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Abstract

The RNA polymerase II holoenzyme is thought to be the form of RNA

polymerase II recruited to promoters of protein encoding genes. As a large

mega-dalton sized complex, the yeast holoenzyme is composed of the core

RNA polymerase subunits, the hallmark Srb and Med proteins, several

general transcription factors and the nucleosome remodeling SWI/SNF

complex. Chromatin presents a formidable challenge to polymerases and

prevents access of critical factors to the DNA. As a holoenzyme sub-complex,

the SWI/SNF proteins provide a mechanism to allow polymerase and other

general transcription factors access to DNA at promoters; it also explains how

SWI/SNF becomes targeted to specific promoters. Regulated transcription

initiation may be achieved through a variety of mechanisms including

activator interactions with holoenzyme components. Another mechanism of

regulation is through the phosphorylation of RNA polymerase II CTD by the

holoenzyme kinase-cyclin pairs, Kin28/Ccll and SrblO/Srbll. The timing of

CTD phosphorylation appears to be a critical regulatory factor. Kin28 acts

positively, phosphorylating CTD after initiation complex formation, whereas

Srb1O act negatively, repressing transcription, by phosphorylating CTD prior to

stable initiation complex formation.

Thesis Supervisor: Richard A. Young
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Chapter 1

RNA polymerase II holoenzyme and the regulation of transcription
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RNA polymerase II must be regulated in vivo to transcribe messenger

RNAs at proper levels in response to environmental and physiological

signals. Eukaryotes contain between 3,000 and 100,000 protein encoding genes

distributed throughout their genome. The levels of RNA molecules specified

by these genes may vary up to four orders of magnitude within the cell. In

the model organism S. cerevisiae transcripts can be present at high levels of

200-1000 copies per cell and at low levels of less than one transcript in every

ten cell (0.1 copies / cell) (Holstege et al., 1998; Velculescu et al., 1997). Abrupt

changes to the cellular environment can cause 100 fold increases or decreases

in transcript levels (reviewed in (DeRisi et al., 1997; Holstege et al., 1998)).

Composed of 12 protein subunits, core RNA polymerase II is not

capable of responding to the complex regulatory signals required for cell

viability (Conaway and Conaway, 1993; Roeder, 1996; Young, 1991). Instead,

other proteins and protein complexes associate with core RNA polymerase II,

forming an extremely large entity called the RNA polymerase II holoenzyme.

This fifty protein complex initiates transcription at nearly all promoters in

vivo and can functionally respond to transcriptional activator proteins

(reviewed in (Hampsey, 1998; Koleske and Young, 1995; Myer and Young,

1998; Parvin and Young, 1998).

The holoenzyme's hallmarks are the SRB and Med proteins. SRBs are

genes that when mutated can suppress truncations in the C-terminal domain
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(CTD) of the largest subunit of pol II. Med proteins were cloned by

sequencing components of the mediator, a Srb containing holoenzyme sub-

complex. Several proteins discovered as Med's were previously identified in

genetic selections and Ihave kept those names previously given to them

(reviewed in (Hampsey, 1998), see table 1).

Koleske and Young discovered RNA polymerase II holoenzyme when

they found that all of the Srb proteins in the cell co-purify with a sub

population of core RNA polymerase II (Koleske and Young, 1994). This

purified holoenzyme preparation also contained the general transcription

factors TFIIB, TFIIF and TFIIH, the SWI/SNF complex and other mediator

proteins (Kim et al., 1994; Koleske et al., 1996; Koleske and Young, 1994;

Wilson et al., 1996). Quantitative western blots showed that representative

proteins were stoichiometric to one another and present at levels equal to

Rpbl (Koleske et al., 1996). Purified holoenzyme is capable of responding to

activators, an activity not seen in vitro using purified transcription factors

(Kim et al., 1994; Koleske et al., 1996).

Mediator was originally purified by its ability to restore activator

function to an in vitro transcription system (Flanagan et al., 1991; Kelleher et

al., 1990; Kim et al., 1994). The mediator also enhances basal transcription and

stimulates CTD phosphorylation by the TFIIH kinase (Kim et al., 1994).

Biochemical purification of the mediator revealed that it was actually a sub-

complex of the holoenzyme, bound to the RNA polymerase II CTD. Mediator

can be separated from the holoenzyme using an anti-CTD antibody (Kim et
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al., 1994), a CTD affinity column (Chao et al., 1996; Thompson et al., 1993;

Wilson et al., 1996) and conventional chromatography (Myers et al., 1998).

Regulation of gene expression can be directed through the

holoenzyme. DNA binding transcriptional activator proteins can increase

the rate of transcription initiation by recruiting the RNA polymerase II

holoenzyme to their target promoters (reviewed in (Ptashne and Gann,

1997)). Artificial tethering experiments demonstrate that recruiting the

holoenzyme to a promoter can be a rate-limiting step in transcription

activation (Barberis et al., 1995; Farrell et al., 1996; Gaudreau et al., 1997; Wu et

al., 1996). Several holoenzyme components physically interact with

activators and show activator specific defects when removed from

holoenzyme (Gustafsson et al., 1998; Gustafsson et al., 1997; Hengartner et al.,

1995; Koh et al., 1998; Lee and Kim, 1998; Lee et al., 1997; Myers et al., 1998;

Myers et al., 1999). Struhl has proposed activators act through physically

recruiting holoenzyme as well as TBP and TBP associated complexes (Struhl,

1996). Negative regulators can also act through holoenzyme components

(reviewed in (Carlson, 1997)). For example SrblO/Srbll, a kinase-cyclin pair

that can phosphorylate the CTD, are responsible for repressing greater than

150 genes in yeast cells grown in glucose at log phase (Hengartner et al., 1998;

Holstege et al., 1998). Many other holoenzyme components appear to have

both positive and negative role in transcriptional regulation although specific

mechanisms have not yet been determined.
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Chromatin, specifically nucleosomes, inhibits transcription by

preventing the transcription apparatus from accessing promoter DNA

(Knezetic et al., 1988; Knezetic and Luse, 1986; Lorch et al., 1992; Lorch et al.,

1987; Lorch et al., 1988; Paranjape et al., 1994; Workman and Roeder, 1987).

Several enzymatic complexes, like SWI/SNF, counteract this inhibition by

remodeling the nucleosome structure, or, like SAGA, by chemically

modifying histone proteins (Cote et al., 1994; Gregory et al., 1998; Ikeda et al.,

1999; Imbalzano et al., 1994; Kwon et al., 1994; Utley et al., 1998). Other

chromatin remodeling factors, which have similar catalytic ATPase subunits,

have also been purified, including RSC, NURF, ACF, CHRAC and

NRD/NURD. Likewise, many histone acetyltransferase complexes have

recently been discovered, several of which were previously described as

transcriptional coactivators, including SAGA (GCN5), TAFI1 (TAF250), p300,

p/CAF and CBP proteins (reviewed in (Workman and Kingston, 1998)). We

have found that the SWI/SNF complex is physically associated with the

holoenzyme providing a mechanism for holoenzyme components to gain

access to promoters with repressive chromatin structures. It also explains

how SWI/SNF becomes targeted to specific promoters (Wilson et al., 1996).

Although much of this chapter focuses on the yeast model systems, the

RNA pol II holoenzyme paradigm has been extended to metazoans (reviewed

in (Parvin and Young, 1998)). Several labs have purified holoenzyme

complexes using affinity chromatography (Cho et al., 1998; Maldonado et al.,

1996; Ossipow et al., 1995; Pan et al., 1997) as well conventional
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chromatography (Chao et al., 1996; Cho et al., 1998; Maldonado et al., 1996;

Neish et al., 1998; Scully et al., 1997). Others have purified mediator-like

complexes that can affect activator dependent transcription (Gu et al., 1999;

Jiang et al., 1998; Ryu et al., 1999; Sun et al., 1998; Xiao et al., 1999). These

complexes all contain homologues to Srb or Med proteins, such as Srb10,

Srb7, Med6 and Med7 and many contain other proteins that are

transcriptional coactivators (Gu et al., 1999; Jiang et al., 1998; Ryu et al., 1999),

chromatin remodeling factors (Cho et al., 1998; Neish et al., 1998) and that are

implicated in carcinogenesis (Neish et al., 1998; Scully et al., 1997).

Several proteins and protein complexes are found in some yeast

holoenzyme preparations but not others. These include TFIIB, the recessive

SRBs (Srb8, Srb9, Srb10 and Srb1), SWI/SNF proteins and TFIIH (Cairns et

al., 1996; Koleske and Young, 1994; Liao et al., 1995; Myers et al., 1998; Wilson

et al., 1996). Differential composition of holoenzyme preparations probably

reflect that RNA polymerase II holoenzyme is an extremely large mega-

dalton sized complex being purified using chromatographic techniques

designed to purify smaller protein complexes (Parvin and Young, 1998). As

evidence to support this hypothesis, Myers et. al. have found that the

SRB/MED mediator proteins, the quintessential hallmark proteins of the

holoenzyme, can be separated from core polymerase with the same

chromatographic techniques used to purify an intact holoenzyme entity

(Myers et al., 1998; Myers et al., 1997). Growth and preparation of the source

yeast cells also accounts for differences in holoenzyme preparations. For
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example, cells collected during mid-log and late-log phase contain much

more Srb1O and Srb11 protein then cells collected in stationary phase (Cooper

et al., 1997; Holstege et al., 1998). Explaining why holoenzyme preparations

from strains harvested in late log phase contain the recessive SRBs

(Hengartner et al., 1995) and preparations made from cells in stationary phase

cells contain none of the recessive SRBs (Myers et al., 1998).

The rest of this chapter aims to review all of the holoenzyme

components in more detail as well as other proteins important for

transcriptional regulation. I begin with a discussion of core RNA polymerase

II and the general transcription factors. Then I progress to the CTD and the

SRBs and their involvement in regulating gene expression. Finally, I finish

the chapter discussing SWI/SNF nucleosome remodeling factors and histone

acetylation /deacetylation complexes that regulate gene expression.

Core RNA Polymerase II. In eukaryotes there are three nuclear RNA

polymerase complexes each responsible for transcribing a different type of

RNA. The three polymerases were originally separated chromatographically

and characterized by their differential a-amanitin sensitivity and optimal

cation and salt concentrations (Roeder and Rutter, 1969; Ruet et al., 1978). In

vivo the three polymerases have remarkably different functions. RNA

polymerase I transcribes the large ribosomal RNAs (rRNA). RNA

polymerase II transcribes the protein encoding messenger RNA (mRNA).
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And, RNA polymerase III transcribes the all of the transfer RNA (tRNA) and

the 5S rRNA (reviewed in (Sentenac, 1985)).

Core RNA polymerase II exists as a half mega-dalton multiple protein

complex. In yeast, core RNA polymerase II is comprised of 12 proteins

encoded by the genes RPB1 to RPB12 (Young, 1991). The entire complex is

conserved throughout eukaryotes and six pol II subunits from humans can

functionally replace their homologous subunits in yeast (Khazak et al., 1995;

McKune et al., 1995; McKune and Woychik, 1994; Shpakovski et al., 1995).

RNA polymerase II shares five subunits with RNA polymerase I and RNA

polymerase III, they are Rpb5, Rpb6, Rpb8, Rpb1O and Rpb12 (Carles et al.,

1991; Treich et al., 1992; Woychik et al., 1990; Woychik and Young, 1990). It is

unclear what function these common subunits provide, however, several

other large nuclear complexes also share subunits. For example, the

SWI/SNF and RSC complexes have two common proteins (Cairns et al., 1998;

Peterson et al., 1998) and the SAGA and TAFI1 complexes share five proteins

(Grant et al., 1998).

The three largest RNA polymerase II subunits, RBPI, RPB2, and RPB3,

are similar to the E. coli RNA polymerase subunits, 0', P, and ci, respectively.

Several domains of high homology throughout Rpb1 and Rpb2 and the

P' and P have been found and designated A-H in Rpb1/ P' and A-I in

RPB2/ (Allison et al., 1985; Sweetser et al., 1987). This sequence homology

extends to functional homology as both p'/Rpbl come in contact with the
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DNA and RNA and 1/Rpb2 bind nucleotides (Young, 1991). Moreover, the

relative levels of the subunits are the same indicating that structural

homology exists between the polymerases. E. coli polymerase is a 1:1:2 ratio

of ' to P to a, likewise, yeast core polymerase II is a 1:1:2 ratio of Rpb1 to Rpb2

to Rpb3 (Kolodziej et al., 1990).

Although core RNA polymerase II is a very large protein complex, it is

unable to selectively initiate transcription at promoters. Originally purified

by Roeder and colleagues using non-specific chain elongation assays (Roeder

and Rutter, 1969), attempts produce promoter specific transcripts were

unsuccessful. A breakthrough occurred when a crude extract was developed

that could selectively initiate transcription from a DNA template containing

a promoter (Fire et al., 1981; Lue and Kornberg, 1987; Manley et al., 1980; Weil

et al., 1979). This biochemical activity was used to purify and clone the

General Transcription Factors that are necessary for promoter specific

initiation in vitro. (Matsui et al., 1980; Samuels et al., 1982).

The General Transcription [actors (GTFs) were identified and cloned as

proteins necessary and sufficient to reconstitute promoter specific

transcription (reviewed in (Conaway and Conaway, 1993; Roeder, 1996)). This

biochemical activity was separated into multiple subunits using standard

biochemical chromatographic fractionation. The GTFs are TBP, TFIIB, TFIIA,

TFIIE, TFIIF and TFIIH. Although originally purified from different sources

such as yeast, rat and human cells, all eukaryotes appear to have homologous

GTFs each having similar functional activities.
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TBP. The core promoter elements of many genes include a TATAA

sequence located 25-30 bp upstream from the start site in higher eukaryotes

and 40-120 bp upstream in S. cerevisiae (Struhl, 1989). The TATAA-Binding

Protein (TBP) specifically binds to this sequence (Buratowski et al., 1988) and

induces an 800 kink in the DNA towards the major groove (Burley and

Roeder, 1996). Using in vitro transcription systems, yeast TBP, a 27 kDA

protein, can functionally substitute for the more complex mammalian TFIID

(Buratowski et al., 1988; Hahn et al., 1989; Hahn et al., 1989). TBP was also

cloned as SPT15, and when mutated can alter start site selectivity at Ty

elements (Eisenmann et al., 1989). TBP does not copurify as a stoichiometric

component of the yeast RNA polymerase II holoenzyme, however, it can be

found in some mammalian holoenzyme preparations (Maldonado et al.,

1996; Ossipow et al., 1995) and in some yeast preparations at sub-

stoichiometric levels (Thompson et al., 1993).

TBP is a unique GTF because it is utilized at pol II promoters as well as

pol I and pol III promoters (Geiduschek and Kassavetis, 1995; Hernandez,

1993). TBP is found in the pol I transcription factor SL1 (Comai et al., 1992) as

well as the pol III transcription factor TFIIIB (Kassavetis et al., 1992; Lobo et al.,

1992; Taggart et al., 1992). Furthermore, mutations in yeast TBP diminish

transcription at the promoters of all three polymerases (Cormack and Struhl,

1992; Schultz et al., 1992).

Several RNA polymerase II-specific regulatory protein complexes

physically or genetically associate with TPB, including TAFIIs, TFIIA, TFIIF,
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SAGA, MOT1, SNAPc/PTF, NC2, TFIIB and the NOT complex (reviewed in

(Lee and Young, 1998). Alanine scanning has shown that the physical

interactions with TFIIA, TFIIB, TFIIF involve small non-overlapping regions

on TBP (Tang et al., 1996). However, physical and genetic data demonstrate

that TBP also interacts with the larger and more complex TAF, SAGA and

NOT factors. This raises the question, how does TBP interact with so many

independent polymerase II regulatory proteins as well as polymerase I and

polymerase II regulatory factors? Lee and Young have found that in yeast

cells there is quantitatively more TBP protein present than all of the other

TBP interacting factors combined. Implying that there is little competition

between TBP interacting factors for TBP protein and that class II promoters

are probably regulated by a diverse set of TBP containing protein complexes

(Lee and Young, 1998).

Other experiments indicate that TBP plays a role in activator-

dependent transcription. TBP physically interacts with many acidic

activators, indicating that activators recruit TBP to promoters, thereby

facilitating transcription initiation events (Wu et al., 1996). In vivo promoter

tethering (Chatterjee and Struhl, 1995; Klages and Strubin, 1995; Xiao et al.,

1995) and TBP specificity mutant experiments (Klein and Struhl, 1994) have

been used to argue that TBP recruitment is a rate-limiting step in activator

dependent transcription initiation. TBP is also associated with the TAFJIs,,

TFIIB, SAGA and TFIIA, all of which have been implicated in activated

transcription.
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TFIIB is a monomeric 38 kDa protein in yeast. SUA7 is the yeast gene

encoding TFIIB and was originally cloned as a suppressor of start site selection

mutants at a defective CYC1 promoter (Pinto et al., 1992). TFIIB binds directly

to the C-terminal stirrup of TBP (Geiger et al., 1996; Nikolov et al., 1995) and

makes sequence specific DNA contacts downstream of the TATAA element,

possibly explaining its involvement in start site selection (Lagrange et al.,

1998). A physical interaction between RNA polymerase II and TFIIB has been

established using affinity chromatography (Tschochner et al., 1992), surface-

plasmon resonance (Bushnell et al., 1996) and low resolution crystal structure

determination (Leuther et al., 1996). Genetic work also suggests a link

between RNA polymerase II and TFIIB, as mutations in RPB9 can suppress

start site selection defects in cells harboring SUA7 mutations (Sun et al., 1996).

Like TBP, TFIIB physically interacts with several activators including

VP16 (Lin et al., 1991). This interaction causes a conformational change in the

TFIIB protein (Roberts and Green, 1994), and can increase the number of

TFIIB molecules present at the promoter (Choy and Green, 1993; Lin and

Green, 1991; Roberts et al., 1993).

TFIIA, although not required for basal transcription in vitro, performs

an import role by stimulating activator function and stabilizing TBP and the

pre-initiation complex. Yeast TFIIA has two protein subunits, TOA and

TOA2 (Ranish and Hahn, 1991; Ranish et al., 1992), and mammalian TFIIA

has three protein subunits encoded by two genes, one of which is cleaved into

two proteins (De Jong and Roeder, 1993; Ma et al., 1993; Yokomori et al., 1993).
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Originally, TFIIA was purified as a factor required for promoter specific

reconstituted transcription (Reinberg et al., 1987), subsequently it was shown

not to be required, but instead helps mediate activator enhanced transcription

(Cortes et al., 1992; De Jong et al., 1995; De Jong and Roeder, 1993; Ozer et al.,

1994; Sun et al., 1994). Yeast RNA polymerase II holoenzyme preparations

contain no detectable TFIIA (Kim et al., 1994; Koleske and Young, 1994). The

crystal structure of TFIIA-TBP-DNA shows that TFIIA binds to the TBP across

from TFIIB and has contacts with the upstream DNA (Geiger et al., 1996; Tan

et al., 1996). This TBP interaction is critical as it stabilizes the TBP-promoter

DNA interactions (Buratowski et al., 1989; Imbalzano et al., 1994) and

facilitates TBP recruitment by interacting with activators and coactivators like

VP16, NTF-1, Spi (Ozer et al., 1994; Yokomori et al., 1994), PC4 (Ge and

Roeder, 1994), HMG2 (Shykind et al., 1995) and topisomerase I (Shykind et al.,

1997). In yeast, activator specific TBP mutations are rescued by fusing TFIIA

to TBP suggesting that the TFIIA-TBP interaction is critical for a subset of

activators (Stargell and Struhl, 1996; Stargell and Struhl, 1995). TFIIA also

seems to assist activators by inhibiting repressors of transcription (Ma et al.,

1996), such as NC2 (Inostroza et al., 1992), HMG1 (Ge and Roeder, 1994), Moti

(Auble et al., 1994) and some negative effects of the TAF,,s (Ozer et al., 1998).

TFIIF plays an important role in pre-initiation complex formation as

well as polymerase II elongation. In mammals TFIIF is comprised of two

proteins, RAP74 and RAP30, for RNA polymerase II Associated Factor (Flores

et al., 1990). Yeast TFIIF has three subunits TFG1, TFG2 and TFG3 each being
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105 kDa, 50 kDa and 30 kDa respectively (Henry et al., 1992). The two large

yeast TFIIF subunits are homologous to the RAP74 and RAP30. The smallest

TFIIF subunit, Tfg3, is weakly associated and is not required for TFIIF activity

(Henry et al., 1992). Tfg3 is also found in the TAFII and the SWI/SNF

complexes, indicating that it performs a function common to all three or that

there are dynamic associations between the three complexes (Cairns et al.,

1996; Henry et al., 1994). RAP74/RAP30 appear to exist as a heterotetramer

made up of two dimers (Flores et al., 1990). TFIIF physically interacts with

RNA polymerase II (Burton et al., 1988; Sopta et al., 1985) and is present in

most holoenzyme preparations (Kim et al., 1994; Koleske and Young, 1994;

Neish et al., 1998; Parvin and Young, 1998; Scully et al., 1997). TFIIF can also

interact with TFIIB (Fang and Burton, 1996; Ha et al., 1993), TFIID

(Dubrovskaya et al., 1996; Ruppert and Tjian, 1995; Tang et al., 1996), and

TFIIE (Maxon et al., 1994).

There is a functional similarity between bacterial sigma (cy) factors and

TFIIF. Both make contacts with the promoter DNA and both can suppress

nonspecific pol II DNA binding activity (Conaway and Conaway, 1993;

Greenblatt, 1991). Recent promoter architecture studies using

photocrosslinking demonstrate that TFIIF is required to wrap promoter DNA

in a full turn around the pre-initiation complex (Kim et al., 1997; Robert et al.,

1998). TFIIF is also part of an elongating pol II complex, stimulating the rate

of chain elongation by pol II (Flores et al., 1989; Izban and Luse, 1992) and

suppressing transient pausing (Bengal et al., 1991).
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TFIIE is needed for open promoter formation. The two subunits,

which make up TFIIE are conserved throughout eukaryotes; in yeast they are

called Tfal and Tfa2 (Feaver et al., 1994; Ohkuma et al., 1992; Ohkuma et al.,

1991; Peterson et al., 1991; Sumimoto et al., 1991). TFIIE is not found in yeast

holoenzyme preparations (Kim et al., 1994; Koleske and Young, 1994)

although some mammalian holoenzyme preparations do have TFIIE (Chao

et al., 1996; Maldonado et al., 1996; Parvin and Young, 1998). TFIIE interacts

with unphosphorylated RNA polymerase II (Maxon et al., 1994), TFIIH

(Bushnell et al., 1996; Li et al., 1994) and single stranded DNA (Kuldell and

Buratowski, 1997). TFIIE stimulates TFIIH phosphorylation of the pol II CTD

(Lu et al., 1992; Ohkuma and Roeder, 1994). A zinc finger located in the

largest subunit is essential for in vitro activity (Maxon and Tjian, 1994;

Tijerina and Sayre, 1998) and viability in yeast (Kuldell and Buratowski, 1997;

Tijerina and Sayre, 1998), however it does not play a role in ssDNA binding

(Kuldell and Buratowski, 1997). TFIIE also physically interacts with the

Drosophila repressor protein Krnppel (Sauer et al., 1995) and some

homeodomain activators (Zhu and Kuziora, 1996) indicating that its activity

may be regulated during transcription initiation.

TFIIE is not absolutely required for transcription initiation as studies

using purified GTFs found that TFIIE and TFIIH are dispensable on some

templates that are negatively supercoiled (Holstege et al., 1995; Parvin and

Sharp, 1993; Parvin et al., 1992). Promoter elements, required for TFIIE/TFIIH

dependence, map to 10 bp upstream of the initiation start site (Holstege et al.,

19



1997; Holstege et al., 1996). A mechanism has been proposed for promoter

opening in which the TFIIH helicases generate the open promoter and,

subsequently, TFIIE as well as core RNA polymerase II stabilize the open

DNA structure (Holstege et al., 1997; Holstege et al., 1996). Negative

supercoling would effectively preopen the promoter reducing the need for

TFIIE and TFIIH. Temperature sensitive mutations in yeast also reveal that

inactivating TFIIE causes a large decrease in bulk mRNA production.

However, a subset of genes continue to be synthesized, suggesting that this

negative supercoiling affect my occur in vivo (Holstege et al., 1998; Kuldell

and Buratowski, 1997; Sakurai et al., 1997; Tijerina and Sayre, 1998).

TFIIH is a large, complicated factor composed of nine proteins. Yeast

TFIIH has a total mass of 500 kDa and is composed of: Ssl2 (95 kDa), Rad3 (85

kDa), Tfb1 (73 kDa), Tfb2 (59 kDa), Ssl1 (50 kDa), Ccli (45 kDa), Tfb4 (37 kDa),

Tfb3 (33 kDa) and Kin28 (32 kDa) (Feaver et al., 1997). Mammalian

preparations of TFIIH also contain 9 subunits and functional homologues for

all of the proteins have been described (Feaver et al., 1997; Tirode et al., 1999).

Some yeast holoenzyme preparations contain TFIIH an others do not; this

situation is analogous to TFIIB and SWI/SNF. Yeast TFIIH can be separated

chromatographically into three parts: Ss12, TFIIK (containing Kin28, Ccli and

Tfb3) and core THIIH (the rest of the subunits) (Feaver et al., 1991; Feaver et

al., 1994; Svejstrup et al., 1994). TFIIH is not only involved in transcription

initiation, but also has a role in nucleotide excision repair (Drapkin et al.,

1994; Friedberg et al., 1995; Seroz et al., 1995; Wang et al., 1994). The initial
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cloning of the TFIIH helicase subunits generated a great deal of excitement

because mutations in the genes encoding these proteins can cause disease in

humans. SSL2 is homologous to XPB (Park et al., 1992) and RAD3 is

homologous to ERCC2 (Guzder et al., 1994), both of which, when mutated,

cause increased sensitivity to light in the disease xeroderma pigmentosum

(Schaeffer et al., 1993; Svejstrup et al., 1996).

