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Abstract

In this thesis we discuss correlation functions of M = 4, d = 4 Super-Yang-Mills theory
in the strong coupling regime. Namely, the recent conjecture of the equivalence of the
string theory in AdS 5 x S5 background to the M = 4, d = 4 SYM theory with SU(N)
gauge group allows to find correlation functions of the CFT in the limit of large t'Hooft
coupling and at large N by evaluating relatively simple tree-level supergravity amplitudes.
We discuss the basic ideas of the AdS supergravity computations, and establish the tech-
niques for evaluating tree-level AdS supergravity scattering amplitudes with fixed rates
of fall-offs of the fields as they approach AdS boundary. We translate these supergravity
results into field theory language and learn several interesting things. First, at the level
of the two-point correlation functions we learn about the necessity for the introduction
of a cut-off in seemingly convergent AdS supergravity computations. Next, we find a
non-renormalization property of certain 3-point functions. Finally, we find an explicit
expression for certain 4-'foint functions, which deviate from free-field approximation in
perturbation theory, thus providing some new non-perturbative information about SYM.
We study various limits of these 4-point functions, with intention to give them an OPE in-
terpretation. We find logarithmic singularities in all limits, and discuss their compatibility
with existence of an OPE at strong coupling.
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Chapter 1

Introduction

The fact that the near horizon geometry [5]-[12] of typical brane configurations in string/M

theory is the product space AdSd+l x Sp with d + 1 + p = 10/11 has suggested an intrigu-

ing conjecture [1] relating string theory theory on AdSd+l space-time background with a

superconformal theory on its d-dimensional boundary [1]. The concept of this correspon-

dence emerged in an earlier work on black holes [13]-[17] and has been further elaborated

in [32]-[75].

Precise forms of the conjecture [1] have been stated and investigated in [2, 3] (see

also [4]) for the AdS 5 x S5 geometry of N 3-branes in Type-IIB string theory. The

superconformal theory on the world-volume of the N branes is K = 4 SUSY Yang-Mills

with gauge group SU(N). The conjecture holds in the limit of a large number N of branes

with gtN ~ gyMN fixed but large. As N -+ oc the string theory becomes weakly coupled

and one can neglect string loop corrections; Ngt large ensures that the AdS curvature

is small so one can trust the supergravity approximation to string theory. In this limit

one finds the maximally supersymmetric 5-dimensional supergravity with gauged SU(4)

symmetry [18]-[20] together with the Kaluza-Klein modes for the "internal" S5 . There

is a map [3] between elementary fields in the supergravity theory and gauge invariant

composite operators of the boundary K = 4 SU(N) SYM theory. More precisely, in the

maximally symmetric K = 8 AdS supergravity in d = 5 there are long, short and ultra-sort
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(singleton) supermultiplets, containing 2", 28 and 24 states respectively. It can be shown

that the singleton supermultiplet action can be rewritten as a boundary action of a free

U(1) gauge theory, and since we are interested in SU(n) rather than U(N) boundary theory

we will ignore this multiplet in the further discussion. Short multiplets, which contain the

lowest supergravity multiplet as well as all Kaluza-Klein modes of S' directly correspond

to the short multiplets of chiral operators of N = 4 superconformal theory. This is based

on the fact that the (super) isometry group of the AdS supergravity is the same as (super)

conformal group of the dual gauge theory. Finally, the long multiplets of the supergravity,

which come from the string modes (their mass is of the order of Plank scale) correspond

to long multiplets of non-chiral operators on the SCFT. Another class of long multiplets

in the CTF can be constructed by simply multiplying short multiplets. The members

of these long multiplets are thus normal ordered products of chiral operators, which are

non-chiral. They naturally correspond to the multi-particle states of the supergravity.

At this point one should mention an important non-renormalization theorem of K = 4

SYM theory, which states that the dimension of chiral operators, i.e. ones belonging to

the short multiplets are protected from perturbative corrections. There is no such theorem

for long-multiplet operators. Thanks to the equivalence of AdS (super) isometry group

to (super) conformal group one can derive a simple relation between mass of the field in

the supergravity and the conformal dimension of the corresponding operator in the CFT.

At large mass the relation basically tells us that dimension is proportional to mass. Due

to this, one can assume that the dimension of an operator corresponding to a string state

is typically Astring - (gm N)I Achiral, which allows us to ignore the string states in this

(large t'Hooft coupling) limit. The non-chiral products of chiral operators, however, do not

acquire such large dimensions, and their importance will be discussed in the last chapter.

The OPE of chiral operators will generally contain their products with non-protected

dimensions. From the study of 4-point functions one can deduce the mixing of order 1/N 2

for this non-protected operators.

The calculation of correlation functions is one useful way to test and explore the
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AdS/CFT correspondence. We consider the simplest example of the correspondence which

is the duality between K = 4, d = 4 SU(N) SYM theory and type IIB string theory on

AdS 5 x S5 with N units of 5-form flux and compactification radius R2 = ' (gjYN) I. In

the large N limit with A = gymN fixed and large the supergravity approximation is valid.

Correlators of gauge invariant local operators in the CFT at large N and strong t'Hooft

coupling A are related to supergravity amplitudes according to the prescription of [2, 3].

Namely, the precise relation between the boundary CFT and AdSsupergravity is

Kexp (LdS 00) )CF = Z [#o] (1.0.1)

where in this schematic notation a CFT operator O(x) is a boundary source for the corre-

sponding supergravity field #(x) and the supergravity partition function Z [0o] is calculated

with the value 0 on the boundary. To compute a correlation function in the CFT by the

correspondence, one has to implement a perturbation theory in the supergravity, with fixed

values of fields on the boundary that correspond to the operators of interest in the CFT.

The 5-dimensional Newton constant G5 ~ R3 /N 2 , so that the perturbative expansion in

supergravity, if ultraviolet convergent, corresponds to the 1/N expansion in the CFT. In

the next chapter we give a more precise meaning to this scheme by working out a particular

example.
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Chapter 2

Two- and three-point functions

2.1 Introduction

To describe the conjecture for correlators in more detail, we note that correlators of the

M = 4 SU(N) SYM theory are conformally related to those on the 4-sphere which is the

boundary of (Euclidean) AdS 5 . Consider an operator O(i!) of the boundary theory, coupled

to a source Oo (1) (X is a point on the boundary S4), and let e-W0o] denote the generating

functional for correlators of O(x). Suppose #(z) is the field of the interior supergravity

theory which corresponds to O(i) in the operator map. Propagators K(z, X) between the

bulk point z and the boundary point X can be defined and used to construct a perturbative

solution of the classical supergravity field equation for #(z) which is determined by the

boundary data 00(i). Let Sc1[0] denote the value of the supergravity action for the field

configuration O(z). Then the conjecture [2, 3] is precisely that W[ 0 ] = Sca[#]. This leads

to a graphical algorithm, see Fig.1, involving AdS 5 propagators and interaction vertices

determined by the classical supergravity Lagrangian. Each vertex entails a 5-dimensional

integral over AdS 5 .

Actually, the prescriptions of [2] and [3] are somewhat different. In the first [2], solutions

#(z) of the supergravity theory satisfy a Dirichlet condition with boundary data 0o(s) on

a sphere of radius R equal to the AdS length scale. In the second method [3], it is the
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infinite boundary of (Euclidean) AdS space which is relevant. Massless scalar and gauge

fields satisfy Dirichlet boundary conditions at infinity, but fields with AdS mass different

from zero scale near the boundary like O(z) -+ zoqo(i) where zo is a coordinate in

the direction perpendicular to the boundary and A is the dimension of the corresponding

operator O(i). This is explained in detail below. Our methods apply readily only to the

prescription of [3], although for 2-point functions we will be led to consider a prescription

similar to [2].

The purpose of the present chapter is to present a method to calculate multi-point cor-

relators and present specific applications to 3-point correlators of various scalar composite

operators and the flavor currents Jf of the boundary gauge theory. Our calculations pro-

vide explicit formulas for AdSd+l integrals needed to evaluate generic supergravity 3-point

amplitudes involving gauge fields and scalar fields of arbitrary mass. Integrals are eval-

uated for AdSd+l, for general dimension, to facilitate future applications of our results.

The method uses conformal symmetry to simplify the integrand, so that the internal

(d + 1)-dimensional integral can be simply done. This technique, which uses a simul-

taneous inversion of external coordinates and external points, has been applied to many

two-loop Feynman integrals of flat four-dimensional theories [21, 22, 26]. The method

works well in four flat dimensions, although there are difficulties for gauge fields, which

arise because the invariant action is inversion symmetric but the gauge-fixing term is

not [21]. It is a nice surprise that it works even better in AdS because the inversion is an

isometry, and not merely a conformal isometry as in flat space. Thus the method works

perfectly for massive fields and for gauge interactions in AdSd+l for any dimension d.

It is well-known that conformal symmetry severely restricts the tensor form of 2- and

3-point correlation functions and frequently determines these tensors uniquely up to a

constant multiple. (For a recent discussion, see [27]). This simplifies the study of the

3-point functions.

One of the issues we are concerned with are Ward identities that relate 3-point cor-

relators with one or more currents to 2-point functions. It was a surprise to us this

12



Figure 2-1: Witten diagrams.

requires a minor modification of the prescription of [3] for the computation of (QIQJ) for

gauge-invariant composite scalar operators.

It is also the case that some of the correlators we study obey superconformal non-

renormalization theorems, so that the coefficients of the conformal tensors are determined

by the free-field content of the I = 4 theory and are not corrected by interactions. The

evaluation of n-point correlators, for n > 4, contains more information about large N

dynamics, and they are given by more difficult integrals in the supergravity construction.

We hope, but cannot promise, that our conformal techniques will be helpful here. The

integrals encountered also appear well-suited to Feynman parameter techniques, so tradi-

tional methods may also apply. In practice, the inversion method reduces the number of

denominators in an amplitude, and we do apply standard Feynman parameter techniques

to the "reduced amplitude" which appears after inversion of coordinates.

2.2 Scalar amplitudes

It is simplest to work [3] in the Euclidean continuation of AdSd+l which is the Y_1 > 0

sheet of the hyperboloid:

_2
-(K_ 1 )2 + (Y0)2 + Z(Y)2 = 2 1221
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which has curvature R = -d(d + 1)a 2 . The change of coordinates:

Yi
a(Yo + Y- 1)

1
zo = a2(Yo + Yi)

brings the induced metric to the form of the Lobaschevsky upper half-space:

ds2 2=
a2 z

( dZ dZ2 +

P_0 az0
dzi = a (dz + dz)

a2z 2

We henceforth set a - 1. One can verify that the inversion:

z' =_

z/- I l (2.2.4)

is an isometry of (2.2.3). Its Jacobian:

(2.2.5)(z') 2 
1 1v' - (z')2 J)

(z')2JtLV(Z') = (z')2Jgv(Z)

has negative determinant showing that it is a discrete isometry which is not a proper

element of the SO(d + 1,1) group of (2.2.1) and (2.2.3). Note that we define contractions

such as (z') 2 using the Euclidean metric 6w,, and we are usually indifferent to the question

of raised or lowered coordinate indices, i.e. z" = zA. When we need to contract indices

using the AdS metric we do so explicitly, e.g., gl"p,#oiq#, with g"" = zo

The Jacobian tensor Jjv obeys a number of identities that will be very useful below.

These include the pretty inversion property

J1V(X - y) = J,1 (x')J,,(x' - y')Ja,(y') (2.2.6)

14
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and the orthogonality relation

JMV(x)JVP(x) = ip (2.2.7)

The (Euclidean) action of any massive scalar field

S[0] = d zdzo [ (g 19p#aoao8 + m 2 0 2  (2.2.8)
2]1

is inversion invariant if O(z) transforms as a scalar, i.e. O(z) -± 0'(z) = q(z'). The wave

equation is:

9 (Vg/g"vv#) - m2e = 0 (2.2.9)

zd+1 a z-qd+1 a (zo, Z) + Z2 a (zo, z) - m2#(ZOF) = 0 (2.2.10)
0 zo 1 zo 0 2

A generic solution which vanishes as zo -+ oc behaves like q(zo, z) -+ zgAqo(i) as zo - 0,

where A = A+ is the largest root of the indicial equation of (2.2.10), namely A± =

1 (d ± v/d2 + 4m 2). Witten [3] has constructed a Green's function solution which explicitly

realizes the relation between the field q(zo, z) in the bulk and the boundary configuration

qo(1). The normalized bulk-to-boundary Green's function*, for A > 4:

K-z, (A) + ) (2.2.11)KAri (zo - )' dZ 2 + (-- - )2

is a solution of (2.2.10) with the necessary singular behavior as zo - 0, namely:

A-dK Z7-- _I. (_y

zO (zo,7z, ) -+1-(Z) (2.2.12)

*The special case A = corresponds to the lowest AdS mass allowed by unitarity, i.e. m2  -. In
d

this case #(zo, i) -+ -z2 Inzo qo(z) as zo -+ 0 and the Green's function which gives this asymptotic be-
d

havior is Kd (zO, Z, 1) = z-(-2 . All the formulas in the text assume the generic normalization
( ) d > i s m2t a n d r =

(2.2.11) valid for A > ~,obvious modifications are needed for A=

15



The solution of (2.2.10) is then related to the boundary data by:

q((zo,A) = dX 2 ( )) A ) (2.2.13)
7ri r(A - 4) z( +0 z-)

Note that the choice of KA that we have taken is invariant under translations in x.

This choice corresponds to working with a metric on the boundary of the AdS space that

is flat Rd with all curvature at infinity. Thus our correlation functions will be for CFTd

on Rd. Correlation function for other boundary metrics can be obtained by multiplying

by the corresponding conformal factors.

It is vital to the CFTd/AdSd+l correspondence, and to our method, that isometries in

AdSd+l correspond to conformal isometries in CFTd. In particular the inversion isometry

of AdSd+l is realized by the well-known conformal inversion in CFTd. A scalar field (a

scalar source from the point of view of the boundary theory) #o(ii) of scale dimension a

transforms under the inversion as xi - X as #o (X) -+ 0'(X) = 5 C2a$0 ( ). The

construction (2.2.13) can be used to show that a bulk scalar of mass m 2 is related to

boundary data 0#o(x) with scale dimension d - A. To see this one uses the equalities:

d dX ddx'

I y 2d

2 z+ 2 (Z2+(' 2) I2 (2.2.14)zO (Z - )2(zo) + (z x)

and 0'/(Y) = if2(d-)q 0 (5). We then find directly that:

ddx - - ) 'As) = q$(z') (2.2.15)
Trif( - )zO (Z' - )

Thus conformal inversion of boundary data with scale dimension d - A produces the

inversion isometry in AdSd+l. In the CFTd/AdSd+l correspondence, 0o(X) is viewed as

the source for a scalar operator O(i) of the CFTd. From f ddx0()o(7) one sees that

0(i) -+ ('(i) = 2A0(x) so that O(i) has scale dimension A.
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Let us first review the computation of the 2-point correlator O()O() for a CFTd

scalar operator of dimension A [3]. We assume that the kinetic term (2.2.8) of the cor-

responding field # of AdSd+l supergravity is multiplied by a constant 77 determined from

the parent 10-dimensional theory. We have, accounting for the 2 Wick contractions:

)= -2 f d zdz0 (OKA(z, )z 28,KA (z, Y) + m 2 KA(z, )KA(z, g))

(2.2.16)

We integrate by parts; the bulk term vanishes by the free equation of motion for K, and

we get:

(O )~ )= + limn ddzeda( E, Z, X) KA(zo, Z ], )] (2.2.17)
e-+0 30 .zo=E

F[A+±1] 1

where (2.2.12) has been used. We warn readers that considerations of Ward identities will

suggest a modification of this result for A $ d. One indication that the procedure above

is delicate is that the 0,,,KO,,K and m 2KK integrals in (2.2.16) are separately divergent

as E c 0.

We are now ready to apply conformal methods to simplify the integrals in AdSd+l which

give 3-point scalar correlators in CFTd. We consider 3 scalar fields #5(z), I = 1, 2, 3, in

the supergravity theory with masses m, and interaction vertices of the form L, = 010203

and L 2 = 019"19,0 2 19,0 3 . The corresponding 3-point amplitudes are:

A( , ( I = -f d + K (w,7 ) K 2(w,) )KA3 (w,) (2.2.18)

)= fdz+ Kzi(w, z)&,Ka2 (w, K) w2,,KA3 (w, ) (2.2.19)

where KAI (w, X) is the Green function (2.2.11). These correlators are conformally covariant

17



and are of the form required by conformal symmetry:

Ai (X, , z) =_ (2.2.20)
- AZl+L2-ZA3 - A 2 +ZA3-Al Lz - (2.2.20)

so the only issue is how to obtain the coefficients a,, a2 -

The basic idea of our method is to use the inversion w -, = as a change of variables.

In order to use the simple inversion property (2.2.14) of the propagator, we must also refer

boundary points to their inverses, e.g. xi = . If this is done for a generic configuration

of i, , 5, there is nothing to be gained because the same integral is obtained in the w'

variable. However, if we use translation symmetry to place one boundary point at 0, say

z= 0, it turns out that the denominator of the propagator attached to this point drops out

of the integral, essentially because the inverted point is at oo, and the integral simplifies.

