VARIABLE METRIC METHODS AND FILTERING THEORY
Sanjoy K. Mitter
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology Cambridge, Massachusetts 02138
and
Pal Toldalagi
Department of Electrical Engineering and Computer science Massachusetts Institute of Technology Cambridge, Massachusetts 02138

ABSTRACTS

In this paper we show that there is a close relationship between variable metric methods of function minimization and filtering of linear stochastic systems with disturbances which are modelled as unknown but bounded functions. We develop new variable metric algorithms for function minimization.

1. INTRODUCTION

The objective of this paper is to show that there is a close relationship between variable metric methods of function minimization and filtering of linear stochastic systems with disturbances which are modelled as unknown but bounded functions.

It is well known that Newton's method for function minimization exhibits quadratic convergence in the neighborhood of the minimum. Tnis rapid convergence rate however is obtained at the expense of requiring'seconc derivative computations and solution of a linear equation at each iteration stage. On the other hand, variable metric methods do not require second derivative computations nor matrix inversion (solution of a linear equation) and versions of this algorithm are known to exhibit reasonably rapid convergence. Intuitively, one may consider a variable metric method as one where an estimate of the Hessian (or inverse of a Hessian) is obtained on the basis of information on function values and gradient values in past iterations and the next step is determined on the basis of this estimate. In this paper, we attempt to make this intuitive notion precise.

The work closest in spirit to this work is the doctoral dissertation of THOMAS [4]. The stochastic models we derive are however, somewhat different and we exploit linear filtering theory to the fullest extent possible. We obtain algorithms which do not require accurate line search algorithms as was also cone by Thomas.

2. FILTERING MODEL FOR THE ALGORTTEM

Consider the problem of minimizing

$$
\begin{equation*}
\left\{f(x) \mid x \in \mathbb{R}^{n}\right\} \text {, where } \tag{2.1}
\end{equation*}
$$

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Due to the poor quality of the original document, there is some spotting or background shading in this document.
f is assumed to be thrice continuously differentiable on \mathbb{R}^{n}.
Let

$$
\begin{equation*}
\nabla f(x)=g(x) \quad \text { and } \quad D^{2} f(x)=G(x) \tag{2.2}
\end{equation*}
$$

Let x^{*} be a local minimum of f and in some open, convex neighborhood D of x* , let us assume
$\left\|G\left(x_{k}+\theta_{1} s_{k}\right)-G\left(x_{k}+\theta_{2} s_{k}\right)\right\| \leq I\left|\theta_{I}-\theta_{2}\right| \cdot\left\|s_{k}\right\|$, where $I>0$
for all $x_{k}, x_{k}+s_{k} \varepsilon D$, all $\theta_{1}, \theta_{2} \varepsilon[0,1]$.
We wish to discuss iterative algorithms for minimizing $f(x)$ and the algorithm proceeds as $x_{k+1}=x_{k}+s_{k}, k=0,1,2, \ldots$

Let us use the notation

$$
\begin{align*}
& G_{k}(\theta)=G\left(x_{k}+\theta s_{k}\right) \\
& g_{k}(\theta)=g\left(x_{k}+\theta s_{k}\right), k=0,1,2, \ldots \tag{2.4}
\end{align*}
$$

It is easy to see that there exists $U_{k} \varepsilon I^{l}\left(0, I: \mathcal{Z}\left(\mathbb{R}^{n}\right)\right)$ such that

$$
\left.\begin{array}{c}
G_{k}(\theta)-G_{k}(0)=\int_{0}^{\theta} U_{k}(t) d t, \text { with } \\
\left|\left|U_{k}(\theta)\right|\right| \leq L\left\|s_{k}\right\|, k=0,1,2, \ldots, \theta \varepsilon[0,1]
\end{array}\right\}
$$

Also

$$
g_{k}(\theta)=g_{k}(0)+\int_{0}^{\theta} G_{k}(t) s_{k} d t
$$

Evaluating (2.5) and (2.6) at $\theta=1$, and using the natural notation $G_{k}(1)=$ $G_{k+1}, G_{k}(0)=G_{k}, g_{k}(1)=g_{k+1}$, etc., we get.

$$
\left.\begin{array}{c}
G_{k+1}=G_{k}+\int_{0}^{1} U_{k}(t) d t \tag{2.8}\\
g_{k+1}=g_{k}+G_{k} s_{k}+\int_{0}^{1}\left[G_{k}(t)-G_{k}(0)\right] s_{k} d t \quad
\end{array}\right\}
$$

Let

$$
\begin{aligned}
v_{k}= & \int_{0}^{l} U_{k}(t) d t \\
w_{k}= & \int_{0}^{1}\left[G_{k}(t)-G_{k}(0)\right] s_{k} \bar{c}^{t}
\end{aligned}
$$

Then, we may rewrite (2.8) as

$$
\left.\begin{array}{l}
G_{k+1}=G_{k}+v_{k} \tag{2.9}\\
g_{k+1}=g_{k}+G_{k} s_{k}+w_{k} \quad .
\end{array}\right\}
$$

It is natural to think of V_{k} and w_{k} as process and observation noise respectively. They are obviously correlated. We now attempt to bound the noise.

