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ABSTRACT

In this paper we show that there is a close relationship between variable

metric methods of function minimization and filtering of linear stochastic systems

with disturbances which are modelled as unknown but bounded functions. We develop

new variable metric algorithms for function minimization.

1. INTRODUCTION

The objective of this paper is to show that there is a close relationship

between variable metric methods of function minimization and filtering of linear

stochastic systems with disturbances which are modelled as unknown but bounded

functions.

It is well known that Newton's method for function minimization exhibits

quadratic convergence in the neighborhood of the minimum. This rapid convergence

rate however is obtained at the expense of requiring'second derivative computations

and solution of a linear equation at each iteration stage. On the other hand,

variable metric methods do not require second derivative computations nor matrix

inversion (solution of a linear equation) and versions of this algorithm are known

to exhibit reasonably rapid convergence. Intuitively, one may consider a variable

metric method as one where an estimate of the Hessian (or inverse of a Hessian) is

obtained on the basis of information on function values and gradient values in past

iterations and the next step is determined on the basis of this estimate. In this

paper, we attempt to make this intuitive notion precise.

The work closest in spirit to this work is the doctoral dissertation of THOMAS

[4I. The stochastic models we derive are however, somewhat different and we exploit

linear filtering theory to the fullest extent possible. We obtain algorithms which

do not require accurate line search algorithms as was also done by Thomas.

2. FILTERING MODEL FOR THE ALGODPRITHM

Consider the problem of minimizing

{f (x)I xA' , where (2.1)
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f is assumed to be thrice continuously differentiable on En n

Let

Vf(x) = g(x) and D f(x) = G(x) . (2.2)

Let x* be a local minimum of f and in some open, convex neighborhood D of

x* , let us assume

IIG(x + O1sk) - G(xk + 82Sk) 11 < Lie - 02! . skj where L > 0 (2.3)

for all ,x¶xk + SksD , all 08182c[0,].

We wish to discuss iterative algorithms for minimizing f(x) and the algorithm

proceeds as k+l = + Sk ' k = 0,1,2,...

Let us use the notation

Gk ( 8 )= G(xk f Osk)

(2.4)
qk(8) = g(xk + 8s k) , k = 0,1,2,...

