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Abstract

In this thesis we study in detail several situations where the areas of Riemannian
geometry and quantum field theory come together. This study is carried out in
three distinct situations. In the first part we show how to introduce new local gauge
invariant variables for V = 1 supersymmetric Yang-Mills theory, explicitly parame-
terizing the physical Hilbert space of the theory. We show that these gauge invariant
variables have a geometrical interpretation, and that they can be constructed such
that the emergent geometry is that of AV = 1 supergravity: a Riemannian geome-
try with vector-spinor generated torsion. In the second part we study bosonic and
supersymmetric sigma models, investigating to what extent their geometrical target
space properties are encoded in the T-duality symmetry they possess. Starting from
the consistency requirement between T-duality symmetry and renormalization group
flows, we find the two-loop metric beta function for a d = 2 bosonic sigma model on
a generic, torsionless background. We then consider target space duality transforma-
tions for heterotic sigma models and strings away from renormalization group fixed
points. By imposing the consistency requirements between the T-duality symme-
try and renormalization group flows, the one loop gauge beta function is uniquely
determined. The issue of heterotic anomalies and their cancelation is addressed
from this duality constraining viewpoint, providing new insight and mechanisms of
anomaly cancelation. In the third part we compute a radiative contribution to an

anomalous correlation function of one axial current and two energy-momentum ten-

sors, (A,,(z)T,,,(y)Tp,(x)), corresponding to a contribution to the gravitational axial
anomaly in the massless Abelian Higgs model. In all three situations there is a rich
interplay between geometry and field theory.

Thesis Supervisor: Jeffrey Goldstone
Title: Cecil & Ida Green Professor of Physics
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Chapter 1

Introduction

Ever since the dawn of modern science, the fields of physics and mathematics have

been unequivocally associated to each other in a multitude of situations and areas.

One may possibly claim that they also share the same roots, and therefore advances

in one field must always reflect on the other and vice-versa, no matter how trivial

or fundamental such a reflection might take shape. Examples of such situations are

quite often met in the research which is nowadays performed (independently) in both

fields.

Having followed on somewhat distinct paths perhaps ever since late in the last

century, there is still a very strong interest by many researchers in the boundary of the

two fields, exploring the interface science that has come to be known as mathematical

physics. One such aspect that we wish to explore in this thesis is what lies in this

interface at the point where Riemannian geometry and quantum field theory meet.

We shall see, through the three distinct problems that build this thesis, that many

interesting results are there to be explored and investigated.

We shall begin by looking at a problem in 3 + 1 dimensional supersymmetric

gauge theory, to be specific, A = 1 supersymmetric SU(2) Yang-Mills theory. In

here we develop a new tool to study the strong coupling limit of this theory, in the

form of introducing new variables for the Yang-Mills theory, which have the property

of being gauge invariant. Indeed gauge invariance is an important constraint on the

states of the gauge theory, in the form of Gauss' law. The fact that the Yang-Mills
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system is constrained has been a difficult drawback to solve in order to fully explore

the quantization of this theory. The question of whether one can construct gauge

invariant variables then becomes of relevance as one realizes that such variables would

allow for a trivial implementation of the Gauss' law constraint. If moreover one can

construct these variables such that they are local, they would then seem to be the

most appropriate ones to describe the moduli space of the theory. One more point

in favor of such a programme is the fact that in temporal gauge the remaining gauge

invariance of the Yang-Mills theory is restricted to space-dependent transformations

at a fixed time. This is in fact the true quantum mechanical symmetry of the theory.

Working with local gauge invariant variables this symmetry of the Hamiltonian can

be maintained exactly, even under approximations to the dynamics.

All this said, we strongly believe that this is indeed an interesting problem to ex-

plore in quantum field theory, but one would not seem to realize where the connection

to Riemannian geometry would come into the game. What we shall see later is that

such a connection arrives from the way we will choose to define the new variables: we

shall replace the gauge connection of SU(2) by a covariant variable under the gauge

group, which shall enjoy the fact that it can be also interpreted as a dreibein, i.e., a

square root of a metric. We shall see that this metric lives in a 3 dimensional mani-

fold, and that it can be used as a local gauge invariant variable for Yang-Mills theory.

However, our interest in here is, as we mentioned before, on supersymmetric Yang-

Mills theory. Therefore, we must not forget to include the fermionic partners of our

bosonic variables. In chapter 2 we shall see in detail how this can be accomplished.

We shall learn that the local gauge invariant variables we will construct for V = 1

supersymmetric Yang-Mills theory have a Riemannian geometrical interpretation in

the sense that they can be constructed such that the emergent geometry is that of

K 1 supergravity: a Riemannian geometry with vector-spinor generated torsion.

After studying this problem, we leave gauge theory behind and move into the do-

main of sigma models, where we shall study both bosonic and supersymmetric sigma

models. In these models, describing maps from a given two dimensional surface into

a general target manifold, Riemannian geometry makes its appearance from the very
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beginning, in the action for the models we shall consider. Indeed, having emerged

from string theory - a possibly quantum theory of gravity - it is but to expect that

a metric should somehow be incorporated in these models from scratch. Indeed, Rie-

mannian metrics in the target manifold are nothing but infinite-dimensional coupling

parameters of the two dimensional quantum field theory. The Riemannian geometry

of the target is therefore constrained by the quantum field theoretic properties of the

two dimensional theory and, in the particular case of string theory, the condition that

the beta functions for the diverse couplings of the sigma model vanish is equivalent to

saying that the geometrical structures in the target manifold obey the [generalized]

Einstein's equations.

But again because these models are string theory inspired, we can look at all

the nice properties of strings and ask which, if any, of such properties are still valid

once we move away from the conformal fixed points where the sigma models describe

strings - and in particular whether such properties have any chance of being valid

throughout all of the parameter space of the sigma model. One such property we shall

be interested about, and which we shall study in detail in chapters 3 and 4 of this

thesis, is target space duality, henceforth T-duality. This is a perturbative symmetry

of string theory which basically relates target manifold compactifications in circles of

radius R with compactifications in circles of radius trg ,/R, with trg being the

characteristic string length. We will learn that by exploring a consistency requirement

between T-duality and the renormalization group flows of the sigma model, we shall

be able to find the beta functions of these models for all the coupling parameters.

From a string theory point of view this simply means that geometrical target space

properties are encoded in this T-duality symmetry. Moreover, in the case of heterotic

sigma models, we will also learn that this duality symmetry provides new insight and

mechanisms for cancelation of a certain class of anomalies.

Once we are done with sigma models, we shall return to the realm of the 3+1 world,

and study the problem of gravitational axial anomalies. If the anomaly is beyond

doubt a quantum field theoretic phenomena, it is also not less clear that gravitation

is a Riemannian geometrical phenomena (at least in the domain of energy we shall
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be looking at). We are therefore in a situation where we encounter quantum fields

in a curved background spacetime. In this last chapter of the present thesis, chapter

5, we shall compute a radiative contribution to an anomalous correlation function

involving one axial current and two energy-momentum tensors, corresponding to a

contribution to the gravitational axial anomaly in the massless Abelian Higgs model.

We shall learn new techniques to perform such a complicated calculation, and we

shall see that the two loop contribution is found not to vanish, due to the presence

of two independent tensor structures in the anomalous correlator.

The three problems dealt with in this thesis are clearly quite distinct, but they

all share the property of presenting yet some new examples of interactions between

Riemannian geometry and quantum field theory. These problems appeared in the

literature as four distinct publications. Chapter 2 was published in Nuclear Physics,

[65]. Chapter 3 was published in Physical Review Letters, [47], and chapter 4 is to

be published in International Journal of Modern Physics, [58]. Finally, chapter 5 was

published in Physical Review, [60]. During the process of five years of study at MIT,

I also enjoyed the opportunity of doing other research, not directly related to this

thesis. In particular, other matters and problems were studied, and I believe they

should be mentioned in here. These research projects were not included in this thesis

as they did not share the same theme studied in here, the one of interactions between

geometry and quantum theories. These projects were (a) studies on classical configu-

rations of string theory in 3+1 dimensional target manifolds, where the strings under

consideration had an initial knotted topology. These investigations were published in

Physics Letters, [24, 66]. The other research project was (b) a study of the quantum

cosmology of an S-duality invariant V = 1 supergravity model in a closed homoge-

neous and isotropic Friedmann-Robertson-Walker spacetime, and which is to appear

in Classical and Quantum Gravity, [16].
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Chapter 2

Super-Yang-Mills Theory

2.1 Introduction

For quite sometime now there exists a nice geometrical setting for Yang-Mills theory.

That is based on fiber bundle differential geometry, where the configuration space is

obtained by factoring out time independent gauge transformations, and is then seen

as the base space of a principal fiber bundle, where the structure group is the gauge

group [57]. There are many concepts of Riemannian geometry that can then came

into the game, as there is the possibility of defining a Riemannian metric on the space

of non-equivalent gauge connections [8].
However, this setting must be cast into a more workable form when we want to

study the strong coupling regime of Yang-Mills theory. In here, gauge invariance

becomes an important constraint on states of the theory in the form of Gauss' law.

This constraint amounts to a reduction of the number of degrees of freedom present in

the gauge connection: if one starts with a gauge group G, in the canonical formalism

and in temporal gauge A' = 0, the number of variables is 3 dim G, when in fact we only

have 2 dim G physical gauge invariant degrees of freedom. The question of whether

one can construct local gauge invariant variables is then an important one, as it

would allow us to easily implement the Gauss' law constraint. These variables would

then seem the most appropriate ones to describe the physical space of the theory.

Moreover, observe that in temporal gauge the remaining local gauge invariance is
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now restricted to space-dependent transformations at a fixed time. This is the true

quantum mechanical symmetry of the theory. Working with local gauge invariant

variables, this symmetry of the Hamiltonian can be maintained exactly, even under

approximations to the dynamics.

This idea first appeared in [48, 36], and has recently gained new momentum with

the work in [30, 11, 54, 43, 55, 40, 33, 45, 44], and references therein. In [43], one

constructs a change of variables that will allow replacing the coordinates A by new

coordinates u7 which have the property of transforming covariantly under the gauge

group, as opposed to as a gauge connection. Then, in these new coordinates, the

generator of gauge transformations becomes a (color) rotation generator, and by

contracting in color we can obtain gauge invariant variables to our theory, gij =

uqu. States I[gi-] depending only on these gauge invariant variables manifestly

satisfy Gauss' law. One must be careful, however. Not any choice of gauge covariant

variables is adequate: an appropriate set of variables should describe the correct

number of gauge invariant degrees of freedom at each point of space, and should also

be free of ambiguities such as Wu-Yang ambiguities [79]. In this case, several gauge

unrelated vector potentials may lead to the same color magnetic field. Variables that

are Wu-Yang insensitive are of no use, as in the functional integral formulation Wu-

Yang related potentials must be integrated over - since they are not gauge related -,

while functional integration over Wu-Yang insensitive variables always misses these

configurations. The absence of Wu-Yang ambiguities will be clear if we are able to

invert the variable transformation, i.e., if when transforming A --+ u one can also

have an explicit expression for A[u].

In [43], the set of gauge covariant variables {ui} that replace the SU(2) gauge

connection was defined by the differential equations:

ciikD u"a Ckk u a + cabcA U) = 0, (2.1.1)
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which is equivalent to writing,

-- + 6abcA bUc - Is ak = 0, (2.1.2)

as the {ua} have det u : 0, and so form a complete basis. Observe that we have

fje - ig, and these quantities can be written as,

1
3jk g"(&g gn + kgkYa - angk), (2.1.3)

where

g ui= tut. (2.1.4)

So, a "metric" tensor was implicitly introduced by the defining equations for

the new variables, (2.1.1). Observe that equation (2.1.2) is simply the so-called

dreibein postulate, where the {u} plays the role of a dreibein, Lif = C6 A. is a

spin-connection, and I . is the affine metric connection. A torsion-free Riemannian

geometry in a three manifold was then introduced by the definition of the new vari-

ables. The metric gij contains in itself the six local gauge invariant degrees of freedom

of the SU(2) gauge theory. Moreover, any gauge invariant wave-functional of Ai can

be written as a function of gij only, and any wave-functional of gi, is gauge invariant

[43]. This implements gauge invariance exactly. Finally, the dreibein postulate can

be inverted so that one obtains,

1
bc= 2 bi *V UC (2.1.5)

where we use the notation V u - n U for the purely geometric covariant

derivative (as opposed to the gauge covariant derivative). Therefore, the new variables

avoid Wu-Yang ambiguities.

Full geometrization of Yang-Mills theory in this formulation was then carried out

in [43, 40]. The electric energy involves the inversion of a differential operator that

can generically have zero modes. By deforming equations (2.1.1) it was then shown

how one could proceed to compute the electric tensor [45]. Instanton and monopole
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configurations have been identified as the S3 and S2 x R geometries [45], and, more

recently, the form that the wave-functional for two heavy color sources should take

has been calculated [44]. The computations are carried out in the Schr6dinger repre-

sentation of gauge theory, see [51] for a review.

Supersymmetric Yang-Mills theory has also been well established for quite some-

time now. It allows for many simplifications in quantum computations, and with an

appropriate choice of matter content and/or number of supersymmetry generators,

one can obtain finite quantum field theories. Textbook references are [9, 77, 78].

Moreover, recently there has been a lot of progress and activity in the field due to the

possibility of actually solving for the low-energy effective action of certain cases of

supersymmetric Yang-Mills theories, starting with the work in [68]. It is then natural

to extend the work on gauge invariant geometrical variables to the supersymmetric

case. That is what we shall do in here.

We shall see that it is possible to define variables that also have a geometrical

interpretation, namely, as the variables present in supergravity. We should point out,

however, that no coupling to gravity is ever considered. Still, we need a motivation

to construct the new variables. As in the pure Yang-Mills case the new variables and

geometry have an interpretation as the variables and geometry of three dimensional

gravity, it is natural to assume that in the supersymmetric case the new variables

and geometry could likewise have an interpretation as the variables and geometry of

three dimensional supergravity.

This shall be a guiding principle throughout our work. More geometrical intuition

on how to construct the new variables will come from an extra symmetry enjoyed by

both the canonical variables and Gauss' law generator. That is a symmetry under

GL(3) transformations, a diffeomorphism symmetry. This will allow us to naturally

assign tensorial properties to diverse local quantities of the theory. Obviously the

Hamiltonian (or any other global operator) will not possess this symmetry. After all,

supersymmetric Yang-Mills theory is not diffeomorphism invariant.

The plan of this chapter is as follows. In section 2 we start by reviewing the

conventions of V = 1 supersymmetry, and also outline the geometry of supergravity.

14



In section 3 we will then explore the GL(3) symmetry, assigning tensorial properties

to local (composite) operators. With this in hand, we then proceed to define gauge

invariant geometrical variables for supersymmetric Yang-Mills theory in section 4,

carrying out the full geometrization of the theory in section 5. Section 6 presents a

concluding outline.

2.2 Review and Conventions

The conventions in [9, 77, 78] are basically the same. We will follow [9] with minor

changes, as we take a"' = 1[/,"]. The K 1 supersymmetry algebra is obtained

by introducing one spinor generator, Q, which is a Majorana spinor, to supplement

the usual (bosonic) generators of the Poincard group. The = 1 supersymmetry

algebra is then the Poincard algebra plus:

[P 1, Q] = 0,

[I,,, Q] = -iaVQ,

{Q, Q} = 2-y"P,, (2.2.1)

where Q -- Q 0 .

Supersymmetric gauge theory, based on gauge group G with gauge algebra g, has

as component fields the gluons, or gauge connection, A a; the gluinos, super-partners

of the gauge fields and Majorana spinors, Aa; and the scalar auxiliary fields Da. All

these fields are in the adjoint representation of 9. In Wess-Zumino gauge, the action

is,
1i

Sa= dF {--F, "+ "DA + D (2.2.2)
4 ~ 22

where we can see that the auxiliary fields have no dynamics. The supersymmetry

transformation laws of the fields, that leave the action invariant are:

6A a= is7A a

15



6A"a = (o-"'F" -ZiysDD)a

6D a = E-/5-/DPA a, (2.2.3)

where E is a Majorana spinor, which is the parameter of the infinitesimal supersym-

metry transformation. These transformation laws implement a representation of the

.I= 1 supersymmetry algebra in the quantum gauge field theory. The Noether

conserved current of supersymmetry is a vector-spinor,

JP = iy o ,0F,")a (2.2.4)

and so the quantum field theoretic representation of the supersymmetry generator is

given by the Majorana spinor,

Q = ild 3X 70-"'F,, Aa. (2.2.5)

This outlines our usage of notation for supersymmetric gauge theory. We still

have to outline notation for the supergravity geometry. In here, one has a graviton,

g,,, and a gravitino which is described by a Rarita-Schwinger field, 0, So, we need

to start by reviewing notation for inserting spinors in curved manifolds. Having a

metric, one can define orthonormal frames and so insert a tetrad base at the tangent

space to a given point, which will allow one to translate between curved and flat

indices. In particular, this allows us to introduce gamma matrices in the manifold,

and so introduce spinors. If we consider a manifold M, and pick a point p E M, we

can introduce a tetrad base {tUt} at p via,

Yiv ab (2.2.6)UYvab,

defining an orthonormal frame at each point on M. One can now insert gamma

matrices as )4(x)ua(X) = ya, where the ya are numerical matrices. Local Lorentz

transformations in the tangent space T M are Aab(p) and (Dirac) spinors at p E M

16



rotate as,

Oc(p) - SoO(A'b(P))OO(P). (2.2.7)

Next, one constructs a covariant derivative, Da4', which is a local Lorentz vector,

and transforms as a spinor,

Da4a -* Sac(A)AabDb4)o. (2.2.8)

That is done via a connection Q. such that, Da' = u +(ag + Q,)4, and,

1 1 b

W = gbab = a "v PU b Uab, (2.2.9)

where wab is the spin-connection.

Now that we have spinors defined on curved manifolds, we can proceed with

supergravity. In here, the Riemannian connection FP, is not torsion-free. It is still

metric compatible, so that one can write,

:PP = FP - K , (2.2.10)

where Fr is the affine metric connection, and K, ' is the contorsion tensor. Hatted

symbols will always stand for quantities computed via the affine metric connection.

The torsion tensor is,

TZ V = FP - IF, (2.2.11)

and so,

Kv = (T,1V - YvA T'a gT A- gAg"pTv A). (2.2.12)
2

In K = 1 supergravity, the torsion is defined by the Rarita-Schwinger field 0, as,

Ta V = k O>_f o" (2.2.13)
2

where a is a flat index, and k is the gravitational dimensionfull constant. The tetrad
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postulate is,

' ua - (9U, + ab p - a -0 (2.2.14)

and the covariant derivative acting on spinor indices is,

(D4)ao _ 6o4,0 + IWiab(0 ab)c. (2.2.15)

Finally, the supersymmetry transformations that leave the KV 1 supergravity

action (Einstein-Hilbert plus Rarita-Schwinger) invariant are:

&u",(x) =ifx $()

60P() = 2D(x), (2.2.16)

where (x) is the infinitesimal parameter of the transformation (now a space-time

dependent Majorana spinor), and where we have not included the auxiliary fields.