Ssl2 and Rad3 are both ATP dependent DNA helicases (Bardwell et al.,

1994; Drapkin and Reinberg, 1994; Wade and Jaehning, 1996) needed to melt

promoter DNA thus allowing the initiation complex to convert from closed

to open formation (Goodrich and Tjian, 1994; Gralla, 1993; Holstege et al.,

1997; Holstege et al., 1996; Ohkuma and Roeder, 1994; Tirode et al., 1999).

They are also needed to open damaged DNA, allowing nucleotide excision

repair to take place (Bardwell et al., 1994; Drapkin et al., 1994; Svejstrup et al.,

1996; Wang et al., 1995). A temperature sensitive mutation in Rad3 causes a

reduction in bulk mRNA upon shifting to the non-permissive temperature,

indicating that it is needed at most promoters in vivo (Guzder et al., 1994). In

vitro, TFIIH, like TFIE, is not needed when transcribing negatively

supercoiled DNA templates or templates which have been artificial melted at

the transcription start site (Holstege et al., 1997; Holstege and Timmers, 1997;

Parvin and Sharp, 1993).

TFIK, a subcomplex within TFIIH, contains a kinase-cyclin pair, that

phosphorylates the pol II CTD (Feaver et al., 1994; Svejstrup and Feaver, 1996;

Svejstrup et al., 1994). CTD phosphorylation is an important, regulated event
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in transcription initiation and will be discussed later. In yeast, the kinase is

Kin28 (Feaver et al., 1994), the cyclin is Ccli (Svejstrup and Feaver, 1996) and

the third protein is Tfb3 (Feaver et al., 1997). In mammalian cells, the kinase

Cdk7/MO15 can phosphorylate both the CTD and the cell-cycle kinase Cdc2

making it a Cdc2-Activating Kinase (CAK) (Fesquet et al., 1993; Roy et al.,

1994; Serizawa et al., 1995; Shiekhattar et al., 1995). This suggests an

interesting link between the cell cyle and transcription initiation because

phosphorylation of Cdc2 is important regulatory step in cell cycle progression.

However, genetic studies using a temperature sensitive yeast kin28 allele

show that the TFIIH kinase does not phosphorylate Cdc28/Cdc2, does not

have a cell cycle related phenotype, and is essential for transcritpion initiation

(Cismowski et al., 1995). In yeast an alternative CAK candidate has been

purified and cloned (Espinoza et al., 1996; Kaldis et al., 1996; Thuret et al.,

1996). It is possible that metazoans have one kinase, Cdk7/MO15 that carries

out two functions, although the true metazoan CAK may not yet have been

discovered.

There is also evidence that TFIIH plays an important and sometimes

unique role in transcriptional activation. Some activators, like VP16 and p53,

can physically interact with mammalian TFIIH, indicating that they might

recruit TFIIH and holoenzyme as a means of activating transcription (Xiao et

al., 1994). HIV-Tat protein can stimulate CTD phosphorylation by TFIIH in

vitro which, in turn, is thought to enhance transcriptional elongation (Cujec

et al., 1997; Garcia-Martinez et al., 1997; Parada and Roeder, 1996).
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CTD. Rpbl, the largest subunit of RNA polymerase II, contains a

unique and conserved Carboxy-Terminal Domain (CTD). It is a hepta-peptide

having the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser, which repeats

multiple times. Intriguingly, as the complexity of the organism increases so

does the repeat length of the CTD. For example, in yeast there are 27-28

repeats depending on the strain; the C. elegans CTD has 34 repeats; the

Drosophila CTD has 43 repeats; and the mouse and human CTD has 52

repeats. CTD like sequences have not been found on any pol I or pol III

subunits nor any of the bacterial RNA polymerase subunits. The CTD has

been extensively studied both biochemically and genetically in yeast,

Drosophila, and mammals (reviewed in Chao and Young, 1991; Young, 1991).

Truncation of the RNA polymerase II CTD revealed its important role

in transcription initiation. Proteolytic removal of the CTD from Rpbl has

little or no effect in transcription systems using highly purified GTFs

(Buratowski and Sharp, 1990; Li and Kornberg, 1994). However, CTD-less

Rpbl cannot replace an inactivated Rpb1 in a crude nuclear extracts (Li and

Kornberg, 1994) and nuclear extracts made from yeast cells harboring CTD

truncations show strong defects in activated transcription but not in

transcript elongation (Liao et al., 1991). These studies indicate that other

factors, that physically interact with polymerase via the CTD are missing from

highly purified in vitro transcription systems. In similar experiments in

vivo, CTD truncations have activated transcription defects in both yeast and
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mammalian cells (Allison and Ingles, 1989; Gerber et al., 1995; Scafe et al.,

1990). These activator dependent effects were seen at a subset of promoters

suggesting that transcriptional activation involve CTD dependent and CTD

independent mechanisms. In vivo the CTD is essential, as deletion causes

inviability in yeast (Nonet et al., 1987), Drosophila (Zehring et al., 1988), and

mammalian cells (Bartolomei et al., 1988).

The CTD can become heavily phosphorylated, enough so that the

largest pol II subunit will show altered mobility on a SDS-PAGE gel. The

three forms of the largest subunit of pol II have been designated: 1. Ha,

unphosphorylated CTD, 2. HIb, CTD proteolytically removed and 3. Ho, highly

phosphorylated CTD. The Ila form of pol II is involved in transcription

initiation, the Io form with elongation and mRNA processing, and the Ilb

form is probably a purification artifact (reviewed in (Dahmus, 1996)).

The conversion of a stable pre-initiation complex to an RNA

producing elongation complex is associated with the phosphorylation of CTD

and the conversion of pol II from the Ia form to the Io form. Drosophila

promoters containing stalled initiation complexes contain unphosphorylated

CTD and once released become elongating complexes with phosphorylated

CTD (O'Brien et al., 1994). In vitro, stable initiation complexes are

preferentially formed by the Ia form of pol II (Lu et al., 1991) and RNA

polymerase II holoenzyme, which initiates transcription at nearly all

promoters, contains unposphorylated CTD (Koleske and Young, 1994;

Thompson and Young, 1995). Also, purification of an elongating polymerase
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II complex from yeast contains the Ho form of polymerase (Svejstrup et al.,

1997).

Many kinases have been identified that phosphorylate the CTD,

however, the TFIIH kinase Kin28/Cdk7 appears to be responsible for

phosphorylation of CTD at most promoters in vivo. Whole genome

transcript analysis demonstartes that akin28-ts mutation inhibits

transcription at rates comparable to the inactivation of a ts-Rpbl allele at the

non-permissive temperature (Holstege et al., 1998). Cells with inactivated

Kin28 also have reduced levels of the Ho form of pol II suggesting that

transcription is dependent on CTD phosphorylation by Kin28 (Cismowski et

al., 1995). SRB1O is a cyclin-dependent kinase that can phosphorylate the CTD

(Hengartner et al., 1998; Liao et al., 1995). Unlike TFIIH, however, it acts as a

gene specific negative regulator as revealed by whole genome transcript

analysis (Holstege et al., 1998). Mammalian Cdk8 is highly related to yeast

SRB10, is found in some mammalian RNA polymerase II holoenzyme

preparations (Chao et al., 1996; Cho et al., 1998; Gu et al., 1999; Scully et al.,

1997) and also the NAT complex, a subcomplex of the pol II holoenzyme (Sun

et al., 1998). Yeast Ctkl-Ctk2, a kinase-cyclin pair, was purified as a CTD

kinase, however, it has never been shown to physically interact with any

transcriptionally related complex (Lee and Greenleaf, 1991; Sterner et al.,

1995). Genetic analysis indicates that SRB1O and CTKJ might have redundant

functions at some TUP1/SSN6 regulated promoters but not others (Kuchin

and Carlson, 1998). Metazoan P-TEFb (positive transcription elongation factor
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b) contains another kinase-cyclin pair, CDK9 - cyclinT, that can phosphorylate

the CTD (Marshall et al., 1996; Marshall and Price, 1992; Peng et al., 1998; Zhu

et al., 1997). P-TEFb appears to be a regulatory kinase that can be recruited by

HIV-Tat protein (Wei et al., 1998). Along with TFIIH, HIV-Tat stimulates

phosphorylation of the CTD causing transcriptional activation via

stimulation of RNA polymerase II elongation (reviewed in (Jones, 1997;

Yankulov and Bentley, 1998)).

CTD phosphorylation can induce factors required for elongation,

termination and mRNA processing to associate with RNA polymerase II and

the newly synthesized RNA transcripts. Interactions between splicing factors

and the CTD have been found using the two hybrid system and other

biochemical assays (Du and Warren, 1997; Mortillaro et al., 1996; Yuryev et al.,

1996). Furthermore, splicing can be inhibited in vitro (Yuryev et al., 1996) and

in vivo (Du and Warren, 1997) by CTD peptides and anti-CTD antibodies.

RNA 5'-capping enzymes and 3'- processing enzymes are also associated with

the hyper-phosphorylated form of the CTD (Cho et al., 1997; McCracken et al.,

1997; McCracken et al., 1997; Yue et al., 1997). A multi-subunit complex called

the "elongator" was recently purified, that associates with elongating RNA

polymerase II, possibly interacting through the hyper-phosphorylated CTD

(Otero et al., 1999). These results suggest that hyper-phosphorylated CTD

recruits proteins and enzymes needed for post-transcriptional processing of

transcripts, unlike hypo-phosphorylated CTD which engages proteins

essential for regulated transcription initiation.
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SRBs. CTD truncation were used to genetically identify RNA

polymerase II associated factors through a genetic selection. Yeast harboring

the RPB1 gene with fewer then 10 of the wild type 26 heptapeptide repeats are

inviable but with greater then 13 repeats are fully viable (Nonet et al., 1987).

Cells containing ten to twelve heptapeptide repeats exhibit multiple

conditional phenotypes including cold and temperature sensitivity, inositol

auxotrphy and the inability to utilize pyruvate as a carbon source (Nonet et

al., 1987; Thompson et al., 1993). These conditional phenotypes associated

with short CTDs were exploited to isolate extragenic suppressor mutations

that restored cells to near wild-type growth states. Nine SRB genes (for

Suppressor of RNA polymerase B) were cloned (Hengartner et al., 1995;

Koleske et al., 1992; Liao et al., 1995; Thompson et al., 1993). Genetically there

exists a clear relationship between the CTD and the SRBs.

The SRB genes can be grouped into three classes: the dominant

suppressors, the recessive suppressors and Srb7. The dominant SRBs consist

of SRB2, SRB4, SRB5, SRB6 and the recessive SRBs are SRB8, SRB9, SRB10,

SRB11. Biochemical work bolsters the groupings, as there are physical

interactions within the dominant SRBs and also within the recessive SRB.

Both dominant and recessive alleles of SRB7 were isolated in the original

CTD truncation selection. Physically, Srb7 protein interacts with a distinct

group of proteins none of which are Srbs, however, they form another

subcomplex within the RNA polymerase II holoenzyme.

27



Characterization the dominant SRBs revealed that they are critical

factors necessary for the initiation of transcription. The dominant SRBs are

all undisputed components of the RNA polymerase II holoenzyme and

mediator complex (Kim et al., 1994; Koleske and Young, 1994; Myers et al.,

1998). Nuclear extracts made from stains with SRB2 or SRB5 deleted fail to

transcribe in vitro unless Srb2 or Srb5 and Srb2 proteins are added to the

reaction (Koleske et al., 1992; Thompson et al., 1993). Promoter commitment

assays and immobilized DNA template experiments demonstrate that the

transcriptional defect results from an inability to form stable preinitiation

complexes (Koleske et al., 1992; Ranish et al., 1999; Thompson et al., 1993).

Lastly, a strain with temperature sensitive mutation in SRB4 or SRB6 shuts

down transcription at virtually all promoters when shifted to the non-

permissive condition. This argues that the dominant SRB proteins are

essential for transcription initiation even though 80% of cellular core pol II is

not associated with the SRBs (Koleske and Young, 1994) and the 20% that is in

holoenzyme form initiates transcription at nearly all promoters (Holstege et

al., 1998; Thompson and Young, 1995).

Med6 and Rox3 are components of the holoenzyme and are physically

associated with the dominant SRB complex. Med6 was identified by peptide

sequencing as a component of the mediator (Lee et al., 1997). Subsequently it

was found in a genetic selection as a dominant suppressor of a srb4

temperature sensitive allele (Lee et al., 1998). Conversely, a med6-ts mutation

can be suppressed by an allele specific dominant mutation in SRB4 (Lee and
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Kim, 1998). Physically, Med6 protein interacts with Srb4, which interacts with

Srb2 and Srb6 as determined by pairwise interaction studies using

recombinant proteins (Koh et al., 1998; Lee et al., 1998). ROX3 was identified

in numerous genetic selections and was characterized as a transcription

factor, having both positive and negative influences at model promoters

(Rosenblum-Vos et al., 1991; Song et al., 1996). Rox3 was a holoenzyme

component by peptide sequencing and urea denaturation experiments

revealed an association with the dominant SRB subcomplex (Gustafsson et

al., 1997; Lee and Kim, 1998).

The dominant SRB subcomplex plays a role in proper activator

response. A physical interaction exists between VP16 activator protein and

holoenzyme and VP16 and mediator (Hengartner et al., 1995). A specific

interaction between Gal4 activator protein and Srb4 has been demonstrated by

several techniques. The region of Srb4 that interacts with Gal4 is essential in

vivo and dominant mutations in SRB4 partially supress activator defects in

GAL4 (Koh et al., 1998). Holoenzymes purified from med6A strains do not

respond to certain activators in vitro indicating that Med6 is also involved in

the activator response. In vivo MED6 is required for the transcriptional

induction of several model promoters (Lee et al., 1997). Genome wide

expression analysis of a med6-ts mutation shows that it plays an essential role

at 10% or more of all yeast promoters (Holstege et al., 1998; Lee and Kim,

1998).
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The recessive SRB complex contains a CTD kinase and negatively

regulates transcription. Srb10 and Srb11 are a kinase-cyclin pair that

phosphorylate the CTD when purified from recombinant and native sources

(Hengartner et al., 1998; Koh et al., 1997; Liao et al., 1995). Srb8 and Srb9 are

large proteins thought to physically interact with Srb10 and Srbll, however

their function is unknown (Hengartner et al., 1995). All of the recessive SRBs

were isolated independently in genetic selections and screens looking for

genes regulating the repression at model promoters SUC2, alpha2, FLO1 and

meiotic promoters (Kuchin et al., 1995; Song et al., 1996; Surosky et al., 1994;

Wahi and Johnson, 1995). Mutations and deletions within the four recessive

SRBs produce identical phenotypes, including, flocculance, slow growth rates

and partial derepression at several model genes (Carlson, 1997). Whole

genome analysis shows that a kinase mutation in Srbl0 causes derepression

of ~170 genes (out of 6000). Many of them are involved in the diauxic shift, a

transition that yeast undergo when changing from log phase growth to

stationary phase (DeRisi et al., 1997; Holstege et al., 1998). These genes were

depressed because there is less Srb10 protein in the cell during stationary

phase. Other studies have found that destruction of Srbll, Srb10's cyclin pair,

causes increased transcription at several model promoters, presumably by

inactivating the SRB10 kinase (Cooper et al., 1997). A model for an SRB10

mechanism of repression has been described in Chapter 3. Briefly, Srb10

phosphorylates the CTD prior to the formation of a stable pre-initiation

complex. Temporal regulation of the phosphorylation event is critical, as
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phosphorylation is associated with elongation. Presumably, promoter

proximal repressors can activate SrblO, which then phosphorylates the CTD

prematurely causing local repression (Hengartner et al., 1998).

Srb7, Medi, Med2, Med4, Med7, Med8, Med9, Med1l, Cse2, Nuti, Nut2,

Gal, Hrsl, Rgrl and Sin4 proteins define another sub-complex in the

mediator and holoenzyme. This complex was defined by limited urea

denaturation / immuno-precipitation of mediator subunits under conditions

that remove the dominant Srb subcomplex from the holoenzyme (Lee and

Kim, 1998; Lee et al., 1997). GALiI, HRS1, RGR1, MED 1, MED2 and SIN4 are

similar because deletions and mutations in these genes produce overlapping

positive and negative effects on gene expression (Balciunas et al., 1999; Covitz

et al., 1994; Fassler and Winston, 1989; Gustafsson et al., 1997; Jiang et al., 1995;

Jiang and Stillman, 1992; Jiang and Stillman, 1995; Li et al., 1995; Nishizawa et

al., 1990; Piruat et al., 1997; Suzuki et al., 1988; Yu and Fassler, 1993).

Holoenzyme preparations produced from strains with deletions in one of

these genes are missing all six proteins, suggesting that there are physical

interactions between these six proteins (Gustafsson et al., 1997; Li et al., 1995).

Mediator preparations from a med2A strain increase basal in vitro

transcription and stimulate the TFIIH kinase Kin28, but fail to restore

activator dependent transcription. Suggesting that Med2 has a specific role in

activator dependent transcripton. Whole genome transcript analysis of the

med2 deletion strain showed 200 genes increased more then two-fold and 200

genes decreased more than two-fold demonstarting that Med2 has a broad
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range of functions (Myers et al., 1999). CSE2, MED11, NUTI, and have

activator specific defects when depleted from purified holoenzyme, but again

their phenotypes suggest that they have important positive and negative

functions (Gustafsson et al., 1998; Han et al., 1999; Tabtiang and Herskowitz,

1998; Xiao et al., 1993).

Mammalian homologues of SRB/mediator proteins have been

identified and are found associated with pol II holoenzyme preparations.

hSrb7 was the first mammalian Srb homologue to be cloned and antibodies

raised against it were used to purify a mammalian holoenzyme (Chao et al.,

1996; Maldonado et al., 1996). Srb1O and Srb11 homologues, Cdk7/CyclinC,

were also cloned and can be found in other mammalian holoenzyme

preparations (Cho et al., 1998; Pan et al., 1997) and mediator complexes (Gu et

al., 1999; Sun et al., 1998; Xiao et al., 1999). Med6, Med7, Rgrl, and Nut2

homologues were discovered after peptide sequencing mammalian

preparations of mediator (Gu et al., 1999; Jiang et al., 1998; Lee et al., 1997;

Myers et al., 1998; Ryu et al., 1999; Sun et al., 1998). Two mediator like

complexes, CRSP and SMCC, also contain several thyroid hormone receptor

coactivator proteins called TRAPs (Gu et al., 1999; Ryu et al., 1999).

SWI/SNF complex is an ATP-dependent nucleosome remodeling

machine comprised of 11 protein subunits. The protein subunits are

Snf2/Swi2, Swil, Swi3, Snf5, Snf6, Snf11, Arp9, Arp7, Swp73, Swp82 and Anc

(Cairns et al., 1998; Cairns et al., 1996; Cairns et al., 1994; Cairns et al., 1996;

Cote et al., 1994; Peterson et al., 1994; Peterson et al., 1998; Treich et al., 1995).
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The Snf and Swi proteins were originally cloned in screens used to identify

genes required for sucrose metabolism, SUC2 gene expression (Neigeborn and

Carlson, 1984), and mating type switching, HO gene expression (Stern et al.,

1984). Mutant SWI/SNF genes all have similar phenotypes resulting from

activator dependent transcriptional defects at multiple promoters in vivo

(Carlson and Laurent, 1994; Laurent and Carlson, 1992; Laurent et al., 1993;

Laurent et al., 1991; Laurent et al., 1990; Peterson and Herskowitz, 1992;

Yoshinaga et al., 1992). Hirschhorn et. al. were the first to directly demonstrate

that SWI/SNF proteins functioned by antagonizing the repressive chromatin

structure at promoters (Hirschhorn et al., 1992).

Soon after, SWI/SNF protein complexes were purified from yeast

(Cairns et al., 1994; Cote et al., 1994), and mammals (Imbalzano et al., 1994;

Kwon et al., 1994; Wang et al., 1996; Wang et al., 1996). SW12/SNF2, the

largest subunit of the SWI/SNF complex, is a DNA stimulated ATPase

(Laurent et al., 1993) required for nucleosome remodeling (Cote et al., 1994).

In vitro SWI/SNF is capable of altering the nucleosome such that the DNA is

more accessible to DNA binding proteins and endonucleases (Cote et al., 1994;

Imbalzano et al., 1994; Kingston et al., 1996; Kwon et al., 1994; Utley et al.,

1996). Interesting, even after the removal of SWI/SNF complex, the

remodeled nucleosome is stable (Cote et al., 1998; Imbalzano et al., 1996; Lorch

et al., 1998; Owen-Hughes et al., 1996; Schnitzler et al., 1998). This remodeled

nucleosome appears to be larger and can be converted back to its original
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form by re-addition of the nucleosome remodeling complex and ATP (Lorch

et al., 1998; Schnitzler et al., 1998).

The SWI/SNF complex is required for activator dependent

transcription at some promoters that have repressive chromatin structure,

however it is unclear how Swi/Snf becomes targeted to those promoters

(Burns and Peterson, 1997; Hirschhorn et al., 1992; Peterson and Herskowitz,

1992; Ryan et al., 1998; Yoshinaga et al., 1992). Measurements of Swi/Snf's

catalytic activity demonstrate that the complex remodels one nucleosome

every four minutes (Logie and Peterson, 1997). Too slow, considering its low

cellular abundance, if its effects were due to random remodeling of

nucleosomes. SWI/SNF also binds DNA but this activity is nonspecific and

does not appear to regulate its nucleosome remodeling activity (Quinn et al.,

1996). Co-immunoprecipitation experiments suggests that the glutacorticoid

activator suggest that it interacts with SWI/SNF proteins, although this

interaction could be indirect and mediated through other proteins (Yoshinaga

et al., 1992). The discovery that SWI/SNF is a component of the RNA

polymerase II holoenzyme provides a simple model to explain how

SWI/SNF becomes targeted to promoters, especially those that require the

local remodeling of nucleosomes (Struhl, 1996; Wilson et al., 1996).

Other ATP-dependent chromatin remodeling complex have also been

purified from yeast as well as other organisms. Mammalian SWI/SNF

complexes have been purified that have two ATPase subuntits, hBrm and

Brgl (Imbalzano et al., 1994; Kwon et al., 1994). Peptide sequencing of the Brgl
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associated factors (BAFs) has shown that many of the proteins resemble yeast

SWI/SNF components indicating that the complex has been conserved

throughout evolution (Armstrong et al., 1998; O'Neill et al., 1999; Wang et al.,

1996; Wang et al., 1996; Zhao et al., 1998). Recently it has been discovered that

the human SWI/SNF complex is subject to cell-cycle regulation (Muchardt et

al., 1996; Sif et al., 1998). Phosphorylation, possibly of Brgl and hSwi3, and

proteolytic destruction of hBrhm inactivates the nucleosome remodeling

activity during G2-M phase of the cell-cycle (Sif et al., 1998).

The yeast RSC complex is a paralogue of the SWI/SNF complex that is

more abundant in yeast cells and, like human SWI/SNF, appears to be cell

cycle regulated (Cairns et al., 1996; Cao et al., 1997; Du et al., 1998). Two RSC

subunits are shared with the SWI/SNF complex (Arp7 and Arp9).

Interestingly, they are actin related proteins with ATPase motifs, and could

have chaperone like activities (Cairns et al., 1998; Peterson et al., 1998).

Three complexes, all containing the ISWI ATPase, have been purified

from Drosophila extracts. NURF, CHRAC and ACF are unique complexes,

each having distinct protein subunit composition (Ito et al., 1997; Tsukiyama

et al., 1995; Tsukiyama and Wu, 1995; Varga-Weisz et al., 1997). All three

have nucleosome remodeling activity derived from ISWI, however, CHRAC

and ACF, can also assemble nucleosomes into appropriately spaced

chromatin (Ito et al., 1997; Tsukiyama et al., 1995; Tsukiyama and Wu, 1995;

Varga-Weisz et al., 1997). NURF was identified as a factor that promots

GAGA binding to nucleosomal templates (Tsukiyama et al., 1994) and can
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increase transcriptional output in vitro from chromatin templates

(Mizuguchi et al., 1997). Recently, a human ISWI homologue, hSWF2h, was

found as a subunit of RSF, a nucleosome remodeling complex, involved in

transcriptional activation that also can assemble chromatin (LeRoy et al.,

1998).

A novel nucleosome remodeling complex has been identified that

contains histone deacetylase activity. Several labs have found that the Chd3 /

Chd4 proteins, which have ATPase domains similar to Swi2/Snf2, are

associated in complexes with the histone deacetylases HDAC1 and HDAC2.

This complex, NRD/NURD/NuRD, can modestly increase its nucleosome

deacetylation activity in the presence of ATP, indicating that nucleosome

remodeling can enhance deacetylation (Tong et al., 1998; Xue et al., 1998;

Zhang et al., 1998).