Applied to A1 (', ', 0), using (2.2.14), these steps immediately give:

A 0) F(A 3) dw' dw'
A= - 2A1 122 A 4 f (w)d+1 KA 1 (w', ')KA2 (w', W ) (w Y9 0

| Y g| g 2 F(A3 - 2) 0)
(2.2.21)

The remaining integral has two denominators, and it is easily done by conventional Feyn-

man parameter methods. We will encounter similar integrals below so we record the

general form:

dzO d 1  = I [a, b, c, d] - |1+a+d-2b-2c (2.2.22)
o [Z2 + (z-x2]1[z2 + (z- )2]c

7d/2 F[ + !]F[b + C - a a I
I[a, b, c, d] = 2 2 2 (2.2.23)

2 F[b]F[c]

F[1 + a + d - b - c]

18



We thus find that A1 (', , 0) has the spatial dependence:

1

IF2z1lgi2zA2|L~ - y~'(zA1+ar-A3 )

1
(2.2.24)

which agrees with (2.2.20) after the translation X -+ (X - z), ' - ( - ) The coefficient

a1 is then:

F[1(A, + A 2 - A 3)]F[!(A 2 + A3 - A 1)][I (A3 + A1 - A2)][(
a, = 2 2[A (Al +A2 + A3-d)]

27rd]F[A1 - dj[A2 - 4][Aq - 41
- 2i 1 2 ~ 2

(2.2.25)

We now turn to the integral A2 (, Y, 2) in (2.2.19). It is convenient to set Z = 0. Since

the structure o, 1K 2w2 ,,K 3 is an invariant contraction and the inversion of the bulk point

a is diffeomorphism, we have, using (2.2.14):

,K 2 (w)wO2,0KA3(w, 0) = y~'2A2 0 ' KA2(w' y )(w0) 2 OKA (W' 0)

~y'112A2 0 ro 2 / w)A3DwA2O, (w- (to _ Owb

= A 2 A 3 |y'l 2A2(w )(A2+A3) _12(w0) 2  1
1((w)2 + (WI' - y')2)A2 ((wI)2 + (m' - y)2)A2+1

(2.2.26)

(2.2.27)

(2.2.28)

where the normalization constants are temporarily omitted. We then find two integrals of

the form I(a, b, c, d) with different parameters. The result is:

a2 = a1 A 2 A 3 + (d -A 1 - A2 - A 3) (A 2 + A3 - Al) (2.2.29)

As described by Witten [3], massive AdS 5 scalars are sources of various composite

gauge-invariant scalar operators of the K = 4 SYM theory. The values of the 3-point

correlators of these operators can be obtained by combining our amplitudes A1 (', ', Z) and

A 2( 7, ,) weighted by appropriate couplings from the gauged supergravity Lagrangian.
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2.3 Flavor current correlators

2.3.1 Review of field theory results

We first review the conformal structure of the correlators (Ji (x)J (y)) and (Jia (x)Jj(y)Jc(z))

and their non-renormalization theorems.t The situation is best understood in 4-dimensions,

so we mostly limit our discussion to this physically relevant case. The needed information

probably appears in many places, but we shall use the reference best known to us [29].

Conserved currents Jja (x) have dimension d - 1, and transform under the inversion as

Jf (x) (x'2 )(d__1)Jg(x')Jy(x'). The two-point function must take the inversion covariant,

gauge-invariant form

(Ja(X)J(y)) = B 6ab 2(d- 1)(d-2) Jij(x-y) (2.3.30)

(27r)d (x - Y) 2 (d-1)

- (27r)d (X - y)2(-2)

where B is a positive constant, the central charge of the J(x)J(y) OPE.

In 4 dimensions the 3-point function has normal and abnormal parity parts which we

denote by (Jia(x)Jj(y)Jkc(z))±. It is an old result [28] that the normal parity part is a

superposition of two possible conformal tensors (extensively studied in [29]), namely

(b) Jjy (z))c+ = a,,(kiD'} (x, y, z) + k2 Ci32(xy,z)), (2.3.31)

where Dj(x, y, z) and Cij(x y, z) are permutation-odd tensor functions, obtained from

the specific tensors

1 00 0 ((x -z)2\
Dijk(xy,z) 1 log (X - y ) 2  log 3.32)

(x - y)2(z - y)2(x - z)2 aXk yj 1z (y - Z)2

tIn this subsection, x, y, z always indicate d-dimensional vectors in flat d-dimensional Euclidean
space-time.
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1 008 200 __2 (x-z)
Cik (X, y, z) - -4 a -log (x - z) log (Y -z) Z log (X Z)2

(X - Y)4 19X, 19z1  Byj 1z z (y - Z)

by adding cyclic permutations

D'Ym (x, y, z) = Dik (x, y, z) + Diki(y, z, x) + Dij (z, x, y) (2.3.33)

CjyI(x, y, z) = Cik(x, Y z) + Cjki(Y, z, x) + Ckij(Z, X, Y).

Both symmetrized tensors are conserved for separated points (but the individual permu-

tations are not); g D'}'(x, y, z) has the local 6'(x - z) and 64 (y - z) terms expected from

the standard Ward identity relating 2- and 3-point correlators, while Cijy(x, y,z) = 0

even locally. Thus the Ward identity implies k1 = -B, while k2 is an independent con-

stant. The symmetrized tensors are characterized by relatively simple forms in the limit

that one coordinate, say y, tends to infinity:

- 4  xixjxj
Dsfm (x, y, 0) y'-C2 -6419 Jjkj (y)k~~Ekx -2 - (2.3.34)

Ci x 4 J1 (y) {6ikXl - 6 ilXk - 6 klXi + 2 f

In a superconformal-invariant theory with a fixed line parametrized by the gauge cou-

pling, such as K = 4 SYM theory, the constant B is exactly determined by the free field

content of the theory, i.e. I-loop graphs. This is the non-renormalization theorem for

flavor central charges proved in [25]. The argument is quite simple. The fixed point value

of the central charge is equal to the external trace anomaly of the theory with source

for the currents [23, 22]. Global K = 1 supersymmetry relates the trace anomaly to the

R-current anomaly, specifically to the U(1)RF 2 (F is for flavor) which is one-loop exact in

a conformal theory. Its value depends on the r-charges and the flavour quantum numbers

of the fermions of the theory, and it is independent of the couplings. For an K = 1 theory

with chiral superfields D' with (anomaly-free) r-charges ri in irreducible representations

Ri of the gauge group, the fixed point value of the central charge was given in (2.28) of [24]
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as

B6ab = 3 (dimRi)(1 - ri)Tri(TaT). (2.3.35)

For A = 4 SYM we can restrict to the SU(3) subgroup of the full SU(4) flavour group

that is manifest in an AF = 1 description. There is a triplet of SU(N) adjoint i with

r = Z. We thus obtain

B = 3(N 2 - 1)- -=-(N2-1). (2.3.36)
3 2 2

We might now look forward to the AdS5 calculation with the expectation that the value

found for k, will be determined by the non-renormalization theorem, but k2 will depend

on the large N dynamics and differ from the free field value. Actual results will force us

to revise this intuition. We now discuss the 1-loop contributions in the field theory and

obtain the values of k, and k2 for later comparison with AdS 5 .

Spinor and scalar I-loop graphs were expressed as linear combinations of Dsym and

Csym in [29]. For a single SU(3) triplet of left handed fermions and a single triplet of

complex bosons one finds

( X j e r i 4 f a b c I1 S M( - - 7
(Jf(x) J/(y) J(z))"i = (4 2 )3 (Dik (x, y, z) - (y,z)) (2.3.37)

2 fab Soc z±s
(Jia (X) j ( ) b~))os" = 2 3 (D' (x, y, z) + (xyz))

The sum of these, multiplied by N 2 - 1 is the total I-loop result in the K = 4 theory:

_ (N2 _ 1)fabc
(Z))- 326 (D (x,y,z) - C (x, y,z)). (2.3.38)

We observe the agreement with the value of B in (2.3.36) and the fact that the free field

ratio of Csym and Dsym tensors is -

Since the SU(4) flavor symmetry is chiral, the 3-point current correlator also has

an abnormal parity part (Jf JJc)_. It is well-known that there is a unique conformal

tensor-amplitude [28] in this section, which is a constant multiple of the fermion triangle
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amplitude, namely

N2 - 1 .d Tr [75Y(- /) (h- A)-Yk(A- .)]
(J2i 6 jdb (x y)-z)_= -z - (2.3.39)(32i (X - y) (y - Z)4(Z - X),

where the SU(N) f and d symbols are defined by Tr(TaTbTc) (Z fabc + dabc) with Ta

hermitian generators normalized as TrTaTb = I 6 ab. The coefficient is again "protected" by

a non-renormalization theorem, namely the Adler-Bardeen theorem (which is independent

of SUSY and conformal symmetry). After bose-symmetric regularization [26] of the short

distance singularity, one finds the anomaly

O N 2 -1a(J (X)Jj__y ) = - id abccijlm 6(x - z)6(y - z) (2.3.40)
OZk 4872 Ox 19y

If we minimally couple the currents Jia(x) to background sources A? (x) by adding to the

action a term f d4 xJi (x)A'(x), this information can be presented as the operator equation:

(DJ()) N 2 1.
(DiJit Z))a = Ji ( Z) + f abcA'(z)Jc(z) = 962 idabcejkmOj(AlOI Ac + -fcde Ab A dA )azi 96,72 4 k1m

(2.3.41)

where the cubic term in A? is determined by the Wess-Zumino consistency conditions (see

e.g. [30]).

The CFT 4/AdS 5 correspondence can also be used to calculate the large N limit of corre-

lators (Jja(x)O(y)OJ(z)) and (Jja(x)J(y)OI(z)) where 0' is a gauge-invariant composite

scalar operator of the g = 4 SYM theory. For example, one can take 09 to be a k-th

rank traceless symmetric tensor Tr X" .. . Xak (the explicit subtraction of traces is not

indicated) formed from the real scalars X', o = 1, ..., 6, in the 6-dimensional representa-

tion of SU(4) 2 SO(6), and there are other possibilities in the operator map discussed

by Witten [3]. We will compute the corresponding supergravity amplitudes in the next

section, and we record here the tensor form required by conformal symmetry.
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For (Ja0Q0I) there is a unique conformal tensor for every dimension d given by

a
(J(Z)(X)Oj(y)) = S[P (z,X, y)

a
-~d2) T'J

1 1 (x -z) (y - Z)j
(x - y)2A-d+2 (x - Z)d-2(y - z)d-2 I(X - Z)2 (y - Z)2]

(2.3.42)

(2.3.43)

where is a constant and TI are the Lie algebra generators. This correlator satisfies a

Ward identity which relates it to the 2-point function (O'(x)O (y)). Specifically:

= (d - 2)2 TIJ (6d(x - z) - 6 d(y - z) 2A (2.3.44)

= 6d(x Z)TIK K -J d JK (oI(X)OK(y))

There is also a unique tensor form

is given in [22]:

(Ji(x)Jj (y)O(z)) = (Rij (x, y, z)

for (JiJjO) (we suppress group theory labels) which

(6 - A)Jij(x - y) -- AJik(x - z)Jj(z - y) (2.3.45)
(x - y) 6 (x - Z)A(y - Z)

where ( is a constant.

2.3.2 Calculations in AdS supergravity

The boundary values Aq(5) of the gauge potentials A" (x) of gauged supergravity are the

sources for the conserved flavor currents Jia(5) of the boundary SCFT 4. It is sufficient

for our purposes to ignore non-renormalizable #"F,2, interactions and represent the gauge

sector of the supergravity by the Yang-Mills and Chern-Simons terms (the latter for

d +1 = 5)

Sc1[A] = dzdzO 9 + 962 (d"b V"APR AJ + iAb AC +2-3-46)
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The coefficient ,2 where k is an integer, is the correct normalization factor for the 5-

dimensional Chern-Simons term ensuring that under a large gauge transformation the

action changes by an unobservable phase 27rin (see e.g. [30]). The couplings 9SG and k

could in principle be determined from dimensional reduction of the parent 10 dimensional

theory, but we shall ignore this here. Instead, they will be fixed in terms of current

correlators of the boundary theory which are exactly known because they satisfy non-

renormalization theorems.

To obtain flavor-current correlators in the boundary CFT from AdS supergravity, we

need a Green's function Gj(z, 7) to construct the gauge potential A' (z) in the bulk from

its boundary values Aq(7). We will work in d dimensions. There is the gauge freedom to

redefine Gi(z, Y) -+ G1,(z, Y) + - -A (z, 7) which leaves boundary amplitudes obtained

from the action (2.3.46) invariant. Our method requires a conformal-covariant propagator,

namely

d-2
G,1i(z, 7) = CzoJiz- )(..7[z + (0 - J)2

=GC (Z 2]d-1J(z -7) (2.3.47)

Sd--2

(Z - j)2 ((z - X)2

which satisfies the gauge field equations of motion in the bulk variable z. The normalization

constant Cd is determined by requiring that as zo -+ 0, G3 j(z, 7) -+ 1 )

Cd r(d) (2.3.49)
27r t IF (()

This Green's function does not satisfy boundary transversality (ie axG i(z, -) = 0), but
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the following gauge-related propagator doest:

SCdZ2-d a d. (,- j)2-Gj(z, Y) = G,i(z, Y) + { F dd-()1
oDz, (d - 2) (d - 1)(]F'[ d]) 2 j9zj 2 '2' zA

(2.3.50)

(Both Gi(z, Y) and 0,j(z, 7) differ by gauge terms from the Green's function used by

Witten [3]). The gauge equivalence of inversion-covariant and transverse propagators

ensures that the method produces boundary current correlators which are conserved.

Notice that in terms of the conformal tensors J,j the abelian field strength made from

the Green's function takes a remarkably simple form:

d-3
[,G,j](z, X) = (d - 2)Cd [z 4 _ Jo[,(z - 7)J,3](z - 7) (2.3.51)

[zO + ( - 7)2

as easily checked by using for Gm the representation (2.3.48).

We stress again that the inversion z = z' /(z') 2 is a coordinate transformation which

is an isometry of AdSd+l. It acts as a diffeomorphism on the internal indices A, v,... of

G,2i, Gj,.... Since these indices are covariantly contracted at an internal point z, much

of the algebra required to change integration variables can be avoided. The inversion

/ = /(9)2 of boundary points is a conformal isometry which acts on the external index i

and also changes the Green's function by a conformal factor. Thus the change of variables

amounts to the replacement:

G,1(z, 7) = z'2 J(z') I ( 2 ki) - )2(d-2) Cd (z )d-2 Jk(z - (2.3.52)
[(z)2 + (z' - x')2 d-1

- k_ 03 () 2 (d- 2 )G~z X/)
=Oz,' Ox's.,2a2 'x'

az, axI I
- 0 k G' (z', X)

&z1, ax

tFor even d, the hypergeometric function in (2.3.50) is actually a rational function. For instance for

d =4, G,1 (z, Z) = Gi(z, Y) + - .!L 2z +(i.)2).
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[,G,3](z, 7) will also transform conformal-covariantly under inversion (compare equ.(2.3.52)):

&[,Gi,]i(7, z) = (z') 2J,,(z') . (z') 2 J (z') - (2)2j() . () 2 (d-2)arGo,](x, z') (2.3.53)

as one can directly check from (2.3.51) using the identity (2.2.6).

(JrJ): To obtain the current-current correlator we follow the same procedure [3] as

for the scalar 2-point function, eq.(2.2.16-2.2.17):

- 6 ab 2
1 J

= oo2 -, 2 fAgG f
z o l[G,]( z) zo a[1Gv3j(Z
Z20l79

= +2 29 d z 3- 2GdZ (E, i, 7) [[oGv],(zo, i, #)z

- 6 ab C(d - 2 ) Jij (F - )
SG 1 2(d-1)

(2.3.54)

which is of
d

the orm(2..30 wih B 2d-
2 7r7F~dth fr (..3) ih ~G d)2~ According to the conjecture [1, 2, 3],

(2.3.54) represents the large-N value of the 2-point function for g2 mN fixed but large. Let

us now consider the case d = 4. By the non-renormalization theorem proven in [25], the

coefficient in (2.3.30) is protected against quantum corrections. Hence, at leading order in

N, the strong-coupling result (2.3.54) has to match the I-loop computation (2.3.36). We

thus learn:
d+1=5 _

gSG N (2.3.55)

(J&J3JK)+: The vertex relevant to the computation of the normal parity part of <

Jia(X')JN()Jk(,) > comes from the Yang-Mills term of the action (2.3.46), namely

I1f I ddwdwo ifabc

g 2 W d+1
SG E0

(2.3.56)

We then have

(Jia (7) jb (W) JC(5))+
- f abc

2g 2
2SG
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(Jia (1) Jbi(9))

a[i A',(w 4 A b (w)A'(w)

Fsy"(1, -, z)



if abc 2 
X

2gSG

where

Fijgk(, z' = d+1 0[IGv]i(w, Y) wY Gd4(w, y)Gvk(w,i') (2.3.58)
wa

(The extra factor of 2 in (2.3.57) correctly accounts for the 3! Wick contractions). To

apply the method of inversion, it is convenient to set X = 0. Then, changing integration

variable w, = w and inverting the external points, yi ='-, z = , we achieve the

simplification (using (2.3.52),(2.3.53),(2.2.7)):

Fijk (0, 7,) =

-|2(d-1) 1|2(d-1) )J m(z

fddW 'dw' W4f 0d Gdwld(w', 0) (w) 4 GI(w, )Gvm(w', Z) (2.3.59)

= (Cd) 3 J3il() Jkm(P) 0 dw'dw -2 4
|yJ2(d-1) lz|12(d-1) f(WI d+l [I D(W

(w )d-2 /)d-2

- 2(d-2) (w' - 2(d-2) /1 m 2-3-60)

= (Cd)3 ddw'dw, (d 2)(wJ)2 -4 JIdo w' - i)Jim(W')

|y|(-1) 1-12(d-1) 1 w)2 + ' _ 2]d1[(W/)2 + (')2]d-1

where in the last step we have defined t= y' - 2. Observe that in going from (2.3.58) to

(2.3.59) we just had to replace the original variables with primed ones and pick conformal

Jacobians for the external (Latin) indices: the internal Jacobians nicely collapsed with

each other (recall the contraction rule (2.2.7) for Ji tensors) and with the factors of w'

coming from the inverse metric. The integrals in (2.3.60) now have two denominators and

through straightforward manipulations can be rewritten as derivatives with respect to the

external coordinate tof standard integrals of the form (2.2.23). We thus obtain:

Jjl( - ) Jkm( ) -~ d 3 d+2 3-2d - [
Fi (1, Y,7 i) = I- -2(d-1) -41 2 (d-1)(C ) 7 2 2 (F) [ [+]]2

Y X X ( - 1 2
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1 161ti + (d - 1)6iitm + (d - 1)6imti dt 2 (2.3.61)

where we have restored the X' dependence, so that now = (j - ' --)'. We now

add permutations to obtain Fi"(, -, , 5) in (2.3.57). The final step is to express Fis as a

linear combination of the conformal tensors D'Y" and Cij" of Section 3.1. It is simplest,

and by conformal invariance not less general, to work in the special configuration ' = 0

and J| -+ oc. After careful algebra we obtain

FlY"z,~ || - o, 0) = - (Cd)37 d 22-2d d - ( -) 2 ] 2  (2.3.62)

jkJ~g d x]Fx[+ x]1

Jj I 6ikXl - 6iIXk - 6 klXi- d xixjxl
| 22(d- 1)|Id x 2d -3 x 2

Now take d = 4; comparison with (2.3.34) gives

Fsg"(,. T4) = D Y, ) - C " (2.3.63)

and finally, from (2.3.57) and (2.3.55):

abc

j= 2frabG (Dsym(-, C isj , (2.3.64)

N 2 fabc ( x )
32r6 Dij"(k , -, F) - Ci"( , Y)

which, at leading order in N, precisely agrees with the 1-loop result (2.3.38).

