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Abstract

In this thesis we discuss correlation functions of A = 4, d = 4 Super-Yang—Mills theory
in the strong coupling regime. Namely, the recent conjecture of the equivalence of the
string theory in AdSs x S® background to the N’ = 4, d = 4 SYM theory with SU(N)
gauge group allows to find correlation functions of the CFT in the limit of large t’Hooft
coupling and at large IV by evaluating relatively simple tree-level supergravity amplitudes.
We discuss the basic ideas of the AdS supergravity computations, and establish the tech-
niques for evaluating tree-level AdS supergravity scattering amplitudes with fixed rates
of fall-offs of the fields as they approach AdS boundary. We translate these supergravity
results into field theory language and learn several interesting things. First, at the level
of the two—point correlation functions we learn about the necessity for the introduction
of a cut—off in seemingly convergent AdS supergravity computations. Next, we find a
non-renormalization property of certain 3—point functions. Finally, we find an explicit
expression for certain 4-point functions, which deviate from free—field approximation in
perturbation theory, thus providing some new non—perturbative information about SYM.
We study various limits of these 4-point functions, with intention to give them an OPE in-
terpretation. We find logarithmic singularities in all limits, and discuss their compatibility
with existence of an OPE at strong coupling.
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Chapter 1

Introduction

The fact that the near horizon geometry [5]-[12] of typical brane configurations in string/M
theory is the product space AdS4;1 x S, with d+ 14 p = 10/11 has suggested an intrigu-
ing conjecture [1] relating string theory theory on AdS,,, space-time background with a
superconformal theory on its d—dimensional boundary [1]. The concept of this correspon-
dence emerged in an earlier work on black holes [13]-[17] and has been further elaborated
in [32]-[75].

Precise forms of the conjecture [1] have been stated and investigated in [2, 3] (see
also [4]) for the AdSs; x S; geometry of N 3-branes in Type-IIB string theory. The
superconformal theory on the world—volume of the N branes is N/ = 4 SUSY Yang-Mills
with gauge group SU(N). The conjecture holds in the limit of a large number N of branes
with g4 N ~ g%,,N fixed but large. As N — oo the string theory becomes weakly coupled
and one can neglect string loop corrections; Ny large ensures that the AdS curvature
is small so one can trust the supergravity approximation to string theory. In this limit
one finds the maximally supersymmetric 5-dimensional supergravity with gauged SU(4)
symmetry [18]-[20] together with the Kaluza—Klein modes for the “internal” Ss. There
is a map [3] between elementary fields in the supergravity theory and gauge invariant
composite operators of the boundary N’ = 4 SU(N) SYM theory. More precisely, in the

maximally symmetric NV = 8 AdS supergravity in d = 5 there are long, short and ultra—sort
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(singleton) supermultiplets, containing 26, 28 and 2* states respectively. It can be shown
that the singleton supermultiplet action can be rewritten as a boundary action of a free
U(1) gauge theory, and since we are interested in SU(n) rather than U (V) boundary theory
we will ignore this multiplet in the further discussion. Short multiplets, which contain the
lowest supergravity multiplet as well as all Kaluza—Klein modes of S° directly correspond
to the short multiplets of chiral operators of N = 4 superconformal theory. This is based
on the fact that the (super) isometry group of the AdS supergravity is the same as (super)
conformal group of the dual gauge theory. Finally, the long multiplets of the supergravity,
which come from the string modes (their mass is of the order of Plank scale) correspond
to long multiplets of non—chiral operators on the SCFT. Another class of long multiplets
in the CTF can be constructed by simply multiplying short multiplets. The members
of these long multiplets are thus normal ordered products of chiral operators, which are
non—chiral. They naturally correspond to the multi-particle states of the supergravity.
At this point one should mention an important non-renormalization theorem of N’ = 4
SYM theory, which states that the dimension of chiral operators, i.e. ones belonging to
the short multiplets are protected from perturbative corrections. There is no such theorem
for long-multiplet operators. Thanks to the equivalence of AdS (super) isometry group
to (super) conformal group one can derive a simple relation between mass of the field in
the supergravity and the conformal dimension of the corresponding operator in the CFT.
At large mass the relation basically tells us that dimension is proportional to mass. Due
to this, one can assume that the dimension of an operator corresponding to a string state
is typically Agtring ~ (93u N )}1‘ Achiral, Which allows us to ignore the string states in this
(large t’Hooft coupling) limit. The non—chiral products of chiral operators, however, do not
acquire such large dimensions, and their importance will be discussed in the last chapter.
The OPE of chiral operators will generally contain their products with non—protected
dimensions. From the study of 4-point functions one can deduce the mixing of order 1/N?

for this non—protected operators.

The calculation of correlation functions is one useful way to test and explore the
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AdS/CFT correspondence. We consider the simplest example of the correspondence which
is the duality between N' =4, d = 4 SU(N) SYM theory and type IIB string theory on
AdSs x S5 with N units of 5-form flux and compactification radius R? = o (g2,,N)?. In
the large N limit with A = ¢2,,N fixed and large the supergravity approximation is valid.
Correlators of gauge invariant local operators in the CFT at large N and strong t’Hooft
coupling A are related to supergravity amplitudes according to the prescription of [2, 3].

Namely, the precise relation between the boundary CFT and AdSsupergravity is

(59 (] 0)) = 210 i

where in this schematic notation a CFT operator O(z) is a boundary source for the corre-
sponding supergravity field ¢(z) and the supergravity partition function Z [¢o] is calculated
with the value ¢y on the boundary. To compute a correlation function in the CFT by the
correspondence, one has to implement a perturbation theory in the supergravity, with ﬁxed
values of fields on the boundary that correspond to the operators of interest in the CFT.
The 5-dimensional Newton constant G5 ~ R3/N?, so that the perturbative expansion in
supergravity, if ultraviolet convergent, corresponds to the 1/N expansion in the CFT. In
the next chapter we give a more precise meaning to this scheme by working out a particular

example.
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Chapter 2

Two— and three—point functions

2.1 Introduction

To describe the conjecture for correlators in more detail, we note that correlators of the
N =4 SU(N) SYM theory are conformally related to those on the 4-sphere which is the
boundary of (Euclidean) AdSs. Consider an operator O(Z) of the boundary theory, coupled
to a source ¢o(Z) (Z is a point on the boundary Sy), and let e~"#l denote the generating
functional for correlators of O(z). Suppose ¢(z) is the field of the interior supergravity
theory which corresponds to O(F) in the operator map. Propagators K(z,Z) between the
bulk point z and the boundary point Z can be defined and used to construct a perturbative
solution of the classical supergravity field equation for ¢(z) which is determined by the
boundary data ¢o(Z). Let Sg[¢] denote the value of the supergravity action for the field
configuration ¢(z). Then the conjecture [2, 3] is precisely that W[@o] = Su[¢]. This leads
to a graphical algorithm, see Fig.1, involving AdSs propagators and interaction vertices
determined by the classical supergravity Lagrangian. Each vertex entails a 5—dimensional

integral over AdSs.

Actually, the prescriptions of [2] and [3] are somewhat different. In the first [2], solutions
#(z) of the supergravity theory satisfy a Dirichlet condition with boundary data ¢¢(Z) on
a sphere of radius R equal to the AdS length scale. In the second method [3], it is the
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infinite boundary of (Euclidean) AdS space which is relevant. Massless scalar and gauge
fields satisfy Dirichlet boundary conditions at infinity, but fields with AdS mass different
from zero scale near the boundary like ¢(z) — 2§ “¢o(Z) where z, is a coordinate in
the direction perpendicular to the boundary and A is the dimension of the corresponding
operator O(Z). This is explained in detail below. Our methods apply readily only to the

prescription of [3], although for 2-point functions we will be led to consider a prescription

similar to [2].

The purpose of the present chapter is to present a method to calculate multi—point cor-
relators and present specific applications to 3—point correlators of various scalar composite
operators and the flavor currents J? of the boundary gauge theory. Our calculations pro-
vide explicit formulas for AdS,,; integrals needed to evaluate generic supergravity 3—point
amplitudes involving gauge fields and scalar fields of arbitrary mass. Integrals are eval-
uated for AdSy,:, for general dimension, to facilitate future applications of our results.
The method uses conformal symmetry to simplify the integrand, so that the internal
(d + 1)-dimensional integral can be simply done. This technique, which uses a simul-
taneous inversion of external coordinates and external points, has been applied to many
two—loop Feynman integrals of flat four-dimensional theories [21, 22, 26]. The method
works well in four flat dimensions, although there are difficulties for gauge fields, which
arise because the invariant action F/fl, is inversion symmetric but the gauge—fixing term is
not [21]. It is a nice surprise that it works even better in AdS because the inversion is an
isometry, and not merely a conformal isometry as in flat space. Thus the method works

perfectly for massive fields and for gauge interactions in AdS,,; for any dimension d.

It is well-known that conformal symmetry severely restricts the tensor form of 2— and
3-point correlation functions and frequently determines these tensors uniquely up to a
constant multiple. (For a recent discussion, see [27]). This simplifies the study of the

3—point functions.

One of the issues we are concerned with are Ward identities that relate 3—point cor-

relators with one or more currents to 2—-point functions. It was a surprise to us this
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Figure 2-1: Witten diagrams.

requires a minor modification of the prescription of [3] for the computation of (OO7) for

gauge—invariant composite scalar operators.

It is also the case that some of the correlators we study obey superconformal non-
renormalization theorems, so that the coefficients of the conformal tensors are determined
by the free-field content of the A" = 4 theory and are not corrected by interactions. The
evaluation of n—point correlators, for n > 4, contains more information about large N
dynamics, and they are given by more difficult integrals in the supergravity construction.
We hope, but cannot promise, that our conformal techniques will be helpful here. The
integrals encountered also appear well-suited to Feynman parameter techniques, so tradi-
tional methods may also apply. In practice, the inversion method reduces the number of
denominators in an amplitude, and we do apply standard Feynman parameter techniques

to the “reduced amplitude” which appears after inversion of coordinates.

2.2 Scalar amplitudes

It is simplest to work [3] in the Euclidean continuation of AdS4;; which is the Y_; > 0
sheet of the hyperboloid:

—(Y2)? + (%) + 2 (V)" = -5 (2.2.1)



which has curvature R = —d(d + 1)a?. The change of coordinates:

_ Y;
a7 Yo+ YL
~ 1
0T (Y, + Y

brings the induced metric to the form of the Lobaschevsky upper half-space:
2 __ 1 d d 21 __ 1 d 2 4 21 _ 1 d 2 d-Q
ds® = oy >odzh ) = e 25 + i:z1d2i =22 ( 25 +dZ )

We henceforth set a = 1. One can verify that the inversion:

)
[ Z2

2
is an isometry of (2.2.3). Its Jacobian:

62’ !
B AV _ [t
821/ - (Z ) (61“/ 2 (Z’)2

Il
~
N\
N
(V]
=
A
—_
N\
SN’
Il
)
N’
(]
—
<
~
N
N—

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

has negative determinant showing that it is a discrete isometry which is not a proper

element of the SO(d + 1, 1) group of (2.2.1) and (2.2.3). Note that we define contractions

such as (2')? using the Euclidean metric d,,,, and we are usually indifferent to the question

of raised or lowered coordinate indices, i.e. z* = z,. When we need to contract indices

using the AdS metric we do so explicitly, e.g., g"/0,¢ 0, ¢, with g"* = 225,

The Jacobian tensor J,, obeys a number of identities that will be very useful below.

These include the pretty inversion property

J#,,(x —y) = Jup(xl)Jpa(x, - yl)Jou(y,)

14
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and the orthogonality relation

T (@) Jup(2) = 6y (2.2.7)
The (Euclidean) action of any massive scalar field
1 d v 212
Slgl = 5 [ d*zdz g [9 0,80, + m?¢?] (2.2.8)

is inversion invariant if ¢(z) transforms as a scalar, i.e. ¢(z) = ¢'(z) = ¢(2'). The wave

equation is:

1
N (/39" 8,¢) — m?¢ =0 (2.2.9)
a1 9 | eant Oy 422 (a0, 2) — m2e(z0,2) = 0 (2.2.10)
0 BZO 0 820 0, 082_'2 0, 0, /N

A generic solution which vanishes as zy — 0o behaves like ¢(2, 2) — 2§ “¢o(2) as 2o — 0,
where A = A, is the largest root of the indicial equation of (2.2.10), namely Ay =
1(d £ V/d + 4m?). Witten [3] has constructed a Green’s function solution which explicitly
realizes the relation between the field ¢(z, Z) in the bulk and the boundary configuration

¢o(Z). The normalized bulk-to-boundary Green’s function*, for A > &:

Kal(20, 2, %) = W%FP((AA)_ 5 ( S 4)2) (2.2.11)

is a solution of (2.2.10) with the necessary singular behavior as zp — 0, namely:

287U KA (29,2, %) = 1-8(Z — ) (2.2.12)

*The special case A = % corresponds to the lowest AdS mass allowed by unitarity, i.e. m? = —d;. In

d
this case ¢(z0,2) = —2§ Inzo ¢po(%) as zo — 0 and the Green’s function which gives this asymptotic be-
d
4 d
havior is K 4 (20,2, %) = 1;—(241 (;ﬁi—ﬁ) *. All the formulas in the text assume the generic normalization
T2 0
(2.2.11) valid for A > £, obvious modifications are needed for A = £.
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The solution of (2.2.10) is then related to the boundary data by:

He0,2) = gm0 P _g_ /dd (zo+é~° )2> o(2) (2.2.13)

Note that the choice of K5 that we have taken is invariant under translations in Z.
This choice corresponds to working with a metric on the boundary of the AdS space that
is flat R? with all curvature at infinity. Thus our correlation functions will be for CF T,
on R%. Correlation function for other boundary metrics can be obtained by multiplying

by the corresponding conformal factors.

It is vital to the CFTy/AdS4,1 correspondence, and to our method, that isometries in
AdSg,1 correspond to conformal isometries in CFT,. In particular the inversion isometry
of AdSg4y, is realized by the well-known conformal inversion in CFTy. A scalar field (a
scalar source from the point of view of the boundary theory) ¢,(Z) of scale dimension «
transforms under the inversion as z; — }/|7'|? as ¢o(Z) — &4(&) = |7'[*¢o(z’). The

2

construction (2.2.13) can be used to show that a bulk scalar of mass m? is related to

boundary data ¢o(Z) with scale dimension d — A. To see this one uses the equalities:

déz’
d —
d®z |a':"|2d
2 a 2! A
0 0 2A
A ) = ) iz 9.9.14
(z3+<z—x>2> ((za)2+<z'—x'>2> ] 2214)

and ¢}(Z) = |7 |42 ¢o("). We then find directly that:

w% _g /dd (Zo : 5)2>A¢6(f)=¢(%) (2.2.15)

Thus conformal inversion of boundary data with scale dimension d — A produces the
inversion isometry in AdS4+1. In the CFT;/AdSyy1 correspondence, ¢o(Z) is viewed as
the source for a scalar operator O(Z) of the CFTy. From [ d%zO(F)¢o(F) one sees that
O(&) — O'(&) = |2/|**O(a") so that O(Z) has scale dimension A.

16



Let us first review the computation of the 2—point correlator O(Z)O(y) for a CFTy
scalar operator of dimension A [3]. We assume that the kinetic term (2.2.8) of the cor-
responding field ¢ of AdSg,1 supergravity is multiplied by a constant 1 determined from

the parent 10-dimensional theory. We have, accounting for the 2 Wick contractions:

O@O) =21 [ 25 (0,Ka 0. 50,8 s (1) + m* K. 2K 70)
(2.2.16)
We integrate by parts; the bulk term vanishes by the free equation of motion for K, and
we get:
(O@)O0(y)) = +n hm/ddze1 “Ka(e, Z,T) L?i-KA(ZO’Z gj‘)] (2.2.17)
z0=¢

A +1] 1
" TArA - 4 F - gs

where (2.2.12) has been used. We warn readers that considerations of Ward identities will
suggest a modification of this result for A # d. One indication that the procedure above
is delicate is that the 8,K8,K and m?KK integrals in (2.2.16) are separately divergent

as € — 0.

We are now ready to apply conformal methods to simplify the integrals in AdSg41 which
give 3-point scalar correlators in CFT;. We consider 3 scalar fields ¢;(z), I = 1,2,3, in
the supergravity theory with masses m; and interaction vertices of the form £; = ¢1¢2¢3

and Lo = ¢19"0,¢20,¢3. The corresponding 3—-point amplitudes are:

Y o dwdw

A(Z,7,2) = —/ wd+1OKA1(w T)Kn,(w, §) Ka,(w, 2) (2.2.18)
L d?wdw,

A3, 5,7 = — / e Ko (0, 8) 0K oy (0, P, Koy (w,2) (2:2.19)

W
where K, (w, Z) is the Green function (2.2.11). These correlators are conformally covariant

17



and are of the form required by conformal symmetry:

2 = a;
Ai(%,9,2) = |7 — gAi+Ae-Bag — FAerha-Ai|7 — FlAatii—da

(2.2.20)

so the only issue is how to obtain the coefficients a;, a,.

The basic idea of our method is to use the inversion w, = %,,% as a change of variables.
In order to use the simple inversion property (2.2.14) of the propagator, we must also refer
boundary points to their inverses, e.g. x; = f,;; If this is done for a generic configuration
of Z, ¥, Z, there is nothing to be gained because the same integral is obtained in the w’
variable. However, if we use translation symmetry to place one boundary point at 0, say
Z = 0, it turns out that the denominator of the propagator attached to this point drops out

of the integral, essentially because the inverted point is at oo, and the integral simplifies.