This ends our review and outline of conventions. We can now start analyzing the

gauge invariant variables geometrization of supersymmetric Yang-Mills theory.

2.3 Canonical Formulation and GL(3) Properties

In the Lagrangian formulation of the theory, the K = 1 supersymmetry algebra closes

only up to the field equations. In order to obtain manifest supersymmetry, and off-

shell closure of the algebra, one needs to introduce auxiliary fields. In contrast to this

situation, it is known that in the canonical formalism the KV 1 super Lie algebra

closes without the introduction of auxiliary fields (in terms of Dirac brackets the

algebra closes strongly; otherwise it closes weakly, i.e., up to the first-class constraints)

[73, 72]. So, we drop the auxiliary fields.

The Hamiltonian for supersymmetric gauge theory is therefore,

H = d%{ e2(Ei)2 + (B i[A.])2 _ -aZ D;A}, (2.3.1)

18



where e is the coupling constant. The gauge covariant derivative is,

D-Aa = &jAa + fabcA Ac, (2.3.2)

and the magnetic field potential energy,

Bi [b]2 Ik F," A ] = b iJk (A + fabcAbAc). (2.3.3)

We still have to impose the Gauss' law constraint on the physical states of the

theory,

ga(x) D-Eaz(X) - facA (x)Ac( g((x)[A., Ac] 0. (2.3.4)
2

This local composite operator is the generator of local gauge transformations.

There is one more element in the K 1 supersymmetric Yang-Mills theory, and

that is the Majorana spinor Q, the generator of supersymmetry. Using the definition,

Q J d3X Q(x), (2.3.5)

one can then write,

Q(x) = i(-ey;E i(X) + -Eijk100u ZB"k[Ab(x)])A"(x), (2.3.6)

or, using the explicit Weyl representation of the gamma matrices, we can equivalently

write this local composite operator in a more compact form,

0 (eEai(x) + 'Bai[Ab(x)])o-)
Q W (-eE i(X) + B at [An (X)])g- 0 ()

(2.3.7)

In the bosonic half of the theory, the canonical variables are A?(x) and Ea,(x).

Canonical quantization is carried out by the commutator,

[Ai(x), Eb(y)] = Z6ab 66(x - y). (2.3.8)
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The momentum E"i(x) will be implemented as a functional derivative acting on wave-

functionals as,

Eai(X)4[A', Ac] --+ -i x[A', Ac]. (2.3.9)
n 6A (X) n

In the fermionic half of the theory, one has a Majorana spinor Aa(x). Canonical

quantization is carried out by establishing the anti-commutation relations for the

spinorial field,

{A'(x), A'(y)} = 6 ( - y). (2.3.10)

Both the commutator and the anti-commutator are to be evaluated at equal times. We

can now compute the commutators and anti-commutators of this theory, which involve

the composite operators H, ga(x) and Q(x). Clearly, these (anti)-commutators are

related to the symmetry transformations generated by these operators.

The commutators involving the generator of local gauge transformations of the

canonical variables can be computed to be,

[A(x), Gby) - i(&ba - f"cbAc(x))6(x - y), (2.3.11)

[Eai(X), g b(y)] = f abcEci(x)6(x - y), (2.3.12)

[Aa(x), gb(y)] = ifab"A(x)6(x - y), (2.3.13)

and the (anti)-commutators involving the local composite operator associated to the

supersymmetry generator can similarly be found to be,

[A'(x), Q(y)] = -- ;Aa(X)6(X - y), (2.3.14)

[Eai(x), Q(y)] = e(6knm 0 nm)DjAa6(X - y), (2.3.15)

1
{Aa(x), Q(y)} = (-eyE i(X) + -gk ujB ak[A (X)])6(X - y). (2.3.16)

Moreover, one will also have that the Hamiltonian and the supersymmetry gener-
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ator are both gauge invariant composite operators, as,

[H, ga(x)] = 0, (2.3.17)

[Q(x), g(y)] = 0. (2.3.18)

As expected, the generators ga(x) define the local gauge algebra,

[ga(x), g()] = fabcgc(x)6(x - y) (2.3.19)

The supersymmetry generator Q defines, along with the generators of the Poincar6

algebra, the g = 1 supersymmetry algebra [73]. However, the defined local composite

operator Q(x) does not define a local algebra. That is to be expected as we do not have

local supersymmetry in the theory. This local operator was only introduced in order

to facilitate the following tensorial analysis based on diffeomorphism transformations

of the presented (anti)-commutators.

So, we now want to check that there is a GL(3) symmetry at work for the formulae

(2.3.8), (2.3.10) and (2.3.11-13), (2.3.19). The bosonic part tensorial assignments will

be just like in the pure Yang-Mills case [43], as is to be expected. The mentioned

canonical relations are covariant under diffeomorphisms xz - yn(X,) on the domain

R 3 , provided Ai(x) is a one-form in R 3 , transforming as

axi
A'"(y') = Aa(), (2.3.20)

where [axi/9yn] is a GL(3) matrix. That A(x) = Aa(x)Tadx" is a Lie algebra valued

one-form is a well known fact from the fiber bundle geometry of gauge theory; so

consistency holds. Also, provided Eai(x) is a vector density (weight -1) in R 3 ,

transforming as

E'an(y"n) = det[ ]--Ei(x). (2.3.21)

The same property holds for Bak(X). This is consistent with the implementation

of Eai(x) as a functional derivative (2.3.9), and with the definition of the magnetic
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field (2.3.3). Commutator (2.3.8) is then clearly diffeomorphic invariant, without the

intervention of a space metric. However, to introduce spinors, one does need a metric

(more precisely, a dreibein base). We shall assume there is a metric, gij, and later we

will construct it using the bosonic dynamical variables of the theory.

When restricted to three dimensional Euclidean space, Lorentz transformations

become rotations in R 3. The spinor representation of a rotation is then, at a point

p E M, given by the orthogonal matrix acting on spinor indices,

1
Sap(A(p)) = exp( wab(A(p))Uab)0,, (2.3.22)

2

where w is the rotation parameter. We can now define the GL(3) properties of Aa(X),

in order to maintain the anti-commutator (2.3.10) diffeomorphism invariant. That

relation is invariant under diffeomorphisms, provided Aa(X) is a spinorial density

(weight - ) in R3 , transforming as

axi
A'"(ym) = det[O ]7Soy (A(p))AO(xi). (2.3.23)

Let us see what are the consequences of these GL(3) properties on the composite

local operators ga(x) and Q(x). Starting with the generator of local gauge trans-

formations, we observe that the tensorial properties of the canonical variables imply

that under diffeomorphisms one will have that ga(X) is a scalar density (weight -1)

in R 3, transforming as
I OX (2.3.24)

" ) det[]g ().(

This automatically verifies that the canonical commutators (2.3.11-13) and (2.3.19)

are invariant under local diffeomorphisms on the domain of the local canonical vari-

ables.

Now, look at the other local composite operator, Q(x), (2.3.6) or (2.3.7). First

observe that in (2.3.7) the Pauli matrices a are numerical matrices, and not dynamical

ones (in which case one would write o()u?(x) =-, {u} being a dreibein base).
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Write (2.3.7) as:

Q(x) - oa W L i(x), (2.3.25)

where,

0 eEai(x) + 'Bai[An(x)]
U, (X)'X)e + az* A a(X). (2.3.26)

-eEgix +B B[A'(x)] 0

Then, the tensorial properties under GL(3) of the canonical variables imply that,

under diffeomorphisms, one will have that H(x) is a vector-spinor density (weight

-) Din R3 , transforming as

U'e (y" ) = det [ ]i -ScO(A (p)) I'(x') (2.3.27)

However, as the ai's in (2.3.25) are numerical, they do not transform under the

diffeomorphism, and so Q(x) fails to be covariant. This is to be expected, as we will

see below.

The GL(3) symmetry of the (anti)-commutation relations involving local (com-

posite) operators and local variables has been established, given the tensorial prop-

erties assigned to the canonical variables. Clearly, the theory itself fails to be GL(3)

invariant, and that is to be expected: the Hamiltonian is not covariant under diffeo-

morphisms (the metric 6,j appears instead of gi, the measure d3 x appears instead

of "Fgd3 X, etc.). This can be related to the lack of covariance of the supersymmetry

generator (2.3.25), (2.3.27). Indeed, one can regard Q(x) as the square root of the

Hamiltonian; and so if the Hamiltonian fails to be covariant, so should the supersym-

metry generator. Moreover, observe that when we square (2.3.25) we will obtain a

term like uicb = 6ij + Zejkck, and this can be seen as the origin of the "wrong" metric

61, in the Hamiltonian, which shall destroy the possibility of local covariance. Also,

no global (composite) operator can have this GL(3) symmetry, due to the "wrong"

choice of integration measure. Now that we assigned tensorial properties to local

quantities in the supersymmetric theory, we are ready to proceed in looking for fur-

ther geometrization in this canonical framework.
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2.4 Geometric Variables

We shall limit ourselves to the simplest case of non-Abelian gauge group, namely,

G = SU(2). Then, the structure constants are simply fabc - Cabc. We will assume

knowledge of the previous work done for pure Yang-Mills theory [43, 40, 45].

One wants to have a representation of supersymmetry once we are to transform

to the new variables. As we know from the bosonic case [43], the gluon field is

transformed into a "metric" field. The supersymmetry representation that includes a

metric field is that of supergravity, and it also includes a vector-spinor field. So, one

will expect that the gluino field will be transformed into a "gravitino" field. We shall

therefore wish to transform the supersymmetric Yang-Mills variables, {A?(x), Aa(x)},

into the variables of three dimensional supergravity, {yiJ(X), 4k(x)}. We shall also

expect to obtain a geometry similar to the one of supergravity. After all, the defining

equation for the {ua(x)} variables identifies them with a dreibein base in a three

dimensional manifold.

Recall form section 2 what one is to expect. The geometry will have torsion,

defined as,

T =0 I ."$a3. (2.4.1)

We can insert a dreibein base through,

gi3  U'ab~ab (2.4.2)

and also expect that there could be some local supersymmetry transformation in

these new variables, which we shall call the "geometrical supersymmetry variation",

and which would look like the supersymmetric transformation laws of supergravity,

(u"(x) = if(X)-";x),

64k(x) = 2Dk (x), (2.4.3)

where the covariant derivative acting on spinor indices was defined in (2.2.15). With
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this at hand, the dreibein postulate is now written as,

D at" = + Wabub - an = 0, (2.4.4)

also defining the operator Dj. Multiplying this equation by cik, and defining the

spin-connection via the gauge connection, as in,

Wab(X ab cA'(x), (2.4.5)

the dreibein postulate becomes,

ij k = 6ik a+ bcAb, k) - 2j Tika=4C k (2.4.6)

We shall take these differential equations to define the change of variables A (x) -

ug(x). Then, the reverse line of argument holds: the new variables {ua(x)} play the

role of a dreibein, and from them one can construct a metric gi =y uau which is a

local gauge invariant variable. The geometry defined by this new variable has torsion,

given by (2.4.1). Clearly, for the change of variables to be well defined, we still need

to specify what O4(x) is. That is the problem we shall now address.

Let us begin with some dimensional analysis. We know that the gauge field Aa(X)

has mass dimension one, and the gaugino field Aa(x) has mass dimension three halfs.

We also know that the mass dimension of the fermionic generator of the supersym-

metry algebra is one half. Through definition (2.3.5) and expression (2.3.25) one

observes that if one is ever to modify the gauge theory in order to covariantize it (in-

serting o(x)u?(X) = a in (2.3.25) and from then on), one would require the dreibein

field to have zero mass dimension, as well as the metric. Though we are not going

to modify the gauge theory in this work, we may as well stick to this broader per-

spective. Then, through the dreibein defining equation (2.4.6), we conclude that the

"gravitino" field has mass dimension one half. These dimensional assignments are

just like what happens in supergravity.

One can now see that this will have some influence on the construction of the
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"gravitino" defining equation. In fact, there are some a priori requirements for such

an equation. It must be geometrical, either in a differential or algebraic way; one

needs 12 equations, to change the 12 variables A a to the 12 variables bk,; and the

gluino field must be present in such an equation. If we moreover require linearity on

fermionic variables (like we had linearity on the bosonic variables in (2.4.6)), we see

that, by simple dimensional analysis, we can not write such an equation algebraically,

but only differentially. Moreover, the equation is constrained to be of the form,

3 CD'Oko = M a A , (2.4.7)

where the matrix Aia must have zero mass dimension, being so far otherwise arbi-

trary. However, one must be cautious. Not only do we want to have a geometrical way

in which to define the vector-spinor field, but we also want to be compatible with the

fact that we are studying a supersymmetric theory. In particular, we would like the

geometrical supersymmetry variation (2.4.3) to generate the gauge supersymmetry

variation (2.2.3). So we shall ask for the geometrical variation (2.4.3) to generate the

gauge supersymmetry variation on the bosonic variables A?(x), and in the simplest

case where (x) = E.

Under a generic variation of the fields, one obtains for (2.4.6),

ei3'kDi bcU" = -ci3keacuc Ab+ 2i 3 ' , (2.4.8)

where,

a - ij 3_,a 60k. (2.4.9)
2 2

The supersymmetry transformation laws we shall need are (2.2.3) and (2.4.3). So, a

supersymmetry transformation of the dreibein defining equation yields the "gravitino"

defining equation. Performing the computations, based on the previous formulae, we

are led to,

Eiik D3 pk = 0i3k(03k + 2 W 3 ab4 ,k) = 3 a C .Auk (2.4.10)
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where ' i(x) = u (x)ya.

We shall take these differential equations to define the change of variables Aa(x) +

/k(X)- Observe that this equation is precisely of the required form (2.4.7), and the

matrix Mia has been uniquely defined. Also, this alone guarantees that the geometric

variation (2.4.3) will generate the bosonic gauge supersymmetry variation (2.2.3),

when - e. This does not guarantee however that the geometric variation will

generate the fermionic gauge supersymmetry variation under the same circumstances.

In fact, we can choose - [E] through a differential equation (2.4.20) for , such that

the geometric variation generates the gauge supersymmetry variation on Aa(x), but

we shall not have - E in this case. This shows that, even though we can generate the

gauge supersymmetry variation via the geometrical supersymmetry variation under

special circumstances, the geometric variation is not the original supersymmetry of

Yang-Mills theory. The actual expressions for the supersymmetry variations on the

new geometrical variables can nevertheless be computed using the usual expression,

&D =_ i[Q, ID], (2.4.11)

where <D is any of the geometrical variables, and where we should express the su-

persymmetry generator in this geometric framework (see section 5). The resulting

expressions would not be as simple as (2.2.3) or (2.4.3).

All together, one sees that we can now define local gauge invariant geometric

variables for supersymmetric Yang-Mills theory via the system of coupled non-linear

partial differential equations, (2.4.6) and (2.4.10). These equations define a variable

change {A?, Ab} --+ {Ua, 4 k}. They also introduce a three dimensional Riemannian

geometry with torsion as given by (2.4.1-2) and (2.4.4).

Now that the definition of the new geometrical gauge invariant variables is con-

cluded, one would like to invert the defining equations, in order to express Aq(x)

and Aa(x) in terms of the geometric variables. This inversion will make it clear that

there are no Wu-Yang ambiguities related to these new variables. The defining equa-

tion for the dreibein (2.4.6) is equivalent to the dreibein postulate (2.4.4), where the
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connection is with torsion,

J'k = ' -K Ak, (2.4.12)

hatted symbols always denoting affine metric connection quantities. The contorsion

tensor is computed from the torsion tensor, through (2.2.12), and one obtains,

Kijn,= (Vyj On + j y7bn - n ) (2.4.13)

Define a purely geometric derivative through,

V7ju" -,u' - F'u', (2.4.14)

and we can find the expression for the inversion,

A (x) = abc Ubk (X)V c (X).
2k (2.4.15)

We shall next compute a generic variation of this equation, so that one can later use

it to compute the inversion for the gluino field. In order to carry out the calculation,

we will need to know what is the generic variation of the connection (2.4.12). Using

the fact that it is metric compatible, this can be computed to be,

1 m
6n = I g" (V &gmk + Vkggmj -- VmSg'k) - AKjgk. (2.4.16)

One can now carry out the variation of the dreibein postulate,

the variation of equation (2.4.15). The result is,

A.= Umin a(V7(Ubn + Vi(1&gni) + >((i/ 1 )&un +z 2, ,j M z2

+2(bn77i/$ + '&m8b + ibyi6ii)),

and from there obtain

1

2 (n 0)U)

(2.4.17)

where lg = det u.

One can use this equation to invert for the gluino field. As we know the geometrical
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variation (2.4.3) with = E generates the bosonic supersymmetry variation. So, we

only need to use (2.2.3) and (2.4.3) in (2.4.17), and rearrange, so that we find the

expression for the inversion,

Cnml

Aa(x) = - U,-(X) Y(X) (7(X)ViOn(X)+7n (X)DIZ(X)+-i(X)DIn(X)), (2.4.18)
6 g(x)

where one uses the vector-spinor full covariant derivative, defined as,

1
Di pka - Di?/ka + 1W b(ab)c ?kO - liksa. (2.4.19)

2

Observe that even though the spin-connection is defined via the gauge connection, it

is a fully geometric quantity through the dreibein postulate. Later on we shall also

require an expression for the generic variation of this equation, so we will address such

a problem now. The computation is rather long, and so is the result. One obtains,

6 nml

- u(ubi 6U + U,6ubi 7b "(Din - Du pi)-
6 g

'nml

- u~f('(iD(6b) + M^/Di(Si) + Ti(i(n)-

1
2 k nVi +Ynik V ' O + ik $nVi)(u bk 6z)-

1 J
-- i 'knV(6gki) + TN Orko4Vj(6gkl) + 7yjik4nVj(6gkI))+2

1
+ (i-I k In6Kijk + 7ng ' ikp)i&Alk +71_Cjk On6Ki'k) + (7Kins + -Yn6Kii" + Kn)s)-

2

1
- u~ui(cnik ucl - clikoucn j( iDi<$n + 'n~h4i + U CD in ), (2.4.20)

where the generic variation of the contorsion tensor can be written as,

6Kmin= -(($,7a4i)6ua + (4 a4p,)6qU - (4ya4,a) 6 ua)+

+-((0n-/ - i-/)601 + (OiN + 4n-yi)6S1 - (01'i' + 4,'yi)60n). (2.4.21)
4
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The variations (2.4.17) and (2.4.20) allow us to express a variation of the wave-

functional in terms of the variations of the geometric variables. This will be helpful

in section 5.

The inversion completed proves the non existence of Wu-Yang ambiguities in the

new geometrical variables. Therefore, we have managed to define new gauge invariant

variables for supersymmetric Yang-Mills. Moreover, it can be shown that gauge

invariant physical wave-functionals of the theory depend only on these geometric

variables (see section 5), 1V 'I[giJ, Ob], so that we have in these variables an explicit

parameterization of the physical Hilbert space (moduli space) of the gauge theory. A

final remark on diffeomorphisms is now in order. As said before, only the variables of

the theory are diffeomorphism covariant. The Hamiltonian fails to be diffeomorphism

covariant. Given that the variables of the theory are now {gi, O }, this has an

interesting consequence: a configuration diffeomorphic to the previous one yields a

different configuration to the gauge theory. Therefore, we can extend solutions to the

gauge theory by action of the group of diffeomorphisms, by simply moving along the

orbit of the geometrical configuration.

