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Abstract

In this thesis, we shall first present helicity density matrix formalism to deal with the

polarized processes in quantum chromodynamics(QCD), in which the calculations of
the desired cross sections (or asymmetries in many cases) are simplified to take traces
of products of helicity density matrices in the underlying particles' (partons, hadrons,
etc.) helicity spaces. The parton distribution and fragmentation functions turn out to
be the helicity density matrix elements which survive the QCD symmetries. The main
advantages of this formalism are that it has very clear physical pictures, simplifies
the calculation, and, most importantly, can be easily used to deal with interference
effects between different partial waves in multiparticle production in semi-inclusive
processes. Then this formalism will be used to propose new ways to measure nu-
cleon's transversity, the least known quark distribution function inside the nucleon
at leading twist (twist-two). The processes of interest are the two pion semi-inclusive
productions in the transversely polarized deep inelastic scattering (only the target is
polarized) and nucleon nucleon collisions (only one beam is polarized). A set of novel
quark interference fragmentation functions are introduced in the framework of the
helicity density matrix formalism and are used to probe the nucleon's transversity
distribution function. The advantages of this method are that the effect is leading
twist, meson pairs are abundantly produced in quark fragmentation, and the essential
final state interaction phase is well studied.

Thesis Supervisor: Robert L. Jaffe
Title: Professor



Dedicated to My Family for Their Love and
Supports



Acknowledgments

I would like to have this special opportunity to thank many people for their generous

supports and helps, which make this thesis possible.

Primarily I would like to thank my thesis supervisor professor Bob Jaffe. This thesis

truly could not be done without his useful advices, constant supports and encour-

agement. Bob showed incredible patience and understanding with me. He always

had insightful suggestions and approaches to our research problems, which make this

thesis much better. His determination and ingenious methods have won my highest

respects. I am also particularly grateful for the time he devoted to me even though

he was quite busy.

I would also like to thank professor Xiangdong Ji, with whom I have worked for two

year from 1994 to 1996 while he was at MIT. His enthusiasm and dedication to physics

really impressed me. His encouragement and supports helped me endure the most

difficult two years at MIT. I thank him for the productive two years together.

I would also like to thank professor Uwe-Jens Wiese and professor Richard Milner for

serving on my thesis committee as readers. Their comments and suggestions helps

make this thesis better.

I would also like to thank professor John Negele for his supports and a lot of useful

advices on my academical developments.

I would also like to thank Xuemin Jin for pleasant and productive collaborations.



I would also like to specially thank professor Kuangta Chao, my former advisor in

Peking University of P.R.China, for his constant encouragements and the time and ef-

forts he devoted to my intellectual and personal developments. Also thank my friends

and former teachers and classmates at Peking University, whom I am unable to list

one by one here.

I would also like to thank a lot of friends of mine here, Li Cai, Jiang Chen, Danning

Dong, Juncai Gao, Shanhui Fan, Qiang Liu, Shiaobin Soong, ..., for their helps and

advices and a lot of pleasant conversations, not to mention a lot of exciting and won-

derful trips with some of them. They made my stay here much easier and much more

enjoyable.

I would also thank CTP , LNS and Physics Department for their financial and other

supports during my study here.

Finally, I would very much like to thank my family: my father Weijin Tang, my

mother Nianbi Kang, my wife Zheng Liu, my brother Ping Tang and two sisters,

Hong Tang and Yan Tang. Without their unselfish love and supports, this thesis

could not be done. Nobody deserves more thanks from the bottom of my heart than

them.

Thank everyone who ever helps me. May God bless you all.



Contents

1 Introduction

1.1 Naive Quark Model[2]

1.1.1 Flavor SU(3) symmetry . . . . . . . . . .

1.1.2 Color SU(3) symmetry . . . . . . . . . . .

1.1.3 Hadron's wavefunctions . . . . . . . . . . .

1.2 Quantum Chromodynamics: an Introduction . . .

1.3 Deep Inelastic Scattering(DIS) . . . . . . . . . . .

1.3.1 Basic kinematic variables . . . . . . . . . .

1.3.2 Cross Section and Hadronic Tensor . . . .

1.3.3 Structure Functions and Bjorken Scaling .

1.3.4 Cross Sections for DIS . . . . . . . . . . .

1.3.5 Operator Product Expansion[7] . . . . . .

1.4 Parton Distribution and Fragmentation Functions

1.4.1 Distribution functions . . . . . . . . . . .

1.4.2 Fragmentation functions . . . . . . . . . .

1.5 Spin Structures of the Nucleon . . . . . . . . . . .

1.5.1 Ellis-Jaffe Sum Rule . . . . . . . . . . . .

1.5.2 EMC Experiment and Spin Crisis . . . . .

1.5.3 Theoretical Explanations . . . . . . . . . .

1.6 Organization of This Thesis . . . . . . . . . . . .

2 Helicity Density Matrix Formalism

2.1 Distribution Functions as Helicity Density Matrix Elements . . . . . .

6

13

. . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . 15

. . . . . . . . . . . 15

. . . . . . . . . . . 16

. . . . . . . . . . . 18

. . . . . . . . . . . 19

. . . . . . . . . . . 19

. . . . . . . . . . . 21

. . . . . . . . . . . 24

. . . . . . . . . . . 25

. . . . . . . . . . . 26

. . . . . . . . . . . 27

. . . . . . . . . . . 28

. . . . . . . . . . . 29

. . . . . . . . . . . 30

. . . . . . . . . . . 31

. . . . . . . . . . . 33

. . . . . . . . . . . 36

. . . . . . . . . . . 40

41

43



2.1.1 Helicity amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2 Parton distribution density operator . . . . . . . . . . . . . . 45

2.1.3 Spherical irreducible tensor operator . . . . . . . . . . . . . . 47

2.1.4 The structure of parton distribution density operator under

conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.5 Expansion coefficients as distribution functions . . . . . . . . 50

2.2 Fragmentation Functions as Helicity Density Matrix Elements . . . . 53

2.2.1 Helicity amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.2 Parton fragmentation density operator . . . . . . . . . . . . . 55

2.2.3 Parton fragmentation density operator structure due to conser-

vation law s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.4 Expansion coefficients as fragmentation functions . . . . . . . 58

2.3 Helicity Amplitude Approach to Hard QCD Processes . . . . . . . . . 63

2.3.1 Review of Gastmanns and Wu's approach . . . . . . . . . . . 63

2.3.2 Polarized processes . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Nucleon's Transversity Distribution 74

3.1 Transversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.1 What is transversity . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.2 The properties of the transversity . . . . . . . . . . . . . . . . 76

3.2 Proposals to Measure Transversity . . . . . . . . . . . . . . . . . . . 79

3.2.1 Transversely Polarized Drell-Yan in PP Collisions . . . . . . . 79

3.2.2 A Production in DIS . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 Twist-three Single Pion Production in DIS . . . . . . . . . . . 80

3.2.4 ATT/ALL in Polarized Jet Production . . . . . . . . . . . . . . 81

3.2.5 Azimuthal Asymmetry in Semi-inclusive Single Particle Pro-

duction in polarized DIS . . . . . . . . . . . . . . . . . . . . . 81

3.3 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7



4 Interference Fragmentation Functions and the Nucleon's Transver-

sity

5 Probing the Nucleon's Transversity Via Two-Meson Production in

Polarized Nucleon-Nucleon Collisions

84

94

6 Interference Fragmentation Functions and Valence Quark Spin Dis-

tributions in the Nucleon 104

7 Conclusions

.1 Notations and Conventions

111

. . . . . . . . . . . . . . . . . . . 112

.1.1 Natural Units ....................

.1.2 M etric . . . . . . . . . . . . . . . . . . . . .

.1.3 Some special tensors . . . . . . . . . . . . .

.2 Dirac Matrices and Spinors . . . . . . . . . . . . .

.2.1 Dirac Algebra . . . . . . . . . . . . . . . . .

.2.2 Two Representations for Dirac Matrices . .

.2.3 Dirac Spinors . . . . . . . . . . . . . . . . .

.2.4 Helicity and Chirality for Massless Fermions

.3 C olor SU (3) . . . . . . . . . . . . . . . . . . . . . .

.4 Feynman Rules of QCD . . . . . . . . . . . . . . .

.4.1 External Lines . . . . . . . . . . . . . . . . .

.4.2 Internal Lines . . . . . . . . . . . . . . . . .

.4.3 Interaction Vertex Factors . . . . . . . . . .

.4.4 Loops and Combinbatories . . . . . . . . . .

.5 2-to-2 Differential Cross Sections . . . . . . . . . .

.5.1 Invariant Amplitude . . . . . . . . . . . . .

.5.2 2-to-2 Differential Cross Section . . . . . . .

.6 Light-Cone Representation of Dirac Matrices . . . .

.6.1 Light-cone variables . . . . . . . . . . . . . .

.6.2 Light-Cone Representation of Dirac Matrices

. . . . . . . 112

. . . . . . . 112

. . . . . . . 114

. . . . . . . 116

. . . . . . . 116

. .... . . . 117

. . . . . . . . 118

. . . . . . . . 120

. . . . . . . . 122

. . . . . . . . 125

. . . . . . . . 125

. . . . . . . . 125

. . . . . . . . 125

. . . . . . . . 127

. . . . . . . . 129

. . . . . . . . 129

. . . . . . . . 129

. . . . . . . . 131

. . . . . . . . 131

. . . . . 132

8



.6.3 Good and Bad Components of Dirac Field . . . . . . . . . . . 133

.7 Quark Distribution and Fragmentation Functions . . . . . . . . . . . 135

.7.1 Quark Distribution Functions . . . . . . . . . . . . . . . . . . 135

.7.2 Quark Fragmentation Functions . . . . . . . . . . . . . . . . . 136

.8 Spin Structure of the Nucleon in QCD . . . . . . . . . . . . . . . . . 139

.8.1 Angular Momentum Operator in QCD[21] . . . . . . . . . . . 139

.8.2 Angular Momentum Sum Rule[21, 31] . . . . . . . . . . . . . . 141

.8.3 JTH Evolution Equation of Angular Momentum at Leading

O rder [311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

.9 Matrix representation for the tensor operators and corresponding he-

licity bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

.9.1 J= 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

.9.2 J= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

.9.3 J=1(gluon case) . . . . . . . . . . . . . . . . . . . . . . .. . . 147

.9.4 J = 0 or 1(s and p wave interference) . . . . . . . . . . . . . . 148

.9.5 Angular momentum operators . . . . . . . . . . . . . . . . . . 151

9



List of Figures

1-1 The basic diagram for lepton-hadron deep inelastic scattering in the

target rest fram e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1-2 Comparison of data with the assumption As = 0 from SMC. . . . . . 35

1-3 The values of AE(Q 2 = 3GeV2 ) extracted from each experiment, plot-

ted as the increasing order of QCD perturbation theory used in ob-

taining AE from the data. . . . . . . . . . . . . . . . . . . . . . . . 37

1-4 The values of AE and As extracted from each experiment, plotted

against each other. All data have been evolved to common Q2 = 3

G eV 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2-1 A generic semi-inclusive single particle production process at parton

level. The top part is parton fragmentation into a single particle, the

middle is the hard parton process, the bottom is the parton distribution

in a hadron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-2 Parton distribution functions viewed as discontinuities in forward par-

ton hadron scattering with explicit helicity labels. . . . . . . . . . . . 43

2-3 The parton fragmentation functions viewed as discontinuities in for-

ward hadron parton scattering with explicit helicity labels. . . . . . 54

2-4 A generic parton parton interaction process ab -- cd at parton level. 63

2-5 Feynman diagrams for the process qg -- + q'g' . . . . . . . . . . . . .. 68

10



4-1 Hard scattering diagram for 7t+wT- (KK) production in the current frag-

mentation region of electron scattering from a target nucleon. In per-

turbative QCD the diagram (from bottom to top) factors into the prod-

ucts of distribution function, hard scattering, fragmentation function,

and final state interaction. Helicity density matrix labels are shown

explicitly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-2 The factor, sin 60 sin 61 sin(6o - 61), as a function of the invariant mass

m of two-pion system. The data on r7r phase shifts are taken from

R ef. [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5-1 Hard scattering diagram for two-meson semi-inclusive production in

nucleon-nucleon collision. . . . . . . . . . . . . . . . . . . . . . . . . . 102

5-2 Illustration of the pp collision at the center-of-mass frame and the so-

called "Collins angle" < . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5-3 The factor, sin 60 sin 61 sin(6o - 61), as a function of the invariant mass

m of two-pion system. The data on ir7r phase shifts are taken from

R ef. [611. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5-4 The single spin symmetry as function of pT for two-pion production

in pp collision at VI =500 GeV(solid) and fi =200 GeV(dashes)

(pseudo-rapidity 71 = 0.0 and y = 0.35 ). . . . . . . . . . . . . . . . . 103

6-1 The factor, sin 6o sin 61 cos(60 - 61), as a function of the invariant mass

m of two-pion system. The data on ir7r phase shifts are taken from

R ef. [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

-1 Incom ing quark line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

-2 Outgoing quark line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

-3 Incoming quark line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

-4 Outgoing quark line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

-5 Incom ing gluon line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

-6 Outgoing gluon line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11



-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

. . . 126Incoming ghost line . . . . . . . .

Outgoing quark line . . . . . . . .

Quark propagator line . . . . . .

Gluon propagator line . . . . . .

Ghost propagator line . . . . . .

Quark-quark-gluon vertex . .

Three-gluon vertex . . . . . . . .

Four-gluon vertex . . . . . . . . .

Ghost-ghost-gluon vertex.....

Illustration of a 2-to-2 scattering.