The correlator (2.3.64) calculated from AdS 5 supergravity is supposed to reflect the

strong-coupling dynamics of the K = 4 SYM theory at large N. The exact agreement

found with the free-field result therefore requires some comment. As discussed in Section

3.1, the coefficient of the D tensor is fixed by the Ward identity that relates it to the

constant B in the 2-point function, and we matched the latter to the I-loop result by a

non-renormalization theorem. So agreement here is just a check that we have done the
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integral correctly. However, the fact that the ratio of the C and D tensors coefficients

also agrees with the free field value was initially a surprise. Upon further thought, we see

that our argument that the value of k2 was a free parameter used only K = 0 conformal

symmetry, and superconformal symmetry may impose some constraint. Indeed, in an

K = 1 description of the K = 4 SYM theory, we have the flavor SU(3) triplet <V' of (SU(N)

adjoint) chiral superfields, together with their adjoints V. The SU(3) flavor currents are

the 00 components of composite scalar superfields Ka(z, 0, 0) = Tr $T 41, where T4 is a

fundamental SU(3) matrix. Just as K = 0 conformal invariance constrains the tensor

form of 2- and 3-point correlators, K = 1 superconformal symmetry will constrain the

superfield correlators (KaK) and (KaKbK'). We are not aware of a specific analysis,

but it seems likely [31] that there are only two possible superconformal amplitudes for

(KaKbKc), one proportional to fabc and the other to dalc. The fabc amplitude contains

the normal parity (Jf JJ)+ in its 9-expansion, and this would imply that the ratio -}

of the coefficients of the C and D tensors must hold in any K = 1 superconformal theory.

(JJ'Jt)_ Witten [3] has sketched an elegant argument that allows to read the value of

the abnormal parity part of the 3-current correlator directly from the supergravity action

(2.3.46), with no integral to compute. Under an infinitesimal gauge transformation of the

bulk gauge potentials, 6AAa = (D A)a, the variation of the the action is purely a boundary

term coming from the Chern-Simons 5-form:

6ASci = Jd~zAa(r) (-9 )dabciiks(A OkAc + fCdeA AdAe) (2.3.65)

By the conjecture [1, 2, 3], Sc[A (z)] = W[Aq(r)], the generating functional for current

correlators in the boundary theory. Since by construction Ja(j) = W[A] , one has:

6A ScI[A,(Z)] = W[A,(5)] = d z[DiA(F)]Jfr() = -Jd4zA ()[DiJJi ()] (2.3.66)
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and comparison with (2.3.65) gives

ik 1 Jm b fde 4b 4d 4e)(36)
(DiJi( z)) a = ''c2  a &m(A Aa, Ac + fCA A A (2.367)

which has precisely the structure (2.3.41). Thus the CFT 4/AdS 5 correspondence gives a

very concrete physical realization of the well-known mathematical relation between the

gauge anomaly in d dimensions and the gauge variation of a (d + 1)-dimensional Chern-

Simons form. Witten [3] has argued that (2.3.67) is an exact statement even at finite

N (string-loop effects) and for finite 't Hooft coupling gymN (string corrections to the

classical supergravity action), which is of course what one expects from the Adler-Bardeen

theorem. Matching (2.3.67) with the 1-loop result (2.3.41) we are thus led to identify

k = N2 _ 1.

(JRJO): The next 3-point correlator to be discussed is (Ja(!)J(#)OI(5)). For this

purpose we suppress group indices and consider a supergravity interaction of the form

I J d wdwo lgI gPgvcT <p Q A,] [pA, (2.3.68)

This leads to the boundary amplitude

1 dd2wdwo
2 1 d+1 KA (w, z)8[,G,](w, X)wo&,G] (w, ) (2.3.69)2 fwo

We set = 0, apply the method of inversion and obtain the integral

TX3 (~, 0, ~ cd2 d]F[A] (d - 2)Jik () (2.3.70)Ti ( 0 )=(C2 (. -2A372)(d-1)

Swdw (w
(w' -z')2 &wmO (w' - ')2 ] (W 2

This can be evaluated as a fairly standard Feynman integral with two denominators. The
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result is

Ti, = 8i) 2 =A - d]Rij (xY # Z) (2.3.71)
87r27r 21[A -2g

where Rij is the conformal tensor (2.3.42).

(J '00'): It is useful to study the correlator (Ja(5 )OI(7 )OJ()) from the AdS view-

point because the Ward identity (2.3.44) which relates it to (0 (Y)I 0 J(F)) is a further

check on the CFT/AdS conjecture. We assume that O1 (') is a scalar composite operator,
a

in a real representation of the SO(6) flavor group with generators T'I which are imaginary

antisymmetric matrices, and that OI(Y) corresponds to a real scalar field O$(Y) in AdS 5

supergravity. Actually we will present an AdSd+l calculation based on a gauge-invariant

extension of (2.2.8), namely

S[0', Aj = f ddzdzo F [g""DO#'DO' + m2 1/I] (2.3.72)
a

Dp# - ap= - iAa T'J OJ

The cubic vertex then leads to the AdS integral representation of the gauge theory corre-

lator

qia (,) 01 J a d d wdwo K W ) K W
(Jf (5)O'()O (W)) -T d 1 Gi (w, i)woKA(w, z) KA(w, 7) (2.3.73)

The integral is easily done by setting Z= 0 and applying inversion. We have also shown

that ' = 0 followed by inversion gives the same final result, which is

a

(Ja (I)01()0 -a d 3KA(w', ) KA(w, (2.3.74)

a

( - )F[ F[z]

Tdr(d - 2)[A -d]

a
where 5"J (Z', A, W) is the conformal amplitude of (2.3.42). Comparing with (2.3.44) and
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(2.2.17), we see that the expected Ward identity is not satisfied; there is a mismatch by

a factor 2 A--d. Although we have checked the integral thoroughly, this is an important

point, so we now give a heuristic argument that the answer is correct. We compute the

divergence of the correlator (2.3.73) using the following identity inside the integral:

G,i(w, z) = 9- Kd(w, Z) (2.3.75)

where Kd(w, Z) is the Green's function of a massless scalar, i.e. A = d. If we integrate by

parts, the bulk term vanishes and we find

(JNF)O M0)=(9)) lim ddw-dKd(c, ', 5) KA(w, 5) KA (w, y)
aZi E-+0 f 0WO W

(2.3.76)

- 2A lim ddw6( - Z [ )) 2 ()+l) w 2

(2.3.77)

where we used the property limwOo Kd = 6(w - 5) (see (2.2.12)). It also follows from

(2.2.11-2.2.12) that

lim 0 2 ± ( - ) (2.3.78)
wo->O (w - p) 2 (A+l F[A + 1]

This gives

S(d - 2)27r2 d F 6 5 1
W(J(-)OI(Y)OJ( -)) ( d 2i ( 6d p- ) d .. \ 1 (2.3.79)

19zi 2~j 1 - y1

which is consistent with (2.3.74) and confirms the previously found mismatch between

(J aOI9J) and (0 10 J)

Thus the observed phenomenon is that the Ward identity relating the correlators

(JiaQIO) and (0 1 0 J), as calculated from AdSd+l supergravity, is satisfied for opera-

tors 09 of scale dimension A = d, for which the corresponding AdSd+l scalar is massless,
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but fails for A 4 d.

We suggest the following interpretation of the problem, namely that the prescription

of [3] is correct for n-point correlators in the boundary CFTd for n > 3, but 2-point

correlators are more singular, so a more careful procedure is required. The fact that the

kinetic and mass term integrals in (2.2.16) are each divergent has already been noted. In

the Appendix we outline an alternate calculation of 2-point functions, very similar to that

of [2], in which we Fourier transform in X' and write a solution q(zo, k) of the massive

scalar field equation which satisfies a Dirichlet boundary-value problem at a small finite

value z, = E, compute the 2-point correlator at this value and then scale to E = 0. This

procedure gives a value of (010I ) which is exactly a factor 2A-d times that of (2.2.17)

and thus agrees with the Ward identity.
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Chapter 3

Evidence of logarithms in the

short-distance expansions of 4-point

functions.

3.1 Introduction

Several interesting physical issues arise when we move to the study of 4-point functions. We

will focus on the limit N -+ o, gym -+0, gymN -+ oc mentioned above. In the CFT the

scaling dimensions of the chiral primary operators (and their superconformal descendents)

are protected, while the dimensions of fields corresponding to massive string states are

infinite in this limit. Does there exist a 'complete' set of fields and an operator product

expansion (OPE) structure that allows us to obtain 4-point functions much the same as in

the case of 2-D CFT? If so, do the chiral primaries and their descendents form the complete

set, or do we need other fields in the CFT? Is there a connection between supergravity

fields propagating in the internal leg of a supergravity graph, and the contribution of a

specific chiral primary (plus descendents) in the OPE expansion of the corresponding CFT

correlator? Preliminary results on these questions were presented in [88] and [89].

To address such issues we study in this chapter some simple supergravity graphs cor-
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responding to 4-point functions in the CFT. We consider the dilaton (0) and axion (C)

sector. (This sector has also been studied in [89], and, while we use similar methods, we

arrive at somewhat different conclusions).

3.2 4-point functions in the dilaton-axion sector

The relevant part of the AdS 5 x S5 supergravity action is

2K2 fAdS5

212 fAdS5

d 5X[-R + -(00)2
2

1
+ _e 20(0C)2]

2

d5 Xzg[-R + 1 ±00±) 1
g (8)2 _ (OC) 2 + aO(aC )2 + b02(aC )2 + . . .](3.2.1)

where a = 1, b = 1. We use coordinates where the (Euclidean) AdS space appears as the

upper half space (zo > 0) with metric:

1d
ds2 = - [dz2 + dxidxi]d

20i=1
(3.2.2)

The AdS space has dimension d + 1; thus in our present case d = 4.

First consider the CFT correlator (O 4 (Xi)Oc(x 2 )O(X 3)Oc(X4 )). In the AdS calcula-

tion we encounter the supergravity graphs shown in Figure 1. The s-channel amplitude

is

s = -(4a 2 )$ccO (X1, x2, X3, x4) (3.2.3)

IgCOC (XI, X2, X3, X4) --

I 0 5 z 2 w2K(z, xi)02,K(z, X2 )02,a0, G(z, w)K(w, X3 )0wK(w,X413.2.4)
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0(xi) (X3)

+ h

C(x2) C(x4)

t

+ C +

(X(2) C(x4)

C(x2) C(x4)

q

Figure 3-1: Supergravity graphs contributing to (0 (X 1) OC(X2)O00(X 3 ) OC(X4)).

where*
__ __ __ __ _ zo

KA (z, x) = r()Z
' rd/211[A -d2 z + (- - -)2

(3.2.5)

is the normalized boundary to bulk propagator for scalar fields in supergravity correspond-

ing to primary operators in the CFT of scaling dimension A [3, 77]. We have d = 4 and

note that for both < and C we have A = 4. For this case we will simply write K without

subscript. G(z, w) is the bulk to bulk propagator in the AdS 5 space for massless scalar

fields, satisfying t

AzG(z, w) = 6(z, w) (3.2.6)

We will not need the explicit form of G(z, w).

*We assume A > d/2. The case A = d/2 saturates the unitarity bound and requires a special

normalisation[77].

fIn [89] the notation is instead AzG(z, w) = -6(z, w).
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The quartic graph is

q = -(4b)IgCOC (xi, x 2, X 3, x 4 ) (3.2.7)

ICO(x1, x2, X3, X4) -

r dsz 2] z 2K(z, x1)OzK(z, x 2)K(z, x3)O2,K(z, x 4) (3.2.8)

The combinatoric factors in (3.2.3), (3.2.7) can be obtained either from Feynman per-

turbation theory of supergravity or directly from the fourth variation of the supergravity

action (3.2.1) with respect to boundary values of the fields.

In [89] a nice manipulation was given which relates P to a 4-point contact graph:

I dsz dsw22
Sdd z2w2K(z, x 1 )azK(z, x2)O2,8,aG(z, w)K(w, x 3)O,,K(w, x 4 )

30 E0
J 5 d z wO22,K(z, x1)K(z, x 2)O2,8,i&G(z, w)K(w, x 3)9, K(w, x 4 )50 5 0Z

= .fd d ziwo&2,[K(z, x1)K(z, x2 )]&z,&2,G(z, w)K(w, x3 )&8,K(w, x4 )
2zo WO

S d5z d5W= 5 W5 ' W 0tK(z, x)K2)(z,X2z 0)8,K( , w3) 2K(w,X3iw K 4) X2 0o 0

= 2f d 5ZK(z, x1)K(z, x2 )O2,K(z, x3)z, K(z, x 4 ) (3.2.9)

where we have integrated by parts (noting that surface terms vanish), used the fact that

AzK(z, x) = 0, and used (3.2.6). Thus we see that

IgCOC (X1, x 2, X3, x 4 ) = Igcc(x1, x2 , x 3, x 4 ) (3.2.10)

I;COC (xi, X2, 3, X4) = 1C44C(X1,X2, 3,X4) (3.2.11)

Note that the RHS of (3.2.10) or (3.2.11) is not the same as the quartic graph in Figure

1(q) since the derivatives act on different variables.
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C(x,) C(x3)

hx)x

+ t +u +

C(X2 ) C(x)

C(x) C(x3)

C(x 2) C(x4)

Figure 3-2: Supergravity graphs contributing to (Oc(x1)Oc(x2)Oc(x3)Oc(x4)).

It is easy to see by using integration by parts that

Iggcc(X1, x2, x3, X4) = I~c$$(x1, X 2 , x3, x4)

IO-cc(Xi, x2, x3, x4) +Ic 4 c(x2, 2 , 3, x4) + IC4 OC(Xi, x 2, X3 , X 4) = 0

(3.2.12)

(3.2.13)

Thus we find that the contributions to (0 4 (x 1)Oc(x 2)O0(X3)Oc(X4)) from the s, u and

quartic graphs add up to

-4a 2 44CC'(1i X2, 3) X4) - 4a2 I 4C(X1, X2, x 3, x4 ) - 4bI cOXc(Xi, x 2, X3 , x4)

= (-4b + 2a 2 )IcOc(Xi, X2 , X3 , x 4 ) (3.2.14)

Putting a = 1, b = 1 we see that the coefficient on the RHS is not zero. In the next

section we show that the function IOcOC(x1, x2 , X3 , x 4 ) is nonzero by computing its leading

singularities.

The 4-point function of the primary operator corresponding to the axion field

(OC(Xi)Oc(X2 )Oc(x 3 )Oc(X 4 )) is given by the AdS graphs in Figure 2. Using (3.2.13) we

see that the sum of the three dilaton exchange graphs sums to zero, though each of these

graphs will not separately vanish.
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3.3 Singularities in 4-point graphs

We have seen that the s and u graphs of Figure 1 reduce to the form of an Iq integral.

In the function IogCC(X1, x 2, X3, x4 ) there are two independent short distance limits to be

considered:

(a) x 12  lXI - x2 1 - 0.

(b) x 13  x1 - x 31 - 0.

(From (3.2.12) we see that x34 -+ 0 is similar to x12 -4 0 etc.).

We first observe the identity

d+ z 2KA, (z, xi)K(z, x 2)A2a,,K(z, A,)a z,, K(z, X4)A 4  (3.3.15)
zo

A 3 A 4 JA 1,A 2,A 3 ,A4 (x 1, x 2 , X3 , x 4 )
d d

- 2(A 3 - d)(A 4 - d)x 24 JA 1,A2,A+1, 4+1(x1, x2 , x 3,x 4 )2 23

where

Jai7A 2,a3,A4 f(x1, x2 , x3 , x4 ) d d+ KN (z, x1)K(z, x2 )a2 K(z, x 3)A 3K(z, X4)A 4 (3.3.16)

This identity can be derived by methods similar to those in [77] (translating x3 to the origin,

performing an inversion Z(X/21 = ,evaluating the derivatives and inverting back).

This manipulation reduces the calculation of an integral of the type Iq to computing

the quartic graph with no derivatives on any of the legs. A special case of this latter

calculation (with all Ai = A) was given in [76]; we make a straightforward extension of

their calculation to the case with arbitrary A :

JA1,A 2 ,A3,A 4 (X1 , x 2 , X3, x4 ) =

1 + ]F[-A4 + + F[A3 ]F[A 4 ]
2 r3d/2 

([2x2]4i,[A +4
o0 df3 2  + X2 4 -4 (0 2 X2 )z4-Z2 i 34 '

o2 24 4 2 ('32X +±X2))
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,- A3, ,Z 1 - a]

(0 2 x23 + X 3 )(0 2 X2 4 + X24 )a -= - 11 r) (3.3.18)

and 2 F is the hypergeometric function. For the estimates below it is helpful to use the

integral representation:

(3.3.19)

where B[a, 3] is the Beta function.

From (3.3.17) and (3.3.19) we find that as x1 2 -+ 0:

64 4 1 X13X14
IPcc(,X 2, X3, X4) X3 n 26r 21 x13x14 x 12

As x 13 -+ 0:
64 2 1
) 76 21 x2X4n

(3.3.20)

(3.3.21)X12X14
2X13

Note that the strengths of the singularities in (3.3.20) and (3.3.21) are such that they

respect the identity (3.2.13).

In [89] it was argued that each of the s,u and quartic graphs given in Figure 1 vanishes

separately, while we have reached a somewhat different conclusion., We have not evaluated

the graviton exchange graph, which was speculated to vanish in [89], but we discuss in the

next section our expectations for its contribution.

IThe resubmitted version (v4) of [89] appears to agree with our conclusions.
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3.4 Discussion

We know that the K = 4 SYM theory is exactly conformal. Consider a 4-point function

(01(Xl)02(X2)03(X3)04(X4)) in the limit x1 -+ X2, X3 -+ X4. We might try to expand5

O1(X1)02(x2) = +aO(xi) , 03(X3)04(X4) = _ /Om (3)
n(j- X 2 ) Al+A 2 -An m (X3 -X4 34-,,

(3.4.22)

and get

(Ol(X1)02(X2)03(X3)04(x4)) =Om (On(l)Om(3)) (3.4.23)
nm(XI -X 2 ) Al+A 2 -An(X 3 - X 4 ) A 3 +A 4 -An 34.3

In a non-conformal theory, where a mass scale m would be available, we could also have,

for instance, OA1 (X1)OA 2 (X2) - log(mTx1 - X21)OA1+A 2 (x1), but in a conformal theory

such a term should not arise. Thus if the sums in (3.4.23) are to converge, we expect that

the limit X12 -+ 0 in the correlator would have no term in log(x 1 2 ). Individual graphs

from supergravity, however, are generically expected to have such logarithmic singularities

and (3.3.20),(3.3.21) are examples of this fact. Thus either the logs all cancel when the

supergravity graphs are summed, or a naive OPE summation of the form (3.4.23) is invalid.