2.5 Gauge Tensors as Geometric Tensors

We now wish to write the tensors and composite operators of our theory in terms

of the new geometric variables, i.e., as geometric tensors and geometric composite

operators. We shall first address the electric and magnetic tensors. The Hamiltonian,

Gauss' law generator, and the supersymmetry generator composite operators then

easily follow from these two tensors and the previous equations for the inversions of

the gluon and gluino fields.

Let us start with the gauge Ricci identity,

6abcFP = [D,.D]ac, (2.5.1)
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and apply it to the dreibein field. We will obtain,

abcjF bu = R k ua, (2.5.2)

where Rki3 is the Riemann tensor of the connection F,

-~i 
0 J_ ~ +i' J7F- - F~Fl (2.5.3)

From (2.5.2) one can express the field strength in terms of the Riemann curvature,

and so from (2.3.3) we can express the magnetic field vector geometrically, as,

B - 1 miJC nk UaRlk' . (2.5.4)

So, the gauge invariant tensor which gives the Yang-Mills magnetic energy density is,

Ba'Ba = 1 imn CiklRuvmn(Ruvkl - Rvukl). (2.5.5)
16

As we can see, this expression gives the gauge invariant tensor in a manifestly gauge

invariant form, in terms of the "metric" gji, and the "gravitino" 4 k (which is present

via the torsion contribution to the Riemann tensor).

The electric field vector is the momentum canonically conjugated to the canoni-

cal variable, the gauge connection. In canonical quantization it is represented by a

functional derivative (2.3.9). We define a gauge invariant tensor operator eij by,

6A?(x) = iEai(x) = g(x)ut()eiJ(x). (2.5.6)

Clearly, eiJ(x) is an ordinary (') tensor under GL(3). From this expression, the

electric gauge invariant Yang-Mills tensor, i.e., the manifestly gauge invariant tensor

which gives the Yang-Mills electric energy density, now follows as,

E"'Eai = -gei eik. (2.5.7)
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In order to finally obtain the Hamiltonian in a manifestly gauge invariant form

in terms of the geometrical variables, one still needs the expression for the fermionic

energy density, as is clear from (2.3.1). The expression for this gauge invariant tensor

can be obtained by simply inserting (2.4.18-19) in the required expression. The result

we obtain is,

A7'D A" = ng m((Dk n)71 -+ (Dl1n)nY+
36 g

+(DOPI)^n)- -/"7i( 7"(7(Dsip) + -N(Dvs) + ys(Dvou))), (2.5.8)

where we have defined Dioj (Di0,-)t7O; and where in the contraction Vi the

gamma matrices are to be considered as numerical, not as space dependent. The sum

of (2.5.5), (2.5.7) and (2.5.8) according to (2.3.1) finally yields the manifestly gauge

invariant Hamiltonian.

As was done for the gluon functional derivative, we shall similarly define a gauge

invariant vector-spinor density operator Xi to deal with the gluino functional deriva-

tive,

6AHE ) = g(X ) 1ai(x)x (x). (2.5.9)

Xi(x) is a (0) vector-spinor density (weight }) under GL(3). With these definitions at

hand, one can now express the functional dependence of the wave-functional T[Aa, Ab]

in terms of the new variables. Under a variation, we have,

6T d =d3x { 6AZ(x)+ XA (x)} =

= Jd 3 x { fg(x)ug (x)6A"(x)[ei(x)'I + g(x)Uai(x)[X4(x)I1]6Aa(x)}, (2.5.10)

where one should use the expression for the variations of the gauge fields in (2.4.17)

and (2.4.20-21). Expanding this expression through rather lengthy calculations, it can

then be seen that the term in 6u is proportional to the Gauss' law operator (2.3.4),

when expressed in geometrical terms, and acting on the wave-functional. Observe
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that this is g9aq[g, ] = 0, which in the new variables can be written as,

i Z1 n ik ' n
(ViC 3 + -O7OC3+ 2(gjn il - giOn)(~~n)-ii + (Dli4s)-yn+

2 72g

+(DTn)-s)7 0 7' (k(D, i) + Yi (Dk Or) + yr (D Oi)))F [Y, 4] = 0. (2.5.11)

So, wave-functionals whose dependence is solely on the new gauge invariant variables

are gauge invariant, and gauge invariant wave-functionals depend solely on the new

gauge invariant variables. It is in these physical gauge invariant wave-functionals that

we are mainly interested, and for these the previous expression for 6T reduces to,

6T [gi, k] = dx { 12"V (gni)[eJ]+

+ n"[ml ]t +( kOn V(6kki) + ng<* iV (6gkl) + 7i 3*kn' (6gkl))+
12

+±nml~f~&b b~n ' w~4i[~I]

4

nm [Xm'I]7'(iDi(6n) + YnDi( 60i) + -YiD(60n))-
6

±nml [X'M IFz'(/ nON0 + <)- &4'k + <)3'/jikk)+
24

+~f~ii(?)fk&?bl+ i/i Vj60~k + i-1160bk) + 7ir nO-kO + 0bl'yjikk + ?/4Yl&6bk))-

z nml [XnT17 t(710s(i/ 765) + +y ?(Si/,l) + 4g.s( 4,1))} (2.5.12)
12

From here one can now extract expressions for the electric and spinor fields, e 3T

and Xi0, in terms of functional derivatives of gauge invariant wave-functionals, with

respect to the gauge invariant variables. Observe that for such, one has to solve a

linear system of differential equations, therefore involving the inversion of differential

operators. One can then conclude that in general both operators e&jI and XiI, will

depend non-locally on the functional derivatives 6T/6gig and 6 TI/6k. Like in the

non-supersymmetric case [43], the Hamiltonian will thus be a non-local composite

operator.

Before proceeding with the study of these non-local operators, there is one more
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composite operator that we still would like to express in a manifestly gauge invariant

way, i.e., that we would like to geometrize. Such an operator is the supersymmetry

generator, (2.3.5-6). In particular, we will look at its structure as depicted in equations

(2.3.5), (2.3.25-26), and geometrize the tensor IW'(x). For that, one simply has to make

use of the previous formulae into equation (2.3.26), and obtain,

( 0 enmli + I isk(Rnl ik - R_"_k)

e nm + I eg53'k (R 1 '3 k - R'" 'k) 0 )

.y'(y(Dr On + _Yn DI/Or + yr DIVOn), (2.5.13)

from where the supersymmetry generator then follows, according to (2.3.25) and

(2.3.5).

Some words are now in order, concerning supersymmetry and its quantum field

theoretic representation on the geometrized fields. One of the elements that is present

in I' is the non-local operator e&j, thus turning the supersymmetry generator into

a non-local composite operator, when expressed in the geometrical variables. As

we shall see in the following, information about the Green's functions present in

this operator can be obtained, albeit in a formal way. By this, we mean that an

explicit construction of these Green's functions can only be obtained given a particular

geometrical configuration (see [45] for this same situation in the non-supersymmetric

case). Moreover, the geometric supersymmetry generator includes the Riemann tensor

which is non-linear in the metric and "gravitino" fields, and their derivatives; one

would therefore also prefer to have a geometrical configuration with a high degree of

symmetry (a maximal number of Killing vectors), in order to simplify it. An example

involving spherical geometries, generalizing the one in [45] to this supersymmetric

case, shows how this situation could be handled [64].

In the pure Yang-Mills case [43], the calculation of the electric field tensor in-

volved the inversion of a differential operator that could generically have zero modes.

Subtleties associated to the inversion of such an operator were later handled with the

insertion of a deformation into the dreibein defining equation [45]. We shall now see

that in this supersymmetric case those problems can be better handled, by computing
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the bosonic Green's function for the electric field tensor eiJ. We shall learn that one

will not need to deform our equations in order to obtain a well-defined result. We

start by inverting the defining equation for the electric tensor (2.5.6), to obtain,

1 .3
-i = I . (2.5.14)

Recall that through the dreibein defining equation (2.4.6), the gauge connection de-

pends on both the dreibein and the "gravitino" field. Therefore, one can further

expand the geometric tensor e 3 as,

1 a rf[2 1 'Uk(y) '5 6'V.(y) 65
Cs~x = . ~ ~ x j a d 3y ( 6U'~) 6-+ ).(Y (2.5.15)

= g(~x)Jj S Aq(x) 6u'(y) 6Aq(x) 64k(y )

Variations of the dreibein can be further separated into variations of the six gauge

invariant degrees of freedom Yij and of the three gauge degrees of freedom. As we are

considering operators that act on gauge invariant wave-functionals only, we simply

obtain,

/ 1 aj 6u'(y) b 6 6k(y) 6
(U~x = a (a(x) u, (y)) 2 + u i(x) }.(X k

6 Aq(x )oy( x) 6@~ Y)

(2.5.16)

We next want to study the bosonic Jacobian matrix u/6A, and see that it has a

better behavior in here, than in the non-supersymmetric Yang-Mills case. For that,

one needs to start by geometrizing such a matrix. Let us re-write (2.4.6) as,

6 ik(6Cf& -S 6k"acA. - 4 (acOYn 7,k))Uc = 0. (2.5.17)

Variation of this equation is (2.4.8-9),

I *3 k _6U = _,*3k abc cr b ik _eS~JkD4u" = -(i k 0
3A+ Ci? P 6YPk, (2.5.18)

and to obtain 6uq in terms of 6Aq, the operator acting on 6uq must be inverted. In
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order to do so, let us consider the associated eigenvalue problem,

6 iik( 6 ac6 0 + 6kbcA - 6ac(,, f ))wA = \gAAWAia. (2.5.19)
4n

By definition, one solution to this equation with AA = 0 is u? itself. In our notation,

A labels all the eigenfunctions, except the particular one given by ua. Moreover,

it will be assumed that {uq, WA } forms a complete orthonormal spectrum of real

eigenfunctions for the considered operator. By orthonormality, we mean,

J WdAxgij(uwa) = 0,

gdxg a(wAawB a V6AB,

J yfidxgJ(uu ) = 3V, (2.5.20)

where V is the volume of the space described by j(i.e., V is a "dynamical" volume),

and 6AB is a Kronecker or Dirac delta, depending on whether the spectrum is discrete

or continuous. Now, expand a generic variation of the dreibein in this complete set,

bUa = U + a 1 AWAl, (2.5.21)
A

and substitute this in (2.5.18). If we dot on the left (meaning inner product with the

required measure (2.5.20)) with the same complete set {uz, WAi}, we shall obtain a

non-homogeneous linear system of equations for the expansion parameters, Y and TA.

Solving that system, and inserting the result in (2.5.21) yields an expansion of the

variation Su? in terms of the variations 6A? and kik. It is then easy to compute the

Jacobian matrix u/6A. However, such a result will not be naturally geometric, as it

involves the eigenfunctions WAX, which are gauge vectors. To solve this problem, we

introduce the geometric modes ZAi', associated to the gauge modes WA?, and defined

via,

Wal - a. (2.5.22)
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It can then be shown that these geometric modes obey,

CijkVZAkm =,f/AAZA - (2.5.23)

So, the ZAi'* are the eigenmodes of the geometric curl operator, with the same eigen-

values as the gauge modes WAy, AA. Full geometrization of the Green's function,

uaj(x) A () U n(y)' (2.5.24)

is now at hand. The result is,

6Aq (y)
UaJ(X)SAa(O)"(y) =g(x)gii(x){(HamsSydx-

3 d 3U iJk ( 3_N k)(U)Hkmi n (y, U) +f d3 Ctjks( $x ik J

+gkn ( y) .. 13 + -d3u N) ()ns _f d3x CJu()) 8

.gd3iy)1 0 3  6z ( 3k + u Jdu 3 Ok)(7"(rOsk)(V ) nim(u, 08 1 d3x Ein ( bri4'p) J ~ ~ )}
(2.5.25)

where we have defined the Green's functions,

Hzjmn (Xy) Zi- (X)I4ZBmn (Y), (2.5.26)
AB

and the matrix,

I1AB - VAA 6 AB 8 I i 3 kX i n kZAimZBnm+

+1 1 (J d% p7)Z i dl z d 0 )ZBni)- (2.5.27)
8 f dsx 6 uigik(k,)

One sees that we have obtained a well-defined result, unlike it would have happen

in the non-supersymmetric case [43], where there were divergences in the electric en-

ergy that were independent of the geometry. Clearly, the Green's functions (2.5.26)
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may still have geometry dependent divergences associated with the degree of symme-

try of a given geometrical configuration (as determined by its Killing vectors). Also,

this may seem a somewhat formal result, but observe that now we have a construc-

tive definition of the Green's function (2.5.24): given a geometrical configuration on

the domain manifold, we start by solving the eigenvalue equation in order to obtain

the geometric eigenmodes. Once we have such eigenmodes, first construct the ma-

trix 1AB, then invert it (most likely through a symbolic manipulation program), and

finally compute the Green's functions li7jmm(X, y).

We have geometrized all the tensors appearing in the Hamiltonian formulation of

K = 1 supersymmetric Yang-Mills theory. All composite operators should now follow

in a straightforward fashion.

2.6 Conclusions

We have defined new local gauge invariant variables for supersymmetric gauge the-

ory. These variables have moreover a geometrical interpretation, as they are a three

dimensional "metric" and "gravitino". The geometry associated to the theory is then

just like the geometry of supergravity.

We have also shown that these new variables are free of Wu-Yang ambiguities;

so they seem to be quite appropriate for the study of nonperturbative phenomena in

supersymmetric gauge theories, as they explicitly parameterize the physical Hilbert

space of the theory. We have also seen that these variables have a better behavior here

than in the non-supersymmetric case. Namely, there are no geometry independent

divergences in the bosonic half of the electric energy tensor operator.

The treatment presented here was rather formal, and the issue of renormalization

was not addressed. Further work on this formalism should focus on this issue. We

could think of using the known beta functions of supersymmetric Yang-Mills theory

to perform the renormalization of the (geometric) composite operators that we have

presented. These renormalized operators could then be used to extract information

on the ground state wave-functional of the gauge theory. In this supersymmetric
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case, the functional differential equation for the ground state is Q'I'[g, 4] = 0, which

is first-order in the non-local functional derivatives. There would seem to be hope

that one could then extract some information about the solution to the theory.

It would also be interesting to study special solutions to supersymmetric Yang-

Mills theory in this framework. Namely, we could try to extend to this supersymmetric

case the example of spherical geometries that was introduced in [45]. In particular,

in order to define a vector-spinor on a three manifold, the manifold must be par-

allelisable, and its second Stiefel-Whitney cohomology class must be trivial. Such

is the case for S 3 , so that the example in [45] could indeed be generalizable to this

framework [64]. There is also the possibility of extending this formalism to higher K

supersymmetric gauge theory. This could be interesting, specially if some connection

to the work in [68] could then be established.

All these lines of work are quite interesting to follow as there is good knowledge

about some properties of supersymmetric Yang-Mills theories (see [70] for a modern

review, and references therein). In the example of spherical geometries, a bridge

between our formalism and the well known instanton solutions of gauge theory can

be established; while in the case of extended K = 2 supersymmetric Yang-Mills

theory, one can observe the interesting fact that BPS states obey - in the geometrical

formulation - a three dimensional "Einstein field equation" where the "stress tensor"

is the one associated to a gauge vector field [64].
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Chapter 3

Bosonic a-Models

3.1 Introduction

Since the time of its discovery [52, 63], target space duality has been studied mostly

as a symmetry of string backgrounds. That is to say, it is realized as a transformation

taking one set of fields {gv, b,,, 4} (respectively metric, antisymmetric tensor and

dilaton) satisfying background field equations of motion, into another set {.., bP1 , 4}
satisfying the same equations of motion. As such, it represents a parameter space

symmetry of the associated sigma model at its conformal points only. It was recently

observed, however, that it is also natural to impose it as a symmetry of the sigma

model away from the conformal points, throughout the entire parameter space [41].

This is expressed as the requirement (to be made precise below) that duality flows

"covariantly" with the renormalization group (RG) evolution of the background fields.

Because information about the RG flow is typically difficult to obtain, while a T-

duality symmetry is considerably easier to identify, such an interplay between duality

and RG flows can be of more than academic interest if it yields restrictions on the

renormalization patterns of the theory.

At one-loop order (O(d)), it was shown in [41] that indeed the requirement of

duality symmetry away from conformal points of the two dimensional bosonic sigma

model led to highly restrictive consistency conditions on the RG beta functions of

the model. It was found that these conditions uniquely determine all beta functions
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at O(a'). This is a particularly striking fact, in that essentially the only condition

imposed is that of duality, a symmetry which is prima facie entirely unaware of

the renormalization structure of the model. Similar (albeit weaker) restrictions have

also been seen to follow from analogous consistency conditions in altogether different

contexts, such as the 2d Ising and Potts models [21], and the quantum Hall system

[17].

Naturally, for sigma models, this would probably be an inconsequential curios-

ity if such conditions only operated at O(a). This motivated further investigations

of the consistency conditions at two-loop order [46]. For a restricted, purely metric

background, it was found that while both the beta functions and the duality transfor-

mations are modified by perturbative corrections, the ensuing consistency conditions

(also modified) continue nonetheless to be satisfied. This indicates that, at least to

0(a'2), duality transformations mysteriously remain informed of the renormalization

properties of the theory.

If this is so, one is led to inquire whether consistency conditions at O(a'2) again

allow for a determination of the beta functions at that order. The purpose of the

investigation in this chapter is to show that indeed such a determination is possible.

After briefly reviewing the first nontrivial order, we will consider, as in [46], a

restricted class of backgrounds in order to probe the consistency conditions at O(a 2 ).

In order to be self-contained we begin by deriving, from basic principles, the corrected

duality transformations at O(a'2 ) first presented in [76]. From these follow the 0(a'2 )

consistency conditions on the beta functions of the theory. We will then show that,

out of the ten different tensor structures possibly appearing in the two-loop beta

function, only the known, correct structure satisfies the consistency conditions. This

represents a completely independent and diagram-free determination of the two-loop

beta function of the purely metric 2d bosonic sigma model.

To be precise, with the restricted class of backgrounds we consider, this O(a2)

beta function is only determined up to a global constant. However, it should be

noted firstly that the beta function determined is valid for entirely generic metric

backgrounds and, secondly, that the mechanism at work at 0(a') indicates that, had
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we considered a more generic background at O(a'2), even this global constant would

have been determined.