3. BOUNDS ON THE NOISE

To. do the bounding, we use the following device: Let γ_{i} denote the $i=$ rh row of G. We then use the isomorphism

$$
i: \mathcal{L}\left(\mathbb{R}^{n}\right) \rightarrow R^{n^{2}}=G \mapsto\left(\begin{array}{l}
\gamma_{i} \\
\cdot \\
\cdots \\
\gamma_{n}
\end{array}\right)
$$

We can then rewrite equation (2.8) in differential form:

$$
\left.\begin{array}{l}
\frac{d}{d \theta}\left(i G_{k}\right)=i U_{k}(\theta) \tag{2.10}\\
\frac{d}{d \theta} g_{k}(\theta)=\left(I_{n} \otimes s_{k}^{i}\right)\left(i G_{i}(\theta)\right)
\end{array}\right\}
$$

In the above ' denotes transpose and Q denotes tensor product. Writing (2.10) in vector-matrix form:

$$
\frac{d}{d \theta}\left[\begin{array}{c}
i G_{k}(\theta) \tag{2.11}\\
g_{k}(\theta)
\end{array}\right]=\left(\begin{array}{cc}
0 & 0 \\
I_{n} S_{k}^{\prime} & 0
\end{array}\right)\binom{i G_{k}(\theta)}{g_{k}(\theta)}+\binom{i U_{k}(\theta)}{0}
$$

We are interested in bounding V_{k} and w_{k} as $\tau_{k}(\cdot)$ varies over the class of all mappings given by (2.5). Clearly, the set of all (ivirw ${ }_{k}$) as $U_{k}($.$) varies$ is a convex set in $\mathbb{R}^{n^{2}}+\mathbb{R}^{n}$. Let Ω_{k} denote the set. We can compute the support function of this set and estimate that the support function $\left.\eta_{k}\left(G^{*}, g^{*}\right), G^{*} \in \mathcal{X} R^{n}\right) *$,
$g^{*} \varepsilon\left(\mathbb{R}^{n}\right)^{*}$ (* denotes the dual space) satisfies:

$$
\begin{equation*}
n_{k}\left(G^{*}, g^{*}\right) \leq L\left\|s_{k}\right\|\left\{\frac{1}{3}\left\|s_{k}\right\|_{\cdot}^{2}\left\|g^{*}\right\|^{2}+\left(G^{*}, G^{*} s_{k}\right)+G_{i}^{*} \|^{2}\right\}^{1 / 2} \tag{2.12}
\end{equation*}
$$

It is easy to see that an appropriate choice of $u_{k}(\cdot)$ in the class defined by (2.5) attains this bound and hence the support function can be computed as:

$$
\begin{equation*}
n_{k}\left(G^{*}, g^{*}\right)=L\left\|s_{k}\right\|\left\{<\binom{G^{*}}{g^{*}} \cdot Q_{k}\binom{G^{*}}{g^{*}}>\right\}^{1 / 2} . \tag{2.13}
\end{equation*}
$$

where $\langle\cdot \cdot\rangle$ is the obvious inner product in $\mathcal{L}\left(\mathbb{R}^{n}\right) \times \mathbb{R}^{n}$ and Q_{k} in the matrix defined from the right hand side of (2.12). We can check that $Q_{k}>0$ (unless $s_{k}=0$)

The above discussions may be combined in the following:
Consider the problem of estimating G_{k} from

$$
\begin{gather*}
G_{k+1}=G_{k}+V_{k} \tag{2,14}\\
z_{k}=G_{k} s_{k}+w_{k}, \text { where } z_{k}=g_{k+1}-G_{k} \tag{2.15}
\end{gather*}
$$

Let $G_{0} \varepsilon_{\Omega_{0}}$ where

$$
\begin{align*}
& \Omega_{0}=\left\{G \varepsilon \mathcal{L}\left(\mathbb{R}^{n}\right) \mid<G-\hat{G}_{0}^{\prime}{ }_{o}^{-1}\left(G-\hat{G}_{o}^{i>} \mathbb{R}^{n} 2 \leq 1\right.\right. \tag{2.16}\\
& \text { and } \quad \hat{G}_{0}, \pi_{0}>0 \text { are given. }
\end{align*}
$$