We now proceed to discuss our results for 4-point functions in the dilaton-axion sector

in the light of the questions of cancellation of logs and expectations for power singularities.

For the correlator (00QcO4oc) we found in (14) that the sum of s,u and quartic graphs

is proportional to the contact amplitude and contains logarithmic singularities. We have

not evaluated the t-channel graviton exchange graph, which is quite difficult, but which

could contain logarithms that cancel those in the sum s+u+quartic. Note that if such a

cancellation occurs for the AdS5 x S5 supergravity theory then it would certainly fail to

occur for an arbitrary choice of couplings between the fields. Thus a generic theory in AdS

would not give a boundary theory which would possess a convergent local OPE.

5See also [90] for discussions of conformal OPEs and the the contribution of a given primary operator
and its descendents to the CFT 4-point function.
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In the (OcOcOcOc) correlator we found a cancellation among 3 O-exchange graphs

which each have a log singularity. The t-channel graviton exchange diagram in this corre-

lator is the same as the t-channel graviton exchange in (Op0cQOc). Suppose that this

latter graph does contain the cancelling logarithms discussed above. It is then a simple

consequence of 3.2.12 and 3.2.13 that the sum of log singularities in the t,s, and u channel

graviton exchange diagrams will also cancel in (OcOcOcOc).

Although we have not evaluated the graviton exchange graphs in Figs. 1 and 2, it does

appear on physical grounds that they are non-vanishing and have a strong singularity

~ 1/x 4 for x -± 0, where x is the separation of any two boundary operators connected to

the same internal vertex. Part of this physical intuition stems from the fact that the 3-point

functions (Oc(x1 )Oc(x2 )TTi(x 3 )) and (04(x 1 )O0(x 2 )Ti3 (x 3)), where Tij is the stress-energy

tensor, are different from zero [80], so that we expect from the leading term of the OPE

the singularity ~ 1/a1+A2-3, where all Aj = 4. This would imply that the t-channel

graph in Fig.1 is more singular as x13 - 0 than any of the other graphs, so that the overall

sum of all diagrams contributing to (00cpO0c) is not expected to vanish. One can state

the same physical expectation in the language of the boundary A = 4 SYM theory, in

which 04 = TrF2 and Oc = TrFP, and the 2- and 3-point functions of these operators

are exactly given by their free-field values due to superconformal non-renormalization

theorems. It is easy to calculate the free field OPE's and see that TrF2 (x)TrF2 (y) and

TrFP(x)TrFP(y) contain the stress tensor with expected 1/(x - y) 4 singularity. Thus

physical considerations within the boundary CFT lead us to expect a non-vanishing t-

channel contribution to (0400O0c).

It is also easy to understand on physical grounds why the naively expected 1/(x 12 )4

singularity of the s-channel graph for (O0 cO40c) is not present. First, one can use the

formulae of [5] to show that (O40 0 c) = 0 (The AdS integral f 5z2KOz ,Kaz,,K vanishes

even though the action (3.2.1) contains the vertex #(OC) 2 .) Second, one can compute the

free field OPE TrF2 (x)TrFP(y) and see that there is no 1/(x - y) 4 singularity (although

we expect a weaker singularity from operators of dimension greater than 4).
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We comment on the relation between supergravity graphs and OPE's. Consider a

4-point correlator of chiral primaries, (01(X1)0 2 (X2 )0 3 (X3 )0 4 (X 4 )). In the expansion

(3.4.23), let us consider the sum over chiral primaries and their conformal descendents.

The SO(6) symmetry of the N = 4 SYM theory allows only a finite number of chiral

primaries to appear in this expansion. The same symmetry of the AdS5 x S5 supergravity

theory allows only a finite number of fields to propagate in the internal lines of the corre-

sponding AdS graphs. It is thus tempting to seek a relation between, say, the s-channel

AdS graph whose internal line corresponds to a specific primary operator O(x) and the

contribution of O(x) and its descendents (i.e. derivatives) in the double OPE (23). Con-

sider the limit x 1 2 small, X34 small, x 1 3 large. The s-channel supergravity graph has two

3-point vertices in the interior of AdS. Generically, we expect large contributions from

two distinct domains of integration in the space of z and w: (a) z is near '1, 2, while w is

near X3,X4; (b) both z and w are near 21,Z2 (or both near £3, £4).

In region (a) the bulk supergravity propagator goes from near one pair to near the other

pair, so this contribution might correspond to the double OPE (3.4.23). A toy example to

study this hypothesis was presented in [88]. The CFT and AdS calculations were compared

to fourth order in u and !, and exact agreement was obtained. Recently, in [89] it was

argued that a generic s-channel supergravity graph exactly matches the corresponding

OPE contribution. However the argument relied on an implicit assumption of analyticity

(in order to separate terms with physical and shadow singularities) which is not satisfied if

there are logarithmic singularities. Thus the identification of s-channel graphs and double

OPE contributions may not be exact. For example, since the 3-point function (400cOc)

vanishes, the double OPE for the correlator (QO0cO0c) would also be naively expected

to vanish. However, we showed explicitly in Section 3 that the corresponding supergravity

s-channel graph (Fig.1,s) has a leading singularity which is logarithmic. It is an important

problem for future work to determine the exact circumstances under which logarthmic

singularities occur. This will require detailed input from the AdS 5 x S5 bulk supergravity

theory, since s-channel graphs formed from derivative and non-derivative <53 vertices may
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have different analyticity properties.

We finally would like to make some comments on the issues of duality both on the

supergravity and the CFT side. Supergravity graphs are not expected to be dual, indeed

in the OC#C example we found that the s and u channels are manifestly different since they

exhibit different singularities. Operator product expansions are instead dual by definition

under the assumption of their convergence. It appears unlikely that N = 4, d = 4

SU(N) SYM in the N -+ oc, g2MN -+ oc limit possesses a convergent OPE in terms of

only chiral primaries and their descendents, if one assumes the validity of the AdS/CFT

correspondence. Consider again (0(x1 ) Oc (x 2 ) 00 (x 3) Oc (x 4 )). The only chiral primary

that could enter the double OPE (3.4.23) is Oc, but the coupling is zero since (00kcOc) =

0. Hence in this way of doing the OPE we expect a zero answer from the chiral sector.

However, using the OPE to expand 0P(x 1)O(x 3) and Oc(x2)Oc(x4), only the stress-

energy tensor Tij can enter as an intermediate chiral operator, and the coupling is this

time non-zero since (Q040Ti) and (OcOcTij) do not vanish as shown in [80]. We thus

see that the assumption of a convergent OPE in terms of only chiral operators appears to

lead to a contradiction. It would be interesting to find out the minimum set of operators

needed in the theory to allow duality of the OPE expansion for chiral field correlators.
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Chapter 4

Complete four point functions and

OPE interpretation

4.1 Introduction

Broadly speaking, 2- and 3-point functions (see e.g. [91, 85, 92]) have provided evidence

that the conjectured correspondence is correct, but 4-point functions are expected to

contain more information about the non-perturbative dynamics of the CFT. Previous

studies relevant to 4-point correlators include [76]-[103]. 4-point correlators for contact

interactions of scalars in the bulk theory were the first to be studied [76, 93, 94] followed by

diagrams with exchanged gauge bosons [95] and scalars [88, 96, 97]. (See also [98, 99] for

a different approach). o'//R 2 corrections are considered in [100], and there is an extensive

literature on instanton contributions, see e.g. [101].

The simplest 4-point correlators that can be studied are those involving the marginal

operators 0 ~ Tr(F 2 + ... ) and Oc ~ Tr(FP + ... ) corresponding to the dilaton and

axion supergravity fields, as first stressed in [93]. To leading order in N, the amplitudes

(0004), (OcOcOcOc) and (OOcOc) factorize in products of 2-point func-

tions (see Figures la and 3). Thanks to the non-renormalization theorem for the 2-point

functions [22, 91], these disconnected contributions do not receive corrections in powers
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of a//R 2 
-/A

1/2 . The next contribution to the 4-point amplitudes is thus a 1/N 2 effect

and involves tree-level, connected supergravity diagrams like the ones in Figure 2. The

computation of (000000), (OcOcOcOc) and (000$cO0c) was started in [94] with

the evaluation of the relevant quartic and scalar exchange diagrams (Figure 2s,u,q and Fig-

ure 4). Here we complete the computation by evaluating the remaining graviton exchange

diagram (Figure 2t) and we initiate the analysis of the first realistic 4-point amplitude in

the AdS/CFT correspondence.

We also present what we believe is a cross-checked and reliable calculation of the

graviton exchange diagram between pairs of external scalars of arbitrary mass in AdSd+l

for arbitrary d. The calculation was facilitated by the recently derived covariant form of

the graviton propagator [104], but it is still very complex compared to earlier work.

One theoretical framework to analyze results on 4-point functions in the operator

product expansion (OPE) [88, 105]. The mere assumption of an OPE is quite restrictive

and imposes constraints on the allowed form of the result. Let us assume a double "t-

channel" OPE of the schematic form

(01(X1)0 2 (X 2 )0 3 (X3 )0 4 (X4 )) = Ea (On(Xi)Om(X 2)) /3m

n, (X1 - X 3 )A1+A3 Am (X 2 - x 4 )A2+A4An

containing the contribution of various primary operators O, and their descendents Vkpo
in the intermediate state. For simplicity we have assumed that these are scalars, but

vector and tensor operators contribute in a similar way, each with a characteristic tensor

structure. (For primary operators, (Op,0,) vanishes unless AP = API).

Recognizing in the supergravity 4-point results a structure of the form (4.1.1) should

allow to determine the operator content of the theory and its OPE structure in the large

N, large A limit. Preliminary computations [88, 96] have indicated that the supergravity

diagrams contain the expected contributions to (4.1.1) of chiral primary operators and

their superconformal descendents. It is however clear that these contributions alone do not

reproduce the supergravity result [94]. A natural expectation is that appropriately defined
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normal-ordered products of chiral primaries and descendents also contribute to the OPE

and form the full operator content of the theory in this limit. This set of operators has a

dual interpretation in terms of multi-particle Kaluza-Klein states in supergravity. Massive

string states are expected to decouple in this limit*. The computation of a complete

realistic 4-point correlator presented here should allow to put these ideas to test.

An interesting issue raised in the previous chapter is the presence in the 4-point super-

gravity amplitudes of logarithms of the coordinate separation between two points in the

limit when the points come close. Logarithmic singularities appear to be a generic feature

of all the AdS processes studied so far [95, 96, 97], and we find the same situation for the

graviton exchange. The question then is whether the logarithms cancel when the various

contributions to a realistic correlator are assembled. If not, we should ask whether the

logarithms can still be incorporated in the OPE framework. Here we find that logarithmic

singularities do indeed occur in the complete 4-point functions.

As pointed out by Witten [106], logarithms can generically arise in the perturbative ex-

pansion of a CFT 4-point correlator as renormalization effects like mixings and corrections

to the dimensions of the exchanged operators. The perturbative parameter is in this case

1/N, which is mapped by the correspondence to the gravitational coupling constant. The

operators 0 and Oc are chiral and hence their dimensions are protected, but their OPE's

contain (besides chiral contributions like the stress-energy tensor) non-chiral composite

operators like : 00 : that require a careful definition and can lead to renormalization

effects [106]. (A somewhat different viewpoint has been described in a very recent paper

[107], see also [108]).

It is an interesting subject for future work to analyze the constraints imposed by

this interpretation on the allowed form of the logarithmic singularities and to assess the

compatibility of these constraints with the supergravity results.

The chapter is organized as follows.

*Group-theoretic aspects of multi-particle and string states have been considered in [111].
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In Section 2, we present the supergravity graphs that contribute to 4-point functions

involving Q, Oc, summarize our results for the amplitudes and make some remarks about

their OPE interpretation.

In Section 3, we describe the general set-up for the calculation of the graviton exchange

amplitude. We give a few geometric identities, summarize the results for the scalar and

graviton propagators and present the integral associated with the graviton exchange graph.

In Section 4 and Section 5 we separately describe two independent computations of

the graviton amplitude, for A = A' = d = 4 in Section 4 and for general A, A' and d

in Section 5. Both computations reduce the graviton exchange amplitude to finite sums

of scalar quartic graphs (see Figure 6). The two results are shown to precisely agree for

A = A' = d = 4.

In Section 6, we develop integral representations and asymptotic series expansions for

the quartic graphs (Figure 5), which are the basic building blocks of the answer. We

find asymptotic serieses for the graviton exchange in terms of two conformally invariant

variables.

Finally, in the Appendix B we discuss some properties and mathematical identities of

the quartic graphs.

50



O(X,) 0(X,)

C (X) Cd C(XX)

a

C(x,) c x c~x2) C(x 4)

b

Figure 4-1: Disconnected contribution to (00c0o40c). a: O(N 4 ); b: O(N 2 ).

4.2 4-point functions in the dilaton-axion sector

Following [93], we first discuss the dilaton-axion-graviton sector of IIB supergravity, di-

mensionally reduced on the classical background solution AdS 5 x S5 keeping only the

constant modes on S5 . The relevant part of 5-dimensional action ist

22 l d5 z rg -R + 1 gp"apoavo + - e24 9/IVaca c .
2 2

(4.2.1)

Th 5-dimensional gravitational coupling r is related to the parameters of the compactifi-

cation by 2K 2  
N -7, where N is the number of units of 5-form flux and R the radius

of the 5-sphere (equal to the AdS 5 scale, see equ.(4.3.16) below). We will usually set the

AdS 5 scale R = 1.

4.2.1 Witten diagrams

We wish to implement the prescription of [2, 3] to compute the CFT correlators (00cO40c),

(000040), (OcOcOcOc), where 04 - Tr(F 2 +...), Oc - Tr(FP+...) are the exactly

tThe metric appearing in (4.2.1) is not the restriction of the original 10-dimensional metric to AdS 5 ,
but it is related to it by a Weyl rescaling of the metric fluctuations [109, 93]. The fluctuation h',, that

gives the massless graviton in AdS 5 is given in terms of the original h,, by ht, = h', - 1geh', where

a is an index along S5 and g,, the background metric [109].
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C(x2) C(x4) C(x2) C(x4) C C(x4)

S t U

Wx *(x3)

+ 

X
C(x2) C(x4 )

q

Figure 4-2: Connected O(N 2 ) contributions to (OO0cQ$0c).

marginal (A = 4) SYM operators corresponding to the dilaton and axion fields [3]1.

Let us first consider (00(x1 )Oc(x 2 )00(x 3)OC(x 4 )). The leading large N contribution

is given by the disconnected diargam in Figure la. This diagram, being the product of

two 2-point functions, is proportional to N 4/(x 8x 4).

The next contribution, of order N 2 , comes from the diagrams in Figures lb and 2.

However, the one-loop diagrams in Figure 1b, thanks to the fact that the dimensions

of the chiral operators 0p, Oc are protected, only give a 1/N 2 correction to the overall

coefficient of the amplitude in Figure la . Among the diagrams in Figure 2, the sum

s+u+q has been computed in [94].

tThe precise structure of the composite operators O4 and Oc in terms of elementary SYM fields is in
principle given by the variation of the on-shell M = 4 lagrangian with respect to the marginal couplings
gym and 0, or by supersymmetry transformations starting from the chiral primary TrX(ZXJ).

§This correction precisely accounts for the fact the gauge group is SU(N) rather than U(N). Note that
validity of the correspondence seems to require that there are no higher loop corrections in the supergravity
2-point functions.
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Sections 4 and 5 of the chapter are devoted to evaluation of the remaining graviton

exchange diagram t.

Similarly, Figures 3 and 4 reproduce the relevant diagrams for (Oc(xi)Oc(x 2 )Oc(x 3)Oc(x 4 ))

The connected diagrams for (0(x1 )O(x 2 )04(x3)0+(x4 )) involve only graviton exchanges.

As shown in [94] the s,t,u scalar exchange diagrams in Figure 4 add up to zero. Hence, to

this order,

(000040) = (OcOcOcOc). (4.2.2)
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C(x,) C~x4> C~x,) cx c C(x x,) C(x 4)

Figure 4-3: Disconnected O(N 4 ) and O(N 2 ) contributions to (OcOcOcOc).

C(x 1) C(x3)

h P

+ tC+u C+

C~x2) C(xx)

a X3

C(x2) C(x3)C8(X2) C(x4)

Figure 4-4: Connected O(N 2 ) contributions to (OcOcOcOc).

4.2.2 Summary of results

It turns out that upon integration over one of the bulk points, all 4-point AdS processes

with external scalars, including the graviton exchange, reduce to a finite sum of scalar

quartic graphs (see Figure 6). We denote quartic graphs of external conformal dimensions

A with the symbol DAA 3A2A4 (X1, x 3, X2 , x4 ), as in Figure 5 (see equation (B.1) for the

precise definition and the Appendix for a discussion of properties of these functions).

The final result for the graviton exchange graph in Figure 2t as sum of quartic graphs

(for A = A' = d = 4), derived in Sections 4 and 5 below, is

'grav = )4 16 X 24 - -)
7r _ 2s

46
+18 D4444 -69 D3344

64 x2 1 16 x24 1D 4455 + 24 D3355 + - 21D2255 (4.2.3)
9 X13 s 3 8

40 8 ]
- 9 403 D 2244 - 3 8 D 44

54



D~A

A 1  A3

A2 A4

Figure 4-5: Definition of DAA 3 A 2 A 4 -

where we have introduced the conformally invariant variable

s X1 3X2 4  (4.2.4)
2 X 2 + x242

See equations (4.5.23, 4.5.57-4.5.58) for the analogous result in the general case of arbitrary

AW d.

We also recall the result [94] for the sum of the amplitudes s, q, u in Figure 2

Is + Iu + II = 264 x 4 D 4455 - 32 D4444

The sum of (4.2.3) and (4.2.5) gives the connected order N 2 contribution to the correla-

tor (0(X)Oc(x2 )O4(x 3)Oc(X4 )). The analogous result for (000040) = (OcOcOcOc)

is obtained by cross-symmetrization of (4.2.3).

The functions DAA 3A2A4 admit simple integral representations (see Section 6.1) and

can all be obtained as derivatives with respect to A of a single function (see Section A.3).