12

. . . . . . . . . . . . . . . . 126

. . . . . . . . . . . . . . . . 126

. . . . . . . . . . . . . . . . 126

. . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . 128

. . . . . . . . . . . . . . . . 129



Chapter 1

Introduction

The purpose of this thesis is to present a new helicity density matrix formalism to

deal with the polarized processes in high energy physics, and then apply it to propose

a new way to measure the nucleon's transversity distribution function, one of the

three characterizing the quark states inside the nucleon.

This chapter acts as an introduction to this thesis. Our intention here is to

walk through the theoretical backgrounds related to this thesis. Many topics will be

touched but not detailedly in order to accommodate the concept of the introduction.

One can refer to some standard textbooks for details[1].

For a long time it has been known that there are four kinds of forces mediated

between elementary particles: (i) gravitation1 ; (ii) electromagnetic interaction; (iii)

weak interaction; (iv) strong interaction. The first two are long range forces because

they basically have infinite ranges, although the potentials produced by them fall off

as 1/r with distance r from the force sources. The weak and strong interactions have

very short ranges, e.g. the strong interaction has a range of about 10- cm, and the

weak force only has about 10-1 cm. This is one of the reasons why the gravitation

and electromagnetic forces were discovered long before the other two.

Very roughly, the particles can be classified according to what types of interac-

tions which they participate. All of the known particles so far are subject to gravi-

'it is believed to play a negligible role in particle physics since it is extremely weak.
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tation and weak interaction. The particles which participate the strong interaction

are called hadron, e.g. pion, proton, etc. The leptons are those particles which do

not participate the strong interaction. Some typical leptons are electrons and neu-

trinos. All hadrons and leptons, except neutrinos, take part in the electromagnetic

interaction 2

Hadrons actually are not elementary particle as thought in the beginning. It

is believed they are composed of six further constituents- quarks: u(up), d(down),

s(strange), c(charm), b(bottom), t(top), which have spin 1/2 and fractional charges.

These quarks and leptons are the fundamental fermions, which are grouped into three

families, as summarized in the table1.1. The four interactions are mediated through

Families Charge Spin

Ve VP VT 0 1/2
e P T -1 1/2
u c t 2/3 1/2
d s b -1/3 1/2

Table 1.1: Three families of fundamental fermions

the exchanges of the gauge bosons. For instance, strong interaction is exerted by

gluons, electromagnetic interaction by photons, and weak interaction by W and Z

bosons.

Over the past three decades, major progresses have been made in the particle

physics. Two major theories have been developed: one is the electroweak theory,

which unifies the weak and electromagnetic interactions (In reality, these two interac-

tions are totally different because the symmetry is broken spontaneously.); another is

quantum chromodynamics (QCD), which governs the color interaction between the

quarks (or strong interaction at hadron level). These two theories together are called

standard model of elementary particle physics[1]. Since this thesis deals mostly with

the strong interaction, we will focus on QCD in this introduction.

2Even the hadrons with zero net charges feel the electromagnetic interaction through their charge
distribution or magnetic moment.
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1.1 Naive Quark Model[2]

As mentioned in last section, hadrons are not elementary particles, instead they are

composed of quarks. There are two kinds of hadrons: one is called meson, which

is the bound state of quark-antiquark pair (qq); another is baryon, which is of three

quarks (qqq). 3

1.1.1 Flavor SU(3) symmetry

The observed hadrons are eigenstates of the strong interaction Hamiltonian Hst. The

fundamental assumptions of the naive quark model are

* Quark flavor independence of the strong interaction;

* Equality of the quark masses, i.e. mu = md = MS 4.

Under these assumptions, H.t is invariant under SU(3) transformation of the quarks

u, d and s-SU(3) flavor symmetry. The spectra of the hadrons can be understood

from this symmetry. All hadrons can be classified according to the irreducible rep-

resentations of the flavor SU(3) group, and all the particles in an SU(3) multiplet

have same masses. For example, all mesons are either SU(3) singlet or octet, and all

baryons act as SU(3) singlet, octet, and decuplet.

However, in reality the particles in the same multiplets do not have same masses,

which indicates that flavor SU(3) symmetry is broken. There are no evidences of the

violations of the first assumption thus far, however, mu : md # m, has been proved.

1.1.2 Color SU(3) symmetry

An additional degree of freedom color for quarks was introduced by Gell-mann and

Fritzsch [3] in order to avoid a problem in constructing wavefunctions for some hadrons

3However, other compositions are possible, e.g. glueball (made up of only gluons), although they
are not yet confirmed by experiments.

4Only three light quarks u, d and s are considered here.
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in quark model ' . A quark is assumed to carry three kinds of colors: red(r), green(g),

blue(b), which are the bases of a new SU(3) group - color SU(3). Only the singlet

of this group can exist in nature. Therefore, a quark has to be confined in a hadron

because it is a triplet in the color space. A quark with different flavors and colors is

denoted by q0, where q = u, d, s indicates the flavor, and a = r, g, b is the color

index. A more detailed discussion of the color SU(3) will be given in the appendix .3.

1.1.3 Hadron's wavefunctions

The quarks inside the hadrons have the following degrees of freedom: flavor, spin,

color, and space. One should be able to construct the hadron's static wavefunction

from its quark components, like in quantum mechanics. Here we are going to use the

nucleon as an example to show how to do it.

The nucleon is composed of three quarks, proton ~ uud and neutron ~ udd

Its wavefunction can be written as

'N flavor 0 spin 0 color ® space , (1.1)

where /N represents the nucleon's wavefunction. Due to the the fermionic nature of

the quarks, the overall wavefunctions of the bound states of the quarks have to be

totally antisymmetric, as required by Pauli principle. We will only discuss the ground

states, in which the spatial wavefunctions are totally symmetric. The nucleon has to

be a color singlet in the color SU(3) space, which means that the wavefunction is

totally antisymmetric with respect to color

'ON 6a3-yqq q(1.2)

where a, /, -y are color indices, and 607 is totally antisymmetric three dimensional

tensor discussed in the appendix .1. Therefore flavor 0 spin part of the wavefunction

5For example, if there were no color degree of freedom, the total wavefunction for particle Q -(sss)

would be totally symmetric, which contradicts the Pauli principle.
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must be totally symmetric, i.e., the totally symmetric combinations of the basis states

uT, u , dT, d4 as follows

1 1 1
p(-) = [2ututd4 + 2utdbut + 2d4utut

22 V_8
-uTu~dt - usuTdt - uAdTuT - utdtu - diutu - dtuaut]

11 1
n( ) = [2dtdtu + 2dTuadT + 2udTdiT

22 v15
-dTdut - d4dtut - diuTdt - dTutdt - utdTd4 - utdcdt] , (1-3)

where the up arrow means spin up and the down arrow means spin down. One can

refer to an extensive table of such wavefunctions given by Thirring [4]. These wave-

functions can be used to calculate the static properties of the nucleon, for example,

the magnetic moments of the proton and neutron which will be discussed in the

following.

For a baryon in the ground state, the magnetic moment is the sum of the mag-

netic moment of the quarks because there is no orbital angular momentum. The

operator of the magnetic moment is given by

_# - 2 1 1
A= 2u -Aa - 11 s (1.4)

3 I1~ 3 3 ILU

where j-q(q = u, d, s) is the quark magneton, which has the form of Pq = e/2mq (q =

u, d, s) . ' is Pauli matrix.

Take the expectation value of the magnetic moment operator in Eq. (1.4) using

the wavefunctions in Eq. (1.3), one can obtain

Pp = PU ,

Pn= 2 , (1.5)
3

if assuming mu = Md

17



Thus the ratio predicted by the theory is

2n= - , (1.6)
"p 3

which agrees very well with the experiment value

p, _-1.913

An -" .93 -0.685 . (1.7)
P 2.793

This is a major achievement of the naive quark model.

From the Eq. (1.3), one can see that the nucleon's spin structure is quite simple.

For example, a spin-up nucleon is made up of two quarks with spin-up and one spin-

down. There is no orbital angular momentum. However, it is not this simple in QCD,

as we will discuss later.

1.2 Quantum Chromodynamics: an Introduction

Like quantum electrodynamics (QED) in which the photon mediate the electromag-

netic interaction between charged particles, the strong interaction between the quarks

inside a hadron is believed to be mediated by exchanges of a flavor-independent spin-1

particle-gluon.

Likewise, one can also use the gauge minimal principle, which is used to obtain

the QED Lagrangian £QED, to get the QCD Lagrangian CQCD,

LQCD = - Tr FAVFI" + q (i7,D + m) q. (1.8)

Here q represents the quark field. D, = 0j, + igSA,, is the covariant derivative coming

from the minimal principle, where g, is the strong interaction coupling constant and

A, is the gluon gauge field, A, = A'(x)T' with T' being the Gell-Mann matrices for

SU(3) group (see appendix .3). The trace Tr acts on the color space, e.g., Tr A,,(x) =
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0. Fm, is the gluon field strength tensor,

F,,(x) = apAv(x) - OvAm(x) + ig, [ A, (x), Av(x) ] , (1.9)

which is different from QED in that there is no analogous quadratic (the last term in

Eq. (1.9)) in QED. This term is necessary to achieve a simple transformation behavior

for the gluon field strength tensor Fpv(x) under local gauge transformations. It is also

this term which makes QCD much more complicated than QED because it indicates

the self interactions between gluons.

One of the most important properties of QCD is that it is asymptotically free [5].

The strong interaction coupling constant g. gets smaller and smaller as the energy gets

large. Therefore, one can use perturbation theory to do calculation at high energy

(higher than some typical energy scale AQCD)-

1.3 Deep Inelastic Scattering(DIS)

Deep inelastic scattering (DIS) has been playing essential roles in the development

of the understanding of the sub-structure of elementary particles. It is the archetype

for hard processes in QCD: a lepton (e.g. electron, muon or neutrino) with very high

energy scatters off a target hadron (practically a nucleon) with a large quantities of

invariant squared-four-momentum transferring from lepton to hadron. Because we are

mainly interested in the experiments with polarized targets, we will devote ourselves

to charged lepton scattering off a polarized nucleon, in which the dominant reaction

mechanism is electromagnetism and one photon-exchange is a good approximation[1,

6].

1.3.1 Basic kinematic variables

We consider the process shown in Fig. (1-1). The initial lepton with momentum k and

energy E exchange a photon of momentum q with a target with momentum P. The

outgoing lepton's momentum is k' and its energy E'. The basic kinematic variables
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Vx
k

q=k-k'

P

Figure 1-1: The basic diagram for lepton-hadron deep inelastic scattering in the target
rest frame

are defined as below:

M The mass of the target, which is the nucleon mass in the case of a nucleon target

E The energy of the incident lepton

k The momentum of the initial lepton.

P The momentum of the target, P = (M, 0, 0, 0) at its rest frame

E' The energy of the scattered lepton

k' The momentum of the scattered lepton.

Q The scattering solid angle

0 the scattering angle illustrated in Fig. (1-1).

q = k - k', the momentum transfer in the scattering process, i.e. the momentum

of the virtual photon

Q2 -(k - k' )2 = 4EE'sin 2(0 ) neglecting the lepton masses
2

w2 = (P + q) 2 , invariant squared mass of the hadrons(X) in the final state

Vi P - q, which is equal to M(E - E') in the target rest frame
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x = Q2/2v, Bjorken scaling variable(0 < x < 1)

Wv =1/x

y = P -q/P - k, the fractional energy loss of the lepton(0 < y < 1).

where the lepton mass has been neglected. Unless otherwise noted, E, E', 6 refer to

the target rest frame, in which one has

P = (M, 0), k, = (E, k), k' = (E', k') . (1.10)

Bjorken limit is where Q2 and v both go to infinity with the ratio, x = Q2/2v fixed.

x is the Bjorken scaling variable. Since the invariant mass of the hadronic final state

is larger than or equal to that of the target, (P + q) 2 > M 2 , one has kinetic range for

x: 0 < x < 1. The lepton energy loss must be between zero and E, hence 0 < y < 1

1.3.2 Cross Section and Hadronic Tensor

The differential cross-section for inclusive scattering (eP -+ e'X, in which hadronic

final states X are not observed) is given by:

1 dnk x dx -
do-= 1 | T(2r) 4 64 (P+ q - pi). (1.11)

J 2E'(27r)3 X 1  (27r) 3 2 p i o i=1

The flux factor for the incoming nucleon and electron is denoted by J = 4P - k,

which is equal to 4ME in the rest frame of the nucleon. The sum runs over all

unobserved hadronic final states X. Each hadronic final state consists of nx particles

with momenta p- ( ~ p Px). The scattering amplitude is given by

1
T = e2'ii(k', s')-y"u(k, s) I(XIJ,(0)IPS) , (1.12)

q2

where J,, is the hadronic electromagnetic current. JX) represents the unobserved final

hadronic states. IPS) represents the nucleon state, which is normalized covariantly
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as follows,

(P'S IPS) = 2P 0 (27r) 363(p _ P') , (1.13)

s is the lepton spin vector which is normalized to s2 = -M 2 , while S is the nucleon

spin vector normalized to S2 = -M 2 and S - P = 0.