3.2 Order a'

We consider a d = 2 bosonic sigma model with a target Abelian isometry (0 -+ 0+

constant):

S = , d2, [goo(X)&0,0&0 + 2g 0o(X)&0 a&X
47ra I

+ gi( X) 0 oXz "Xi +

+ ie" (2boi( X 080 Xz + bzg (X>%Xz afXJ)]. (3.2.1)

The adapted target space coordinates are X" = (0, Xi), i = 1,... , D, and the isom-

etry is made manifest through the independence of background tensors on 0. "Clas-

sical" duality transformations [18, 19] take a background {v,, biv} into,

I - boi
00 ~ 902 -

goo goo
bOl goi

goo

ij giJ goi goj, - boi bo.7
gi j = -i Yj - J

goo

= - goiboj - boigo
oo

(3.2.2)

On a curved world-sheet, another background coupling must be introduced, that of

the dilaton O(X). The RG flow of background couplings is given by their respective

beta functions:
d

=i d a
ob

d
(3.2.3)

while the trace of the stress energy tensor is found from the Weyl anomaly coefficients

[74],

s3%= /%,+ 2a'VgaVo,

b /= Lb + a1/,JAQ A q5

= /* + aO'(Og) 2.
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Both the beta functions and the Weyl anomaly coefficients will satisfy the consistency

conditions to be presented below. However, while the latter satisfy them exactly, the

former satisfy them up to a target reparameterization [41, 46]. Since both encode

essentially the same RG information, for simplicity we shall consider RG motions as

generated by the Weyl anomaly coefficients in what follows. We define (at any order)

an operation R on a generic functional F[g, b, q] to be,

6F SF b 6F -
RF[g, b, 0] = -)g + (3.2.5)

and an operation T affecting (at lowest order) the transformations (3.2.2) through,

TF[g, b, b] F[g, 6, q], (3.2.6)

(where q will be defined shortly). The requirement that duality flows "covariantly"

with the RG is expressed as:

[T, R] = 0 . (3.2.7)

When applied to (3.2.2) this leads to the consistency conditions first presented in [41]

for the Weyl anomaly coefficients,

19
- - 2

goo

0= - - (-bo-.0 A - /3i0goo)

- 1 (

$ - -- ( s~go; + /3 go - Aobg- f3ojbog) + (gOjgOj - b0sb 0i)05 ,
900 900

1 (1
- (O -bo- + $ggo - bo - o ) + (go-bo - bo . (3.2.8)

oo 90goo 900

At loop order f, the possible tensor structures T., appearing in the beta function

must scale as T,,,(Ag, Ab) = A1-'T,,(g, b) under global scalings of the background
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fields [5]. At O(a') one may then have,

g -a'( A R,, + B H, 1ApH P + C g,1 R + D goHaOH"3-'

b = a'(E VAHg1) (3.2.9)

with A, B, C, D, E being determined from one-loop Feynman diagrams. As found in

[41], requiring (3.2.8) to be satisfied, and choosing A = 1 determines B = -1/4,

E = -1/2, and C = D = 0, independently of any diagram calculations. As it

turns out, the consistency conditions (3.2.8) on g, and b,, alone also allows for an

independent determination of the dilaton transformation (or "shift") =- ln goo.

Applying (3.2.7) to this then yields the dilaton beta function [46].

3.3 Order a2

At the next order R is modified by the two-loop beta functions, and one must deter-

mine the appropriate modifications in T such that [T, R] = 0 continues to hold. We

work at this order with restricted backgrounds of the form,

a 0
41 =, (3.3.1)

0 92*3

and b,= 0, so that no torsion appears in the dual background either. It is useful to

define at this point the following two quantities: ai =- l; n a, and qi, - V aj + !a-a ,

where barred quantities here and below refer to the metric gij (also, indices i,j,...,

are contracted with the metric gi ). Within this class of backgrounds classical duality

transformations reduce to the operation a - 1/a, and it is simple to determine the

possible corrections to T from a few basic requirements: i) gjj = gij = gi. does not

get modified, as it corresponds to sigma model couplings entirely disconnected from

the path integral dualization procedure (cf. [18, 19]); ii) corrections should be D-

dimensional generally covariant; iii) corrections to & = 1/a must be proportional to
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ln5 -lna amism- = mj(a, -ij) ,(3.3.2)

as it is simple to see that classical consistency conditions would be satisfied for a =

constant; iv) dimensional analysis: [a'] = L2 and [a] = 1/L, where L is a target

length, so that [mi] = 1/L; v) mi should not contain nontrivial denominators, as the

corrections should be finite for finite geometries; vi) because the duality group should

still be Z2, by applying the transformations (3.3.2) twice one should re-obtain the

original model. This constrains mi to be odd under classical duality:

rn- =- mj(1/a, gzj) = -mj(a,gjJ-) . (3.3.3)

All of the above then yields,

mi = A ai , (3.3.4)

with A an undetermined real constant. As discussed in [46], moreover, we shall also

require the measure factor Vgexp (-20) to be invariant (so that [T, R] = 0 implies

invariance of the string background effective action), thus fixing also the correction

on the dilaton transformation to be 1/4 that of goo. Altogether, for the backgrounds

(3.3.1) the corrected duality transformations are:

In =-In a + Aa'a,.a'

A
-Ina+-aaias (3.3.5)
2 4

The consistency conditions again follow by applying R to the above and using [T, R] =

0 on the LHS:

- oo= -- oo + 2Aa' ai-i -oo - ai j ,aa a 2

Oij= /i k,

2 =oo + -a [a Oi ( oo) - -a a,'ij . (3.3.6)2a 2a 2
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The terms scaling correctly under g -+ Ag at this order, and thus possibly present in

the beta function, are

A2) = A1 VVR + A2 
2 R,, + A3 R,,ORO" + A 4  RR'3- + A5 RORi+

+A 6 R,1 R + A7 gA1 V 2 R + As g ,R 2 + A gmvRoR -+ A1 0 g1 Rcs , 6Rca (3.3.7)

(we have used Bianchi identities to reduce from a larger set of tensor structures).

It will suffice in fact to study the consistency conditions for the (ij) components,

( j = / , in order to determine the only structure satisfying all the consistency

conditions.

We write

/= '(fl + 2Vj8j<$) + a'2 i) , (3.3.8)

where =jRi) = - jqij is the one-loop beta function, and perform the duality

transformation (3.3.5), keeping terms to order O(a 2 ). Using the fact that the one-

loop Weyl anomaly coefficient satisfies the one-loop consistency conditions (3.2.8), we

arrive at,

[ 3 2) Aa (i a)(aak) (3.3.9)

where the duality transformation of 13 J) is given simply by a -* 1/a without a'

corrections, since this is already O(a' 2 ). Separating the possible tensor structures

into even and odd tensors under a -+ 1/a,

= Ez + ., E- =Ej, O= -O. , (3.3.10)

the even structures drop out and we are left with

1
Oij - Aa .aj)(akak) . (3.3.11)

We now perform a standard Kaluza-Klein reduction on the ten terms in (3.3.7) to

identify which if any satisfy this condition. The results can be obtained using the
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formulas in the Appendix of [46], and are as follows:

(1) : ViV 2R = V2 V(R - qnn)

- 2 k 1 1(2) : V 2 Rg = (V2 + ~akV)(Rk - qg-- -aaqu" - a -

(3) Ric30 R! = qzjqn n +
4

Rinim (Rnm

(4) k knm(4) RcO^ R"131- 2qikqj + RzknmRj

(5) :RjR"= Rikj k
1 1 k
-Rkiq) + ;jj- k

(6) : Ri R= (Ri- qij)(IT - 2

(7) gijV 2 R = -

(8) :

,-a k(R -- qm)+v V k(I -qm)
2

-i . T2 1_ I - qm m) 2

1m 2  1 21(9) : gij IT RO- =i- [(q) + ( Rkm - -qkm4 2

(10) : gz Ra,= [qkmq km + Aimn R"mn]

The respective odd parts are

O() - V Vna'

2 ak2 i j - 2 a --

O = - iRjm Va"
1

+ -ana nV-a.
8

1 - n+8aiajVna~

0)- yaka(,-V3)a k

-2Rk(iVj.)ak + 8-aka(-VJ)a

O =-- 2(6 - -R V ,-a.
- - 1 -

- Ri Vna + -atajVa' h

4J

1 -
+ 4 ananVia.-

ak-- ( R -- ama ) -- kOk(7.a
923 2 2

48

-q')k)

2 q "

(3.3.12)

I aa 3 Vkak
4

(5)zij
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O ) = [-2(7ak)R + (Vka )a m am

OM = gi V (kak)amam - (Vkam)km + (Vkam)a am

OQ0) ai (Va~ka. (3.3.13)

It is fortunate that none of these tensors contain purely even structures, since such

structures are left unconstrained (and thus undetermined) by duality. The only odd

term of the form (3.3.11) comes from A 4R,0^,R, 3-, and a detailed inspection shows

that no linear combination of the other terms gives rise to odd tensors generically of

the form (3.3.11). This determines that, with the requirement of covariance of duality

under the RG, the 0(a' 2 ) term in the beta function is

32) = A Rtt0R" . (3.3.14)

One should now check that the corresponding (00) component also satisfies its con-

sistency condition. A straightforward computation shows that it does, and the deter-

mination of the two-loop beta function is thus complete.

Although we treated a restricted class of metric backgrounds, our result is valid

for a generic metric, since none of the possible tensor structures are built out of the

off-block-diagonal goi elements alone (in which case our consistency conditions would

be blind to them, just as they are to the even terms Eii).

Some final comments on scheme dependence are also in order: for a purely metric

background, it is well-known that the two-loop beta function is scheme indepen-

dent within the standard set of subtraction schemes determined by minimal and

non-minimal subtractions of the one-loop divergent structure R,,. Under a broader

definition of subtraction scheme, however, when other terms may also be subtracted,

e.g. of the type g,,,R, then the beta function becomes scheme dependent and differs

from (3.3.14). Our duality constraints have determined a beta function falling into

the first (and standard) class of schemes, i.e., those in which one-loop subtractions

are of the form (constant + 1/c)R,,. This is natural to expect, as these represent the

subtraction of the inherent divergence of the theory. However, it raises the question of
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whether the duality constraints clash against the possibility of making more general

subtractions. It has recently been found [42] that in fact there is no clash, since it is

possible to explicitly determine the modification in the duality transformations them-

selves under a field redefinition, and they will be such as to preserve the consistency

conditions with respect to the redefined beta functions. The statement [T, R] = 0

thus acquires a meaning beyond and independent of any field redefinition ambiguity.

Simply using the requirements that duality and the RG commute as motions in

the parameter space of the sigma model, we have been able to determine the two-loop

beta function to be

= a'RP + a , (3.3.15)

for an entirely generic metric background, without any Feynman diagram calculations.

Because we used an extremely restrictive class of backgrounds, it was not possible

to determine the value of A (the correct value is A = ). However, we expect that,

similarly to what happens at O(a'), once a more generic background is used in the

consistency conditions, even this constant should be determined1 .

That duality symmetry should yield information on the renormalization structure

of a theory is to us a striking fact, and one which we intend to further explore in the

next chapter.

1In the supersymmetric case, a further restriction is available: when the target is restricted to a
Kihler manifold, the beta function must be a Kihler tensor. Because the structure in (3.3.15) is not
such a tensor, A must vanish. Thus, in the supersymmetric case our considerations do determine
that there are no O(a') corrections to duality and that the two-loop beta function vanishes.
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Chapter 4

Heterotic 0-Models

4.1 Introduction

Symmetry is a central concept in quantum field theory. Usually, one thinks of symme-

tries as transformations acting on the fields of a theory, leaving its partition function

invariant. More fashionable these days is a different concept. This is the idea of du-

ality symmetries, transformations on the parameter space of a theory which leave its

partition function invariant. One such example is the well known target space duality

(T-duality henceforth), see [34] for a complete set of references. Another important

action on the parameter space of a quantum field theory is that of the renormaliza-

tion group (RG henceforth), as RG transformations also leave the partition function

invariant. The study of the interplay between the RG and duality symmetries then

seems quite natural [56].

The idea of T-duality symmetry first came about in the context of string theory

[34], but it was soon realized that a proof of its existence could be given directly from

sigma model path integral considerations [18, 19]. On the other hand, sigma models

are well defined two dimensional quantum field theories away from the conformal

backgrounds that are of interest for string theory [32, 6]. A study was then initiated

concerning the possibility of having T-duality as a symmetry of the quantum sigma

model away from the (conformal) RG fixed points, when the target manifold admits

an Abelian isometry. Central to this study was the aforementioned interplay between
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the duality symmetry and the RG . It was observed that this interplay translates

to consistency conditions to be verified by the RG flows of the model; and that

indeed they were verified by, and only by, the correct RG flows of the bosonic sigma

model. Such a study was carried out up to two loops, order O(a'2), in references

[41, 46, 47, 42], and partially described in the previous chapter.

Such symmetry being verified in the bosonic sigma model - where the target

fields are a metric, an antisymmetric field and a dilaton - one then wonders what

happens for the supersymmetric extensions of such models. With relation to the

N = 2 supersymmetric sigma model [6], where the target fields are similar, the

bosonic results do have something to say. This is due to the fact that this model

asks for target Kihler geometry [80, 5], if it is to be supersymmetric. Including this

extra constraint in the analysis of [41, 46, 47] one then sees that when restricted to

background Kihler tensor structures, the results obtained in there translate to the

well known results for this supersymmetric sigma model, as we also remarked in the

last chapter. Corresponding results for the .A = 1 supersymmetric sigma model can

also be obtained.

Another interesting supersymmetric extension of the bosonic sigma model is the

heterotic sigma model [50]. One extra feature is that one now has a target gauge

field. It is this new coupling that we shall study in here, following the point of

view in [41, 46, 47, 42]. We shall work to one loop, order 0(a'), and we will see

that T-duality is again a good quantum symmetry of this sigma model. This shall

be done by deriving consistency conditions for the RG flows of the model under T-

duality and observing that they are satisfied by, and only by, the correct RG flows

of the heterotic sigma model. However, yet another extra feature arises. In these

models the measure of integration over the quantum fields involves chiral fermions.

Such fermions produce potential anomalies, and we therefore have a first example

where we can analyze the interplay of T-duality and the RG flow in the presence of

anomalies. It is then reasonable to expect that the consistency conditions may have

something to say about these anomalies, as they need to cancel in order to define an

RG flow.
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One should finally remark that it is indeed interesting that duality, a symmetry

which is apparently entirely unaware of the renormalization structure of the model,

should yield such strong constraints as to uniquely determine the sigma model beta

functions. Work similar in spirit to the one we perform here has also been carried

out in condensed matter systems [21, 17], and more recently in systems that have a

strong-weak coupling duality [61, 53].

Following [41, 46, 47, 42], let us begin with a theory with an arbitrary number

of couplings, gt, i = 1,... ,n, and consider a duality symmetry, T, acting as a map

between equivalent points in the parameter space, such that,

Tg= = e(g). (4.1.1)

Let us also assume that our system has a renormalization group flow, R, encoded by

a set of beta functions, and acting on the parameter space by,

Rgi = dg, (4.1.2)
d p

where ft is some appropriate subtraction scale. Given any function on the parameter

space of the theory, F(g), the previous operations act as follows:

TF(g) = F( (g)) , RF(g) = 6 F (4.1.3)

For a finite number of couplings the derivatives above should be understood as or-

dinary derivatives, whereas in the case of the sigma model these will be functional

derivatives, and the dot will imply an integration over the target manifold.

The consistency requirements governing the interplay of the duality symmetry

and the RG can now be stated simply as,

[T, R] = 0, (4.1.4)

or in words: duality transformations and RG flows commute as motions in the pa-
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rameter space of the theory. This amounts to a set of consistency conditions on the

beta functions of our system:

3i(e) = . - (g) (4.1.5)

As we shall see, this is a very strict set of requirements in our model.

The organization of this chapter is as follows. In section 2 we will give a brief

review of the heterotic sigma model, and on how to construct the T-duality trans-

formation acting on the target space. Then, in section 3, we shall see how these

transformations translate to a set of consistency conditions to be satisfied by the

beta functions of the model. In section 4, we study such conditions in the heterotic

sigma model; for the simpler case of torsionless backgrounds and paying special at-

tention to the cancelation of anomalies. The results obtained in this section are then

extended to torsionfull backgrounds in section 5, where the calculations are more

involved. Finally, in section 6, we present a concluding outline.

4.2 Duality in the Heterotic Sigma Model

We shall start by reviewing the construction of the heterotic sigma model in (1,0)

superspace, and the standard procedure of dualizing such model. We will closely

follow the main references on the subject, [50, 49, 3, 4], and refer to them for further

details.

Superspace will have two bosonic coordinates, zo and z1, and a single fermionic

coordinate of positive chirality, 0. The supersymmetry is A = 1 Majorana-Weyl, as2

only the left moving bosons have fermionic partners. We will consider two types of

superfields, one scalar coordinate superfield and one spinor gauge superfield,

(V(z, 0) = X"(z) + 0AP(z) , 4"(z, 0) = 4I(z) + 0FI(z). (4.2.1)

In here the 4W are coordinates in a (d + 1)-dimensional target manifold M, so that

P= 0,1, ... , d, while the V, are sections of a G-bundle over M with n-dimensional
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fibers, so that I = 1, ..., n. These spinor superfields transform under a representation

R of the gauge group G, with n = dim R. We will consider arbitrary n, d, even though

for the heterotic superstring d+ 1 = 10, n = 32 and G = Spin(32)/Z 2 or G = E8 0 E8

[39]. Using light-cone coordinates, z* = g(z ± z1 ) and 0± = ( O91), the

superspace (1, 0) covariant derivative is written as:

D = 9o + i0+ , 2 = Z&+. (4.2.2)

We consider the target manifold endowed with a metric g,,, antisymmetric ten-

sor field b., and a gauge connection Ajj associated to the gauge group G. The

Lagrangian density of such model is given by [50, 31:

IC= -i dO { (gm,(4) + bpv(D))Dm_ 0-V - i 6j II(D 'j + Am 'K(})D4D K

(4.2.3)

One should keep in mind that the action has an overall coefficient of as usual. A

good exercise is to do the 0 integration and eliminate the auxiliary fields. One should

find:

1C = (gm, + bm,)+Xm0_X" + igmA4(0_ A" + (F/ + !HV )OXPAO)+

+i4l(a4+ + AAI7 +XAbj) + IFmjA AA"0I~j, (4.2.4)
2 /LI

where,

HmVP = Omblp + 01bpm + Opbmv and FmV = OmAv - OAm + [Am, A,]. (4.2.5)

We need to assume that the sigma model has an Abelian isometry in the target

manifold, which will enable duality transformations [49, 3, 4]. Let be the Killing

vector that generates the Abelian isometry. The diffeomorphism generated by trans-

forms the scalar superfields, and the total action is invariant under the isometry only

if we can compensate this transformation in the scalar superfields by a gauge transfor-

mation in the spinor superfields [49, 3]. This introduces a target gauge transformation
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parameter K, such that 6 A, - SA, = DK.

Choose adapted coordinates to the Killing vector, 1a, D o8, and split the co-

ordinates as p, v = 0, 1, ..., d = 0, i, so that the t = 0 component is singled out.