Then
Proposition 1

$$
\begin{align*}
& \binom{v_{k}}{w_{k}} \varepsilon \Omega_{k} \text {, where } \\
& \Omega_{k}=\left\{(\nu) \varepsilon \mathcal{L}\left(\mathbb{R}^{n}\right) \times \mathbb{R}^{n} \left\lvert\, \frac{1}{L \prod \prod_{k} \prod}\left\langle\nu, Q_{k}^{-1} v\right\rangle \quad \mathcal{L}\left(1 R^{n}\right) \times R^{n} \leq 1\right.\right\} \quad \text {. . } \tag{2.17}
\end{align*}
$$

4. SOLUTION OF THE ESTIMATION PEOBIEV

The estimation problem can now be solved using the cork of BERTSEKAS [1]. It consists of recursively estimating the sets Ω_{K}, which are ellipsoids. The centre of the ellipsoid is the desired estimate. These results \equiv are summarised in

Proposition 2

$$
\begin{equation*}
\hat{\Omega}_{K+1}=\left\{G \mid\left\langle G-\hat{G}_{K+1}, \Pi_{K+1}^{-1}\left(G-\hat{G}_{K+1}\right)\right\rangle \mathbb{R}^{n^{2}+\mathbb{R}^{n}} \leq 1-\gamma_{K}\right\} \tag{2.18}
\end{equation*}
$$

where Π_{K+1} satisfies

$$
\begin{equation*}
\Pi_{K+1} G=G P_{K+1}, k=0,1,2, \ldots . \tag{2.19}
\end{equation*}
$$

and P_{k} is given by

$$
\begin{align*}
& P_{K+1}=\left(I+| | s_{k} \|\right)\left\{P_{k}+L^{2}\left\|s_{k}\right\| I_{n}-\frac{\left[P_{k}+\frac{L^{2}\left\|s_{k}\right\|}{2} I_{n}\right] s_{k} s_{k}{ }_{k}\left[P_{k}+\frac{I^{2}\left\|s_{k}\right\|}{2}-I_{n}\right]}{\left(s_{k},\left[P_{k}+\frac{\left.\left.L^{2}\left\|s_{k}\right\| I_{n}\right] s_{k}\right)}{2}\right.\right.}\right\} \tag{2.20}\\
& \hat{G}_{K+1}=\hat{G}_{K}+\frac{\left[{ }^{2}{ }_{k}-\hat{G}_{k} s_{k]}{ }_{s}{ }^{\prime}{ }_{k}\left[P_{k}+\frac{L^{2}\left\|s_{k}\right\|}{2} I\right]\right.}{\left(s_{k},\left[P_{k}+L^{2}\left\|s_{k}\right\| I\right] s_{k}\right)} \tag{2.2I}
\end{align*}
$$

and

$$
\begin{equation*}
v_{k}=\frac{\left\|z_{k}-\hat{G}_{k} s_{k}\right\|^{2}}{L^{2}\left\|s_{k}\right\|\left[1+\left\|s_{k}\right\|\right] s_{k}^{\prime}}\left[P_{k}+\frac{L^{2}\left\|s_{k}\right\|}{3} I_{n}\right] s_{k} \tag{2.22}
\end{equation*}
$$

Proposition 3

$$
\begin{align*}
& \text { If } H_{k}=\left(\hat{G}_{k}\right)^{-1} \text { exists and } \hat{G}_{K+1} \text { is generated by (2.20) - (2.22) then } \\
& H_{K+1}=H_{k}+\frac{\left[s_{k}-H_{k} z_{k}\right] d_{k}^{\prime} H_{k}}{\alpha_{k}+d_{k}^{\prime}\left[s_{k}-H_{k} z_{k}\right]} \tag{2.23}
\end{align*}
$$

is the inverse of G_{K+1}, where

$$
\begin{align*}
& \alpha_{k}=\frac{\left(s_{k},\left[P_{k}+\frac{\left\|s_{k}\right\|}{3} I_{n}\right] s_{k}\right)}{\left(s_{k},\left[P_{k}+\frac{\left\|s_{k}\right\|}{2} I_{n}\right] s_{k}\right)}<1 \tag{2.24}\\
& \left.\left.d_{k}=\frac{\left[P_{k}+\frac{s_{k} \|}{2}\right.}{\left(s_{k},\left[P_{k}+\frac{\left\|s_{k}\right\| s_{k}}{2}\right.\right.} \quad I_{n}\right] s_{k}\right) \tag{2.25}
\end{align*}
$$

Since we are looking for an estimate of the Hessian (or inverse of the Hessian)it is desirable that our estimates are symmetric. This suggests the following algorithm:
(i) Propagate H_{k} and P_{k} according to (2.23) ana (2.20)
(ii) Symmetrize H_{k} to obtain H_{k}^{S}
(iii) Find the closest approximation \hat{H}_{k} to H_{k}^{s} so that the secant equation $s_{k}=X z_{k}$ is satisfied.
(iv) The new step is computed according to Poweil's dog-leg strategy (cf. POWELL [3])

We now present a number of convergence results corresponding to the use of different estimates for the Hemian.