it is easy to see that there exists UkE£L (0,1-4(Rn)) such that

~~~~~~~Also ~Gk() - Gk(0) = Uk(t)dt , with(2.6)0 (2.5)

Also

gk( = gk(0) + f Gk(t)skdt , (2.6)

Evaluating (2.5) and (2.6) at 0 = 1, and using the natural notation Gk(l) =

Gk+l Gk() = Gk ' gk(l) = gk+l ' etc., we get

Gk+l = Gk + f Uk(t)dt

10 >(2.8)

gk+l = +Gksk + f [Gk(t) - Gk(0)]Skdt
0
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Let

vk =f Uk(t)dt

0

wk = J [Gk(t) - Gk(O)skdt

0

Then, we may rewrite (2.8) as

Gk+l- Gk + Vk 
k -+V(2.9)

gk+l = gk Gkk + Wk ' J

It is natural to think of Vk and wk as process and observation noise res-

pectively. They are obviously correlated. We now atte-pt= to bound the noise.

3. BOUNDS ON TIE NOISE

To do the bounding, we use the following device: Let y. denote the i th
1i~~ row

of G . We then use the isomorphism

i : C(Rn ) ORn G+

We can then rewrite equation (2.8) in differential form:

-d (iGk) iU k()

(2.10)

d gk(0) = (In s) (iG()) . (210)

In the above ' denotes transpose and a denotes tensor product. Writing (2.10)

in vector-matrix form:

iG( 0 i Gk(0) /i l

d ] + (2.11)

L k0 J \n s 0 /\,(e) /

We are interested in bounding Vk and wk as U C') varies over the class of

all mappings given by (2.5). Clearly, the set of all (i ,w ) as u(.) varies
2 n k' k k

is a convex set in + az n. Let P denote the set. We can compute the support

function of this set and estimate that the support function nL(G*,g*), G* ORn)*,
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g*E(R n )* (* denotes the dual space) satisfies:

1/2
k(G*,g*) < L|skl{ 13 !skl 2 211g11 + (g, G*Sk) (2.12)

It is easy to see that an appropriate choice of LU,(- ) in the class defined by

(2.5) attains this bound and hence the support function can be computed as:

/G*·iii 'QG\ 1/2
jk (G* g*) L < => ||< ) ¢ (2.13)

where <o,-> is the obvious inner product in d4( n) x Rn and in the matrix

defined from the right hand side of (2.12). We can check that Sk > Q (unless

Sk = 0).

The above discussions may be combined in the following:

Consider the problem of estimating Gk from

G =G +V (2.14)
Gk+l Gk + Vk

Zk = Gks k + wk ,where Zk = k+l - k (2.15)

Let G en where

s o = {cGRn) <G -Go , (G (2o16)

and Go, O > 0 are given 

Then

Proposition 1

) , where

w k

Qk~= {(v)SLRn) x |tl <Q-v> <} . (2.17)
k (V) F-40) X e L jky7 <VI P Pk L> 

4. SOLUTION OF THE ESTI±'ATIO.N DR3L

The estimation problem can now be solved using the work of BERTSEKAS [1]. It

consists of recursively estimating the sets 2 , which are ellipsoids. The centre

of the ellipsoid is the desired estimate. These results are sunxaarised in
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Proposition 2

G1 -K+ 1 GK+1 2 < l-y (2.18)

Rn + n

where K+1 satisfies
K+1

K+ G=GPK+1 k=0,1,2,, (2.19)
K-i-i K+l2

and PK is given by

PK+l=(!+l+Skil) Pk+L2Sk - [Pk + 2 k InSkS'k L } (2.20)~PK+1--...k+ 2 n k k[PkI 2 n

(k' [Pk+ 2 n k )

EK+1 -IGK +Sk[Pkp L 5 I}-G .s (2.21)
2

(sk tPk+L 11sk1l I]s k )

andk 2

! zk-c k~ :11k

L i [||| +Isk] s 'kk [ k_3 nk

Proposition 3

-1 

If Hk = (Gk) exists and GK+1 is generated by (2.20) - (2.22) then

ts -H z Id' H
H =H + SkkZkd'kH k~~~~K-I-i~~~~~~l~~~ k ~(2.23)

k+ d 'k Sk-HkZk ]

is the inverse of GK+l, where

(sk' [Pk+ I Ikll k I k )

k 3 n
(s- < (P + ll~kLL'1 -(2.24)

(Sk P +lsk I Is
k 2 nk

[P+ I kl k I n skdk = 2 (2.25)

k' [P k 2 n k



5. NEW ALGORITHE-IS FOR FUNCTION g .i-11..iIZATION

Since we are looking for an estimate of the Hessian (or inverse of the

Hessian)it is desirable that our estimates are sym.etric. This suggests the

following algorithm:

(i) Propagate Hk and Pk according to (2.23) and (2.20)

(ii) Symmetrize Hk to obtain Hk

(iii) Find the closest approximation Hk to H5 so that the secant
k k

equation sk = Xzk is satisfied.

(iv) The new step is computed according to Powell's dog-leg

strategy (cf. POWELL [3])

We now present a number of convergence results corresponding to the use

of different estimates for the Hemian.

Suppose we update Pk and Hk according to (2.20) and (2.23)-(2.25) with

P =C I. The new step is chosen according to the formula
0

Sk = -Hkgk , and let us update ek according to (5.1)

(TI (1+IIs II) [I +|| III (2c-) dkd'k kl (5I

2 (Xk k k (5.2)'
1]' = (X I.

We then have:

Lemma 5.1

I > Pk > 0 Vk > 0. (5.3)

We know, that if Gk is non-singular then

GK+l = G + kk +k)dk , k=0,1,2,... (5.4)
CK+l Ck

K

We can then show

Lemma 5.2

There exists a p>0, such that

I IGk-dGkel < b k > p- (5.5)

These ideas enable us to prove the following basic convergence theorem:
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Theorem 5.3

Let g: R -~ R be differentiable in an open convex neighborhood D of x*,

where x* satisfies g(x*)=O and we also have Dg(x*) = G(x*) is non-singular. Let

us suppose that G(-) satisfies

IG(x)-G(y) | <LI x-yi ,Vx,yED. (5.6)

Then for each y > 0, rs[0,1], 36=6(y,r), s=E(y,r) such that if [ IxO-x*fj < 

and JIG -GO I1<ya, 1s[0,E], then, the sequence

-1
K+l = - [Gk] gk (5.7)

converges to x*.

Moreover

I I+l-x*lI <lylXk-x*I1 and the sequence (5.8)

(J IGk) - and (ikIH1 ) are uniformly bounded.
k=O,l,... . k=O,l, .. 

Theorem 5.3 shows that we obtain linear convergence. One can show that the

convergence is actually superlinear.

So far we have constructed an algorithm which uses the output of the filter

directly. As we have previously remarked it would be desirable to "symmetrize"

the estimate and use this as in the algorithm. It can be shown that an algorithm

using the symmetrized estimate converges linearly under the same hypotheses as

that of Theorem 5.3. However a proof of convergence of the algorithm when

the estimates are also chosen to satisfy the secant equation is at present

not available. The details of the proof of the various results, presented in

this paper will appear elsewhere [cf. MITTER-TOLDA-LAGI [21 ].
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