In Section 6 we develop asymptotic series expansions for DAA 3A 2A4 in the conformally

invariant variables s and t,
x2 x 2-2 4x2

t- X2X4 + X 4X 3

We consider the "direct" or t-channel limit Ix131 < Jx121, IX24 1 < Ix 121 which corresponds
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to s, t -+ 0. The singular power terms in this limit are given by

Igrav - 210 1 [s(7t2 +6t 4) + S2 (7 - +3t 2) - 8 s3]. (4.2.7)
sing 357r6 x 3 X2 4

In addition, as in [94, 95, 96, 97] we find an infinite series of terms logarithmic in s:

3- 3 In s
= 6  8 -8
7r X13X24 k=O

F (k + 4)rs4+k F(k+4)- 2(5k 2 + 20k +
IF(k + 1)

16) (3k 2 + 15k + 22)ak+3(t)

+(k + 4) 2 (15k 2 + 55k 2 + 42)ak+4(t)},

where the functions ak(t) are given by

ak ( dA (1 - A2 )k

-M (1 + At)k+1
F(k + 1) F

V'7F (k +

As clear from the hypergeometric representation, ak(t) admit power series expansions in

t 2 with radius of convergence 1. Here we do not display the non-singular power terms in

Igray (see Section 6.2).

The analogous result for the sum of the graphs s+u+q in Figure 2 is

-26 -3 -5 Ins s 0k4 1) 2
is + Iu + Iq = 6 i Zsk+4 {(k + 1) 2 (k + 2) 2 (k + 3) 2 (3k + 4) ak+3(t)}

log 7r X13X24 k=O
(4.2.10)

The contribution Is + Iu + Iq has no power singularities.

We now turn to discuss some physical implications of these results.

4.2.3 OPE interpretation

Let us compare the singular power terms of (4.2.7) with those expected form the OPE

(4.1.1). In the direct channel limit Ix13 1 < |x 1 2 1, Ix 241 < X 12 1 the leading terms of the

variables s and t are

23 4

4 x12
t 13 - J(X 1 2 ) 24

X12
(4.2.11)
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2
k 3
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where Jij = 6ij - 2yiyj/y 2 is the well-known Jacobian tensor of the conformal inversion

= yz/y 2. The leading term of (4.2.7) can then be written as

Igray 2 6 1 4(x 13 - J(x12 ) - - X 13X24 + (4.2.12)
sing 57r x13 x24 X12

with subleading terms suppressed by powers of IX13/IX121 and Jx 24 1/1x 121. We note from

(4.1.1) that (4.2.12) describes the contribution to the OPE of an operator , of dimension

A = 4. We show below that the tensorial structure agrees with the the expected con-

tribuion of the stress-energy tensor of the boundary theory. It is worth mentioning first

that various subcontributions to the amplitude Igrav (some of the D functions in (4.2.3))

have leading power 1/(x13x24x 2 ) indicative of a scalar operator of dimension A = 2, which

would not be expected in the graviton exchange process. The fact that this term cancels

in the full amplitude is then an important check of the calculation.

Let us consider a scalar operator OA of scale-dimension A in d-dimensional space-time.

The contribution of the conserved traceless stress-tensor Tij to the OPE of OA(x1)OA(x3)

is

OA (x1)OA (x3)~ k TA3 i-d ij (x1 ) (4.2.13)
x 13

and the 2-point function of the stress tensor is

c Jik(x12 )Jjl(x12) + Jil(xl2 )Jjk(xl 2 ) - jj 6kl
(Tij (X1)Tk(X2)) =- 2 d (4.2.14)

2 x 1 2

which is conserved and traceless in any dimension. Note that Jik (y) Jkj (y) - i We thus

see that the stress tensor contribution to the general scalar double OPE is

kck' d(x 13 - J(x12 ) - x2 4 )2 - X13X24
(OA (x1)O'(x2)O3(x3)O , (X4) ~ 2+2-d 2'+2-d 8 (4.2.15)

d 24 1 2

This form is in perfect agreement with (4.2.12). Further relevant information on 2- and

3-point functions of the stress-energy tensor can be found in [110].

Let us now consider the logarithmic terms. We see from the sum of (4.2.8) and (4.2.10)
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that an infinite series of terms logarithmic in s occurs in the direct channel expansion of

(O0 C0,Oc). Since the serieses (4.2.8) and (4.2.10) have a rather different structure, this

conclusion appears quite robust. (In particular, it is insensitive to the relative normaliza-

tion of Igrav and Is + Iu + Iq). We plead exhaustion and excuse ourselves from carrying a

similar analysis for the crossed channel limit of (QoOcOOc) and for (000c0 0). The

reader can find the necessary ingredients in Section 6.2. As mentioned in the Introduction,

one should be able to interpret these logarithmic terms as 1/N 2 renormalization effects

related to the contribution of composite operators to the OPE (4.1.1) [106]. For example,
the leading logarithmic term in the direct channel limit, i16 log( 1'2.4.), could be related7 (X12)X

1 2

to the presence in (4.1.1) of the non-chiral composite operators : 00,0 : and : OcOc :. It

is an interesting topic for future research to precisely identify the contributions of various

composite operators, and the patterns of their renormalization and mixing, in the intri-

cate series structures (4.2.8), (4.2.10). A detailed OPE intepretation of these supergravity

results should provide us with new non-perturbative information about the K = 4 SYM

theory.

4.3 General set-up

As in most previous work on correlation functions, we work on the Euclidean continuation

of AdSd+l, viewed as the upper half space in z. C Rd+1, with zo > 0. The metric g,, and

Christoffel symbols IF, are given by

ds R 2 Z2

ds2 = ydz, 2 (dzO + dzi (4.3.16)

i1

= Rz( 6 6Pv - - 6O6,) (4.3.17)
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and the curvature scalar is R = -d(d + 1)/R 2 . We henceforth set the AdS scale R = 1.

This space is a maximally symmetric solution of the gravitational action

Sg = 2 f dzF/(7 - A) (4.3.18)

with A = -d(d - 1).

It is well known that invariant bi-scalar functions on AdSdal, such as scalar field

propagators, are most simply expressed in terms of the chordal distance variable u, defined

by

U (Z - W)2
S(z-w ) (4.3.19)

2zow 0

where (z - w) 2 = 6,,(z - w),(z - w), is the "flat Euclidean distance". Invariant tensor

functions, such as the gauge or the graviton propagator, may be expanded in terms of

bases of invariant bi-tensors, which are derivatives of u. For example, for rank 1, we have

(0, = a/&zt' and 0, = &/Owv')

atu= ((z -W - o (4.3.20)

ov,u = - (W _ z)"' - U6o) . (4.3.21)

and for rank 2, there is &,,ua,,u as well as

11 1
alLu - - 1 [6, + -(z - w) 1,6,,o + -(w - z),'6, 0 - u6o61,0]. (4.3.22)

zowo0 wo zo

Throughout this chapter, we shall also make use of differentiation and contraction relations

between these basis tensors, which we list here,

Eu = Dt8,u = (d+1)(1+u) (4.3.23)

D"u 0,,u = u(2-+ u) (4.3.24)

D,a0u = g,1(1+u) (4.3.25)
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= OUO,,

-1 (+ u)&au

(D'u) (D,0,0,,u)

(D8,u) (0,,,,u)

OF(u)

These relations may be derived

symbols of (4.3.17) for AdSd+l-

= gV,, + ,,luOvu.

= u(u + 2)F"(u) + (d + 1)(1 + u)F'(u)

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

using (4.3.21), (4.3.22) and the metric and Christoffel

4.3.1 Scalar and graviton propagators

The bulk-to-boundary propagator (or Poisson kernel) for a scalar field of mass M2

A(A - d) is well-known [3, 91] and given by

KA (z, x) = Xfa ) = C + Z' 2
z( + (z - Y)2)a

(4.3.30)

with the following normalization

d F(A)
C =2 2). (4.3.31)

Bulk-to-bulk propagators for scalar fields of dimension A, with mass m2 _ A(A -

d), were derived in [112]. They can be expressed as hypergeometric functions in several

equivalent ways. The expression which appears best suited for the integrals which occur

in exchange diagrams [96, 97] is to use a hypergeometric function whose argument is 2

where
- 2zowo

Th+opg(z+ wt + (Z- 0)2)h.

The propagator is then given by

(4.3.32)

G 2A A I d
GA(u) =2AOA AF(- 2 ' 2 _; ~ _ + 1;(2. (4.3.33)
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r(A)F(A - d + })
(47r)(d+1)/2F(2A - d + 1) (4334)

The propagator for massless scalars, with A = d, is relevant for the graviton. When A = d

is an even integer, the hypergeometric expression (4.3.33) can be rewritten [104] in terms

of elementary functions. In particular, for d = 4, we have

G 4 (U) = 1 2(1 + u) 1 + U(4335)
87r2  u(2+u) u(2 + U)

The graviton propagator [104] can be expressed as a superposition of 5 independent

fourth rank bi-tensors, of which 2 are gauge independent and 3 are gauge artifacts. The

gauge terms represent pure diffeomorphisms, and their contribution to the integrals in the

exchange diagram vanishes because the stress tensor is conserved. The physical part of

the propagator involves two scalar functions G(u) and H(u), and is given by

GIV, V,(z,w) = (O,1a,,u av Ou + a,fau Ov i'u) G(u) + gp, gl,,' H (u) (4.3.36)

The function G(u) is equal to the massless scalar propagator Gd.

A representation of H(u) as a hypergeometric function was given in [104]. It was also

expressed in terms of G(u) and its first integral 0(u), defined by G(u)' = G(u) and the

boundary condition 0(oo) = 0, which is a more useful form, given by

-(d - 1)H(u) = 2(1 + u)2 G(u) + 2(d - 2)(1 + u)G(u). (4.3.37)

Again, when d is even, H(u) admits an elementary expression; in particular, when d = 4,

we have

1 1+u 1
H(u) = - 1{-6(1 + u) 4 + 9(1 + u) 2 - 2} ± 2 (1 + u) 2 . (4.3.38)

127r2 (u(2 + u))12 2,,r
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4.3.2 Structure of the graviton exchange amplitude

The graviton exchange amplitude associated with the Witten diagram of Figure 2t is given

by

gray = Jdz.f dwv/ TI,"(z) Gl1 ,,1 ',(z, w) T24'(w) (4.3.39)

where G,,,,,, is the graviton propagator (4.3.36). The vertex factor T1'3"(z) is given by

T13"(z) = DIKA(z,xl)D"KA(z,X 3) + D"KA(z, x1)DKA(z,X 3) (4.3.40)

-g""' [apKA(z, xl)DPKA (z, X3) + m 2 Kj(z, x1)KA (z, £3)].

The combination T 2 4 (w) is obtained from (4.3.40) by replacing x1 -+ X2, X3 -+ X4,

A-+ A' z -- w. The stress-energy tensor Tv is conserved, DTi" = D,,T24'" = 0 thanks

to the propagator equations (Eli - m 2 )KA = (L - m' 2 )KA, = 0.

It is the high tensorial rank of the propagator and vertex factors that make this ampli-

tude more difficult than previously studied exchanges. The calculation is made tractable

by splitting the amplitude into several terms and using partial integration of derivatives.

There are several ways to organize this process, and what we have done and will present

are complete calculations by two different methods which are then compared and shown

to give identical results for the special case d = A = A' = 4, i.e. axions and dilatons in

the type JIB theory. The two methods are separately presented in Sections 4 and 5.

4.4 The graviton exchange graph for A = A'= d = 4

The graviton propagator involves non-trivial tensorial structures. Nevertheless, it turns

out that it is possible to reduce the graviton exchange graph to the sum of purely scalar

amplitudes, with a peculiar pattern of bulk-to-bulk and bulk-to-boundary scalar propa-

gators. We describe this reduction in Section 4.1.

Furthermore, upon integration over one of the two bulk variables, which we carry out in

Section 4.2, each effective scalar exchange can be expressed a sum of quartic graphs with
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Figure 4-6: Reduction of graviton exchange to quartic graphs.

appropriate external dimensions. The final answer for the graviton exchange in terms

of these basic building blocks (see Figure 6) is given in equation (4.4.38). The quartic

graphs admit asymptotic series expansion which we describe in Section 6. It is also worth

mentioning at this point that each quartic graph can be obtained by taking successive

derivatives of a single basic function, see section A.3.

4.4.1 Reduction to scalar exchanges

We need to compute the graviton exchange amplitude (4.3.39) for m 2 = Mr' 2 = 0. Using

the form (4.3.36) for the graviton propagator, we have:

Igrav = (C4) 4 (IH + IG) (4.4.1)

IH J [dz] [dw] 19"k 4(z, xI)"k 4 (z, X3 ) - gIVXk 4 (z, x) ak 4 (z, x 3)] (4.4.2)

gpvg,,, H (u) 1 ('k4(w,X2)av'k4(w, X4) - I/ Ak4 w, x 2 ) A'k 4 (w,X4)
( u llU) Iu oW, 2u1 GW) - 2

G J[dz [dw] &~k 4 (Z, X1)avk 4 (Z,X3) - pIVaAk 4(Z, Xl)Oak 4 (Z, X3 )] (4.4.3)

[otLIk 4(w, X2 )Ov' k 4 (w, X4 ) -g1 9P /I lk 4 (W, 2 kW, X)]

1- 2
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where C4 = 4 is the normalization factor (4.3.31) of the bulk-to-boundary propagator.

The tensorial structures in IH immediately trivialize:

IH - )2 J [dz][dw]a,,k 4 l k 4 H (u) O,, k 4 0'k 4  (4.4.4)

(9) J[dz][dw]k 4 k 4 1[2H(u) k4k 4  (4.4.5)

where we have used integration by parts and the equation of motion Elk 4 = 0 to eliminate

the derivatives on the k's.

Now we consider IG, and it is useful to split into 4 parts:

IG G 1 IG + iG + iG

I = J[dz] [dw] a"k 4 (z, x1)O"k 4 (z, x 3) (4.4.6)

(O o, o9,, u + O99u O&,49u) G(u) 4"'k 4 (w, x 2)"'a k 4 (w, x4 )

12= J[dzl[dw] 01 k 4 (z, xi)0"k 4 (z, x 3 )- (4.4.7)

(Ojiui9,a,,u + 9Ojau OaO,1 u) G(u) (-g-''aA'k 4(w, x 2) aA'k 4(w, x 4)

I = J[dz] [dw] ( Ig9Ak4(z, x 1 )OAk 4 (z, X3) - (4.4.8)

(aOlu ov Oau + a, vu av awu) G(u)O&'k 4 (w, x 2 )&v'k 4 (w, x 4 )

J = [dz] [dw] (- gv "A"k 4 (z, x1)&A k 4(z, x3)) (4.4.9)

0 ± pina oiv, u + Opvi &,uu) G(u) ( 9g'I"I' aAk 4 (wx 2 )oA'k 4 (wx 4)

We wish to eliminate all the tensor indices and all the derivatives, so that the graviton

exchange is reduced to a sum of effective scalar graphs. With this program in mind, we

observe a few pretty identities. First:

9"y KA(z, x 1) 91,49v, u 'kA(w x2 ) =

A2 [-kA(z, x)kA+(w, x2)k-1 (z, x 2) - kA+l(z, Xl)kA(w, x2)k- 1(w, x1)

+24 2 kA+1 (z, xI)kA+1 (w, X2 ) + (1 + u)kA(z, x 1)kA (w, x 2 )] (4.4.10)

64



It is simplest to verify this identity by the methods described in [91], where one uses

conformal transformations to go to a coordinate system where point x1 is mapped to

infinity and point x2 to zero. Further:

1
kA+1(z, xi) k_1(w, xi) = Aa"/KA(z, xl)Ou + (1 + u)kA(z, xi) (4.4.11)

Inserting twice (4.4.11) into (4.4.10) we get:

1tkA(z,x1) 19"19"u "'kA(w, x 2 ) =
1 , 112 kA(Z Ix1) a'8 kA(w, x2) Ou - -&"kA(z, x1) 9, u kA(w, x2)

+2x1 2 kA+1(z, X1) KA+1(w, x2 ) - (1 + u)KA(z, x1) KA(w, x2 )] (4.4.12)

We now evaluate (4.4.6-4.4.9) one by one.

Ib

Writing (4.4.6) as

I f J[dz[dw] (&'k 4 (z, x1) aa,,u O'k 4(w,x 2 )) G(u) x

x (a"k 4(z, x 3)Ov9,au9v'k4 (w, x 4)) + {Xi ++ X3 } (4.4.13)

and inserting twice (4.4.12) for A = 4 we obtain 16 + 16 terms many of which are related

by a simple symmetrization. Below we present the manipulations performed on the in-

equivalent terms. We often suppress the coordinate labels, and give the expressions with

the propagators in the following order: (z, X1 ) , (z, x3) , (w, x 2 ) , (w, x1 ) unless stated oth-

erwise. Referring to the terms in (4.4.12) we get:

I x I:

IxI 42 [dz dw]k 4 k 4 G al" K4' l U4 v 'k4 avIU (4.4.14)
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= 42 J[dz dw]K 4k 4 [DOvf G - g,,(1 +u) JG] x

x 4T2J'

= 42 f[dzd

+ IgJc' 4 OA K4

w]k4k4 1 E2 UG - El (1+u)JUG}] k 4 k 4

Here we have used"| G(u) 0,, 0,,u = [D,',O,, f fu G - gv, (1 + u) fu G] thanks to (4.3.25)

and we also used the conservation of the stress-energy tensor integrating by parts to get

the last equality.