The polarized differential cross-section can be written in terms of a leptonic (1"")

and a hadronic (W') tensor as follows

d2o- a2 E'1 lit"W 
(.4d~dE' Q4 ME AV 1.4

where c = e2 /47r is the electromagnetic fine structure constant. The leptonic tensor

l'" is given by the square of the elementary spin 1/2 current (summed over final

spins):

l'" = >t(k, s)-yIu(k', s')ft(k', s')f"u(k, s)
SI

= 2(k'Ik" + k'1'k") - 2g"vk - k' + 2iEn "qAs,,, (1.15)

where we have used u(k, s)ii(k, s) = /(1 +7y)/2. The hadronic tensor W,v is given

by

Wt, = 1 -, d 3 pr (PSIJ1|X)(XIJ"IPS)(2r)4 64 (P + q - pi )
47r 4w i=1 (21w)12

I 4- &eiq (pS[ J"(0)]IPS). (1.16)

In order to get Eq. (1.16) we have written the 6 function as an exponential,

(27r) 464(P) = Jd4(e'P, (1.17)

and used the completeness,

nx ( 3

E7 Hf dpi0 IX)(Xl 1,(.)
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and the translation invariance,

ei -Px)(PS J"(0)IX) = (PSJ"( ) IX). (1.19)

Note that another term

1 I deq(PS|JV (0) J () I PS) (1.20)

has been subtracted to convert the current product into a commutator. It is easy

to check that this new term vanishes for q0 > 0(E > E') which is the case for

physical lepton scattering from a stable target. The reason is because this term has a

6 function: 64 (q - P + px) when sandwiching the completeness condition Eq. (1.18)

between two currents,

I 4 (PSI JV (0) J() PS)d p,

- x , d'p J ((PSI J (0)1X)(XIJ (0)|PS)(2,r)6(q - P + px) .(1.21)
11 (2-r)32pio

However, we can show that q - P +px # 0. The reason is the following: Assume that

q-P+px = 0 holds, then one has px = P-q which leads to p% = P0 -q = M- q0

in the target rest frame (laboratory frame). Thus one gets p% < M at physical region

q0 > 0, which is impossible because proton is the lightest stable baryon.

[Note: W" can be related to the imaginary part of the forward virtual Compton

scattering amplitude T using the optical theorem:(see, for instance, Refs. [1])

27rW" = ImT"' (1.22)

with

V = if d . PS|TPS). (1.23)

This relation will enable us to employ the Operator Product Expansion(OPE) [7] to

discuss the perturbative properties of W".]
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1.3.3 Structure Functions and Bjorken Scaling

While the leptonic tensor is known completely, W"', which describes the internal

structure of the nucleon, depends on the non-perturbative strong interaction dynam-

ics, about which unfortunately we know little. Using Lorentz covariance, gauge invari-

ance, parity conservation in electromagnetism and standard discrete symmetries of

the strong interactions, W"' can be parameterized in terms of four scalar dimension-

less structure functions F1(x, Q2), F 2(x, Q2), gl(XQ 2) and g2(x, Q 2). They depend

only on the two invariants Q2 and v, or alternatively on Q2 and the dimensionless

Bjorken variable x,

W P" = (F + F1 + Pi - qi) ( - 2

q -SP\
-i"qA ( (gi + g2) - 2 92), (1.24)

Note that here we explicitly have qW'" = qvW"" - 0, which is the consequence of

the conservation of the electromagnetic current, VJ" = 0.

The hadronic tensor defined in Eq. (1.16) is dimensionless, as are the structure

functions in Eq. (1.24). The structure functions are functions of the Lorentz invariant

variables P 2 = M 2 , P - q and Q2 which can form two independent dimensionless

combinations, e.g., x = Q2/2P - q and Q2 /M 2 . The structure functions can be

written as dimensionless functions of x = Q2/2P - q and Q2 /M 2 . Bjorken first

pointed out that if the hadron were composed of essentially free pointlike objects at

high energies, then, up to logarithms, the structure functions only depend on x, but

independent of the scale Q2, in the Bjorken limit (where Q2 -+ oc and v -+ oc, but

x = Q2 /2v fixed),

F1(Q 2, v) -+F1(x, ln Q2), F2 (Q 2 , v) -*F 2 (x, ln Q2)

g1(Q 2, v) - gi(x, ln Q2 ), 92(Q
2, v) - 2(x, ln Q2) (1.25)
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This is the so-called Bjorken scaling[8]. 6 The Callan-Gross relation between F and

F 2 ,

F2 (x) = 2xF1(x) , (1.26)

1
indicates that the quark has spin -[9].2

Fi(x), g,(x) and g2(x) are related to quark unpolarized distribution, longitudi-

nally polarized distribution and transversely polarized distribution functions inside

the nucleon, respectively.

1.3.4 Cross Sections for DIS

The cross section for deep inelastic electron-nucleon scattering can be easily obtained

by contracting the hadronic tensor W,, in Eq. (1.16) with the leptonic tensor l,, in

Eq. (1.15). Here we list the results for the spin-average and polarized cross sections

from Ref. [6]

eQ F1(X Q2) +
47r2Q2 12

1 (1 y2S- y- -( - 1)) 2 (X, Q2)
2xy 4

(1.27)

e4 cos a { - - (,- 1) g(x, Q2 ) _ Y (, - 1)g2(x, Q2)
4(r2)2 2 4 2

- sin a cos -(Y-1 - 4 ( 2 gi (X, Q2) + 92 (X, Q2))

(1.28)

Here = 1 + 4x 2 M 2 /Q 2 is a measure of approach to the scaling limit Q2 -+ oc, q is

the azimuthal angle, a is the angle between the nucleon spin S and the momentum

of the incident electron k

6This scaling invariance is violated in QCD due to quantum corrections, see, for example, Refs. [1]
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1.3.5 Operator Product Expansion[7]

This is merely a very brief introduction to a very complicated topic in perturbative

QCD[1]. Our goal here is to introduce some of the concepts relevant to this thesis.

The starting point in the derivation is the Eq. (1.23), the time-ordered product

of two currents, which is not a local operator. Consider the product of two local

operators 0a(X)Ob(0) in coordinate space. ' In the limit x - 0, this product can be

written as an expansion of some local operators

lim Oa(x)Ob(0) = Cabc(X)Oc(0) , (1.29)
C

in which Oc(0) is a local operator. All dependences on x, hence the singularities as

x -+ 0, are in the expansion coefficients Cabc(X) . The coefficients Cabc(X) can be

computed in the perturbation theory since all non-perturbative effects occur at scales

which are much larger than x .

Usually, the operator product expansion is used in the momentum space, i.e.,

the Fourier transformation of Eq. (1.29),

lim J d4xeiq*x0 (x)QO(0) = Cabc(q)Oc(0) . (1.30)
q-+oo C

Now the limit x -+ 0 is forced by q - oc . This expansion is valid provided that q is

much larger than the typical hadronic mass scale AQCD -

The local operators in the operator product expansion in QCD are quark and

gluon operators, e.g., a symmetric and traceless local operator with spin n and di-

mension d denoted by 0 j- f . The matrix element has the following form

<pJ0A t-An|p >~ Md-"-2PI4.P'~ ... P/'] , (1.31)

where the square brackets [] in the superscript is to project the totally symmetric

traceless part. The power of M follows from < P'JP >= (27r) 32P 063 (P _ J') . A.

7 Note that x here is coordinate, not Bjorken scaling variable.

26



is non-perturbative structure function. ... indicates the less important terms in the

expansion.

Then one can obtain the following form for the hadronic tensor W,,

k ~ -Wt~ r.1 (LpitnQ nk Ank , (1.32)

where w - 1/x with x now being Bjorken variable, Q = v/-92 , t,,, is a rank-two

tensor such as gm,, P,PV/Q2

The twist t of a local operator defined as

t - dimension - spin = d - n (1.33)

is very important to classify the operators in OPE. Since usually M < Q, the impor-

tance of an operator is determined by its twist. We say that twist t - 1 operators are

suppressed by O(1/Q) compared to twist-t ones. The twist is also very important in

categorizing the quark distribution and fragmentation functions, as discussed later.

The operator product expansion is very useful in deriving sum rules in parton

model. It is so complicated issue that it is impossible to cover it in just about one

page. One can refer to references[1] for details.

1.4 Parton Distribution and Fragmentation Func-

tions

The parton distribution function d(x) measures the probability to find a parton in-

side a hadron carrying longitudinal fraction x of the hadron's momentum. The parton

fragmentation function f(z) measure the probability to find a hadron carrying lon-

gitudinal fraction z of the parton's momentum in the parton fragmentation process.

They are very important in understanding of the structure of the hadron. In the fol-

lowing we will focus on the quark distribution and fragmentation functions for spin-j

hadron. Readers can find more details in references[6, 10, 11, 121
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1.4.1 Distribution functions

The distribution functions are related to the quark-quark density matrix [6, 10, 11],

rdA iA
D(X) = 27r e < PS0(0)r2(An)rPS >i, (1.34)

where n, are light-like null vector defined in appendix .6. PS > is the wavefunction

for the nucleon with normalization < P'SIPS >= (27r) 32P 063(P - P') . P is the

momentum of the nucleon, S is the polarization vector (P 2 = M 2 , s2 = -m2,

P -S = 0). IF is one of the 16 Dirac matrices, i.e. I, 'y5, 'Y7, 'Y,7Y5, o, 1 (or %-,Vy5) .

Substitute those Dirac matrices into Eq. (1.34) and expand them according to

their Lorentz structures, one obtains the following definitions for the quark distribu-

tion functions.

J eiX (PS (0)kO(An)iPS)

J e PS (o),(An)IPS)

IdA i~ //\I
27e \PS)(0)y,,y5 (An)IPS)

J V(PS(0)igvy 5 5 (An)|I PS)

= 2Me(x),

= 2 {fi (x)pg + M2

= 2 {gi(x)pS -n + gT(x)S1, + M 2 g3 (x)nr,S - n,

- 2{h1(x)(Stp, - S1,p,)1M

+hL(x)M(p,nv - pvni,)S - n

+h 3 (x)M(Sinv - SiLn)} . (1.35)

Here p, is another light-like null vector(p 2 = 0, p- = 0, p-n = 1, and P = p+ _M 2 n).

Also, we have written S,, S - np, + S -pn,, + Si, . Note that in principle there

should be an expansion for F = -y5, however, it vanishes since the only pseudo-scalar

combination out of P and S is P -S, which is zero.

The Eqs. (1.35) define nine quark distribution functions. However, they are not

equally important in terms of their contributions to a hard process. As a matter of

fact, they can be categorized according to their twist. fi(x), gi(x) and hi(x) are

twist-two quantities; e(x), hL(x) and gT(X) twist three; f 4 (x), g3(x) and h3 (x) twist

four. Therefore it is reasonable enough to discuss more about fi (x), gi (x) and hi (x).
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In fact, only these three are relevant in this thesis.

It is easy to project out fi(x), g1(x) and hi(x) out of the decompositions,

fi(x) = j eA(P (0)#(An)P)fi W f47r

g1(x) = eiAX(PSlhb(0)# y54(An)IPSiI)91 W = 47r

I dAhi (x) = A eizXX(PSP (0) #]- 'P(An) PS±) (1.36)
f47r

fi(x) is spin-average quark distribution function. gi(x) is helicity difference quark

distribution function. hi(x) is called transversity distribution function. fi(x) and

gi(x) are chiral-even, i.e. the chirality of the quark is not changed, whereas hi(x) is

chiral-odd. 8 Chiral odd distribution functions are suppressed in ordinary DIS process

since massless QCD conserves quark's chirality. Therefore it is harder to measure the

transversity compared to the other two. How to probe it will be one of main topics

of this thesis.

1.4.2 Fragmentation functions

The quark fragmentation function is more complicated than the distribution case in

the sense that a quark can fragment into various particles, even multiple particles.

Also, the fragmentation process might involve final state interaction such that the time

reversal invariance is violated. We will give a very simple introduction here using as

an example the quark fragmentation into spin-I hadron. For more general discussions,

e.g., fragmentation into spin-0, spin-1 hadrons, please refer to the references[6, 12].

The generic expression for a fragmentation function takes the form,

dA
) = 27r ei/z (O0| ap0(0)lPX) (PX o(An)0), (1.37)

where Ffi stands for an arbitrary Dirac matrix. X represents the final states which

are not observed.

8 1t is very easy to see this from the Eqs. (1.36)
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Just like that in the distribution function case, one can easily obtain the twist

two fragmentation functions f1, 1 and h1 if one chooses IF = 4, 4-y and a nri'y5

respectively,

f1(z) = f e i0W (O (0)1PX) (PX I(An)10),

1(z = f e-i-'/z (0j#75'0(0)jPSX) (PSXj1O(An)j0) ,

1hi(z) = e-iA/Z (Ojurnvi-y5 V(O)PS1X) (PS X n(An)j)

(1.38)

Similarly, fi(z) and j (z) are chiral even fragmentation functions, whereas h1 (z) is

chiral-odd. h1 (z) can be coupled with hi(x) to measure the transversity distribution

functions.

A twist three chiral-odd fragmentation function is 8j (z),

81(Z) = 2M J 2i7/z(O()PX)(PX (An)j0) (1.39)

1.5 Spin Structures of the Nucleon

Together, fl, gi, and h, provide a complete description of quark distribution inside

a nucleon at leading twist (twist 2). fi(x) has been well studied theoretically and

experimentally for a long time[]. hi(x) is hard to be accurately measured due to its

chiral-odd property, so far there is no data on it although theoretical progresses have

been made[6]. A big chunk of this thesis will be devoted to discuss how to probe

it experimentally. The recently accurate measurement of gl(x) has given physics

community a big surprise by declaring that, contrary to the naive quark model, quark

spins only contribute a little to the nucleon's spin[13].

In this section, we shall give a brief review about the spin structure of the

nucleon, which is closely related to the measurement of gi() .
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1.5.1 Ellis-Jaffe Sum Rule

91(x) is related to the polarized quark distribution functions {qT(x), q (x), qT(x), q7 (x)}

as follows

(1.40)g1(x) = I e [qt(x) - q (x) + 4t(x) - qj (x)]
2qq

where eq is the quark electric charge measured in terms of the electron electric charge,

t and 4 mean quark's helicity parallel and antiparallel to the nucleon's, respectively.