Applied to A;(Z, ¥, 0), using (2.2.14), these steps immediately give:

d, ! /
; ; P(Ag) ) / o dwO KA1 (w,a"E,)KAz (’LU/, :’;I) (w(,])AB

T (@A PR rir(as — ) ) (wh)
(2.2.21)

The remaining integral has two denominators, and it is easily done by conventional Feyn-
man parameter methods. We will encounter similar integrals below so we record the
general form:

o ] za
d /w* L I
/0 “ ‘BrGE-DPE+ (E- 7)?]°

= I[a, b, ¢, d)|7 — g|'Tete=20-2¢  (2.2.22)

R\ R

2 NN

M+s+4- 0Nl +5+¢-d
Ml4+a+d—-b—]

I[a,b,c,d] = (2.2.23)

18



We thus find that A;(Z, 7,0) has the spatial dependence:

1 1

| |28 |§7]2A2 15’ _ y_'l|(A1+A2—A3) - |f|A1+A3—A2|:,j|A2+A3—A1 |7 — y"’|(A1+A2—A3) (2.2.24)

which agrees with (2.2.20) after the translation & — (Z — 2), ¥ — (¥ — Z). The coefficient

ay is then:

T[3(A + As — A)T[E (A + Az — ADIT[3(As + Ay — A2)]F
B 2miT[A, — ZT[A; — fT[As — ]

a; =

[%(Al +Ar+A3—d)]
(2.2.25)

We now turn to the integral As(Z, 7, 2) in (2.2.19). It is convenient to set 2= 0. Since
the structure 9, Kow30, K3 is an invariant contraction and the inversion of the bulk point

a is diffeomorphism, we have, using (2.2.14):

0, K> (w, Pwidu K ag(w,0) = [ 228, K a, (w', ) (w()* 8, K ag (w', 0) (2.2.26)
wl Az a
~ P = o) (wh)?® 9.2.27

:AzAslyﬂlmz(wg)(AwAa)[ 1_' ] _ 2(_@"’6)2_’ ]
(wh)2 + (@ = g)2)22  ((wh)? + (' — g)2)2e1

where the normalization constants are temporarily omitted. We then find two integrals of

(2.2.28)

the form I(a,b, c¢,d) with different parameters. The result is:

1
a9 = Q3 [AQA;; + ‘2— (d — Al — Az - Ag) (Ag + A3 - Al)] (2229)

As described by Witten [3], massive AdSs scalars are sources of various composite
gauge-invariant scalar operators of the N' = 4 SYM theory. The values of the 3-point
correlators of these operators can be obtained by combining our amplitudes A, (Z, ¥, Z) and

Ay(Z, 7, 7) weighted by appropriate couplings from the gauged supergravity Lagrangian.
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2.3 Flavor current correlators

2.3.1 Review of field theory results

We first review the conformal structure of the correlators (J7(z)J}(y)) and (J2(x)J? (y) JE(2))
and their non-renormalization theorems.! The situation is best understood in 4-dimensions,
so we mostly limit our discussion to this physically relevant case. The needed information
probably appears in many places, but we shall use the reference best known to us [29].
Conserved currents J?(z) have dimension d — 1, and transform under the inversion as
J&(z) = (2"%)@V J(a )J$(x"). The two-point function must take the inversion covariant,

gauge—invariant form

(Ji(@)Tj(y) = Bs&* 2(d "(2171(;5 —2) (;_’_(z );(f_)l) (2.3.30)
ab 1

where B is a positive constant, the central charge of the J(z)J(y) OPE.

In 4 dimensions the 3—point function has normal and abnormal parity parts which we
denote by (J#(z)J?(y)Ji(2))+. It is an old result [28] that the normal parity part is a

superposition of two possible conformal tensors (extensively studied in [29]), namely
(T2 (2) T () J5(2)+ = f (kLD (2, 2) + k2 C3" (2,9, 2)), (2.3.31)

where D" (x,y, 2) and C33;" (2, y, z) are permutation—odd tensor functions, obtained from

the specific tensors

y _ 1 09 2 0 (z—2)%)
Dije(z,y,2) = == 9% = @ = 2) o, 53; log (z — y) 9or log ((y e .3.32)

'In this subsection, z, y, z always indicate d—dimensional vectors in flat d-dimensional Euclidean
space—time.

20



1 98, .00 2 0, (=2
Cije(z,y,2) = @ = 7)19z 97 log (z — 2) By, 07 log (y — 2) oo log ((y_z)z

by adding cyclic permutations

DY (x,y, 2) = Dij(2, Y, 2) + Djri(y, 2, 2) + Dyij(z, 2, y) (2.3.33)

sym

ijk (.’L‘, Y, Z) = Cijk(x7 Y, Z) + Cjki(y7 Z, IL') + Ckij(zjx7y)'

Both symmetrized tensors are conserved for separated points (but the individual permu-
tations are not); %Dfﬁn (z,y, z) has the local §*(z — z) and &*(y — ) terms expected from
the standard Ward identity relating 2- and 3-point correlators, while %Cfﬂn (z,y,2) =0
even locally. Thus the Ward identity implies k; = £, while k; is an independent con-
stant. The symmetrized tensors are characterized by relatively simple forms in the limit

that one coordinate, say y, tends to infinity:

n -4 TiT;T

s;lk (IB, Y, 0) y—»_og JGTBZJ] (y) {5ikxl — 6il$k — (5kl17i —92 x; l} (2334)
m 8 T;T;T

e (2,y,0) oo WJJ (y) {5ik$l — azk — Opwi +4 x; l}

In a superconformal-invariant theory with a fixed line parametrized by the gauge cou-
pling, such as A" = 4 SYM theory, the constant B is exactly determined by the free field
content of the theory, i.e. 1-loop graphs. This is the non-renormalization theorem for
flavor central charges proved in [25]. The argument is quite simple. The fixed point value
of the central charge is equal to the external trace anomaly of the theory with source
for the currents [23, 22]. Global N’ = 1 supersymmetry relates the trace anomaly to the
R-current anomaly, specifically to the U(1)gF? (F is for flavor) which is one-loop exact in
a conformal theory. Its value depends on the r—charges and the flavour quantum numbers
of the fermions of the theory, and it is independent of the couplings. For an A’ =1 theory
with chiral superfields ®* with (anomaly—free) r—charges r; in irreducible representations

R; of the gauge group, the fixed point value of the central charge was given in (2.28) of [24]
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as

B§*® =3 Z(dimRi)(l — 7)) Try(T°T). (2.3.35)

For N' = 4 SYM we can restrict to the SU(3) subgroup of the full SU(4) flavour group
that is manifest in an A = 1 description. There is a triplet of SU(N) adjoint ®* with
= 2. We thus obtain

B =3(N?-1) = -;—(NQ —-1). (2.3.36)

oolr—t
l\.')ln-—l

We might now look forward to the AdSs calculation with the expectation that the value
found for k; will be determined by the non-renormalization theorem, but k; will depend
on the large N dynamics and differ from the free field value. Actual results will force us
to revise this intuition. We now discuss the 1-loop contributions in the field theory and

obtain the values of k; and &, for later comparison with AdSs.

Spinor and scalar 1-loop graphs were expressed as linear combinations of D™ and
C®™ in [29]. For a single SU(3) triplet of left handed fermions and a single triplet of

complex bosons one finds

4 fabc
3 (472)3

fabc
3 (4n2)?

(i (@) T () T () £ = 2 755 (D (2,9, 2) — le,-yé“(w,y,Z)) (2.3.37)

(@) 5 () e = % o3 (D (2, 2) + Csjy;?’ (z,y, 2))

ijk )
The sum of these, multiplied by N? — 1 is the total 1-loop result in the A" = 4 theory:

( 2 _ 1)fabc

T TN = Sy

(D (z,y,2) — Cf]y;? (z,y,2)). (2.3.38)

We observe the agreement with the value of B in (2.3.36) and the fact that the free field

ratio of C%™ and D%™ tensors is —%.

Since the SU(4) flavor symmetry is chiral, the 3—point current correlator also has
an abnormal parity part (J;’J]’?J,ﬁ)_. It is well-known that there is a unique conformal

tensor-amplitude [28] in this section, which is a constant multiple of the fermion triangle
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amplitude, namely

N2 =1 e T 0570 = H)7i(4— Ame(£= £)]
327 (z —y)ty — 2)*(z — z)*

(T3 ()3 (y) TR (2)) - = — (2.3.39)

where the SU(N) f and d symbols are defined by Tr(T°T°T*) = ;(if** + d**) with T°
hermitian generators normalized as TrT*T® = %5“”. The coefficient is again “protected” by
a non-renormalization theorem, namely the Adler-Bardeen theorem (which is independent
of SUSY and conformal symmetry). After bose-symmetric regularization [26] of the short

distance singularity, one finds the anomaly

2 —_ ..
—]Y—lz'd“bce”lm—?—id(x —2)0(y — 2) (2.3.40)

0 a b c —_
9z T @L W)=~ 071 OYym

If we minimally couple the currents J#(z) to background sources A¢(z) by adding to the

action a term [ d*zJ?(x)A%(x), this information can be presented as the operator equation:

(Dui(2)* = %Jﬂz) T fee A (2)JE(2) =

N2 -1
9672

1
id“bcejklmaj(A,’ZBlAfn + ZdeeAzA;iAfn)

(2.3.41)

where the cubic term in A? is determined by the Wess-Zumino consistency conditions (see

e.g. [30)).

The CFT4/AdSs5 correspondence can also be used to calculate the large N limit of corre-
lators (J2(z)O! (y)O7(2)) and (J2(x)J?(y)O'(z)) where O is a gauge-invariant composite
scalar operator of the A/ = 4 SYM theory. For example, one can take O' to be a k—th
rank traceless symmetric tensor Tr X - - - X* (the explicit subtraction of traces is not
indicated) formed from the real scalars X*, a =1, ...,6, in the 6-dimensional representa-
tion of SU(4) = SO(6), and there are other possibilities in the operator map discussed
by Witten [3]. We will compute the corresponding supergravity amplitudes in the next

section, and we record here the tensor form required by conformal symmetry.

23



For (J2O!O7) there is a unique conformal tensor for every dimension d given by

()0 )0 ) =€ S (2,,) (2342
— (] o\ T 1 1 (r—2)i  (y—2)
=-¢£d-2)T (z — y)2A—d¥2 (g — z)d-2(y — 5)d-2 [(z —22  (y— Z)z] (2.3.43)

a
where £ is a constant and T?7 are the Lie algebra generators. This correlator satisfies a

Ward identity which relates it to the 2-point function (O (z)07(y)). Specifically:

[NICH

0
62,‘

(d—2)2n 1
I(3] (z —y)2a

= 6 — 2) T (OK (2)0 () + %y — 2) T'% (O (2)OX (3))

13 .S('ll-” (z,z,y) = €& 72” ((5d(a: —2) = 8%y — z)) (2.3.44)

There is also a unique tensor form for (J;J;0) (we suppress group theory labels) which

is given in [22]:

(6 - A)J,(a: — y) — AJ,]C(IL‘ — z)ka(z — y)
(z—y)* 2z —2)2(y —2)

(Ji(2)J;(y)O(2)) = CRij(z,y,2) = ¢ (2.3.45)

where ( is a constant.

2.3.2 Calculations in AdS supergravity

The boundary values A} (Z) of the gauge potentials A%(z) of gauged supergravity are the
sources for the conserved flavor currents J#(Z) of the boundary SCFT,. It is sufficient
for our purposes to ignore non-renormalizable qﬁ"Fi,, interactions and represent the gauge
sector of the supergravity by the Yang-Mills and Chern-Simons terms (the latter for
d+1=25)

Fae Fuva ik
SCZ[A] = /dddeO [\/5 l::g?ga + 9;71_2 (dabceuuApaAzauAgapAg 4. )] (2.3.46)
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The coefficient where k is an integer, is the correct normalization factor for the 5-

96 9672
dimensional Chern—Simons term ensuring that under a large gauge transformation the
action changes by an unobservable phase 27in (see e.g. [30]). The couplings gs¢ and k
could in principle be determined from dimensional reduction of the parent 10 dimensional
theory, but we shall ignore this here. Instead, they will be fixed in terms of current

correlators of the boundary theory which are exactly known because they satisfy non-

renormalization theorems.

To obtain flavor—current correlators in the boundary CFT from AdS supergravity, we
need a Green’s function G;(z, Z) to construct the gauge potential Af,(z) in the bulk from
its boundary values A%(Z). We will work in d dimensions. There is the gauge freedom to
redefine Gi(2, %) — Gui(2,%) + %Ai(z, %) which leaves boundary amplitudes obtained
from the action (2.3.46) invariant. Our method requires a conformal—covariant propagator,

namely

zg"z

[2 11,‘2]‘11

- ( ) ( :;2) (2.3.48)

which satisfies the gauge field equations of motion in the bulk variable z. The normalization

Gm-(z, .f) = Cd

Jui(z — ) (2.3.47)

constant C¢ is determined by requiring that as zo — 0, Gj;(2,Z) — 1 6;i6(Z):

I'(d)

Cl= i
25T (2)

(2.3.49)

This Green’s function does not satisfy boundary transversality (i.e. 3G (2, %) = 0), but
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the following gauge-related propagator does*:

_ . . 0
Gui(z,%) = Gui(z,2) + 0z, {(d* 2)(d — 1)(F[%l])23—z;

d_2—d o > _ A2
% Fd—l,g—l,é'—(z—ﬂ]}

(Both G,i(z,%) and G,i(z,%) differ by gauge terms from the Green’s function used by
Witten [3]). The gauge equivalence of inversion—covariant and transverse propagators

ensures that the method produces boundary current correlators which are conserved.

Notice that in terms of the conformal tensors J,,; the abelian field strength made from

the Green’s function takes a remarkably simple form:

d-3

—' Z — —
8[pGu]i(za JI) = (d - 2)Cd [Zg n (2"0_ j‘)2]d——l Jo[u(z - .’L‘)JV],(Z — .'II) (2351)

as easily checked by using for G,; the representation (2.3.48).

We stress again that the inversion z, = z},/(2)? is a coordinate transformation which
is an isometry of AdS44;. It acts as a diffeomorphism on the internal indices y, v, ... of
GLi, Guj, . ... Since these indices are covariantly contracted at an internal point z, much
of the algebra required to change integration variables can be avoided. The inversion
# = ' /(2")? of boundary points is a conformal isometry which acts on the external index i
and also changes the Green’s function by a conformal factor. Thus the change of variables

amounts to the replacement:

(82Tl = )
()7 + (7 = @)7Jo-t

Gui(z,3) = 220, (2) - (@)2Ju(@) - (7/) 242 ¢ (2.3.52)

— gjz’/ . gz;c . (B)Q(d—Q)G,,k(ZI,Il?/)
i 7
0z, Ox;} -
T 8z éx_k - Gu(2,7)
i )

For even d, the hypergeometric function in (2.3.50) is actually a rational function. For instance for
—A4 O N (Y 8_Jfct o (2:3+(7-%)7
d= 4, Gui(z,fl’ = Gm(z,z) + Bz, {EE ([—zg%(%i-%ﬁg)} .
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81,G.ji(z, &) will also transform conformal-covariantly under inversion (compare equ.(2.3.52)):
0l ) = () p(2) - (o) - @ Ta(@) - ()40, G, ) (23.53)

as one can directly check from (2.3.51) using the identity (2.2.6).

(J2J®): To obtain the current-current correlator we follow the same procedure [3] as

for the scalar 2—point function, eq.(2.2.16-2.2.17):

s Thy . 1 d?zdz, . .
(F@@) = —o6*2- Ioka / e 0uGoi(2, ©) 25 0uG i (2, 9)
ab
—_ d,_, _3—d ) e
= +29$G lim [ d%e 2G,i(e, 2, %) [8[0G,,]J(z0,z, y)]zo:e
d (7
_ ¢ (‘é 2) ;]”(“"ﬁ? dml (2.3.54)
9sa |Z — g]2d-1)

which is of the form (2.3.30) with B = T%ﬂ According to the conjecture [1, 2, 3],
(2.3.54) represents the large—N value of the 2-point function for g%, N fixed but large. Let
us now consider the case d = 4. By the non-renormalization theorem proven in [25], the
coefficient in (2.3.30) is protected against quantum corrections. Hence, at leading order in
N, the strong—coupling result (2.3.54) has to match the 1-loop computation (2.3.36). We
thus learn:

4
giel=s = -]g (2.3.55)

(J230J5)4+: The vertex relevant to the computation of the normal parity part of <

J&(Z)J2 () JE(2) > comes from the Yang-Mills term of the action (2.3.46), namely

1 dwdwg . abe . .
2 f o 1 O A (w) wi AL (w) Af (w) (2.3.56)
2gSG Wy
We then have
a/=\ 7b(=\ 10/ ifabc Sym / =
(@G = —55- 2 Fi (3,4,7) (2.3.57)
gsc
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abe
= f 2 [E] (fa 377 _’) + E)kl(y, -T) + sz] Za z 37)]
2936

where

.. d%wduwg 4
-Fijk (IL’, Y, 5') = / _—wdT a[ﬂGu]i(w7 .’II) Wy Gﬂj (’UJ, mGuk(w’ Z) (2358)
0

(The extra factor of 2 in (2.3.57) correctly accounts for the 3! Wick contractions). To

apply the method of inversion, it is convenient to set Z = 0. Then, changing integration

!

variable w,, = (%’,i‘)—g and inverting the external points, y; = %, 2; = —i-, we achieve the

e e
simplification (using (2.3.52),(2.3.53),(2.2.7)):

Fix(0,9,2) =
= DI 1y ) o)

[ %a Gy, 0) (wh) Gout(w, )G, 7) (2.3.50)

Ji(¥)  Jem(Z d%w 'dwo d—207 [ I\ {174
|7]2(d=1) |5|2(d—1)/ )d+1 I,u wp) 8u](wi) (wp)

(wp)* (w o)d §
(w/ —y )2(d 2) (w/ — )2(d 2

_ d\3 ‘]Jl(y) ka(z d 17 1 (d 2)( l)2d_4‘]l w,—{)']z]m(w)
(O s e | T g g + (97

= (C%)°

T (w0, 57) Jum (', )] (2.3.60)

where in the last step we have defined ¥ = ¢ — 2/. Observe that in going from (2.3.58) to
(2.3.59) we just had to replace the original variables with primed ones and pick conformal
Jacobians for the external (Latin) indices: the internal Jacobians nicely collapsed with
each other (recall the contraction rule (2.2.7) for J,; tensors) and with the factors of w’
coming from the inverse metric. The integrals in (2.3.60) now have two denominators and
through straightforward manipulations can be rewritten as derivatives with respect to the

external coordinate # of standard integrals of the form (2.2.23). We thus obtain:

d
2
d+l

o Jn( = %) Jem(E=3F) ays eg2300 (d=2) T
F’i, _ J d\3 3-2d
]k(x7y72’7) ly _ $|2(d 1) IZ — .’L’|2(d 1) (C ) 72 d—1 [ [

I
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t ititm

H TP

where we have restored the # dependence, so that now ¢ = (¢ — #)' — (Z — 7). We now

p Oimti + (d 1)5iltm + (d — 1)6imtl (2.3.61)

add permutations to obtain Fj;" (Z,7, Z) in (2.3.57). The final step is to express F;};" as a
linear combination of the conformal tensors D3}y and C77" of Section 3.1. It is simplest,
and by conformal invariance not less general, to work in the special configuration 2 = 0

and |§] — oo. After careful algebra we obtain

m ) a2 d—2 r g
FI™@, |7 = 00,0) = —(C)°n+ 227%(2d — 3)( 1) dM - (2.3.62)
[r (4]
) S
lmz(d l)l—»ld {ézkl‘l 61.lxk 6klxl 2d _ 3 :1:2 }
Now take d = 4; comparison with (2.3.34) gives
Fsym = = 1 Sym = = 1 Symy¢ - —
ijk (IE,y, Z) o Dz]k (Ia 75') - gcijk (III, ,2‘) (2363)
and finally, from (2.3.57) and (2.3.55):
a fabc S m S my— —
F@BDEE = gz (PHGEG2) - O EG2) 360
N2 fabc pivm Com e o
= _Z)’F( z]yk ( _‘) zjyk (1:7:% 2))

which, at leading order in NNV, precisely agrees with the 1-loop result (2.3.38).