Targeted histone acetylation is thought to increase promoter

accessibility and subsequently the frequency of transcription initiation;

fortuitously many transcriptional coactivators have been discovered that are

histone actetyltransferases (reviewed in (Brownell and Allis, 1996; Grunstein,

1997; Imhof and Wolffe, 1998; Struhl and Moqtaderi, 1998; Workman and

Kingston, 1998). The SAGA complex contains a subset of the Ada proteins,

Spt proteins and Taf11 proteins that have each been implicated in transcription

regulation (Grant et al., 1997; Grant et al., 1998). ADAs were identified and

cloned as genes that suppress toxicity associated with activator overexpression

(Berger et al., 1990; Berger et al., 1992). GCN5 was found in this screen as an
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ADA (Marcus et al., 1994). It was thought that the Ada proteins were

coactivators, a bridging complex between the activator and the transcription

machinery. SPTs, when mutated, alter the preferential start site for

transcription, suppressing strains that have Ty insertions in reporter genes

(Simchen et al., 1984; Winston and Carlson, 1992; Winston et al., 1984).

Disruption of GCN5, the subunit of SAGA with acetyltransferase catalytic

activity (Brownell and Allis, 1995; Brownell et al., 1996; Kuo et al., 1996; Wang

et al., 1997), results in pleitropic transcriptional defects in vivo (Gregory et al.,

1998; Kuo et al., 1998; Wang et al., 1998; Wang et al., 1997). In vitro, targeted

histone acetylation by SAGA, as well as other acetyltransferase complexes, can

enhance activator directed transcription (Steger et al., 1998; Utley et al., 1998).

Several Taf proteins are found in the SAGA complex and, intriguingly,

the largest subunit of TFIID, hTaf250/yTafl5O also has histone

acetyltransferase activity (Mizzen et al., 1996). TFIID and Tafs were originally

characterized as coactivators, and thought to be generally required for

regulated transcription (Dynlacht et al., 1991; Sauer et al., 1996). However,

experiments using yeast temperature sensitive mutations as well as in vitro

transcription experiments using extracts depleted for Tafs, indicate that TFIID

is not generally required for activated transcription (Apone et al., 1996;

Holstege et al., 1998; Moqtaderi et al., 1996; Oelgeschlager et al., 1998; Walker et

al., 1996; Walker et al., 1997). The TFIID subunits shared with SAGA are

required at many promoters in vivo suggesting that the two complexes have

overlapping functions required for acetylation activity or transcription at
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most promoters (Apone et al., 1998; Holstege et al., 1998; Michel et al., 1998;

Moqtaderi et al., 1998; Natarajan et al., 1998). Interestingly, many of these

shared Tafs are structurally similar histone proteins (Birck et al., 1998;

Hoffmann et al., 1996; Xie et al., 1996). A mammalian complex containing the

histone acetyltransferase PCAF has been purified and it, like the yeast SAGA

complex, has Taf protein subunits (Ogryzko et al., 1998). These findings argue

that the functional activity of TFIID and SAGA is evolutionarily conserved.

Several other histone acetylases are also transcriptional coactivators.

P300 and CBP are acetyltransferases that were discovered as coactivaors for

CREB (Bannister and Kouzarides, 1996; Janknecht and Hunter, 1996; Ogryzko

et al., 1996). Mutations in the catalytic domain of CBP and p300 remove

coactivator activity in vivo for CREB as well as HIV-tat (Martinez-Balbas et

al., 1998; Marzio et al., 1998). These complexes acetylate other proteins besides

histones, including: p53 (Gu and Roeder, 1997; Gu et al., 1997), GATA-1 (Boyes

et al., 1998), EKLF (Zhang and Bieker, 1998), TFIIE and TFIIF (Imhof and

Wolffe, 1998; Imhof et al., 1997). ACTR is another acetyltransferase that acts

in conjunction with CBP and p300 to enhance transcriptional activation by

steroid receptors.

Targeted deacetylation of promoter proximal nucleosomes can repress

transcription (Hassig and Schreiber, 1997). HDAC1/2 are histone deacetylases

and were purified and cloned using the deacetylase inhibitor trapoxin

(Taunton et al., 1996). Several studies show that recruiting HDAC1/2 or the

yeast deacetylase Rpd3 to promoters can repress transcription. The
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deacetylases do not interact directly with DNA bound repressors, instead they

associate with Sin3 protein which acts as an intermediary, interacting with

DNA binding repressor proteins like proteins pRB, Ume6, Mad/Max, methyl-

CpG binding protein (Brehm et al., 1998; Hassig et al., 1997; Kadosh and

Struhl, 1997; Laherty et al., 1997; Luo et al., 1998; Magnaghi-Jaulin et al., 1998;

Nan et al., 1998; Zhang et al., 1997; Zhang et al., 1998). Chromatin immuno-

precipitation experiments have demonstrated that the deacetylation of lysine

5 on histone H4 appears to be critical for repression (Rundlett et al., 1998).

39



Personal contributions to this work

When I joined the lab in the summer of 1994 there was great interest

in the RNA polymerase II holoenzyme. Much of the energy focused around

the unidentified components of holoenzyme and possible mechanisms of

transcriptional regulation through the CTD. Within the Young lab, the SRB

genes had been cloned and genetically characterized. Tony Koleske had

purified an Srb complex which later turned out to be the RNA polymerase II

holoenzyme. And Craig Thompson, using an SRB4-ts allele, was completing

in vivo experiments demonstrating that RNA polymerase II holoenzyme is

utilized at nearly all promoters in vivo.

At that time David Chao was using GST-CTD columns to purify SRB

containing complexes. The complexes were extremely similar to mediator

preparations purified in the Kornberg lab using the anti-CTD monoclonal

antibody 8WG16. Before I arrived in the lab, David had taken eluates from

the GST-CTD column, injected them into rabbits and made antibodies

directed against CTD binding proteins.

I collaborated with David and using these antibodies screened a kYES

protein expression library made from yeast genomic DNA. Out of 10 million

plagues screen, I identified, cloned and sequenced 82 positive plaques. Two

genes were repeatedly cloned, they were HRS1 an SWI2/SNF2.
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I obtained antibodies directed against both of these proteins as well as

antibodies against Snf5, Snf6, Swi3 and Snf11 from the labs of Craig Peterson,

Brehon Laurent, Marian Carlson and Andres Aguilera. Using recombinant

proteins that I had made (Snf2, Snf5 and Snf6) and that I had received (Hrsl) I

performed quantitative western blots using holoenzyme prepared by Tony

Koleske and David Chao. I found that all of the SWI/SNF proteins were

present and at levels approximately equal to that of Srb5, the standard used in

the experiment. Hrsl was present at the lowest stoichiometry at 4-8 times less

abundant than Srb5.

Finding that Swi/Snf proteins were present in the holoenzyme

directed further experiments. In the fall of 1995, the Kingston, Green and

Peterson labs had all isolated Swi/Snf complexes, that had ATP-dependent

chromatin remodeling activity. These results were extremely exciting

because Swi/Snf had previously been described as a transcription co-activator.

We collaborated with Bob Kingston and his lab, specifically Tony Imbalzano

and Gavin Schnitzler. We showed, using several biochemical techniques,

that RNA polymerase II holoenzyme contained Swi/Snf regulators. I

performed immuno-precipitations from a semi-purified fraction using

antibodies directed against Srb5 and Swi3. Both of these coprecipitated

several established components of the holoenzyme as well as components of

the Swi/Snf complex. We examined the elution of the holoenzyme from the

last column in the purification and found that Swi/Snf proteins as well as

nucleosome remodeling activity coellutes with pol II holoenzyme and
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transcription activity. We examined the CTD complex which David Chao

had purified and found that Swi/Snf proteins and as well as nucleosome

remodeling activity coellutes with the Srb containing complex and a

transcriptional activity. These results were novel and exciting because it was

unclear how the Swi/Snf complex was targeted to promoters and it was also

unclear how the holoenzyme might overcome nucleosome mediated

repression at promoters. These results led to a model in which the simple

association of Swi/Snf and holoenzyme could overcome both of these

obstacles.

After this, in collaboration with Jun Qin of Brian Chait's lab, David and

I tried to identify unknown CTD binding proteins using ion trap mass

spectroscopy. We scaled up the CTD binding protein preparation

approximately ten fold and using this preparation identified several proteins

including Srb4, Srb5, Rgrl and Sin4. The technique was rapid and sensitive

but identified many genes that did not appear to be associated with the CTD

in secondary western blot screening. Mass spec as well as scale up problems

were also a factor as smaller scale preparation clearly had differing protein

composition. Due to limited time availability we were only able to identify a

subset of the CTD binding proteins (see appendix A).

Following this, I became interested in the SrblO/Srbll kinase-cyclin

pair and its functional role within the holoenzyme. As the Ptashne lab had

shown, tethering a holoenzyme component to a promoter is sufficient to

activate transcription. I made DNA binding fusions between lexA and Srb1O
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and lexA and a kinase dead Srb10 mutant (Srb10-3). I found that Srb10 does

not significantly activate transcription, however, the Srb10-3 fusion does

activate transcription to levels equal to other holoenzyme component

fusions. At the same time in the lab, Christoph Hengartner and Vic Myer

had developed in vitro systems used to explore Srb10 and Kin28 function.

Christoph found that Srb10 and Kin28 have nearly identical substrate

specificity. Vic, using holoenzyme preparations with catalytically dead Srb10,

discovered that Srb10 could inhibit transcription by phosphorylating the CTD.

Interestingly, this inhibition was only seen when the CTD was

phosphorylated before polymerase entered the pre-initiation complex. Our

data led to the model in which Kin28 is the general CTD kinase, but Srb10

specifically represses transcription by phosphorylating the CTD before PIC

formation. CTD phosphorylation can therefore have opposite effects

determined by timing of CTD kinase activity.

Presented in Appendix B is a technique developed by myself and Peter

Murray, a postdoctoral fellow in the Young Lab, that increases the time and

efficiency of mammalian targeting vector construction. This project grew out

of lunchtime conversations, as Peter was looking for a better way to make

mouse knockouts. I made critical plasmids and developed protocols essential

for the production of the targeting vectors. Peter then went on to make IL-

1ORx and IL-lORP knockout cassettes and is in the process of making mice

deficient for the IL-10 receptor loci.
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Table I.

Factor Gene Size Essential? Features References

RPBl
RPB2
RPB3
RPB4
RPB5
RPB6
RPB7
RPB8
RPB9
RPBIO
RPB11
RPB12

TFBI
TFB2
TFB3
TFB4
RAD3
SSL1
SSL2/RAD25
KIN28
CCLI

TFA 1
TFA2

192 kDa
139 kDa

35 kDa
25 kDa
25 kDa
18 kDa
19 kDa
17 kDa
14 kDa

8 kDa
14 kDa

8 kDa

73 kDa
59 kDa
32 kDa
37 kDa
90 kDa
52 kDa
95 kDa
35 kDa
45 kDa

Y
Y
Y
N
Y
Y
Y
Y
N
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y

55 kDa Y
37 kDa Y

SSUI/TFG1 82 kDa Y
TFG2 47 kDa Y
ANCI/TFG3 27 kDa N

SUA7

SRB2
SRB4
SRB5
SRB6
SRB7

SRB8
SRB9
SRBIO
SRB1I

MEDI
MED2
MED4
MED6
MED7
MED8
MED11

CSE2
GALII
NUTI
NUT2
PGDI
ROX3
RGRI
SIN4

Heptapeptide repeat

Shared with Poll, II, III
Shared with Poll, II, III

Shared with Poll, II, III

Shared with Poll, II, III

Shared with Poll, 11, 111

Nucleotide excision repair
Nucleotide excision repair
Nucleotide excision repair

DNA Helicase
Nucleotide excision repair
DNA Helicase
Cyclin dependant CTD kinase
Kin28 cyclin pair

Shared with TFIID and TFIH

38 kDa Y

23 kDa N
78 kDa Y
34 kDa N
14 kDa Y
16 kDa Y

166 kDa
160 kDa

63 kDa
38 kDa

64 kDa
48 kDa
32 kDa
33 kDa
26 kDa
25 kDa
15 kDa

17 kDa
120 kDa
129 kDa

18 kDa
47 kDa
25 kDa

123 kDa
111 kDa

N
N
N
N

N
N
Y
Y
Y
Y

N
N
N
Y
N
Y
Y
N

Cyclin dependant CTD kinase
Srb1O cyclin pair

XTC1 27 kDa N

SWII
SWI2/SNF2
SW13
SNF5
SNF6
SNFI1
ARP9
ARP7
SNF12
SWp82p
ANCI/TFG3

148 kDa
194 kDa

93 kDa
103 kDa

38 kDa
19 kDa
53 kDa
54 kDa
64 kDa

- 82 kDa
27 kDa

N
N
N
N
N
N
Y/N
Y/N
N

N

DNA dependant ATPase

Actin related
Actin related

Shared with TFIID and TFIIH

RNA Polymerase Il Young and Davis, 1983; Ingles et al, 1984; Allison et al., 1985
Sweetser et al., 1987
Kolodziej and Young, 1989
Woychik and Young, 1989
Woychik et al., 1990
Woychik et al., 1990
Woychik et al., 1993a
Woychik et al., 1990
Woychik et al., 1991
Woychik and Young, 1990
Woychik et al., 1993b
Treich et al., 1992

Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997
Feaver et al., 1997

Feaver et al., 1994
Feaver et al., 1994

Henry et al, 1994
Henry et al, 1994
Henry et al, 1994

Pinto et al., 1992

Nonet and Young, 1989; Koleske et al., 1992; Koleske and Young, 1994
Thompson et al, 1993; Koleske and Young, 1994
Thompson et al, 1993; Koleske and Young, 1994
Thompson et al, 1993; Koleske and Young, 1994
Hengartner et al., 1995

Hengartner et al., 1995
Hengartner et al., 1995
Liao et al., 1995
Liao et al., 1995

Balciunas et al., 1999
Myers et al., 1998
Myers et al., 1998
Myers et al., 1998
Myers et al., 1998
Myers et al., 1998
Gustafsson et al., 1998

Gustafsson et al., 1998
Li et al., 1996; Barberis et al., 1996
Gustafsson et al., 1998
Gustafsson et al., 1998
Myers et al., 1998
Gustafsson et al., 1997
Li et al., 1996
Li et al., 1996

Emili et al., 1998

Cairns et al., 1994; Cote et al., 1995
Cairns et al., 1994; Cote et al., 1995
Cairns et al., 1994; Cote et al., 1995
Cairns et al., 1994; Cote et al., 1995
Cairns et al., 1994; Cote et al., 1995
Treich et al., 1995
Cairns et al., 1994; Cote et al., 1995; Cairns et al., 1998; Peterson et al., 1998
Cairns et al., 1994; Cote et al., 1995; Cairns et al., 1998; Peterson et al., 1998
Cairns et al., 1996A
Cairns et al., 1994; Cote et al., 1995
Cairns et al., 1996B

TFIIH

TFHE

TFIIF

TFIIB

Srbs

Meds

Cse2
Galil
Nuti
Nut2
Pgdl
Rox3
Rgrl
Sin4

Xtc1

SWI/SNF
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Chapter 2

RNA polymerase II holoenzyme contains SWI/SNF regulators involved in

chromatin remodeling
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Summary

The RNA polymerase II holoenzyme contains RNA polymerase II, a

subset of general transcription factors and SRB regulatory proteins. We

report here that SWI and SNF gene products, previously identified as global

gene regulators whose functions include remodeling chromatin, are also

integral components of the yeast RNA polymerase II holoenzyme. The

SWI/SNF proteins are components of the SRB complex, also known as the

mediator, which is tightly associated with the RNA polymerase II CTD. The

SWI/SNF components provide the holoenzyme with the capacity to disrupt

nucleosomal DNA, which may thus facilitate the stable binding of various

components of the transcription initiation complex at promoters.
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Introduction

Regulation of class II genes involves a complex interplay among gene-

specific activators and cofactors, the general transcription apparatus, and

chromatin. Gene-specific activators bind to promoters and stimulate

transcription, at least in part, by binding and recruiting the general

transcription apparatus (Chen et al., 1994; Hengartner et al., 1995; Ingles et al.,

1991; Lin et al., 1991; Xiao et al., 1994; reviewed in Tjian and Maniatis, 1994;

Sheldon and Reinberg, 1995; Emili and Ingles, 1995; Carey, 1995). Chromatin

structure can affect the transcriptional activity of genes by blocking access of

the transcription apparatus to promoters (Knezetic and Luse, 1986; Bresnick

and Felsenfeld, 1993; Felsenfeld, 1992; Lorch et al., 1988; Workman and

Roeder, 1987). The SWI and SNF proteins are global regulators that function

by antagonizing repression mediated by nucleosomes, altering chromatin

structure to facilitate binding of the transcription apparatus (Cote et al., 1994;

Hirschhorn et al., 1992; Imbalzano et al., 1994; Kwon et al., 1994; reviewed in

Carlson and Laurent, 1994; Peterson and Tamkun, 1995; Winston and

Carlson, 1992). It is not yet clear how the SWI/SNF proteins are targeted to

promoters, although some gene-specific activators may interact directly with

these proteins (Yoshinaga et al., 1992) .

Genetic and biochemical studies in yeast indicate that the form of the

transcription initiation apparatus generally responsible for mRNA synthesis
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in vivo is an RNA polymerase II holoenzyme (Barberis et al., 1995;

Hengartner et al., 1995; Kim et al., 1994; Koleske and Young, 1994; Thompson

and Young, 1995; reviewed in Carey, 1995; Emili and Ingles, 1995; Koleske and

Young, 1995). This megadalton-sized complex contains RNA polymerase II,

general transcription factors, and additional components called SRB

regulatory proteins. The SRB proteins are a hallmark of the holoenzyme.

The genes encoding the nine known SRB (.uppressor of RNA polymerase B)

proteins were identified through a selection for factors involved in

transcription initiation by RNA polymerase II in vivo, and all are required

for normal yeast cell growth. Essentially all of the SRB protein in cells is

tightly associated with the holoenzyme while approximately 80% of RNA

polymerase II and general transcription factors are found independent of this

complex (Koleske and Young, 1995) . Experiments with temperature-

sensitive SRB mutants indicate that the RNA polymerase II holoenzyme is

the form of the transcription initiation apparatus employed at the majority of

class II promoters in vivo (Thompson and Young, 1995) . Other experiments

have shown that recruiting a component of the SRB complex to promoters,

presumably in association with the holoenzyme, suffices to obtain activated

levels of transcription in vivo (Barberis et al., 1995) .

The yeast SWI genes were first identified as positive regulators of HO

transcription (Stern et al., 1984), and SWII, SWI2, and SWI3 were later

shown to be required for the activation of a broad spectrum of inducible genes

in vivo (Peterson and Herskowitz, 1992; Yoshinaga et al., 1992). Similarly, the
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SNF genes were originally identified as positive regulators of SUC2

(Neigeborn and Carlson, 1984), and SNF2, SNF5, and SNF6 were subsequently

found to be essential for activation of a diverse set of inducible genes (Laurent

and Carlson, 1992; Laurent et al., 1991; Peterson and Herskowitz, 1992).

Further study revealed that SWI2 and SNF2 are the same gene. Genetic

evidence indicated that the SWI and SNF genes are involved in similar

processes in gene activation (Carlson and Winston, 1992). Indeed, the

discovery that SWI1, SWI2/SNF2, SWI3, SNF5, SNF6 and SNF11 proteins

copurify in a large complex confirmed that the SWI/SNF gene products

function together (Cairns et al., 1994; Cote et al., 1994; Peterson et al., 1994;

Treich et al., 1995). Genetic and biochemical evidence implicated the

SWI/SNF proteins in chromatin remodeling via nucleosome disruption

(Cairns et al., 1994; Cote et al., 1994; Hirschhorn et al., 1992; Peterson et al.,

1994).

Several lines of evidence led us to investigate whether SWI and SNF

proteins are components of the RNA polymerase II holoenzyme, and

furthermore, whether SWI/SNF proteins are components of the SRB-

containing protein complex that is tightly associated with the CTD in the

holoenzyme. First, genetic evidence suggests a functional relationship

between the SWI and SNF gene products and the CTD. Strains containing

mutations in SWI genes exhibit a large number of defects similar to those due

to a truncation of the RNA polymerase II CTD (Nonet et al., 1987; Peterson

and Herskowitz, 1992; Peterson et al., 1991). In addition, the CTD and the
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SWI/SNF gene products show similar genetic interactions with mutations in

SINi and SIN2, genes that encode chromatin associated proteins (Peterson

and Herskowitz, 1992; Peterson et al., 1991). Second, the SRB gene products

have functional and physical interactions with the RNA polymerase II

carboxyl terminal repeat domain (CTD) (Koleske and Young, 1995), which has

been implicated in the response to activators in yeast and mammalian cells

(Allison and Ingles, 1989; Gerber et al., 1995; Scafe et al., 1990). Third, the

holoenzyme appears to be responsible for initiating transcription of most, if

not all, class II genes in yeast, and the SWI and SNF gene products are

required for transcriptional induction of a large number of genes in vivo

(Thompson and Young, 1995; Peterson et al., 1991). Finally, there are perhaps

a dozen polypeptides in purified yeast RNA polymerase holoenzyme that

have yet to be identified.

We report here that the yeast RNA polymerase II holoenzyme contains

SWI2/SNF2, SWI3, SNF5 and SNF11. The SWI/SNF proteins are

components of the SRB complex, also known as the mediator, which is

tightly associated with the RNA polymerase II CTD. Both the holoenzyme

and the SRB/SWI/SNF complex have ATP-dependent nucleosome

disruption activities previously ascribed to the SWI/SNF complex. In

addition, the holoenzyme facilitates the binding of TBP to nucleosomal DNA

in an ATP-enhanced manner.
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Results

Anti-SRB and anti-SWI antibodies coprecipitate holoenzyme

SRB regulatory proteins are found tightly and exclusively associated

with other components of the RNA polymerase II holoenzyme in cell

extracts. If SWI and SNF proteins are subunits of the RNA polymerase II

holoenzyme, then antibodies against SRB5 should precipitate both the

holoenzyme and SWI/SNF proteins from crude extracts. The results in

Figure 1 show that this is indeed the case. SWI2/SNF2, SWI3 and SNF5

proteins coprecipitate with holoenzyme obtained through SRB5

immunoprecipitation. The fraction of SWI and SNF proteins

immunoprecipitated from the crude extract appears to be the same as that of

the SRB proteins. Control proteins introduced into the crude lysate did not

coprecipitate, indicating that the immunoprecipitate was specific for the

holoenzyme. When the immunoprecipitation experiment was carried out

with antibody against SWI3, essentially identical results were obtained

(Figure 1). The SWI/SNF and SRB proteins were immunoprecipitated from

the crude extract with similar efficiency whether the immunoprecipitating

antibody used was directed against SRB5 or SWI3. A control experiment with

antibody against TGFP failed to precipitate SWI/SNF or SRB proteins. These

results indicate that SRB and SWI/SNF proteins are tightly associated with

one another.
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Purified holoenzyme contains SWI/SNF proteins

The immunoprecipitation results led us to investigate whether SWI

and SNF proteins are components of purified yeast RNA polymerase II

holoenzyme. Antibodies against selected SWI and SNF proteins were used to

determine whether these proteins coelute with the RNA polymerase II

holoenzyme in the final purification step of the holoenzyme. The data in

Figure 2A demonstrate that SNF2/SWI2, SNF5, SWI3 and SNF11 proteins

coelute with other known components of the holoenzyme and with

transcription activity.

The holoenzyme contains stoichiometric amounts of RNA polymerase

II, SRB proteins, and general transcription factors. To ascertain whether the

SWI/SNF proteins are stoichiometric components of the holoenzyme, the

amounts of SNF2 and SNF5 were estimated by Western blot analysis with

various amounts of recombinant proteins as standards (Figure 2B). These

data indicate that the purified RNA polymerase II holoenzyme contains

approximately equimolar amounts of SNF2, SNF5 and SRB5, the latter being

a standard against which other holoenzyme components have previously

been compared (Koleske and Young, 1994). Since yeast cells contain between

2000 and 4000 molecules of RNA polymerase II holoenzyme, it appears that

there are at least this number of SWI2/SNF2 and SNF5 molecules per cell.

SWI/SNF proteins are components of CTD-binding SRB complexes
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Genetic evidence indicates the SRB regulatory proteins and the RNA

polymerase II C-terminal domain (CTD) have related functions in

transcription initiation, and that these involve the response to

transcriptional regulators (Allison et al., 1988; Gerber et al., 1995; Scafe et al.,

1990; Koleske and Young, 1995). Since the SWI and SNF proteins are also

involved in activation of a wide variety of genes, and mutations in SWI and

SNF genes can produce phenotypes similar to those observed with mutations

in SRB genes, we investigated whether SWI and SNF proteins are associated

with the SRB complex. The SRB protein complex can be released from the

holoenzyme when the latter is treated with monoclonal antibodies against

the CTD, and this preparation has been called mediator (Kim et al., 1994). We

previously prepared a mediator complex according to Kim et al. (1994),

confirmed that it has the coactivator activity described by these investigators,

and showed that the mediator contains all of the SRB proteins (Hengartner et

al., 1995). When this mediator preparation was assayed for the presence of

SNF2/SWI2, SNF5 and SWI3 proteins by Western blot, all three SWI/SNF

proteins were found (Figure 3).

The SRB complex can also be isolated from crude extracts using a

recombinant CTD column (Thompson et al., 1993). An SRB complex was

purified extensively by using a recombinant GST-CTD column, followed by

chromatography with mono S and mono Q columns (Figure 4A). The SRB,

SWI, and SNF proteins bind to a GST-CTD column, but not to a control GST

column, indicating that they bind specifically to the CTD (Figure 4B). Sliver
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stain and western blot analysis confirm that a multiprotein complex

containing SRB proteins and each of the three SWI/SNF proteins assayed

comigrate from the mono Q column (Figure 4C and 4D). There are

approximately 25 polypeptides in this complex and several correspond in size

to previously identified SRB, SWI, and SNF proteins (Figure 5). No signals

were obtained when western blots containing the SRB/SWI/SNF complex

were probed with antibodies against RNA polymerase II, TBP, TFIIB, or the

TFBI subunit of TFIIH (data not shown). These results indicate that the SRB

complex is in fact an SRB/SWI/SNF complex and furthermore, that the SWI

and SNF proteins interact with the holoenzyme, at least in part through their

association with RNA polymerase II CTD.