In these adapted coordinates the isometry is manifest through independence of the

background fields on the coordinate X 0 . Moreover, in these coordinates the target

gauge transformation parameter will satisfy [49, 3],

DAK 0KK + [A,, K] = 0. (4.2.6)

The duality transformations are then [3, 4]:

1 boi ~ oi
Yoo -~~,=0 , $ -00 00 bol 0gogoo goo

~Y9iY0j - 1 -~ 0i~ - 9j~
ij = gij - , i = bi- - , (4.2.7)Y 3 oo b-Y oo

1Zojj = -- /,j, (4.2.8)
goo

9oi + bol.
Zi/I AIJ - oW. (4.2.9)

where we have used pU j- (K - Ac)ij following [49, 3], and which in adapted coor-

dinates becomes yuI - (K - A 0 )ij. Observe that the gauge transformation properties

of K are such that pj will transform covariantly under gauge transformations [49, 3].

Equations (4.2.7) are well known since [18, 19], and their interplay with the RG has

been studied in [41, 46, 47, 42], and also partially described in the previous chapter.

They shall not be dealt with in here, as to our one loop order there is nothing new to

be found relative to the work in [41]. We shall rather concentrate on the new additions

(4.2.8) and (4.2.9) yielding the duality transformations for the gauge connection.

There is one more duality transformation one needs to pay attention to, the one

for the dilaton field. As is well known, in a curved world-sheet we have to include
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one further coupling in our action,

I J2z Vh RN (2)(X), (4.2.10)
47r

where h = det hab, hab being the two dimensional world-sheet metric, and R(2 ) its

scalar curvature. O(X) is the background dilaton field in M. This term is required in

order to construct the Weyl anomaly coefficients (see section 3). We should however

point out that the addition of such coupling to the heterotic string is not entirely

trivial as it is not invariant under the so-called kappa-symmetry [14, 13]. Taking into

account the one loop Jacobian from integrating out auxiliary fields in the dualization

procedure, one finds as usual the dilaton shift [19, 15]:

1
n- - ngoo. (4.2.11)

2

Formulas (4.2.7-9) were obtained using classical manipulations alone. Only (4.2.11)

involves quantum considerations. So, for this heterotic sigma model, we need to be

careful in the following as there will be anomalies generated by the chiral fermion

rotations in the quantum measure, and if so the original and dual action will not

be equivalent. If we want these two theories to be equivalent one must find certain

conditions on the background fields in order to cancel the anomalies. We shall see in

the following that the consistency conditions (4.1.5) do have something to say on this

matter.

4.3 Renormalization and Consistency Conditions

The renormalization of the heterotic sigma model has been studied in many refer-

ences. Of particular interest to our investigations are the one loop beta functions

[38, 69, 37, 20]. However, there are some subtleties we should point out before pro-

ceeding, as the one loop effective action is not gauge or Lorentz invariant. It hap-

pens that this non-invariance is of a very special kind, organizing itself into the well

known gauge and Lorentz Chern-Simmons (order 0(a)) completion of the torsion

57



[50]. Then, starting at two loops, there are non-trivial anomalous contributions to

the primitive divergences of the theory, and things get more complicated [37]. None

of these problems will be of concern to us to the order 0(a') we shall be working to,

appearing only at order 0(a'2 ). The one loop, order 0(a), beta functions can be

computed to be [37, 20]:

log = RgV - -HA AHApv + 0(a'), (4.3.1)

13b = VAHAA, + 0(a'), (4.3.2)
AV 2

-(D FA4 + I H,)4FAP) + 0(a'), (4.3.3)

where RA is the Ricci tensor of the target manifold, VA is the metric covariant

derivative, and D,, is the covariant derivative involving both the gauge and the metric

connections.

Of special interest to us are the Weyl anomaly coefficients [74, 75, 35, 14], which

are in general different from the RG beta functions. Their importance comes from

the fact that while the definition of the sigma model beta functions (/) is ambiguous

due to the freedom of target reparameterization, there is no such ambiguity for the

Weyl anomaly coefficients (/) which are invariant under such transformations. This,

of course, is related to the fact that the -functions are used to compute the Weyl

anomaly, while the /-functions are used to compute the scale anomaly [74, 75].

The advantage of using Weyl anomaly coefficients in our studies is then due to

the fact that while both ) and / satisfy the consistency conditions (4.1.5), the /-

functions satisfy them exactly, while the /-functions satisfy them up to a target

reparameterization [41, 46]. Since both encode essentially the same RG information,

in the following we shall simply consider RG motions as generated by the /-functions.

For the heterotic sigma model [35, 14], and for the loop orders considered in this work:

AV= 3V + 2VAI,5 + 0(a'), (4.3.4)
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'UV= t + H, Va + 0('), (4.3.5)

A= i3 + F, 1ALV + 0(a'). (4.3.6)

The consistency conditions (4.1.5) can now be derived. The couplings are gi

{g,,, bgI A, 1, 4}, and the duality operation (4.1.1) is defined through (4.2.7-9) and

(4.2.11). The RG flow operation is defined in (4.1.2), for our couplings, with the only

difference that we shall consider -generated RG motions as previously explained. It

is then a straightforward exercise to write down the consistency conditions (4.1.5)

for the heterotic sigma model. The consistency conditions associated to (4.2.7) and

(4.2.11) have in fact been studied before [41, 46, 47] and are known to be satisfied

by, and only by, (4.3.1-2) or (4.3.4-5). So, we shall not deal with them in here. The

consistency conditions associated to the gauge field coupling are:

03A = 1 ^ + 2 (K - Ao) 30 , (4.3.7)
goo 900

-1 1
A = ^- -(( - A0 )(; + ) - (goA + b0g)fl^)+ I (goi + bo)(K - Ao))3go, (4.3.8)

goo 90

where we have used the notation b32 / {,^, A, $]. These are the main equations to

be studied in this paper. The task now at hand is to see if these two conditions on the

gauge field /-functions are satisfied by - and only by - expressions (4.3.3), (4.3.6);

and if so under what conditions are they satisfied. For that we need to perform a

standard Kaluza-Klein decomposition of the target tensors. This procedure is familiar

from previous work [41, 46, 47], and in particular we will use the formulas in the

Appendix of [46], supplemented with the ones in the Appendix of this thesis.

A final ingredient to such an investigation is the following [6, 69]. At loop order f,

the possible (target) tensor structures T,,... appearing in the sigma model beta func-

tions must scale as T,,,... (Agi) = A T,,...(gi) under global scalings of the background

fields. In our case at one loop, order 0(a'), we have f = 1. These tensor structures

must obviously also share the tensor properties of the beta functions. In our case

the gauge beta function is gauge covariant Lie algebra valued, with one lower tensor

index.
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4.4 Duality, the Gauge Beta Function and Het-

erotic Anomalies

Let us now start analyzing our main equations, (4.3.7) and (4.3.8), for the case of the

heterotic sigma model, as described in section 2. As previously mentioned this model

has chiral fermions that, when rotated, introduce potential anomalies into the theory.

These anomalies need to be canceled if the dualization is to be consistent at the

quantum level. However, our strategy in here is to see if we can get any information

on this anomaly cancelation from our consistency conditions (4.3.7-8). So, we will

set this question aside for a moment and directly ask: are the consistency conditions

(4.3.7-8) verified by (4.3.3), (4.3.6)?

We choose to start with torsionless backgrounds. Such choice can be seen to

extremely simplify equation (4.3.8), as the metric is parameterized by:

(a 0) (4.4.1)

and we take b,, = 0. Therefore, there is also no torsion in the dual background

[46, 47]. In this simpler set up it shall be clearer how to deal with anomalies before

addressing the case of torsionfull backgrounds (see section 5). All this said, equations

(4.3.7-8) become,
11

~-i ( + -K - A 0 ) 00, (4.4.2)
a a

(4.4.3)

Now, use the Kaluza-Klein tensor decomposition of (4.3.3), (4.3.6), under (4.4.1),

and compute V and 3 (also see the Appendix). By this we mean the following.

One should start with (4.3.3), (4.3.6), and decompose it according to the parame-

terization (4.4.1). We will obtain expressions for )O and A. Then, dualize these

two expressions by dualizing the fields according to the rules (4.2.7-9) and (4.2.11).

This yields expressions for V and / . Finally, one should manipulate the obtained

expressions so that the result looks as much as possible as a "covariant vector trans-
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formation" (4.1.5). Hopefully one would obtain (4.4.2-3), if the gauge beta functions

are to satisfy the consistency conditions. However, the result obtained is:

A =-^ + 1(K- Ao)(-)O3), (4.4.4)
a a

1. = .f . (4.4.5)

The first thing we observe is that even though (4.4.5) is correct as we compare it

to (4.4.3), (4.4.4) is not as we compare it to (4.4.2). There is an extra minus sign that

should not be there. Could anything be wrong? A possibility that comes to mind

is that nothing is wrong, and indeed (4.4.4) and (4.4.5) are the correct consistency

conditions, implying that the duality transformations were incorrect to start with. In

that case the duality transformation (4.2.8) would need to be modified in order to yield

the correct consistency condition upon differentiation. Let us regard this consistency

condition (4.4.4) as a differential relation: a one-form /1l which is expressed in the

one-form coordinate basis of a "two-manifold" with local coordinates {Ao, a}. But

then, as,
&a 1 a 1 _ 1

[- =a-0= [- ( -- Ao)], (4.4.6)Oa a a2 a2 OAo a2

we see that the consistency condition (4.4.4) is not integrable. Therefore we cannot

modify the duality transformation rules.

Let us look at this situation from another perspective. We can make the consis-

tency conditions (4.4.4-5) match (4.4.2-3) if we realize that what (4.4.4) is saying is

that, in order for duality to survive as a quantum symmetry of the heterotic sigma

model, we need to have,

(K - Ao) )g0 = 0. (4.4.7)

We shall see that this is just the requirement of anomaly cancelation, in a somewhat

disguised form - it is the way duality finds to say that these anomalies must be

canceled, if the dualization is to be consistent at the quantum level.

As was mentioned before, equations (4.2.8-9) were obtained using classical ma-

nipulations alone. In general, however, there will be anomalies and in this case the
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original theory and its dual will not be equivalent. If we want the two theories to

be equivalent one must find the required conditions on the target fields that make

these anomalies cancel. The simplest way to do so is to assume that the spin and

gauge connections match in the original theory, i.e., W = A [50, 3, 4, 39]. Under this

assumption, the duality transformation then guarantees that in the dual theory spin

and gauge connections also match, C = A. In the following we choose to cancel the

anomalies according to such prescription.

There are two outcomes of such choice [3, 4]. The first one is that if the original

theory is conformally invariant to O(a'), so is the dual theory. For the sigma model

this means that flowing to a fixed point will be equivalent to dual flowing to the dual

fixed point (observe that the duality operation (4.1.1) does map fixed points to fixed

points). The second is that we are now required to have p = Q, where we define:

QA1 = --(VAG - VVG), (4.4.8)
2

with the Killing vector generating the Abelian isometry and V" the metric covariant

derivative. In particular for our adapted coordinates g =,O, and as the affine

connection is metric compatible, Q = 0. But then,

,uj = (K - Ao) 1j = 0, (4.4.9)

and we are back to (4.4.7). Then, the consistency conditions are satisfied as long as

the anomalies are canceled.

Putting together the information in (4.4.7) and (4.4.9), let us address a few ques-

tions. The first thing we notice is that /3 A = 0 as K = AO (recall that in adapted

coordinates K satisfies (4.2.6), and so Foz = 0), which is consistent with the fact that

the target gauge transformation parameter is not renormalized. Then, the consistency

conditions become,

j= 0 , A= /, (4.4.10)

stating that the gauge beta function is self-dual under (4.2.8-9). But so, by (4.4.4-

62



5) with (4.4.7) satisfied, this proves that (4.3.6) explicitly satisfies the consistency

conditions (4.4.10) - to the one loop, order 0(a'), we are working to.

Given that the gauge field 3-function satisfies the consistency conditions, the

question that follows is whether the scaling arguments mentioned in section 3 joined

with the consistency conditions (4.4.10) are enough information to uniquely determine

(4.3.3). This would mean that (4.4.10) is verified by, and only by, the correct gauge

RG flows of the heterotic sigma model. Replacing (4.3.6) in (4.4.10) and using the

duality transformations, we obtain the beta function constraint:

/A + -Fik ln a. (4.4.11)
2

On the other hand, according to scaling arguments the possible tensor structures

appearing in the one loop, order 0(a'), gauge beta function are:

=c 1 D FA,+ c2 H,-PFA,, (4.4.12)

where the notation is as in (4.3.3). Dealing with torsionless backgrounds (4.4.1) we

set c2 = 0, and are left with ci alone. Inserting (4.4.12) in (4.4.11) then yields,

(c1 - 1 )Fik lna = 0, (4.4.13)
2

and as the background is general (though torsionless), we obtain c1 = which is the2

correct result (4.3.3). Therefore, our consistency conditions were able to uniquely

determine the one loop gauge field beta function, in this particular case of vanishing

torsion. We shall later see that the same situation happens when one deals with

torsionfull backgrounds.

A final point to observe is that the proof of pUij = 0 through (4.4.7) (and so, also

the proof of validity of the consistency conditions) is telling us that only if the sigma

model is consistent at the quantum level (no anomalies) can the duality symmetry be

consistent at the quantum level (by having the consistency conditions verified). Still,

one could argue that strictly speaking (4.4.7) requires either pUij = 0 or ) 0 = 0. But
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we also need to cancel all anomalies in order to have an RG flow. So, if one wants to

flow away from the fixed point along all directions in the parameter space, one needs

to cancel the anomalies in such a way that pjj = 0 in the adapted coordinates to the

Abelian isometry. Otherwise, if we were to choose an anomaly cancelation procedure

yielding non-vanishing pj, it would seem that in order to preserve T-duality at the

quantum level away from criticality, expression (4.4.7) would require that one could

only flow away from the fixed point along specific regions of the parameter space

(i.e., regions with /00 = 0). As we shall see next when we deal with torsionfull

backgrounds, this is actually not a good option: the only reasonable choice one can

make is pyJ = 0.

4.5 Torsionfull Backgrounds

To complete our analysis, we are left with the inclusion of torsion to the previous

results. We shall see that even though the calculations are rather involved, the results

are basically the same. Let us consider the same situation as in the last section, with

the added flavor of torsion. As in [41, 46], we decompose the generic metric g,, as:

a av
4ijaviv= (4.5.1)

avi gi j + avivJ

so that goo = a, goi = avi and gi = -+aviv-. The components of the antisymmetric

tensor are written as bo -_ wi and bij. We will also find convenient to define the

following quantities, ai = Oi Ina, fig = ;vd- - &9vi and GiJ - i3 wJ - 93 wi. From

(4.2.7) one finds that in terms of the mentioned decomposition, the dual metric and

antisymmetric tensor are given by the substitutions a -4 1/a, vi <-* wi, and bI>; =

bij + wiv - wiVz.

With all these definitions at hand, we proceed with the Kaluza-Klein decomposi-

tion of (4.3.3), (4.3.6), and compute )4l (also see the Appendix). From the discussion

in section 4 it should be clear what we mean by this, and which are the several steps

required to carry out such calculation. Again, one hopes to find (4.3.7) if the gauge
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beta function is to satisfy the consistency conditions in this torsionfull case. Yet

again, this does not happen. Instead we obtain,

1 A 1
A = -(-K A+ (x -)+

a a

1 1. 1. 1.
+-1(K - Ao)(f ij + -Gz's)fij + (fz 3 + -G')vi Fo + -Vi [A 0, Fi0 ]. (4.5.2)

2 a a a

At first this looks like a complicated result. However, we already have the expe-

rience from the torsionless case, and that should be enough information to guide our

way. Indeed, recall the discussion on anomaly cancelation from section 4, and proceed

to cancel the anomalies according to pUI = 0. Then one has K = A 0, and as K satisfies

(4.2.6) in these adapted coordinates we are working in, we also have Fio = 0. Looking

again at (4.5.2), one sees that the anomaly cancelation condition - just like in the

torsionless case - makes (4.5.2) match the consistency condition (4.3.7). Moreover,

we also see from (4.5.2) that, unless we are to severely restrict the background fields,

the only choice one can make in order to have the consistency conditions verified is

to cancel the anomalies through pajj = (K - A 0 )1 j = 0. Finally, observe that as the

target gauge transformation parameter does not get renormalized, and K = A0 , we

will have in adapted coordinates f3^ = 0.

One is now left with the analysis of )34. Making use of all that has been said in

the last paragraph this turns out to be a reasonable calculation as the consistency

conditions (4.3.7-8) have once again become,

S= 0 ,=(4.5.3)

the same as (4.4.10). Computing / by the usual procedure (also see the Appendix),

one then finds that it indeed satisfies the consistency conditions, modulo gauge trans-

formations. This is reminiscent of the fact that the f-functions only satisfy the

consistency conditions modulo target reparameterizations, as they are not invariant

under such transformations. In here, the -functions themselves are not gauge invari-

ant, but gauge covariant. In particular, we can choose a gauge where the consistency
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conditions are explicitly verified, the gauge Ao = 0.

So the gauge field /-function satisfies the consistency conditions in the torsionfull

case as well as it does in the torsionless case. One final question remains: are these

consistency conditions enough information to compute the coefficients ci and c2 in

(4.4.12)? The constraint these conditions impose on the beta function is obviously

the same as (4.4.11). So, when we insert (4.4.12) in (4.4.11) we obtain on one hand,

(4.4.13). This is to be expected and allows us to determine cl 1. On the other

hand we get the new relation,

-(c1 - 2c2)(avj + wi)fjk Fik - 0, (4.5.4)
2

and as the background is general, we obtain c2 = which is the correct result (4.3.3).

Therefore, our consistency conditions were able to uniquely determine the one loop

gauge field beta function. Thus, the consistency conditions (4.5.3) are verified by, and

only by, the correct RG flows of the heterotic sigma model. In other words, classical

target space duality symmetry survives as a valid quantum symmetry of the heterotic

sigma model.

4.6 Conclusions

We have studied in this chapter the consistency between RG flows and T-duality in

the d = 2 heterotic sigma model. The basic statement [T, R] = 0 that had been

previously studied in bosonic sigma models was shown to keep its full validity in this

new situation, with the added bonus of giving us extra information on how one should

cancel the anomalies (arising from chiral fermion rotations) of the heterotic sigma

model. Moreover, contrary to previously considered cases [41, 46, 47], the requirement

[T, R} = 0 enabled us to uniquely determine the (gauge field) beta function at one

loop order, without any overall global constant left to be determined.

Having considered the cases of closed bosonic, heterotic and (to a certain extent)

Type II strings/sigma models, a question that comes to mind is the following. What
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happens in the open string case? In this case, the duality transformations are [26, 25],

A0 = 0 , A;=A;. (4.6.1)

The consistency conditions associated to (4.6.1) are,

-Aol =4 -A ,=(4.6.2)

the same as (4.4.10). Again, using scaling arguments the only possible form of the

gauge field beta function is (4.4.12). If actually the Weyl anomaly for this situation

is the same as in (4.3.6), we conclude that also in here c1 = I and c 2 = . Then, by

the same line of arguments as in section 5, we also conclude that for the open string

the statement [T, R] = 0 is true and determines the beta function exactly, ensuring

that duality is a quantum symmetry of the sigma model.