The correlator (2.3.64) calculated from AdSs supergravity is supposed to reflect the
strong—coupling dynamics of the N' = 4 SYM theory at large N. The exact agreement
found with the free—field result therefore requires some comment. As discussed in Section
3.1, the coefficient of the D tensor is fixed by the Ward identity that relates it to the
constant B in the 2—point function, and we matched the latter to the 1-loop result by a

non-renormalization theorem. So agreement here is just a check that we have done the
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integral correctly. However, the fact that the ratio of the C' and D tensors coefficients
also agrees with the free field value was initially a surprise. Upon further thought, we see
that our argument that the value of k, was a free parameter used only N' = 0 conformal
symmetry, and superconformal symmetry may impose some constraint. Indeed, in an
N = 1 description of the N' = 4 SYM theory, we have the flavor SU(3) triplet ® of (SU(N)
adjoint) chiral superfields, together with their adjoints ®. The SU(3) flavor currents are
the 09 components of composite scalar superfields K “(Z,0,0) = Tr ®T°®, where T is a
fundamental SU(3) matrix. Just as N' = 0 conformal invariance constrains the tensor
form of 2— and 3-point correlators, N/ = 1 superconformal symmetry will constrain the
superfield correlators (K®K®) and (K®K®K®). We are not aware of a specific analysis,
but it seems likely [31] that there are only two possible superconformal amplitudes for
(K®K°K*®), one proportional to f%¢ and the other to d®*°. The f%¢ amplitude contains
the normal parity (J?J2Jg) in its 6—expansion, and this would imply that the ratio —3

of the coefficients of the C' and D tensors must hold in any N/ = 1 superconformal theory.

(J2IPJ5) - Witten [3] has sketched an elegant argument that allows to read the value of
the abnormal parity part of the 3—current correlator directly from the supergravity action
(2.3.46), with no integral to compute. Under an infinitesimal gauge transformation of the
bulk gauge potentials, 6, A}, = (D,A)*, the variation of the the action is purely a boundary

term coming from the Chern-Simons 5—form:

Oa Sa = / d*z A%(2) ( 92’“2) deT, (ALDLAS + deeA”AdAe) (2.3.65)

By the conjecture [1, 2, 3], Su[A}(2)] = W[A}(2)], the generating functional for current

correlators in the boundary theory. Since by construction J&(Z) = %%, one has:

0a SalAS(2)] = 6a W[AL(Z)] = / d*z[D;A(2)]°J2(Z) / d*2A(2)[D; Ji(%)]*  (2.3.66)
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and comparison with (2.3.65) gives

(D;Ji(2))* = 96k2dabc ikimg (AL A, + = fcdeAbAdAe) (2.3.67)

which has precisely the structure (2.3.41). Thus the CFT,/AdSs correspondence gives a
very concrete physical realization of the well-known mathematical relation between the
gauge anomaly in d dimensions and the gauge variation of a (d + 1)-dimensional Chern—
Simons form. Witten [3] has argued that (2.3.67) is an exact statement even at finite
N (string-loop effects) and for finite 't Hooft coupling g3 ,,N (string corrections to the
classical supergravity action), which is of course what one expects from the Adler-Bardeen
theorem. Matching (2.3.67) with the 1-loop result (2.3.41) we are thus led to identify
k=N?%-1.

J2JP0): The next 3—point correlator to be discussed is (J¢(Z)J}(7)O'(2)). For this
3 J

purpose we suppress group indices and consider a supergravity interaction of the form
i- / dhwdw /G §" 9" ¢ Oy A (2.3.68)
This leads to the boundary amplitude
2/ dd"‘;ﬁf’f’“ (w, 2)3, Gy (w, F) w25, Gon(w, §) (2.3.69)

We set 7 = 0, apply the method of inversion and obtain the integral

[[A]  (d—-2)Ju(7)
W%F[A _ %] | 7124 | 7]2(d-1)

./ddw'dw’( % )A a ( - )H 0 Wt
0 (wl _ ZI)Z 8wfo (wl _ Z’)2 aw;] (w/ _ .’13/)2

This can be evaluated as a fairly standard Feynman integral with two denominators. The

T;;(%,0,2) = (C%? (2.3.70)
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result is

A ra 4 oo
[ ] d Rij(:l),’y,g) (2371)

CTi' .’a _'72 = -
]( Yy _7 87r27T%F[A——

where R;; is the conformal tensor (2.3.42).

(J2O'O%): 1t is useful to study the correlator (J&(2)O!(£)O’ (7)) from the AdS view-
point because the Ward identity (2.3.44) which relates it to (O(%)707(Z)) is a further
check on the CFT/AdS conjeéture. We assume that Of(%) is a scalar composite operator,
in a real representation of the SO(6) flavor group with generators 1("1’ 7 which are imaginary
antisymmetric matrices, and that O'(Z) corresponds to a real scalar field ¢'(Z) in AdS;
supergravity. Actually we will present an AdSy4; calculation based on a gauge-invariant

extension of (2.2.8), namely

Sle', 4% = % / d'2dz0\/g 9" Dug' Do + m?' ¢’ (2.3.72)

D,¢' = 8,6' —iAZTY ¢’

The cubic vertex then leads to the AdS integral representation of the gauge theory corre-

lator
a Iinmd (7 oy d“wdwo 2 — 3 .
(JH(Z)O ()0(9)) =T /—dH‘Gui(waawoKA(wax)_KA(wyy) (2.3.73)
Wy ow,

The integral is easily done by setting Z = 0 and applying inversion. We have also shown

that 4 = 0 followed by inversion gives the same final result, which is

20t T 9

dw' dw}
a Ii-nmJ (7 — i 0
(OO = gy [ Ko

o Ko, @) Kaw'y) (2374)

= _5 §IJ ( fa y)
(A — HT[FITA]
mé(d — 2)T[A — 4]

where S/ (Z,&,7) is the conformal amplitude of (2.3.42). Comparing with (2.3.44) and
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(2.2.17), we see that the expected Ward identity is not satisfied; there is a mismatch by

2A~d
a factor ==

. Although we have checked the integral thoroughly, this is an important
point, so we now give a heuristic argument that the answer is correct. We compute the

divergence of the correlator (2.3.73) using the following identity inside the integral:

0 0
BZG“i(w’Z) = —a—% Kd(w,z") (2375)

where K (w, Z) is the Green’s function of a massless scalar, i.e. A = d. If we integrate by

parts, the bulk term vanishes and we find

<«

2 (120" @07 @) = iy [ dwe=4Ke, ) [KA(w,f)a% KA(w,g)]

wo=¢€

(2.3.76)
2
_ I'[A] . d 4 wgt 1 T 7
i (w%m - %1) 25ty [ 0t~ | s g 09
(2.3.77)

where we used the property limy,_,o Kg = §(@ — 2) (see (2.2.12)). It also follows from
(2.2.11-2.2.12) that

wat—d+2 miT[A — 4 4+ 1]
l . = 27 64w — 2.3,
This gives
(d - 2)2rt

a% (S (D)0 (B0 () = ¢ T (542 - 2) - 6°( — 7)) (2.3.79)

r[g] |7 — >4

which is consistent with (2.3.74) and confirms the previously found mismatch between

(JEO'O’) and (O'O7).

Thus the observed phenomenon is that the Ward identity relating the correlators
(JeOTO7) and (O'O7), as calculated from AdSgy1 supergravity, is satisfied for opera-

tors OF of scale dimension A = d, for which the corresponding AdSy,; scalar is massless,
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but fails for A # d.

We suggest the following interpretation of the problem, namely that the prescription
of [3] is correct for n—point correlators in the boundary CFTy for n > 3, but 2-point
correlators are more singular, so a more careful procedure is required. The fact that the
kinetic and mass term integrals in (2.2.16) are each divergent has already been noted. In
the Appendix we outline an alternate calculation of 2—point functions, very similar to that
of [2], in which we Fourier transform in & and write a solution ¢(zg, k) of the massive
scalar field equation which satisfies a Dirichlet boundary—value problem at a small finite
value z, = ¢, compute the 2—point correlator at this value and then scale to € = 0. This
procedure gives a value of (O'O’) which is exactly a factor 222 times that of (2.2.17)

and thus agrees with the Ward identity.
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Chapter 3

Evidence of logarithms in the
short—distance expansions of 4—point

functions.

3.1 Introduction

Several interesting physical issues arise when we move to the study of 4-point functions. We
will focus on the limit N — 0o, gyar — 0, g2, N — oo mentioned above. In the CFT the
scaling dimensions of the chiral primary operators (and their superconformal descendents)
are protected, while the dimensions of fields corresponding to massive string states are
infinite in this limit. Does there exist a ‘complete’ set of fields and an operator product
expansion (OPE) structure that allows us to obtain 4-point functions much the same as in
the case of 2-D CFT? If so, do the chiral primaries and their descendents form the complete
set, or do we need other fields in the CFT? Is there a connection between supergravity
fields propagating in the internal leg of a supergravity graph, and the contribution of a
specific chiral primary (plus descendents) in the OPE expansion of the corresponding CFT
correlator? Preliminary results on these questions were presented in [88] and [89).

To address such issues we study in this chapter some simple supergravity graphs cor-
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responding to 4-point functions in the CFT. We consider the dilaton (¢) and axion (C)
sector. (This sector has also been studied in [89], and, while we use similar methods, we

arrive at somewhat different conclusions).

3.2 4-point functions in the dilaton-axion sector

The relevant part of the AdSs x S5 supergravity action is

_ L 5 _ l 2 12(}5 2
S = /Adssd:z\/ﬁ[ R+ 5(96)? + 5¢*(90)?)

2K2

= 32 /Ads5 dz\/g[-R + %(3@2 + %(6’0)2 +ag(9C)* +b¢*(0C)* + .. )(3.2.1)

2K2

where @ = 1,0 = 1. We use coordinates where the (Euclidean) AdS space appears as the

upper half space (z; > 0) with metric:

d
ds? = ;lg[dzg + Z dz;dz;] (3.2.2)

1=1

The AdS space has dimension d + 1; thus in our present case d = 4.

First consider the CFT correlator (Oy(21)Oc¢(22)O4(23)Oc(z4)). In the AdS calcula-
tion we encounter the supergravity graphs shown in Figure 1. The s-channel amplitude
is

§= _(40’2)1530:150(3:17 T2, T3, T4) (3.2.3)

I:SC(pC(xla Zo, T3, x4) =

dzdw ,
/??zowOK(z,xl)BZ#K(z,xg)azuawyG(z,w)K(w,x3)8wyK(w,x4I3.2.4)
0 Wo
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Figure 3-1: Supergravity graphs contributing to (Oy(21)Oc(x2)Og(23)Oc(x4))-
where* R
I'(A) 20
K = 3.2.
alz,z) ,n.d/21‘\[A —d/2| (Zg + (7 - 3—5)2) (3.2.5)

is the normalized boundary to bulk propagator for scalar fields in supergravity correspond-
ing to primary operators in the CFT of scaling dimension A {3, 77]. We have d = 4 and
note that for both ¢ and C' we have A = 4. For this case we will simply write K without
subscript. G(z,w) is the bulk to bulk propagator in the AdSs space for massless scalar
fields, satisfying T

N,G(z,w) = §(z,w) (3.2.6)

We will not need the explicit form of G(z, w).

*We assume A > d/2. The case A = d/2 saturates the unitarity bound and requires a special
normalisation[77].

tIn [89] the notation is instead A,G(z,w) = —d(z, w).

37



The quartic graph is
q = ~(4b) I po (@1, T2, T3, T4) (3.2.7)

Iicsc (1, T2, 23, 4) =
5
/dzs 2K (2,21)0,, K (z,22) K (2, %3)0,, K (2, 74) (3.2.8)
0

The combinatoric factors in (3.2.3), (3.2.7) can be obtained either from Feynman per-
turbation theory of supergravity or directly from the fourth variation of the supergravity

action (3.2.1) with respect to boundary values of the fields.

In [89] a nice manipulation was given which relates I° to a 4-point contact graph:

5. 15
/d—sziug]zgwol((z 11)0,, K(2,%2)0,,0u,G (2, w)K (w, 23) 0y, K (w, T4)
d°z d®w
—/ zowoa K(z,zl)K(z,wQ)azyaw,,G(z,w)K(w,xg)Bqu(w,u)
dSZ d5
= 5 [ 2 B30, (K (2 ) K (2,2)]0,, 00, G2, w) K (1, 33)00, K (w0, )
5 5
-2 / d Zd T RE (2, 21) K (2, 22)5(2, ), K (1, 35) 0, K (1, 74)

5
= 5/(i—SZgK(Z,J;'l)K(Z,xz)anK(z,xg)az,}K(z,x‘l) (3_2.9)
0

where we have integrated by parts (noting that surface terms vanish), used the fact that

A,K(z,z) =0, and used (3.2.6). Thus we see that

1
Tocec(@1, 02,23, 34) = 51g400(1, 22, 23, 24) (3.2.10)
u 1 q
I3coc(@1, 32,3, 4) = §Ic¢¢c(~'171,172,$3,334) (3.2.11)

Note that the RHS of (3.2.10) or (3.2.11) is not the same as the quartic graph in Figure

1(q) since the derivatives act on different variables.
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Figure 3-2: Supergravity graphs contributing to (Oc(z1)Oc(22)Oc(23)Oc(z4)).

It is easy to see by using integration by parts that
I3 scc(T1, T2, T3, T4) = Loy (T1, T2, T3, Ta) (3.2.12)

I3 scc (@1, T2, T3, T4) + Licho(T1, T2, T3, Ta) + Lggo (21, T2, T3, T4) =0 (3.2.13)

Thus we find that the contributions to (Og(z1)Oc¢(z2)O04(x3)Oc(z4)) from the s, u and

quartic graphs add up to

1 1
—_40125-[;4)00(1;13 T2, T3, 1'4) - 4a2§Ig'¢¢c(331y T2,23, .’L'4) - 4bI<ZC¢C(:L‘17 T2,T3, .’L'4)
= (—4b + 2a*) I} 40 (21, T2, T3, T4) (3.2.14)

Putting @ = 1,b = 1 we see that the coeflicient on the RHS is not zero. In the next
section we show that the function Ijc,o(1, T2, T3, T4) is nonzero by computing its leading

singularities.

The 4-point function of the primary operator corresponding to the axion field
(Oc(x1)Oc(22)Oc(23)Oc(z4)) is given by the AdS graphs in Figure 2. Using (3.2.13) we
see that the sum of the three dilaton exchange graphs sums to zero, though each of these

graphs will not separately vanish.
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3.3 Singularities in 4-point graphs

We have seen that the s and u graphs of Figure 1 reduce to the form of an I¢ integral.
In the function I§,cc (21,22, 23, 74) there are two independent short distance limits to be
considered:

(a) z12 = |z1 — 2| — 0.

(b) 213 = |z1 — 3] — 0.

(From (3.2.12) we see that z34 — 0 is similar to 2,5 — 0 etc.).

We first observe the identity

dd+lz
/ ZgngKAl(z, 1) K (2,22) 8,02, K (2, 3) 0,05, K (2, 74) a, (3.3.15)

= A3A4Ja,,Ap,05,04(T1, T2, T3, T4)

d d
—2(A3 - 5)(A4 - §)I§4JA1,A2,A3+1,A4+1(xlv372’ T3, T4)

where

dd'Hz
JAL,80,05,00(T1, T2, T3,%4) = /;—d—JrTKAI(z,xl)K(z, %2)n, K (2, 23) n, K (2,74)a, (3.3.16)
0

This identity can be derived by methods similar to those in [77] (translating 3 to the origin,
performing an inversion z, = (—3"‘)—2, T; = (5/%7’ evaluating the derivatives and inverting back).

This manipulation reduces the calculation of an integral of the type I? to computing
the quartic graph with no derivatives on any of the legs. A special case of this latter
calculation (with all A; = A) was given in [76]; we make a straightforward extension of

their calculation to the case with arbitrary A;:

JAr,A0,05,04 (%1, T2, T3, 4) =
1 T[= ¢+ S0P A + ST Ay + 222 D[AGT[A]
3d/2 AY

2m F[LQ'—] ILT[A; — g

©dBy 5 o 2 \-A 2 VA=Y, i T3 o As
/ (Baz3y + x74) "4 (Ba7y) i 2 2
0 (B2

B2 x34 + z34)
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A;

Ay
o F1[—Ay +Z?,A3,27,1— al (3.3.17)
where
B2712T34

and oF} is the hypergeometric function. For the estimates below it is helpful to use the

integral representation:
JFi[o By 7] = / LB1(1 — py1A1(1 — t2)edt (3.3.19)
T B[ﬁa’)’_ :8] 0

where Bla, (] is the Beta function.

From (3.3.17) and (3.3.19) we find that as 12 — 0:

64 4 1 T13T14
q
I¢¢cc($1a Tg, T3, Ts) — Fﬁx%xi =2 (3.3.20)
As z13 — 0:
64 2 1 T12T14
r[g¢cc($17$2,$3,x4) — —Fﬁx%xﬁ $%3 (3.3.21) «

Note that the strengths of the singularities in (3.3.20) and (3.3.21) are such that they
respect the identity (3.2.13).