I x II:

I x II = 42 [dz dw] K4 "k4au G a"' k4,,u k4 (4.4.15)

Using a,,u G(u) = o, fu G we get by integration by parts:

I x II - 42 [dz dw]k04 ilk4au Ju G /9'k4K

-42 J[dz dw]k 4 al k 4 uG a,,u P k4 4

(4.4.16)

where we have used Elk 4 = 0 in the bulk. The first term in (4.4.16) can be easily processed

to give

42 J[dz dw]k 4k 4
12J

G K 4 k 4 (4.4.17)

The second term in (4.4.16) is handled by inserting again the identity (4.4.12) with (x1 +

X3 ) and going through by now familiar manipulations. It gives

f[dz dw]k 4K .431JJ G+44(1 + u)JG G 4 K 4 -

-2 - 4x32 J [dz dw]k 4 k 5 G k5 K 4 (4.4.18)

11 Here our convention is that f"u F = fu F(u) dw, where a is chosen to ensure the fastest possible falloff
of fu F in the u -+ oo limit.
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I x III: Upon integration by parts,

= 2- 43x24 f[dz dw]k 4 k, JUG O' 4 Ottk 5

= 2- 43x24 J[dz dw]k 4 k, JG [D (

= 2-43x24 [dz dw]k 4 ks (1 G -

-43 f [dz dw]k 4 4 1

5

-
2

-7 k

(4.4.19)

k]

j G) K 4kk

J(( + u)G) 141 4 (4.4.20)

III x III:

4- 4x12x 4 J [dz dw]k 5 k 5 GK5 k

III x IV:

-2 -4x12 [dz dw]k 5 k 4 G(1 + u)k 5 k 4

IV x IV:

44 f[dz dw]k 4 k 4 G(1 + u)2 k 4 k 4

IG, IG and I

Using (4.3.24), after some similar algebra we arrive at

(4.4.21)

(4.4.22)

(4.4.23)

I2 =I- = - [dz dw]k4K 4 I]2 [G + (1 + u) J G + u(u + 2)G
2 J

k 4 I J.4.24)

I= 1f[dz dw]k 4 k 4 1L2 [5G + u(u + 2)G] k 4 k 4 (4.4.25)

The graviton amplitude in terms of scalar exchanges

Adding all the terms above with the appropriate symmetrizations we get the complete

graviton graph in terms of effective scalar exchanges:

J[dzdw]k 4k 4 [D2 H+2-42J G+ IG - S(1+u) -G Iu(u+2)G
8''
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+0(-44 f((+ u)G) - 43(1+ )) G - 44 G)

+45(1 + U) JG+2-44(1 + u)2GI k4 k 4  (4.4.26)

+x34 [dz dw]k 4 ks [-18 .43I G+2-43J G - 2 .44G(1 + u)] ff4 k 5

+ {3 perms}

2 + x14 x2 3 ) [dz dw]ks Ak5 4 44G k 5 k 5

where the 3 permutations of the second integral are obtained by exchanging (x1, x 2 ) -

(X 3 , x 4 ) and x1 -+ x 3. The formula above can be simplified by explicit application of

Laplace operator (4.3.29) and using the equations obeyed by G and H given in Section

3.1. We get

f[dz dw] K-4 A4 (-72U2 - 144u + 168) G + 168 (u + 1) G] 4 4

+x3 4 [dz dw]k 4 k 5 [-768 J G - 256 G(1 + u)] Az4 k 5

+ {3 perms}

+(X 24 + X 4 x23) [dz dw]ks k 5 1024 G A 5 k 5

+10 f [dw]k 4 k 4 A4 A 4 - 16 x 4 J [dw]k 4 k 4 5 k A 5 (4.4.27)

The last two terms in this expression arise from delta functions generated by the application

of the Laplace operator**. In particular the last term comes from:

J [dz dw]A 4 A4 l 6(z, w) k 4 k 4

= 2 J [dw ]K4 A4 a 4O a"k4P'A4 = 2 [dw]k 4 k 4 (16k 4A 4 - 32x24Kszs) (4.4.28)

where in the last equality we have used (B.2.5).

**The coordinate dependence of the K's is: (w, Xi), (w, x 3 ), (w, X 2 ), (w, x 4 ).
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4.4.2 Reduction to quartic graphs

We first observe the identity

G = -G 3 + (1 + u)G, (4.4.29)

where G 3 is a scalar propagator of m 2 = -3, corresponding to a boundary conformal

dimension A = 3:

-(E] + 3)G 3 = 6(z, w). (4.4.30)

Using (4.4.29), we see that the complete graviton graph (4.4.27) involves effective scalar

exchanges of the form

AZ5,P - d fr kA
I 1A 3A2 4  A dz dw]K 3 kA 3 (1 + u)PGA5 kA 2 kA4 (4.4.31)

plus some quartic interactions (last line of (4.4.27)).

We now proceed to derive a general formula to perform the z integration in (4.4.31), fol-

lowing the methods developed in [97]. Quite remarkably, upon integration over z, (4.4.31)

reduces to a finite sum of effective quartic graphs, see Figure 6.

Translating x1 -+ 0 and performing conformal inversion (see [91] for a detailed account),

we can write

IA5'P = 1-2 13 X21 -2A 2 x41 1-2A 4 J [dw]R(w - '1 )K 2 (w, x' 1 ) kA4 (w, x' 1 )

(4.4.32)

where x' 7/2 and

RA'P3 (w)= [dz]z"kA3 W(z)(1+ u)GA, (u). (4.4.33)

As compared to [97] we allow the bulk propagator to be multiplied by (1+u)P (see (3.3-3.4)

in [97]). We now use the hypergeometric series expansion (4.3.33). Inserting this series

into the expression for R$'P3 , we can perform the z integral term by term by a standard
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Feynman parameterization, and resum the resulting series. We get

AP 2 A5-p+l d/2F[2(A5 - P + A 3 - A 1)][(A 5 - P + Al + 'A3 - d)]
RA1:A3(W) - P1F[Z3

/X~ n ( )A3 _sr1 ( 7)A3 1,71A5-P-A1-A3)-1

x A l +3 d( a , (4 .4 .3 4 )

X 4F3 AA A 5+1 A5-p+A3-Al A5-p+A+A3-d _ + 1, _-__- +1
(~ ~2 2'1 2 ' 2 ; 52+ , 2 5 2ty

For p = 0 we recover equation (3.11) in [97]. It turns out that for the cases relevant to

the graviton amplitude, the hypergeometric function 4 F3 is elementary and the Feynman

parameter integral can be explicitly done. The result is always a simple binomial in wo

and wo/w 2. The relevant cases are:

4, W3 + 1W2 0  1
ft 4 ,4  - 0 W W

36W + o +8 (w42 1 3 /37 W 0  
2  1 (W0 \

R44 - 0 -(r~ 2 ( )2

Ri, =(w +) + -WI

R$, = W + w + wo
4 , 1w3 (WOl3 2 (O)2 W (

36 4 w2 56 kwJ 364 W

We see that each term in R 'P3 (w) is a of product of bulk-to-boundary propagators. In-

deed, won corresponds in this inverted frame to a propagator at j? = oo, likewise (wo/w2)1

corresponds to a propagator at = 0. Inserting each such term in the expression for

I31 A 3 A 2A 4 (equ. 4.4.32)), and going back from the inverted variables 72 to the original

variables sj, we recognize the integral defining a quartic graph. For example

4,3 1 -2A3Ix2 1 2 12 -2A4 A ) KA 2  21  A 4(, 41 )
k(w - +'3)2)O
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Adw Ww)A W A 2  W )A 4

J[dw] ( O\ ( W O( W
jw-x1)2 (W-X 3 )2 (w _ x2)2 (w -X4 2

DAA 2 A 4 (x, x3, x2, x4) , (4.4.36)

where in the last line we have used the important notation for quartic graphs (see Figure

5) introduced in (B.1). We can finally write the full graviton amplitude as a sum of quartic

graphs:

22 2 212

grav = 1  + 2 3 - D4 455 + 1 (x 2 x34 + x14 x23) D33557iJ~U X13 X13 13j

32 2 2 2 14 8
+3 x 13 (X 12 X4 + x 23) D2255 + 10 D 444 4 + 2 x D 3344 + X D2244

6 D144 - 3x 2 D4354 + X14 D 4345 + X4 D 34 45 + X23 3454
13 ~~x 3 D~~

- 3 (x 2 D 3 25 4 + X 4 D 3245 + x 4 D 2 345 + x2 D234 (4.4.37)
9x13

The graviton amplitude (4.3.39) is symmetric under x1 +-+ x3 and x2 ++ x4 . These symme-

tries are explicit in the final expression for Igrav, indeed some of the D functions (of the

form DAAA) are symmetric by themselves, while asymmetric D functions appear in all

the symmetric permutations. It turns out that thanks to the remarkable properties of the

D functions (see equ. (B.3.11)), the answer can be rewritten in terms of DAAg's alone.

Introducing the conformal invariant variable s 1 324 -- T-, we get

(6 )4 164 x 42 16 41

Igrav = [16 x24 ( 1 D 4455 + 41_D 3355 + D 2255 (4.4.38)
L7r 2s 9x 3 s 3 x 1 s

46 40 8
+18 D4 4 4 4 - 2 D3 3 4 4 - 4 - 3 43  .

9Zx3 9 13 3 13

The graviton amplitude (4.3.39) is, for the case A = A' = 4 that we are considering, also

symmetric under (x 1 , x3 ) ++ (x 2 , x 4 ). Although not immediately manifest in the expression

above, this symmetry is actually present thanks to the identity (B.3.11) obeyed by the D

functions.
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4.5 General graviton exchange graph

We expect that the amplitudes for graviton exchange between massive scalars will be useful

in general studies of the AdS/CFT correspondence. As in past work [95, 97] we therefore

assume initially that d, A, and A' are arbitrary, constrained only by the unitarity bound

A, A' > d/2. We will assume integer values at the point where this step simplifies the

calculation, and specialize still later to the case d = A = A' = 4 to present detailed

asymptotic formulas for dilatons and axions in the type IIB supergravity.

The first step in the evaluation of the amplitude (4.3.39) is to split it into contributions

from the terms in H(u) and G(u) in the graviton propagator, and to split the latter into

a term proportional to the metric g"" in Tv"3(z) of (4.3.40) plus the remaining term, viz.

1 1
gray = Agrav = I (AH + AG + A). (4.5.1)

The three contributions are then given by

= dz dwlg[ K(1)DPK(3)+m 2 K(1)K(3)](z) I,i,,(z,w) T2j4"'(w) (4.5.2)

= 2dz lJdwFg, K(1)aK(3) DPa,,uD"a.v u G(u) T2 4'"'(w) + (1 + 3)(4.5.3)

A H JdZV/JdWV g T13 (z) H(u) g -T2 4(w) (4.5.4)

where we use the abbreviation g -T = g,,T"', and

IM/V/ = -gVG(u)[D"OIuD"OVu + D"&VIuD",,u]

= -2G(u)(g,',' + al,uOaiu). (4.5.5)

where (4.3.27) is used to obtain the second line in (4.5.5). The symmetrization in 1 + 3

in (4.5.3) will be useful for later steps.

The w-integral in As that involves the tensor /u,,'u of (4.5.5) may be simplified by

using /,IuG(u) = O,,G(u), integrating by parts in w and using the covariant conservation
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of T 24 ,

dw fG(u)0,,,u0,uT24 = - dw \IG(u) D,8,,0'u T2 4 "(w)

- dwl. (1 + u)G(u) g - T2 4 (w) (4-5.6)

Putting together this rearrangement of the AG part, we have

A = dzg fdw i[OK(1)DPK(3) + m 2 K(1)K(3)](z)

x{-2G(u) + 2(1+ u)(u)} g -T 24 (w) (4-5.7)

Next, we use the propagator equations (E] - m 2 )K(l) = (El - m 2 )K(3) = 0 to obtain the

following identity

1
[apK(1)DPK(3) + m 2 K(1)K(3)] (z) = -l{K(l)K(3)}(z) (4.5.8)

2

Substituting this identity into AG, integrating by parts the operator Elz, neglecting van-

ishing boundary terms and using (4.3.29), we find

LIz{(1 + u)G(u)} = -2G(u) + 4(1 + U)2 G(u) + 2d(1 + u)G(u) (4.5.9)

which then gives

A = dzrgf dwxFK(1)K(3){-EzG(u) - 2G(u) + 4(1 + u)2 G(u)

+2d(1 + u)G(u)} g -T24 (w) (4.5.10)

Before simplifying the g -T24 factor in the integrand, we first treat AG and AH in a similar

manner. For AH, we use again (4.5.8) to simplify the z-integration and to cast it in the
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following form

AH = K(1)K(3){--(d - 1)LiJzH(u) - 2m 2 H(u)} g - T2 4 (w) (4.5.11)

To simplify A', we begin with partial integration of 0, in the z-integral in (4.5.3), and

split AG as follows

= -2A G - 2A 2  (4-5.12)

where

I= Jdz/.Jdwx Op{K(1)K(3)}D,[D 'O,,uD"O,uG(u)] T24'"(w) (4.5.13)

AT2= ,dzi dwgD,OK(I)K(3)[Da,,,uD",, uG(u)]T2'" (w) + (1 ++ 3). (4.5.14)

Now, A G may be simplified by working out the tensor algebra using (4.3.23-4.3.27) and

again o9,9uG(u) = &, 4(u) to obtain

Dv[D1'o,uD',,uG(u)] = Dp,( ... ) + D,( ... ) - D"u g,,,J(u)

J(u) = (1 + u)G(u) + (d + 1)G(u) (4.5.15)

The terms with DA, and D, cancel by partial integration in (4.5.13) by conservation of

T24 Finally, integrating by parts once more in , and using D"u J(u) = D fu J, we get

the following simple result for A 1 ,

A = - dz4JdwgDO{K()K(3)}Du J(u) g -T 24(w) (4.5.16)

= JdzfdJdw /gK(1)K(3){u(2 + u)J'(u) + (d + 1)(1 + u)J(u)} g . T24 (w)

It is more difficult to deal with A 2 To simplify the integral representation in (4.5.14),

it is very convenient to set x1 = 0 in the first term and then perform an inversion trans-

formation of the integral (in z and w) as explained in [91]. The symmetric step in 1 ++ 3

is done later. It is now easy to evaluate the double covariant derivative of the inverted
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bulk-to-boundary propagator K(1') = CAzOd,

Dv&tK(1') = -AK(1')gt,1 + A(A + 1)K(1')z2g,1 ogO (4.5.17)

The contribution of the first term in (4.5.17) is proportional to the metric gly, and may

be treated by the same technique used for A'. It acquires an "effective scalar propagator"

proportional to the term in ... } in (4.5.7). We thus find for this contribution to A 2 the

term

-iz'si2A'iz'gi2A x ' 12A'A fdzg fdwrgK (1') K(3'){fG (u) - (1+u) 0(u)} 1-T24 (w) +(1 3).

(4.5.18)

Note that the prefactor contains the scale factors from the inversion.

The integral of the second term in (4.5.17) contains the factor.

z2 gpO gvOD1 aWU Dvivu = (zogt1'ol + aPu)(zogVlo + &9'u) (4.5.19)

Integration in w against G(u)T2'"'(w) gives rise to three types of terms

Jdw/g(zogtLo/ + &itu)(zogVo + a, u)G(u)T"(w)

= zf dwx/F G(u)T 24(w)0'0' + 2zo JdwIg go,o,iu G(u) T1j"(w)

- Jdw F (1 + u)G(u) g -T2 4 (w). (4.5.20)

The second integral on the right hand side may be further simplified by using once more

9,,uG(u) = G,,O(u), integrating by parts, using conservation of T 24 and being careful to

taking into account the fact that the integral is the 0' component of a vector instead of a

scalar. Thus there is a non-vanishing contribution of Christoffel symbols, which gives

JdwVl gtjoaiu G(u) T''(w) = dw/ G(u) g T24 (w) (4.5.21)
T2'4 () = fwo (U9-T2(W
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We now combine (4.5.18),(4.5.20) and (4.5.21) to write an expression for A'2, namely

A2 = |21 2A' IXI12^|Ix'112A' JdzF/ Jdwx/-K(l')K(3')

{[- AG(u) - 2 (1+ u)O(u) + A(A +

+A(A + 1) Z2G(U)T24(W) 010

+(1 ++ 3)

2zo

WO G(u)j g T2 4 (W)

(4.5.22)

We are now in a position to assemble all contributions to the graviton exchange diagram

by combining results for AH , and A 2 . The z-integrals are easiest to carry out

after inversion, so we apply inversion to all contributions and rewrite Agrav with a universal

conformal factor extracted, viz.

Agrav = |21'X'31|2, 2A'(Bt + Bdd + B00 ) + (1 ++ 3) (4.5.23)

where the reduced amplitudes B are given by

Btt = fdzx/-fdw,1g-K(1')K(3')P(u) g -T 2 4 (w)

Bdd = -4A(A + 1) Jdzl/ dwlg zO K(1')K(3')G(u)

Boo - -2A(A + 1) Jdzx/gJdwVF z2 K(1')K(3')

(4.5.24)

g - T2 4 (w) (4.5.25)

G(u) T24 (w)ooi (4.5.26)

The function P(u) is gotten by combining all contributions involving g -T24 (except that

from A 2 ) and is given by

P(u)
11= 2IzG - 1(d - 1i)zH - G + 2(1+ U)2G + d(1+ u)O(u) - M2H
24

-u(2 + u)J' - (d + 1)(+ u)J+ 2AG + 2A 2 ( + u)O(u) (4.5.27)
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The relation between H(u) and G(u) was given in (4.3.37) and may be used to further

simplify the form of P(u). While both E1,G and EiIH have a term proportional to 6(z, w),

the relative coefficients of both terms are such that this 6-functions cancels out of the full

P(u), and we are left with

P(u) = 2AG - 2u(2 + u)G + 2(A2 - d - 1)(1 + u)G(u) - m 2H(u)
m2 - d+l m2(d -2)

= 2{A+1+ d 1 (1+u)2 }G(u)+ 2A2 - d - 1+ d - 2 }(1+u)G(u)
d-1I d - 1

Finally, the expression T2 4 (w)o'o' may be worked out explicitly,

T24 (w)o'o' = (A') 2KA (2')KA:(4') 1- (_) 2  14

and we can use an identity similar to (4.5.8) to obtain a covariant expression for g T24 (w),

namely
1

g - T24 (w) = (--(d - 1) EIw - 2m'2 ){K(2')K(4')}. (4.5.29)
2

4.5.2 General integrals over interaction points

We shall use the following strategy for the calculation of the integrals over the interaction

points z and w in the reduced amplitudes of (4.5.24-4.5.26). First, we shift both z and

w by X'1; by translation invariance, the integrals depend only upon the new variables

x ' - X and y x'l - x',. The z-integrations then only depend upon the variable

w, and may be carried out explicitly in terms of elementary functions by methods similar

to the ones used in [95] and [97]. Only after the z-integrals are carried out are the explicit

forms of g -T2 4 and T24 (w)o'o' required and used. The remaining w-integrals may be recast

as integral representations that admit simple asymptotic expansions.

To prepare for the z-integrations, we note that P(u) in (4.5.24)) and (4.5.28) involves

the invariant function G(u) and its first integral 0(u), and the same functions appear in
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(4.5.25,4.5.26). To apply the methods of [95] and [97] we need the series expansions of

G(u) and 0(u) in the variable of (4.3.32). For G(u) this is just the hypergeometric

series for Gd(u) in (4.3.33) and we obtain the series for 0(u) by direct integration. These

expansions are given by

0 =1 F(k±+ 4+) 1G (u) = -CG E2 2 d 2k+d

2 F(4 +}) k! k +

1 F(k + a ) 1 2~-0(u) = -CG 2 2 d 2k+d- (4.5.30)
4 F(4+) k! k +

These series expansions are uniformly convergent inside any disc |(1 < 1. The normal-

ization constant may be read off from (4.3.34) and (4.3.31) for A = d, and we find

CG- 2 d d Od-

There are five independent z-integrals required to evaluate the graviton exchange am-

plitudes. They are as follows,

Zi(w) = dzJF K(1')K(3')G(u) (4.5.31)

Z 2 (w) = dzfg K(1')K(3')(1 + u) 2 G(u) (4.5.32)

Z3 (w) = dz/- K(1')K(3')(1 + u)O(u) (4.5.33)

Z4 (w) = dzFg K(1')K(3')zowO 1 (u) (4.5.34)

Z 5 (w) = dzJg K(1')K(3')zw2 W-2G(u) (4.5.35)

In terms of these integrals, the original amplitudes are given by

Btt = dw {2(A + 1)Z,(w) + 2Td -d+ 1Z 2 (W)

m2 (d - 2)
+2(A2 - d - 1 + d - )Z 3 (w)}g -T 2 4 (w) (4.5.36)

d - 1

Bdd = dwx/ {-4A(A + 1)Z 4 (w)}g - T2 4 (w) (4.5.37)

B00 = dw Fg {-2A(A + 1)Z 5 (w)}wOT 24 (W)o'o' (4.5.38)
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It remains to evaluate the z-integrals.