Much of the interest in the polarized structure function gi is due to its relation

to axial vector current matrix elements:

(PSIAq |PS) |p2=E (PS|I qy 5q|PS) |p2= Aq( 2) Sce (1.41)

where the label [- refers to the mass scale at which the axial vector current operator

is renormalized, and

Aq f dx[qt(x) - qj(x) + qf(x) - q (x)] (1.42)

where the renormalization scale dependence p is implicit. In naive quark model, the

integrals of the gi structure functions for proton

],(Q2) f dxg'(x, Q2) (1.43)

are related to the combinations of the Aq

Fr (Q2) - I (4U(Q2) + IAd(Q 2)9 + As(Q2))

The perturbative QCD corrections to the above relation have been calculated,

1
1p (Q2) ( AU(Q2)

x(1

1+ IAd(Q2)9

- +(Q2 ) 0 (a ))
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1+ AS (Q2)

+ 0 , 2 (1.45)



where the power series in as(Q 2) represents a perturbative calculation of the coefficient

function of the axial vector currents[14, 15] and the O(A 2 /Q 2) terms are higher-twist

corrections.

The g' sum rule is interesting because some of combinations of Au, Ad and

As can be independently measured, or inferred from data on nucleon and hyperon

-decays. The octet axial currents which mediate Gamow-Teller transitions between

octet baryons are defined by

A' - V7, yT'O, (1.46)

with trT aTb 6 a . The nucleon matrix element of the A' determines the combina-

tion Au - Ad;

(Au - Ad)Sp = 2(PS|A31|PS) = gAS, = (F + D)SI, (1.47)

where gA is the nucleon axial vector charge which can be measured in neutron p3-decay.

F+D is its parameterization in terms of SU(3) invariant matrix elements for the axial

current in the hyperon semileptonic decay,which is valid in the SU(3) symmetry limit.

SU(3) symmetry is also responsible for determining the other linearly independent

combination,

(Au + Ad - 2As)S, = 2v/(PSIA81PS) = (3F - D)S, (1.48)

The third combination, AE, is related to the flavor singlet current operator A01

as follows

AE(p_2)SP a(Au + Ad + As)S, = (PSIA5,IPS) 1,2 (1.49)

with
3

AO = E Y,7YVf. (1.50)
f=1

We can rewrite g' sum rule in Eq. (1.45) in terms of F, D, and AE as below

P(Q 2 ) = 1 (3F + D + 2AE(Q2 (i (Q2) + O((7)) + 0 ( . (1.51)
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Combining Eqs. (1.47), (1.48), and (1.49) together, we have

Au(Q 2) - Ad(Q2 ) = F+D,

Au(Q 2) + Ad(Q 2) - 2As(Q 2) = 3F -D

Au(Q2) + A d(Q 2) + As(Q 2) - (Q2) . (1.52)

Note that AE depends upon the renormalization scale p2 because the flavor sin-

glet current A' is not conserved even when quarks are massless, due to the triangle

anomaly[16]

OA = -- YTFP , (1.53)
P 27r

where nf is flavor number.

It is not possible to derive sum rule for IP without supplementary assumptions

because there are three unknowns but only two experimental values (F and D, there

was no experimental data on AE two decades ago). In 1973, J. Ellis and R. Jaffe

assumed that As = 0 on the grounds that very possibly there were a negligible number

of strange quarks in the nucleon wave function -OZI rule[17]. With this assumption,

it was estimated that

dxgp (x, Q2) = (4Au + A d)(1 - a, /7r + O(a )) = 0.17 ± 0.01. (1.54)
11 o 18

This is the so-called Ellis-Jaffe sum rule[18]. It based on two main assumptions:

SU(3) symmetry and As = 0 . It has become one of the most famous sum rules in

spin physics due to the EMC experiment in 1987[13] that will be discussed in the

following subsection.

1.5.2 EMC Experiment and Spin Crisis

In 1987 the EMC reported a measurement of gP (x, Q2)[13]. The quantity they mea-

sured is the spin asymmetry

A1 - p + - PT (1.55)
P pT + pfp
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in p - p scattering, where the terms denote cross-sections and the arrows t and 4

denote polarizations along the beam direction. A1 is related to gi by

A,(x)F1(x, Q2)
g 

-1 + R(x, Q2)
(1.56)

where R(x, Q2) is the ratio of longitudinal to transverse virtual photon cross-section,

which can be taken from parameterizations of unpolarized scattering data, and F (x, Q2)

is the unpolarized structure function

1
F (x) =E e [qT (x) + q (x) + qf(x) + q7 (x)]. (1.57)

EMC extrapolated their measured structure function from x ~_ 0.02 down to x = 0,

and published a result for the first moment of gj(x),

PP - j dxg'(x) = 0.126 ± 0.010 ± 0.015, (1.58)

at energy Q2 = 10.7GeV 2. It is significantly smaller than the prediction of Ellis-Jaffe

sum rule.

Fitting F and D to the hyperon semileptonic decays, and using the errors de-

termined from the fit gives[21]

F = 0.47 ± 0.004, D = 0.81 ± 0.003.

Substituting Eqs. (1.58) and (1.59) into Eq. (1.51), we find at EMC energy(about

10.7GeV 2)

A E = Au + Ad + As = 0.13 ± 0.19 (1.60)

or equivalently,

Au = 0.78 ± 0.10, Ad = 0.50 ± 0.10, As = -0.20 ± 0.11, (1.61)

by solving Eqs. (1.52).
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Figure 1-2: Comparison of data with the assumption As = 0 from SMC.

These results have shocked the particle community and aroused so much interest.

Because according to the Ellis-Jaffe ansatz, As = 0[18], it would have predicted

AE = 3F - D = 0.60 ± 0.12. (1.62)

The EMC data are about two standard deviations away from the prediction by Ellis-

Jaffe sum rule. According to EMC data it seems that we can not attribute the

nucleon's spin to only the spins of the quarks. Much of the nucleon's spin must lie

elsewhere. This is the so-called "spin crisis". Since EMC announced their results,

there have been further more accurate experiments done by EMC, SMC(at CERN),

E142, E143(at SLAC)[22]. The comparison of the data with Ellis-Jaffe sum rule is

shown in Fig. (1-2) 1. From the figure, we can see clearly the deviation of Ellis-Jaffe

sum rule from the experimental data. The values of AE at Q2 = 3GeV2 extracted
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Experiments target x Q2GeV2
E130 p 0.180-0.7 3.5-10
EMC p 0.010-0.7 1.5-70
SMC p 0.003-0.70 1.0-60
E143 p 0.029-0.8 1.3-10

SMC-93 d 0.006-0.6 1.0-30
SMC-95 d 0.003-0.7 1.0-60

E143 d 0.029-0.8 1.0-30
E142 n 0.030-0.6 1.0-10

Table 1.2: Current experiments at CERN and SLAC.

from each experiment are shown in Fig. (1-3) . The average value at Q2 = 3GeV 2

is[23]

AE = Au + Ad + As = 0.27 ± 0.04 (1.63)

and

Au = 0.82 ± 0.03, Ad = -0.44 ± 0.03, As = -0.11 ± 0.03. (1.64)

where the more recent F + D = 1.2573 ± 0.0028 and F/D = 0.575 ± 0.016 have been

used.

One may also get a feeling for the expected range of AE and As by plotting the

results for these two observables extracted from from each of the existing experiments,

as shown in Fig. (1-4).

1.5.3 Theoretical Explanations

Then, what does the nucleon's spin come from if not just from quark's spin? Since the

EMC experiment, there have been a lot of theoretical issues raised by the unexpected

result. The following are some extracted from Ref. [21]:

e Violation of SU(3) symmetry for octet axial charges could affect the evaluation

of the sum rule. As we have pointed out, SU(3) symmetry plays an important

role in determining Au, Ad and As(through the determination of F and D).

' 0Figs. (1-3) and (1-4) are extracted from Ref. [23]
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0.4-

0.2 -

t average:

0.27 ± 0.04

0.0 - X= 2.0

naive
parton O(a, ) 0(a ) O(x) O(a4)
model

X E142 + E143-p 0 E143-d 0 SMC-d(92) SMC-d(94) 0 SMC-p X EMC

all AE values evolved to Q 2=3 GeV2

Figure 1-3: The values of AE(Q2 = 3GeV2 ) extracted from each experiment, plotted
as the increasing order of QCD perturbation theory used in obtaining AE from the
data.

However, we know that actually SU(3) symmetry is broken badly. These large

corrections may change the result significantly [24, 25, 26].

" Uncertainty of the extrapolation from the lowest measured x(-- 0.02) to x = 0.

Unanticipated behavior of the functions Xg 1 (x, Q2) as x -+ 0 could affect the

sum rules [27].

" The possible non-perturbative evolution of AE. As we have noted, AE does

depend on the mass scale at which it is measured. It is possible that AE is

large at the confinement scale(p ~1GeV), but somehow evolves away to a very

small value at EMC energy range[28].

" Ambiguity of the definition of AE due to the axial current anomaly[16]. Shortly

after EMC published their results, Alterelli and Ross[29] and Carlitz et al.[30]

pointed out that there is gluon contribution to the proton spin through the
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AE VS As

0.4-
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0.0

-0.2 - -
-0.25 -0.20 -0.15 -0.10 -0.05 0.00
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X E142 + E143-p 0 E143-d 0 SMC-d(92) SMC-d(94) 0 SMC-p 9 EMC

Figure 1-4: The values of AE and As extracted from each experiment, plotted

against each other. All data have been evolved to common Q2 = 3 GeV 2 .

axial current anomaly[16]. What the EMC measured is actually the combination

Aq = Aq'- Ag with Aq' being identified to the naive quark model expectation

and Ag being the integrated gluon helicity distribution. The small experimental

value of AE can be interpreted due to large cancelation between Aq' and Ag,

which would require a rather large Ag(~- 5 - 6) at the EMC energy.

These explanations focus on trying to point out what might go wrong in the experi-

ment. However, a more modern view of the spin structure of the nucleon is that the

nucleon's spin is separated into four terms [21, 31],

1 1
- -AE(p) + Lq(A) + AG(u) + Lg(p), (1.65)
2 2

where AG is the gluon spin contribution, Lq and Lg are the quark and gluon orbital

angular momenta, respectively.

AE = + P+ (P + I dP 0375V jp+),

38



AG = (P + IS3g|P+) = (P + J d'x (E'A 2 - E2 A') IP+),

Lq = (P+|L3q|P+) = (P + dx 0 (x 1O 2 _x 2 1 ) P-) ,

Lg = (P +L3g|P+) = (P + d3x E'(x2 1 _ X10 2 )A' |P+) , (1.66)

where for simplicity we have neglected the normalization of the state. E i" -F Oi =

-(aOA ia - &A 0" + igsfabcAObAiC) is the color electric field. These four terms are all

dependent on renormalization scale p . It would be very interesting to see how much

these four terms contribute to the nucleon's spin 1 . However, unfortunately, only the

first term AE is measured. There are still no any data on other three terms. While

there are some plans to try to measure AG at RHIC, people are still clueless on how

to probe the orbital angular momenta Lq and Lg experimentally although there are

some theoretical attempts along this direction[32].

Ji, Tang and Hoodbhoy have found interesting results by studying the Q2 evo-

lution of the four terms[31], very similar to Altarelli and Parisi equations[33]

e Quark and gluon almost carry same amount of the nucleon's spin in the limit

Q2 _4 00,

1 _1 3Nf
lim -AE(Q 2 ) + Lq(Q 2 ) _

Q2o 2  216+3Nf
1 1 16

lim -AG(Q 2 ) + Lg(Q 2 ) = ,16 (1.67)
Q2- oo 2 2 16 + 3Nf

where NJ is the number of the quark flavors involved. It is exactly analogous

to the result for the momentum sum rule[34]. If, like the momentum sum rule,

these results hold even at relatively low Q2, then one can conclude that Lq ~ 0.1

from the measurement of AE .

* Another interesting result is that the net effect of the renormalization scheme

dependence is just to shift some contribution between quark spin and its orbital

angular momentum,

I ± (p) - Nf + (Lq(pi) + a f F + AG(p) + L(p)). (1.68)
2 2 27 47r
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However, the fraction of the nucleon spin carried by quarks is invariant under

such shift.

More about this can be found in appendix .8 or Ref. [31].

1.6 Organization of This Thesis

The rest of this thesis is organized as follows. In the chapter 2, we shall present

helicity density matrix formalism to deal with the polarized processes in QCD. Then

we go on to discuss how to measure the transversity distribution function. First a

detailed review of the transversity is presented in chapter 3. Since the measurement

of transversity is one of the main topics of this thesis, we review it in a separate

chapter instead of putting it in the chapter 1. Then we will introduce the interference

fragmentation functions and use them to measure the transversity in DIS process in

chapter 4 and in nucleon-nucleon collisions in chapter 5. In chapter 6, we will discuss

the idea of using the interference fragmentation functions to measure the valence

quark spin distribution functions. Chapter 7 is devoted to summarize the whole

thesis. Part of this thesis is based on the works done or discussed with Bob Jaffe and

Xuemin Jin[35, 36].
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Chapter 2

Helicity Density Matrix Formalism

The operator product expansion[7] and cut diagram techniques have been tradition-

ally used in dealing with high energy polarized processes in QCD[1]. However, these

techniques are somewhat complicated and lack of clear physical pictures of the pro-

cesses. In this chapter, we shall present a general helicity density matrix formalism,

in which the calculations of the desired cross sections are simplified to be take traces

of products of some helicity density matrices in the underlying particles'(partons,

hadrons, etc.) helicity spaces 1. The main advantages of this formalism are that it

has very clear physical pictures, simplifies the calculation, and, most importantly, can

be easily used to deal with multiparticle interferences.