Nucleosome disruption activity in holoenzyme and SRB/SWI/SNF complex

Previous evidence that SWIl, SWI2, SWI3, SNF5, SNF6, and SNF11

gene products can be isolated as a large multisubunit complex capable of

altering nucleosome structure led us to investigate whether the purified

RNA polymerase II holoenzyme and the SRB/SWI/SNF complex were able

to alter nucleosome structure. Mononucleosome particles were reconstituted

from purified histone octamers and a DNA fragment containing two copies

of an artificial phasing sequence (Shrader and Crothers, 1989). Digestion of

the mononucleosomes with DNAse I showed a 10 bp cleavage ladder typical

of a rotationally phased nucleosome (Figure 6). Fractions in the last

chromatographic step in the purification of the holoenzyme were mixed with
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mononucleosomes and assayed for the ability to alter nucleosome structure,

which can be visualized by changes in the accessibility of the nucleosome to

DNAse I cleavage. Figure 6A demonstrates that a nucleosome disruption

activity coeluted with the RNA polymerase holoenzyme. The ability of the

SRB/SWI/SNF complex to alter nucleosome structure was assayed in a

similar experiment using fractions from the last step in the SRB/SWI/SNF

purification (Figure 6C). The results show that nucleosome disruption

activity coeluted with the SRB/SWI/SNF complex. Further analysis of the

RNA polymerase II holoenzyme and SRB/SWI/SNF complex showed that

the nucleosome disruption activity was ATP dependent (Figures 6B and 6D),

as was previously shown for purified SWI/SNF complexes (Cote et al., 1994;

Imbalzano et al., 1994; Kwon et al., 1994). In addition, purified core RNA

polymerase II showed no nucleosome alteration capability (data not shown).

These data indicate that the SRB/SWI/SNF complex contributes chromatin

remodeling activity to the RNA polymerase II holoenzyme.

Purified holoenzyme and the SRB/SWI/SNF complex disrupts plasmid

chromatin. To further characterize the nucleosome-disruption capabilities

of the holoenzyme and the SRB/SWI/SNF complex we employed a

supercoiling reduction assay (Figure 7). In this assay chromatin is assembled

onto a relaxed closed-circular plasmid which is subsequently purified by

glycerol gradient centrifugation. Each assembled nucleosome introduces

approximately one negative supercoil to the plasmid, which can be resolved

90



by agarose gel electrophoresis after the removal of histones. When no

protein is added to the nucleosome-assembled plasmid, it is highly

supercoiled. Fractions from the last column of the holoenzyme purification

(Figure 2A) were tested for their ability to disrupt nucleosome structure and

thereby reduce supercoiling in the presence of added Topoisomerase I. As can

be seen in Figure 7A, this activity coelutes with holoenzyme transcription

activity, with the SRB and SWI/SNF proteins (Figure 2A), and with

nucleosome-core disruption activity (Figure 6A). The supercoiling-reduction

activity was dependent on ATP (Figure 7A, compare fraction 61 + and - ATP),

as has been shown for the human SWI/SNF complex (Kwon et al., 1994)

Repeating the experiment using fractions from the last column of the

SRB/SWI/SNF complex shows that this complex also has an ATP-dependent

supercoiling-reduction activity (Figure 7B).

Holoenzyme facilitates the binding of TBP to nucleosomes.

Previous work has shown that both yeast and human SWI/SNF

complexes can facilitate transcription factor binding to nucleosomal DNA

containing the relevant factor binding site (Cote et al, 1994; Imbalzano et al,

1994; Kwon et al, 1994). We tested whether the holoenzyme could increase

the binding of TBP to a mononucleosome containing a TBP binding site.

With holoenzyme and ATP present, TBP and TFIIA bound to the

mononucleosome at TBP concentrations of 4 x1O-6M (Figure 8A, lane 7),
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while no TBP/TFIIA binding was observed in the absence of holoenzyme

(Figure 8A, lane 6).

This holoenzyme-facilitated TBP binding might be caused by the

stabilizing effects of the additional protein-protein and protein-DNA

interactions that occur in the presence of RNA polymerase and general

transcription factors, by the ATP dependent nucleosome disruption effects of

SWI/SNF, or by a combination of both effects. To address this issue, we tested

whether facilitated TBP binding was ATP dependent and observed partial

protection of the TATA region on the mononucleosome when ATP is

withheld or when ATPyS is used instead of ATP (Figure 8B, lanes 4 and 6).

However, addition of ATP enhanced the TBP binding as indicated by the

increased protection from DNAse I cleavage over the TATA box, the

extension of the footprint in the 5' direction, and the appearance of a

hypersensitive band in the 3' direction (Figure 8B, lane 5). Thus, it appears

that the holoenzyme can partially stabilize binding of TBP and TFIIA to a

mononucleosome in the absence of ATP. However, the full effect of

holoenzyme-facilitated TBP binding requires ATP, presumably because it

involves the ATP-dependent nucleosome disruption activity of the

SWI/SNF proteins.
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Discussion

The RNA polymerase II holoenzyme contains SWI and SNF gene

products, previously identified as global gene coactivators. The SWI and SNF

proteins are components of an SRB/SWI/SNF complex, also known as the

mediator, which is tightly associated with the RNA polymerase II CTD. Both

the holoenzyme and the SRB/SWI/SNF complex have nucleosome

disruption activities previously ascribed to the SWI/SNF complex. In

addition, the holoenzyme facilitates the binding of TBP to nucleosomal DNA

in an ATP-enhanced manner.

Diverse transcriptional activators require SWI/SNF function in vivo

Mutations in SWIL, SW12/SNF2, SWI3, SNF5, and SNF6 cause a

substantial reduction in the ability to activate transcription of a wide variety

of well-studied genes in yeast cells, including HO (Stern et al., 1984), SUC2

(Neigeborn and Carlson, 1984), Ty (Happel et al., 1991), INOl (Peterson et al.,

1991), and ADHI and ADH2 (Peterson and Herskowitz, 1992; Taguchi and

Young, 1987). For example, ADHI and SUC2 gene expression is reduced by

about an order of magnitude in strains in which SWIl, SWI2 or SWI3 have

been deleted (Peterson and Herskowitz, 1992). Experiments with reporter

constructs have revealed that the SWI and SNF gene products are required

for normal responses to a variety of gene-specific activators in yeast such as
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GAL4, Drosophila ftz, mammalian glucocorticoid and estrogen receptors, and

LexA-GAL4 and LexA-Bicoid fusion proteins (Peterson and Herskowitz, 1992;

Laurent and Carlson, 1992; Yoshinaga et al., 1992).

Ptashne and colleagues have shown that recruiting a component of the

SRB complex to promoters, presumably in association with the holoenzyme,

suffices to obtain activated levels of transcription in vivo (Barberis et al.,

1995; M. Ptashne, personal communication). Thus, evidence that LexA

fusions with SWI2/SNF2, SNF5, SNF6 and SNF11 proteins are sufficient to

activate transcription of a target gene in vivo (Laurent et al., 1990; Laurent et

al., 1991; Treich et al., 1995) might now be interpreted in terms of holoenzyme

recruitment to the target promoter.

We propose that recruitment of the holoenzyme to a specific promoter

in vivo provides a means to facilitate TBP binding, regardless of the

nucleosome structure at that promoter. The holoenzyme can enhance

binding of TBP and TFIIA to a mononucleosome in vitro in the absence of

ATP (Figure 8), a result compatible with evidence that the polymerase and

general transcription factor components of the holoenzyme provide

additional protein-protein and protein-DNA interactions that should

stabilize TBP binding (Buratowski, 1994). Holoenzyme-facilitated TBP

binding to a mononucleosome is greater in the presence of ATP, which

presumably reflects the ATP dependent nucleosome disruption activity of the

SWI/SNF proteins. These observations are consistent with the idea that
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SWI/SNF protein function is necessary at the subset of promoters whose

chromatin structure is particularly restrictive for TBP binding.

SWI/SNF in the holoenzyme accounts for previous genetic observations

The presence of SWI/SNF proteins in the RNA polymerase II

holoenzyme and the observation that these proteins are components of a

subcomplex that interacts with the RNA polymerase II CTD explains several

previous observations. SWI/SNF proteins are necessary for transcription

activation of many genes in yeast cells (reviewed in Winston and Carlson,

1992; Carlson and Laurent, 1994; Peterson and Tamkun, 1995); CTD truncation

adversely affects the response to activators in yeast and mammalian cells

(Allison and Ingles, 1989; Scafe et al., 1990; Gerber et al., 1995). Cells with

RNA polymerase II CTD truncation mutations, cells with certain SRB

mutations, and cells with SWI1, SW12 or SW13 mutations exhibit remarkably

similar phenotypes (Peterson and Herskowitz, 1992; Thompson et al., 1993;

Hengartner et al., 1995). The association of the SRB/SWI/SNF complex with

the CTD accounts for the observation that cellular defects due to CTD

mutations and SWI mutations can be alleviated by mutations in SINi and

SIN2, which encode an HMG1-related protein and histone H3, respectively

(Kruger and Herskowitz, 1991; Peterson et al., 1991; Peterson and Herskowitz,

1992).

SRB/SWI/SNF complex is associated with the RNA polymerase II CTD
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The SRB/SWI/SNF complex is tightly associated with the RNA

polymerase II CTD. Independent attempts to purify various SRB proteins by

column chromatography have always led us to purify the same multiprotein

complex: the RNA polymerase II holoenzyme (Koleske and Young, 1994;

Koleske et al., 1995; Hengartner et al., 1995; Liao et al., 1995). Only very small

amounts of SRB protein can be detected that is not associated with the

holoenzyme. Two different methods have been described which permit

partial purification of an SRB subcomplex. An SRB complex can be isolated

using a CTD affinity column (Thompson et al., 1993) or by releasing it from a

holoenzyme preparation by using monoclonal anti-CTD antibodies (Kim et

al., 1994). Because neither of these preparations is homogeneous, we further

purified the SRB complex obtained by CTD-affinity chromatography (Figure

4). The SRB and SWI/SNF proteins coelute in the final step of the

purification.

We also found that the SRB complex isolated by anti-CTD antibody

release contains SWI and SNF proteins. Kim et al. (1994) demonstrated that

reconstitution of the holoenzyme's response to activators required the

presence of a subcomplex that could be isolated from holoenzyme with anti-

CTD antibodies, which contained SRB2, 4, 5, and 6, and was called the

mediator of activation. Our own studies with the mediator, which was

purified precisely as described by Kim et al. (1994) and has chromatographic

and transcriptional properties identical to those originally described for this

subcomplex, revealed that it contained all nine of the known SRB proteins
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(Hengartner et al., 1995). Thus, the mediator preparation and the SRB

complex obtained by CTD-affinity chromatography contain very similar, if

not identical, complexes.

We have shown that the RNA polymerase II holoenzyme, and its

SRB/SWI/SNF subcomplex, contains SWI2/SNF2, SWI3, SNF5, and SNF11.

Although we do not have direct biochemical evidence that SWIl and SNF6

are present in the holoenzyme, other genetic and biochemical data indicate

that it is highly likely that SWIl and SNF6 are also subunits of these

complexes (Cairns et al., 1994; Cote et al., 1994; Laurent and Carlson, 1992;

Laurent et al., 1991; Peterson and Herskowitz, 1992).

Are there multiple SWI/SNF complexes?

Large multisubunit complexes containing yeast SWI and SNF proteins

have been purified to varying extents (Cairns et al., 1994; Cote et al., 1994;

Peterson et al., 1994). Characterization of two of these preparations by

Western analysis did not reveal the presence of SRB proteins (Peterson et al.,

1994; Cairns et al., 1994). This suggests that the purification procedures

employed in these studies separated the SRB and SWI/SNF proteins or that

SWI/SNF complexes can exist independent of the holoenzyme.

Since SWI2/SNF2 and SNF5 are stoichiometric components of the

holoenzyme, and yeast cells contain 2000 - 4000 molecules of RNA

polymerase II holoenzyme, there are at least 2000 molecules of SWI2/SNF2

and SNF5 molecules per cell. Based on their SWI/SNF complex purification,
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Cote et al. (1994) estimated that there are between 50 and 150 copies of the

SWI/SNF complex in yeast cells. One interpretation of these results is that

most SWI/SNF protein resides in the RNA polymerase II holoenzyme, and

the form of SWI/SNF complex purified by Cote et al. (1994) is the small

amount of SWI/SNF protein that is in the process of assembly into

holoenzyme or, alternatively, it represents a subcomplex that can be

dissociated from the holoenzyme.

The ability to immunoprecipitate very similar holoenzyme complexes

from crude yeast fractions using anti-SRB and anti-SWI antibodies suggests

that most of the SWI/SNF protein in these fractions is associated with the

holoenzyme. If the SRB and SWI/SNF proteins were in separate complexes,

then the relative ratios of SRB and SWI/SNF proteins would differ in the

anti-SRB and anti-SWI immunoprecipitates. However, the similar relative

ratios of SRB and SWI/SNF proteins found in immunprecipitates obtained

with anti-SRB and anti-SWI antibodies (Figure 1) indicates that the SRB and

SWI/SNF proteins are components of the same complex in the crude extract.

SWI/SNF function is highly conserved in eukaryotes

SWI/SNF proteins and their functions appear to be highly conserved

in eukaryotes. Putative homologues of SNF2/SWI2 include Drosophila

brahma and human hbrm and hBRG1, which have been cloned and

implicated in transcriptional regulation (Tamkun et al., 1992; Khavari et al.,

1993; Muchardt and Yaniv, 1993). A mammalian homologue of SNF5, called
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INI1, has also been cloned (Kalpana et al., 1994). A human SWI/SNF

complex has been partially purified which has nucleosome disruption

activities similar to those of the yeast SWI/SNF complex (Imbalzano et al.,

1994; Kwon et al., 1994). The human SWI/SNF complex contains both

hBRG1 and INI1 proteins (Kalpana et al., 1994; G.S., unpublished results), as

would be expected based on the yeast results. Like the yeast SWI/SNF

complex, the human SWI/SNF complex facilitates the binding of activators

to nucleosomal DNA.
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Implications for mechanisms involved in transcriptional activation

The presence of the SRB/SWI/SNF subcomplex in the RNA

polymerase II holoenzyme has implications for the mechanisms involved in

transcription activation in vivo. Dynamic competition between chromatin

proteins and an activator for a specific DNA site could be resolved in favor of

the activator once the SWI/SNF-containing holoenzyme was recruited to the

promoter. In this model, the activator and the holoenzyme both contribute

to stable transcription initiation complex formation; the activator recruits the

holoenzyme by binding to a subset of its components and the SWI/SNF

components of the holoenzyme enhance the stability of the activator-DNA

interaction by destabilizing nucleosomes. This model is attractive because it

provides a simple solution to the question of how SWI/SNF proteins are

brought to promoters and it accounts for the coactivating and nucleosome

disruption activities observed in vivo and in vitro for the SWI and SNF

proteins.
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Experimental Procedures

Immunoprecipitations

All immunoprecipitations were done as described (Hengartner et al.,

1995). Briefly, 50 pl of the DEAE(400) fraction was diluted 1:4 with modified

transcription buffer (MTB) (50 mM HEPES KOH pH 7.3, 100 mM potassium

acetate, 25 mM MgAc, 5 mM EGTA, 1pM DTT, 10% glycerol, 0.01% NP-40, 1

mM PMSF, 2mM benzamidine, 2 pM pepstatin A, 0.6 pM leupeptin, and

2pg/ml chymostatin) minus the postassium acetate. 4 pg of ovalbumin, 4 pg

HA-GST, and 2 pg BSA were added to each reaction prior to the addition of

antibody. 0.4 pg of affinity purified u-SRB5, -0.15 pg of affinity purified a-

SWI3, or 1.5 pg of affinity purified a-TGF were added to the respective

reactions and allowed to incubate 2 hours at 4*C. 15 pl of goat anti-rabbit

covalently linked to magnetic beads (Dynal) were then added and incubated

for 1 hour at 4'C with constant agitation. Beads were precipitated with a

magnet and washed three times in 200 pl MTB buffer. The final wash

contained no NP-40. Proteins were eluted of the magnetic beads by boiling in

20 pl of sample buffer.

Western Blotting

All Western blots were performed as described (Koleske and Young,

1994). Proteins were detected with the following antibodies: SRB2, 4, 5, 6
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(Thompson et al., 1993), SRB8, 9 (Hengartner et al., 1995), SRB1O, 11 (Liao et

al., 1995), SWI2/SNF2, SNF5 (gift of B. Laurent), SWI3 (gift of C. Peterson),

SNF11 (gift of I. Treich and M. Carlson), TFIIEo and TFIIE3 (C.J.W. and R.A.Y.

unpublished). Quantitative Western blots were performed as described

(Koleske and Young, 1994). Recombinant standards were SRB5 (Thompson

and Young, 1995), GST-SNF2/SWI21256-1703 and GST-SNF51-193 (gifts of B.

Laurent). GST proteins were purified as described (Smith and Johnson, 1988).

Concentrations of recombinant proteins were determined using a

colorimetric assay (BioRad) with bovine serum albumin as a standard.

Purification of holoenzyme and mediator

Holoenzyme was purified as described (Koleske and Young, 1994).

Transcription assays for holoenzyme were done as described (Koleske and

Young, 1994) . Mediator was purified as described (Hengartner et al., 1995).

SRB/SWI/SNF Complex Purification

Whole cell extract was prepared from Red Star Yeast as described

(Thompson et al., 1993). 1.2 L of the ammonium sulfate pellet was

centrifuged for 30 minutes at 5,000 RPM. in an RC3B centrifuge (Sorvall).

The pellet was resuspended in 900 ml of Buffer A (20 mM K-Hepes pH 7.6 1

mM EDTA 1 mM DTT 20% glycerol, and protease inhibitors (Thompson et

al., 1993). The suspension was centrifuged again for 30 minutes at 5,000 RPM.

in an RC3B centrifuge (Sorvall). The supernatant was mixed with 200 g (dry)
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of BioRex 70 and stirred for 20 minutes. The suspension was packed into a

column with a 5 cm diameter and washed with 1.5 1 of Buffer A + 100 mM

KOAc. Bound proteins were eluted with Buffer A + 600 mM KOAc.

Fractions containing protein were pooled, frozen in liquid nitrogen and

stored at -70'C until use. Eluates from 2 BioRex columns (320 ml, 1.0 g

protein) were thawed and pooled. 320 ml of Buffer A + 2% Triton X-100 were

added and the mixture was centrifuged for 30 minutes at 12,000 RPM. in a

GSA rotor (Sorvall). The supernatant was loaded onto a 15 ml CTD affinity

column prepared as described (Thompson et al., 1993) at a flow rate of 200

ml/hr. The column was washed with 100 ml of Buffer A + 300 mM KOAc +

1% Triton X-100, 100 ml or Buffer A + 300 mM KOAc. Bound proteins were

eluted with Buffer A + 300 mM KOAc + 1 M Urea at a flow rate of 25 ml/hr.

Fractions containing protein (3.7 mg) were pooled, frozen in liquid nitrogen,

and stored at -70'C. The CTD column was equilibrated with Buffer A + 300

mM KOAc + 1% Triton X-100 and the flow through was loaded again. The

column was washed and eluted as before. Fractions containing protein (1.8

mg) were pooled, frozen in liquid nitrogen, and stored at -70'C. The CTD

eluates were pooled, diluted with 1.5 volumes of Buffer A + 0.01% NP-40, and

centrifuged for 10 minutes at 17,000 RPM. in an SS-34 rotor (Sorvall). The

supernatant was loaded onto a Mono S HR 5/5 (Pharmacia) at a flow rate of

0.3 ml/min. The column was washed with 3 ml of Buffer A + 120 mM KOAc

+ 0.01% NP-40. Bound proteins were eluted with a 20 ml gradient of Buffer A

+0.01% NP-40 from 120 mM to 1000 mM KOAc. Fractions were frozen in
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liquid nitrogen and stored at -70'C until use. Fractions containing SRB4 and

SRB5 as assayed by Western blotting were pooled and diluted with 2 volumes

of Buffer B (20 mM Tris OAc pH 7.6 + 20% glycerol + 1 mM DTT + 0.01% NP-

40 + protease inhibitors). The mixture was centrifuged for 5 minutes in a

microcentrifuge. The supernatant was loaded onto a Mono Q HRR 5/5

column (Pharmacia) at a flow rate of 0.3 ml/min. The column was washed

with 1 ml of Buffer B + 200 mM KOAc. Bound proteins were eluted with a 40

ml gradient of Buffer B from 200 mM to 2000 mM KOAc. The yield of SRB

complex was approximately 100 pg. 1 pl of each fraction was analyzed by

silver staining. 7.5 pl - 10 pl of each fraction were analyzed by Western

blotting.

Nucleosomal Disruption and Facilitated Transcription Factor Binding Assays

The PH MLT (figure 6) or PH MLT(+3) (figure 8) restriction fragments

were assembled into rotationally phased mononucleosome particles, purified

by glycerol gradient centrifugation, and assayed as described (Imbalzano et al,

1994). At the nucleosome concentrations and reaction conditions employed

in this and previous studies, nucleosomes were determined to be stable on

the basis of resistance to micrococcal nuclease, the appearance of a 10 bp repeat

pattern upon DNAse I digestion, and exhibition of reduced mobility upon

electrophoresis in native polyacrylamide gels. We have not observed the

appearance of free DNA due to nucleosome dissociation in any of our

experiments.
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In Figure 6 holoenzyme fractions were the same as those used in Fig

IA. In Fig 6A, 0.3 pl of each fraction was assayed in the presence of 4 mM

ATP For the titration of holoenzyme, 0 pl, 0.015 pl, 0.05 pl, 0.15 pl, and 0.5 p1

of fraction 60 was used respectively with and without 4 mM ATP as indicated.

SRB/SWI/SNF fractions were the as those used in Fig 3C and 3D. In Fig 6C,

1.7 pl of each fraction was assayed in the presence of 4 mM ATP. For the

titration in Fig 6D, 0 pl, 0.07 pl, 0.2 pl, 0.7 pl, and 2.0 pl of fraction 24 was used

respectively with and without 4 mM ATP as indicated.

For Figure 8 binding of yTBP and yTFIIA to nucleosomes containing

the PH MLT(+3) restriction fragment was performed as previously described

(Imbalzano et al, 1994). In figure 8A, all reactions contained 4 mM ATP.

Following a 30 minute incubation at 300 C in the presence or absence of

holoenzyme (as indicated), increasing amounts of yTBP in the presence of

yTFIIA were added. TBP concentrations were 0 (lanes 1, 3, 10), 0.04

micromolar (lanes 2, 4, 9), 0.4 micromolar (lanes 5, 8), and 4 micromolar

(lanes 6, 7). 1.5 micromolar yTFIIA was also added to all reactions. In figure

8B, reactions were treated with holoenzyme, alone (lanes 2,4), in the presence

of 4 mM ATP (lanes 3,5) or in the presence of 4 mM ATPyS (lane 6) for 30

minutes at 300 C, followed by addition of 4 micromolar yTBP in the presence

of 1.5 micromolar yTFIIA.

Recombinant yTBP was purified as described (Hoey et al, 1990), except

that the heparin peak was further purified on a Mono S HR5/5 FPLC column
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(Pharmacia). Recombinant yTFIIA was purified as described (Ranish et al,

1992).

Supercoiling Reduction Assay

Plasmid chromatin was assembled and purified as described (Kwon et

al., 1994). Reactions, total volume 12.5 pl, contained chromatin (2ng DNA), 1

U Topoisomerase I (Promega), 2.5 pl -30% Glycerol Gradient Buffer, 7 pI

Buffer A minus KCl, 7 mM MgCl2, 50-100 mM KOAc (final), 4 mM ATP

where indicated, and 2 pl holoenzyme mono S fractions or 1 pl

SRB/SWI/SNF complex mono Q fractions. Reactions were stopped after 90

minutes at 30'C by addition of 6 pl stop buffer (3% SDS, 100mM EDTA, 50

mM Tris HCl pH 8.0, 25% Glycerol, 2 mg/ml proteinase K). Reactions were

incubated for 90 minutes at 370 and resolved on a 2% agarose gel (50 mM Tris-

Phosphate pH 7.3, 1mM EDTA) for 40 hrs, at 40V. Gels were dried and

exposed to film.
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Figure 1 Immunoprecipitation of RNA polymerase II holoenzyme from

crude extracts using anti-SRB5 and anti-SWI3 antibodies.

Immunoprecipitations were from a crude DEAE fraction prepared as

described in Hengartner et al. (1995). Immunoprecipitations were carried out

with affinity-purified antibodies against SWI3, SRB5, or TGFp. Ovalbumin

and HA-tagged GST were added to each reaction prior to precipitation to

serve as controls for specific immunoprecipitation. 1/50 of the Onput and

Flow Through, and 1/5 of the Final Wash and Eluate were subjected to SDS-

PAGE and analyzed by Western blot using specific antibodies.
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Figure 2 SWI/SNF proteins are components of purified RNA polymerase II

holoenzyme.

(A) RNA polymerase II holoenzyme eluted from a Mono S column, the last

chromatographic step in the purification procedure (Koleske and Young,

1994), was analyzed for transcriptional activity and for the presence of SRB

and SWI/SNF proteins by Western blot.