One last sigma model to mention is a truncated version of the heterotic sigma

model [15], where one gets rid of the A" fermions in the Lagrangian (4.2.4). The

consequences of such truncation are the loss of fermionic partners for the left moving

bosons (thus destroying the (1,0) supersymmetry), and the fact that one no longer

needs to rotate the 0'1 fermions in the dualization procedure (thus removing the rK

parameter from expressions (4.2.8-9) and (4.3.7-8)). Considering the simpler case

of torsionless backgrounds, one finds that the known -functions (4.3.6) satisfy the

consistency conditions, modulo gauge transformations. Choosing a gauge where these

conditions are explicitly verified (Ao = 0), and following the standard dualization

procedure [15] one obtains that the gauge fixed duality transformations are the same

as (4.6.1), and so the consistency conditions are the same as (4.4.10) or (4.6.2). Then,

by the familiar line of arguments, [T, R] = 0 is true and determines the beta function

exactly ensuring that duality is a quantum symmetry of this sigma model.

Such a basic statement [T, R] = 0 has now been shown to be alive and well in a

wide variety of situations, possibly validating the claim in [46, 42] that it should be a

more fundamental feature of the models in question than the invariance of the string

background effective action.
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Chapter 5

The Gravitational Axial Anomaly

5.1 Introduction and Discussion

Perturbation theory anomalies have been known for a long time, starting with the

work by Bell and Jackiw [12] and by Adler [1] concerning anomalies in gauge theories.

The fact that there are no radiative corrections to the one loop result for the anomaly

has been countlessly proven or brought into question since the early work of Adler

and Bardeen [2]. For this reason, explicit calculations of possible radiative corrections

to the one loop anomaly are of particular interest.

Using a method proposed by Baker and Johnson [10], Erlich and Freedman re-

cently performed such an explicit calculation for the two loop contribution of the

anomalous correlation function (A,(x)A,(y)Ap(z)) of three chiral currents, in the

Abelian Higgs model and in the Standard Model [29]. In here, we wish to extend

such calculation to the case of a gravitational background.

The Adler-Bell-Jackiw (ABJ) anomaly concerns the divergence of the axial current

in a gauge field background. The calculation of the divergence of the axial current in

a gravitational field background was later performed by Delbourgo and Salam [23],

Eguchi and Freund [27] and Delbourgo [22]. As in the ABJ case, these authors found

an anomaly associated to the conservation of the axial current, the gravitational axial

anomaly. Later, Alvarez-Gaum6 and Witten showed the significance of gravitational

anomalies for a wide variety of physical applications [7].
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The question of absence of radiative corrections to the one loop result obtained

for the gravitational axial anomaly is an issue not as well established as it is in the

gauge theory case. This is the reason why we proceed to perform an explicit two loop

calculation, adopting the spirit in [29]. However, calculating the two loop contribution

to the gravitational axial anomaly is a much longer task than to do so for the gauge

axial anomaly. In this chapter we shall address the first part of the computation, by

calculating the abnormal parity part of the three point function involving one axial

vector and two energy-momentum tensors at a specific two loop order in the Abelian

Higgs model. The reason we choose to work in this model is due to the recent interest

arising from the gauge anomaly case in [29], and also due to the fact that this model

is a simplified version of the Standard Model. In order to set notation, the anomalous

correlator we shall be dealing with is:

(A.(z) T.,(y)T(x)),(5.1.1)

where A, is the axial current and T,, the energy-momentum tensor.

The method of calculation [10, 29] is based on conformal properties of massless

field theories, and also involves ideas from the coordinate space method of differential

regularization due to Freedman, Johnson and Latorre [31]. In particular, the corre-

lator (5.1.1) will be directly calculated in Euclidean position space and a change of

variables suggested by the conformal properties of the correlator will be used in order

to simplify the internal integrations. The order in two loops we shall be working in-

volves no internal photons, but only internal matter fields (the scalar and spinor fields

in the Abelian Higgs model). However, in this case diagrams containing vertex and

self-energy corrections will require a regularization scale. To handle this technicality

we shall introduce photons in our calculation, as there is a unique choice of gauge

fixing parameter (in the photon propagator) which makes both the self-energies and

vertex corrections finite. These "finite gauge photons" are merely a technical tool

employed in the calculation.

The use of conformal symmetry to construct three point functions is well estab-
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lished. Of particular interest to us is the work by Schreier [67], where three point

functions invariant under conformal transformations were constructed. For the case

of one axial and two vector currents, it was shown that there is a unique conformal

tensor present in the three point function. More recently, Osborn and Petkos [59]

and Erdmenger and Osborn [28] have used conformal invariance to compute several

three point functions involving the energy-momentum tensor. However, the case of

one axial current and two energy-momentum tensors was not considered.

What we find in here is that, even though at one loop there is only one conformal

tensor present in the correlator (5.1.1) - the one that leads to the contraction of the

Riemann tensor with its dual in the expression for the anomaly -, at two loops there

are two independent conformal tensors present in the correlator. This is unlike the

gauge axial anomaly case where the only possible tensor is the one that leads to the

field strength contracted with its dual in the anomaly equation. Precisely because of

the presence of these two tensors in the two loop result for the three point function,

this correlator does not vanish. Again, this is unlike the gauge axial anomaly case

[29].

The two linearly independent conformal tensors present in the anomalous cor-

relator are the ones in expressions (5.3.6) and (5.3.7) below (where the notation is

explained in the paragraphs leading up to these formulas). One thing we would like

to stress is that every diagram relevant for our calculation is either a multiple of one

of these tensors, or a linear combination of them both.

Two comments are in order. First, the existence of two independent tensors in

the two loop correlator could seem to indicate the existence of a radiative correction

to the anomaly. On the other hand, the fact that the correlator does not vanish at

two loops does not mean that its divergence (the anomaly) does not vanish at two

loops.

Another point of interest is to follow [31] and study the differential regularization

of the one loop triangle diagram associated to the gravitational axial anomaly, Figure

1(a). This is done in the Appendix. What one finds is that differential regulation

entails the introduction of several different mass scales. Renormalization or symmetry
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conditions may then be used to determine the ratios of these mass scales. In the

gauge axial anomaly case it was found that there is only one mass ratio [31]. In this

gravitational axial anomaly case, we have shown in the Appendix that there is more

than one mass ratio. This multiplicity of the mass ratios introduces new parameters

that could be able to cancel all potential (new) anomalies. Apart from presenting

part of these different scales we shall not proceed with their study. Here, we shall

only restrict to the calculation of the correlation function, which by itself consists

a lengthy project. Extracting the two loop contribution to the gravitational axial

anomaly from our three point function is a question for the future.

The structure of this chapter is as follows. In section 2 we present the massless

Abelian Higgs model, as well as a review of the basic ideas involved in the method

of calculation we use. This includes the calculation of the one loop triangle diagram.

Then, in section 3 we perform our two loop calculation, with emphasis on rigorous

details. The many contributing diagrams are organized into separate groups, and

then analyzed one at a time.

5.2 The Abelian Higgs Model and Conformal Sym-

metry

We shall start by presenting the massless Abelian Higgs model. In four dimensional

Euclidean space, its action is given by:

S J d4X {' FpLFIV + (DOO)tDq+ 0f7,DV4 - f O(LO + Rt)b - A(fto)2}, (5.2.1)

where we have used L = 2(1 - 75) and R = !(1 + ^/), with 75 = 71727374. The

covariant derivatives are:

Dp = (0, + igAu)O,

1
D = (OA + I igA,75 )O, (5.2.2)

2

so that the theory is parity conserving with pure axial gauge coupling.
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Next we introduce a background (external) gravitational field, in order to properly

define the energy-momentum tensors associated to the scalar and spinor matter de-

grees of freedom. A simple way to do this is to couple our model to gravity, so that a

spacetime metric g,,(x) is naturally introduced in the Lagrangian as a field variable.

Then we can obtain the energy-momentum tensor by varying the Lagrangian with

respect to the metric g,,(x) as T,,(x) = 2g ) f d4x -g L, where T,, (x) is man-

ifestly symmetric. In addition we have to ensure that it is conserved and traceless,

obtaining finally for the fermion field,

Tj= (; ,&) b, (5.2.3)

and for the boson field,

TB = ""3 Y av + avot apo - I b ' a - 1(0 apa'o + 2 9 a,1a9 )1, (5.2.4)

where (lp) - uv + vp.

One should observe that in the two loop calculation we are interested in computing

the order 0(gf 2k2 ) correction to the correlator, where g is the gauge coupling, f the

scalar-spinor coupling, and k the gravitational coupling. This means that there are

no internal photons in the associated diagrams, as these would be of order 0(g3 k2 ) _

we shall only need photons as the external axial current, and in order to handle some

of the potential divergences in the calculation (see section 3). This is why in (5.2.3)

and (5.2.4) the scalar and spinor matter degrees of freedom are decoupled from the

gauge field.

Conformal symmetry plays a central role in our calculations, as it motivates a

change of variables that simplifies the two loop integrations. Due to the absence of

any scale, our model is conformal invariant. The conformal group of Euclidean field

theory is 0(5,1) [59]. All transformations which are continuously connected to the

identity are obtained via a combination of rotations and translations with the basic
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conformal inversion,

OX 2x ,
=- 2 ") = X2 Jgv(x). (5.2.5)

The Jacobian tensor, J,,(x), which is an improper orthogonal matrix satisfying

J,,(x) = J,,(x'), will play a useful role in the calculation of the coordinate space

Feynman diagrams.

The action (5.2.1) is invariant under conformal inversions, as [29]:

O(X) -+ 0'(X) = '2

O(x) --+ 0'(x) =X2

A,(x) -+ A',(x) = -x'2 J, ()A,(x'), (5.2.6)

while also the following relations hold,

d4x = /8 and v'7q$' = -x' 2 J, (')y2. (5.2.7)

In order to use conformal properties to simplify the two loop Feynman integrals,

one should expect that the relevant Feynman rules will consist of vertex factors and

propagators with simple inversion properties. In particular for the scalar and spinor

propagators we have,

A(x - y) 1 -
47 2 (X _ y) 2  47 2 (xI _ y/) 2 1

1 ~ ~ ~ / /2 14 -j
S(x - y)= - y) = 1 '2 2' ' 1 ._ (5.2.8)

The vertex rules, read from the action (5.2.1), are:
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----- ------- -fL,

Zc - 64(Z

= -fR,

- zi) 64 (z - Z2), (5.2.10)

(5.2.11)

where solid lines are fermions, dashed lines are scalars and wavy lines are gauge fields.

In addition the energy-momentum tensor insertions (5.2.3) and (5.2.4) yield the

following vertices:

z4v = kay(,6,. ( -

;.z z pv z-z 3V = zkz

)_ (z - z1) 6
4 (z - Z2), (5.2.12)

1 6 a a 1 (& ±2 + 9

2 2z) z 2 1z z (z13)

.64(z -_z1) 64(Z - Z2), (5.2.13)

where the double solid lines represent gravitons.

Let us analyze the conformal properties of the graviton vertices. In order to do

that, we attach the vertices (5.2.12) and (5.2.13) to scalar and spinor legs, and use

(5.2.5), (5.2.7) and (5.2.8) to obtain,

S(v - x) y(,S(x - U)ax, Ox,

75

7-

z2

Z 1

=Za ig (64(Z Z) 64(Z Z2),

Z

z2
ZI

> ----- --------
(5.2.9)

-2 -



-x'8 Jr, (') Jo v(') { '2 ' S(v' - x') 'Y ( - ) S(x' - u') '2 ' }, (5.2.14)

for the fermionic vertex, where the derivatives only act inside the curly brackets.

Likewise,

_ _ _ _ 1 _ _ _ _ 1 _2 _ _2

A(v - x)( ± ( + )),A(x - U) =(x(, 9x,) 2 OX" x 0, 2 axgax, ax ,ax,

= ,'8 J4(') JVF9 (x').

fI ,2 A( _ ( _ 9 a _ a a 1 _ 2 _2 __ __

x - ') ax) 26I/ (~ +2aa )) A(x' - U
ax', OX', 2 ("9x' ix' 2 iox' ax' oxx

(5.2.15)

for the bosonic vertex, where once again the derivatives only act inside the curly

brackets.

As an illustration of these coordinate space propagators and vertex rules, we shall

now look at the one loop triangle diagram and perform the conformal inversion on the

amplitude's tensor structure. The relevant one loop triangle diagram is depicted in

Figure 1(a) and its amplitude, (z, y, x), can be computed using the previous

rules to be:

Bc,(Z I,,y, x) =

1.2 aaX aaZ-igk Tr -/.(Y5 S(z - Y) Y(,k&)o ( ) S(y - x) (phA)r ( ) S(x - z).2 ayO ayO Ox, OX,

(5.2.16)

Due to translation symmetry we are free to set z = 0, while we refer the remaining

external points x and y to their inverted images (5.2.5). Although this transformation

may seem ad hoc at this stage, it will later simplify the calculation of the two loop

diagrams [29]. The result we obtain is,

BC I,P(0, y, x) =

8 (
4 y.2 .ax

(5.2.17)
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Taking the fermionic trace one finally gets,

k2 i92 ( r_
B ( = o, y'(x') Jft(,1(y') Jv)c(y') JP(P(x') J0)'x') 0& x -I

(5.2.18)

For separated points (5.2.16) is fully Bose symmetric and conserved on all indices.

The expected anomaly is a local violation of the conservation Ward identities which

arises because the differentiation of singular functions is involved [29]. There are

several ways to obtain the anomaly in this coordinate space approach [31, 71, 29].

One way [31, 29] to do this is to recognize that the amplitude (5.2.16) is too singular

at short distances to have a well defined Fourier transform. One then regulates, which

entails the introduction of several independent mass scales. The regulated amplitude

is well defined, and one can check the Ward identities. Also, an important aspect of

this coordinate space approach to the axial anomaly is that the well defined amplitude

(5.2.16), for separated points, determines the fact that there is an anomaly of specific

strength [31].

Some more comments about the role of the conformal symmetry in the calculation

of possible radiative corrections to the anomaly are now in order. At first sight this

could look as a questionable role, after all the introduction of a scale to handle the

divergences of perturbation theory will spoil any expected conformal properties. This

is true in general, but our two loop triangle diagrams for this massless Abelian Higgs

model are exceptional. Any primitively divergent amplitude is exceptional when

studied in coordinate space for separated points, since the internal integrals converge

without regularization [29].

As we shall see in the next section, there will be 3 non-planar and 3 planar di-

agrams, which are primitives. Of course there will be many other diagrams which

contain sub-divergent vertex and self-energy corrections, and these require a regu-

larization scale. However, we are dealing with pure axial coupling for the fermion.

This means that if we introduce diagrams containing internal photons, then there is

a unique choice of gauge-fixing parameter F which makes the one loop self-energy

finite [29]. Moreover, since the vertex and self-energy corrections are related by a
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Ward identity, each vertex correction is also finite in this same gauge. In conclusion,

choosing this finite gauge makes it possible to obtain a finite two loop result in our

calculation.

5.3 The Three Point Function for the Two Loop

Gravitational Axial Anomaly

Let us now proceed to the next loop order in the non-gauge sector, as we are inter-

ested in computing possible corrections to the gravitational axial anomaly at order

O(gf 2 k2 ). At this order we have a total of 36 diagrams that can possibly contribute.

Of these diagrams, 3 are non-planar, but they actually only correspond to 2 indepen-

dent calculations due to reflection symmetry. These are depicted in Figures 1(b) and

1(c). Then, there are 3 scalar self-energy diagrams, and other 3 photon self-energy

diagrams (as we shall see, some diagrams involving photons are required in order to

choose the finite gauge and compensate some divergences of the non-gauge ampli-

tudes). These 6 self-energy diagrams amount to 2 independent calculations alone,

the ones depicted in Figures 1(d) and 1(e). Then, we have 3 axial current insertion

vertex corrections, in Figures 1(f), 1(g) and 1(h). At the energy-momentum tensor

insertion, we also have vertex corrections. These are 6 diagrams, amounting to the 3

independent calculations in Figures 1(i), 1(j) and 1(k). There are also 6 diagrams that

identically vanish due to fermionic traces, the ones in Figures 1(1), 1(m) and 1(n).

Associated to the mentioned self-energies there are 3 diagrams corresponding to lo-

cal self-energy renormalizations. They amount to 1 independent calculation, Figure

1(o). Also, associated to the mentioned vertex corrections at the energy-momentum

insertion there are 2 diagrams corresponding to local vertex renormalizations. They

amount to 1 independent calculation, Figure 1(p). So, overall, of the 29 initial two

loop diagrams in Figure 1, we are left with 12 independent calculations. In Figure 2

we have 7 more diagrams, corresponding to 4 independent calculations. These dia-

grams are associated to the finite gauge photons and shall be discussed later. We are

thus left with an overall number of 16 independent calculations, out of the initial 36
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diagrams. Let us see how to perform such calculations, one at a time.

5.3.1 Diagrams in Figures 1(b) and 1(c)

We begin with the non-planar diagram depicted in Figure 1(b), which we shall denote

by NOM,,(z, y, x). This amplitude is conformal covariant since no issues of sub-

divergences and gauge choice arise. The idea [10] is to use the inversion, uc ='c/U'

and v, = v'y/v' 2 , as a change of variables in the internal integrals. In order to use

the simple conformal properties of the propagators (5.2.8) we must also refer the

external points to their inverted images (5.2.5), as was done in (5.2.14), (5.2.15), and

in (5.2.17), (5.2.18). If in succession we use the translation symmetry to place one

point at the origin, say z = 0, then the propagators attached to that point drop out

of the integral, because the inverted point is now at oc, and the integrals simplify.

After summing over both directions of Higgs field propagation, and setting z = 0,

the amplitude for N (0, y, x) is written as,

N 0, y, x) - 8 d'udav( - 42

c 8LVPU0 8w4 1uv v

-Tr'y5 S(V - x)(, ( ) S(x - u)S(u - Y)7(A6v)r ( 0) S(y - )
aXO OXO Oay, - y

(5.3.1)

The change of variables previously outlined can be performed with the help of (5.2.7),

(5.2.8), and the Higgs current transformation,

uCv2  vOu = '2 Ut2 (u'a - v'). (5.3.2)
U4V2 O4 2

The spinor propagator side factors q', ', etc., collapse within the trace, and the

Jacobian (u'v')-8 cancels with factors in the numerator. Performing the algebra we

obtain,

N (0,y, x) ygf2 ' 8 1x') Jy')J(')J 0 )s(x') d u'dv'_(v'-u'),-
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-{Tr y5 S(v' - x'y ) S(' - ')S(U' - )S(y' -v'),

(5.3.3)
where the derivatives are acting only inside the curly brackets.

We see that we obtain the expected transformation factors for the energy-momentum

tensors at x and y times an integral in which u' and v' each appear in only two denom-

inators. These convolution integrals can be done in several different ways. The final

relevant formulas are listed in the Appendix. We begin by using the trace properties

to move the S(y' - v') propagator in (5.3.3) close to the S(v' - x') propagator. The

differential operators are kept fixed, with the understanding that now the y' derivative

that seems to be acting on nothing is actually acting on the propagator S(y' - v')

which is now sitting on the left. As usual, all derivatives act only inside curly brackets.