Typically, the high-energy polarized processes in QCD are involved with soft

QCD and hard QCD parts. The soft QCD parts are parton distribution functions in

hadrons and parton fragmentation functions. The hard QCD parts are parton-parton

or parton-electron hard processes (scattering, annihilation, etc.). For instance, a

typical diagrams for a semi-inclusive single particle production process is shown in

Fig. 2-1.

Accordingly, this chapter is divided into four sections. The first section is de-

voted to the parton distribution functions. We shall introduce the definitions of the

QCD distribution density operators, and discuss how the conservation laws (angular

'Some early works about this formalism can be found in Refs.[37, 38]
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Figure 2-1: A generic semi-inclusive single particle production process at parton level.
The top part is parton fragmentation into a single particle, the middle is the hard
parton process, the bottom is the parton distribution in a hadron.

momentum, parity, time reversal) can reduce the number of the independent helicity

amplitudes of processes. In the end, we shall show that the remaining independent

amplitudes are related to the familiar parton distribution functions.

The second section is to discuss the parton fragmentation processes, which are

more complicated than the distribution case due to the relaxation of the time-reversal

symmetry and interference between different partial waves in the multiple particle

production. We shall also introduce the definitions of QCD fragmentation density

operators and discuss the symmetry constraints to the helicity matrix. We discuss the

relations between the independent non-zero elements and the parton fragmentation

functions in the end of this section.

The third section is to discuss the helicity amplitude approach to the hard QCD

processes (e.g. parton parton scattering, etc.). We first review the Gastmanns and

Wu's approach in the unpolarized processes[39]. Then we shall generalize their tech-

niques to deal with the polarized processes in QCD.

The last section is to discuss the cross section density matrix in the formalism,

and to summarize the whole chapter.
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2.1 Distribution Functions as Helicity Density Ma-

trix Elements

In this section, we shall discuss how to deal with the parton distribution functions in

the helicity density matrix formalism. The purpose is to relate the helicity density

matrix elements to the familiar distribution functions, in other words, to put the

distribution functions into helicity density matrix.

The helicity density matrix elements are not independent of each other due to

QCD symmetries. The symmetries (angular momentum, parity, time reversal) dra-

matically reduce the independent numbers of the helicity density matrix elements.

The surviving independent elements are related to familiar parton distribution func-

tions. Because the Cartesian operators are not irreducible under SO(3) rotation, the

irreducible tensor operators will be used in order to conveniently discuss the angular

momentum conservation.

2.1.1 Helicity amplitudes

The parton distribution functions can be viewed as discontinuities in forward parton-

(quark or gluon) hadron scattering: a hadron of helicity H emits a parton of helicity

h which then participates in some hard scattering process. The resulting parton with

helicity h' is reabsorbed by a hadron of helicity H', as shown in Fig. (2-2). This

process can be represented by u-channel discontinuity of the forward parton-hadron

scattering amplitude FH'h,Hhf, which will be called helicity amplitude in this thesis

due to its close ties to the underlying particles' helicities.

h W'

H H'

Figure 2-2: Parton distribution functions viewed as discontinuities in forward parton
hadron scattering with explicit helicity labels.

The helicity amplitudes TH'h,Hh' for quark distribution processes are defined in
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QCD by[6, 10, 11]

/ dAJ'H'h,Hh' =_ -eiA < PH'|T yh'(0)0h( An)|PH > ,(2.1)
2-x

where the subscripts h and h' of the quark fields represent the helicities of the quarks.

IPH > is the helicity state of the hadron with momentum P and helicity H. 4 'h is

the quark field operator in helicity h state. n is a light-cone vector defined in Eq. (93)

of the appendix .6. T is the time order operator[1]. The dependences of helicity

amplitudes upon x and Q2 are suppressed for simplicity. Physically interesting F are

diagonal in the hadron spin since they result from squaring something like (X 10 1 PS).

However spin eigenstates are linear combinations of helicity eigenstates, so the matrix

.F do not have to be diagonal in the hadron helicity basis. Only forward scattering

is of interest, thus angular momentum is conserved along the z-direction(defined by

the problem at hand), so helicities of the initial and final states are same,

H + h' = H'+ h . (2.2)

The parity and time reversal are invariant in the strong interactions, which places

constraints on F,

FH'h,Hh' =F-H'-h,-H-h' (2-3)

-FH'h,Hh' =FHh',H'h (2.4)

respectively. Parity reverse the direction of momentum, but does not change spin,

therefore the helicity change sign under parity transformation. Time reversal ex-

changes initial and final states, and reverse the directions of momentum and spin.

Helicity is able to conserve its sign under time reversal.

These symmetry constraints dramatically reduce the independent numbers of

non-zero helicity density matrix elements. For example, if Jh = j = 1/2, there are

16 elements for T, however, under the symmetry constraints, there are only three
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independent elements left:

2 222 ' 2 2 ! -' 2 ' 22_ '

2.1.2 Parton distribution density operator

Definition

The helicity amplitudes .FH'h,Hh' can be seen as matrix elements of parton distribution

density operator F, which is defined as follows

YH'h,Hh' =< JH';jhl F |JH;jh' > , (2.5)

where |JH; jh > is the helicity state for the hadron and parton system. J and j

are the total angular momenta of the hadron and parton respectively. H and h

represent the helicities of the hadron and parton respectively (H = - J, ..., J, and h =

-j, ... , j). [Note: j and J in distribution processes do not change, thus they are

suppressed in the helicity amplitude FHh',H'hfor simplicity]. F is a (2J + 1) x (2j + 1)

dimensional matrix in the helicity representation, e.g., if J = 1/2 and j = 1/2, F has

(2J + 1)2 x (2j + 1)2 = 4 x 4 = 16 elements.

The helicity space formed by I JH; jh > can be reduced into two subspaces:

hadron helicity space and parton helicity space, i.e., the helicity state can be decom-

posed as a direct product of hadron and parton helicity states as follows

|JH;jh >= JH > 0 |jh > , (2.6)

with JH > and jih > being helicity state bases for the hadron and parton helicity

spaces,

< JHIJ'H' >= 6 JJ,6HH' , (2.7)

< jhj'h' >= 6 jj 6 hh' .
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Accordingly, the parton distribution density operator F can also be decomposed as

a direct product of hadron density operator Fh and parton density operator YF,

Y = Yh0F Y. (2.8)

The dimensions of operators Fh and Fp are (2J + 1) and (2j + 1), respectively.

Hence, there are (2J + 1)2 and (2j + 1)2 basis operators for the hadron and parton

helicity spaces, respectively, i.e., Fh and Fp can be expanded as linear combinations

of the basis operators of their respective helicity spaces. In order to discuss the rota-

tion transformation symmetry conveniently, we shall use spherical irreducible tensor

operators as described later because the Cartesian operators are not irreducible under

SO(3) but spherical irreducible tensor operators do.

Symmetry properties

At the operator level, the parton distribution density operator F is invariant under

the rotation along z-direction, that is,

eiJzOYe-'JO = F , (2.9)

where Jz = Iq 0 Jzh + Jzq 0 Ih with Iq and Ih unit matrices in parton and hadron

helicity space. In other words, under infinitesimal transformation(0 is infinitesimal)

we have

JzF] =0. (2.10)

Strong interaction conserves parity and time reversal since there is no possible

time-reversal-violating final state interaction in distribution process. Therefore the

operator F is invariant under parity and time reversal transformation,

PFP-1 = F , (2.11)
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where P is parity operator, and

TY7-1 = t , (2.12)

where T is the time reversal operator.

Since the parton-hadron forward amplitude results from squaring something like

(XIhpIPS), F is hermitian

.Ft =F . (2.13)

Eqs. (2.10)-(2.13) summarize the symmetry restrictions on .F, which will reduce

the numbers of independent components of FH'h,Hh'-

2.1.3 Spherical irreducible tensor operator

The spherical irreducible rank k tensor operator Tk (q -k, ..., k) is defined under

rotation transformation as 2

D(R)T D(R)-1 (2.14)
k

q T qI (R) ,I
q'=-k

where D(R) = e'16 is the unitary transformation operator corresponding to rotation

R along 0 direction and Dq (R) = kq'ID(R)I kq >, or under infinitesimal transfor-

mation

[J± , Tk k(k + 1) -F q(q ± 1) T 1 ,

Jz Tk] q Tq, (2.15)

where f is the total angular momentum operator, with J± = J iJly -

2 Only the properties relevant to our discussions are listed here. For more thorough discussions,
please refer to[40] .
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Take the Hermitian adjoint of the Eq. (2.14), we have

k

q'=-k

The symmetry property of the D's

*R= q-q'(R H -) _(R) (2.17)

gives us
k

D(R)(-)4 (Tk)t D(R)- 1 = q(-)4'(Tj), E),_(R) , (2.18)
q'=-k

i.e. (-)q(T!q)t transforms under rotations in the same way as T. Therefore the

concept of Hermitian adjoint of an operator may be generalized, and the Hermitian

adjoint Tt of a tensor operator T may be defined by

(T t )k = (_)q (Tq )t . (2.19)

The components of a self-adjoint tensor Tt = T satisfies

(T )t = (-)q T k . (2.20)

2.1.4 The structure of parton distribution density operator

under conservation laws

As mentioned in section (2.1.2), the hadron and parton density operators .Fh and .Fp

can be expanded as sums of the basis generators of their corresponding helicity spaces

(usually, Cartesian). On the other hand, the Cartesian operators can be expressed as

linear combinations of the spherical irreducible tensor operators. Thus, the parton

distribution density operator F can be written as a sum of direct products of hadron

and parton irreducible tensor operators.

In general, there are (2j + 1)2 x (2J + 1)2 elements in F. This number quickly

increases as j and J get large. For instance, if j = J = 1, there are already 32 x 32 = 81
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elements. However, fortunately these matrix elements are not independent of each

other in high energy processes. The QCD conservation laws give us several rules

to dramatically reduce the numbers of the helicity density matrix elements. Those

survivals will be identified as distribution functions.

Quark distribution density operator structure

I 2J k k'
1= J Z Z C(kq;k'q') Q k'®H ,' , (2.21)

k=O k'=0 q=-k q'=-k'

where Qk and Hk represent the irreducible tensor operators in quark and hadron

helicity spaces respectively, C(kq; k'q') are expansion coefficients.

One can deduce the following rules governing the relationships between the ex-

pansion coefficients C(kq; k'q') in Eq. (2.21) from Eqs. (2.2) (2.3) (2.4) (2.10) (2.11)

(2.12) (2.13) (2.20)

C(kq; k'q') = 0 if q + q' : 0 , (2.22)

C(kq; k'q') = (-)k+k'C(k - q; k' - q') , (2.23)

C(kq; k'q') = (-)q+q' C(k - q; k' - q') , (2.24)

C*(k, q; k', q') = (-)q+q'C(k, -q; k', -q') . (2.25)

Eq (2.22) is the result of the helicity conservation, Eq. (2.23) the parity invariance,

Eq. (2.24) the time reversal invariance, and Eq. (2.25) the hermitian conjugate. In

next subsection, we will show how to use these rules to simplify F and identify the

surviving elements as parton distribution functions.

In massless theory the quark helicity is identical to its chirality, and Qk will

not change the helicity of quark while Q' 1 change it by one unit, therefore the ex-

pansion coefficients in Eq. (2.21) in front of operator Qk are chiral-even while those

corresponding to Q'i are chiral-odd.
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Gluon distribution density operator structure

2 2J k k'

= (k ; k'q') G H ' (2.26)
k=O k'=0 q=-k q'=-k'

where Gk and Hk represents the irreducible tensor operators in gluon and hadron

helicity spaces respectively, C(kq; k'q') are expansion coefficients.

One can get similar rules as those in Eqs. (2.22)-(2.25) for gluon distribution

density operator. However, there is an additional constraint due to gauge invariance.

The physical gluon can only have two polarization (+1 or -1), which means the only

operators are Go, G', G2, and G 2 2 3

2.1.5 Expansion coefficients as distribution functions

In this section, we shall apply our results on the structure of the density operator

F to some well-known processes in order to show how the coefficients in the density

operator expansion are related to the familiar distribution functions.

Quark distribution functions in the nucleon: j = 1/2 and J = 1/2

There are (2j+ 1)2 x (2J+ 1)2 = 16 elements in the helicity density matrix F. However,

these number can be dramatically reduced by the rules in Eqs. (2.22)-(2.25), as we

will show immediately.

We first apply the Eq. (2.22), there are only four nonzero elements left:

C(00; 00), C(10; 10), C(11; 1 - 1), C(1 - 1; 11),

which correspond to operators Q0 0 H00, Q1 0 Hol, QI HI1 , Q_ 1 0 H1, respectively.