(B) Quantitative western blots used to determine the relative amounts of

SRB5 and SWI/SNF proteins in the holoenzyme. Known amounts of

recombinant GST-SNF2/SWI21256-1703, GST-SNF51-193 and SRB5 were

subject to SDS-PAGE and Western blot analysis along with 2.5 pl and 0.5 pI of

purified holoenzyme. There are similar levels of SNF2/SWI2, SNF5 and

SRB5 in the purified holoenzyme Previous studies have shown that RBP1

and other SRB proteins are equimolar in purified holoenzyme (Koleske and

Young, 1994).

110



A
Mono S Fractions

55 57 59 61 63 65 67 69

Transcription

Holoenzyme
Components

. d to W. --

dw q..

- - -dm

RPBI

SRB2

SRB5

SRB9

SNF2/SWI2

SNF5

SWi3

SNFI1

SWVSNF
Components

B
Purified Quantitation

Holoenzyme Standards

I |I

5x lx 0.1 0.5 2.5
SNF2/SWI2 -

GST-SNF2/SW12 -

SNF5 -

GST-SNF5 -a

SRB5 -

pmol

'



Figure 3 SWI/SNF proteins are present in mediator purified using 8WG16

monoclonal antibodies.

Mediator was western blotted along with holoenzyme and core polymerase

and probed for the presence of SWI/SNF proteins. The mediator preparation

was previously assayed (Hengartner et. al., 1995) and shown to have all

transcriptional activities previously described (Kim et. al., 1994).
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Figure 4 An SRB/SWI/SNF complex purified using CTD-affinity

chromatography.

(A) Schematic diagram of the purification.

(B) SRB, SWI, and SNF proteins bind specifically to a GST-CTD column.

Western blot analysis of proteins eluted from a GST column and from a GST-

CTD column. TFIIE was a negative control for specific retention, as it does

not bind GST or GST-CTD.

(C) Silver stain of fractions across the final mono Q column.

(D) Western blot analysis of SRB and SWI/SNF proteins across the final

mono Q column.
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Figure 5 Components of the RNA polymerase holoenzyme and the

SRB/SWI/SNF complex

(A) Silver stain of purified RNA polymerase II. Bands which correspond in

size to RNA polymerase core subunits, SRB, SWI and SNF proteins, and

general transcription factor IIB, IIF, and IIH subunits are indicated.

(B) Silver stain of the SRB/SWI/SNF complex. Bands which correspond in

size to SRB, SWI, and SNF proteins are indicated.
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Figure 6 An ATP-dependent nucleosomal disruption activity coelutes with

the holoenzyme and the SRB/SWI/SNF complex.

(A) Fractions from the last column of holoenzyme purification (Figure 2A)

were assayed for nucleosomal disruption. The peak of nucleosomal

disruption activity is in fractions 59-63, coincident with the peak of

transcriptional activity.

(B) Purified RNA polymerase II holoenzyme (fraction #60) was titrated for

activity with and without 4 mM ATP, as indicated.

(C) Fractions from the final column of the SRB/SWI/SNF complex

purification (Figure 4) were assayed for nucleosomal disruption. The peak of

nucleosomal disruption activity is in fractions 23 and 24, which is also where

the bulk of SRB and SWI/SNF proteins elute.

(D) The SRB/SWI/SNF complex (fraction #24) was titrated for activity with

and without 4 mM ATP, as indicated.
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Figure 7 The holoenzyme and the SRB/SWI/SNF complex reduce the

superhelical density of chromatin assembled plasmids in an ATP-dependent

manner.

Fractions from the last column of holoenzyme purification (A) and from the

last column of SRB/SWI/SNF complex purification (B) were assayed in the

presence of 4 mM ATP. Peak fractions of purified holoenzyme and

SRB/SWI/SNF complex were assayed with and without 4 mM ATP present

as described in experimental procedures. The symbols "o", "*" and "x"

indicate nicked circular plasmid DNA, linear DNA, and highly supercoiled

circular DNA, respectively.
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Figure 8 Holoenzyme facilitates binding of yeast TBP and yeast TFIIA to a

nucleosome containing a TATA box in an ATP enhanced manner.

(A) Increasing amounts of yTBP in the presence of yTFIIA and 4 mM ATP

were tested for the ability to bind to a TATA box containing nucleosome with

and without holoenzyme present.

(B) Nucleosomes were incubated with and without holoenzyme, 4 mM ATP

or 4 mM ATPyS, yTBP and yTFIIA, as indicated.
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Chapter 3

Temporal regulation of RNA polymerase II by SrblO and Kin28

cyclin-dependent kinases
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Summary

Two cyclin-dependent kinases have been identified in yeast and

mammalian RNA polymerase II transcription initiation complexes. We find

that the two yeast kinases are indistinguishable in their ability to

phosphorylate the RNA polymerase II CTD, yet in living cells one kinase is a

positive regulator and the other a negative regulator. This paradox is

resolved by the observation that the negative regulator, SrblO, is uniquely

capable of phosphorylating the CTD prior to formation of the initiation

complex on promoter DNA, with consequent inhibition of transcription. In

contrast, the TFIIH kinase phosphorylates the CTD only after the

transcription apparatus is associated with promoter DNA. These results

reveal that the timing of CTD phosphorylation can account for the positive

and negative functions of the two kinases and provide a model for SrblO-

dependent repression of genes involved in cell type specificity, meiosis, and

sugar utilization.
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Introduction

Cyclin-dependent kinases (CDKs), originally described as cell cycle

regulators, also have roles in transcription (reviewed in Dynlacht, 1997). Two

distinct cyclin-dependent kinases are associated with eukaryotic RNA

polymerase II transcription initiation complexes (Liao et al., 1995; Maldonado

et al., 1996; Pan et al., 1997; Scully et al., 1997). The yeast kinase Kin28, and it's

mammalian homologue Cdk7, are subunits of the general transcription factor

TFIIH, which phosphorylates RNA polymerase II subsequent to formation of

the pre-initiation complex (PIC) on promoter DNA (Feaver et al., 1994; Roy et

al., 1994; Serizawa et al., 1995; Shiekhattar et al., 1995). Yeast Srb1O, and it's

mammalian homolog Cdk8, are subunits of the RNA polymerase II

holoenzyme, but their functions are not yet understood (Liao et al., 1995;

Maldonado et al., 1996; Pan et al., 1997; Scully et al., 1997).

The C-terminal domain (CTD) of the large subunit of eukaryotic RNA

polymerase II (pol II) contains a repeated heptapeptide which is

phosphorylated in a portion of pol II molecules in the cell (Cadena and

Dahmus, 1987; Kolodziej, et al., 1990; reviewed in Dahmus, 1996). Several

lines of evidence indicate that PIC formation involves RNA polymerase II

molecules with unphosphorylated CTDs, and that these molecules become

phosphorylated during or after the transition to active elongation. The form

of pol II found in holoenzymes lacks phosphate on its CTD (Koleske and
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Young, 1994; Kim et al., 1994). The unphosphorylated form of pol II

preferentially assembles into a PIC reconstituted with purified transcription

factors (Bartholomew et al., 1986; Laybourn and Dahmus, 1990; Lu et al., 1991;

Chesnut et al., 1992; Usheva et al., 1992; Kang et al., 1993; Maxon et al., 1994).

Since the phosphorylated CTD has a role in recruiting the mRNA capping

enzyme to the nascent transcript, and mRNA capping occurs soon after

promoter clearance (Coppola et al., 1983; Cho et al., 1997; McCracken et al.,

1997a; McCracken et al., 1997b; Yue et al., 1997), CTD phosphorylation most

likely occurs during the transition from transcription initiation to elongation.

pol II molecules in the midst of elongation contain CTDs which are highly

phosphorylated (Bartholomew et al., 1986; Cadena and Dahmus, 1987; Weeks

et al., 1993; O'Brien et al., 1994).

The TFIIH kinase is apparently responsible for CTD phosphorylation

subsequent to PIC formation (Laybourn and Dahmus, 1990; Ohkuma and

Roeder, 1994; Akoulitchev et al., 1995; reviewed in Dahmus, 1996).

Consistent with such a role, TFIIH has been found as one of two CTD kinases

stimulated by the viral transactivator Tat (Parada and Roeder, 1996; Garcia-

Martinez et al., 1997; Cujec et al., 1997). The HIV-1 Tat protein enhances

transcription elongation by interacting with either TFIIH or P-TEFb CTD

kinases to stimulate CTD phosphorylation (reviewed in Jones, 1997;

Yankulov and Bentley, 1998). Loss-of-function mutations in the yeast TFIIH

kinase subunit cause a general defect on class II transcription in vivo
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(Cismowski et al., 1995; Valay et al., 1995), confirming the positive role in

transcription inferred from in vitro studies.

RNA polymerase II holoenzymes have been purified from yeast and

mammalian cells which contain a second CDK implicated in CTD

phosphorylation. Genes encoding the Srb1O kinase, and its cyclin partner

Srb11, were initially identified in a yeast genetic screen designed to reveal

factors involved in CTD function; subsequent analysis revealed that their

protein products copurify with the other SRB proteins in the RNA

polymerase II holoenzyme (Nonet and Young, 1989; Liao et al., 1995).

Holoenzymes with a catalytically inactive Srb1O subunit have substantially

reduced CTD kinase activity, suggesting that Srb1O is a CTD kinase (Liao et al.,

1995), but this has yet to be directly demonstrated. Mammalian Cdk8 and

cyclin C are apparently homologues of Srb1O and Srbll, as they share strong

sequence similarity and are both found in mammalian holoenzymes

(Maldonado et al., 1996; Pan et al., 1997; Scully et al., 1997; D. Chao and R.

Young, unpublished data).

While the function of the TFIIH kinase has been thoroughly studied,

the function of Srb1O is poorly understood. It is clear, however, that yeast

Kin28 and Srb1O CDKs are not functionally redundant. Substantial genetic

and biochemical evidence indicates that Kin28 plays an essential, general and

positive role in transcription. In contrast, the evidence suggests that Srb1O is

essential for regulation of a subset of genes which are involved in cell type

specificity (Wahi and Johnson, 1995), meiosis (Surosky et al., 1994), and sugar
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utilization (Kuchin et al., 1995). How Srb1O contributes to the regulation of

these important genes is not yet clear.

Here we describe evidence that the two holoenzyme CDKs are

indistinguishable in their ability to phosphorylate the CTD, yet in living cells

Kin28 functions as a positive regulator and Srb1O as a negative regulator. The

different regulatory consequences appear to be due to the fact that the Srb1O

kinase is able to phosphorylate the CTD prior to holoenzyme binding to

promoter DNA, with consequent inhibition of transcription. In contrast,

Kin28 is active only after PIC formation, and plays a positive role through

CTD phosphorylation. These results support a novel model for

transcriptional regulation in which the negative and positive roles of the two

kinases, which act on the same substrate, are a consequence of the time at

which they are activated. This model describes how Srb1O contributes to

repression of yeast genes involved in cell type specificity, meiosis, and sugar

utilization.
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Results

Srb1O is a negative regulator of transcription in vivo

The Srb1O gene was identified in a genetic screen designed to reveal

genes whose products interact functionally with the RNA polymerase II

carboxy-terminal domain (CTD) (Liao et al., 1995). Cells containing a CTD

truncation mutation exhibit conditional lethality, and extragenic suppressors

(SRBs) were identified which restore the ability of these cells to grow at the

nonpermissive temperature (reviewed in Koleske and Young, 1995). We

have found that the suppressing phenotype of the srb1O-1 allele, the original

recessive suppressor obtained in the selection, can be duplicated by altering a

single amino acid residue in Srb1O which is critical for its kinase function

(srblO-3; SrblO(D290A)) or by deleting the entire SRB1O gene (srblOAl) (Figure

1 A). The observation that loss-of-function mutations in SRB1O can restore

viability to yeast cells with a CTD truncation indicates that the Srb1O kinase

normally has a negative role in transcription in vivo.

The effect of SRB10 mutations on yeast cells with a spectrum of CTD

truncation mutations (Figure IB) supports a negative role for Srb1O in

transcription. We previously demonstrated that progressive truncation of

the RNA polymerase II CTD produced cells with increasingly severe growth

phenotypes, and that these phenotypes were due to functional defects rather

than reduced stability of the pol II molecules (Nonet et al., 1987; Scafe et al.,

1990). The phenotypes exhibited by each of eighteen different strains, which
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differ only in pol II CTD length, were classified into three categories:

nonviable (N) strains which failed to grow under any condition, conditional

lethal (C) strains which were cold sensitive, and viable (V) strains which

exhibited essentially wild-type growth phenotypes. The wild-type SRB10 gene

was replaced with the srblO-1 or the srb1OA1 allele, and the growth

phenotypes of these cells were examined. The results, summarized in Figure

1B, demonstrate that the loss of Srb1O function restores full viability to CTD-

mutants which exhibited conditional lethal phenotypes in the presence of

wild-type Srb1O kinase activity. In addition, the loss of Srb1O function rescues

N15 cells, which were inviable with wild-type Srb1O. Thus, the loss of this

putative CTD kinase increases the viability of cells whose pol II molecules

have shortened CTDs. In contrast, the loss of Srb2 or Srb4, both positive

acting transcription factors, decreases the viability of these cells (Figure 1B).

These results provide strong evidence that Srb1O is a negative regulator of

transcription in vivo.

An artificial holoenzyme recruitment assay (Barberis et al., 1995; Farrell

et al., 1996; reviewed in Ptashne and Gann, 1997) provides another in vivo

test of the hypothesis that Srb1O is a negative regulator. Tethering of a

holoenzyme component (such as Galil, Srb2, etc.) to a sequence specific

DNA-binding domain (LexA) is sufficient to activate transcription from a

promoter containing the appropriate upstream element, as the tethered

holoenzyme component apparently recruits the remaining transcription

apparatus to the promoter. If the kinase activity of Srb1O has a negative
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function in vivo, a mutation which eliminates kinase activity but does not

alter the ability of the protein to interact with the holoenzyme should be a

better artificial activator than its wild-type counterpart because it would

recruit holoenzyme as efficiently as its wild-type counterpart, but would have

no inhibitory effect on transcription (Figure 2A). Strains were constructed

which contain the LexA DNA binding domain fused with either the wild-

type Srb1O sequence or the SrblO(D290A) sequence. The D290A mutation

renders Srb1O protein catalytically inactive but fully capable of being

incorporated into the holoenzyme (Liao et al., 1995). The results of the

experiment (Figure 2B) demonstrate that LexA-Srb1O has substantially less

activity in artificial recruitment than LexA-SrblO(D290A). This result

supports the model that the Srb1O kinase is a negative regulator of

transcription in vivo.

CTD Phosphorylation by Srb1O and Kin28 CDKs

Although two CDKs have been identified in yeast and mammalian

holoenzyme preparations (Liao et al., 1995; Maldonado et al., 1996; Pan et al.,

1997; Scully et al., 1997), only the TFIIH kinases have been demonstrated to

phosphorylate the CTD directly (Feaver et al., 1991; Lu et al., 1992; Serizawa et

al., 1992). The Srb1O kinase has been proposed to be a CTD kinase based upon

genetic evidence for a interaction with the CTD and evidence that

holoenzyme preparations lacking Srb1O activity have substantially reduced

CTD kinase activity (Liao et al., 1995). We tested whether purified Srb1O has
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CTD kinase activity and, if so, how it compares to Kin28 CTD kinase activity.

Epitope-tagged recombinant SrblO/Srbl1 and Kin28/Ccll cyclin-dependent

kinases were expressed in a baculovirus expression system and purified in a

one-step affinity purification (Figure 3). Catalytically inactive recombinant

Srb1O(D290A)/Srbl1 and Kin28(D147A)/Ccll cyclin-dependent kinases were

also produced and purified as controls. Both Srb1O/Srb11 and Kin28/Ccll

were found to be capable of phosphorylating recombinant glutathione-S-

transferase-CTD (GST-CTD) (Figure 4A). The recombinant kinase-cyclin pairs

phosphorylated rGST-CTD and pure yeast RNA polymerase II with similar

efficiencies (data not shown). Neither kinase could phosphorylate GST alone,

calf thymus histone H1, the other kinase-cyclin pair, or general transcription

factors (GTFs) (Figure 4A and data not shown). The activity of Srb1O/Srb11

and Kin28/Ccll could be directly attributed to the highly purified kinases,

since the catalytically inactive CDK mutant kinases were unable to

phosphorylate GST-CTD at any level (Figure 4B). These results demonstrate

that Srb1O and Kin28 CDKs are both capable of phosphorylating the CTD.

Genetic evidence presented here and elsewhere (Cismowski et al., 1995;

Valay et al, 1995) indicate that Kin28 and Srb1O contribute positive and

negative functions, respectively, to transcription in vivo. We investigated

the possibility that differential phosphorylation of the CTD by the two CDKs

might account for their different functions. The amino acid residues of the

CTD phosphorylated in vitro by the two CDKs were identified by two
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dimensional thin layer chromatography. The results demonstrate that both

Srb1O and Kin28 phosphorylate serine residues (Figure 4C).

To investigate further the substrate specificity of the two CTD kinases,

a battery of synthetic peptides were used as substrates to determine which

amino acid residues in the heptapeptide consensus repeat are critical for CTD

phosphorylation (Figure 4D). The results show that the activities of Srb1O

and Kin28 on these peptide substrates are indistinguishable. Substitution of

Ser 2, Thr 4 or Ser 7 with alanine did not significantly affect the ability of the

peptide to act as a substrate for either kinase. In contrast, substitution of Ser5

with alanine led to a dramatic loss in peptide phosphorylation, suggesting

that Ser 5 is the principal phosphoacceptor in the heptapeptide repeat.

Substitutions of Tyr,, Pro 3 or Pro6 reduced phosphorylation of the synthetic

peptides, probably due to the effects such alterations have on their structure.

These results indicate that Srb1O and Kin28 CDKs are indistinguishable in

substrate specificity and activity in these CTD phosphorylation assays.

Srb1O Dependent Inhibition of Transcription In Vitro

The existence of two CDKs in the holoenzyme with similar

biochemical specificity and activity, yet opposite in vivo function, led us to

entertain the possibility that the timing of CTD phosphorylation in the

holoenzyme could determine whether the event had a negative or a positive

consequence. Although both kinases are capable of CTD phosphorylation as

purified, recombinant kinase-cyclin pairs, it is possible that they can function
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only at certain times when assembled in the holoenzyme. We therefore

considered a temporal model for the action of these kinases, in which Srb1O is

uniquely capable of CTD phosphorylation prior to initiation complex

formation by the holoenzyme, thereby repressing transcription. In contrast,

Kin28, when assembled into the holoenzyme, is capable of CTD

phosphorylation only after preinitiation complex formation, when such

activity would not interfere with transcription.

This temporal model predicts that holoenzymes with catalytically

active Srb1O should be transcriptionally inhibited when the kinase functions

prior to association with template DNA. RNA polymerase II holoenzymes

containing Kin28 and either wild-type Srb1O or catalytically inactive

SrblO(D290A) were purified in parallel and assayed for kinase and

transcriptional activities (Figure 5). The two purified holoenzymes contained

comparable amounts of Rpbl, Srb2, Srb4, Srb5, Srb1O and Kin28 (Figure 5A).

To determine whether Srb1O kinase activity can inhibit transcription by acting

prior to PIC formation, we performed an in vitro transcription experiment in

which both wild-type and mutant Srb1O containing holoenzymes were

preincubated with ATP prior to addition of template DNA, additional GTFs

and nucleoside triphosphates (NTPs) (Figure 5B). Preincubation with ATP

produced a significant inhibition of transcription with the wild-type

holoenzyme, but not with the holoenzyme lacking Srb1O catalytic activity

(Figure 5B; compare lanes 2 and 4). These data show that transcription by
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RNA polymerase II holoenzyme is inhibited when the Srb1O kinase is

allowed to function prior to PIC formation.

Pol II CTD phosphorylation was monitored in the holoenzymes that

were subjected to preincubation with and without ATP (Figure 5B). CTD

phosphorylation occurred only in holoenzymes containing catalytically active

Srb1O (Figure 5B, compare lanes 2 and 4). Kin28 is apparently not active in

the holoenzyme prior to PIC formation, because the Srb1O mutant

holoenzyme exhibits essentially no CTD phosphorylation activity during the

preincubation. The Srb10-dependent phosphorylation of the CTD was highly

efficient; most of the pol II molecules in the wild-type holoenzyme became

phosphorylated in this reaction (Figure 5B, compare lanes 1 and 2). A control

experiment confirmed the specificity of the antibodies used to detect

unphosphorylated and phosphorylated CTDs (Figure 5C). Thus, SrblO-

dependent CTD phosphorylation is coincident with repression of

transcription, a result consistent with previous evidence that formation of a

functional preinitiation complex is impaired if the pol II molecules contain

phosphorylated CTDs (Lu et al., 1991; Chesnut et al., 1992; Usheva et al., 1992;

Kang et al., 1993; Maxon et al., 1994).

The temporal model also predicts that RNA polymerase II

holoenzymes which are allowed to bind template DNA prior to addition of

nucleoside triphosphates should not be transcriptionally inhibited by Srb1O

activity. The experiment shown in Figure 5D shows that the wild-type and

Srb1O mutant holoenzymes are in fact equally active in transcription under
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these conditions, confirming the prediction. The state of CTD

phosphorylation was also assayed after the transcription reaction, revealing

that CTD phosphorylation occurs in RNA polymerase II molecules from

holoenzymes with or without functional Srb10, albeit the levels are three-

fold less in holoenzymes lacking catalytically active Srb1O kinase. These

results indicate that SrblO-independent CTD phosphorylation occurs during

the in vitro transcription reaction, as would be expected from the action of

Kin28.

We and others have found that Srb1O is critical for regulation of a

subset of genes in yeast cells, including those involved in cell type specificity

(Wahi and Johnson, 1995), meiosis (Surosky et al., 1994), and sugar utilization

(Liao et al., 1995; Kuchin et al., 1995). Srb1O is not a general repressor of

transcription, as a variety of genes are expressed normally in Srb1O mutant

cells (Surosky et al., 1994, Liao et al., 1995), and the levels of active

holoenzyme are similar in wild-type and Srb1O mutant cells (S.S.K. and R.Y.,

unpublished). The observation that Srb1O is not a general repressor of

protein-coding genes suggests that in living cells, where there is abundant

ATP, Srb1O activity in holoenzymes must be inhibited in order to prevent

constitutive inactivation of the general transcription initiation apparatus. To

test this idea, we produced nuclear extracts from wild-type and SrblO(D290A)

mutant strains and investigated whether the wild-type extract showed an

ATP-dependent inhibition of transcription prior to PIC formation. We

previously showed that the transcriptional activity in these extracts is entirely
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dependent on components of the Srb/mediator complex (Koleske et al., 1992;

Thompson et al., 1993), which are tightly associated with pol II holoenzymes

(Koleske and Young, 1994). The results, shown in Figure 6, demonstrate that

transcription in nuclear extracts is not inhibited by preincubation with ATP,

suggesting that these extracts contain an Srb1O inhibitory activity which is lost

during holoenzyme purification.
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Discussion

Yeast and mammalian RNA polymerase II holoenzymes have been

described which contain two cyclin-dependent kinases. Previous studies

established that Kin28 is a CTD kinase with a positive role in transcription,

that of producing a phosphorylated form of the enzyme which is associated

with active elongation. Genetic and biochemical evidence described here

reveals that the Srb1O kinase is a CTD kinase with a negative role in

transcription. Srb1O is uniquely capable of phosphorylating the CTD in

purified holoenzymes prior to template binding, and this phosphorylation

inhibits subsequent transcription by the holoenzyme. Srb1O does not appear

to inhibit transcription after formation of a stable preinitiation complex.

Thus, the transcription initiation apparatus can be regulated positively or

negatively via modification of the CTD, depending on the timing of the

phosphorylation event (Figure 7).

In arriving at this temporal model, we first examined the two most

obvious models which could account for differential regulation by the two

CDKs. It was possible that the Srb1O and Kin28 kinases could act on other

substrates in the transcription initiation apparatus, but we did not detect

phosphorylation of general transcription factors or histones, nor did we find

that either kinase could phosphorylate the other. It was also possible that the

two kinases phosphorylated different residues on the CTD, but our
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experiments indicate that they exhibit very similar substrate recognition and

modification behaviors. The one clear difference in behavior was the unique

ability of Srb1O to phosphorylate the pol II CTD prior to initiation complex

formation when a component of the holoenzyme. We conclude that the

temporal regulation of transcription by CDKs is an instance where a specific

phosphorylation event, carried out at different times, can produce opposite

regulatory effects in the cell.

Negative Regulation by Srb1O in vivo

Progressive truncation of the RNA polymerase II CTD produces cells

with increasingly severe growth phenotypes (Nonet et al., 1987). The greater

the truncation of the CTD, the larger the number of genes affected, accounting

for the increasingly severe growth phenotypes (Scafe et al., 1990). The SRB

genes were originally identified as suppressors of defects due to CTD

truncation. A subset of these genes, for example those encoding Srb4 and

Srb6, are essential for expression of most protein-coding genes (Thompson

and Young, 1995). In contrast, Srb8, Srb9, Srb1O and Srbll are not essential for

expression of protein coding genes generally, but are critical for normal

regulation of a subset of genes (Surosky et al., 1994; Kuchin et al., 1995; Liao et

al., 1995; Wahi and Johnson, 1995).