In [89] it was argued that each of the s,u and quartic graphs given in Figure 1 vanishes
separately, while we have reached a somewhat different conclusion.? We have not evaluated
the graviton exchange graph, which was speculated to vanish in [89], but we discuss in the

next section our expectations for its contribution.

tThe resubmitted version (v4) of [89] appears to agree with our conclusions.
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3.4 Discussion

We know that the N’ = 4 SYM theory is exactly conformal. Consider a 4-point function
(O1(21)O2(x2)O3(23)O4(z4)) in the limit z; — x5, T3 — x4. We might try to expand?

anOn T mOm Z3
O1(z1)Os(z2) = zﬂ: o x2)A(1+A)2—An , O3(23)O04(x4) = ; @ _ﬁ$4)A§+A1_Am
(3.4.22)
and get
(O Oa(r)0x(w3)Oulaa)) = 3 7o SOOI (5439

In a non-conformal theory, where a mass scale m would be available, we could also have,
for instance, Oa,(21)Oa,(z2) ~ log(m|z; — z3|)Oa,4a,(71), but in a conformal theory
such a term should not arise. Thus if the sums in (3.4.23) are to converge, we expect that
the limit z;o — 0 in the correlator would have no term in log(z3). Individual graphs
from supergravity, however, are generically expected to have such logarithmic singularities
and (3.3.20),(3.3.21) are examples of this fact. Thus either the logs all cancel when the
supergravity graphs are summed, or a naive OPE summation of the form (3.4.23) is invalid.

We now proceed to discuss our results for 4-point functions in the dilaton-axion sector
in the light of the questions of cancellation of logs and expectations for power singularities.
For the correlator (O40cO040¢) we found in (14) that the sum of s,u and quartic graphs
is proportional to the contact amplitude and contains logarithmic singularities. We have
not evaluated the t-channel graviton exchange graph, which is quite difficult, but which
could contain logarithms that cancel those in the sum s+u+quartic. Note that if such a
cancellation occurs for the AdS5 x S5 supergravity theory then it would certainly fail to
occur for an arbitrary choice of couplings between the fields. Thus a generic theory in AdS

would not give a boundary theory which would possess a convergent local OPE.

§See also [90] for discussions of conformal OPEs and the the contribution of a given primary operator
and its descendents to the CFT 4-point function.
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In the (OcOcOcO¢) correlator we found a cancellation among 3 ¢-exchange graphs
which each have a log singularity. The t-channel graviton exchange diagram in this corre-
lator is the sa;me as the t-channel graviton exchange in (O,OcO40¢). Suppose that this
latter graph does contain the cancelling logarithms discussed above. It is then a simple
consequence of 3.2.12 and 3.2.13 that the sum of log singularities in the t,s, and u channel

graviton exchange diagrams will also cancel in (OcOcOcOc¢).

Although we have not evaluated the graviton exchange graphs in Figs. 1 and 2, it does
appear on physical grounds that they are non-vanishing and have a strong singularity
~ 1/z* for z — 0, where z is the separation of any two boundary operators connected to
the same internal vertex. Part of this physical intuition stems from the fact that the 3-point
functions (Oc(z1)Oc(z2)Tij(2s)) and (O4(x1)Og(x2)Tij(x3)), where Tj; is the stress-energy
tensor, are different from zero [80], so that we expect from the leading term of the OPE
the singularity ~ 1/z%1+82783 where all A; = 4. This would imply that the t-channel
graph in Fig.1 is more singular as 213 — 0 than any of the other graphs, so that the overall
sum of all diagrams contributing to (O,Oc0,O¢) is not expected to vanish. One can state
the same physical expectation in the language of the boundary N’ = 4 SY M theory, in
which Oy = TrF? and O¢ = TrF F, and the 2- and 3-point functions of these operators
are exactly given by their free-field values due to superconformal non-renormalization
theorems. It is easy to calculate the free field OPE’s and see that TrF?(z)TrF?(y) and
TrFF(z)TrFF(y) contain the stress tensor with expected 1/(z — y)* singularity. Thus
physical considerations within the boundary CFT lead us to expect a non-vanishing t-

channel contribution to (Os0c040¢).

It is also easy to understand on physical grounds why the naively expected 1/(z12)*
singularity of the s-channel graph for (O,0cO4O¢) is not present. First, one can use the
formulae of [5] to show that (O;0cO¢) = 0 (The AdS integral [ ‘f—gzng 0.,K0,,K vanishes
even though the action (3.2.1) contains the vertex ¢(dC)2.) Second, one can compute the
free field OPE TrF2?(x)TrFF(y) and see that there is no 1/(z — y)* singularity (although

we expect a weaker singularity from operators of dimension greater than 4).
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We comment on the relation between supergravity graphs and OPE’s. Consider a
4-point correlator of chiral primaries, (O:(z1)O2(22)O3(z3)O4(z4)). In the expansion
(3.4.23), let us consider the sum over chiral primaries and their conformal descendents.
The SO(6) symmetry of the N = 4 SYM theory allows only a finite number of chiral
primaries to appear in this expansion. The same symmetry of the AdSs x S5 supergravity
theory allows only a finite number of fields to propagate in the internal lines of the corre-
sponding AdS graphs. It is thus tempting to seek a relation between, say, the s-channel
AdS graph whose internal line corresponds to a specific primary operator O(z) and the
contribution of O(x) and its descendents (i.e. derivatives) in the double OPE (23). Con-
sider the limit x5 small, z34 small, 2,5 large. The s—channel supergravity graph has two
3-point vertices in the interior of AdS. Generically, we expect large contributions from
two distinct domains of integration in the space of z and w: (a) z is near #,,%,, while w is

near #3,%4; (b) both z and w are near 7,7, (or both near #3, 7).

In region (a) the bulk supergravity propagator goes from near one pair to near the other
pair, so this contribution might correspond to the double OPE (3.4.23). A toy example to
study this hypothesis was presented in [88]. The CFT and AdS calculations were compared
to fourth order in fﬁ and %, and exact agreement was obtained. Recently, in [89] it was
argued that a generic s—channel supergravity graph exactly matches the corresponding
OPE contribution. However the argument relied on an implicit assumption of analyticity
(in order to separate terms with physical and shadow singularities) which is not satisfied if
there are logarithmic singularities. Thus the identification of s-channel graphs and double
OPE contributions may not be exact. For example, since the 3-point function (O;0cOc¢)
vanishes, the double OPE for the correlator (O;0c0,0¢) would also be naively expected
to vanish. However, we showed explicitly in Section 3 that the corresponding supergravity
s-channel graph (Fig.1,s) has a leading singularity which is logarithmic. It is an important
problem for future work to determine the exact circumstances under which logarthmic

singularities occur. This will require detailed input from the AdSs x Ss bulk supergravity

theory, since s-channel graphs formed from derivative and non-derivative ¢3 vertices may
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have different analyticity properties.

We finally would like to make some comments on the issues of duality both on the
supergravity and the CFT side. Supergravity graphs are not expected to be dual, indeed
in the CHC example we found that the s and u channels are manifestly different since they
exhibit different singularities. Operator product expansions are instead dual by definition
under the assumption of their convergence. It appears unlikely that N = 4, d = 4
SU(N) SYM in the N — o0, g2, N — oo limit possesses a convergent OPE in terms of
only chiral primaries and their descendents, if one assumes the validity of the AdS/CFT
correspondence. Consider again (Oy(21)Oc¢(z2)O¢(x3)Oc(z4)). The only chiral primary
that could enter the double OPE (3.4.23) is O, but the coupling is zero since (OyOcO¢) =
0. Hence in this way of doing the OPE we expect a zero answer from the chiral sector.
However, using the OPE to expand O4(z1)O4(x3) and Oc¢(z2)Oc(z4), only the stress-
energy tensor T;; can enter as an intermediate chiral operator, and the coupling is this
time non-zero since (Oy04T;;) and (OcOcT;;) do not vanish as shown in [80]. We thus
see that the assumption of a convergent OPE in terms of only chiral operators appears to
lead to a contradiction. It would be interesting to find out the minimum set of operators

needed in the theory to allow duality of the OPE expansion for chiral field correlators. -
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Chapter 4

Complete four point functions and

OPE interpretation

4.1 Introduction

Broadly speaking, 2— and 3-point functions (see e.g. [91, 85, 92]) have provided evidence
that the conjectured correspondence is correct, but 4-point functions are expected to
contain more information about the non-perturbative dynamics of the CFT. Previous
studies relevant to 4-point correlators include [76]-[103]. 4-point correlators for contact
interactions of scalars in the bulk theory were the first to be studied [76, 93, 94| followed by
diagrams with exchanged gauge bosons [95] and scalars [88, 96, 97]. (See also [98, 99] for
a different approach). o//R? corrections are considered in [100], and there is an extensive
literature on instanton contributions, see e.g. [101].

The simplest 4—point correlators that can be studied are those involving the marginal
operators Oy ~ Tr(F2? 4 ...) and O¢ ~ Tr(FF + ...) corresponding to the dilaton and
axion supergravity fields, as first stressed in [93]. To leading order in NNV, the amplitudes
(0040404), (OcOcOcOc) and (O30c040¢) factorize in products of 2—-point func-
tions (see Figures la and 3). Thanks to the non-renormalization theorem for the 2-point

functions [22, 91}, these disconnected contributions do not receive corrections in powers
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of o//R? = 1/AY2. The next contribution to the 4-point amplitudes is thus a 1/N? effect
and involves tree-level, connected supergravity diagrams like the ones in Figure 2. The
computation of (0,030404), (OcOcOcOc) and (OyOcO4s0c) was started in [94] with
the evaluation of the relevant quartic and scalar exchange diagrams (Figure 2s,u,q and Fig-
ure 4). Here we complete the computation by evaluating the remaining graviton exchange
diagram (Figure 2t) and we initiate the analysis of the first realistic 4-point amplitude in

the AdS/CFT correspondence.

We also present what we believe is a cross—checked and reliable calculation of the
graviton exchange diagram between pairs of external scalars of arbitrary mass in AdSg;,
for arbitrary d. The calculation was facilitated by the recently derived covariant form of

the graviton propagator [104], but it is still very complex compared to earlier work.

One theoretical framework to analyze results on 4-point functions in the operator
product expansion (OPE) [88, 105]. The mere assumption of an OPE is quite restrictive
and imposes constraints on the allowed form of the result. Let us assume a double “t—
channel” OPE of the schematic form

(O1(21) O2(22) O3(w3) O4(4)) = D oo x;zf&ffgl?;;(i?il)%zqunAn (4.1.1)

containing the contribution of various primary operators O, and their descendents v*O,
in the intermediate state. For simplicity we have assumed that these are scalars, but
vector and tensor operators contribute in a similar way, each with a characteristic tensor

structure. (For primary operators, (0,0p) vanishes unless A, = A,).

Recognizing in the supergravity 4-point results a structure of the form (4.1.1) should
allow to determine the operator content of the theory and its OPE structure in the large
N, large A limit. Preliminary computations [88, 96] have indicated that the supergravity
diagrams contain the expected contributions to (4.1.1) of chiral primary operators and
their superconformal descendents. It is however clear that these contributions alone do not

reproduce the supergravity result [94]. A natural expectation is that appropriately defined
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normal-ordered products of chiral primaries and descendents also contribute to the OPE
and form the full operator content of the theory in this limit. This set of operators has a
dual interpretation in terms of multi—particle Kaluza—Klein states in supergravity. Massive
string states are expected to decouple in this limit*. The computation of a complete

realistic 4—point correlator presented here should allow to put these ideas to test.

An interesting issue raised in the previous chapter is the presence in the 4-point super-
gravity amplitudes of logarithms of the coordinate separation between two points in the
limit when the points come close. Logarithmic singularities appear to be a generic feature
of all the AdS processes studied so far [95, 96, 97], and we find the same situation for the
graviton exchange. The question then is whether the logarithms cancel when the various
contributions to a realistic correlator are assembled. If not, we should ask whether the
logarithms can still be incorporated in the OPE framework. Here we find that logarithmic
singularities do indeed occur in the complete 4-point functions.

As pointed out by Witten [106], logarithms can generically arise in the perturbative ex-
pansion of a CFT 4—point correlator as renormalization effects like mixings and corrections
to the dimensions of the exchanged operators. The perturbative parameter is in this case
1/N, which is mapped by the correspondence to the gravitational coupling constant. The
operators Oy and O are chiral and hence their dimensions are protected, but their OPE’s
contain (besides chiral contributions like the stress—energy tensor) non—chiral composite
operators like : 0,0, : that require a careful definition and can lead to renormalization
effects [106]. (A somewhat different viewpoint has been described in a very recent paper
[107], see also [108)).

It is an interesting subject for future work to analyze the constraints imposed by
this interpretation on the allowed form of the logarithmic singularities and to assess the

compatibility of these constraints with the supergravity results.

The chapter is organized as follows.

*Group-theoretic aspects of multi—particle and string states have been considered in [111].
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In Section 2, we present the supergravity graphs that contribute to 4-point functions
involving Oy, O¢, summarize our results for the amplitudes and make some remarks about
their OPE interpretation.

In Section 3, we describe the general set—up for the calculation of the graviton exchange
amplitude. We give a few geometric identities, summarize the results for the scalar and
graviton propagators and present the integral associated with the graviton exchange graph.

In Section 4 and Section 5 we separately describe two independent computations of
the graviton amplitude, for A = A’ = d = 4 in Section 4 and for general A, A’ and d
in Section 5. Both computations reduce the graviton exchange amplitude to finite sums
of scalar quartic graphs (see Figure 6). The two results are shown to precisely agree for
A=A =d=4.

In Section 6, we develop integral representations and asymptotic series expansions for
the quartic graphs (Figure 5), which are the basic building blocks of the answer. We
find asymptotic serieses for the graviton exchange in terms of two conformally invariant
variables.

Finally, in the Appendix B we discuss some properties and mathematical identities of

the quartic graphs.
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Figure 4-1: Disconnected contribution to (OyOc0sOc). a: O(N*); b: O(N?).
4.2 4-—point functions in the dilaton—axion sector

Following [93], we first discuss the dilaton-axion—graviton sector of IIB supergravity, di-
mensionally reduced on the classical background solution AdSs x S5 keeping only the

constant modes on Ss. The relevant part of 5~dimensional action isf

_L 5 _ 1 uv 1 26 uv )
S =507 [, ©5 VI (R + 5 00:00,6 + 5 ¢0,00,0) . (4.2.1)

T 9k2

Th 5-dimensional gravitational coupling « is related to the parameters of the compactifi-
cation by 2x? = %’—{3, where N is the number of units of 5—form flux and R the radius
of the 5-sphere (equal to the AdSs scale, see equ.(4.3.16) below). We will usually set the

AdSs scale R = 1.

4.2.1 Witten diagrams

We wish to implement the prescription of [2, 3] to compute the CFT correlators (O30cO4O¢),
(040,0404), (0cOcOcO¢), where Oy ~ Tr(F2+...), Oc ~ Tr(FF +...) are the exactly

tThe metric appearing in (4.2.1) is not the restriction of the original 10-dimensional metric to AdSs,
but it is related to it by a Weyl rescaling of the metric fluctuations {109, 93]. The fluctuation hj,, that
gives the massless graviton in AdSs is given in terms of the original h,, by hu, = hj, — —% Juvh$, where
a is an index along S5 and gy, the background metric [109].
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Figure 4-2: Connected O(N?) contributions to (OyOcO40¢).

marginal (A = 4) SYM operators corresponding to the dilaton and axion fields [3]F.

Let us first consider (Oy(21)Oc(z2)O4(23)Oc(x4)). The leading large N contribution
is given by the disconnected diargam in Figure la. This diagram, being the product of
two 2-point functions, is proportional to N*/(z$,28,).

The next contribution, of order N?, comes from the diagrams in Figures 1b and 2.
However, the one-loop diagrams in Figure 1b, thanks to the fact that the dimensions
of the chiral operators O, O¢ are protected, only give a 1/N? correction to the overall

coefficient of the amplitude in Figure 1a. Among the diagrams in Figure 2, the sum

s+u-+q has been computed in [94].

!The precise structure of the composite operators Oy and O¢ in terms of elementary SYM fields is in
[
principle given by the variation of the on—shell N = 4 lagrangian with respect to the marginal couplings
gyum and 6, or by supersymmetry transformations starting from the chiral primary TrX ¢ X9,

$This correction precisely accounts for the fact the gauge group is SU (N) rather than U(N). Note that
validity of the correspondence seems to require that there are no higher loop corrections in the supergravity
2-point functions.
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Sections 4 and 5 of the chapter are devoted to evaluation of the remaining graviton
exchange diagram t.

Similarly, Figures 3 and 4 reproduce the relevant diagrams for (O¢(z1) Oc(22)Oc(23)Oc(4))-
The connected diagrams for (O (z1)Og(22)O4(x3)Og(x4)) involve only graviton exchanges.
As shown in [94] the s,t,u scalar exchange diagrams in Figure 4 add up to zero. Hence, to

this order,

(050404504) = (OcOcOcOc). (4.2.2)
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Figure 4-4: Connected O(N?) contributions to (OcOcOcO¢).

4.2.2 Summary of results

It turns out that upon integration over one of the bulk points, all 4-point AdS processes
with external scalars, including the graviton exchange, reduce to a finite sum of scalar
quartic graphs (see Figure 6). We denote quartic graphs of external conformal dimensions
A; with the symbol Da,a,n,4,(21, 23, 22, 24), as in Figure 5 (see equation (B.1) for the

precise definition and the Appendix for a discussion of properties of these functions).

The final result for the graviton exchange graph in Figure 2t as sum of quartic graphs

(for A = A’ = d = 4), derived in Sections 4 and 5 below, is

6\* 1 64 22, 1 16 22, 1
Liow = (— ) [1622 (——1) D —Z%_ D 'z Sl 5 423
gra <7r2) [ P24\ 35 4455 + 9 72, 5 3355 + 3 7l 5 2 ( )
46 40 8
+18 Dyyas — Dazyq — Doouy — D ,
4444 9 33%3 3344 9 x%s 2244 3 l‘?3 1144
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Figure 4-5: Definition of Da,aza,4,-

where we have introduced the conformally invariant variable

2 .2
T13%34

i

s (4.2.4)

1
5.2 2 2 .2 "
2 11534 + T4 %33

See equations (4.5.23, 4.5.57-4.5.58) for the analogous result in the general case of arbitrary
A, A d.

We also recall the result [94] for the sum of the amplitudes s, g, u in Figure 2

6 4
Is + Iu + Iq = (ﬁ) [64 .T%4D4455 — 32 D4444] . (425)

The sum of (4.2.3) and (4.2.5) gives the connected order N? contribution to the correla-
tor (Og(z1)Oc(22)Og(x3)Oc(z4)). The analogous result for (03030304) = (OcOcOcOc)

is obtained by cross—symmetrization of (4.2.3).