Then the Eq. (2.23) and Eq. (2.24) give us same relations in this case: C(1, 1; 1, -1) =

0(1, -1; 1, 1). The Eq. (2.25) requires C*(00; 00) = C(00; 00), C*(10; 10) = C(10; 10),

and C*(1, 1; 1, -1) = C(1, -1; 1,1). Therefore there are only three real independent

nonzero elements left. The helicity operator F can be expanded by these three terms

3Note that we have use Qk to represents the tensor operator for quark, Hk for hadron, and G'

for gluon.
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as follows

F = C(00;00) Qg 0 HOO + C(10; 10) Q1 9 HO +

C(11; I - 1) [ Q1 0 H', + Q1_1 0 H . (2.27)

The matrices Qs and Hs are shown in the appendix .9. They are directly related to

the well-known Pauli matrices: Q0 = I, Qi = U3, Q' = -Vf Q1 = xr-, where

= (U i-2 )/2. Therefore, the remaining three elements C(00; 00), C(10; 10),

C(11; 1 - 1) can be related to the three familiar quark distribution functions as

below[38]

1
C(00;00) =

1
C(10; 10) = g Aq

1
C(11; 1 - 1) - 6q . (2.28)

Then, we get the familiar formula[38]

:7= I qIq 0IN + IjAq o (U +1 6q(or+®cor-+aq 0 a) ,(2.29)
F = q IN IN q NQ N-3@0 q(

where the subscripts q and N indicate quark and nucleon spaces respectively. The co-

efficients C(00; 00), C(10; 10), C(11; 1 - 1) correspond to tensor operators Q8, Q1, Q1,
respectively. Therefore, the quark distributions q, Aq are chiral-even, and 6q chiral-

odd. q is unpolarized quark distribution function, Aq is quark helicity difference

distribution function, and 6q is quark transversity distribution function.

Quark distributions in a vector meson: j = 1/2 and J = 1

In this case, 22 x 32 = 36 matrix elements will be dramatically reduced to 4 after

using the Eqs. (2.22)-(2.25).
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Eq. (2.22) give only the following nonzero elements

C(00; 00), C(10; 10), C(00; 20),

C(11; 1 - 1), C(l - 1; 11), C(11; 2 - 1), C(l - 1; 21)

Eq. (2.23) requires

C(11;1 - 1) = C(1 - 1;11)

C(11; 2 - 1) = -C(1 - 1; 21) . (2.30)

Finally Eq. (2.24) gives

C(11; 2 - 1) = C(1 - 1; 21) . (2.31)

The combination of Eqs. (2.30) and (2.31) will give us C(11; 2- 1) = C(1 - 1; 21) = 0.

Combining these results with the Eq. (2.25) one can conclude that all the surviving

amplitudes are real.

In the end, the symmetry constraints leave us only four independent nonzero

coefficients, by which F can be expanded as follows

= 0(00; 00) Q' 0 H0 + C(10; 10) Q1 0 Hl + C(00; 20) Q0 0 H2

+C(11; 1 - 1) [Q1 H 1 + Q_1 H ] . (2.32)

One can relate the coefficients to the familiar quark distribution functions: C(00; 00) -

q (the helicity average distribution), 0(10; 10) - Aq (the helicity difference distribu-

tion), C(00; 20) ~ bq (the quadrupole quark distributions[38]), and C(11; 1 - 1) ~ 6q

(the transversity distribution in a vector meson). After normalization, one can get

the following formula

F = -q I I -b I bq1 Q + Aq O3 0 S3 + I .+ r- + -0 , (2.33)
3 4 2 2
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where Q = diag(1, -2, 1), S3 = diag(1, 0, -1). q, bq, and Aq are chiral even, 6q is

chiral odd.

Gluon distributions in a nucleon: J, = 1 and J = 1/2

The distribution density operator F can be written as follows after considering all

the symmetry constraints 4

.F = C(00; 00) Go g HOO + C(10; 10) G1 ( HJ' . (2.34)

It can be shown that C(00; 00) is proportional to helicity average distribution function,

and C(10; 10) is helicity difference distribution function. Both of them are real. The

Eq. (2.34) can be written in more familiar terms

1 1
F = 1 gIg IN + Ag S3 30 , (2.35)

where Ig is 3 x 3 unit matrix in gluon helicity space, S3 = diag(1, 0, -1). IN, a are

pauli matrices in the nucleon helicity space. The distribution functions G and AG

are both chiral even. It is worthwhile to point out that there is no gluon transversity

distribution functions in the nucleon due to the helicity conservation.

2.2 Fragmentation Functions as Helicity Density

Matrix Elements

In this section, we shall discuss the fragmentation functions in the frame of the helicity

density matrix formalism. The parton fragmentation process is far more complicated

than distribution because it is less constrained: the time reversal invariance must be

relaxed in many processes due to final state interaction(FSI) between the production

particles, and the angular momentum structures quickly get very complicated due to

interference in multiple particle production processes

'Readers can easily show this by applying the rules in section 2.1.4
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h h'

Figure 2-3: The parton fragmentation functions viewed as discontinuities in forward
hadron parton scattering with explicit helicity labels.

The structure of this section is parallel to section 2.1. First we shall discuss the

parton fragmentation density matrix. We will introduce the parton fragmentation

density operator, and discuss its structures under QCD symmetries. In the end, we

shall give some examples.

2.2.1 Helicity amplitudes

Just like parton distribution functions, the parton fragmentation functions can also

be viewed as discontinuities in forward parton-(quark or gluon) hadron scattering: a

parton of helicity h emits a hadron (or a bunch of hadrons) of helicity H and total

angular momentum J. The resulting hadron (or hadron system) with helicity H'

and total angular momentum J' is reabsorbed by a parton of helicity h', as shown in

Fig. (2-3). This process can be represented by u-channel discontinuity of the forward

parton-hadron scattering amplitude .F'h,Hh

The quark fragmentation helicity density amplitude .FH'h,Hh' is defined in QCD

by[12, 6]

H' ,A e-il/ (01 h (0)1JH; X)outout (X; J'H' ) (2
x

where the dependences of helicity amplitude on z, Q2, and some internal momenta

in the hadron system have been suppressed for simplicity. 10) represents the vacuum

state. JH; X)Out is the final state, where out means the outgoing state. The out

states have been used because of possible final state interactions between the final

particles.

F is also subject to symmetry constraints. However, time reversal invariance
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needs to be relaxed due to possible final state interaction among final hadrons, 5

H +h' = H'+h. (2.37)

Hh',H'h - iH-h',-H'-h (.8

2.2.2 Parton fragmentation density operator

Definition

Like in distribution case, the fragmentation helicity density operator J is also related

to the helicity density amplitude as follows

fi',Jh' =< J'H'; jh F IJH; jh' > , (2.39)

where, once again, J and j are the total angular momenta of the hadron system(could

be multiple hadrons) and parton respectively, H and h represent the helicities of the

hadron system and parton respectively. J does not have to be equal to J', in which

case interference between different partial waves occurs. [ Note: j in fragmentation

process do not change, thus they are suppressed in the helicity amplitude i',iHh'

for simplicity ].

The helicity density operator J can also be decomposed as a direct product of

hadron helicity operator .F and parton helicity operator JI,

. = Fh0 0 F. (2.40)

5For single particle semi-inclusive production, the final state interaction phase may be averaged
out because of the summation over X state in Eq. (2.36)
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Symmetry properties

At the operator level, the parton distribution density operator J7 is invariant under

the rotation along z-direction, that is,

eil f e-iJ- = .1 : (2.41)

where J, = I" ® Jz + Jzq 0 I with Jq and Ih unit matrices in parton and hadron

helicity space. In other words, under infinitesimal transformation(0 is infinitesimal)

we have

[JZ, I ] = 0 (2.42)

Strong interaction conserves parity, therefore the operator J is invariant under

parity transformation,
-P J71 - = f , (2.43)

where P is parity operator.

Since the parton-hadron forward amplitude results from squaring something like

(X; JHtj/O), F is hermitian

JH = .7 (2.44)

The time reversal is no longer invariant due to the final state interaction which

violates time reversal invariance.

2.2.3 Parton fragmentation density operator structure due

to conservation laws

As in section 2.1, the fragmentation density operator 1 can be expanded as sums of

the spherical irreducible tensor operators as follows,

2j J'+J k k'

f=ZZ Z S 5 0(JJ';kq;k'q')
J,J' k=O k'=IJ-J'| q=-k q'=-k'

Q 0 Hq,'(JJ')
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where Qk and Hg (JJ') represent the irreducible tensor operators in the parton space

and hadron space respectively.

Spherical irreducible tensor operator Hq(JJ')

The spherical irreducible tensor operator Hk(JJ') is defined under rotation transfor-

mation just like T in Eqs. (2.14)(2.15) 6

D(R) Hk(JJ') D(R)- = (2.46)

or

= k(k+ 1)-Fq(q±i1) H k 1(JJ')

= q H (JJ') (2.47)

where J= f+ J' is the total angular momentum operator, J± = J ± iJ± .

The operator Hk(JJ') has an additional property-it will change not only the

helicity but also the total angular momentum in the helicity state, i.e.,

(2.48)

Its hermitian conjugate can be defined as

H (JJ'))t = (-)qH (J'J)

Quark fragmentation density operator structure

1 J'+J k k'

7=( Z Z Z O(JJ';kq;k'q')
J,J' k=O k'=IJ-J'| q=-k q'=-k'

Qk 0 H,'(JJ')

One can deduce relations between the expansion coefficients C(kq; k'q') in Eq. (2.50)

6 In fact, H is a special case of H k(JJ') with J= J'
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(2.50)

H , (JJ') E() ,

J+, Hq(J)

Jz, Hq(J)

H (JJ') IJ'H) ~ J(H + q)) .



from Eqs. (2.37) (2.38) (2.42) (2.43) (2.44) (2.49)

O(JJ'; kq; k'q') = 0 if q + q' = 0 , (2.51)

O(JJ'; kq; k'q') = ( -)k+k' (JJ'; k - q; k' - q') , (2.52)

C*(JJ'; kq; k'q') = (-)q+q'O(J'J; k - q; k' - q') . (2.53)

Like in distribution case, Eq. (2.51) comes from helicity conservation, Eq. (2.52) from

parity invariance, and Eq. (2.53) from hermitian conjugate. There is no relation

from time reversal invariance because it is violated due to final state interactions.

Therefore, some of the helicity amplitudes are not real.

Once again, the quark fragmentation functions corresponding to operator Qk are

chiral-even and those corresponding to Q' 1 are chiral-odd.

Gluon fragmentation density operator structure

2 J'+J k k'

=ZZ S S c(JJ'; kq;k'q')G ® Hq,'(JJ'). (2.54)
J,J' k=O k'=IJ--J' q=-k q'=-k'

where Gk represents the irreducible tensor operators in gluon helicity space.

One can get similar rules as those in Eqs. (2.51)-(2.52) for gluon distribution

density operator. However, once again one has to take into account an additional

constraint due to gauge invariance, as discussed in section 2.1.4.

2.2.4 Expansion coefficients as fragmentation functions

In this section, we shall apply our results to some processes in order to show how the

coefficients in the density operator expansion are related to the familiar fragmentation

functions.
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Quark fragments into nucleon: j = 1/2, J = 1/2, J' = 1/2

Follow the procedure described in section 2.1.5, one can get 7

F = C(1/21/2; 00; 00)QO 0 Hg + 0(1/21/2; 10; 10)Q' 0 Hl +

C(1/21/2; 11; 1 - 1) [ Q1 0 H11 + Q_1 D H ]

where Q' = I, Q' = U3, Q1 = -V'r+, Q_1 = 1 o-. The same thing is true for

H's. The coefficients 0(1/21/2; 00; 00), 0(1/21/2; 10; 10), 0(1/21/2; 11; 1 - 1) can

be identified as three familiar quark fragmentation functions as below[11, 38]

C(1/21/2; 00; 00)

C(1/21/2; 10; 10)

0(1/21/2; 11; 1 - 1)

1

1
2

1
4 (2.56)

Since 0(1/21/2; 00; 00), 0(1/21/2; 10; 10), 0(1/21/2; 11; 1 - 1) are the coefficients in

front of the tensor operators Q0, Q', Q1, respectively, the quark distribution functions

4 and Ad are chiral-even, and 64 chiral-odd. So, we get a familiar formula [38]

T=
1 3 3 r+ - + or- 0 a,Iq 0IN±+A2 q ( N + \2 q0UN+Uq®N) (2.57)

where Ii, oa, u :(i = q, N) are Pauli matrices in the quark and nucleon helicity spaces,

respectively. It is easy to show that all of the three functions are real.

Quark fragments into a vector meson: j = 1/2, J = 1, J' = 1

J = (11; 00; 00) Q (9 Hg + 0(11; 10; 10) Q9 H +

C(11; 00; 20) Q8 9 HO+

0(11; 11; 1 - 1) [Q® H11 + Q_1 H] +

'We will use H to represent H (JJ') when J = J' in the following discussions
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C(11; 11; 2 - 1) [Q1 H21 - Q_1 H ] . (2.58)

Thus, we have 5 fragmentation functions: three chiral-even, two chiral-odd. It is easy

to show that 0(1, 1; 1, 1; 2, -1) is imaginary while others real. They can be identified

to the familiar functions Ji used[12]

O (11; 00; 00) ~ i

0(11; 10; 10) ~ 1,

C(11; 11; 1 - 1) ~ hi

C(11;00;20) ~ "-

C(11; 11; 2 - 1) ~ hl (2.59)

with fi, 1 and 61 chiral-even, h1 and h1 chiral-odd.

From Eq. (2.58) one can see that the last fragmentation function C(11; 11; 2 -

1) or h1 is time-reversal violating fragmentation function because it is proportional

to the helicity amplitude combination Y1%,_p - F_g.L Time reversal invariance

would equal T 2O,_ to Y iji. X. Ji has shown the existence of such T-violating

fragmentation function due to the nontrivial final state interaction[12]. However,

the effect might be small due to possible final-state-interaction phase wash-out by

summing over the intermediate state X in the definition of the fragmentation density

operator in Eq. (2.36). Ignoring this T-violating fragmentation function, and using

Jaffe's notations[38], we get

F=4 I I - 6q 10 Q + uAqU3 0 S3 + 64 1.+ 0 o.- + -- D o.+ (2.60)
3 4 2

where bq is quark quadruple fragmentation function.