We can perform the integrations without the need to make the differentiations first

as the integration variables are well separated from the differentiation ones. Expand

the product with (v' - u'),, and we are led to the following result:

d4u'd4 v'(v' U') ,Try S(v' - X')-( )S(X'-U')S(U'-y')7(

S(y' - v') = -Try 5  d 4v'V S(v' - y')S(v' - X') -/P( -- a').

aSu / _ a d 4 v'S(V' ISV I _Y# _ a-S(U )- y') ( D') + Try'5  - y')S(v' - ' 47 - .

Jd4u'u' S(u' - X')S(u' - y')a( - (5.3.4)

where the integrals can be directly read off from the Appendix. When these results

are used and substituted within the trace, one finds the final amplitude,

N(1) ( x) igf k2  
18 X 8

N327,,yX) = 8 y'a( h(y') Jv)f(y') JU( (X') J,)&(X')

( 2 (9 (X Y (5.35)
('- y') Dx x'I (X' - y') 2 Dy - '_
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where we should have the "trace" attitude for taking derivatives: the derivatives only

act inside the curly brackets, and the y' derivative that seems to be acting on nothing

is actually acting on the first (x' - y') term.

We observe that unlike the case in [29], this non-planar amplitude is not a nu-

merical multiple of the amplitude for the one loop triangle diagram (5.2.18). This is

because the tensor (derivative) structure in (5.3.5) is different from the one in (5.2.18).

To see that one just has to explicitly compute both structures, and compare them.

For the triangle one has:
a 2  

A,_

&4Iay, A4

a (AKr 1 'A' a2 12 9A a1 a A\
- aX;A2Ja A2J A2aX1 ay (,A2) A2aOXI ayj A2) + aX A2)ayjA2)

(5.3.6)

while for the non-planar structure one obtains,

A 2 
-aX A2 (aC (9

CT' ax',A y y 3

a(A,) 1 i9 A, a2  (12 i fA \ a,1\ A9
A2iX11ylf+ )9IA y

-aX;A2aA2 2 AlagajA) A2a ayA)+xYA)y 2)
(5.3.7)

where we defined A (x'- y'). The reason such difference can happen is that while

in [29] there is a unique conformal tensor structure for the correlator of three axial

vector currents, in here we have two conformal tensor structures due to the higher

dimensionality of the correlator of the one axial vector current and the two energy-

momentum tensors. Also, observe that both these structures (5.3.6) and (5.3.7) are

to be understood as always attached to the appropriate factors of J,,(y'), J,(x')

and the appropriate powers of y', x'. Moreover the diagrams that give rise to them

obey conservation equations for the energy-momentum tensor insertions. (5.3.6) is

associated to the one loop diagram in (5.2.18). It can easily be proved that the

conservation equation is obeyed, a standard result from [23, 27, 22] (and also from

[31] once we are aware of the relation (B.6) from the Appendix). (5.3.7) is associated

to the two loop diagram in (5.3.5), and one can also explicitly check the conservation
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law for this case. This existence of two conformal structures is an extra feature in

the discussion of these two loop diagrams, relative to the work in [29].

There are 2 more non-planar diagrams, where the scalar vertex is placed at x

and at y. We need to compute them, as they are independent of the previous result

(we have a scalar-scalar-tensor vertex instead of a scalar-scalar-vector vertex, among

other different vertices), but they amount to 1 independent calculation.

So, we proceed with the non-planar diagram in Figure 1(c), denoted in the fol-

lowing by N() (z, y, x). The method of calculation is very similar to the one for

the previous diagram, and so we shall perform it in here with somewhat less details.

After summing over both directions of Higgs field propagation, and setting z = 0, the

amplitude for N (2) (0, y, x) is written as,

Ni2 0 JX gf 2 k 2  34'7X __ _N~~(,~) -127 
4  d'u d'v Tr 'U 4 )S SV-)-x-a). (X, O

-Au a -1 6 49a 1 02 02

-zlu - y) (PI - ( + )) A(y - v). (5.3.8)
Oy(, ay') 2 (9y, ay, 2 Oy,Oy, Oy,80y,

Performing the conformal inversion is now no harder than it was for the previous

diagram. The procedure is essentially the same, and if we carry out the algebra we

obtain,

zgf 2 k 2
N (2) (0 , X) 9j4V/-8c~i~c 24w4 t )j)F )jppW o)aW

Jd 4u'd 4V'{T 5 7,S(VIx).a' - )l'p 9S(x - U/).

-A(u'y') ( 6 a (92 + ))2 y'-+') 1 (5.3.9)
yl 0y',) 2 ay'7 Oy', 2 Oy' &y'r Dy'j y'_ ,

Once again the expected structure emerges, and all we have to do is to perform the

integrations. Using the relevant formulas from the Appendix, we find the final result
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as,

N2) ( ' y') fk8 t8 (1 Y 882 ('2

. - ( a (+ )_
4x'& 9x's (x' - y') 2  y' y') 2 "y', ay', 2 Oy' 0 y' 0y'

(5.3.10)

However, one should note the following. In (5.3.3) both differential operators were

first order in the derivatives, but in (5.3.9) the differential operator associated to the

vertex (5.2.13) is actually second order. As we expect to have at the end a result

similar to (5.3.5) or (5.2.18), we have to perform one of the derivatives in order for

both differential operators to become first order. Manipulating this result through a

somewhat lengthy calculation, one finds:

N 2) ( 1 X) (x' - y' 2 Y

. ( 9 ) X Y ) (5.3.11)
(X -y)2 _' _ ~JX ( y') J)i2 ( ) J9X(' J(y/(

where the notation is like in (5.3.5). One realizes that the structure here obtained is

the same as in (5.3.5). So, the 3 non-planar diagrams have the same tensor structure,

which is different from the one associated to the one loop triangle. From this result

we immediately read the last non-planar diagram, the one with the vertex involving

the scalar fields and energy-momentum tensor located at x. All we have to do is to

exchange x with y and pv with po- in (5.3.11). This actually does not change the

amplitude (5.3.11), so that this third diagram contributes with the same amount as

its reflection symmetric diagram.

Finally, we can add these 3 diagrams, and obtain the non-planar contribution to

the two loop correlator. The overall contribution is simply:

( 3igf 2  k2
No,,PaI(0, y , x) N(' ( ~~ 0 70 y, X) =- 64w 8,8 J(Y') J)v(Y')
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-- .<- ( I -- y ')--

-J(p(') J p (x') {' ( 1 a a ( Y - ) ), (5.3.12)(- Y/) (ax'd -9X' (X' y') 2 &y'p- __

5.3.2 Diagrams in Figures 1(d), 1(e) and 1(o)

We now proceed to the self-energy diagrams. These will be the same as in the three

gauge current case [29]. We shall see the finite gauge mechanism for the one loop

self-energies and vertex corrections coming about, as it handles certain divergences

by choosing a gauge where they are zero [10, 29]. For this cancelation of divergences

we have introduced the Abelian field which can be decoupled at the end by setting its

coupling to zero. Let us see how all that works, by starting with the Higgs self-energy

diagram in Figure 1(d), and the photon self-energy diagram in Figure 1(e). These are

3 diagrams in Figure 1(d) (as we can place the self-energy loop at any of the 3 sides

of the triangle), which amount to 1 independent calculation, and other 3 diagrams in

Figure 1(e) that again amount to 1 independent calculation. If we remove the self-

energy leg from the triangle diagram, and add the Higgs and photon contributions

we obtain [29],

E( - U) =I [f2 + -g2(I - F)] - - a 0&4 (v - u), (5.3.13)
81 2 (v -u) 6

where F is the gauge fixing parameter coming from the photon propagator [10, 29].

In this result, the first term is the part of the amplitude which is determined by the

Feynman rules read from the diagrams. It has a linearly divergent Fourier transform,

but the crucial point is that this amplitude can be made finite by choosing the gauge

F = 1 + 2f 2 /g 2 . It then vanishes for separated points. However, there is a possible

local term, the second term in (5.3.13), which is left ambiguous by the Feynman rules,

and is represented in Figure 1(o). The constant a will be determined by the Ward

identity [29].

In order to proceed with the calculation of this constant using the Ward identity,

we first need to look at the following vertex correction diagrams at the axial current

insertion: Figure 1(f), TO(z, y, x), Figure 1(g), T, (z, y, and Figure 1(h),
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T(,3) (z, y, x). Again, we need a diagram involving photons in order to choose the

previously introduced finite gauge. Also, these 3 diagrams clearly correspond to 3

distinct calculations.

The amplitudes of the 3 vertex correction subgraphs in these diagrams are the

same as in [29]. Therefore we already know that each contribution has a logarithmic

divergent Fourier transform, and that the sum of the divergent contributions from

these 3 vertex subgraphs is proportional to -2f 2 _ g 2 (1 - F), therefore vanishing in

the same gauge that makes the self-energy finite. Henceforth we shall use this gauge.

Let us then proceed with the Ward identity calculation, by summarizing the

result from [29]. From the amplitudes for the vertex subgraphs in the diagrams

T (y, x), i = 1, 2,3, we obtain the Ward identity for the theory [29],

a .1
T ,u, v) = -i-gy 5 (64(z - u) - 64(z - v)) E(U - v), (5.3.14)

(9zC 2

where Ta = 1 T, and T is the vertex subgraph in the diagram T . The

constant a in the self-energy (5.3.13) can be calculated as in [29] - where basically

one works out the LHS in (5.3.14) (in the finite gauge) in order to find the correct

value for (5.3.13) in the RHS -, and the final answer is given by

3 1
E(z) = 64 2  _ _ 2) 0 64 (Z). (5.3.15)

647r 2

Strictly speaking, one should now proceed to verify that the exact same result is

obtained from the Ward identity associated with the vertex correction diagrams at

the energy-momentum tensor insertions, Figures 1(i), 1(j) and 1(k). This is in fact

true, but for pedagogical reasons we shall postpone such a proof for a couple of pages.

It is this result for E(v - u) which is to be used to evaluate the local self-energy

renormalization, Figure 1(o), therefore yielding the correct value for a in (5.3.13).

These again are 3 diagrams that amount to 1 independent calculation as in Figures

1(d) and 1(e). As (5.3.15) is purely local, the integral in u and v required for the

previous diagram is trivial, simply yielding a multiple of the one loop triangle ampli-

tude. The final result is that the sum of the self-energy insertion diagrams, Figures
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1(d), 1(e) and 1(o), is a multiple of the one loop amplitude,

3 (fi1 B~,zxE' ,),,(, ,_64r 2  2 (5.3.16)

exactly like in [29] as the internal fields are the same. Now recall that there is a factor

of 3 from the triangular symmetry. There is also a factor of 2 for opposite directions

of fermion charge flow (such term was absent in the non-planar diagrams). Finally,

we are interested in the ((gf 2 k2 ) corrections, so that the term in g 2 in (5.3.16)

should be discarded. The overall result for the self-energy contribution to the two

loop correlator is finally,

9f 2

Ece,41,,OI(0, y, X) = 32fr2 Ba ,4,,0,(0, y, ), (5.3.17)

where we have set z - 0 (for coherence with the other diagram calculations).

5.3.3 Diagrams in Figures 1(f), 1(g) and 1(h)

We can now proceed the calculation of the vertex correction diagrams at the axial

current insertion, Tjv,(z, y, x), i = 1,2, 3. As for the self-energy, the calculation of

these 3 diagrams follows from [29]. We shall regard each virtual photon diagram as

the sum of two graphs, one with the photon propagator in the Landau gauge ' = 1,

and the second with inversion covariant pure gauge propagator,

1 f 2  IAPV(U - V) = Jtv(u - v). (5.3.18)

The Landau gauge diagrams give order O(g 3 k2 ) contributions to the two loop corre-

lator, while the remainder gives an order 0(gf 2 k 2 ) contribution which is what we are

interested in. Therefore - and similarly to what was done from (5.3.16) to (5.3.17)

- we shall discard the Landau gauge diagrams from our final result, and only use

(5.3.18) for the virtual photon propagator in the finite gauge.

With this in mind we turn to the calculation of the diagrams TO ,(z, y, x). The

method of calculation is similar to the one used for the non-planar diagrams, and so
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we shall follow it here without giving details. After summing over both directions

of Higgs field propagation, and setting z = 0, the amplitude for T , y, x) is

written as,

T (0, = - z8f J du dv A(v - u)-

-Tr 'YVY5 4 S(v - Y)y->&Ab y ) S(y - x)y(,6U)7 ( ) S(x - U),
U 4 y (9y, (,Ox, Ox,

(5.3.19)

and performing the conformal inversion we are led to the result,

TC(), 0 (0, y, X) = g~ 2 y'E' 1 f8Jr,(y'W) Jv),(y') JA(P x') J,)&( ') Id 4u'd dV' A(V'-U')-

-Tr y 5 -y, S(v' - y')y ) S(y' - x')yf (, - ) S(x' - u'). (5.3.20)
a___ ay'; Ox'& O a'

As usual the expected tensorial structure emerges. We are left with the integrations

to be performed. However, as we have seen, this result is divergent; only when we sum

the 3 diagrams T ( y, x), i = 1, 2, 3 the result will be finite, in the finite gauge.

So at this stage we should include in the calculation (5.3.20) the equivalent results

coming from the diagrams T 2) (0, y, x) and T (3 ) (0, y, x) - where for this last one

we should use only the inversion covariant pure gauge propagator (5.3.18). The result

of including the 3 diagrams all together is to produce an integral of a traceless tensor,

which is convergent, and can be read from the formulas in the Appendix. Hence we

can write for the net sum of vertex insertions at point z, i.e., T 1,) (0, y, x) plus

T() (0, y, x) plus T (0, y,

TC'AVP9(0, y, X )=

Sigf 
2k a ,' - ,.k' 5t 8 /8[(Y (X~(' aya

256r 8 Yy XJ((x')Jo)&(x') (x - y4 (53.21)

which is a multiple of the triangle one loop amplitude (5.2.18). Recalling that there

is a factor of 2 for opposite directions of fermion charge flow, we can finally write for

the contribution of the vertex correction diagrams (at the axial current insertion) to
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the two loop correlator,

3272

5.3.4 Diagrams in Figures 2(a) and 2(b)

In order to obtain the previous result we had to use finite gauge virtual photons,

as given by the propagator (5.3.18). If one has a diagram with an internal virtual

photon, one should expect a factor of g from each of the two internal vertices, and

so an overall contribution of order 0(g 3 k2 ). However, if one uses an internal finite

gauge virtual photon, there is an extra factor of f 2 /g 2 from the propagator (5.3.18),

and we therefore obtain an overall contribution of order O(gf 2 k 2 ), which is the order

we are interested in. This means that one now has to include all diagrams with one

internal finite gauge photon (5.3.18).

In particular we have to include one more vertex in our rules, that completes

(5.2.9-13). This vertex can be read from the action (5.2.1) when coupled to gravity,

and is the following,

zi

Z3, ~p = - igk (6^,15- )7 6'(Z - Z1) 6'(Z - Z2) 6'(Z - Z3),

z2 /(5.3.23)

where the notation is as in (5.2.9-13). Observe that there is no similar vertex involving

two scalar legs (as opposed to the two fermion legs we have) as such vertex would

give diagrams that do not contribute to the abnormal parity part of the correlator

we are computing.

When this vertex is considered, one finds that there are 7 new diagrams that must

be included in our calculation, the ones presented in Figure 2. There is 1 primitive

diagram in Figure 2(a). There are 2 other primitive diagrams which only correspond

to 1 independent calculation, the one depicted in Figure 2(b). Then we have energy-
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momentum insertion vertex corrections. These are Figure 2(c) and Figure 2(d), 2

independent calculations corresponding to 4 diagrams due to reflection symmetry.

We shall now proceed to evaluate these diagrams.

We start with the primitive diagram in Figure 2(a), P' (z, y, x). This diagram

is easily evaluated as it involves no integrations. Recall that we have to use (5.3.18)

alone, whenever one encounters a virtual photon. Setting z = 0 and performing the

conformal inversion, the amplitude P (0, y, x) becomes,

P'(i) (0, y, X)

__ igf 2k 2  18 18 J (X' - Y) JF (x -y').

64-F8 Y'J~('J((x)J() (X' -

(5.3.24)

Unlike all the preceeding calculations, this amplitude involves no derivatives. This

is certainly to be expected due to the nature of vertex (5.3.23). However, one can

manipulate (5.3.24) in order to write it as the second derivative of a tensor involving

the structures (5.3.6) and (5.3.7) alone. After some calculations, one can show that

(5.3.24) can be re-written as (including the factor of 2 for opposite directions of

fermion charge flow):

P ( y )=y' p', J/y') J )(y') . h~) J 18 ('/

1 ('-y') (5.3.25)
Ox' O X ' - )2  Oy F Oy )2i ' (x' - y')2  &x' - x' () - y')2__

and this tensor structure is precisely the same as the one in the non-planar diagrams

(5.3.12). This should not come as a surprise as this diagram - like the non-planar

ones - is a primitive.

Let us proceed with the primitive diagram in Figure 2(b), P'(2) (z, y, x). This

diagram involves only one integration, therefore being different from the ones we

previously calculated (which either involved two or none integrations). Upon setting
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z = 0 the amplitude for P(2),(0, y, x) is,

S igf 2 k2  d u
011-P' 1287r 6  (u - ) 2J-gO(U -

1 -8 
4y

-Tr 70yf3-6 6plvyT) S(y - x) 7(4 a - )S(x - u), (5.3.26)
U y4 2 Ox, Oxr

and performing the conformal inversion one obtains,

pl(2)(O'Yj) =igf 2k 2 /8x8
CeP1 1287(0 y, J) =t y'(' Y') jo v(') JA' ) Jp W)

dau' a a8I - Uy Jo(u' - y') Tr7yya -y y a S(y'-x'), ( - a') S(x' - u'). (5.3.27)

We are left with one integration to perform. However, one should note that there

is only one differential operator in (5.3.27), and if we are to obtain a final result for

this diagram which involves the tensor structures (5.3.6) and (5.3.7) we shall have to

manipulate (5.3.27) in order to re-write it in such a way that it involves two differential

operators. This is analogous to the situation we faced from (5.3.24) to (5.3.25). After

integrating and performing some calculations, one obtains:

p(2) (0 YJ) gf2k 2 t8i
Cer1)2 ( y 128Z 8 Y x (' ') J x'

S(X'Y) + 1 - )(( ) aX. (5.3.28)
(x' - y') 4  (X' - y') 2 af's ax's (x' - y') 2 ayF - __

It is interesting to observe that this tensor structure is a linear combination of

both (5.3.6) and (5.3.7). Also, one must now include in this result a factor of 2 for

opposite directions of fermion charge flow and another factor of 2 associated to the 2

distinctive diagrams connected through reflection symmetry.