Genetic and biochemical evidence indicates that Srb2, Srb4, Srb5 and

Srb6 all contribute positively to holoenzyme function (Koleske and Young,

1995; Hengartner et al., 1995). For example, mutations which reduce the
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function of the Srb2, Srb4, Srb5, Srb6 or Srb7 proteins cause reduced cell

viability, and this is exacerbated in cells with CTD truncation mutations

(Koleske at al., 1992; Thompson et al., 1993; Hengartner et al., 1995). In

contrast, mutations which eliminate Srb1O or Srb11 function actually restore

viability to cells with CTD truncation mutations. This, and additional genetic

evidence, indicates that Srb1O is a negative regulator of transcription. Highly

repressed genes such as SPO13, GALl, SUC2, PHO5, and MFA2 are

derepressed in strains lacking Srb1O activity (Kuchin et al., 1995; Liao et al.,

1995; Wahi and Johnson, 1995; S.-M. L. and R. Y., unpublished). Since Srb1O

represses only a subset of genes, there must be a mechanism to activate the

kinase solely at these genes. We suggest that promoter specific factors repress

transcription at these genes by stimulating an otherwise quiescent Srb1O prior

to stable association of the holoenzyme with promoter DNA (Figure 7).

Phosphorylation of CTD by Srb1O and Kin28

Previous studies demonstrated that the kinase activity of purified

TFIIH could phosphorylate the CTD (Feaver et al., 1991; Lu et al., 1992;

Serizawa et al., 1992). Previous reports also indicated that Srb1O is involved

in CTD phosphorylation, as the SRB10 gene was identified in genetic

selection for suppressors of a CTD truncation defect, and holoenzymes with

catalytically inactive Srb1O protein have markedly reduced CTD

phosphorylation activity (Liao et al., 1995). The use of highly purified

recombinant forms of the two yeast CDKs allowed us to demonstrate that
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they phosphorylate the CTD, to identify the residues of the heptapeptide

which are modified, and to compare and contrast their activities. SrblO/Srbll

and Kin28/Ccll phosphorylate the CTD with similar efficiency and are

indistinguishable in their specificity towards recombinant full length CTD or

synthetic heptapeptide repeats, down to the specific residue they modify, Ser 5 -

These results suggest that the positive and negative regulatory functions of

the two CDKs are not due to differences in substrate specificity.

Temporal Regulation via CTD Phosphorylation

The form of pol II found in RNA polymerase II holoenzyme

preparations lacks phosphate on its CTD (Koleske and Young, 1994; Kim et al..

1994). Several experimental observations led us to postulate that the timing

of CTD phosphorylation in the holoenzyme determines whether the event

has a negative or a positive consequence. The two holoenzyme CDKs have

very similar biochemical specificity and activity, yet opposite in vivo

function. In an assay designed to measure transcriptional activity subsequent

to template binding, wild-type and SrblO(D290) mutant holoenzymes are

indistinguishable. However, previous studies have shown that the

phosphorylation state of the CTD affects PIC formation; formation of such a

complex is impaired if the pol II molecules contain phosphorylated CTDs (Lu

et al., 1991; Chesnut et al., 1992; Usheva et al., 1992; Kang et al., 1993; Maxon et

al., 1994). If one of the holoenzyme kinases phosphorylates the CTD prior to

template association, it could inhibit subsequent transcription.
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We carried out an experiment designed to identify an effect of kinase

activity in the holoenzyme prior to pre-initiation complex (PIC) formation on

template DNA. This experiment revealed that CTD phosphorylation and

transcription inhibition does occur when holoenzymes are provided with

ATP prior to template association, but only if Srb1O is catalytically active. In

contrast, Kin28 kinase activity in these holoenzymes is not evident prior to

template association, but is evident later in the transcription reaction. Thus,

the positive and negative roles of the two kinases can be attributed to the

time at which they act during the process of transcription initiation. In this

model, SrblO-dependent CTD phosphorylation prior to stable PIC formation

at specific promoters inhibits transcription initiation, accounting for the

negative regulatory activity observed for Srb1O in vivo. In contrast, Kin28

phosphorylation of the pol II CTD subsequent to PIC formation has a positive

role, that of producing the phosphorylated RNA polymerase II molecule

which recruits mRNA capping enzyme and which is associated with efficient

elongation of the nascent transcript (Cho et al., 1997; McCracken et al., 1997a;

McCracken et al., 1997b; Yue et al., 1997).

Regulation of CDKs

Cyclin-dependent kinases were first described as cell cycle regulators.

These kinases are themselves regulated in a temporal fashion through

pairing with various cyclins, through phosphorylation events which can

have positive or negative effects, and through interactions with CDK
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inhibitors. The two holoenzyme CDKs are paired with cyclin molecules, but

are not typically activated, since holoenzyme preparations contain RNA

polymerase II molecules with unphosphorylated CTDs. Furthermore, our

experiments suggest that SrblO kinase activity is inhibited in nuclear extracts.

The future identification of this CDK regulator should reveal important new

insights into the molecular mechanisms involved in regulation of cell type

specificity, meiosis, sugar utilization and other important cellular processes

under the control of Srb1O.
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Experimental Procedures

Genetic Analysis

To examine the ability of various SRB10 alleles to suppress the

conditional phenotypes caused by a truncated CTD (rpblA104), yeast strains

Z768 and Z769 (Table 1) were transformed with plasmids containing SRBJ0

(pRY2973), srb10-1 (pRY7091), srb10A1 (pRY2966), and srbl0-3 (pRY7096).

Growth conditions were assayed as described (Nonet et al., 1987).

Growth phenotype analysis of yeast cells containing CTD truncation

mutations was performed as described (Nonet et al., 1987). The various

SRB10 background strains used were N418 (SRB10), Z741 (srb10A1) and Z735

(srbl0-1) (Table 1). The viability of cells containing CTD truncations in those

backgrounds were assayed by plasmid shuffle, and surviving strains were

tested for cold sensitivity.

In Vivo Recruitment Assays

P-galactosidase assays were performed as described (Rose and Botstein,

1983). The strains are derivatives of Z719 transformed with the reporter

pSH18-34 and the appropriate LexA fusion. To make the LexA fusions,

SRB10, srbl0-3, and SRB6 open reading frames were subcloned into the LexA

fusion plasmid pEG202 (Ausubel et al., 1997).
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Recombinant CDK/cyclin Production and Purification from Insect Cells

Recombinant CDK/cyclin pairs were produced using a baculovirus

expression system. For expression of CDKs, genes for Srb1O and Kin28 were

amplified by polymerase chain reactions (PCR) and cloned into baculoviral

transfer vectors pSK277 or pSK278 (Koh et al., 1997) to produce recombinants

with FLAG epitope-tag at their N-termini. For expression of cyclins, genes for

Srb11 and Ccli were amplified by PCR and cloned into baculoviral transfer

vectors pBacPAK8 or pBacPAK9 (Clontech). PCRs were performed with Vent

DNA polymerase (New England Biolabs). All the PCR clones were verified

by DNA sequencing. Mutant CDK clones, SrblO(D290A) and Kin28(D147A),

were produced by site-directed in vitro mutagenesis (Kunkel et al., 1987)

using oligonucleotides CAAAACCTAAAGCACCAATTTT and

CCTTGCTAGACCGAAAGCTGCTACTTTTATCTG, respectively. All

mutations were verified by DNA sequencing.

Recombinant baculoviruses were generated from the recombinant

transfer plasmids containing CDKs or cyclins by cotransfection of the

plasmids with wild-type viral DNA as recommended by the manufacturer

(Clontech). Spodoptera frugiperda (Sf21) cells were coinfected with

recombinant baculoviruses expressing CDKs and their cyclin partners at a

multiplicity of infection (m.o.i.) of 5-10. The cells from 200 mL of culture

(approx. 3 x 108) were collected 60-72 hr post-infection and lysed by sonication.

The lysates were then clarified by centrifuging for 3 hr at 100,000 x g yielding

20-40 mg of total protein in 10 mL. CDK/cyclin pairs were purified from the
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lysates as described (Koh et al., 1997) using 1 mL of anti-FLAG M2 affinity gel

and 73 pg/mL of FLAG peptide in the elution buffer. Typical yields were 0.2-

0.4 % of total protein from cell lysate.

Kinase Assay

Kinase assays were performed using 1 pg of protein substrate (GST,

recombinant GST-CTD, or calf thymus histone H1) or 15 pg of synthetic CTD

peptide substrate with 100 ng of pure recombinant CDK/cyclin pairs in 15 pI

reaction containing 20 mM Hepes-KOH, pH 7.3, 10% glycerol, 2.5 mM EGTA,

15 mM magnesium acetate, 1 mM DTT, 100 mM potassium acetate, 200 pM

ATP, 10 pCi [y-32 P] ATP (NEN, 6000 Ci/mmol, 10 mCi/ml), a mixture of

phosphatase inhibitors (1 mM NaN 3, 1 mM NaF, 0.4 mM NaVO 3, 0.4 mM

Na3VO4), a cocktail of protease inhibitors (0.5 mM PMSF, 1 mM benzamidine,

1 pM pepstatin, 0.3 pM leupeptin and 1 pg/ml chymostatin) and 0.5 mg/ml of

acetylated BSA. Reactions were assembled on ice and initiated with the

addition of ATP. After 60 min at 25'C , the reactions were terminated by

adding 15 pl of Stop Buffer (2X SDS-PAGE loading buffer supplemented with

100 mM Tris-HCl, pH 6.8, and 40 mM EDTA) and then resolved by 4-20%

acrylamide gradient SDS-PAGE. The dried gels were exposed directly to

autoradiographic films.

Kinase substrates GST and GST-CTD were purified from bacteria as

described (Thompson et al., 1993) and purified calf thymus histone H1,

purchased (Boehringer Mannheim). Triple CTD heptapeptide consensus
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repeats were synthesized (Research Genetics) and were provided in the form

H-YSPTSPSYSPTSPSYSPTSPS-Amide. CTD peptide variants where one or

more amino acids of the consensus sequence have been systematically

replaced by alanine were also synthesized by Research Genetics.

Phosphoamino Acid Analysis

Using GST-CTD as a substrate, a kinase reaction was performed. After

SDS-PAGE, the samples were transferred to a PVDF membrane and the

labelled phosphorylated GST-CTD band, localized and cut out after a short

film exposure. Two-dimensional electrophoretic analysis of phosphoamino

acid content was performed subsequent to acid hydrolysis as described in

Coligan et al. (1997). The phospholabelled phosphoamino acids were

visualized by autoradiography.

Nuclear Extract Transcription

Nuclear extracts from Z719 and Z690 were prepared according to Lue et

al. (1991) with the modifications described by Liao et al. (1991), yielding a final

protein concentration of 85 and 75 mg/ml, respectively. In vitro transcription

was carried out essentially as described (Liao et al., 1991). Each reaction

contained 90 pg of Z719 protein or 120 pg of Z690 protein with 250 ng of

template.
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Transcription and Western Blot Analysis

Holoenzyme was purified according to Liao et al. (1995). In vitro

transcription reactions were performed essentially as described (Gadbois et al.,

1997) with the following modifications. Preincubations (19pl total) contained

all reaction components except TBP, TFIIE, TFIIB, nucleotides and DNA

template; ATP containing reactions were brought to a final ATP

concentration of 1mM with 100 mM stock (Pharmacia). After a fifteen

minute preincubation at room temperature, GTFs (3 pl) and NTP mix (4 pl; 5

mM ATP, CTP, 0.156 mM UTP, 0.25 mM 3'-O-Me GTP and 10 pCi [ca- 32 P] UTP

3000 Ci/mmole ) containing 100ng DNA template (pGALA) were added for a

final reaction volume of 26 pl. After allowing transcription to proceed for 30

minutes at room temperature, reactions were stopped by addition of 125 p1

stop buffer (10 mM Tris-HCl, pH 7.5, 20 mM EDTA, 2 M ammonium acetate,

and 10 pg/ml glycogen) and 150 pl isopropanol. Samples were placed on dry

ice for 10 min., microcentrifuged at 14K RPM for 10 min., pellets resuspended

in 6 pl formamide loading dyes and electrophoresed on a 4% Urea-containing

denaturing polyacrylamide gel. Gels were dried and exposed to Kodak X-AR

film at -80*C with an intensifying screen.

Samples for western blot analysis were fractionated on 5% SDS-PAGE

gels and transferred according to standard procedures. 8WG16 monoclonal

antibody (Babco) and Srb4 rabbit anti-serum were used at 1:1000, H5

monoclonal antibody (Babco) was used at 1:250. HRP-conjugated anti-mouse

(Pierce) and anti-rabbit (Amersham) secondary antibodies were used at 1:2000.
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Detection was performed by ECL according to the manufacturers directions

(Amersham).
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Table 1. Yeast Strains

Strain Alias Genotype Reference

Z768 SLY67 Mata ura3-52 his3A200 leu2-3,-112 rpblAl87::HIS3 srblOA1::hisG This study

[L14 (LEU2 CEN RPB1)]

Z769 SLY69 Mata ura3-52 his3A200 leu2-3,-112 rpblAl87::HIS3 srblOA1::hisG This study

[C6 (LEU2 CEN rpblA04)]

N418 Mata ura3-52 his3A200 leu2-3,-112 rpblAl87::HIS3 SRB10 Nonet et al., 1989

[pRP112 (URA3 CEN RPB1)J

Z741 SLY37 Mata ura3-52 his3A200 leu2-3,-112 rpblAl87::HIS3 srblOA1::hisG This study

[pRP112 (URA3 CEN RPB1)]

Z735 SLY26 Mata ura3-52 his3A200 leu2-3,-112 rpblAl87::HIS3 srblO-1::hisG This study

[pRP112 (URA3 CEN RPB1)]

Z687 SLY7 Mata ura3-52 his3A200 leu2-3,-112 RPB1 srblOA1::hisG Liao et al., 1995

Z690 SLY96 Mata ura3-52 his3A200 leu2-3,-112 RPB1 srblO-3::hisG Liao et al., 1995

Z719 SLY3 Mata ura3-52 his3A200 leu2-3,-112 RPB1 SRB1 Liao et al., 1995
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Figure 1 Srb1O is a negative regulator in vivo.

(A) Loss-of-function mutations in SRB10 rescue the conditional lethality of a

CTD truncation mutant. Strains with a truncated CTD (11 heptapeptide

repeats) are inviable when grown at 12'C. Three different loss-of-function

mutations in the SRB1O gene restore viability to the CTD truncation strain.

srbl0-1, the original SRB suppressor, is a C-terminal truncation of the kinase,

srblOAl is a deletion of the entire Srb1O coding sequence and srbl0-3 is an

engineered point mutation (D290A) which renders the kinase catalytically

inactive. CTD repeat length is indicated on the left, growth temperature on

the right and SRB10 genotypes across the top.

(B) SRB10 loss-of-function alleles suppress growth defects across a spectrum

of CTD truncation mutations. The effect of loss-of-function mutations in

SRB2, SRB4, and SRB1O was investigated in strains containing progressively

truncated CTDs. The number of CTD repeats is shown on the horizontal axis,

and the plasmid carrying each CTD truncation allele is indicated (i.e. pN51).

The growth phenotypes exhibited by each CTD truncation mutant in the

presence of wild-type SRB genes or with mutations in SRB2, SRB4 or SRB1O

is shown. Non-viable (N) cells are indicated by a dashed line, conditional (C)

cells that are inviable at 12'C but can grow at 24*C are indicated with a thin

line, and viable (V) cells that exhibit wild-type growth characteristics under

all conditions tested are indicated by a heavy line. The loss of Srb1O increases

the viability of CTD truncation mutants, whereas the loss of Srb2 or Srb4

decreases the viability of the CTD mutants.
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Figure 2 Artificial recruitment of holoenzyme with LexA-Srb fusion

proteins.

(A) Diagram of the experimental concept. If Srb1O is a negative regulator of

the transcription initiation complex, then a LexA-SrblO fusion protein should

recruit the transcription apparatus, yet repress transcription. In contrast, a

LexA-SrblO(D290A) fusion protein, in which the kinase is catalyticaly

inactive, should recruit the apparatus and produce levels of transcription

similar to those observed with Srb proteins which have positive roles in the

holoenzyme.

(B) A wild-type strain containing the LexA-lacZ reporter plasmid pSH18-34

was transformed with plasmids expressing LexA alone, or LexA fused to Srb6,

SrblO, or SrblO(D290A) as indicated. The specific activity of D-galactosidase is

expressed in nmoles of o-nitrophenol produced/min/mg of total protein

assayed. As predicted by the model in (A), the LexA-SrblO protein is a very

poor artificial activator whereas the LexA-SrblO(D290A) fusion protein is a

good activator. The LexA-SrblO(D290A) fusion activates as well as LexA-

fusions with Srb proteins which have positive functions; LexA-Srb6 is shown

as an example. The Srb1O protein is active in vivo when fused to LexA; the

LexA-SrblO expression plasmid complements all phenotypes associated with

a srblOA strain (data not shown). Western blots of whole cell extracts probed
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with _-LexA antibodies show that LexA-Srb1O, LexA-SrblO(D290A), and LexA-

SRB6 are all expressed at similar levels (data not shown).
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Figure 3 Purification of recombinant Srb1O/Srb11 and Kin28/Ccll cyclin-

dependent kinases (CDKs).

(A) Scheme for production and purification of recombinant holoenzyme

CDKs from Sf21 cells co-infected with baculovirus encoding a kinase (SrblO or

Kin28) and the corresponding cyclin partner (Srbll or Ccli, respectively).

FLAG-epitope tagged recombinant Srb1O/Srb11 and Kin28/Ccll and their

inactive mutant derivatives, Srb1OD29 OA/Srb11 and Kin28 D147A/CcIl were

purified in a single step from whole cell extracts of baculovirus infected insect

cells using an anti-FLAG affinity column.

(B) Purity of recombinant kinase-cyclin pairs. Onput (OP), Flowthrough (FT),

Wash (W) and Eluate (E) fractions of the anti-FLAG affinity column were

subjected to SDS-PAGE electrophoresis followed by Coomassie (upper panel)

or silver staining (lower panel). The identities of the kinase and cyclin

subunits and position of the molecular weight markers (MW) in kiloDaltons

is shown.
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Figure 4 Recombinant CDKs are indistinguishable in CTD phosphorylation

activity.

(A) Holoenzyme associated CDKs phosphorylate the CTD, but not histone H1

in vitro. Recombinant GST, GST-CTD, or calf thymus HI substrates were

incubated with pure recombinant CDK/cyclin pairs in the presence of y-32p.

ATP, separated by SDS-PAGE and visualized by autoradiography. Label is

transferred only to the GST-CTD fusion and not to GST or histone H1, a well

studied kinase substrate.

(B) Purified mutant recombinant CDKs exhibit no kinase activity. Wild-type

and mutant CDKs were incubated with GST-CTD in the presence of y- 32 P-ATP

as in panel A. The inactive CDK/cyclin pairs contained a point mutation at a

highly conserved aspartate residue critical for catalytic activity. The absence

of a labeled product in the mutant CDK/cyclin preparations suggests the

observed activity is not due to a contaminating kinase.

(C) Phosphoamino acid analysis of in vitro phosphorylated CTD.

Recombinant GST-CTD was incubated with recombinant CDK/cyclin pairs in

the presence of y-32P-ATP. After SDS-PAGE and transfer to a PVDF

membrane, the labeled CTD band was cut out and subjected to acid hydrolysis.

The phosphoamino acids were separated by two-dimensional thin layer

electrophoresis. Amino acid standards were visualized by ninhydrin and

their mobilities shown on the left, while the labeled phosphoamino acids

166



were visualized by autoradiography as shown in the middle and right panel.

Serine is the primary phosphoacceptor on the GST-CTD substrate for both

SrblO/Srb11 and Kin28/Ccll kinases.

(D) Holoenzyme CDKs show identical specificity for synthetic CTD peptide

substrates. Synthetic peptides consisting of three heptapeptide consensus

repeats, or mutant variations thereof, were used as substrates for recombinant

holoenzyme CDKs. The wild-type (WT) heptapeptide consensus sequence as

well as the amino acid numbering used in describing various mutants is

shown at the bottom of the figure. After SDS-PAGE, the phosphorylated

peptides were visualized by autoradiography. The Ser5 to Ala mutant peptide

was unable to serve as a substrate for either CDK, strongly suggesting that Ser5

is the primary substrate labeled by the CDKs.
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Figure 5 Catalytically active Srb10 can inhibit transcription by RNA

polymerase II holoenzyme in vitro.

(A) Purified holoenzymes contain similar amounts of Rpbl, Srb2, Srb4, Srb5

and the kinases Srb10 and Kin28. Wild-type and Srb10 (D290A) mutant

holoenzymes were purified in parallel and analyzed by western blot.

Monoclonal antibodies specific to unphosphorylated CTD (u-P- CTD; 8WG16)

were used to detect Rpbl.

(B) Holoenzymes containing either wild-type Srb10 kinase (lanes 1-2) or

catalytically inactive SrblO(D290A) kinase (lanes 3-4) were preincubated with

or without ATP prior to PIC formation and analyzed as diagrammed. Only

holoenzymes containing functional Srb10 are inhibited for transcription

when kinases are allowed to function before PIC formation (compare lanes 2

and 4). In vitro transcription is performed in the presence of -32P-UTP

resulting in internal labeling of a 400 nucleotide transcript derived from a G-

less cassette driven by the CYC1 promoter. The state of CTD phosphorylation

after ATP preincubation was monitored by western analysis using

monoclonal antibodies specific to unphosphorylated (cc-P- CTD; 8WG16) or

Ser-phosphorylated CTD (cx-P+ CTD; H5). CTD phosphorylation occurs

during preincubation only in holoenzymes containing functional Srb10

kinase (compare lanes 2 and 4). Control experiments indicate that the Srb10
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CTD kinase activity is largely restricted to the holoenzyme in which it resides

(data not shown). Srb4 is probed as a loading control.

(C) Changes in mAb reactivity to RPB1 is due to phosphorylation.

Holoenzyme containing functional Srb1O was incubated with ATP (lanes 1-2).

The signal obtained when the phosphorylated preparation is probed with

mAb 8WG16 (ct-P- CTD) is reduced and the mobility of RPB1 is retarded (lane

3). The same preparation then reacts with the phospho-serine CTD specific

H5 mAb (o-P+ CTD). Subsequent treatment of the sample with protein

phosphatase eliminates the H5 reactive band and restores 8WG16 reactivity

and mobility to that seen prior to ATP incubation (compare lanes 1 and 4).

This indicates the mAbs are accurately probing the phosphorylation state of

the CTD.

(D) Srb1O kinase does not affect transcription post PIC formation.

Holoenzymes containing either wild-type Srb1O kinase (WT) or catalytically

inactive SrblO(D290A) kinase, preincubated with template DNA and GTFs

prior to addition of NTPs, exhibit identical transcriptional activity (top panel).

The state of CTD phosphorylation after transcription was monitored with the

phospho-serine specific H5 mAb (Q-P+ CTD). Both wild-type and

srblO(D290A) containing holoenzymes are able to phosphorylate the CTD.

Srb4 is probed as a loading control (bottom panel).
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Figure 6 Nuclear extracts show no Srb10-dependent inhibition of

transcription by RNA polymerase II holoenzyme.

Nuclear extracts from cells containing either wild-type Srb1O kinase or

catalytically inactive SrblO(D290A) kinase were preincubated with or without

ATP prior to PIC formation, as diagrammed (the experimental design is

identical to that in Figure 5B). In vitro transcription is performed in the

presence of OC- 32P-UTP resulting in internal labeling of a 400 nucleotide

transcript derived from a G-less cassette driven by the CYC1 promoter. No

inhibition of transcription was observed after ATP preincubation with either

extract.
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Figure 7 Model for temporal function of holoenzyme CDKs in transcription

initiation.

The two holoenzyme cyclin-dependent kinases are CTD kinases which

function at different times. SrblO-dependent CTD phosphorylation can occur

prior to stable preinitiation complex (PIC) formation at a subset of promoters,

presumably activated by factors associated with these promoters, with

consequent inhibition of transcription. The Kin28 kinase functions after

stable PIC formation at promoters generally, producing the

hyperphosphorylated form of pol II associated with productive elongation.
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A procedure is described for rapid, high-confidence
identification of proteins using matrix-assisted laser de-
sorption/ionization tandem ion trap mass spectrometry
in conjunction with a genome database searching stratEgy.
The procedure involves excision of copper-stained bands
or spots from electrophoretic gels, in-gel trypsin digestion
of the proteins, single-stage mass spectrometric analysis
of the resultant mixture of tryptic peptides, followed by
tandem ion trap mass spectrometric analysis of selected
individual peptides, and database searching of the- rel-
evant genomic database using the program PepFrag.- The
scheme provides sensitive, real-time protein identification
as well as facile identification of modifications. A single
operator can unambiguously identify 5-10 proteins/day
from an organism whose genome is known at a level of
>0.5 pmol of protein loaded on a gel. The utility of the
technique was demonstrated by the identification and
characterization of a band from a human HTLV-I prepara-
tion and 11 different proteins from a yeast RNA poly-
merase II C-terminal repeat domain-affinity preparation.
The technology has great potential for postgenome biologi-
cal science, where it promises to facilitate the dissection
and anatomy of macromolecular assemblages, the defini-
tion of disease state markers, and the- invesfigation of
protein targets in biological processes such as the cell
cycle and signal transduction.