Performing the z-integrals

The z-integrations are carried out term by term on the series expansions of (4.5.30), and

all the integrals we need in (4.5.24-4.5.26) are of the following form (with 2a, 2b = 0, 1 or

2)

00o { 2A+2a-d-1 2zowo 2k+d-2b

jdzo JRd z + -+> + -

d F(")r(A + k + a - b)(k+ -a-b) 2
= F 2r 2 2

rF(A)(k + -b)(k + - b+ }) 0
2 2/ 2

1 2 k+!I-a-b

x da .
2 a- 1 (1 - a)A- 1  2 + aw ) 2 (4.5.39)

fo \awo (1 - a)W2

In the integrals Zj(w) of (4.5.31-4.5.35), the values taken by (a, b) are (0,0), (0, 1), (0, 1),

(1, 1) and (1, 0) for j = 1, 2, 3, 4, 5 respectively. The calculation of the z-integrals is slightly

involved, but is essentially the same for each of the Zj-integrals. Here, we shall present

in detail only the calculation for Z 1, and restrict to presenting the final results for the

remaining 4 integrals.

To compute Z1(w), we use the expansion of (4.5.30) for the function G(u) and integrate

term by term in z using the integral formula of (4.5.39), here with a = b = 0. Assembling

these results, we notice that the factors F(k++ 1) and r(k+) cancel between numerators

and denominators. Also, interchanging the order of the a-integration of (4.5.39) and the

k-sum of (4.5.30), we are left with the following result

Zr1F(j) j da - l a±i
Z1 (W) = CGC f _2- a2F(4 + 1) GC a aw +(- a)W2

SF(k + A) (k+p (4.5.40)
fA;p( E F(A) k! k + p

Assuming that d is even and d > 4 throughout, we have p > 1 and the function fA;, may
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be easily evaluated in terms of elementary functions. We begin by noticing that

fA;p(() = ( )--
d(

0f (k+A)
F(A)-F(k+p+

In view of the presence of the multiple derivative operation in front, we are free to add

into the sum the terms with k = -p + 1, -p + 2,- --, -1. Then, we shift k -+ k - p and

obtain
F(k + A - p)

k- F(A)F(k + 1)
(4.5.42)

The infinite sum is proportional to (-'[(1 - O)-+P - 1] and the multiple differentiations

may be carried out explicitly. The final result is

fA;P()= ()P F(P) - () ! ()-P+e]
f=0 1

Upon substituting the value = w2/(aw + (1- a)w2 ), and using the binomial expansion

for the (positive) powers of the combination aw + (1 - &)w2, we find

A-2p- ) F(A -p + f)F(A - p+1) 2 2 k+1

F(z() =! H F(A - p + f - k)F(k - e + 2) 1 - a)w2J
(4.5.44)

Remarkably, upon including the factor of a-1 (1 - a)"-1 of the integral in (4.5.40), the

integrand is polynomial in a and may be carried out term by term in (4.5.44). The final

result for this calculation as well as for that of the remaining Z may be expressed in the

following final form

A-2

Z(w) = E
k=O

k) (W2 k+1

Z (W0

with the coefficients Z k) dependent only on A and d and given as follows

Zkd W () - + 1) CG C2  -(k)
2F( + 1)F(A) 2 2
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(4.5.43)

(4.5.45)

(4.5.46)

fA;p M = (P (
d(



!! (4) (A - ')2 2k

(-)2Z + ) (4.5.47)H 4r(,A _- + 1)1

with

Z F(A + f - )F(A - k - 1)F(k + 1)
Z(-)t f! F(k - e + 2)F(A - k±f-) (4.5.48)

2 (k) - (_ F(A - 1)F(k + 1) ( )
2 F(k - 4+ 3) (-.9

d2

1 r(A + f- d- 1)F(z - k -1)F(k±+1)
Z( - _ Y k(4.5.50)

3 2 _ PE F(k - f + 3)F(A - k + f - 1)

(k) 2 (4.5.51)

( 2 - f - 1)F(A + f - ) (A - k -) IF(k + 2
x 2 (- (4.5.52)

- ) j ! P 7(k -e3)F( - k +e - + 1)

We conclude by noticing that the relation between Z k) and Z k) simplifies considerably

upon using the explicit forms for CG and CA, as was done in (4.5.47).

Reduction to w-integrals

Our purpose here is to express the w-integrals in Btt, Bdd, and B00 of (4.5.36-4.5.38) in

terms of the following standard integral

A' / ~ 2A'+2a+2k 11
W' (a, b) -2k (w _ 2A' (w - 2A'+2b (4.5.53)

We also use Wf' (a, b) which represents W,$' (a, b) with x +- y. Introducing the constants

S=- d+ 1Z) +2 2 -d - 1+ m 2 (d - ))Zr k 4A( +1)Z(k)

d-1 d-1

(4.5.54)
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we find the following expression for B" + Bdd, after partial integration of ELI,

Bf + B dwvf/- (d - 2'2 2 K(2')K(4') (4.5.55)

The action of the Laplace operator on the various powers of w2/w 2 is easily evaluated with

the help of the following formula

(w2)k = 2k(2k - d) - k2 k1 (4.5.56)

and we obtain the following expression for the amplitude in terms of W functions

A-2
Btt + BA k ) {-(d - 1)(k + 1)(2k + 2 - d) - 2' k

k=

+2(d - 1)(k + 1) 2 W, 2 (O, 0) (4.5.57)

Proceeding analogously for the contribution of B00 with the help of (4.5.28) and (4.5.38),

we find

A-2 (1 n2)WA
B00 = -2A(A + 1)(A') 2 c, k /)W 1 (0,0) - 4Wk (1, 1) - 4~Vk1(1, 1)

k=0

+8WAf 1 (0, 0) + 2(x - y) 2 W t1 (0, 0) (4.5.58)

As in the special case A = A' = d = 4 already discussed in Section 3, we recognize

that the general graviton exchange amplitude is a finite sum of quartic graphs. In fact,

each Wk,'(a, b) is the amplitude of a 4-point contact diagram evaluated in the inverted

coordinates (with appropriate inversion prefactors omitted). The scale dimension of the

external propagators are A, = k + 2a - b, A3 = k, A 2 = A' + b and A4 = A' (see

equ.(B.1.3)).
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4.5.3 Graviton exchange graph for d = A = A'= 4

For A = A' = d = 4, the masses of the scalars vanish m = m' = 0, and the k and

e-sums in the results for the z-integral functions Ij truncate after just a few terms. We

need the z-integral functions Zj(w), j = 1,.-. , 5, which may be read off from (4.5.45) and

(4.5.48-4.5.52) with A = d = 4,

1

1 3w 2

= 27r4 2w2
1 1 w2

= 2r4(2w2
1 3w 2

= 27r4 8W2

w4
w6

7 4
±4w4+ 2 ')

1W4

) 0

1w4

) 0

3 2 4 W 63__ wo WO W
= 104(+ W2 + 4 + 06 )

Using these integrals, the expressions for B" + Bdd and B 00 become quite simple and are

given as follows,

= 
d

12
=4

FJW 2 +

dw!5 
-"Vfg 2

w 4 + W6 g1 -T24 w)

+ "4
w4

0

+ 61
WOT 24(w)010

When m' = 0 and d = 4, the combination g -T 24 in (4.5.29) simplifies. Upon integration

by parts, and making use of the differentiation formula (4.5.56), we obtain the following

expression

= 26 . 33

78
dw 1 + +90

2 4 6 8 8 8

(4.5.66)26 .33
8  W4(0 0) + W2(0, 0) + W3(0,0) + 9W(78 r
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Zi(w)

Z 2(w)

Z3(w)

Z4(w)

Z5(w)

(4.5.59)

(4.5.60)

(4.5.61)

(4.5.62)

(4.5.63)

Btt + B dd

Boo

(4.5.64)

(4.5.65)

Btt + B dd



The expression for B 00 may be obtained in an analogously, using (4.5.28) for m' = 0,

A = 4. This directly gives

29 33 5 25

B 0 0 = - 8  Z{WP(0, 0)- 4Wj(1, 1) - 4W(1, 1) +8Wj(1, 0) + 2(x - y)Wj(O, 0)
78P=1 P

(4.5.67)

Using the expression for W4(1, 1) + WP(1, 1) in terms of W(0, 0) to be derived in (4.6.5),

this formula may be recast in terms of W(0, 0) and W(1, 0) only, viz.

29 .3 (0033W(0Bo - 3W(0, 0) + Z{-2W4(0, 0) + 8W5(1, 0) + 2(x - y)2 WP(0, (4.5.68)
p= 1

Adding the contributions of B" + Bdd and B00, we finally obtain the expression for the

full B in terms of W-functions and we have

~2.33 [1w(o,_)25 0)]
2 15W4 0)+Z{-17W (0, 0)+64W5(1, 0)+16(x -y) 2W(0, . (4.5.69)

p= 1

The full graviton amplitude Igrav is obtained by multiplying B by the appropriate kinematic

factors and symmetrizing under 1 + 3 (see (4.5.1), (4.5.23)).

4.5.4 Equivalence with the result in Section 3

We now make contact with the result obtained in Section 4. We recall that Wk" (a, b) are

just scalar quartic graphs in the inverted coordinates (with some kinematic factors omit-

ted), see equ.(B.1.3). One can easily convert (4.5.69) and (4.5.23) into the notations Sec-

tion 4, and get a sum of D-functions. The representation of the graviton exchange graph

that is obtained in this way does not at first appear to coincide with the result (4.4.38).

In particular, terms of the form x 2 x24Dr+2 p55 + X23X24 Dpp+2 5 5 arise from W,(1, 0) in

(4.5.69) and its symmetrization in 1 ++ 3. Thanks to the many identities that connect the

D functions (see the Appendix), the two representations of the answer are in fact exactly

equal. We first use (B.5.19) to eliminate the "asymmetric" D's in the result of Section 5.
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We get

1gray =E16 X 4 -1 D445 + -1 + D3355 (4.5.70)
igra322)2 X 2 X2

+ 32x24 -I D2255 - -- -224 D,15+ 24 D4444
3 x 2s 3 x16713 (3:13

8 14 10 ]
+9 D 334 4 + 9:14 D 2244 + 10 D144

Now (4.4.38), (4.5.70) are both in terms of D-functions of the form DAA3A. By repeated

application of (B.3.9) one can convert one representation into the other. We regard this

non-trivial match as a strong check of our result.

4.6 Asymptotic expansions

We have seen that the graviton exchange amplitude (and generically all AdS 4-point

processes with external scalars) can be expressed as a finite sum of quartic graphs, see

(4.4.38), (4.5.57-4.5.58), (4.5.70). In this Section we develop asymptotic series expansions

for the scalar quartic graphs (Figure 5) in terms of conformally invariant variables. This

series expansions allow to analyze the supergravity results in terms of the expected double

OPE (4.1.1). In Section 3 and 4 we have used slightly different notations for the quartic

graphs, namely DA1 A3z 2A4 and W"(a, b). The connection between the two is given in

(B.1.3). Here the expansions are performed for the WN(a, b) representation of the quartic

graph.

In Section 6.3 we assemble the series expansions of the W's that appear in the repre-

sentation (4.5.23,4.5.69) of the graviton exchange for A = A' = d = 4. We concentrate on

the direct channel and display explicitly the singular terms and all the logarithmic con-

tributions. The complete expansions, in both direct and crossed channels, can be easily

obtained from the formulas in Section 6.2.
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4.6.1 Integral representations of Wf'(a, b)

To evaluate Wk' (a, b), we follow the methods of [95] and [97]. We introduce a first Feynman

parameter a for the denominators w2 and (w - X) 2 and a second Feynman parameter 3

for the resulting denominator and (w - y) 2 . The W' and wo integrals may then be carried

out using standard formulas, and we find

Wk"'(a, b) =
7r2 F(k + A'+ a - 4)F('+ b - a)
2 F(k)F(A')F(A' + b)

xfird/1 1 a'1(1 - a)k1#3A'+b-1( -_k+a-b-1

d d ['3(y - aX)2 + a(1 - a)X2'-a+b

Upon performing the following change of variables familiar from [95] and [97],

1
a =

1+ U
U

U+ = +U

we obtain an integral representation similar that of [95] and [97],

Wk'"(a,b) =
7rF F(k + '+ a - 4)F(A'+ b - a) O 0-2 du Idv

2 F (k)F(z')F(N' + b) jo jo
Uk+a-1 Vk+a-b-1

(U + v + UV)k+2a-b [(x - y) 2 + uy 2 + VX2]'-a+b

Now the function W with b $ 0 only enters the calculation of B00 (equ.(4.5.67)),

and appears there only in the form of the sum Wk'(1, 1) + WkV'(1, 1). This particular

combination may be re-expressed in terms of W-functions with b = 0 only. This would

be difficult to see from the w-integral definition (4.5.53), but is manifest from the integral

representation (4.6.3), by using the following relation

U 1) 1 "Un

(u + v + UV)k+1 + (u + V + uv)k+1 =(u + V + uv)k (U + v + uv)k+1
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Taking normalization factors into account properly, we find

k A/
- ,Wkl1(0, 0) (4.6.5)

As a result of this identity, there will be only two classes of w-integral functions entering

into the graviton exchange amplitudes : Wk'(0, 0) and Wk"'(1, 0).

Similarly, a relation exists expressing Wk' (1, 0) in terms of W(0, 0)-functions.

may be established by using the fact that the quantity

/ ) (v)k-1 1

aV (U + V+UV)k [ -X2- y) 2 + 2 V

This

(4.6.6)

has vanishing integral in u and v, and by carrying out the derivatives explicitly and re-

grouping the result in terms of W-functions. The final result is

2(k + 1)(A') 2 Wk'(1, 0)
d d

= k(k + A' - 2)(k ' 2 1)Wk' 1 (0,0)

2 )2

+k(k + ')2 Wfj(0, 0) - k(Z') 2 (x2 + y2 )W+ 1(0, 0)

The w-integrals W'(0, 0) and WkA'(1, 0) may each be expressed in terms of derivatives

on two universal functions. To show this, we proceed as in [95] and [97], where analogous

results were obtained for the scalar and gauge exchange graphs. We begin by introducing

the conformal invariants

1 (X - )

2 x 2 + y 2

t 

2

x 2 + y 2

2 x32 xj 4 + x14 x23

x 1 2X3 4 - 4 3
2 x 4 + x24 x 3

(4.6.8)

(4.6.9)

whose ranges are 0 < s < 1 and -1 < t < 1. Next, we perform a change of variables

u = 2p(1 -A)

87

(4.6.7)

A/ - A/k + A' _ d A

Wk' (1,1 1) + W~kI'(1,1 1) = ,/ 2 WkI'(0,7 0)



v = 2p(l +A)

under which we have

Wk (a,0) =
r 2 (k + '+ a - ) '- a)a

2A'+a 1F(k)]F(A')2(2+y2) A/-a jdp f dAe j_1

p k-(1 - A2)k+a-1 1
x

[1 + p(l - A2)]k+2a (s + p + pAt)A'-a (4.6.11)

It is now possible to write the right hand side as a derivative with respect to s of order

A' - a - 1 of an integral in which the denominator involving s appears to degree 1, using

1 ()P+1 {9 P- 1
(s+W)P F(p) ks s+W (4.6.12)

Next, we change variables to p = s/p and recognize that the new integral is a derivative

with respect of s of order k - 1 + 2a. Putting all together, we obtain

W,' (a, 0) 4 -'+k+a2-A'-ap(k + A' + a - 4)
=( (+2 2

r (k)F(k + 2a)r(A')2(X2 + y 2)a A- a

I'-a-1

X 
s k-i (4.6.13)

where the universal functions Ia (s, t) are given by the following integral representations

s2a dp fJ dA
fo - 1

(1 - A2 )a 1

p+ s(1- A2) I1+ p+ At

2adA (1 - A2 )a
J- 1± At- s(1 - A2)

1 + At

s(1 - A2)
(4.6.14)

The integrals Ia (s, t) are perfectly convergent and produce analytic functions in s and t,

with logarithmic singularities in s and t.

88

Ia(S, t)

as k-1+2alat

(4.6.10)



4.6.2 Series expansions of W,'(a, b)

Series expansions of the functions Wk ' (a, 0) may be obtained easily from the series ex-

pansions of the universal functions Ia (s, t). There are two different regions in which the

expansion will be needed :

a) The direct channel ("t-channel") limit Ix 1 3 1 < X121, 1X24 1 < 1X12 1, which

corresponds to s, t -+ 0.

b) The two crossed channels; one ("s-channel") is the limit Ix 1 2 1 < Ix 1 3 1,

IX3 4 1 < Jx 1 31, which corresponds to s -+ 1/2, t -+ -1, and the other ("u-

channel") is Ix 2 3 1 < IX3 4 1, IX141 < IX341 in which s - 1/2, t -+ 1.

We shall now discuss each limit in turn.