Finally, we can add the 3 diagrams in Figures 2(a) and 2(b), in order to obtain

the primitive planar contribution to the two loop correlator,

P0,4,PO,(0, y, X) = y'f-'2 8 ') Jy ') J((') J3)2(X) V
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2  (x' - y'), 5 1 )(XI' - y) j -

2 Oy;ax' (' - y') 4  4 (x' - y') 2 ax'5 ax'& (x' - y') 2 (5.329
(5.3.29)

5.3.5 Diagrams in Figures 1(i), 1(j), 1(k), 1(p), 2(c) and

2(d)

Next, we proceed with the evaluation of the contributions coming from the vertex cor-

rection diagrams at the energy-momentum tensor insertions. These amplitudes are

presented in Figure 1(i): VjbPa(Z, y, x), Figure 1(j): V2) y, ), Figure 1(k):

V/ P(z, y, x), Figure 1(p): VI (z, y, ), and also Figure 2(c): Vi 5,),(z, y,X),

and Figure 2(d): Vi,(z, y, X). Using the previous treatment with the axial in-

sertion vertex we should insert the photon propagator in our calculation in order to

guarantee finiteness of the energy-momentum insertion vertex. The amplitudes V(5)

and V(6) have a different structure from the other vertex diagrams as they are semi-

local. Moreover, there is a possible local term, V(4 ), which is left ambiguous by the

Feynman rules. This is analogous to the situation we faced when dealing with the

self-energy diagrams. As this local term cannot be evaluated by Feynman rules it will

be solely determined from the Ward identity. The role it plays is one of regularizing

a divergence.

The sum of these amplitudes becomes finite in the finite gauge, which also guaran-

teed the finiteness of the axial insertion vertex. The finite part of the vertex subgraphs

is a traceless tensor with respect to all three included indices, and can be written as,

V~f iniy, ) ()

3k (f 2 _ I2) Ot (Y _ _ )'( r
3k 7f 4 2  1 (- y &(u (( - U>)). (5.3.30)

274 (y - U) ( ,

In addition, it would be thoughtful to check the Ward identity connected to these

vertices. For that we express the tensor on the RHS of (5.3.30) in terms of the
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regularized traceless structure of derivatives,

((Y - U)k (Y U), ( U ) 1

(y U)2  6 =

_ __ __ __ __ 1 __ _ _

1 ( 6 ). (5.3.31)
48 Oy, (y, ay, 4 U (y - u)2

With this expression it is easy to derive that the following Ward identity is satisfied

for the energy-momentum insertion vertex,

4V V(')(y v u) = -,, E(y - u), (5.3.32)

where V(') is the vertex subgraph in the diagram Vi .

This Ward identity is essential for the calculation of the amplitude of Figure 1(i).

It suggests that it will give a divergent result, and only when we add together the

diagrams in Figures 1(i), 1(j), 1(k), 1(p), 2(c) and 2(d) we shall obtain a finite answer.

After summing up the two possible directions of the Higgs field and setting z = 0 due

to translation invariance of the amplitude, V14')vp (0, y, x) is written as,

VM (0,yx) = - fk 2  d4u d4v A(u -v)_

Y, ) 87r4#

-Tr S(v - y)(, 6,)3 ( - ) S(y - u)S(u - X)7(P6S)y, ( ) X4 V4

(5.3.33)

Using the conformal properties of the theory we can perform the usual inversion in

the spatial variables which results to,

0 p (0, y, x) = '2 tx'1 J(g(Y') J)r (Y') J#,((x') J)& x') J d4u' d4v' A(v' - u').

Tr _ S (V' - Y') (,) S(y' - u')S(u' - X') , 'T. (5.3.34)

In order to proceed with the u and v integrations we should also add the diagrams

of Figures 1(j), 1(k), 1(p), 2(c) and 2(d) to guarantee finiteness of the contribution
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from the energy-momentum insertion vertex. Note that all these diagrams do not

contribute with a finite part for the order O(gf 2 k2 ) we are interested in, but merely

make the diagram 1(i) finite. This will make the integrand have a traceless form, as

given in the Appendix. After some manipulations we deduce that,

V"t (0, y,x) =

igf 2k 2  a2 (x' _ y')

2567 8 X(,) v)P'\Y) p(pixJ 0 )I(X) a (X' - (5.3.35)

which is proportional to the triangle structure. Taking into account the 2 fermionic

directions and doubling our answer for the two distinctive diagrams connected with

reflection symmetry we obtain finally:

2f 2

V',,,PO, (0, y, x) = 2f2 BO, ,U,,(0, y, X), (5.3.36)
32w7 r

which is similar to what we got in (5.3.22). So, we can add all the diagrams that

represent vertex corrections (both at axial and energy-momentum insertions). The

overall result of the vertex corrections contribution to the two loop correlator is,

3f 2

VQI3,,2 ,(0, y, x) =32w2 By, X). (5.3.37)

5.3.6 Diagrams in Figures 1(1), 1(m) and 1(n)

Finally, we would like to mention the diagrams that are zero. That these diagrams

vanish can be easily seen either from the fact that the fermion trace vanishes or from

arguments of Lorentz symmetry. We mention these diagrams for completeness. They

are the following: Figure 1(1), which are 3 diagrams that amount to 1 independent

calculation, Figure 1(m), which is only 1 diagram, and Figure 1(n), which are 2

diagrams that amount to 1 independent calculation. We have now completed the

calculations for all the 36 diagrams.
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5.3.7 The Three Point Function

The next and final step is to add all diagrams together, and find out what is the

two loop contribution to the three point function at order O(gf 2 k2 ). Adding the

results for all our diagrams we obtain the 0(gf 2 k2 ) two loop contribution to the

correlator (A,(z)T,,(y)T,,(x)). There are 4 distinct contributions: the one from

the non-planar primitive diagrams, Ne,,v,,, (O,y,x) in (5.3.12); the one from the

self-energy diagrams, E, ,,,,(0, y, x) in (5.3.17); the one from the planar primitive

diagrams, PY,,,,,,P(0, y, x) in (5.3.29); and the one from the vertex correction diagrams,

Va,Avlp,(0, y, x) in (5.3.37). Adding these 4 structures we finally obtain our result: the

three point function does not vanish and consists of two independent conformal tensor

structures,

No,,A,,,(0,y, ) + Ea,,,,,(0,y, ) + Pce,,,Po(,yIX) + V[,P,,(0,y, =

a92  (X' - y'), 11 1 f ('-y') a

7 + (X)(ayaxa' (X' - y') 4  2 (x' - y') 2 aX' aX,' (X' - y') 2 -ay'9 - y)
(5.3.38)

There is one consistency check that can be performed on this result. Namely,

under the appropriate changes, one can ask: does it reduce to the result obtained

in the axial gauge theory case [29]? In order to reduce (5.3.38) to the gauge theory

case of [29] we first have to discard all diagrams involving the vertex (5.3.23). Then,

in the other diagrams, one has to erase all the "graviton derivatives". Once this is

done we are left with a unique conformal tensor, i.e., we are reducing the structure of

our theory to the one in [29]. Finally, taking into consideration that the removal of

the "graviton derivatives" also includes a factor of -2 in the non-planar contribution

(due to the symmetry enhancement of this diagrams), one finds that the overall

result vanishes just as it did in [29]. This shows that our result is consistent with the

calculations performed for the gauge axial anomaly.

We can trace back the reason why this radiative correction does not vanish (as it
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does vanish in the gauge theory case [29]). This is (5.3.12) and (5.3.29), the contri-

bution of the primitive diagrams, which is not a multiple of the one loop amplitude.

The existence of two different conformal tensors in our theory is a result of the di-

mensionality of the correlator (A,(z)T,,(y)Tp,(x)).
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Appendix A

Kaluza-Klein Tensor

Decompositions

We list below all quantities relevant for our computations in chapter 4, as they were

cited upon during the text. We shall consider in here the general torsionfull metric

parameterization, as was done in section 4.5 (see expression (4.5.1) and the definitions

that follow it in the text). To use these decompositions in section 4.4, all one needs

to do is to set vi = wi = bid = fig = Gij = 0 in the following. The tensor decom-

positions are as follows, for both the gauge beta function, (4.3.3), (4.3.6), and the

(00)-component of the metric beta function, (4.3.1), (4.3.4) (where barred quantities

will refer to the metric 4wg). Observe that expressions (A.2), (A.4), (A.6) and (A.8)

below have (r - Ao)ij = 0.

1. V'FA,:

1 1.
VAFAo = (a;Fjo - - Fko) - aiF'o - -af Fi - avif3Fjo, (A.1)

2 2

V x ik(aFki - -y F Jj-1Fkt) + 'akF, k -i ( A.2)

2. [A A, FAF:

[A , FAo] = -v [Ao, Fo] + [A', Fo], (A.3)

[AA, FA] - v 3 [Ao, Fji ] + [A', Fj], (A.4)
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3. H, -FA p:

Ho pFAP, = 2vTGi3 Fo3 - Gi Fij, (A.5)

HiApFAP = 2vjGikF k + HiJk Fik, (A.6)

4. FA OA:

FA = FOi~i, (A.7)

Fi A O = Fi;Oy, (A.8)

5. :
a 1 a 1

=oo = [V'ai + -aia' -f2 fi] - GzjG2 + aal5io. (A.9)2 2 2 (A9

Finally one should also include, for the sake of completeness, the duality trans-

formations acting on the gauge field strength tensor. These are derived directly from

expressions (4.2.8-9), with the following results:

6. (0i)-component:

1
F= -(Foz - (K - Ao)az), (A.10)

a

7. (ij)-component:

Fia = Fia-(vj+-wj)Foi+(vi+-wi)Foj-(K-Ao)(fij+-Gij+-(wia--wgas)). (A.11)a a a a
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Appendix B

Differential Regularization

In this Appendix we study the differential regularization of the one loop triangle

diagram associated to the gravitational axial anomaly, Figure 1(a), from chapter 5.

As we have seen in section 5.2, the amplitude for this diagram is,

igk2 Tr ka,7 S(z - Ygv) ( 6,)( S(y - X) -(,6,() S(x - z). (B.1)
2 ,Oyi Oyi ,x OJ x3-

We can re-write this diagram as a "generic" fermion triangle diagram, for which the

bare amplitude takes the form:

Tr -Yi_ S(Z - y) wi ( a ) S(y - X) r (a ) S(x - z). (B.2)

As compared to (B.1), this is a slightly more general form of the amplitude we want

to regulate. For our present purposes we shall only need to concentrate on the regu-

larization of the singular functions present in the amplitude, so we may as well just

consider (B.2).

Performing the derivatives, (B.2) can be written as:

02

Tr (- ('YiiiS(z - y) i S(y - X) w S(x - z)) +

+ 2- 49 S( y - x) 1 0 S(x - Z YJ11 S(z - y +
ayt axj
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a 8 --+27111 aS(z - y) 7ja S(y - x)7 1 S(x - z)}
1 T I axi

ay 2 ax a
(4w 2) 3  [7111 yWIb 7C - aza (z - y) 2 ab (y -)2

a 1 2 a a 1

1Xc (X - Z) (4 72)3 Y aya (y - X)2

aa8 1 a 1 2 aa 1
ax3 axb (x - z) 2 OZe (z - y) 2  (4,2)3 yr 1 7a 71 7b 71 7c{ za (z -y)2

aa8 1 a 119Xj~} (B.3)Z'a~

ax3 ayb (y - x) 2 gX (x - z) 2  (B.3)

With x'= x - z, y'=y - z, a= c, = a and c = b, we can re-write the first term

in the previous result as the singular function,

a2  a 1 a 1a 1
U d ' ayYax) 8x' 2 ay y'2 a' (2' - y)2) (B.4)

though in the following we shall drop primes and bars, and simply use the notation

(x, y) and {a, b, c}. By a similar re-naming of variables one can likewise manipulate

the second and third terms in (B.3) to obtain - in both cases - the singular function,

t (X y) = aa 1 a a I ( (B 5)U, abcX Y) (qj OXa X2 OyZab y2 Oic (X ~- Y)2'*

Observe that (B.5) is independent of (B.4), so that in (B.3) we have two indepen-

dent singular functions. For particular choices of the vertex gamma matrices, (B.2)

describes the anomalous three point function (explicitly studied in chapter 5) as well

as other physically interesting amplitudes.

We need to "pull out" derivatives and regularize both t (x, y) and t 3 (X y).U abc( I )adU bX )

Starting with (B.4), one easily observes that this can be written as,

ta X Y) = tabc(x, y), (B.6)

where tabc(X, y) is the singular function which is present in the bare amplitude for the

gauge axial anomaly, and has been previously considered in [45]. In particular, it was
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shown in this reference how to regularize this singular function. Two derivatives are

required to control the linear divergence arising from the singularity at x - y - 0.

Making manifest the x +-+ y, a <-4 b antisymmetry of tabc(X, y) one can write,

tabc(X, Y) = Fabc(X, Y) + Sabc(X, Y), (B.7)

where the function Fabc(X, y) has finite Fourier transform by power counting and trace

arguments,

Fabc(X, Y) aax a-y [XJ' E:_ aF2 O6 (x y)2 =X + X2 Sc|"9X, '9 y(xOXOXc 4

1 (91 2 El(x - y)2 I x2y2 axa-x 6ac ( _ -

1 8 3  1 a +6 a 1(B8
x93 aX 1 6abXa + 6c a + ac ) E . (B.8)

x2 Y2 1 XaOXbl9xc 6 ( x (9C 4xa axb (x - y )2

The term Sabc(X, y) contains the "traces" subtracted off in (B.8) and thus deriva-

tives of 6(x - y) times 1/x 4 factors which are regulated as is standard in differential

regularization, yielding:

Sabc(XY) = -7r{ 6 c - 6ac 6(x - y) E InM 2 X2

4 19xa ibb X2

1 _ a a a a a ln M2x2 2

-aac)( )+ 6ac b - a) + 6 ab ( &(x-y) E.3 19xa (9ya Oxb OYb axe Oye x2

(B.9)

Two different mass scales were used for the two independent trace terms in

Sabc(X, y). Renormalization or symmetry conditions may be used to determine the

ratio M 1 /M 2 in particular cases of the triangle amplitude.

Expressions (B.8) and (B.9) provide the required regularization of (B.4) via ex-

pressions (B.6-7). We are thus left with the regularization of (B.5), which can be

performed in a similar fashion. Again, one can write,

3 ,]abc(x, y) = Fabc(x y) + Sabc(X y). (B.10)
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The function F 'jb(x, y) whose Fourier transform is finite by power counting and

trace arguments is,

FJabc(x y) a a a 1 x

ayi axJ OX ax Y a a X 1 2y 2 -O

a [ X2

axa [x~y2 (axbaXc I 6b c E]
4 ) Y1(x -y)2]

a 1
- yb [X2y2

1

x2y2 6
a3

OXaOXbl9xe

a 1
Yb x2y2

6

+ aa
ayi axa

a 3

axbax 3 xe

(6 ab OXa

( 2

ax 3axe

+ 6bc 1
1xa

(b a +6 ab + Xb

+ 6ac

1 (6 - y)2-6 L) (X-Y) 2

+ 6bc a ) I
"ax,

{ 1 a 2

axa x2,2 (axgax
6 1

4 e C (X _ 2

a3

[xaaxiaxC
- I(6aia + 6ica + 6aca ) El 1 1 } -6 'Oxe Oxa Oxi (x - Y)2

1

x2y2

a3

[a a aX3aX
1

1

6

a a 1 a3

+ axXax 2 Y2 [axaxaxC

a a 1 a3

axa aYb { x 2y 2 [axiaxiax

19
6. aalaxe

K6ib 09
(ia
19c

-a

+6 a 6 -Icoa ac )x
+ Sbc a

Oia
+ 6i

+96

+ 6ic a

a )
xb

El +

1
S XY)2

I I
1

(x - y)2

1
+ Terms invovling 4th and 5th order traceless derivatives acting on (x -

(B.11)

The fourth and fifth derivatives can be obtained in a straightforward fashion, but

their explicit form is not relevant and they would occupy a couple of pages to write

down. Therefore we omit these terms.

Again, the term Szjabc(x, y) contains "traces" subtracted from (B.11) and so its

structure is similar to the one of (B.9), containing the usual differential regulated
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derivatives of 6(x - y) times 1/x 4 factors. One obtains,

S'. jb ,(X, Y) 0012
-y ( -x T 2oyi 0xj 4

a 0
{ 6bc Oa- bac 9Y

0 0
+ ab - a )

0xe 0ye

y aaIZ26,c a6(X-Y)
Oyz- Xa 4 19yb

+ 6 b (a - 0
-0xe 0 Yc

ln M3x
2

x 2

Sln M2x 2

x2

3 - a )ay

00 1 2 0

x 27 6T c OX

+ 6je 49 -+±c(o -7X OYb ) +

S(x-y) 1:1In M32 
_

x2

0a - &9a) +6c ( a19xa 49ya axi
0

ayi

0 0
+ 6 ai - aY) 1 6(x

( xc 0ye
nMx 2

0 0{ a - ya )
0 0

+6ac( y- )
Ox3 OYJ

InM'x
2

x2
+ O 9

axi- 1xa

12

{ [ e ( 0i 49y)
a 

)
ayb

00

+ 6ib 0 -_

Oxc 0ye

.6(x - y) l
In M'x 2

x2 1

+ 6 ij
axc

Oxa Oy 12 { x3I x

6(x - y) ElI

_ 0
+ 6ic (+ +

ln M'x 2

2 1+

+ Traces subtracted from (A.11) in the 4 th and 5 th order derivatives,

and their respective mass scales. (B.12)

One can see that several different mass scales were introduced for the several

independent trace terms in SiJgb(X, y). Again, as was mentioned for (B.9), renor-

malization or symmetry conditions may be used to determine the ratios between the

mass scales in particular cases of the triangle amplitude.
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Appendix C

Convolution Integrals

In this Appendix we list the convolution integrals that are required in order to perform

the two loop calculation in chapter 5 [62]. They are inclosed to make this chapter self

contained for the reader who wishes to reproduce our result. The table of convolution

integrals is (defining A = x - y, and using the cutoff A):

I dev 2(_,2

S- 
4 

d

v2 (v - x )2

S(V - X--
J v2 ( V -X)

x2

= r2 In -2

X2'

(v - x)p(v - yd4 2 7F - (6p - 2 APAO)

( V- X) 4 (V -y) 4 2A 2 A 2 '

(vvo - 16 2)d 4 v =
Iv 4 (v - 2 (x x - x

f((v - x)P(V- x), - V _ -x -2 dv =
S(v- x) 4 (v - y) 4

TI 2  A PAorA
-(6pAA+ 6,A P )

- 4A 2 A2
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(C.1)

(C.2)

(C.3)

(C-4)

(C.5)



V(vP o - 16 pcv 2) 14V
I 6 (V -

((v - -6,,X) - 16 V x)2)(V d4  
-

(V - X)6 (V - y4-

2 1
44 (6pAA, + SaNAp + -6pojA A

A A4AA
-4 P 2 .)

vo,(v - - y)d 4 V 7 2 (&pAa - &0Ap + (x + y)r [2p, - 2 APA ( )
(v - x) 4 (v - y)4 4A2 ~2 

1 ), (C.8)

VC(V ( Y)p d4v =
(V - X) 2 (V -y) iA ((x + y)A - A6, 2)-4Op

2r 2 n A2

4 inp A
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