polymer

surfaces. Fundamentally, contact angle techniques measure contact angles of liquids

on surfaces, and, by coupling these angles to equilibrium thermodynamics relations,
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attempt to arrive at surface and interfacial free energies. Numerous techniques for

measuring contact angles are available. These include the Wilhelmy plate, captive

bubble, sessile drop, and capillary rise methods. The thermodynamic component is

based on Young's equation which describes the mechanical and energetic equilibrium

between an ideally non-deformable solid, a vapor, and liquid (Andrade, 1985),

7}sI = 7sv - 7lVcos(O) (B.1)

where 7sv , y,,, and ylv are the solid-vapor, solid-liquid, and liquid-vapor interfacial

free energies. Fowkes presented a theory of the interfacial tension as arising from var-

ious classes of intermolecular forces such as dispersion, dipole-dipole, induction, and

hydrogen-bonding forces (Fowkes, 1964). The Fowkes expression for the interfacial

tension is,

7 7dispersion + hydrogen-bonding + , ydipole-dipole + . (B. 2)

where -y is the total interfacial tension and the sum is over the various contribu-

tions. Note that although these individual components are not thermodynamically

defined, Fowkes' formalism regards them as unique physical properties of the material.

Finally, a few comments on critical surface tension approaches. Zisman etal pro-

posed a quantity, the critical surface tension, -yc, obtained from a plot of contact angle

versus surface tension of pure liquids places on a solid surface (Andrade, 1985). The

authors found that the values of cos(9) plotted as a function of the surface tensions of

a homologous series of liquids (e.g., alkanes) fell along a narrow, linear band, which

when extrapolated to cos(O) = 1 (that is, complete wetting of the solid) yields the

critical surface tension of wetting of a solid. Finally, for surface tensions of polymers

below the Tg, extrapolated values of -y may be obtained based on the observed linear

relation between temperature and surface tension in the melt (Wu, 1982).
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Appendix C

Contraction Coefficients and

Gaussian Exponents

C.1 Specification of Basis Functions: 6-311G**

The 6-311G** basis set for heavy atoms is defined in terms of normalized Gaussian

primitive functions as,

1is E dis,kgs(alk)
k=1

3

42s = '2s,kgs (o 2k)
k=1

3

02p 2p,kgP (e2k)
k=1

s g (a2)

p- gp(a")
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if2/ = as(2" (C.6)

/i = g, a2) ;(C.7)

#d = gd(ad) (C.8)

In the above relations, the gs(a), gp(a), and gd(a) are normalized s-, p-, and d-type

primitive Gaussian functions; the exponent is given by a. For the hydrogen atom,

only the split valence functions are needed,

3

S= d'gs(a's) ; (C.9)
k=1

O'= gs(a") ; (C.10)

= gi (a'") ; (C.11)

p= gp,(ap) (C.12)

The constants and exponents which completely describe the basis are given in

Table C.1 and Table C.2. Note that for heavy atoms, a single set of 5 d-type gaussians

is used; the exponent for this set is ad = 0.626 for carbon and ad = 1.292 for oxygen.

For hydrogen, the p-type exponent is a, = 0.75. Furthermore, in practice, one needs

to consider the px, py, pz orbitals, thus necessitating primed, double-primed, and

triple-primed analogs for the px, py, and pz wave functions separately.
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Table C.1: 6-311G Gaussian Basis Functions for Carbon, Oxygen

Table C.2: 6-311G Gaussian Basis Functions for Hydrogen

Atom a a" a
Hydrogen 33.8650 0.0254938 0.325840 0.102741

5.09479 0.190373
1.15879 0.852161

Specification of Basis Functions: 6-31G**

For the 6-31G** basis set, there is only the minor change of one less valence split

compared to the 6-311G** basis. Thus, there are no components corresponding to

the triple primed exponents and coefficients. Table C.3 and Table C.4 give the 6-

31G parameters for carbon, oxygen, and hydrogen atoms. The exponents for the

polarization functions (d-type for heavy atoms and p-type for hydrogen) are the same

as for the 6-311G** basis.

377

Atom a1 dis a2 22 a2
Carbon 4563.24 0.00196665 20.9642 0.114660 0.0402487 0.483456 0.145585

682.024 0.0152306 4.80331 0.919999 0.237594
154.973 0.0761269 1.45933 -0.00303068 0.815854
44.4553 0.260801
13.0290 0.616462
1.82773 0.221006

Oxygen 8588.50 0.00189515 42.1175 0.113889 0.0365114 0.905661 0.255611
1297.23 0.0143859 9.62837 0.920811 0.237153
299.296 0.0707320 2.85332 -0.00327447 0.819702
87.3771 0.240001
25.6789 0.594797
3.74004 0.280802
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Table C.3: 6-31G Gaussian Basis Functions for Carbon, Oxygen

Table C.4: 6-31G Gaussian Basis Functions for Hydrogen

Atom a d' a"
Hydrogen 13.00773 0.0334946 0.1219492

1.9620790 0.234727
0.444529 0.8137573
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Atom a, dis a 2  2 s  2p 2

Carbon 3047.525 0.001834737 7.868272 -0.1193324 0.06899907 0.155986
457.3695 0.01403732 1.881289 -0.1608542 0.316424
103.9487 0.06884262 0.5442493 1.143456 0.7443083
29.21016 0.2321844
9.286663 0.4679413
3.163927 0.362312

Oxygen 5484.672 0.00189515 15.85513 -0.1107775 0.07087427 0.2811389
825.2349 0.01395017 3.673027 -0.1480263 0.3397528
188.047 0.06844508 1.034345 1.130767 0.7271586
52.9645 0.2327143
16.89757 0.4701929
5.799635 0.3585209
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