Genome sequencing projects are producing an unprecedented
information resource for biologists. Efficient utilization of this
remarkable resource demands the development of new tools for
rapidly analyzing mature proteins and for correlating them with
their genes and ultimately their functions. One particularly
powerful new set of tools for rapidly identifying and characterizing
proteins utilizes mass spectrometric techniques such as matrix-
assisted laser desorption/ionization (MALDI) and electrospray
ionization (ESI) mass spectrometry (MS) in combination with
genome database searching strategies.'-15
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Two general strategies have been developed for identifying
proteins by MS. In both, the proteins of interest are separated
(e.g., by gel electrophoresis) and individually subjected to pro-
teolysis with an enzyme of known specificity (e.g., trypsin), and
the molecular masses of the resulting peptides accurately and
rapidly determined by MS. In the first strategy, these experi-
mentally determined masses (i.e., the tryptic map) are compared
with the calculated masses of all tryptic peptides that can be
theoretically produced from sequences corresponding to all of the
proteins in the genomic database of the organism under study.l-5.

The protein yielding the best match between the experimental
and theoretical peptides is identified. MALDI time-of-flight MS
has been the preferred technique for this peptide mapping
approach because it is sensitive and allows for the measurement
of the component peptides resulting from the digest without prior
HPLC separation or extensive cleanup. Although this method is
fast and simple, its success can be compromised by the presence
of more than one protein in the gel spot or by extensive
posttranslational modifications of the protein of interest and errors
in the database sequence. In addition, the observation of too few

peptides in the MS map from a given protein may preclude its

identification.
A second strategy, involving tandem mass spectrometry (MS/

MS),1 6 has been developed to circumvent these difficulties. 6-15

Here, a particular tryptic peptide is selected and dissociated in
the mass spectrometer to produce a fragmentation mass spectrum
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that is characteristic of the sequence of the peptide. The database
search for the protein uses the molecular mass (Mr) of the tryptic
peptide together with its fragmentation spectrum. Although the

Mr of the peptide by itself only moderately constrains the
search-and can lead to large numbers of possible proteins-a
good match of the fragmentation spectrum often identifies a
unique protein. The identification can be verified by checking
how many of the remaining tryptic peptides have measured
masses that are in accord with hypothetical tryptic peptides from
the putative protein. To further increase the confidence of the
call, fragmentation mass spectra of one or more additional tryptic
peptides are obtained. Because protein identification incorporating
mass spectrometric fragmentation and database searching re-
quires only single (or at most a few) tryptic peptides from any
given protein, this strategy can confidently identify multiple
proteins in mixtures4" and is highly tolerant of posttranslational
modifications or errors in the database. Nanospray ionization18

(i.e., low flow rate electrospray ionization) combined w'ith triple-
stage quadrupole MS has been shown to work well for this latter
strategy.10,1,1-1 5 Alternatively, postsource decay in MALDI time-
of-flight MS analysis' 9 has been applied for this purpose.20-24

Although protein identification by simple peptide mapping
using MALDI time-of-flight MS is sensitive and fast, the confidence
level of the identification may be insufficient for an assured call.
The additional constraints obtained through ESI tandem MS
provides more reliable identification than simple pepiide mapping
but suffers from reduced sample throughput. Alternatively,
additional constraints may be obtained through the use of
postsource decay in MALDI time-of-flight mass spectrometry.1- 24

In this paper, we present a procedure that combines the
positive virtues of the above two strategies for the identification
of proteins. This procedure utilizes unique properties of our newly
developed MALDI ion trap mass spectrometer2s-1 and provides
sensitive, confident protein identification with high throughput

EXPERIMENTAL SECTION

Isolation of HTLV-1 Proteins. The HTLV-I transformed
lymphecyte cell (N5-CR) was maintained in RPM I medium
containing 10% fetal calf serum. Supernatants forming large-scale
cultures (5000 mL) were clarified by centrifugation at 60000g for
90 min. Pellets were resuspended and centrifuged on linear 25-
65% sucrose gradients. Purified virus bands were collected and
pelleted. The latter were resuspended in NTE buffer (0.01 M Tris-
HCl pH 7.4, 0.001 M EDTA, 0.1 M NaCl).

(17) McCormack, A L; Schieltz, D. M.; Goode, B.; Yang, S.; Barnes, G.; Drubin,
D.; Yates, J. R., III Anal Chem. 1997, 69, 767-776.

(18) WiUm, M.; Mann, M. Anal. Chem. 1996, 68, 1-8.
(19) Kaufmann, R.; Spengler, B.; Lutzenkirchen, F. Rapid Commun. Mass

Spectrom. 1993, 7, 902-910.
(20) Griffin, P. R; MacCoss, M. J.; Eng, J. K.; Blevins, R. A; Aaronson, J. S.;

Yates, J. R., III Rapid Commun. Mass Spectrom. 1995,9, 1546-1551.
(21) Patterson, S. D.; Ihomas, D.; Bradshaw, R. A Electrophoresis 1996, 17,

877-891.
(22) O'Connell, K L; Stults, J. T. Electrophoresis 1997, 18, 349-359.
(23) Larsson, T.; Norbeck, J.; Kar2sson, H.; Karlsson, K. A; Blomberg, A

Electrophoresis 1997, 18, 418-423.
(24) Matsui, N. M.; Smith, D. M.; Clauser, K. R.; Fichmann, J.; Andrews, L E.;

Sullivan, C. M.; Burlingame, A L; Epstein, L B. Electrophoresis 1997,18,
409-417.

(25) Qin, J.; Steenvoorden, R. J. J. M.; Chait, B. T.Anal. Chem. 1996, 68, 1784-
1791.

(26) Qin, J.; Chait, B. T. Anal. Chem. 1996, 68, 2102-2107.
(27) Qin, J.; Chait, B. T. Anal. Chem. 1996, 68, 2108-2112.
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Isolation of CrD-Binding Proteins. Details of the isolation
of the CTD-binding proteins are described in ref 28.

Procedures for Sample Preparation. Protein samples were
resuspended in 1x Bio-Rad Tris-glycine sample buffer (Bio-Rad
Laboratories, Hercules, CA) plus 1/10 vol of 10% (w/v) SDS
solution. The proteins were separated on a 4-15% gradient Bio-
Rad Ready Gel and electrophoresed at 200 V. After protein
separation, the gel was soaked in deionized H20 for 1 min and
then 1x Bio-Rad copper stain solution for 5 min, with constant
shaking. The stained gel was washed for 1 min in H20. Because
the protein bands are negatively stained, the gel appears opaque
greenish blue and the protein bands relatively clear. The bands
are most easily visualized on a black background.

The protein bands were cut out using a stainless steel scalpel
and transferred to 0.5 mL Eppendorf tubes. To each tube was
added 0.4 mL of 1x Bio-Rad copper destain solution (Bio-Rad
Laboratories), and the tubes were vortexed for 5 min. After
discarding the wash liquid, this step was repeated for 2 min. By
this stage, the gel pieces have turned from faint greenish blue to
clear. H20 (0.4 mL) was added, the mixture vortexed for 1 min,
and the liquid discarded. Digestion buffer (0.4 mL 50 mM Tris-
HCl, pH 8.0) was added, the mixture vortexed for 1 min, and the
liquid discarded. Modified trypsin (20 1 L of 25 ng/uL in 50 mM
Tris-HCl, pH 8.0, Boeringer Mannhein, Indianapolis, IN) was
added to each tube (i.e., to each gel piece). The gel pieces were
squashed with a plastic pipet tip that had been sealed closed using
heat from an open flame. Proteins in the squashed gel pieces
were digested for 2 h at 37 *C.

Extraction of the peptides from the gel pieces was facilitated
by sonication for 3 min, followed by removal of the liquid with a
gel-loading tip. The liquid was transferred to a fresh Eppendorf
tube, taking care not to inadvertently transfer any small gel pieces
into the tube. An extraction solution (20 uL of ACN-0.5% TFA/
H2 0 1:1 (v/v)) was added to the original crushed gel pieces, the
mixture sonicated for 3 min, and the liquid removed and pooled
with the first extract. Finally, 10 uL of 100% ACN was added to
the crushed gel pieces, the mixture sonicated for 2 min, and the
liquid removed and pooled with the first two extracts. The pooled
solutions were evaporated to dryness (SpeedVac Savant, Farm-
ingdale, NY) at medium heat For the MS measurements, the
dried samples were redissolved in 5-10 pL of acetonitrile-0.5%
TFA/ H20 1:1 (v/v).

Matrix-Assisted Laser Desorption Ion Trap MS. The

design and performance of our custom MALDI ion trap mass
spectrometer has been described. 25-27 It is composed of an
external MALDI ion source and a modified Finnigan ITMS
electronics kit Laser desorption/ionization was carried out at
wavelength of 355 nm with 10 ns duration pulses. MS and MS/
MS spectra were taken as described previously.25 The matrix

solution consisted of 2,5-dihydroxybenzoic acid (DHB) in 1:1 (v/
v) ACN/H 20 (2x dilution of a saturated solution of DHIB in 1:1
(v/v) ACN/H 20). The MS samples were prepared by mixing on

the sample probe 1 pL of sample solution with 1 pL of matrix

solution. The instrument was mass calibrated once a week.

Procedure for Protein Identification. (1) The peptide

mixture produced by in-gel trypsin digestion of a protein was

analyzed directly by MALDI ion trap MS without prior chromato-

graphic separation or further treatment. (2) After the MS peptide

(28) Wilson, C. J.; Mann, M.; Imbalzano, A N.; Schnitzler, G. R.; Kingston, R.
E.; Young, R. A Cell 1996, 84, 235-244.



map was inspected, one peptide ion species was isolated and
fragmented by collision-induced dissociation to obtain an MS/
MS spectrum. (3) The masses of the precursor and fragment
ions were searched against a database using the program
PepFrag29 (see below), and candidate proteins were identified. The
search was carried out with constraints that include the cleavage
specificity of the digesting enzyme, the originating species of the
protein, and the systematics of MALDI ion trap collision-induced
dissociation of peptides.3'0" (4) Other peptides in the measured

MS peptide map were assigned to the identified candidate protein.
(5) Of these newly assigned peptides, one was chosen and
fragmented, and the fragmentation pattern checked against the
candidate protein sequence to verify the identification. (6) For
those peptides that could not be assigned to the identified protein,
one peptide was selected and fragmented, and steps 3-5 were
repeated until the majority of intense peaks were assigned. Steps
1-6 were all performed in real time.

The Protein Identification Program PepFrag. The prgram
PepFrag,'9 which was developed in our laboratory, allows for the
searching of protein or nucleotide sequence databases (SWISS-
PROT, PIR, GENPEPT, OWL, or dbEST) using a combination of
information from MS peptide maps and MS/MS spectra of
proteolytic peptides. The databases have been taxonomically
divided to allow for faster searches and to minimize the number
of unrelated hits. The experimental conditions (enzyme specific-
ity, approximate protein mass, place in phylogenic tree of the
species, and modifications of amino acids) can be specified in the
search. 'he result of the search is a list of proteins, each of which
contains a peptide that matches the measured mass of a proteolytic
peptide as well as the measured masses of MS fragments of the
peptide. In addition, other search constraints can be specified, if
such information is available. These constraints include specifica-
tion of the MS fragmentation systematics, masses of other
proteolytic peptides that are assumed to belong to the protein of
interest, and partial amino acid composition. PepFrag is publicly
available over the Internet at URL http://chait-sgi.rockefeler-
.edu.'9

RESULTS ANJD DiSCUSSIONm
Preferential Cleavage of Peptide Ions in Tandem MALDI

Ion Trap MS: (1) A Highly Effective Constraint for Protein
Identification and (2) High Sensitivity. We found previously
that fragmentation of peptide ions by tandem MALDI ion trap MS
is highly selective and that Arg-containing peptides undergo facile,
preferential cleavage adjacent to amino acid residues with acidic
side chains,25202' producing exclusively b- and/or y-type ions.3233

Lys-containing peptides also undergo preferential fragmentation
adjacent to Asp/Glu although the selectivity is not as high as for
Arg-containing peptides.31 Because most tryptic peptides contain

an Arg/Lys residue at the C-terminal, we have included such

preferential cleavages as a selectable constraint in our search

program, PepFrag29 (see Experimental Section) and have found

that application of this constraint greatly facilitates the unambigu-
ous identification of proteins. For example, in an experiment

(29) Feny6, D. http://chait-sgi.rockefeller.edu 1996. Fenyo, D.; Zhang, W.; Chait,
B. T.; Beavis, R. C. Anal. Chem. 1996, 68, 721A-726A.

(30) Qin, J.; Chait, B. T. J. Am. Chem. Soc. 1995, 117, 5411-5412.
(31) Qin, J. Ph.D. 'iesis, Rockefeller University, 1996.
(32) Roepstorff, P.; Fohlman, J. J. Biomed. Environ. Mass Spectrom. 1984, 11,

601.
(33) Biemann, K. Appendix 5. Nomenclature for peptide fragment ions (positive

ions). Methods Enzymol. 1990, 193, 886-887.

designed to test the present methodology, we separated proteins

from a human T cell leukemia virus type 1 (HTLV-I) preparation
by SDS-PAGE and obtained a MS tryptic peptide map (Figure

1a) for a prominent band with an apparent Mr of -22 kDa

(Experimental Section). Some 20 peaks appear in the m/z range

between 1200 and 2800 (Figure la). To identify the protein in

the band, we obtained an MS/MS spectrum of the ion with m/z

2147.6 Da (Figure 1b). Two product ions that arise from

preferential cleavage at the C-termini of Asp/Glu residues,

dominate the MS/MS spectrum (in addition to noninformative

fragment ions produced by the facile loss of small neutral

molecules, e.g., H20, NH3, and CO,). We therefore input into

PepFrag (Figure 1c) the Mr of the precursor peptide and the m/z

values of the two informative fragment ions, together with the

constraint that the fragments were b- and/or y-type generated at

the C-terminal of Asp/Glu residues. We also specified the type

of enzyme used (trypsin) and allowed for partial enzymatic

degradation of the protein (with up to two internal Arg/Lys

residues retained in the fragments). We did not specify the

species from which the protein originated to allow for the

possibility of adventitious impurities from the host cell and did

not constrain the search with the apparent SDS-PAGE Mr to allow

for the possibility of proteolytic processing of the protein.

The search results (using the program PepFrag) summarized

in Figure Ic identify a single gene product-the gag polyprotein

of HTLV-I (albeit from three different strains of the virus). The

specificity of the cleavage reaction is seen to provide a highly

effective constraint for protein identification. The results are

especially impressive considering that the search was carried out

for all proteins in the SwissProt database using a conservative

mass tolerance (±2 Da) for both the precursor and product ions.

We have subsequently found, through an analysis of more than

200 different protein bands, that it is nearly always possible to

identify a protein (whose sequence is present in the database)

with just two fragment ions generated at the C-termini of Asp/

Glu in a single tryptic peptide and that it is usually possible to

identify a protein with more than four fragments generated at

unspecified amino acid residues. In the latter case, the fragment

ions need not constitute a sequence tag7-ds long as-uhey areb-
and/or y-type ions-i.e., gaps are well tolerated. Because b- and

y-type ions dominate the MALDI ion trap MS/MS spectra, 2 02 '

the intense fragmentation peaks normally correspond to these ion

species. One potentially complicating factor in the interpretation

of the fragmentation spectra is the occurrence of b*- and y*-type

fragment ions-i.e., b and y ions that have undergone loss of a

H20/NH3 moiety. This additional fragmentation produces little

ambiguity in practice because its occurrence is readily recognized

by the presence of pairs of fragment peaks spaced 17-18 Da apart

(see, e.g., the pair at m/z 1975.9 and 1959.1).

The average abundance of Asp/Glu residues in proteins is

-12%.34 Thus, tryptic peptides with mass of >1000 Da often

contain an Asp/Glu residue and the probability for the presence

of Asp/Glu increases as a function of increasing peptide mass.

For the purpose of protein identification, we therefore find it

advantageous to obtain MS/MS spectra of tryptic peptide ions

with higher masses (1500 < m/z < 3500). We have found that

singly protonated peptide ions in this mass range can be efficiently

fragmented in the MALDI ion trap.25 An added benefit of

(34) McCaldon, P.; Argos, P. Proteins 1988, 4, 99-122.
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m/z .. 2600

It m/Z 2200

Database: SWISS-PROT ; Kingdom: ALL KINGDOMS ; Protein Mass Range: 0 - 1,000,000
Enzyme: trypsin ; number of internal R/K residues allowed in digested peptides: 2

Mass of parent peptide: 2146.6 Da, Error: 2.0 Da
Fragment mass-to charge ratios: 1508.4x, 1650.0x, Error: 2.0 Da; Matches: 2 ; Ion Types: b, y"
Fragments marked by x' cleaved at C-terminal side of D and E

RESULTS:

GAGHTL1A Gag polyprotein HTLV-1 (strain ATK) mass 47,497 ---------------- LNIALDNGLPEGTPKDPILR
Residues 281 - 300 Mass = 2146.5

GAG_HTL1C Gag polyprotein - HTLV-I(Caribbean Isolate) mass 47,515 ---------- LNIALDNGLPEGTPKDPILR
Residues 281 - 300 Mass = 2146.5

GAG_HTL1M Gag polyprotein - HTLV-I(Isolate MT-2) mass 47,585 -------- LNIALDNGLPEGTPKDPILR
Residues 281 - 300 Mass = 2146.5

Figure 1. (a) MALDI ion trap mass spectrum of the products of in-gel trypsin digestion of the 22 kDa SOS-PAGE protein band from the
HTLV-I preparation (Experimental Section). (b) Tandem MALDI ion trap mass spectrum of the peptide ion with m/z 2147.6. (c) Protein identification
search results obtained with the program PepFrag using the information in Figure 1 b. The protein is identified as the gag polyprotein from
HTLV-l.

analyzing higher mass tryptic peptide ions derives from their
reduced statistical occurrence relative to lower mass tryptic

peptides.
Selective fragmentation at Asp/Glu also significantly enhances

the sensitivity-of the-MS/MS measurement Because relativieiy
few dissociation channels are open, signal dilution effects normally
experienced in ESI triple quadrupole or MALDI postsource decay
tandem MS is avoided. This concentration of fragmentation is

particularly important when only small amounts of sample are
available-i.e., where the number of ions available for fragmenta-
tion is severely limited. It can be seen from Figure lb that dilution
of the fragmentation spectrum into additional channels would

quickly compromise our ability to observe the fragmentation

peaks. The selectivity at Asp/Glu appears especially strong for

singly charged ions (unpublished observations) and is most

obvious in the slow (ms) decomposition measurements made in

the ion trap. Finally, in contrast to ESI, MALDI yields mainly

singly charged peptide ions, leading to an additional reduction in

signal dilution losses and easier mass spectral interpretation.

Protein Identification with MALDI Tandem Ion Trap MS
with High Confidence and High Throughput. The protein

identification procedure outlined in the Experimental Section

ensures the identification of proteins with a high level of

confidence. After the protein is tentatively identified using the

MS/MS data (Figure 1b), the measured peptide map is compared
with the map calculated for this putative protein and an attempt
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ion trap mass spectrum of the peptide ion with m/z 1352.8, confirming
its assignment as gag 229-240 and the progenitor protein as gag.

is made to assign the various peptide peaks (Figure 2a). Ions

that cannot be assigned could arise either from other proteins

present in the band or from modifications of the already identified

protein. In cases where most of the ions can be assigned to the

putative protein, the likelihood is high that the identification is

correct However, to further increase the confidence level of the

call, we test the hypothesis that the protein has been correctly

identified by obtaining an additional MS/MS spectrum from a

second peptide that has been assigned to the putative protein
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(Figure 2b). Two MS/MS spectra plus a peptide map normally
yield an unambiguous identification.

Our utilization of copper staining/destaining (see Experimental

Section) and the elimination of the need for chromatographic

separation make the sample preparation procedure fast. The
whole process-from staining the gel to the point when samples
are inserted into the mass spectrometer-requires < 4 h. For

convenience, we typically process 10 proteins at a time. The initial

MS and first MS/MS measurements require <30 min. Another

30 min is needed to search the database, to interpret the data,
and to obtain the second MS/MS spectrum. In this way, protein
identification is performed at an average rate of 1 protein/h by a

single operator. Such high throughput is crucial for large-scale
biological research projects (see below). The present protocols
allow us to unambiguously identify real-world protein samples at
a rate of 5-10/day from genomes that have been fully sequenced
(e.g., Saccharomyces cerevisiae).

Protein Identification with MALDI Tandem Ion TiAp MS
in Real-Time. The extremely low sample consumption and

pulsed nature of MALDI allow us to stop the experiment at any
time, analyze the data in real-time, and design the next experiment
by following leads provided by the previous experiment(s). It is

not necessary to attempt to obtain MS/MS spectra for all peptide
ions in the map as may be optimum for a continuous ionization
technique like electrospray or nanospray, where the spray time
is limited. The ability to continue to measure a single sample for
as long as is needed to obtain an unambiguous result is crucial
for the success of the present iterative protein identification
procedure. For example, after we obtained the peptide map shown
in Figure la, we took the MS/MS spectrum of the peptide with
Mr 2146.6 Da (Figure 1b) and stopped the experiment to search
the database. The search (<1 min) identified the gag protein
(Figure 1c). After assigning several of the observed peptides in
the peptide map to the gag protein (Figure 2a), we resumed the
experiment and took another MS/MS spectrum of the assigned
peptide with Mr 1351.9 Da to confirm the putative identification
(Figure 2b).

To assure that we have identified all of the abundant proteins
present-in a band, wu Kttempt to =sign every intense peak in the,
peptide map. Inspection of Figure 2a shows that we were unable
to assign several of the peaks to the gag protein, including the
ion with m/z 2118.9. To investigate the origin of this ion, we
obtained its MS/MS spectrum (data not shown). 'he subsequent
database search failed to return an identification. The failure to
identify a protein indicates that the peptide may be posttransla-

tionally modified. However, no suggestion of the most commonly

occurring posttranslational modifications (including phosphory-

lation and glycosylation) was apparent from the MS and MS/MS

spectra (see below). We thus deduced that the protein may have

been processed proteolytically. A relaxed search allowing non-

specific processing returns a peptide that belongs to the same

gag gene product but is proteolytically processed between Leu-

130 and Pro-131. This finding is in concert with in vivo processing

of the HTLV-1 gag polyprotein, which has been observed to yield

three mature proteins-i.e., gag P19 (residues 1-130), gag P24

(residues 131-344), and gag P15 (residues 345-429).35 - 37 The

peptide with m/z 2118.9 arises from the processed N-terminal

peptide of gag P24.

(35) Seiki, M.; Hattori, S.; Hirayamna, Y.; Yoshida, M. Proc. Nad. Acad. Sci. USA
1983, 80, 3618-3622.

Amino Acid Modifications Identified by MALDI Ion Trap
MS. Posttranslational modifications or chemical modifications
introduced in gel electrophoresis can be problematic for protein
identification because modification information is not inherent to

the DNA sequence database. We have found that commonly

occurring posttranslational modifications such as phosphorylation
and glycosylation can be readily identified in MALDI ion trap MS

because phosphopeptides and glycopeptides each have clear

signatures in the MALDI ion trap mass spectra.", Protonated

phosphopeptides undergo facile loss of -98 Da in single-stage

MALDI ion trap MS so that peaks separated by -98 Da indicate

the presence of a phosphopeptide. The presence of a suspected

phosphopeptide can be readily confirmed by acquiring its MS/
MS spectrum. The observation of a dominant product ion with a

mass -98 Da less than the precursor ion confirms the presence

of a phosphate group on the peptide. A similar phenomenon

occurs for glycopeptides, which readily dissociate at the glycosidic

bonds, generating a series of ions in the single-stage spectrum

with mass differences of 162 (Hex), 203 (HexNAc), or 291 Da

(sialic acid). The observation of these ions indicates the presence

of a glycopeptide. Again, the hypothesis can be readily tested by

MS/MS.
A commonly occurring chemical modification is the oxidation

of Met during electrophoresis or storage of the dried gels. Peptide

ions containing oxidized Met readily lose the methyl sulfoxide

moiety in the ion trap to give a signature pair of peaks 64 Da

apart." If the Met residue is not completely oxidized to the

sulfoxide, a triplet of peaks can be observed separated by -48

and +16 Da from the unmodified peptide ion. In Figure 2a, the

ions at m/z 2070.2 (labeled x), 2117.8 (labeled y), and 2134.3

(labeled z) constitute such a triplet Again, the peptide containing

oxidized Met can be readily verified by an MS/MS experiment,

in which the product spectrum shows a dominant product ion with

a mass 64 Da less than the precursor ion (data not shown). The

ability to readily identify modifications of proteins by MALDI ion

trap MS further increases the success rate and confidence of

protein identification.
Protein Identification with MALDI Tandem Ion Trap

MS: A Rapid and Effective Tool for Jd__tffying Protein

Components of Complex Macromolecular Assemblages. We
have applied the above-described methodology to identify proteins

interacting with the RNA polymerase II C-terminal repeat domain

(CTD) (reviewed in ref 40). The CTD has been shown to interact

with components of the RNA polymerase II holoenzyme.