(a) Direct channel series expansion

The direct channel limit is given by s, t -+ 0, and the expansions of the functions Ia(s, t)

are given by

I(s, t)

Ii(s, t)

00

k=O

00

=~ Z-lins
k=O

where the coefficient functions are given by

/dA (1 - A2)k

ak (t) = d(1 - A)k bk (t)
-1(I + At)k+1

(1 - A2)k+1
&k (t) = A dA bk (t)

-1 (1 + At) k+

The coefficient functions admit Taylor series

convergence 1. Actually, in view of (4.6.7), we

functions

ak(t) + bk(t)}sk

k (t) + bk (t)}sk+2

dA (1 _ A2)k 1 
+ At

[1 dA (I A 2)k+1 In 1 + At
-1 (1 + At)k+1 I - A 2

(4.6.15)

(4.6.16)

(4.6.17)

(4.6.18)

expansions in powers of t with radius of

have the following relations between these

(k + 2)dk(t) = (k + 1)(2ak(t) - ak+1(t)) (4.6.19)
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(k + 2)2 bk(t) = (k + 1) (k + 2) (2bk (t) - bk+1(t)) - 2ak (t) + ak+1(t) (4.6.20)

From (4.6.13) and (4.6.15, 4.6.16), we obtain the series expansions of Wk"'(0, 0) and

Wk' (1, 0) using the following differentiation formulas

S P 
8

s -( {s' In s}
Osi

= F(k±1) k (4.6.21)
F(k -p+ 1)

_ 1(k+1)=+1) -s {ln s + V(k + 1) - O(k - p + 1)} (4.6.22)
F(k - p + 1)

Wf (0 0) =

and

WA (1 0) =

()A+Pr F(p + A - d) 00 F(k + 1)2 Sk-A+1

2AF(p) 2F(A) 2 (X2 + y2 )A _ (k - p + 2)F(k - A + 2)

bk(t) - ak(t)[ln s + 20(k + 1) - O(k - A + 2) - 4(k - p + 2)(1.6.23)

(A+P+4F(p + A - 4 + 1) F(k + 1)F(k + 3) sk-A+2

2A+1F(p)F(p + 2)F(A) 2 (X2 + y 2 )A- 1 ZF(k - p + 2)F(k - A + 3) (4.6.24)

- bk(t) - Li(t)[In s + b(k + 1) + O(k + 3) - O(k - A + 3) - O(k - p + 2)]

The presentation of these series expansions is slightly formal in the sense that for k < A -2,

the IF(k - A +2) function in the denominator produces a zero, while the '0 (k - A + 2) term

produces a pole, which together yield a finite result, which amounts to a pole term in s.

Its coefficient can be obtained from the formula limxmo 4'(x - q)/F(x - q) = (-)q+l(q +1)

for any non-negative interger q.

(b) Crossed channel series expansion

The crossed channel asymptotics is given by s -+ ! and t - 1, and may also be

obtained from the series expansion of the functions Ia(s, t), with a = 0, 1. Actually, it

suffices to obtain the expansion of Io (s, t) and thus of WfA'(0, 0) in this limit and then to

compute the series expansion of WA'(1, 0) by using the relation (4.6.7). This is useful in
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this case, since the expansion of Ii(s, t) appears more involved than that of Io(s, t).

We start from the definition of Io(s, t) in (4.6.14) as a double integral and consecutively

perform the following changes of variables [y = (1 + At)- and T = (1 + o-)- 1 , so that

Io(s, t) = dT dA 1 . (4.6.25)
10 f1 (1 - 7-)(1 + At) + rs(1 - A2)*

This form of the universal function Io (s, t) is now precisely of the form studied in [97], and

the A-integral may be performed explicitly in an elementary way. We obtain, as in [97]

Io(s, t) = I (S, t) + Ioreg (s, t) (4.6.26)

where

Io E(s, t) - ln(1 _ t2)fdT 1 (4.6.27)
O Fw2 - T 2 (1 - t 2 )

I2jd d - + -(1 - t 2 ) (4.6.28)
IoT (S2lT In)+ ,0 W2 _T2 (I - t2) W 2

where the composite variable w is defined by w = 1 - (1 - 2s)(1 - r). In the neighborhood

of s = 1 and t = +1, we have w - 1 and 1 - t2 ~ 0, so that the integrals in (4.6.27,4.6.28)2

are both uniformly convergent, and may be Taylor expanded in powers of (2s - 1) and

(1 - t 2 ). Thus, jore(S, t) is analytic in both s and t in the neighborhood of s = 2 and

t = t1, and all non-analyticity is contained in the factor ln(1 - t 2 ) of 109 (s, t). The

integral admits a double Taylor expansion given by

00

I4 09(s, t) = - ln(1 - t 2 ) jZ(1 - 2s)kak (t)
k=O

1 1 k + 1 k + 3 00 (+ ) ( t2
§'k (t) - lF(2 ' 2 2 ;)1 Vt2 )= ( ! 2f + k + 1
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This expansion may be used to evaluate the logarithmic part of W' (0, 0) and we obtain

the following result

WA'(0, 0)
log

- -2P 2 ln(1 - t2 (p+ V- 2
)]F (p) (X2 y2 ) A'

&jl 00 (-2)-ef(k + 1) sP--1 (1 - 2S)k-p+f-A'+2

E= k=E F(z - )(p - f) V F(k - p + f - A' + 3)
ak (t)(4.6.30)

Notice that in the crossed channel, no power singularities arise.

4.6.3 Asymptotic expansion for the graviton exchange

We now turn to the direct channel asymptotic expansion of the graviton exchange graph

for A = A' = d = 4. The power singularity terms may be read off directly from the general

asymptotic expansion formula (4.6.23) restricted to d = 4, and we have

00) 7 2 (p + A - 2) (-)P-1
p 2A]F(p)2F(A)2 (X2 + y2)A

Similarly, we have from (4.6.24)

WfA (1,0)

A-2

kp-1

)kF(k + 1)2 Fr(A - k - 1) ak(t)
(-) A 1 LILk - p + 2)

7r 2r(p +,A - 1) (-)P-1

2A+ 1F(p)F(p + 2)F(A) 2 (X2 + y2 ) A-1

-3 (_)k (k + 1)17(k + 3)Fr(A - k - 2) &k (t)

k=p-x F(k - p + 2) sA-2-k

The full singular power part of the amplitude is now easily obtained by working out the

asymptotics above in the cases WP'(0, 0), W5(0, 0) and W5(1, 0) with p = 1, 2, 3. The

function W44(0, 0) has no power singularities and does not contribute here.

together, we have

48 1
B6 (X2 + y2 )4

[-2 a(t) a(t)
+ S2 + a2(t)+S) 3 o(t)

+ s3

(t)
+ 2 + )

Putting all

(4.6.33)
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Using the series expansions of the functions ak (t) and &k (t) to low orders, taking into

account that generically, s vanishes like t2 ,

ao(t) 2 2+ t24+ t3 5

&(t) 4 4 2 4
) 15 35

a, 4
a1(t) =

3
16

=

4
+ t2

48
105

a 16

2(t)=32
32 (4.6.34)

The final result for the singular part of B is

B si " - 2 2 12( 7t2
Big 357w6 (X2 + y2) 4 - 6t 4 ) + -(

7 -
S

Repristinating the overall kinematic factors we get the final result for the singular terms

in the direct channel of the graviton amplitude

Igrav sing = 3 6 818 [s (7t2 +6t4) + s2 (_7+3t2)
sing 357r6 X13X2

-8s (4.6.36)

Notice that the leading singularity xL3 6 cancels between the various tensor contributions

to the amplitude. The physical interpretation of this singular expansion is discussed in

Section 2.3.

The logarithmic singularities may be read off directly from the asymptotic expansion

formulas of (4.6.23, 4.6.24), and we have

W4 (0, 0) =(_)p+l7r2 F(p + 2) In s 00
26 32 P(p)2 (X2 + y2 )4 E

W5(0, 0)

W5(1 0)

F(k + 4 )2sk

F(k + 5 - p)F(k + 1 ) k±3

H (P7r2 F(p + 3 ) In s 00 r(k + 5) 2sk Ik+4

2 11 32 P(p) 2 (X2 + y2 )5 F(k + 6 - p)F(k + 1)
(4.6.37)

Assembling these contributions to the logarithmic singularity and expressing the coefficient
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3t2) + ] (4.6.35)

H P+l 7 2  IF(p + 4 ) in s

212 32 F(p)F(p + 2) (x 2 + y2 )4 E

F(k + 6)F(k + 4)sk
F(k + 5 - p)F(k + 1 )



functions ak(t) in terms of ak(t) using (4.6.19) we get

lg 3-3 4ZIns s4k F(k + 4) 2(5k 2 + 20k + 16) (3k 2 + 15k + 22)ak+3(t)
+og 76 2 (324 k=+ 5k + 1)

+(k + 4)2 (15k 2 + 55k 2 + 42)ak+4( ) . (4.6.38)
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Appendix A

Normalization of 2-point function.

For scalars with dimension A = d the correlation functions achieve constant limiting values

as we approach the boundary of AdS space. If A =A d then the correlation function goes to

zero or infinity as we go towards the boundary, and must be defined with an appropriate

scaling. In this case an interesting subtlety is seen to arise in the order in which we take

the limits to define various quantities, and we discuss this issue below.

Let us discuss the 2-point function for scalars. We take the metric (2.2.3) on the AdS

space, and put the boundary at zo = c with E << 1; at the end of the calculation we take

c to zero. We also Fourier transform the variables Y, and follow the discussion of [2].

The wave equation in Fourier space for scalars with mass m is

zd+1 9
0 [zod+1 9 #(zo, k)] - (k2 z2 m2)(zo,ik) = 0 (A.1)

0 zo 0 zo

where we have written

(zo,) =(27rd/2 dk ek #(zo, k) (A.2)

The solution to this equation is

d

O(ZOj k) = Z2 F,[ikzo] (A.3)
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where F, is a solution of the Bessel equation with index

d d
v = A- -= + M2]1/2

2 4

The action in terms of Fourier components is

S= f dzo dkdk'6(k ' )z-+1

(A.5)

[ #(zo, k) f;#(zo, kc') + (k2 + 7F)q(zo, k)(zo, I')]

We have to evaluate this action on a solution of the equation of motion with 0(f, k)

5b(l) given. An integration by parts gives

S = 2 dkd'6(2 + zo-d+1[#( zoo(zo,

If we have a solution to the wave equation KE(zo, k) such that

lim K'(zo, k)zo-+f

(A.6)

= 1, lim K(zo, I) = 0zo-+oo (A.7)

then we can write the desired solution to the wave equation as

#(Zo,) = K(zo, k)#Ob(k) (A.8)

Then the 2-point function in Fourier space will be given by

(O( )O(k')) = - 6 -d+1 6 (' + ') lim OZOK'(zo, k)
zo-+4E

K (zo,) = ( )d/2
IC (kzo)
1C,(k E)

(A.10)

where IC is the modified Bessel function which vanishes as zo -+ oc. For small argument
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K, has the expansion

IC , (kzo) = 2"~ F(v)(kzo)-[1 +...] - 2-V_1(1- v) (kzo)"[1 + ... ] (A.11)
V

where the terms represented by'...' are positive integer powers of (kzo) 2 . Then (A.9) gives

(O(k)0(k')) =

2F2 (1+V) 2+ .

- + ') lim Z O 4 (ck ) --d (k z o)-v + ! + . . . - 2 22 r v) (k z o)v + ± +

(kc)-" + ... - 22 ( +

= + kI(-.# k2v2 -2vr(1iv) (2v) +
(A.12)

Here in the last line we have written only those terms that correspond to the power law

behavior of the correlator in position space, and further only the largest such terms in the

limit E -± 0 have been kept. In particular we have dropped terms that are integer powers in

k2, even though some of these terms are multiplied by a smaller power of f than the term

that we have kept. The reason for dropping these terms is that they give delta-function

contact terms in the correlator after transforming to position space, and we are interested

here in the correlation function for separated points.

The result (A.12) is the Fourier transform of the function

1 2(A-d) (2A - d) F(A + 1) | -2A (A.13)
7rd/2 A F(A_ d)

which should therefore be the correctly normalized 2-point function on the boundary

zo = E. It also agrees with the correctly normalized 2-point function required by the Ward

identity (2.3.44). The power of e indicates the rate of growth of this correlation function

as the boundary of AdS space is moved to infinity, and we can define for convenience a

scaled correlator that is the same as above but without this power of C. The correlation

functions given in the rest of this paper are in fact written after such a rescaling.

97



We would however have obtained a different result had we taken the limits in the

following way. We first take c -+ 0 in the propagator (A.10), obtaining

K'(zo) = )d/22 1 ,(v)(k) (kzo) (A.14)

Using (A.14) in (A.9) we get

((4)0(P'))=- (k(+)k2(v + ) + . . . (A.15)
F(1 + v) 2

which differs from (A.12) by a factor

(A.16)
2A - d

The difference between (A.12) and (A.15) can be traced to the fact that the terms in

K6(zo) which are subleading in c when zo is order unity, give a contribution that is not

subleading when zo -+ c, which is the limit that we actually require when computing the

2-point function.
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Appendix B

Properties of DA1 A 3A 2A4

We have seen that a basic building block in expressing the 4-point functions is the quantity

DAiA 3 A 2 A 4 , defined by

DAA 3 A2 A4 (x1, x3, x2, x4) d+ kA (z, XI) kA 3 (z, x 3)kA 2 (z, x 2 )kA 4 (z, x4) (B.1)
Zo

where kA(z, x) is

KA (z, x) = 2 o + .'X' (B.2)
z0 (z - ))

(note the different normalization from K(z, x), equ.(4.3.31)). Thus DAA 3A2A 4 corresponds

to a quartic interaction between scalars of dimension AX, with a simple non-derivative

interaction vertex, see Figure 5. Note that sometimes we suppress the explicit coordinate

dependence of the D functions. Coordinate labels are always understood to be in the order

(x 1 x 3 x 2x 4 ).

While the result of the computation of the graviton exchange graph gives a sum of

many different D functions, in fact all these functions are closely related to each other.

We show that one can relate DAIA3A 2 A4 to DAi-1A3-1A 2A 4 and DAIA 3A2+1A4+1 (see for

example (B.3.9)). Further, all the D functions can be obtained from differentiating one

single expression (which can be obtained in closed form) with respect to the variables

x . This is shown in section A.3. Using this latter fact we show how for example how
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DAA+1&+1 (+ symmetrizing permutations) can be related easily to expressions of the

form DAAAA (see (B.5.16)). These relations are useful to arrive at the two simplified

forms of the graviton amplitude (4.4.38) , (4.5.70) given in the text and to show their

equivalence.

B.1 Relation between DAax 2 A4 and WA'(a, b)

The standard integral introduced in (4.5.53) is just a quartic graph evaluated in the in-

verted frame, with some kinematic factors omitted. The precise relation with DAA 3A 2 A4

is

Wk"'l(a, b) = Xi l 2A'X2(A'+b) D2a-b+k,k, '+b, A' (B.1.3)

B.2 Derivative vertices

The first thing we note is that if we have a quartic interaction with derivatives, given by

a coupling

(B.2.4)#ai(z)#a z' z # 2 (z) zx 1(zg",

then the computation of the 4-point function with such an interaction can again be reduced

to a sum of terms of the form (B.1). This is done with the identity [94]

g k
9z' a

= A1 A 2 [kZA (z,x)kA2 (z, x 2 )

-2x 2KA1+1(z,x) KA2+1(z,x 2)]

(B.2.5)

Thus

dd+Iz kA 1(ZX0

zo KA3 (z, X3 ) KA2 (z, 2) aX2)z Z KA4 (ZIX 4)
OZL

= zX 2 A4 (DA1 A 3A2A4 - 2xj4 DAA 3A 2+1A 4+1)
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B.3 Lowering and raising Ai

Not only does the identity (B.2.6) allow us to remove derivatives from the quartic vertex,

it is also useful to relate various D functions to each other. Let us rewrite the l.h.s. in

(B.2.6) as

d+ 1z

2 zo+± A4)

- (mA 2 + A4i)

xl)kA, (z, X3 )flz (kA 2 (z, x 2 )KA4 (z, x 2 ))

DAA 3A2 A4

where m = A(A - d). Upon integrating by parts of the first term in (B.3.7) we get

(kA1 ka 3 ) ka 2Ka 4

r 9 _ Z2a_

= [dz] KAZ -K 3KA 2KA4azt, 0aI

+ mA 3 ) DA3A2A 4
(B.3.8)

Putting relations (B.2.6,B.3.7, B.3.8) together, we find in particular, for A1 = A3 = A,

A 2 = A4 = A:

2 243DA+lA+1AA +2X (a2 - A 2 + m2 - mA) DAg

A special case is A = A, which implies:

x24DAAA+Al =x 2DA+1A+,AA

Iteration of (B.3.9) allows one to prove that more generally

(x24 )" DAAA+nA+n = (X 3 )" DA+n+nA-

(B.3.9)

(B.3.10)

(B.3.11)
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B.4 Obtaining DAA 3A2 A4 in closed form

By using a Schwinger parameterization and performing the z integrals, one finds [113] (and

references therein):

DAA 3 A2 A4 (X1,x3,x2,x4) = 7 2 d2 M
2 H F(Ai) I rjj dac a J(Ei ai - 1)

(E~jak, 2 2

E y~i gakx)

where

z i.

We observe that any DAIA 3 A 2A4 can be obtained by differentiating an appropriate number

of times in the variables xij the basic function

B(xi,) = J
B(xij) is given in closed form in [113].

immediately find

H3 daj6(Zi ai - 1)
(EkI0Zkaj 2 .

( E y~i a kI,

(B.4.14)

From the integral representation (B.4.12) we

__ 2z14 3D4= EA - d DA,1 1A 3 +1a 2 4  (B.4.15)

B.5 Symmetrizing identities

Equation (B.4.15) can be used to show that a sum of D functions which is symmetric

under x, -+ x 3 and x2 ++ x4 can always be rewritten in a basis in which each individual

term shares this symmetry, i.e. each term is of the form DAA A. For example:

1 2A+1A'3+1 + x14DA+1ALA+1 = 2- DAAA -+A (B.5.16)
2 A A

102

(B.4.12)

(B.4.13)



where E - 2A + 2E. Let us see how to derive this identity. It follows from conformal

invariance that

DAAA2A4 = (l(X
i<j

where X2 ,
t 13 24

tions we then get

2+i EA 1 A3A 2 A4((, 7) (B.5.17)

2 _ 2are conformal cross ratios. From simple chain rule manipula-X13X24

X 2 0 2 + X 3 9 S EA1A3A2A4(, 7) =0. (B.5.18)

Using (B.4.15), the last equation is tantamount to (B.5.16) for A, = A 3 = A, A 2 = A 4

A. Similar arguments lead to the more complicated identity

X 22Da+A+ + $3 x!4 Daa+2 D+1+1 =

A A
SA +1 ( X 2 x 4 + X4X23)DA+1A+1&+1A+1 +

(E - d)(E + 2 - d) D
4(A + 1)A2

(B.5.19)

AA5A

A(2A + 1)(E + 2 - d)

2(A +1) A 2
X13DA+1A+1AA +

A(A+1)3DA+2A2AA

where E = 2A + 2A.

B.6 Series expansion of DAAAg

From (B.1.3) and (4.6.23):

DAAAA (x, x3, X2, X4) =

~A+A d(A±d~
+7 ( + -) 0

p( 2pg)(13) (24)A k

F(k + 1)2 sk+1

F(k - A + 2)F(k - A + 2)

Sbk (t) - ak(t)[ln s + 2'V(k + 1) - O(k - A +
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