The functions Da,a,a,a, admit simple integral representations (see Section 6.1) and
can all be obtained as derivatives with respect to z7; of a single function (see Section A.3).
In Section 6 we develop asymptotic series expansions for Da,a;a,a, in the conformally

invariant variables s and ¢,

2 .2 2,2
T34 — T14T33

= ) (4.2.6)
r3,23, + 17475,

We consider the “direct” or t-channel limit |z13| < |Z12], |%24| < |212| Which corresponds
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to s,t — 0. The singular power terms in this limit are given by

210 1
sing 357r $13$24

Igray [ (7% + 6t*) + 82 (=7 — +3t?) — 8 33]. (4.2.7)

In addition, as in [94, 95, 96, 97] we find an infinite series of terms logarithmic in s:

3-22 Ins & L(k+4)

Z 44-k

Iog 7T6 .T13$24 k=0 k + 1)

+(k + 4)2(15k2 + 55k2 + 42)ak+4(t)}, (4.2.8)

Tgray { — 2(5k% + 20k + 16)(3k% + 15k + 22)ay,3(t)

where the functions a(t) are given by

(-X)F _ _T(ktl) (ki1 k 3
/d/\ +/\tk+1—\/7_rr(k+%)F gLk 5 (4.2.9)

As clear from the hypergeometric representation, ax(t) admit power series expansions in
t? with radius of convergence 1. Here we do not display the non-singular power terms in
Iyray (see Section 6.2).

The analogous result for the sum of the graphs s+u+q in Figure 2 is

6, 9. 00
L+1,+1] =235 1ns > (b + 1)2(k + 2)%(k + 3)2(3k + 4) axsa(t) } -

log w6 z¥328, k=0
(4.2.10)

The contribution I + I, + I, has no power singularities.

We now turn to discuss some physical implications of these results.

4.2.3 OPE interpretation

Let us compare the singular power terms of (4.2.7) with those expected form the OPE
(4.1.1). In the direct channel limit |z13] < |712], |T24| < |212| the leading terms of the

variables s and t are

2,2
T52X T3 J(z19) - T
S ~ 13%24 tN— 13 ( 12) 24

1 2
4 775 D)

(4.2.11)
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where Ji; = §;; — 2y;y;/y? is the well-known Jacobian tensor of the conformal inversion

y! = yi/y?. The leading term of (4.2.7) can then be written as

26 1 4(.’1313 . J(.’L‘lz) . .’L'24)2 - .’17%3.’1)%4

= 6 .6 3
sing 56 33734 Tyo

Tgray +... (4.2.12)

with subleading terms suppressed by powers of |z13|/|z12| and |za4|/|712|. We note from
(4.1.1) that (4.2.12) describes the contribution to the OPE of an operator O, of dimension
A = 4. We show below that the tensorial structure agrees with the the expected con-
tribuion of the stress—energy tensor of the boundary theory. It is worth mentioning first
that various subcontributions to the amplitude I,y (some of the D functions in (4.2.3))
have leading power 1/(z$,25,2%,) indicative of a scalar operator of dimension A = 2, which
would not be expected in the graviton exchange process. The fact that this term cancels

in the full amplitude is then an important check of the calculation.

Let us consider a scalar operator Oa of scale-dimension A in d-dimensional space-time.
The contribution of the conserved traceless stress—tensor T;; to the OPE of Oa(x1)Oa(z3)
is

T13i L1345
Oa(21)Ona(ws) ~ k x%}% Ti(x1) (4.2.13)
13

and the 2-point function of the stress tensor is

(Tij (@) Tia(w2)) = 5 (@12 Tlwia) T Jalwr2) Jnloz) = 400 (4.2.14)

T2

which is conserved and traceless in any dimension. Note that Ji(y)Jx;(y) = d;;. We thus
see that the stress tensor contribution to the general scalar double OPE is

kek' d(zys - J(z12) - T24)? — 23523,

2A42—d 2A'4+2-d .8
d T3 Loy Ty2

(Oa(21)Oar(72)Oa(@3)Onr (z4) ~ (4.2.15)

This form is in perfect agreement with (4.2.12). Further relevant information on 2- and

3-point functions of the stress—energy tensor can be found in [110].

Let us now consider the logarithmic terms. We see from the sum of (4.2.8) and (4.2.10)
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that an infinite series of terms logarithmic in s occurs in the direct channel expansion of
(Os0c040c). Since the serieses (4.2.8) and (4.2.10) have a rather different structure, this
conclusion appears quite robust. (In particular, it is insensitive to the relative normaliza-
tion of I,y and I + I, + I;). We plead exhaustion and excuse ourselves from carrying a
similar analysis for the crossed channel limit of (OyOcOyOc) and for (04043040,). The
reader can find the necessary ingredients in Section 6.2. As mentioned in the Introduction,
one should be able to interpret these logarithmic terms as 1/N? renormalization effects
related to the contribution of composite operators to the OPE (4.1.1) [106]. For example,
the leading logarithmic term in the direct channel limit, ﬁ log( %3?“—”221), could be related
to the presence in (4.1.1) of the non—chiral composite operators : 0404 : and : OcOg¢ :. It
is an interesting topic for future research to precisely identify the contributions of various
composite operators, and the patterns of their renormalization and mixing, in the intri-
cate series structures (4.2.8), (4.2.10). A detailed OPE intepretation of these supergravity
results should provide us with new non—perturbative information about the /' = 4 SYM

theory.

4.3 General set—up

As in most previous work on correlation functions, we work on the Euclidean continuation
of AdSg41, viewed as the upper half space in 2, € R, with z, > 0. The metric g and

Christoffel symbols I',, are given by

d R2 d
ds> = Y gudzdz, = —(dz2 + " d2?) (4.3.16)
pw=0 < i=1
K 1 K K K
L = Rz % (05 6w — S0y — 5'/05#) (4.3.17)
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and the curvature scalar is R = —d(d + 1)/R?. We henceforth set the AdS scale R = 1.

This space is a maximally symmetric solution of the gravitational action

S, = -% [ d=va®R - ) (4.3.18)
with A = —d(d — 1).

It is well known that invariant bi-scalar functions on AdSgy;, such as scalar field

propagators, are most simply expressed in terms of the chordal distance variable u, defined

by

(z — w)?

u (4.3.19)

220’11)0
where (z — w)? = 6,,(2 — w),(2 — w), is the “flat Euclidean distance”. Invariant tensor
functions, such as the gauge or the graviton propagator, may be expanded in terms of

bases of invariant bi-tensors, which are derivatives of u. For example, for rank 1, we have

(8, = 8/0z* and 8,y = 8/Ow"")

1 ((z—w
du = - (—wo Ju _ wS,,O) (4.3.20)
dou = — (_——_(“’ — v _ u5,,:0> . (4.3.21)
Wy 29

and for rank 2, there is 0,u0,/u as well as
1 1 1
Buayru = ——Z—O'w—'-—o[éuul + w—o(z - w)p5u’0 + ;(;(UJ e Z)u’6u0 - ’U,(SMO(SVI(]] . (4322)

Throughout this chapter, we shall also make use of differentiation and contraction relations

between these basis tensors, which we list here,

Ou=D*O,u = (d+1)(1+u) (4.3.23)
D*u du = u(2+u) (4.3.24)
D,du = gu(l+u) (4.3.25)
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(D*u) (D,0,0,u) = 08,ub,u (4.3.26)

(D*u) (0,0,u) = (1+wu)dyu (4.3.27)
(D“@ufu) (aﬂal,,u) = Guv + Bﬂ/u&,’u . (4328)
OF(u) = u(u+2)F"(u)+(d+ 1)1+ u)F'(u) (4.3.29)

These relations may be derived using (4.3.21), (4.3.22) and the metric and Christoffel
symbols of (4.3.17) for AdSgy;.

4.3.1 Scalar and graviton propagators

The bulk-to-boundary propagator (or Poisson kernel) for a scalar field of mass m2 =

A(A — d) is well-known [3, 91] and given by

A
- - — 20
KA(Z, l‘) = CAKA(Z, l’) = CA (m) (4330)

with the following normalization

__ '@
A

piErrs (4.3.31)

Bulk-to-bulk propagators for scalar fields of dimension A, with mass m? = A(A —
d), were derived in [112]. They can be expressed as hypergeometric functions in several
equivalent ways. The expression which appears best suited for the integrals which occur

in exchange diagrams [96, 97] is to use a hypergeometric function whose argument is ¢2

where
1 220w
= = : 4.3.32
¢ 1+u (28 +wi+ (Z— uw)?) ( )
The propagator is then given by
~ A A 1 d
Ga(u) = QACAfAF(E, FHyA-s+] ). (4.3.33)
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5 PATLA-5+3)

AT [m)@DRT(2A —d + 1)

(4.3.34)

The propagator for massless scalars, with A = d, is relevant for the graviton. When A =d
is an even integer, the hypergeometric expression (4.3.33) can be rewritten [104] in terms

of elementary functions. In particular, for d = 4, we have

Ga(u) = —871r2 { 20 +v) 1tu 2} (4.3.35)

Ju@+uw)  Ju@etw)

The graviton propagator [104] can be expressed as a superposition of 5 independent
fourth rank bi—tensors, of which 2 are gauge independent and 3 are gauge artifacts. The
gauge terms represent pure diffeomorphisms, and their contribution to the integrals in the
exchange diagram vanishes because the stress tensor is conserved. The physical part of

the propagator involves two scalar functions G(u) and H(u), and is given by
G/u/u’u’ (Z7 w) = (ay,ap’u 81/81/”“/ + ap,ay’u 8uau'u) G(u) + gl“’ gu',// H(u) (4.3.36)

The function G(u) is equal to the massless scalar propagator Gg.

A representation of H(u) as a hypergeometric function was given in [104]. It was also
expressed in terms of G(u) and its first integral G(u), defined by G(u)' = G(u) and the

boundary condition G(oo) = 0, which is a more useful form, given by
—(d—1)H(u) = 2(1 + u)*G(u) + 2(d — 2)(1 + w)G(u) . (4.3.37)

Again, when d is even, H(u) admits an elementary expression; in particular, when d = 4,

we have

L 6014wt +9(1 ) — 2p Y =

H(u) = - 1272 (u(2 + u))% C o2

(1+u)?. (4.3.38)
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4.3.2 Structure of the graviton exchange amplitude

The graviton exchange amplitude associated with the Witten diagram of Figure 2t is given

by
1 uv %
Iw = 7 [ 42 [ dw /G T8 (2) Guupens (2,w) T (w) (4.3.39)

where G0, is the graviton propagator (4.3.36). The vertex factor T/ (z) is given by

Tis(2) = D"Ka(z,21)D"Kna(2,23) + D'Ka(z, x1)D* KA (2, 23) (4.3.40)
—9"[0,Ka(2,21)D?Ka(2, 23) + M*Ka(2,21) Ka(2,23)] -

The combination T2“4'"I (w) is obtained from (4.3.40) by replacing z; — , 3 — 4,
A — A" z — w. The stress-energy tensor T}, is conserved, D, T4 = D,T4" = 0 thanks
to the propagator equations (O — m?)Ka = (O — m"?)Ka = 0.

It is the high tensorial rank of the propagator and vertex factors that make this ampli-
tude more difficult than previously studied exchanges. The calculation is made tractable
by splitting the amplitude into several terms and using partial integration of derivatives.
There are several ways to organize this process, and what we have done and will present
are complete calculations by two different methods which are then compared and shown
to give identical results for the special case d = A = A’ = 4, i.e. axions and dilatons in

the type IIB theory. The two methods are separately presented in Sections 4 and 5.

4.4 The graviton exchange graph for A= A'=d =4

The graviton propagator involves non-trivial tensorial structures. Nevertheless, it turns
out that it is possible to reduce the graviton exchange graph to the sum of purely scalar
amplitudes, with a peculiar pattern of bulk-to-bulk and bulk-to-boundary scalar propa-
gators. We describe this reduction in Section 4.1.

Furthermore, upon integration over one of the two bulk variables, which we carry out in

Section 4.2, each effective scalar exchange can be expressed a sum of quartic graphs with
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Figure 4-6: Reduction of graviton exchange to quartic graphs.

appropriate external dimensions. The final answer for the graviton exchange in terms
of these basic building blocks (see Figure 6) is given in equation (4.4.38). The quartic
graphs admit asymptotic series expansion which we describe in Section 6. It is also worth
mentioning at this point that each quartic graph can be obtained by taking successive

derivatives of a single basic function, see section A.3.

4.4.1 Reduction to scalar exchanges

We need to compute the graviton exchange amplitude (4.3.39) for m?> = m”? = 0. Using

the form (4.3.36) for the graviton propagator, we have’ :

Ipaw = (Co)*(In + Ig) (4.4.1)
Iy = / [dz][dw] [8“K4(z,m1)avk4(z,x3) - %g“”(’))\lﬁ(z,xl)a)‘lh(z, xg)] o (442)
Gy Guewr H (1) [a“’ R (w, 22)8” Ko(w, 1) — % Y By K (w, 52)0" Ka(w, 3:4)]
Io = [ldelldw] [0“K4(z,x1)8”f(4(z, z5) — %gwmm(z,xl)a*m(z, zg)] . (443)
(0,0 u 0,0, u + 8,0,,u0,0,u) G(u) -
[8“'[?4(10, 22)0” Ky(w, z4) — %g“/”la,\flh(w,332)8’\'I~(4(w,x4)]

IWe introduce the notation [dz] = /g d°z.
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where Cy = % is the normalization factor (4.3.31) of the bulk-to-boundary propagator.

The tensorial structures in I; immediately trivialize:

2 ~ _ -
Iy = (1—2) / [d2][dw)9, K.8" Ky H(u) 8, K.0" K,y (4.4.4)

= (%) /[dz][dw]f(;;lh %DzH(’u) KK, (4.4.5)

where we have used integration by parts and the equation of motion OK; = 0 to eliminate

the derivatives on the K’s.

Now we consider I, and it is useful to split into 4 parts:

I = I+ R+ I2+ 1%

L = / [d2][dw] 8K (2, 21)0" Ka(z, z3) - (4.4.6)
(8,04 8,0,u + 8,0,u,0,u) G(u) * Ky(w, 22)8” Ky4(w, z4)

1= [ld]ldw] 0 Ka(z, 200 Kalz,25) (4.4.7)
(8,8, 8,8u + 8,0,u B,0,0u) G (u) (—% Y Ay K(w, 22)0" Ko (w, u))

o= [l (_%gwajg(z, 20)0 Koz, 23)) (4.4.8)
(8,0, 8,0,u + 8,8,u 0,0,u) G (1) Ky(w, £2)0” Ky(w, z4)

1t = [ldelfdu] (—%g“”@kfﬁ(z, xl)a*fg(z,xg)) - (4.4.9)

(0,000 8,0, + 8,0, 8,0,u) G(u) (—% 9V 0y Ra(w,22)0% K(w,2,))

We wish to eliminate all the tensor indices and all the derivatives, so that the graviton
exchange is reduced to a sum of effective scalar graphs. With this program in mind, we

observe a few pretty identities. First:

B“f(A(z, 131) Bua,,fu OUIRA(’LU,Z‘Q) =
A2 [*RA(Z, $1)KA+1(’LU,.’172)K__1(Z, .’L‘Q) — KA+1(Z,$1)RA(’£U,.Z'2)K_1(1U, .'171)

+22%, Ka 41 (2, 21) Ka (w, 72) + (1+u)Ka(z,21)Ka(w, :cg)] (4.4.10)
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It is simplest to verify this identity by the methods described in [91], where one uses
conformal transformations to go to a coordinate system where point z; is mapped to

infinity and point x5 to zero. Further:

- 1 - .
KA_H(Z, SL‘1) K_l(w, 1131) = ZO“KA(z, .’L'l)a“'u + (1 + u)KA(z,xl) (4411)
Inserting twice (4.4.11) into (4.4.10) we get:

G“RA(z, z1) 0,0, u 8”'I~(A(w, Tg) =
A? [——i—R};(z, 1) 0¥ Ka(w, 22) Opu — %WRA(Z#EI) Ouu Ka(w, z2)

+222, Kag(2,21) Kapi(w,22) — (1 + ) Ka(z,21) Ka(w, ©2)] (4.4.12)

We now evaluate (4.4.6-4.4.9) one by one.