60



Gluon fragment into nucleon: Jg = 1, J = 1/2, J' = 1/2

The fragmentation density operator Y of gluon fragmenting into nucleon can be

written as follows after considering all the symmetry constraints

,i= 0(1/21/2; 00; 00) Go 0 HO + 0(1/21/2; 10; 10) G1 0 Hd . (2.61)

There are two real chiral-even fragmentation functions. Express Eq. (2.61) in a more

familiar way, one gets

1133
3 2I N+/ g 9  N~ (2.62)

where y and Az are gluon helicity average and difference fragmentation functions,

respectively.

Gluon fragments into vector mesons: Jg = 1, J = 1/2, J' = 1/2

C (11; 00; 00) G o 0HO + O,(11; 10; 10) G' 0 Hl +

C(11; 00; 20) G H +

C(11; 22; 2 - 2) [ G2 H-2 + G-2 0 H . (2.63)

Two of the four real chiral-even fragmentation functions are new: C(1, 1; 0, 0; 2, 0)

and 0(1, 1; 2, 2; 2, -2) . 0(1, 1; 0, 0; 2, 0) is similar to quark quadruple fragmentation

function bq, thus it can be called gluon quadruple fragmentation function denoted by

69 . C(1, 1; 2, 2; 2, -2), on the other hand, can be called gluon transversity fragmen-

tation function because the helicity of the gluon flips, which is very similar to quark

transversity distribution function. We can denote it as 6 .

Interference Fragmentation Functions

In this subsection we shall discuss the interference fragmentation functions (in the

case of J : J') to show the power of the helicity density matrix formalism. The
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interference fragmentation functions and their uses will be discussed in detail in the

chapter 4.

We will use the fragmentation process q -+ 7r7rX as an example. Only s and

p wave interference is considered because they dominate other channels. In order

to discuss the interference between s and p waves, we put the helicities of s and p

together to form a 4-dimensional space, which is expanded by basis helicity state

denoted by IJH). J is the total angular momentum of the two pion system, H is the

helicity. The four basis states are 100), 11), 10), and 1 - 1) . Therefore, there are

22 x 42 - 64 elements. Fortunately, these number will be reduced dramatically under

symmetry constraints. In fact, one can get the following expansion for the density

operator

.Y= C(00; 00; 00) Q0 & H (00) + C(11; 00; 00) Q0 & H0(11) +

C(11; 10; 10) Q0 & Ho (11) + C(11; 00; 20) Q0 0 H02(11) +

C(11; 11; 1 - 1) Q1 0 H1
1(11) + Q_1 0 H'(11) +

C(11; 11; 2 - 1) Qt 0 H21(11) - Q 1 0 H 2(11) +

0(10; 10; 10) Q' 0 H (10) +

0(10; 11; 1 - 1) [Qi 0 H11 (10) + Q_ 0 H1(10) +

0(01; 10; 10) Q1 0 H (01) +

0(01; 11; 1 - 1) [Q' 0 H 1 (01) + Q_ 1 0 H1(01) . (2.64)

There are only ten fragmentation functions, six of which are chiral-even and the others

are chiral-odd. 0(00; 00; 00) is proportional to the fragmentation function in q -

oX. C(11; 00; 00), C(11; 10; 10), C(11; 00; 20), C(11; 11; 1 - 1), and 0(11; 11; 2 - 1)

are fragmentation functions for q -+ pX, which are discussed before. The other

four, C(10; 10; 10), C(01; 10; 10), 0(10; 11; 1 - 1) and 0(01; 11; 1 - 1), are new from

s and p wave interference. Eq. (2.53) requires 0*(10; 10; 10) = 0(01; 10; 10) and

0*(10; 11; 1 - 1) = 0(01; 1 - 1; 11). In chapter 4, we will show that after separating

out the final state interaction phases there are in fact only two real s and p wave
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interference fragmentation functions, which will be denoted by 4, and 64, respectively.

4i is chiral even because it is the coefficient in front of Q', which conserves the quark's

chirality. On the other hand, 64, is chiral odd because the operators Q' it relates to

flip the quark's chirality. It is its chiral-odd property that makes 64, useful in a new

proposal to probe nucleon's transversity distribution functions.

2.3 Helicity Amplitude Approach to Hard QCD

Processes

In the section, we shall discuss hard QCD processes (shown in Fig. 2-4) in the frame

of helicity density matrix formalism. First, we will review the approach proposed

by Gastmanns and Wu[39] in unpolarized processes. Then we will generalize their

approach to polarized processes.

C d

a b
Figure 2-4: A generic parton parton interaction process ab -- + cd at parton level.

2.3.1 Review of Gastmanns and Wu's approach

In their classical book The Ubiquitous photon: The Helicity Method for QED and

QCD[39], Gastmanns and Wu propose the helicity amplitude approach to calculate

the cross sections of high energy processes. Instead of following the standard proce-

dure, in which one adds up all the Feynman amplitudes and then square it and then

calculate the squared amplitudes using Dirac algebra, they propose that one first

calculates the helicity amplitudes which are closely related to Feynman amplitudes,

then adds their squared absolute values together to obtain the cross sections.
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This method has the advantage over the standard procedure. In the standard

procedure, since the Feynman amplitudes are squared before doing any calculations,

when the numbers of the vertices and Feynman diagrams increase, this procedure in

general becomes very lengthy and cumbersome. When a process is described by n

Feynman diagrams, it amounts to writing down n(n+1)/2 traces. For instance, in the

case of e+e- __4 e+e-y, there are 40 Feynman diagrams, and if Z-exchange mech-

anism involved, this number increases to 80. Clearly ones does not like to calculate

3240 traces, not to mention for each trace there are a lot of Dirac matrices involved.

However, in Gastmanns and Wu's helicity amplitude approach, the calculations are

performed at the level of amplitudes. Hardly are there any Dirac traces involved. In

the above example, it is described by 64 helicity amplitudes, of which one half can

be obtained from a parity conjugation on the other 32 amplitudes. Obviously, it feels

much better to just deal with 32 short expressions than 3240 long ones.

In the following, we shall have a review of their method. One can refer to their

book for more details[39].

Helicity states for fermions

In high energy process like what we will examine in the following chapters, the fermion

masses can be neglected. For massless fermion, helicity states are Lorentz invariant

notions, which can be defined as below,

1
V±(P) = -(1 i 75)± (P)2

1
v±(p) = (1-7)v()

1
+(P) = ii±+(P) (I -F 7Y5)

zit(p) = ()( i7),2.)
2

wh) t s (2.65)

where the subscripts on the spinors denote the helicities of the corresponding fermions.
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In the chiral representation of the Dirac matrix, one has

\ /k_ 0

u+(k) = v_(k) = ,/kei~k u_(k) = v+(k) = -Vek (2.66)
0 -v~k_ e-*

\0

for any light-like vector k,,, where

k = ko ± k, k_ = k, + ik, = . (2.67)

Helicity states for photons and gluons

It is critical to choose appropriate representation for photons and gluons' helicity

states, which leads to great simplifications in the calculations.

Consider the case of a photon with four-momentum k. A convenient choice of

the polarization vectors is

El = 2V 2N[(q -k)p - (p -k)q,] ,

C-L = 2V\Ncma qO p 3ak , (2.68)

where N is the normalization factor,

N = - [P- q)(p - k)(q - k)]- (2.69)

and e is the totally antisymmetric tensor in four dimensions with C0123 = +1. p

and q are two arbitrary vectors, which are taken to be light-like, i.e., p2 q2 = 0. The

factor 2-/2 is merely introduced for the sake of the simplicity in the later formulae.

The polarization vectors c' and E' are normalized as below,

(El)2 (I-)2 _1

(k - El) = (k -E-L) - (Ell -E) = 0 . (2.70)
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These polarization states can be alternatively combined into circularly polarized

states,
=1C* = - (2.71)

which can be rewritten as

= N [Ofi(1 t Y5 ) - fi9(l T- 75) -F 2(p -q)o5] , (2.72)

by using the identity

sYACAO-Y = (7707- - Yaggy + 7,39a7 - -Y7,g9a)Y5 . (2.73)

Since the masses of the fermions are neglected in our calculations, the last term in

Eq. (2.72) can be omitted because of the conservation of an axial current in QED.

Accordingly, the polarization vectors c± can be rewritten as

/ -N [$/i(1 i ±)-y) - f$O(1 F Y5)] . (2.74)

This is the basic formula for the photon polarization vectors in this approach.

The polarization vectors of the gluon in QCD can be treated in the similar way.

However, the last term in Eq. (2.72) cannot be dropped now. Instead, one can write

/ =-N [00(1 y 5 ) + 0(1 - 75) - 2(p -q)] . (2.75)

Now one can drop the last term due to the vector current conservation. Thus,

/ -N [Ofio(1 i ±y5) + &0 (1 - Y5)] - (2.76)

There are several reasons why the formulae in Eq. (2.74) and Eq. (2.76) simplify

the calculations in QED and QCD.

9 The choices of the light-like four-momentum p and q are arbitrary. Thus when

the photon or gluon line is next to an external fermion line, one can choose
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either p or q to be the fermion momentum. In that case, only one of the terms

contributes because of the Dirac equations.

Ou(q) = 0, i(p)f = 0. (2.77)

" In the case that the fermion helicities are fixed, either a factor 1 + _Y5 or 1 - -y

is associated with the fermion line. This will result in the survival of only one

term in Eq. (2.74) and Eq. (2.76).

" When the photon or gluon line is next to the external fermion line, there is a

cancelation of the denominator. For example,

i(p) =_ - N (p) +
2(p-k) 2(p-k)

= -Nii(p)0(f + 0) . (2.78)

" There is one more trick one can use in the calculations. This is to do with the

polarized projection operator.

(1±y 5 )u(p)i(p) (I1 75) = (l+iY5) (Zu(P)ii() (1 F
(pol

= 2(1 ± y5)f . (2.79)

In the next subsection, we are going to use an example to show how one can benefit

from this method. In particular, we shall focus on the polarized processes, which

Gastmanns and Wu did not discuss much in their book[39]. Readers can refer to

their book for plenty of examples for unpolarized processes.

2.3.2 Polarized processes

In Gastmanns and Wu's approach, they only concern about calculating the unpo-

larized cross-section, therefore they did not pay attention to phase of the helicity

amplitudes. However, as we will see the phases of the helicity amplitudes are very

67



important in calculating polarized cross sections. In this subsection, we will gener-

alize their approach to the polarized processes. We will use the process qg -+ q'g'

as an example to show how to deal with polarized processes using helicity amplitude

approach.

The process of interest is the polarized qg -- + q'g', which is very complicated

to calculate using common trace method. However, it is relatively easy if we use

the helicity amplitude method because most of the helicity amplitudes vanish due to

helicity conservation, and the rest are not independent due to parity and time reversal

conservation. Therefore it often happens that only a few elements are left, and they

are easy to be computed as functions of the kinematical variables.

There are three Feynman diagrams contributing to the process at the first order,

as shown in Fig. 2-5 The helicity amplitudes for the three diagrams are

kX k'X'
a b

PS P'S'

(1)

a

b

PS k'X ,

(2)

a kX k' b

PS P S

(3)

Figure 2-5: Feynman diagrams for the process qg -- + q'g'

Mi(As; A's') =

M2 (As; A's') =

M 3(As; A's')

.g 2

ts

-ig (TaT)ijji(p's')$*(k'A')(fi - 9')1(kA)u(ps)
fL

2
.fbac (Tc)ij(P's')-YpU(PS) [(k + k')Pc(kA) - *(k'A')

t
-2k -e*(k'A')eII(k A) -2k' -. 'e*(''],
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where

= (k + p) 2 =(k' + p') 2 = 2k -p = 2k'-p'

S= (p-p') 2 =(k - k') 2  -2p -p' = -2k -k'

t = (p - k') 2 =(p' - k) 2 =-2p - k' = -2p'. k, (2.81)

neglecting the masses of the partons. g, is the strong interaction coupling constant

with a, - g 2/47r = 0.117±0.005 at energy of Mz[41]. Ta(a = 1..8) is the infinitesimal

operators of SU(3) group, (TaT - TbTa)ij = ifabc(Tc)zj with subscripts i, j 1, 2, 3,

and fabc the structure constant[1]. A, s are the helicity labels for the incoming gluon

and quark, A', s' for the outgoing ones, respectively. u(ps) is Dirac spinor for a quark

with momentum p and helicity s and ii(ps) -- ut(ps)7y', which satisfies the Dirac

equations fiu(ps) = 0, i(ps)# = 0.

The gluon polarizations e,, can be chosen to be the following[39]

(ki) = N [Vf'O(1 75) + Of'f(1 -F 75)]

*(k't) = N [7'5'(1 ±') + 0''(1 - -Y5)] , (2.82)

where N = (2sit)-1/ 2 is the normalization factor.

In principle, we can add the above three parts together, square it, and then

calculate the traces of a very complicated expressions. It is already hard to do this

in unpolarized processes, even much harder in polarized processes. Therefore, we

shall first calculate the helicity amplitudes (into either a number or a very simple

expression which we can easily handle) using Gastmanns and Wu's approach[39].

The quark has two helicity state +1/2 or -1/2, the gluon also have only two

helicity states due to gauge invariance, +1 or -1. [ For simplicity, we will use only

+, - to represent the positive, negative helicity states for both quark and gluon. 1
Therefore, there are 2 x 2 x 2 x 2 = 16 helicity amplitudes.