A highly purified preparation of CTD-binding protein complex

was prepared by a combination of CTD affinity and ion exchange

chromatography. Protein components of this CTD-binding frac-

tion were separated by SDS-PAGE, subjected to proteolysis with

trypsin, and analyzed by MS. As an example, Figure 3a shows

the MS tryptic map from a gel band that migrated with an apparent

Mr of 35 kDa. The MS/MS spectrum of the m/z 2445.7 ion

(Figure 3b) unambiguously identifies its progenitor protein as

Srb5, a component of a functional preinitiation complex that has

(36) Oroszlan, S.; Sarngadharan, M. G.; Copeland, T. D.; Kalyanaraman, V. S.;
Gilden, R. V.; Gallo, R. C. Proc. Nati. Acad. Sci. USA 1982, 79, 1291-

1294.
(37) Copeland, T. D.; Oroszlan, S.; Kalyanaraman, V. S.; Sarngadharan, M. G.;

Gallo, R. C. FEBS Lett. 1983, 162, 390-395.
(38) Qin, J.; Chait, B. T. Anal. Chem. 1997, 69, 4002-4009.
(39) Jiang, X.; Smith, J. B.; Abraham, E. C. J. Mass Spectrom. 1996, 31, 1309-

1310.
(40) Koleske, A J.; Young, R-A-Trends Biochem. Sci. 1995, 20, 113-116.
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Figure 3. (a) MALDI ion trap mass spectrum of the products of in-gel trypsin digestion of an electrophoretic band with an apparent Mr of 35
kDa from a purified preparation of yeast RNA polymerase I CTD-binding proteins (Experimental Section). (b) Tandem MALDI ion trap mass
spectrum of the peptide ion with m/z 2446, identifying its progenitor protein as Srb5. (c) Tandem MALDI ion trap mass spectrum of peptide ion
with m/z 1923, identifying its progenitor protein as the open reading frame yielding the gene product YHR058c.

Table 1. List of Identified Proteins

Mr

PAGE calcd

97
35

200
130
114

58
56
31
35
70

150

78.5
34.3

191.0
139.0
123.3

54.8
60.4
25.2
32.8
64.2

110.0

gene name

SRB4
SRB5
RPB1
RPB2
RGR1
ACT3
RRN7
YBR193c
YHRO58c
YPR070w
YDR359c

NCBI identifiers

172693
172536

1419221
1293711
218472
436808
567927
311669
487956
805050
849181

protein description

RNA polymerase H supressor protein Srb4
RNA polymerase H supressor protein Srb5
RNA polymerase H subunit 1
RNA polymerase 11 subunit 2
glucose repression regulatory protein Rgrl
actin-like protein Act3
RNA polymerase I specific initiation factor Rrn7
protein of unknown function
protein of unknown function
protein of unknown function
protein of unknown function

previously been found to be required for efficient transcriptioar
initiation.4' Although three other peaks in the peptide map were
also identified as arising from Srb5 (Figure 3a), the peaks at m/z
1922.6 and 1724.3 could not be assigned to this protein. MS/MS
of the ion at m/z 1923 (Figure 3c) identified the presence of a

second protein in the band-i.e., the open reading frame yielding
the hypothetical gene product YHR058c. This identification was

confirmed by MS/MS of a second peptide at m/z 1724.3 from

the same gene product. This example demonstrates that two

proteins can be readily identified in a single electrophoretic band,
even when relatively few peptides are available for MS/MS

analysis.
In this manner, 11 proteins were identified over a period of

two days by a single operator (Table 1). Five (RPB1, RPB2,
RGR1,4' SRB4, SRB5) are known components of the RNA poly-

merase II holoenzyme, confirming the efficacy of the technique.

Proteins corresponding to four open reading frames (with un-

known function) and ACT3 and RRN7 were also identified (Table

(41) Thompson, C. M.; Koleske, A. J.; Chao, D. M.; Young, R. A Cell 1993, 73,
1361-1375.

(42) Li, Y.; Bjorklund, S.; Jiang, Y. W.; Kim, Y. J.; Lane, W. S.; Stillman, D. J.;
Kornberg, R. D. Proc. Natd. Acad. Sci. U.S.A. 1995, 92, 10864-10868.
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1). -ACi is an actin-related protein for which genetic evidence
suggests a role in transcriptional regulation.4 The identification
of ACT3 as a CTD-binding protein provides biochemical evidence
for a link between class II transcription and actin-related functions.

The identification of RRN7, a regulatory protein known to be

involved in class I transcription," suggests a common regulatory

mechanism that is conserved between class I and class II
transcription. Further work will be required to test these

hypotheses.

CONCLUSIONS
We have devised a procedure for identifying proteins that

combines the robustness, simplicity, and high sensitivity of

MALDI-MS and the specificity and efficiency of ion trap tandem

MS. The scheme provides fast, sensitive, high-confidence real-

time protein identification as well as facile identification of

modifications. A single operator can currently identify unambigu-

ously 5-10 proteins/day (from an organism whose genome has

been sequenced) at a sensitivity level of >0.5 pmol of protein

(43) Jiang, Y. W.; Stillman, D. J. Genes Dev. 1996, 10, 604-619.

(44) Keys, D. A; Vu, L, Steffan, J. S.; Dodd, J. A; Yamamoto, R. T.; Nogi, Y.;
Nomura, M. Genes Dev. 1994, 8, 2349-62.
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loaded on a gel. The utility of the technique was demonstrated
by the rapid identification of 11 proteins in CTD-affinity prepara-
tions. The technology has great potential for postgenome biologi-
cal science where it promises to facilitate the dissection and
anatomy of macromolecular assemblages1" 7 (e.g., we are cur-
rently defining the total complement of proteins in the yeast
nuclear pore complex), the definition of disease state markers,
and the investigation of protein targets in biological processes such
as cell cycle and signal transduction.
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Appendix B

Rapid construction of targeting vectors using YACS
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Summary

Construction of targeting vectors for gene replacment or modification

is often a laborious task. We sought to make the bulk of this process obsolete,

by the application of a rapid screening procedure in mouse YAC clones

followed by the precise insertion of a selection cassette that can be used in

bacteria, yeast and mammalian cells. YAC clones are screened by PCR for a

segment of the gene of interest, followed by preliminary characterization of

the local intron-exon structure by PCR. A cassette containing the HIS3 gene

and the zeocin resistance gene are amplified by PCR with extended

overhanging ends homologous to the region in which the HIS-zeo cassette

will be inserted. Yeast strains containing the YAC are transformed and

selected for growth on his-deficient plates. The targeted locus is excised by

restriction digestion and cloned into a plasmid vector and selected for zeocin

resistance. Vectors to delete the IL-10 receptor u or p chain genes were

successfully created in - 1 month. This procedure can generally be applied to

introduce precise mutations in any gene. In addition, vectors for targeting

genes in human tissue culture cells can be rapidly constructed using human

YAC libraries as a starting point.
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Introduction

Each year, targeted mutations in the mouse (knockout mice) prove

increasingly valuable to biomedical research both as elegant tools to

investigate the mechanics of biological systems and as models of human

diseases. The number of knockout mice produced yearly is also steadily

increasing, as the methodology and sophistication for production increases.

There is, however, a fundamental bottleneck in the creation of knockout

mice: the rapid establishment of the vector which will carry the targeting

mutation into the mouse genome. Traditionally, this has been a time-

consuming and often frustrating process which relies upon the isolation of a

genomic clone, its detailed characterization and addition of a selectable

marker, such as the neomycin gene, into the relevant region of the locus to be

disrupted. The production of vectors relies heavily on the knowledge of the

appropriate restriction sites within the locus (for insertion of the selection

cassette). In many cases, this is not an straightforward task, particularly if

their are no convenient restriction sites present. This report describes a

technique which seeks to alleviate two major problems with vector

construction. We describe a process which greatly increases speed of clone

isolation and vector construction and we also demonstrate that there need be

little reliance on a detailed knowledge of restriction sites in order to quickly

make a vector. Although other procedures have been described which use
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yeast (Storck et al., 1996) or lambda-based mutagensis (Tsuzuki and Rcouanrt,

1998) our methodology combines the power of yeast genetics with the

burgeoning knowledge of the mammalian genome projects to decrease to the

time and effort required to produce targeting vectors. We estimate that our

procedure will reduce the time of vector construction from ~4-8 months to -1

month.
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Results & Discussion

Overview of the Procedure

Our procedure utilizes YACs (Yeast Artificial Chromosome) as the starting

point for clone isolation. YACs carry very large segments of chromosomes (~0.2-1

Mbp) as a psueudo-chromosome in yeast. The first step is to identify a portion of

the gene of interest by PCR-based screening. This may constitute an important part

of the translated protein product (e.g. an exon encoding the kinase domain in a

protein that is considered essential for activity) and will be partially removed in the

knockout mouse. The PCR assay is designed to amplify part of the gene and is

initially tested on genomic DNA. A YAC containing the locus of interest is then

isolated by PCR-based screening a pooled YAC library (such as the commercially

available Whitehead/MIT C57BL/6 mouse YAC library used here) with the primers

(Fig. 1, Primers A and B) designed to identify the exon of interest. Alternatively, if

the gene of interested has already been mapped to a contig (via the mouse genetic

and physical mapping project: www-genome.wi.mit.edu/cgi-bin/mouse/index),

YAC clones overlapping the region can simply be purchased and then screened to

ensure that the gene is present.

Another set of PCR primers is used to amplify a unique HIS-zeo cassette. The

HIS3 gene is used to select for the targeting event in yeast and the zeo gene will be

used to select bacterial clones and targeted ES cells. In principle, any of the common

yeast auxotoph genes could be used, but HIS3 was chosen because the gene is small
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making the PCR reaction of the cassette easier to perform, and the yeast strain

harboring the YAC clone is his3-2 (a null allele). Zeocin is an antibiotic which was

chosen because it can be used in bacteria, yeast and mammalian cells. For this

crucial step, the primers are designed with extended overhanging ends which are

homologous to a region internal to primers A and B. This need not necessarily be

within the region of interest; but could be designed to delete a larger segement

utilizing a neighboring exon (the methodology was used in the examples given

below). This will be the region of the locus in which the selection cassette is

inserted. The PCR product is transformed into the yeast carrying the YAC and

colonies selected which are his+.

Clones are initially screened for the correct targeting event with the PCR

primers A or B and primers complementary to the zeo or HIS3 genes. As a further

test, genomic DNA is prepared from the his+ strains and also tested by Southern

blotting for the correct targeting event.

The next step is to isolate the targeted locus from the yeast and have it

propagated in bacteria for transfection into ES cells. In order to acheive this, an

enzyme must be identified which will excise the locus as a 6-15 kb piece of DNA.

This can be done earlier as a preliminary investigation of the locus by Southern

blotting or after the HIS-zeo cassette has been inserted. A genomic DNA

preparation is digested with the enzyme (X in the figure) and ligated into a bacterial

vector such as pbluescript. The library is transformed into E. coli and clones are

selected on LB agar for amp and zeo resistance In principle, colonies which arise
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will contain only the fragment of interest (due to the use of zeo in the targeting

cassette).

The final step is to isolate a small fragment from the end of the clone. This

will serve as a probe for identification of the correctly targeted event in ES cells.

This is represented as removing the X-X' fragment from the clone in Fig.1. The

targeting construct is now ready for transfection into ES cells. For this step, ES cells

are transfected with a linearized construct and selected with zeocin. Zeo+ colonies

are screened with the primers described earlier and then analyzed by Southern

blotting with the small end probe. This entire procedure should take only a few

weeks. In addition, several different clones can be worked on simultaneously.

Targeting constructs for the IL-10Roa and IL-10Rp genes

Primers were designed to amplify part of an exon in the putative

ligand binding domains of the IL-10Ra or IL-10Rp genes. In the case of the

human IL-lORp gene, Lutfalla et al. (Lutfalla et al., 1993; Lutfalla et al., 1995)

had already characterized a significant portion of the gene, from which we

inferred the likely structure of the mouse homologue. Each primer set

successfully amplified a small fragment (-150 bp) from each gene. Further

primers were then designed to localize adjacent exons (see Fig. 2 for primer

locations). It was important to design the recombination primers such that

they were internal to the location of another primer set so that correct

recombination events could be scored with the primers within the HIS-zeo

cassette (see insets in Fig.2). Thus, for the IL-10Ro gene, the recombination
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event will take place between PM229 and PM231, which can then be used in

combination with the oCW240 or zeo primers.

Following PCR of the HIS-zeo cassette (see table 1 for the primer

design), several colonies were obtained which were his+. These were initially

scored by PCR and several colonies were found to have a correct

recombination event (5 of 21 for the IL-10Rx gene and 12 of 29 for the IL-10Rp

gene). Genomic DNA was prepared from these strains and analyzed by

Southern blotting to test for illegitimate recombination events (using either a

full-length HIS or zeo probe), correct targeting in the locus of interest (using a

full-length IL-1ORa or p cDNA probe) and to determine a suitable restriction

enzyme to excise each targeted locus. The results showed that each locus was

correctly targeted (Fig. 3) and that Eco RI excised the targeted IL-10Ra locus as

a -10 kb fragemnt while Sal I excised the IL-10RP locus as a ~13 kb fragment.

Genomic DNA was digested with the enzymes listed above and cloned

into pbluescript or pGEM3zf. Ligations were transformed into Genehogs and

plated onto LB agar containing ampicillin and zeocin. Although very few

colonies grew (5 colonies for the IL-10Ra gene and 2 for the IL-10Rp gene),

each contained the correctly targeted locus, which was further analyzed by

Southern blotting of the plasmid DNAs (data not shown). Probe fragments

were prepared from the ends of the clones (to assay for recombination in ES

cells). Kpn I was used to isolate a 0.5 kb or 2.2 kb fragment from the end of the

IL-lOR a or IL-10Rp targeted clones, respectively. Each plasmid was then re-
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sealed using DNA ligase. Kpn I could then be conveniently used to linearize

each clone
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Conclusions

The procedure described in this paper significantly decreases the time

and effort required to construct targeting vectors. There are three obvious

advances made above existing technologies:

1. Screening. Commercially available YAC libraries can be rapidly screened

by PCR to the clonal level or single YAC clones can be isolated based on

existing genetic maps. This obviates the need to screen lambda or BAC

libraries and then isolate and characterize the DNA.

2. Decreased reliance on restriction enzyme mapping. Little knowledge of

the restriction map is need to perform a simple loss-of-function

mutatgenesis, other than the enzyme required to excise the targeting

fragment from the YAC. For the introduction of more sophisticated

mutations (e.g. knock-ins, subtle mutations, lox sites etc), more information

will be required. However, the ease of performing the manipulations in yeast

should facilitate this procedure.

3. Speed and generality to both mouse and human systems. The speed of

clone isolation and mutation introduction is very rapid. In addition,

multiple clones can be worked on simultaneously. Importantly, for the
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disruption of genes in human cell lines, similar procedures can be performed

using the existing human YAC libraries.

In the post-genomic era, the reliance on testing gene function in an

unambiguous way makes the production of knockout mice and cells

paramount. The technology described here greatly facilitates this process by

utilizing the information from the mouse and human genome projects, as

well as the rapid and simple genetic tools available in yeast. Finally, it is

apparent that as the sequence of the mouse genome becomes more complete,

it should be possible to employ the system described here to systematically

knock-out all genes in the mouse. This can be accomplished by a

combination of the complete YAC library covering the entire genome along

with the synthesis of -65, 000 targeting primer pairs (assuming that is

approximately the number of genes present) to amplify HIS-zeo cassettes

robotically. Following systematic recombination and excision, targeting

vectors for all genes could be constructed rapidly. A bank of knock-out mice

for all known genes would be an investment with enormous potential for

understanding biological systems.
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Experimental Procedures

Construction of the HIS-zeo cassette

The HIS3 gene was amplified by PCR using pRS313 (Sikorski and

Hieter, 1989) as a template and primers oCW276 and oCW277 (see table 1)

which contain overhanging restriction sites. The 1.2kbPCR product was

purifed and digested with Bam HI and Sal I. The 1.2kb CMV/Zeo cassette was

cut out of pCMV/Zeo (Invitrogen) with Eco RI and Xho I. pBluescript was cut

with Eco RI and Bam HI. The cut HIS3, CMV/Zeo, and pBluescript DNA

fragments were mixed in a 3-way ligation reaction which was subsequently

transformed into DH5x cells. The plasmid (pCW296) was confirmed to be

correct by extensive restriction analysis.

Screening the YAC library

PCR primers (see Table 1) were designed to amplify a segment of an

exon encoding part of the ligand binding domain in either the IL-10R (Ho et

al., 1993; Ho et al., 1995) or IL-1ORp (Lutfalla et al., 1993; Lutfalla et al., 1995)

gene. PCR conditions were first established using mouse genomic DNA

(from C57BL/6 mice) to ensure that the PCR product corresponded to the

segment of the exon. The PCR assay was applied to the Whitehead/MIT

C57BL/6 YAC library (WI/MIT-820 YAC library) according to the

manufacturer's instructions (Research Genetics, Huntsville, AL), beginning

203



with the superpool and progressively isolating smaller fractions of the pooled

library. Eventually, two YAC clones containing the IL-10Ra or IL-10Rp genes

(or parts thereof) were isolated in clonal form. The genotype of the yeast

strain (S. cerevisiae J57D) carrying the YAC library is: MATa leu3-3,112 ura3-

52 trpl his3-2,-15 ade2 canI. YAC strains were maintained on minimal media

lacking uracil (ura) and tryptophan (trp).

Rapid analysis of the intron/exon structure

The intron/exon structure in the neighboring region was determined

by a PCR-based assay using oligonucleotides with regions complementary to

cDNA sequences of the IL-10Rx or IL-10Rp (see Figure 2 for the locations and

Table 1 for the sequences). Previous reports had identified intron-exon

boundaries of the human IL-10RP gene (Lutfalla et al., 1993; Lutfalla et al.,

1995). We had independently cloned the mouse IL-10Rp cDNA (PJM,

unpublished) and used this sequence as the basis for primer deisgn. PCR

reactions were performed and the resulting product sizes used to determine a

rough outline of the structure of the gene which would be relevant for the

design of homolgous intregration of the HIS-zeo cassette.

PCR of the HIS-zeo cassette

PCR primers (Table 1) with overlapping ends homologous to regions

of the gene to be deleted were designed (see Figure 2 and Table 1). The HIS-

zeo cassette was amplified with these primers using Taq polymerase in a set
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of 20x100 pl reactions. Initial experiments suggested that it was crucial to

perform a titration of Mg, for each PCR reaction. The size of the each PCR

product was -2.6 kb. DNA was phenol/chloroform extracted, ethanol

precipitated and resuspended at a final concentration of 1pg/pl.

Transformation and initial assay of yeast strains

The amplified HIS-zeo cassette was transformed into the YAC-

containing strains using the conventional lithium acetate/PEG method. A

titration of DNA was performed and the number of colonies obtained was

DNA-dependent, 10pg giving the most number of colonies in each case.

Yeast were plated onto synthetic complete media lacking ura, trp and his.

His+, ura+, trp+ colonies were picked three days later and re-streaked onto

minimal media laking ura, trp and his. Colonies were immediately subjected

to PCR assays to detect the correct intregration of the HIS-zeo cassette into the

IL-10Ra or IL-10Rp locus (see insets in Fig. 2). The oligos used were

homologous to regions within the HIS gene (oCW240) or the zeo gene (zeo)

and were designed to amplify relatively short fragments in combination with

the initial screening PCR primers. PCR analysis was performed directly on

yeast, using the TaqGold enzyme (Applied Biosystems) according to the

manufacturer's instructions. A small sample of yeast was picked with a

sterile toothpick and placed in 100 pl water. This was diluted 1:20 with water

and 1 pl used per 50 pl PCR reaction. This assay is highly dependent on the
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amount of yeast added to the PCR reaction, and it may be necessary to titrate

down the quantity of cells added to the reaction.

Southern analysis of the integrated locus

Genomic DNA was purified from yeast strains which had the expected

profile based upon PCR and subjected to Southern analysis. Initially, we

digested genomic DNA from each strain with a battery of restriction enzymes

which cut infrequently within mouse genomic DNA (e.g. Sal I, Xho I, Not I

etc.). Southern blots were probed with either the entire IL-10RX or IL-10Rp

cDNA probes, or probes consisting of the HIS or zeo genes. This step serves

two purposes: a further check that the locus has been correctly targeted and

identification of enzymes which can excise a large enough fragment of the

targeted locus to use in ES cells.

Isolation of the targeted locus

The targeted locus was isolated by taking advantage of the zeo

resistance gene added to the targeting vector. Total genomic DNA from each

strain was digested with a restriction enzyme as described above which could

excise a large segment of the locus. Digested DNA was cloned into pbluescript

(Stratagene) or pGEM (Promega) vectors and transformed into E. coli. It was

important to titrate in the amount digested DNA in the reactions to ensure

the maximum ligation efficiency. Ligations were initially transformed into

DH5a and plated onto LB agar with 50 pg ampicillin to determine the
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approximate size of the library (we aimed for -10-fold coverage of the yeast

genome). Libraries were then transformed into Genehogs (Research

Genetics), an E. coli preparation specifically designated for the uptake of larger

DNA fragments. Libraries were plated onto LB agar containing 50 pg/ml

ampicillin and 25 pg/ml zeocin (Invitrogen). The LB agar was prepared in

the low-salt version for full zeocin activity as specified by Invitrogen. Amp+,

zeo+ clones were picked into low-salt LB broth and plasmid DNA analysed by

restriction digest and Southern blotting as described above.

Isolation of a probe from the end of each clone

Each plasmid containing the correct targeted locus was analyzed by

restriction digest to obtain a small fragment from the end of each clone. This

would serve as a probe for a region outside the targeted locus following

transfection into ES cells. For the IL-10Ra or IL-10Rp locus, Kpn I digest

excised 400 bp or 2.3 kb fragments, respectively, from the end of the clone.

The fragments were cloned into pbluescript and the remaining targeting

plasmids re-ligated giving rise to the final form of the targeting vector.

Transfection into ES cells

In order to transfect each construct into an isogenic cell line, ES cells

from C57BL/6 mice (Bruce 4 cells) were used (Kontgen et al., 1993). These

were maintained on STO SNL2 cells (STO embryonic fibroblasts transfected

with a construct expressing the murine LIF gene; obtained from the ATCC)
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which were transfected with the CMV-zeo plasmid (Invitrogen). Linearized

targeting constructs were electroporated in the Bruce 4 cells and selected with

zeo.
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Table 1: Oligonucleotides used for screening and targeting vector construction

Name Sequence

PM201 TCAACCTGGAATGACATCCATAT

PM203 CCAGTTGGAGTACTGACTGTTGTC

PM20 4 CAGGTCTTTCCAAGATCACTGC

PM205 GGCAGAAGGTGACATTGACCC

PM224 CTATCTGCATCTCAGGAGGTC
PM225 CTCTGTAAGCCCATGAGTCAT

PM226 CTTGAATGCAGTAAGTTGTCC

PM227 AGCGCACTGCCTCGACTCAGTGCGACTTCTCTCATCTTTCTAAATACGGAGACTCCCGGGTCTGTGCGGTATTTCAC

PM228 TGTTCTTCAAGGTCCACGTCTCAGGCTCATTCTCAATTTGTGGGGCTGAGAAACGAGACATGATAAGATACATTG
PM229 CTATGTGTGGTTTGAAGCCAG

PM230 GAGCACCTACTATGAAGTGGC

PM231 AGAATCACTTCATCCACTGTG

PM232 AGATCCTTGAAGACTTGTTCG

PM233 CTCACCCCTATGGGGACCGTG

PM250 TTTCCAGCACATCCTCCACTGGAAACCTATCCCAAACCAGTCTGAGAGCACCTACTACCCGGGTCTGTGCGGTATTTCAC

PM251 CGAGTCTCAGTGGTGGTCCAGTTGGAGTACTGACTGTTGTCCACTGCCCGGACTCTGGAGACATGATAAGATACATTG

oCW240 (his) GTGGTGCCGGACAACACCCT

oCW357 (zeo) GTGGTGCCGGACAACACCCT

oCW276 CGCGGTCGACCCCGGGGCAGATTGTACTGAGAGTGC

oCW277 CGGCGGATCCCCCGGGTCTGTGCGGTATTTCACACC



Figure 1. Schematic representation of the targeting procedure.
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Figure 2. Diagrammatic representation of the targeting strategy for the IL-

1ORa or IL-10RP loci.

For each locus, PCR was used to identify the location of neighboring

exons. The initial oligonucleotides used in the PCR reactions were PM201

and PM203 for the IL-10Ra locus and PM204 and PM205 for the IL-lORp locus.

Additional oligonucleotides are shown in each diagram. The designed

recombination sites are shown with broken lines. The oligonucleotides used

to PCR the HIS-zeo cassette are shown (PM250 and PM251 for the IL-10Ra and

PM227 and PM228 for the IL-ORf). The PCR screening strategy for each event

is diagrammed in the boxes. For the IL-10Ra, a -0.7 kb fragment is replaced

with a 2.6 kb HIS-zeo cassette. For the IL-10RP, a -3.0 kb fragment is replaced.
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Figure 3. Southern analysis of targeting events.

Panel A. Disruption of the IL-10Ra locus. Genomic DNA from 3

independent his+ clones was digested with Eco RI and analysed by Southern

blotting. The parent YAC strain is shown on the left. When gDNA is probed

with a full-length IL-1bRa cDNA (upper blot), two bands are identified. The

lower band corresponds to Eco RI fragemnt at the 3' end of the gene (the Eco

RI site is present in the cDNA sequence). The targeting event increases the

size of the 7 kb Eco RI fragment by 2.6 kb corresponding to the insertion of the

HIS-zeo cassette along with the appearance of an additional band hybridizing

to the HIS probe (lower blot) Panel B. Disruption of the IL-10RO locus.

Genomic DNA from 3 independent his+ clones was digested with Sal I and

analysed by Southern blotting. The parent YAC strain is shown on the left.

When gDNA is probed with a full-length IL-lORp cDNA (upper blot), two

bands are identified. The cDNA hybrizes to a -13 kb Sal I fragemnt. The

targeting event decreases the size of the 13 kb Sal I fragment by 0.4 kb

corresponding to the insertion of the HIS-zeo cassette along with the

appearance of an additional band hybridizing to the HIS probe (lower blot).

This targeting event was further verified by extensive analysis of the plasmid

DNAs isolated (data not shown). See a digram of the targeting events in

Fig.2.
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