I
Writing (4.4.6) as

I} = /[dz][dw] (3“[24(2,1‘1)3#3#/11 8“’R4(w,a:2)) G(u) x
X (8”1?4(2, 3) 8,0,u 0" K4(w, x4)) + {z1 ¢ z3} (4.4.13)

and inserting twice (4.4.12) for A = 4 we obtain 16 + 16 terms many of which are related
by a simple symmetrization. Below we present the manipulations performed on the in-
equivalent terms. We often suppress the coordinate labels, and give the expressions with
the propagators in the following order: (z,7;), (2, 3), (w,z2) , (w,z1) unless stated oth-
erwise. Referring to the terms in (4.4.12) we get:

I x1I:

IxI = 42 /[dz dw]KZ;K];G@“IK; Oyt 0" Ky 8yu = (4.4.14)
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= 42 /[dZd’IU]R(lkLt Du/aul//uG—guiul(l +’U,) /uG X
X (Tu'yl -+ %g“lula)‘llh a,vlh)

= 2 [[dzdu]R.K,s :iui’//ua— %D{(1+u) /UG}: 70

Here we have used! G(u) 8,8,u = [Dy8, [ [*G — g (1 +u) [*G] thanks to (4.3.25)
and we also used the conservation of the stress-energy tensor integrating by parts to get
the last equality.
I x II:

I x 11 = 42 / (dz dw| Ky 0 K10,u G 0 Kydu K, (4.4.15)

Using 0,u G(u) = 0, [* G we get by integration by parts:

IxII = —42 / [dz dw)K4 0" K40,u / "GO R, oK, (4.4.16)
g2 / [dz dw] K, 0" K, / G 0,0,ud” Ky K,
where we have used 0K, = 0 in the bulk. The first term in (4.4.16) can be easily processed

to give

~ ~ 1 u ~ o~
42 / [dz du]Rey 72 / / G KK, (4.4.17)

The second term in (4.4.16) is handled by inserting again the identity (4.4.12) with (z; <

z3) and going through by now familiar manipulations. It gives

[ldz du)k, K, [_43n//"a+44(1+u)/“a] Rk -
9. 41g2, / / [dz dw] K, Ks / "G Ry Ry (4.4.18)

IHere our convention is that JF = fa" F(u) dw, where a is chosen to ensure the fastest possible falloff
of [ F in the u — oo limit,.
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I x III: Upon integration by parts,
IxII = 2-4%2, / [dz dw|Ky K /uGaH'&aﬂ,Rs (4.4.19)
- u .- 2 L
— 2432, / [dz dw)K, K / GBD(mKs) —%KJ@}

= 243x§4/[dzdw]f(4k5 (%D/uG— g/uG) K4K5

IxIV:
3 N 7

4 / 4z du] Ky Ky 50 / (1 +w)G) Ky Ky (4.4.20)

IIT x III:
4- 422,13, /[dz dw]Ks K5 GK5 K (4.4.21)

IIT x IV:
-2 441,'%2 /[dZ d’LU]f(s }%4 G(]. + U)Rs f(4 (4422)

IV x 1IV:
4t / [dz dw| Ky K G(1 + u)?Ky Ky (4.4.23)

IZ, I¥ and I}
Using (4.3.24), after some similar algebra we arrive at

~ ~ 1 U 1 ~
IG=1I)=— /[dz dw|Ky K4 Zl:l2 [G B g(l + u)/ G+ —2~u(u + 2)G] K, K4.4.24)

I} = % /[dz dw| K, K4 %DQ [5G +u(u+ 2)G) Ky K, (4.4.25)

The graviton amplitude in terms of scalar exchanges

Adding all the terms above with the appropriate symmetrizations we get the complete

graviton graph in terms of effective scalar exchanges:

Igrav -~ g 2 ( 9 2 u 1 3 u ]. )
_efav o« { = . () - = -
= /[dzdw]K4K4[ G H 24 // G+ 3G 4(1+u)/ G 8u(u+2)G
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+0 (-4 [" (1 +u)0) - -;-43(1+u)/"c:~44//"0))
+4°5(1 4 u) /u G+2-4*(1+ u)QG} KK, (4.4.26)
3, [dz du)K, K [—18-43/“G+2-43D/"G— 2. 4'G(1 +u)] KoK
+ {3 perms}
+(23,73, + 13,22,) /[dz dw]Ks K5 4 - 4°G K5 K

where the 3 permutations of the second integral are obtained by exchanging (z1,z;) <
(r3,74) and z; <> x3. The formula above can be simplified by explicit application of
Laplace operator (4.3.29) and using the equations obeyed by G and H given in Section
3.1. We get

(154)4 = /[dzdw]f"(4 K, [(—72u2 — 144u + 168) G + 168 (u + 1)/“ G] KK,
a3, [ldz du]K, Ks [—768 [f6-2m660+ u)] KK

+ {3 perms}

+(22,75 + 22,72;) /[dz dw]Ks K5 1024 G K5 K

+10 /[dw]fh f(4 R4 f(4 - 16 .’L‘g4 /[d’UJ]Kz} K4 K5 RE, (4427)

The last two terms in this expression arise from delta functions generated by the application

of the Laplace operator**. In particular the last term comes from:

/[dz d’LU].f(/; K4 D(S(Z, ’UJ) R4 K4

—9 / [dw] Ky Ky 0y Ki0 Ky = 2 / [dw]Ky Ky (16K, K, — 3203, K5Ks) (4.4.28)

where in the last equality we have used (B.2.5).

**The coordinate dependence of the K’s is: (w,z1), (w, 3), (w, z2), (w, T4).
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4.4.2 Reduction to quartic graphs

We first observe the identity

u
/ G=-Gs+(1+u)G, (4.4.29)
where G is a scalar propagator of m®> = -3, corresponding to a boundary conformal
dimension A = 3:
—(0+3)G; = d(z,w) . (4.4.30)

Using (4.4.29), we see that the complete graviton graph (4.4.27) involves effective scalar

exchanges of the form
I8, 5000 = [[dzdw]Ra, Koy (1+u)Gas Ka, Ka,, (4.4.31)

plus some quartic interactions (last line of (4.4.27)).

We now proceed to derive a general formula to perform the z integration in (4.4.31), fol-
lowing the methods developed in [97]. Quite remarkably, upon integration over z, (4.4.31)
reduces to a finite sum of effective quartic graphs, see Figure 6.

Translating ; — 0 and performing conformal inversion (see [91] for a detailed account),

we can write

IRPR Aon, = |Ta1| 7288 |ar | 7242 |y |72 /[dw]R(w ~ ) K, (w, 7)) Ka,(w, ),
(4.4.32)

where ¥ = Z/x? and
RATA, () = [d2) Kisa () (1 + )Gy ). (4.4.33)

As compared to [97] we allow the bulk propagator to be multiplied by (1+u)? (see (3.3-3.4)
in [97]). We now use the hypergeometric series expansion (4.3.33). Inserting this series

into the expression for R3%P . we can perform the z integral term by term by a standard
Ar,A3 &
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Feynman parameterization, and resum the resulting series. We get

T[A(As —p+As— Al)]P[%(As —p+ A+ A5 —d)]

atha(w) = 2O [ - pIl[Ad]
Ag _ Az—1 (As—p A1—Az)-1
X (%) ,wA1—A3 / ')’ ]' 7) 2 (4434)

((28) +7 - (28) )™

x 4 F3 (A A5+1 As-P+A3 Al As—p+A1+A3 d. A %l+1,A52—2’A5—29+1;7)

?

For p = 0 we recover equation (3.11) in [97]. It turns out that for the cases relevant to
the graviton amplitude, the hypergeometric function 4F3 is elementary and the Feynman
parameter integral can be explicitly done. The result is always a simple binomial in wq

and wo/w?. The relevant cases are:

Ris = %wﬁ (%)3 418 3(33)

R = g () + ot (52) + g (32)

m = gt (53) + ggvd (58) + e (52) (4439
Ris = %wg (%)4+11§w3 (%)3 418 (%)

= o (2)'+ 2 () s e ()

1 wo\?* 1 wp \ 3 1 wp \ 2
4,0 4 0 3 0 2 0

We see that each term in Rﬁf:’gs (w) is a of product of bulk-to-boundary propagators. In-

deed, w§* corresponds in this inverted frame to a propagator at 7 = oo, likewise (wq/ w2)A
corresponds to a propagator at ' = 0. Inserting each such term in the expression for
Iﬁfg’s A.a, (equ. 4.4.32)), and going back from the inverted variables & to the original

variables Z;, we recognize the integral defining a quartic graph. For example

A
— — — w ~ ~
|31 2A3]x2]| 2A2|$41| 244 /[dw]ng <( _0’ 2) K, (w,z5)) Ka,(w, 7))
w — %))
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- o (25) (25) () ()

= Dpan,a, (%1, T3, T2, T4) (4.4.36)

where in the last line we have used the important notation for quartic graphs (see Figure
5) introduced in (B.1). We can finally write the full graviton amplitude as a sum of quartic

graphs:

6\* 2,13, 12,12 128
Igaw = (_) [16 ( 2+ B — ) Duss + 5 (%2 T34 + T4 5”23) Ds355

2 T3 13 9z
14 8
T35, 2, (5312 T3 + 1% 3323) 3z 32 D244
8 16
~ 30 Diygg — 32 (35%2 Dissa + 334 Dazss + 33%4 D5 + 55 D3454)
13 13
32
——— (2% Dsasa + 234 D3245 + 734 Dasas + 33 Dassa) | - (4.4.37)
9 T3

The graviton amplitude (4.3.39) is symmetric under z; <> z3 and z, <> z4. These symme-
tries are explicit in the final expression for Iy, indeed some of the D functions (of the
form Dyax4) are symmetric by themselves, while asymmetric D functions appear in all
the symmetric permutations. It turns out that thanks to the remarkable properties of the

D functions (see equ. (B.3.11)), the answer can be rewritten in terms of Dy 54’s alone.

1 2,22

Introducing the conformal invariant variable s = 3 ,
2 27,T34TT14 T3

we get

6\* 1 6423, 1 162, 1
Igray = (F) [16 T3, (g - 1) Dyyss + 92 s D3355 + 3 ks Dys5 (4.4.38)

46 40 8

D3344

+18 D - —
aadd 9 .’L‘%3 9 Z’%g 3 $?3

The graviton amplitude (4.3.39) is, for the case A = A’ = 4 that we are considering, also
symmetric under (z;,z3) <> (T2, z4). Although not immediately manifest in the expression
above, this symmetry is actually present thanks to the identity (B.3.11) obeyed by the D

functions.
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4.5 General graviton exchange graph

We expect that the amplitudes for graviton exchange between massive scalars will be useful
in general studies of the AdS/CFT correspondence. As in past work [95, 97] we therefore
assume initially that d, A, and A’ are arbitrary, constrained only by the unitarity bound
A, A" > d/2. We will assume integer values at the point where this step simplifies the
calculation, and specialize still later to the case d = A = A’ = 4 to present detailed

asymptotic formulas for dilatons and axions in the type IIB supergravity.

The first step in the evaluation of the amplitude (4.3.39) is to split it into contributions
from the terms in H(u) and G(u) in the graviton propagator, and to split the latter into

a term proportional to the metric ¢g*” in T{3(z) of (4.3.40) plus the remaining term, viz.

1 1
Igrav = Z Agra.v = Z (AH + Ag + Ag) (451)

The three contributions are then given by

AS = /dz\/§ /dw\/g[c')pK(l)D”K(fi)+m2K(1)K(3)](z) Lo (2, w) TEY (w) (4.5.2)
AS = 2 /dz\/§ /dw\/§8uK(1)8,K(3) D9, uD"8,u G(u) TEY (w) + (1 < 3)(4.5.3)

AT = /dz\/g/dwﬁ g-Ti3(z) H(u) g - Tog(w) (4.5.4)
where we use the abbreviation g - T = g, T*, and

Iy = —guGu)[D"0yuD"0,u+ D*0,uD"d)u]
= —2G(u)(gyv + Opwud,u). (4.5.5)

where (4.3.27) is used to obtain the second line in (4.5.5). The symmetrization in 1 <> 3

in (4.5.3) will be useful for later steps.

The w-integral in A2, that involves the tensor O ud,u of (4.5.5) may be simplified by

using 8,y uG(u) = 9,,G(u), integrating by parts in w and using the covariant conservation
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of T24,

/ dw\/GG (u)dy udyuTh (w) = — / dw\/g G(u) Dpdyu TL (w)
- — / dw\/g (1 +u)Gw) g- Tos(w)  (4.5.6)

Putting together this rearrangement of the A§ part, we have

AS = /dz\/g /dw\/ﬁ[{)pK(l)D”KB)+m2K(1)K(3)](z)

x {—2G (1) + 2(1 + W)G(w)} g - Toa(w) (4.5.7)

Next, we use the propagator equations (O — m?2)K (1) = (O — m?)K(3) = 0 to obtain the
following identity

[0, K (1) D’K (3) + m* K (1)K (3)](2) = %DZ{K(l)K(i%)}(Z) (4.5.8)

Substituting this identity into A, integrating by parts the operator O, neglecting van-
ishing boundary terms and using (4.3.29), we find

0.{(1 4+ v)G(u)} = —2G(u) + 4(1 + u)’G(u) + 2d(1 + v)G(u) (4.5.9)
which then gives

4§ =[5 [dwGKOKE{-D.G(w) - 2G() +4(1 + w)’*C(u)
+2d(1 + u)G(u)} g - Tos(w) (4.5.10)

Before simplifying the g- T34 factor in the integrand, we first treat AS and A in a similar

manner. For A¥ we use again (4.5.8) to simplify the z-integration and to cast it in the
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following form

AH = /dz\/g}/dw\/gj K(l)K(3){—%(d ~1)O.H(u) — 2m?H(w)} g+ Toa(w)  (4.5.11)

To simplify AF, we begin with partial integration of g, in the z-integral in (4.5.3), and
split AS as follows

AS = 248 —24S, (4.5.12)

AS, = /dz\/ﬁ /dw\/gau{K(l)K@)}D,,[D“B,,/uD"&,,uG(u)] TEY (w) (4.5.13)
AS, = /dz\/g— /dw\/fyD,,a,,K(l)K(?;)[D”a,,:uD"a,,/uG(u)]TZ’f;”’(w)+(1 & 3). (4.5.14)

Now, A%, may be simplified by working out the tensor algebra using (4.3.23-4.3.27) and
again 0,,uG(u) = 8,,G(u) to obtain

D,[D*0,uD"8,uG(u)] = Du(..)+Dy(...)— D'u gy, J(u)
J(u) = (1+u)Gu)+(d+1)G(u) (4.5.15)

The terms with D, and D,s cancel by partial integration in (4.5.13) by conservation of
T34 Finally, integrating by parts once more in 9, and using D*u J(u) = D* [* J, we get

the following simple result for Ag,,

A8, = — /dz\/ﬁ /dw\/ﬁau{K(l)K@)}D“u J(1) g Tpa(w) (4.5.16)
- /dz\/§ /dw\/g}K(l)K(3){u(2 +u)J (u) + (d+ 1)1+ w)J(u)} g- Tos(w)

It is more difficult to deal with A%, To simplify the integral representation in (4.5.14),
it is very convenient to set z; = 0 in the first term and then perform an inversion trans-
formation of the integral (in z and w) as explained in [91]. The symmetric step in 1 <> 3

is done later. It is now easy to evaluate the double covariant derivative of the inverted
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bulk-to-boundary propagator K (1') = Cazs,

D,8,K(1") = —AK(1")gu + A(A + 1)K (1') 25 gpoguo (4.5.17)

The contribution of the first term in (4.5.17) is proportional to the metric g,,, and may
be treated by the same technique used for AS. It acquires an “effective scalar propagator”
proportional to the term in {...} in (4.5.7). We thus find for this contribution to Af, the

term

o P P2y P A [d25 [aw /5K (1)K (3){G(w)~(1+0)G(0)} g Tas(w) +(1 ¢ 3).
(4.5.18)

Note that the prefactor contains the scale factors from the inversion.

The integral of the second term in (4.5.17) contains the factor.
ZggyoguoD"‘aur’U, D"aul’u, = (Zggll/ol “+ 8u,u) (Z()g,,lol -+ 8,//u) (4519)
Integration in w against G(u)T: 1V (w) gives rise to three types of terms

/dwﬂ(zogﬂ,o, + O u) (209w + au'U)G(u)Tzuiyl (w)
= 2[5 GO Tl + 220 (40 g0 Gu) TEY ()
_ /dw\/g (1+ w)G(u) g - Toa(w). (4.5.20)

The second integral on the right hand side may be further simplified by using once more
0, uG(u) = 0,,G(u), integrating by parts, using conservation of T34 and being careful to
taking into account the fact that the integral is the 0’ component of a vector instead of a

scalar. Thus there is a non-vanishing contribution of Christoffel symbols, which gives

/dw\/g_l guwodyu Gu) ThY (w) = / dw\/g wioc‘;(u) g Toa(w) (4.5.21)
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We now combine (4.5.18),(4.5.20) and (4.5.21) to write an expression for A$,, namely
Ay = Joln P |ahy P20y P [dyg [dwyGK (1)K ()

{[-a6@ - a0 +uom+ @+ 1)%@(@] g+ Toa(w)

+A(A +1) ng(u)T24(w)0:0/}
+(1¢53) (4.5.22)

4.5.1 Final simplified form

We are now in a position to assemble all contributions to the graviton exchange diagram
by combining results for A#, AZ, A%, and AS,. The z-integrals are easiest to carry out
after inversion, so we apply inversion to all contributions and rewrite Agray With a universal

conformal factor extracted, viz.
Agray = |21 " |23 [** |24 |** (B" + B* + B®) + (1 ¢ 3) (4.5.23)

where the reduced amplitudes B are given by

Bt = /dz\/§ /dw\/ﬁK(l')K(B')P(u)g-T24(w) (4.5.24)
B = _4A(A+1) /dz\/§ /dw\/ﬁ iﬂK(1')K(3')G(u)g-T24(w) (4.5.25)
B® = _2A(A+1) /dz\/'g_ /dw\/ﬁ 2 K(1)K(3) G(u) Tos(w)oey  (4.5.26)

The function P(u) is gotten by combining all contributions involving g - Tp4 (except that

from AS,) and is given by

Pu) = —%DZG—i(d—l)DzH—G+2(1+u)2G+d(1+u)C_¥(u)—m2H

—u(2 4+ u)J — (d+1)(1 +u)J + 2AG + 2A%(1 + u)G(u) (4.5.27)
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The relation between H(u) and G(u) was given in (4.3.37) and may be used to further
simplify the form of P(u). While both 0,G and O, H have a term proportional to é(z, w),
the relative coefficients of both terms are such that this §-functions cancels out of the full

P(u), and we are left with

Pu) = 2AG —2u(2+u)G +2(A% —d - 1)(1 + u)G(u) — m?*H (u)

_T_nQ_Cl_;_C_i_Ll(l +u)2}G(u) +2{A? —d -1+ lnj(d_—_lz)}(l - 0Cw)

= 2{A+1+ v

Finally, the expression To4(w)oor may be worked out explicitly,

4 supram-o)y
(w—z)? ' (w—ah)2(w— x;)g} , (4.5.28)

and we can use an identity similar to (4.5.8) to obtain a covariant expression for g- Tos(w),

namely

g+ Toa(w) = (~3(d — 18w — 2 K ()K(#)} (4.5.29)

4.5.2 General integrals over interaction points

We shall use the following strategy for the calculation of the integrals over the interaction
points z and w in the reduced amplitudes of (4.5.24-4.5.26). First, we shift both z and
w by z4,; by translation invariance, the integrals depend only upon the new variables
t = x4y, — 74, and y = 1, — x%,. The z-integrations then only depend upon the variable
w, and may be carried out explicitly in terms of elementary functions by methods similar
to the ones used in [95] and [97]. Only after the z-integrals are carried out are the explicit
forms of g - Ty and Tos(w)y o required and used. The remaining w-integrals may be recast
as integral representations that admit simple asymptotic expansions.

To prepare for the z-integrations, we note that P(u) in (4.5.24)) and (4.5.28) involves

the invariant function G(u) and its first integral G(u), and the same functions appear in
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(4.5.25,4.5.26). To apply the methods of [95] and [97] we need the series expansions of
G(u) and G(u) in the variable ¢ of (4.3.32). For G(u) this is just the hypergeometric
series for G4(u) in (4.3.33) and we obtain the series for G(u) by direct integration. These

expansions are given by

1, &Tk+4+1) 1
G = -C 2 "2 2k+d
(u) 2 O TE+ )k k+d 7t
_ 1, &Tk+24-1 1
G = —-C 22 Zk+d—1 4.5.30
(u) 4 G,CZ:;) T(4+1) k! k+§§ (4:5.50)

These series expansions are uniformly convergent inside any disc |£] < 1. The normal-
ization constant may be read off from (4.3.34) and (4.3.31) for A = d, and we find
Ce=2%dC,.