Suppose we update P_{k} and H_{k} according to (2.20) and (2.23)-(2.25) with $P_{0}=\sigma^{2}$ I. The new step is chosen according to the formula
$s_{k}=-H_{k} g_{k}$, and let us update Π_{k} according to

$$
\left\{\begin{array}{l}
\Pi_{K+1}=\left(1+\left|\left|s_{k}\right|\right|\right)\left[\Pi_{k}+\left|\left|s_{k}\right|\right| I_{n}-\frac{\left(2 \alpha_{k}-1\right)}{\alpha_{k}^{2}} \frac{d_{k}^{d_{k}^{\prime}}}{\left(s_{k}^{\prime} d_{k}\right.}\right] \tag{5.2}\\
\Pi_{0}=\sigma^{2} I .
\end{array}\right.
$$

We then have:
Lemma 5.1
$\Pi_{k} \geq \mathrm{p}_{\mathrm{k}} \geq 0 \quad \forall \mathrm{k} \geq 0$.
We know, that if \hat{G}_{k} is non-singular then
$\hat{G}_{K+1}=\hat{G}_{k}+\frac{\left(z_{k}-\hat{G}_{k} s_{k}\right) d^{\prime}{ }_{k}}{\alpha_{K}}, k=0,1,2, \ldots$
We can then show
Lemma 5.2
There exists a $\mu>0$, such that

$$
\begin{equation*}
\left\|G_{k}-\hat{G}_{k}\right\|^{2} \leq \mu, \quad k \geq 0 \tag{5.5}
\end{equation*}
$$

These ideas enable us to prove the following basic convergence theorem:

Theorem 5.3
Let $g: R^{n} \rightarrow R^{n}$ be differentiable in an open conivex neighborhood D of x^{*}, where x^{*} satisfies $g\left(x^{*}\right)=0$ and we also have $D g\left(x^{*}\right)=G\left(x^{*}\right)$ is non-singular. Let us suppose that $G(\cdot)$ satisfies

$$
\begin{equation*}
||G(x)-G(y)|| \leq L| | x-y| |, \forall x, y \in D . \tag{5.6}
\end{equation*}
$$

Then for each $\gamma \geq 0, r \varepsilon[0,1], \exists \delta=\delta(\gamma, r), \varepsilon=\varepsilon(\gamma, r)$ such that if $\| x_{0}-x^{*}| | \leq \delta$ and $\left\|\hat{G}_{0}-G_{0}\right\| \leq \gamma \sigma, \sigma \varepsilon[0, \varepsilon]$, then, the sequence

$$
\begin{equation*}
\left.x_{K+1}=x_{k}-\hat{[G}_{k}\right]^{-1} g_{k} \tag{5.7}
\end{equation*}
$$

converges to x^{*}.
Moreover

$$
\begin{equation*}
\| x_{k+1}-x^{*}| | \leq \gamma| | x_{k}-x^{*}| | \text { and the sequence } \tag{5.8}
\end{equation*}
$$

$\left(\left\|\hat{G}_{k}\right\|\right)_{k=0,1, \ldots}$ and $\left(\left\|\hat{H}_{k}\right\|\right)_{k=0,1, \ldots}$ are uniformy bounded.
Theorem 5.3 shows that we obtain linear convergence. One can show that the convergence is actually superlinear.

So far we have constructed an algorithm which uses the output of the filter directly. As we have previously remarked it would be desirable to "symmetrize" the estimate and use this as in the algorithm. It can be shown that an algorithm using the symmetrized estimate converges linearly under the same hypotheses as that of Theorem 5.3. However a proof of convergence of the algorithm when the estimates are also chosen to satisfy the secant ecuation is at present not available. The details of the proof of the various results, presented in this paper will appear elsewhere [cf. MITTER-TOLDAIAGI [2]].

REFERENCES

[1] D. Bertsekas, "Control of Uncertain Systems with a Set Memoership Description of Uncertainty," Ph.D. Thesis, Department of Electrical Engineering, M.I.T., 1971.
[2] S. K. Mitter and P. Toldalagi, to appear.
[3] M.J.D. Powell, "Convergence Properties of a Class of Minimization Algorithms, in Nonlinear Programing, Vol. 2, editors Mangasarian, Meyer and Robinson, Academic Press, New York, 1975.
[4] S. W. Thomas, "Sequential Estimation Techniques For Quasi-Newton Algorithms, Cornell University, Department of Computer Science, Technical Report TR75-227, 1975.

Acknowledgement
The research of the first author has been supported by the Air Force Office of Scientific Research under Grant No. AFOSR 77-3281.