There are five independent z-integrals required to evaluate the graviton exchange am-

plitudes. They are as follows,

Zi(w) = / dz\/5 K(1)K (3)G(x) (4.5.31)
Zo(w) = / dz\/g K(1)K(3)(1 + u)?G(u) (4.5.32)
Zy(w) = / dzr/g K(U)K(3)(1 + v)C(u) (4.5.33)
Zy(w) = / dz\/g K(1)K (3") 20wy G (u) (4.5.34)
Zs(w) = / dz/g K(1)K (3)22w52G (u) (4.5.35)

In terms of these integrals, the original amplitudes are given by

Bt = /dw\/g (2(A + 1) Zy(w) + 2%_‘1%122@))
+2(A2—d—1+ —d(d-i))zg( )}g - Toa(w) (4.5.36)

B = /dw\/§{—4A(A+1)Z4(w)}g-T24(w) (4.5.37)

B® = / dw\/G {~2A(A + 1) Zs(w) ywToa (w)yo (4.5.38)
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It remains to evaluate the z-integrals.

Performing the z-integrals

The z-integrations are carried out term by term on the series expansions of (4.5.30), and
all the integrals we need in (4.5.24-4.5.26) are of the following form (with 2a, 2b= 10,1 or
2)

p 2A+2a d—-1 220'(1)0 2k+d—2b
/dz[’/d A<2 2 —'_—*2>
20 + Wy =+ (Z ’(U)

I I‘(A+k+a~— Or(k+2—a—0b)

(MW

2a

= TG T T+ b1 D)
1 2 k+%—a—b
2a—1 _ A—-1 Wy 2
X /o da o™ (1 - a) (awg PG O{)’(UQ) (4.5.39)

In the integrals Z;(w) of (4.5.31-4.5.35), the values taken by (a,b) are (0,0), (0,1), (0,1),
(3,3) and (1,0) for j = 1,2, 3,4, 5 respectively. The calculation of the z-integrals is slightly
involved, but is essentially the same for each of the Zj-integrals. Here, we shall present
in detail only the calculation for Z;, and restrict to presenting the final results for the

remaining 4 integrals.

To compute Z; (w), we use the expansion of (4.5.30) for the function G/(u) and integrate
term by term in z using the integral formula of (4.5.39), here with @ = b = 0. Assembling
these results, we notice that the factors I'(k+2+1) and I'(k+$£) cancel between numerators
and denominators. Also, interchanging the order of the a-integration of (4.5.39) and the

k-sum of (4.5.30), we are left with the following result

1 do

Zy(w) = o (1_0‘)A 1fA,2<aw +0(411U3_ a)w2)

fap(Q) = i (A) P (4.5.40)

Assuming that d is even and d > 4 throughout, we have p > 1 and the function fa;, may
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be easily evaluated in terms of elementary functions. We begin by noticing that

oAV E  T(k+A) -
fap(() =¢ ( C) ,;,P(A)F(k+p+1)ck+ (4.5.41)

In view of the presence of the multiple derivative operation in front, we are free to add

into the sum the terms with ¥k = —p+1,—p+2,---,—1. Then, we shift £k — k — p and
obtain
. P E I 4.5.42

The infinite sum is proportional to (7*[(1 — ¢)™2*? — 1] and the multiple differentiations

may be carried out explicitly. The final result is

fap(Q) = (=)° (4.5.43)

I'(p) =, (A - p+€) ¢t
TA)[ —20 (1- C)A"’“]

Upon substituting the value { = awd/(aw?+ (1 —a)w?), and using the binomial expansion

for the (positive) powers of the combination aw? + (1 — a)w?, we find

fA;p(C) =

AZi FA-p+OT(A-p+1) ( aw? )k“
=0 =0 E' FA-—p+L—-KI(k—C0+2)\(1 - a)w?
(4.5.44)
Remarkably, upon including the factor of @™!(1 — @)®~! of the integral in (4.5.40), the
integrand is polynomial in a and may be carried out term by term in (4.5.44). The final

result for this calculation as well as for that of the remaining Z; may be expressed in the

following final form

A-2 2\ k+1
Ziw) =Y Z“’(%) j=1,---,5 (4.5.45)

w2

with the coefficients Zj(k) dependent only on A and d and given as follows

zP = ()

d
:T(HMEr(A -4 +1 5
g2 (3) (%2 ( s +1) Cq C2 ZJ(.'“) (4.5.46)



M A-9

Vs 2 \2 2
( )247rdI‘(A—g+1) i (4.5.47)
with
41
. ; TA+¢—HT(A—k-1)I(k+1)
(k) ¢ 5
-2 45.4
“ ,_Z:% =) OT(k—f+2T(A—k+€—9) (4.5.48)
) _ g _aD(A-DE(k+1)
& s (VTR — 143 (4.5.49)
41
; 15 MA+—4-1)I(A—k—-DI'(k+1)
& = 3 ] 4.5.50
’ 2e:o( ) OT(k—£+3)T(A—k+£—-2-1) (4.5.50)
20— _A_ﬂ%_z(_)e(%-f—1)F(A+€——%)F(A—k-1)r(k+2) ws.51)
T d-2A o O0T(k—L+3)T(A—k+€—9) 9.
S0 _ 200 —£+2)(A-4+1)
’ dA(A+ 1)
d_o d p
2 d_ ¢ DIA+L-2+1)T(A -k -1 (k
XZ(_)£(2 )T(A + S+ I - )Yk +3) (455
=0 OTk—€+3)T(A—-k+L—-5+1)

We conclude by noticing that the relation between Z](k) and ZJ(-k) simplifies considerably

upon using the explicit forms for Cg and Ca, as was done in (4.5.47).

Reduction to w-integrals

Our purpose here is to express the w—integrals in B%, B% and B% of (4.5.36-4.5.38) in

terms of the following standard integral

, ng’+2a+2k 1 1
WE (a,h) = [dwyg =—s T (4.5.53)

We also use W2'(a,b) which represents W/2'(a, b) with z <> y. Introducing the constants

2_d+1

2
—2
%“:2@&+Ud“+2md_1 m(d —2)

Z$¥ y2(0?—d -1
2 2 a1

)28 —an(A +1)ZF
(4.5.54)
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we find the following expression for B* + B% after partial integration of O,,,

A-2 1 ,w2 k+1
B+ B = 7® [duyg (—E(d —1)o, - 2m'2) (w—g) K@)K(4)  (4.5.55)
k=0

The action of the Laplace operator on the various powers of w2 /w? is easily evaluated with

the help of the following formula

2\ k 2\ k 2\ k+1
mw(%) :2k(2k—d)(1—;}—‘2’) —4k2(-w—°) (4.5.56)

w? w?
and we obtain the following expression for the amplitude in terms of W functions
A—2 ,
B"+BH = & Y Z® [{—(d —1)(k+1)(2k +2 — d) — 2m2} W2, (0,0)
k=0

+2(d — 1) (k + 1)2W25(0,0) (4.5.57)

Proceeding analogously for the contribution of B% with the help of (4.5.28) and (4.5.38),
we find

BY® = —2A(A+1)(A)%E, Z Z(k){ (1- E)W,m( 0) — 4W&,(1,1) — 4W&, (1, 1)
BT (0,0) + 2(z —y)*WAT(0,0)} (4.5.58)
As in the special case A = A’ = d = 4 already discussed in Section 3, we recognize

that the general graviton exchange amplitude is a finite sum of quartic graphs. In fact,
each W,CA'(a, b) is the amplitude of a 4—point contact diagram evaluated in the inverted
coordinates (with appropriate inversion prefactors omitted). The scale dimension of the
external propagators are A} = k+2a —b, Ay = k, Ay = A’ +band Ay = A’ (see
equ.(B.1.3)).
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4.5.3 Graviton exchange graph for d=A=A'"=4

For A = A’ = d = 4, the masses of the scalars vanish m = m’ = 0, and the k and
¢-sums in the results for the z-integral functions I; truncate after just a few terms. We
need the z-integral functions Z;(w), j =1, - -, 5, which may be read off from (4.5.45) and
(4.5.48-4.5.52) with A =d =4,

Ziw) = 21?( +§Z—§+2Z—§) (4.5.59)
Zo(w) = % %Z—§+§Z—§+2§§> (4.5.60)
Zy(w) = #(“%%ﬁ_i%ﬁ) (4.5.61)
Zu(w) = ;?(—gz—é—ég—ﬁ) (4.5.62)
Zs(w) = 3 +w—‘2’ +w—3 +93) (4.5.63)

Using these integrals, the expressions for B + B% and B% become quite simple and are

given as follows,

8 w2 wE  w
B + B¥ = = /dw\/ﬁ {E% + w—‘; + Zu—g} g - Toa(w) (4.5.64)
12 w2 wE  wg
B — —F/dw\/—g— {I—U% + w—g + w—g} w§T24(w)0:0, (4.5.65)

When m' = 0 and d = 4, the combination g - T54 in (4.5.29) simplifies. Upon integration

by parts, and making use of the differentiation formula (4.5.56), we obtain the following

expression
26 . 33 ,w2 ,w4 ’LUG ’U)8 w8
Bt 4 gdd / {__o Wy | Wo _0} 0
N w8 dwv/g w? Tt s 9w8 (w—2z)¥w —y)?
26 . 33
— —Wé—{wf(o, 0) + W(0,0) + W(0,0) + 9WA(0, 0)} (4.5.66)
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The expression for B® may be obtained in an analogously, using (4.5.28) for m’ = 0,
A = 4. This directly gives

203 2 4 4 T4 5 21475
Z{Wp (0,0) — 4WA(1, 1) — 4WW4(1, 1) + 8W3(1,0) + 2(z — 9)°W(0, 0)}

p=1

BO():_

8

(4.5.67)

Using the expression for W;(1,1) + W:(l, 1) in terms of W (0,0) to be derived in (4.6.5),
this formula may be recast in terms of W (0,0) and W(1,0) only, viz.

29 .33

BOO —
7!'8

3
[3W5‘(0, 0) + S {—2W}(0,0) + 8W3(1,0) + 2(z — )*W3(0, o)}] (4.5.68)
r=1
Adding the contributions of B + B4 and B%, we finally obtain the expression for the
full B in terms of W-functions and we have

26_33

B = =

3
[15W44(0,0)+Z{—17W,§*(0,0)+64Wp5(1,0)+16(x—y)2wj(0,0)} . (4.5.69)
p=1
The full graviton amplitude I, is obtained by multiplying B by the appropriate kinematic
factors and symmetrizing under 1 <> 3 (see (4.5.1), (4.5.23)).

4.5.4 Equivalence with the result in Section 3

We now make contact with the result obtained in Section 4. We recall that W2'(a, b) are
just scalar quartic graphs in the inverted coordinates (with some kinematic factors omit-
ted), see equ.(B.1.3). One can easily convert (4.5.69) and (4.5.23) into the notations Sec-
tion 4, and get a sum of D—functions. The representation of the graviton exchange graph
that is obtained in this way does not at first appear to coincide with the result (4.4.38).
In particular, terms of the form 23,27, Dpi2p55 + 253234 Dppi2ss arise from W2 (1,0) in
(4.5.69) and its symmetrization in 1 <> 3. Thanks to the many identities that connect the
D functions (see the Appendix), the two representations of the answer are in fact exactly

equal. We first use (B.5.19) to eliminate the “asymmetric” D’s in the result of Section 5.
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We get

6\* , (1 32 x3, 2\ 72,
Igay = (ﬁ) [16 Toy (55 - 1) Dyy5s + 3, <—1 + g) 2, D335 (4.5.70)

32 2 1 32 2
+ -2 (— - 1) Daass — — =22 Dyys5 + 24 Dyga

3 x4; \2s 3 z8,
14 10
+ D3344 + D D .
972, 3344t g Y 2944 + 379, 1144]

Now (4.4.38), (4.5.70) are both in terms of D-functions of the form Dyszx. By repeated
application of (B.3.9) one can convert one representation into the other. We regard this

non—trivial match as a strong check of our result.

4.6 Asymptotic expansions

We have seen that the graviton exchange amplitude (and generically all AdS 4-point
processes with external scalars) can be expressed as a finite sum of quartic graphs, see
(4.4.38), (4.5.57-4.5.58), (4.5.70). In this Section we develop asymptotic series expansions
for the scalar quartic graphs (Figure 5) in terms of conformally invariant variables. This
series expansions allow to analyze the supergravity results in terms of the expected double
OPE (4.1.1). In Section 3 and 4 we have used slightly different notations for the quartic
graphs, namely Da,a,a,4, and W7 (a,b). The connection between the two is given in
(B.1.3). Here the expansions are performed for the Wf (a, b) representation of the quartic

graph.

In Section 6.3 we assemble the series expansions of the W’s that appear in the repre-
sentation (4.5.23,4.5.69) of the graviton exchange for A = A’ = d = 4. We concentrate on
the direct channel and display explicitly the singular terms and all the logarithmic con-
tributions. The complete expansions, in both direct and crossed channels, can be easily

obtained from the formulas in Section 6.2.
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4.6.1 Integral representations of W2 (a,b)

To evaluate W' (a, b), we follow the methods of [95] and [97]. We introduce a first Feynman
parameter « for the denominators w? and (w — z)? and a second Feynman parameter 3
for the resulting denominator and (w — y)2. The @ and wj integrals may then be carried

out using standard formulas, and we find

Wk ’(a’ b) =

i T(k+ A +a— DDA +b—a)
2 Paj(AmxAu+w
/ da/ lg [ﬁ = )k 1,3A +b— 1( - ﬂ)li+a—b—1 (4.6‘1)

2)? + a(l — a)22 7

Upon performing the following change of variables familiar from [95] and [97],

1 U

= 4.6.2
14+u Z U+ v+ uv ( )

a =

we obtain an integral representation similar that of [95] and [97],

d

Al _ 7 (k+A’+a——)F(A'+b—a)/ /

Witlab) = 3 T(k)T(A)T(A' +b) dv
uk+a—1,vk+a—b 1

X
(u+ v+ uv)F2e=b [(p _ 4)2 4 2 4 pg2]¥ 70t

(4.6.3)

Now the function W with b # 0 only enters the calculation of B® (equ.(4.5.67)),
and appears there only in the form of the sum W2'(1,1) + W2'(1,1). This particular
combination may be re-expressed in terms of W-functions with b = 0 only. This would
be difficult to see from the w-integral definition (4.5.53), but is manifest from the integral

representation (4.6.3), by using the following relation

- + - = . i (4.6.4)
(u+v+w) " (ut+v+w)l (Wt v+ w)k  (u+ v+ u)EH s
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Taking normalization factors into account properly, we find

k + AI - Q ’ k !
—— Wi (0,0) = 5Wia(0,0) (4.6.5)

WE (LD + (L) = x

As a result of this identity, there will be only two classes of w-integral functions entering
into the graviton exchange amplitudes : W2'(0,0) and W2'(1,0).
Similarly, a relation exists expressing W2 (1,0) in terms of W (0, 0)-functions. This

may be established by using the fact that the quantity

(é)a_u + %) ((u —(I-u:)j_;v)’“ [(z —y)? + 192 + va]A') (4.6.6)

has vanishing integral in u and v, and by carrying out the derivatives explicitly and re-

grouping the result in terms of W-functions. The final result is

2k + 1)(A)PWE (1,0) = k(k+ A %’)(k +A - g _ WA1(0,0)
k(2 + 1)(k + A — g)W,ﬁ(;l(o, 0) (4.6.7)

+h(k +1)*Wi 7 (0,0) — k(A" (2® +y*) Wi, (0,0)

The w-integrals W' (0,0) and W/'(1,0) may each be expressed in terms of derivatives
on two universal functions. To show this, we proceed as in [95] and [97], where analogous
results were obtained for the scalar and gauge exchange graphs. We begin by introducing

the conformal invariants

_1(=z- y)? _ 1 233234
B 2 .'1;2 —+ y2 B 2 :L’%2£L‘§4 + x%4x%3

2 _ 2 2 2 2 -2
T4 — T{aT34 — T14T
‘= Yo TiaT34 14223 (4.6.9)

2 2 7 .2 .2 2 .2
e +y T{aT34 + T14T23

(4.6.8)

whose ranges are 0 < s <1 and —1 <t < 1. Next, we perform a change of variables

u =2p(l =)
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v =2p(14)) (4.6.10)
under which we have

Wk I(a’ 0)

7t D(k+A'+a-— d)I‘(A'—a / /dA
257 TR + )5

pk-—l(l = /\2)k+a 1 1
X U

[14 p(1 = A2)[kt2e (s+ p+ pAt)A'-e

(4.6.11)

It is now possible to write the right hand side as a derivative with respect to s of order

A" —a —1 of an integral in which the denominator involving s appears to degree 1, using

L _(pHay
(s+w)r — T(p) (5;) stw (4.6.12)

Next, we change variables to p = s/ and recognize that the new integral is a derivative

with respect of s of order £ — 1 + 2a. Putting all together, we obtain

a (D)AHEHe Ak + A a— §)
" T®E)T(k + 2a)T(AN2(z2 + y2)a—a

x (%) A’_a_l{sk-l (%)k_1+2a1a(s, t)} (4.6.13)

where the universal functions I,(s,t) are given by the following integral representations

o 1o (1— )\2)e 1
I — 2a
o(5:8) = s /d“/ Ao 1T a N

2
/d (1=2%)e 1+t

Wk ,(a? 0)

1+ /\t — S 1 — A?) In s(1— )\2) (4.6.14)

The integrals I,(s,t) are perfectly convergent and produce analytic functions in s and ¢,

with logarithmic singularities in s and t.
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4.6.2 Series expansions of W/ (a,b)

Series expansions of the functions W2'(a,0) may be obtained easily from the series ex-
pansions of the universal functions I,(s,t). There are two different regions in which the

expansion will be needed :

a) The direct channel (“t-channel”) limit |z13] < |Z12|, |Z24] < |Z12|, which
corresponds to s,t — 0.

b) The two crossed channels; one (“s—channel”) is the limit |z12| < |z13],
|z34| < |713], which corresponds to s — 1/2, ¢ — —1, and the other (“u-

channel”) is |.'L'23| < |.’L'34|, |IL'14| < |.'1734| in which s — 1/2, t— 1.

We shall now discuss each limit in turn.
(a) Direct channel series expansion

The direct channel limit is given by s,¢ — 0, and the expansions of the functions I, (s, t)

are given by

Iy(s,t) = i{—lns ar(t) + b (t)}s (4.6.15)

Ii(s,t) = Z{ Ins a(t) + be(t)}s*+2 (4.6.16)

where the coefficient functions are given by

1o (1= A2k (1-=2HF 1+ X
ak(t) = /;ld)\m / d/\ 1 + )\t krl In 1— )2 (4617)
1 (1 _ )\2)1{:+1 )\2 k+1 1+ M\t
ak(t) = S = In .6.
a(t) =[x T 0= / 0% ATty (4618

The coefficient functions admit Taylor series expansions in powers of ¢ with radius of

convergence 1. Actually, in view of (4.6.7), we have the following relations between these

functions

(k+2)ae®) = (k+1)(2ak(t) — arr(t)) (4.6.19)
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(k+22b(t) = (k+1)(k+2)(2be(t) — brs1(t)) — 2ax(t) + apa (t)  (4.6.20)

From (4.6.13) and (4.6.15, 4.6.16), we obtain the series expansions of W2'(0,0) and

W{'(1,0) using the following differentiation formulas

9Nk . [(k+1)
° (83) = Tk—p+1) (4.6.21)
#(5) (#ma} = I“‘(l;(ﬁ;—i)l) $* {Ins +(k+1) — (k- p+1)} (46.22)
We find
( )A+p7T2P(p+A-— k+1)2 k—A+1
WR0.0) = SerGrT AR o8 & T p s BTG =BT D
{bk(t) —ae(@)lns + 20k +1) — ¥k — A+2) — gk —p+ 2)4}6.23)
and
A _ (_)A+p+17r%F(p+ A-—2 k + l)P(k + 3) k—A+2
W, (1,0) = 2A+1F(p)F(p+2)P(A)2(x2+y A 1 Z F(k P+ 2)T(k—A+3) (4.6.24)

-{ék(t) —a(®)[Ins+ Yk +1) + Pk +3) — Pk — A+3) -k —p+ 2)]}

The presentation of these series expansions is slightly formal in the sense that for k < A—2,
the I'(k — A 4 2) function in the denominator produces a zero, while the 1)(k — A +2) term
produces a pole, which together yield a finite result, which amounts to a pole term in s.
Its coefficient can be obtained from the formula lim,_,o ¢(z —¢q)/T'(z —¢) = (=)?"''(g+1)
for any non-negative interger q.

(b) Crossed channel series expansion

The crossed channel asymptotics is given by s — % and ¢ — +1, and may also be
obtained from the series expansion of the functions I,(s,t), with a = 0,1. Actually, it
suffices to obtain the expansion of Iy(s,t) and thus of WpA'(O, 0) in this limit and then to

compute the series expansion of WPA'(I, 0) by using the relation (4.6.7). This is useful in
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this case, since the expansion of I;(s,t) appears more involved than that of Iy(s,t).

We start from the definition of Iy(s,t) in (4.6.14) as a double integral and consecutively
perform the following changes of variables u = (1 + At)o and 7 = (1 + o)™}, so that

1 1 1
lofst) = [ dr [ A=+ M) 51— ) (46.25)

This form of the universal function Iy(s,t) is now precisely of the form studied in [97], and

the A-integral may be performed explicitly in an elementary way. We obtain, as in [97]

Io(s,t) = I8 (s, t) + I;B(s, 1) (4.6.26)
where
og _ 2 1 1
I(s,1) = —In(1—t )/0 dT\/wz T (4.6.27)
I8(s,t) = 2/ dT — 72(1 = ln{% + (;Lz -(1- tz)} (4.6.28)

where the composite variable w is defined by w = 1— (1 —2s)(1 — 7). In the neighborhood
of s=1and t = +1, we havew ~ 1 and 1~ 2 ~ 0, so that the integrals in (4.6.27,4.6.28)
are both uniformly convergent, and may be Taylor expanded in powers of (2s — 1) and
(1 — t?). Thus, Ig®(s,t) is analytic in both s and ¢ in the neighborhood of s = 1 and
t = +1, and all non-analyticity is contained in the factor In(1 — #2) of I ®(s,t). The

integral admits a double Taylor expansion given by

o0

IP8(s,t) = —In(1—13) Y (1 — 25)Fcu(?)
k=0
1 1 k+1 k+3 o TU+131) (11—
= - ; ;1 — - 4.6.2
() = o7fG =) ZZ; T & 20+k+1 (4.6:29)
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This expansion may be used to evaluate the logarithmic part of WPA' (0,0) and we obtain

the following result

—_ _p—27r§n 42 F(I""A'—%)
e NI e
(k-l—l) p—E—1 (1 _2s)k—p+£—A’+2
ZZF(A' -0 O T(k—ptl—A+3)

£=0 k=0

w2'(0,0)

ax (£)(4.6.30)

Notice that in the crossed channel, no power singularities arise.

4.6.3 Asymptotic expansion for the graviton exchange

We now turn to the direct channel asymptotic expansion of the graviton exchange graph
for A = A’ = d = 4. The power singularity terms may be read off directly from the general

asymptotic expansion formula (4.6.23) restricted to d = 4, and we have

mT(p+A—-2) (—)pt <=2 kr (k+1)2T(A—k—1) axr(t)

A
Wp (0, 0) QAF(I))2F(A)2 .’172 + yZ)A § ) I"(k p+ 2) gA-1-k
(4.6.31)
Similarly, we have from (4.6.24)
2 -1
A mI'p+A-1) (=)
Wi (1,0) 2A+1F(p)1“(p +2)T(A)? (2% +y?)4!
DIk — k- i
« Z P (k+ 1Tk +3)T'(A 2) ax(t) (4.6.32)

kg1 'k-—p+2) sA—2-k

The full singular power part of the amplitude is now easily obtained by working out the
asymptotics above in the cases W,(0,0), W;(0,0) and W2(1,0) with p = 1,2,3. The
function W}(0,0) has no power singularities and does not contribute here. Putting all

together, we have

48 1
76 (22 + y?

; [_Q(a(,sgt)+a;(2t)+azs(t))+3(d(;3 +&;gt)+&2£t)) (4.6.33)

Bsing = -
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Using the series expansions of the functions ax(t) and ax(t) to low orders, taking into

account that generically, s vanishes like ¢?,

2. 2 4 4 16
t = 2 t2 t4 t) = — —t2 —
ao(t) +3 +5 ar(t) 3+5 ax(t) 15
4 4 16 48 32
_ ___t2 t4 a1 (t) = — ——¢2 a = — .0.
Go(t) = + T a(t) = 75 + 755t 2(t) = 33 (4.6.34)

The final result for the singular part of B is

27 1 1 5 4 1 . 8
" 3576 (x2 Ty ) ( Tt — 6t°) + 8_2(7 —3t) + 3 (4.6.35)

Bsing

Repristinating the overall kinematic factors we get the final result for the singular terms

in the direct channel of the graviton amplitude

210 1

Igrav
sing " 3510 Y3384

s (T2 + 6t*) + s2 (=7 + 3t?) — 8 &° (4.6.36)

Notice that the leading singularity z7¥ cancels between the various tensor contributions
to the amplitude. The physical interpretation of this singular expansion is discussed in

Section 2.3.

The logarithmic singularities may be read off directly from the asymptotic expansion

formulas of (4.6.23, 4.6.24), and we have

o1 ™ L(p+2) Ins D(k + 4)%sk

W00 = EHETer @ TG s i r?
2%

7 I'(p+3) Ins I'(k +5)%s*

5 — _\p
Wo(0.0) = V3 Tor @t = Tht6- p)l"(k+1)ak+4(t) (4.6.37)
2 00 k
5 T F(p+4) Ins L(k+6)I'(k+4)s" .
o0 = () e T+ 2) @+ v2)f &= Tk +5 — )Tk + 1) =+

Assembling these contributions to the logarithmic singularity and expressing the coefficient
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functions ax(t) in terms of ax(t) using (4.6.19) we get

3-23 lns > F(k+4)
Lol = st {—25k2+20k+16 3k + 15k + 22)axs(
ol = e S e 2 Y Jawsal)
+(k + 4)2(15K% + 55K + 42)ak+4(t)} . (4.6.38)
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Appendix A

Normalization of 2—point function.

For scalars with dimension A = d the correlation functions achieve constant limiting values
as we approach the boundary of AdS space. If A # d then the correlation function goes to
zero or infinity as we go towards the boundary, and must be defined with an appropriate
scaling. In this case an interesting subtlety is seen to arise in the order in which we take

the limits to define various quantities, and we discuss this issue below.

Let us discuss the 2-point function for scalars. We take the metric (2.2.3) on the AdS
space, and put the boundary at zp = € with € << 1; at the end of the calculation we take
€ to zero. We also Fourier transform the variables Z, and follow the discussion of [2].

The wave equation in Fourier space for scalars with mass m is

a a s -
d+1 9 1 —dt1 9 (12,2 2 _
24 % BN 7 #(20, k)] — (k*z5 + m?)p(20,k) =0 (A.1)

where we have written
= 1 7 k% 7
¢(Zo,$) = W/dk € qb(Zo,k) (A2)
The solution to this equation is

320, K) = 28 Fylikzo] (A.3)
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where F), is a solution of the Bessel equation with index

d &
v = A-2 = [T 4+m? (A.4)

The action in terms of Fourier components is

S = 1 [ dzo dkdk'S(E + k')z5 +!
(A.5)

(5% 6(20, F) 2620, F') + (K2 + )6 (20, F) (20, K]

We have to evaluate this action on a solution of the equation of motion with ¢(e, E) =

(k) given. An integration by parts gives
1 TN 7 P = -
S = —2— /dkdk'&(k’ -+ k’) zl§§5 Za—d+l[¢(zo’ k)azo¢(zo, kl)] (A6)

If we have a solution to the wave equation K¢(z, k) such that

-,

lim K(z,k) = 1, lim K(z0,k) =0 (A7)

Z0—€ Z0—>00

then we can write the desired solution to the wave equation as
(20, k) = K(z0,k)$n(F) (A.8)

Then the 2-point function in Fourier space will be given by
(OR)OK)) = — ek + k) lim 8.0 K¢ (20, k) (A.9)

We have

K¥(z0, ) = (z—g’)d/z%% (A.10)

where K is the modified Bessel function which vanishes as zp — co. For small argument
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K, has the expansion

IO
K, (kz) = 2"7'T(w)(kz)™"[1+...] - 2”"”1¥(kzo)”[l +...] (A.11)
where the terms represented by ‘...” are positive integer powers of (kzo)2. Then (A.9) gives
(O(R)O(k)) =
. o kzo) Vs 4., — 2B (o kg 4
A (E ) T (k) 20, ) - ff(ifg( 0
(k€)™ + ... = 2755535 (ke)» + ...
= —2A-D5(k + Kk 2 {2 () +
(A.12)

Here in the last line we have written only those terms that correspond to the power law
behavior of the correlator in position space, and further only the largest such terms in the
limit € — 0 have been kept. In particular we have dropped terms that are integer powers in
k2, even though some of these terms are multiplied by a smaller power of € than the term
that we have kept. The reason for dropping these terms is that they give delta—function
contact terms in the correlator after transforming to position space, and we are interested

here in the correlation function for separated points.

The result (A.12) is the Fourier transform of the function

L oaag@RA-dT@A+]D) o o oa

d/2 A T(A-¢ bl

(A.13)

which should therefore be the correctly normalized 2-point function on the boundary
2o = €. It also agrees with the correctly normalized 2—point function required by the Ward
identity (2.3.44). The power of ¢ indicates the rate of growth of this correlation function
as the boundary of AdS space is moved to infinity, and we can define for convenience a
scaled correlator that is the same as above but without this power of €. The correlation

functions given in the rest of this paper are in fact written after such a rescaling.

97



We would however have obtained a different result had we taken the limits in the

following way. We first take ¢ — 0 in the propagator (A.10), obtaining

Using (A.14) in (A.9) we get

(O(k)O(K)) = —e2A-D§(k + E/)k2u2—2u£8 -_I-_Zi (v + g) +

which differs from (A.12) by a factor

A
20 —d

(A.14)

(A.15)

(A.16)

The difference between (A.12) and (A.15) can be traced to the fact that the terms in

K¢(z) which are subleading in € when 2, is order unity, give a contribution that is not

subleading when z; — €, which is the limit that we actually require when computing the

2-point function.
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Appendix B
Properties of DA A,A N,

We have seen that a basic building block in expressing the 4-point functions is the quantity

DA, azn,0,, defined by

dd+1z 5 - _ _
DA1A3A2A4($1,$3,$2,$4) =/71;TKA1(Z,$1)KA3(Z7$3) KA2(2,$2)KA4(27$4) (B-l)
0
where Ka(z,z) is
A

~ 20
K = | ————= . B.2
A(Z:x) (zg_’_ (Z—f)2> ( )

(note the different normalization from K(z, z), equ.(4.3.31)). Thus Da,asa,a, corresponds
to a quartic interaction between scalars of dimension A;, with a simple non-derivative
interaction vertex, see Figure 5. Note that sometimes we suppress the explicit coordinate
dependence of the D functions. Coordinate labels are always understood to be in the order
(2123%2%4).

While the result of the computation of the graviton exchange graph gives a sum of
many different D functions, in fact all these functions are closely related to each other.
We show that one can relate Da,aza,n, t0 Da,—1a5-18,a, aDd DA azA 418,41 (see for
example (B.3.9)). Further, all the D functions can be obtained from differentiating one
single expression (which can be obtained in closed form) with respect to the variables

2

zZ;. This is shown in section A.3. Using this latter fact we show how for example how
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Dapi1Azy1 (+ symmetrizing permutations) can be related easily to expressions of the
form Dyaz4 (see (B.5.16)). These relations are useful to arrive at the two simplified
forms of the graviton amplitude (4.4.38) , (4.5.70) given in the text and to show their

equivalence.

B.1 Relation between Da,a,n,4, and W2 (a, b)

The standard integral introduced in (4.5.53) is just a quartic graph evaluated in the in-
verted frame, with some kinematic factors omitted. The precise relation with Da,a;a,4,
is

A’ _ 2k, 20 2(A+b)
Wi (a,b) = 213 215 213 Daa—btk,k, a+b, (B.1.3)

B.2 Derivative vertices

The first thing we note is that if we have a quartic interaction with derivatives, given by
a coupling
0 9 ad B.2.4
¢A1 (Z) ¢A3 (Z) %¢A2(2) quAl (Z) g, ( it )

then the computation of the 4-point function with such an interaction can again be reduced

to a sum of terms of the form (B.1). This is done with the identity [94]

~ 0

0 . - .
9K (2 m) 5o K(202) = Al [Ka, (2,21) K, (2, 72) (B.2.5)
~200, K a,41(2,81) Ky (2,7)] -
Thus
_ dé+ly . 0 - , 0 -
DA1A33A23A4 = /76111_KA1 (27371) KA3(27$3) @KA2 (27 x2) 29 -@KAAI (2,374)
= Ay (DA1A3A2A4 - 2.%%4 DA1A3A2+1A4+1) . (B'2'6)
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B.3 Lowering and raising A;

Not only does the identity (B.2.6) allow us to remove derivatives from the quartic vertex,

it is also useful to relate various D functions to each other. Let us rewrite the l.h.s. in

(B.2.6) as

dd+1 _ N -
DA1A36A23A4 = 2/ d+1 KA1 Z, $1)KA3(Z .’L‘3) z (KAz(z: $2)KA4(Z, 1'2))

5 (mA2 + mA4) IINVNYNYY (B.3.7)

where m% = A(A — d). Upon integrating by parts of the first term in (B.3.7) we get

1 N - )
5 / ()0, (K Ka,) KauKa, = / [dz] KAlzD Koo Ka,Ka,

+35 2 (mAl + mAg) DA1A3A2A4 (83.8)

Putting relations (B.2.6,B.3.7, B.3.8) together, we find in particular, for A; = Az = A,
AQ = A4 = AZ

N33, Danssian = A% D yiamas + % (A2 — A%+ mj - mA) Dapaa  (B3.9)
A special case is A = A, which implies:
v5Danariart = T33Datiarian - (B.3.10)
Iteration of (B.3.9) allows one to prove that more generally

(254)" Daastnatn = (235)" Datnatnan - (B.3.11)
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B.4 Obtaining Da a;a,n, in closed form

By using a Schwinger parameterization and performing the z integrals, one finds [113] (and

references therein):

DA1A3A2A4 (zl’ I3, T2, 1'4)

mar(% d)F§ /H jdog o (S0 — 1) (B.4.12)
2ILT (Zklakalxkl)

where

Y= ZAi. (B.4.13)

We observe that any Da,a;a,a, can be obtained by differentiating an appropriate number

of times in the variables z;; the basic function

B(zy) = [ deaj Bioi D) (B.4.14)

P
Zk ! akaz-Tkz)

B(zi;) is given in closed form in {113]. From the integral representation (B.4.12) we

immediately find

0 2A.A
022, Daragasas == D) l_ d3 DA, +185+1854, (B.4.15)

B.5 Symmetrizing identities

Equation (B.4.15) can be used to show that a sum of D functions which is symmetric
under x; <> x3 and z3 <> x4 can always be rewritten in a basis in which each individual

term shares this symmetry, i.e. each term is of the form D, x4. For example:

Y —-d A
x%QDA+1AA+1A + $%4DA+1AAA+1 = ﬁ“ AAAA T Z x%3DA+1A+lAA (B.5.16)
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where ¥ = 2A + 2A. Let us see how to derive this identity. It follows from conformal

invariance that

e
Dayasann, = (H(fE?j) z +6> En,ns0,04(61m) (B.5.17)
i<j

where & = ;P;%—j n= —54—31 are conformal cross ratios. From simple chain rule manipula-

tions we then get

0 0 d
(ﬁz o7, + x5 o, + x%“a_xﬁ) Ennsn.n,(&m) =0. (B.5.18)

Using (B.4.15), the last equation is tantamount to (B.5.16) for Ay = A3 = A, Ay = Ay =

A. Similar arguments lead to the more complicated identity

23285 Datoniian + 95383 Dantodniae = (B.5.19)
A -d)(Z+2—-4d)
TA+1 (x3225, + x%4ng)DA+1A+IA+1A+1 + 4(A + DA? AAAA
ARA+1)(E2+2—-4d) A(A+1)
- 204 + 1)&2 m%3DA+1A+IAA + Az $%3DA+2A+2AA ’

where & = 2A + 2A.

B.6 Series expansion of D, xx
From (B.1.3) and (4.6.23):

f: [(k+1)% sk+1
ST(k—A+2T(k—A+2)
A+

+2) — k- A+ 2)]} . (B.6.20)

)AASD(A + A — 9)
Danaa(@1, 3,22, 24) = ) ( 5| )2
i3

T'(A)2T(A)2(z
{bk(t) — ap(t)ns + 20(k + 1) — bk —
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