However, these 16 helicity amplitudes are not independent of each other, some

of them actually vanish due to the constraints of QCD symmetries.
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Since the quark's chirality is same as its helicity and the strong interaction does

not change the quark's chirality, the quark's helicity conserves, i.e., s' = s. On

the other hand, the helicities conserve in the scattering, A + s = A' + s', thus the

helicities of the gluon also conserve, i.e. A' = A. Hence, only the helicity ampli-

tudes M(As; As) survive. Therefore, only four elements M(++; ++), M(--; -- ),

M(+-; +-), M(-+; -+) are left. Actually, these four elements are not indepen-

dent of each other. Under parity, + - -, hence M(++; ++) = M(--; -- ),

M(+-; +-)= M(-+; -+). Thus, only two helicity amplitudes M(++; ++) and

M(-+; -+) need to be computed. Substitute Eq. (2.82) into Eqs. (2.80), and use

the Dirac equations for the quarks, we can simplify the two independent non-zero

helicity amplitudes as follows

M(++; ++) =

M(-+; -+) -

2ig,2[ (TaTb)ii + fL(TbTa)i,] "(p'+)Ou(p+)
ift

2ig 2 [s(TaTb)ij + ii(TTa)ij] ft(p'+)9u(p+) .
is

We can simplify the above helicity amplitudes further to just some c-numbers in Dirac

space. However, now there are only a few Dirac matrices involved, which is very easy

to compute. Now we can square the above helicity amplitudes. For instance,

2
1 4g' ["2Tr(TTTTa) +b 2 Tr(TbTaTaT) + 2JfiTr(TaTTaTb)

8 x 3 t 2f 2

Tr0U(P+)fL(P+)0U(P'+)i(P'+) ,(2.84)

where 1/(8 x 3) is the color normalization factor of the color state of the initial gluon

and quark. Tr(TaTbTbTa) = 16/3, Tr(T TbTa T) = -2/3, thus,

2 g4

2 g2

2 g,4

= 4
g, 2

2 + 4f2 - s] Tr0u(p+)u(p+)0u(p'+)u(p'+)

42 +4& 2 - sf Tro (1+7")fi ( 1+ )'1)5)( 2 2 Y)

14s2 + 4f 2 _ ft

4

9 ',
(2.85)
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where we have use the fact s + fi + t = 0, and Eq. 2.79: u(p±)ii(p±) = (1 ± Y53)/2.

Likewise, IM(-+; -+)12 can be calculated as below

IM(-+; -+)2 = 2 g4 9 4 . (2.86)

Hence, we can get the unpolarized cross section which is proportional to I 2,

I12 = 1 IM(++; ++)12 + IM(--; _-)12 + IM(+-; +_)12 + IM(-+; -+)12

s2 + 2 41 6

= 4 2 ^ , (2.87)5 j 9 sfi

where the factor . comes from the average of the helicities of the initial quark and

gluon. This result is consistent with that in the textbooks [1, 39].

Now we are ready to discuss the polarized case. In chapter 5 of this thesis we are

going to discuss pp -- + (7rr)X to measure the nucleon's transversity, in which we are

going to consider the two pions only from quark fragmentation, thus the final gluon

state will be summed over. Therefore, in the following we are going to discuss the

helicity density matrix for qg -- + qg with the final gluon helicity states are summed

over. We define the helicity density matrix S as follows

S(AiA'; sis'; s'fsf) = (M*(A's'; +s' )M(Aisi; +sf) + M*(A's'; -s' )M(Aisi; -sf .88)

where the subscript i represents initial, f final, 1/24 is the initial state color average

factor.

Substitute Eq. (2.83) into Eq. (2.88) and perform the same calculations as in

calculating the unpolarized cross section, we get

S=1 41 4 1p2+f2 g0( 0q+U3 G3
2 9s ®I2 q)9 , (.9

+4 ft Ig & (a+ - a.- a.+)

+(p2 _ f,2) G 0 (jq 0 U- + U3 I q) , (2.89)
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where Iq, - , o are Pauli matrices in the quark helicity space, whereas Ig is unit

matrix in gluon helicity space and G = diag(1, 0, -1).

The differential cross section can be obtained as follows

d&(qg -+ qg)

di

1
- S

167r 2

2s2 2 9 sf
+4sIg (or+ &a +u a-0 )

+(2 _ 2 )G (Iq o-03 + - 0 Iq)]

from which one can easily get the the cross sections he wants.

unpolarized cross section dir/d can be obtained as below

11 T
= -- T

32

7ra2
s2

r d&(qg -- qg) (19
dt

2 + 2  4+2 \

j2 9 sufL

For example, the

0 Iq & Iq)]

(2.91)

One can also easily get the longitudinally polarized cross section dA/dt

dA&
dt

11 
2Tr

2 2

7ra2
s2

d&(qg qg)

s2 _ f,2

( 2

o- 0 Iq)]

4 2 _ 2

9 s t
(2.92)

2.4 Cross Sections

Now put all the ingredients together one can get the cross section density matrix in

Fig. 2-1, all as density matrices in helicity basis:

Edo- 1 H1 H'dxd zdQJ. H' H

hhI d-(ab Ced) 1
-17WIH I dQ h'h

where x is the longitudinal momentum fraction of the hadron carried by the parton, z

the longitudinal momentum fraction of the parton carried by the hadron produced in
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H1E)(z) ,
h'hl (2.93)
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the fragmentation process, Q represents the kinematical variables in the underlying

process ab -- + cd.

Any physical cross sections can be obtained by taking trace of the cross section

density matrix with parton and hadron helicity density matrices. For example, if one

wants to calculate the cross section for single particle semi-inclusive in the unpolarized

DIS process, one can have,

do-(eN -* e'H X) 1T du1daeN -+e'X)= I-Tr da (Ie & IN) (2.94
dxdzdQ 4 rdxdzdQ

where the factor 1/4 comes from the helicity average of the initial states, Ie, IN are

the unit matrix in the electron and nucleon helicity space, respectively.

The Eq. (2.93) is our basic formula in the helicity density matrix formalism,

which will be used repeatly in the following chapters.

To summarize this chapter, we present the helicity density matrix formalism in

the polarized processes. We first discuss parton distribution functions in hadron. We

show the distribution functions can be related to the independent non-zero helicity

density matrix elements. In order to discuss the helicity operator's symmetry prop-

erties, we use the spherical irreducible tensor operator. Then, we go on to discuss

the parton fragmentation functions. We show it is more complicated because of the

possible time reversal violation due to final state interaction (FSI). Finally, we discuss

how to compute the helicity density matrix in hard QCD. In particular, we show that

the usage of Gastmanns and Wu's helicity amplitude approach dramatically reduce

the complication of the calculations.

In the following chapters, we shall show how to use the helicity density matrix

formalism. In particular, we shall use it to discuss the s and p wave interference be-

tween two pion productions in deep inelastic scattering and high energy pp scattering.

We shall show how this mechanism can be used to probe nucleon's transversity, one

of the three important distribution functions inside the nucleon at leading twist level.
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Chapter 3

Nucleon's Transversity

Distribution

In this chapter, we shall briefly review the quark transversity distributions inside

the nucleon. (A very good summary about transversity can be found in Ref. [42],

from which much of this section is taken.) First, the definition of the transversity

and its interesting and important properties are reviewed. Then we go on to discuss

the existing proposals to measure the quark transversity, especially focusing on their

advantages and disadvantages. This chapter is justified because we will propose new

ways to probe the nucleon's transversity in the following chapters using the helicity

density matrix formalism which was discussed in chapter 2.

3.1 Transversity

3.1.1 What is transversity

Accurate measurements of quark unpolarized distribution function q(x, Q2) and longi-

tudinally polarized distribution function Aq(x, Q2) have shed considerable light upon

the quark-gluon substructure of the nucleon. The unpolarized quark distribution

q(x, Q2 ), which characterizes the quark momentum distribution in the nucleon, has

been well studied theoretically and experimentally for a long time[1]. The integral of
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q(x, Q2) over x from 0 to 1 at asymptotic limit (Q2 -+ oc) leads to a momentum sum

rule[34], in which the quarks carry approximately 1/2 of the nucleon's momentum.

The longitudinally polarized quark distribution Aq(x, Q2) has just been accurately

measured recently. The results shocked spin physicist community by discovering that

the quarks' spin only contribute to about one-third of the nucleon's spin[43], which

generated a lot of interests among nucleon spin theorists and experimentalists. For

example, one of the theoretical progresses found that similar to the momentum sum

rule, the quarks' contributions (including spin and orbital angular momentum) to the

nucleon's spin is about half in the asymptotic limit[31].

The quark transversity distribution 6q 1 is one of the three quark distribution

functions characterizing the quarks inside the nucleon at leading twist level (twist-

two). It measures the probability difference to find a quark polarized along versus

opposite to the polarization of a nucleon polarized transversely to its (infinite) mo-

mentum, It was first found by Ralston and Soper in their study of polarized Drell-Yan

process[44]. But its place along with q and Aq in the complete description of the nu-

cleon spin was not realized until after measurements of Aq had spurred interest in

QCD spin physics[10, 45, 46].

Quark distribution functions can be regarded as particular discontinuities in

forward quark-nucleon scattering[6]. The scattering amplitude and the discontinuity

that defines a distribution function are shown in Fig. 2-2 2. The quark (h, h') and

hadron (H, H') helicities take on the values ±1/2. Helicity conservation requires H+

h' = H'+ h. Parity sends h -+ -h, etc., and time-reversal interchanges initial (H, h')

and final (H', h) helicities. This leaves exactly three independent quark distribution

'Although the name transversity is fairly universal, the notation is not. In addition to 6q, the

notations ATq and h, are also commonly used in the literatures.
2Transverse momenta enter only at higher twist. Therefore, the whole process is collinear, so the

angular momentum along the P-axis(i.e., helicity), is conserved.
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functions corresponding to the helicity labels as discussed in chapter 2,

H h' -- H' h

1 1 1 1
2 2 2 2 (3.1)
2 2 2 21 1 1 1

1 1 1 1

These three helicity amplitudes can be regrouped into combinations that measure spin

average (q), helicity difference (Aq), and helicity flip transversity (6q) distribution,

2 2 2 2 2 2 2 2

6q ~F__ , (3.2)

where F means the helicity amplitude. Together, q, Aq, and 6q provide a complete

description of quark momentum and spin at leading twist[6]. This can be seen from

a spin-density matrix representation of the leading twist quark distribution functions

1 21 1
F(x, Q2) q(xQ 2) II+-LAq(x, Q2) U3 03 + -6q(x, Q 2) (or+ a- + o-_ o+)2 2 2

(3.3)

where the Pauli matrices lie in the quark and nucleon helicity spaces respectively.

3.1.2 The properties of the transversity

There are reasons behind why the transversity escapes the spin physicists' attentions

for such a long period of time. In this section, we shall discuss the properties of the

transversity, with emphasis on the differences between the transversity and the other

two distributions.
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Odd chirality

There are fundamental differences between 6q and the other two distributions q, Aq

when we look at their chirality properties. It is illustrated in the Eq. (3.2) that the

transversity is associated with the helicity flipping amplitudes while the other two

conserve the quark's helicity. On the other hand, helicity and chirality are identical

for "good" light-cone components of the Dirac field (they are opposite for the "bad"

components)[6]. Therefore, the transversity 6q flips the chirality of the quark. It is

this property that makes the transversity very difficult to be measured experimentally

since all perturbative QCD process and all interactions with external electroweak

currents conserve chirality (up to corrections of order m/Q). 6q decouples from all

hard processes that involve only one quark distribution function at leading twist (twist

2), such as deep inelastic scattering process ep - e'X. Instead, in order to probe

the transversity, one has to have two soft (chiral-odd) QCD parts involved in the

process. So far, the chiral-odd soft QCD functions(up to twist-three) available are

1) twist-two: 6q(x, Q2) and 6q(z, Q2); 2) twist-three: e(x, Q2), (z, Q2), hL (X, Q2),

hL(z, Q2) . See the introduction in the chapter 1 in this thesis, or Refs. [6, 10, 11, 12]

Significance

For non-relativistic quarks, where boosts and rotations commute3 , Aqa(x, Q2)

Sqa(x, Q2) , gA/gv = 5/3 and AE = 1 . However, we have learned from gA/gv ~ 1.26

and Aq ~ 0.2[47] that the quarks inside the nucleon cannot be non-relativistic. There-

fore, the difference between the nucleon's helicity difference and transversity distri-

butions provides a further and more detailed measure of the relativistic nature of the

quarks inside the nucleon.

3 a transversely polarized nucleon with momentum P first can be boosted to its rest frame, then

its transverse polarization can be rotated to be along its original momentum direction, finally it

can boosted back to original momentum. Now a transversely polarized nucleon with momentum

becomes longitudinally polarized.
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Evolution

6q(x, Q2) does not mix with gluons under evolution. All its anomalous dimensions

are positive. Thus it evolves very simply with Q2 - it goes slowly and inexorably to

zero. The anomalous dimensions for 6q were first calculated by Artru and Mekhfi[45]

in leading order. NLO anomalous dimensions have now been calculated by three

groups[48].

Inequalities

The transversity obeys some important inequalities. The first, 16qa(x, Q2)1 < qa(x, Q2),

follows from its interpretation as a difference of probabilities. The second is the so-

called Soffer's inequality which comes from the positivity properties of helicity am-

plitudes, 126qa(x, Q2)| < qa(x, Q2) + Aqa(x, Q2)[49]. Saturation of Soffer's inequality

along with simple model calculations would suggest 16qaI > I Aqa.

Tensor charge and its evolution

The first moment of 6q measures a simple local operator analogous to the axial charge,

] dx qa(x, Q2) = dx (6qa(x, Q2) - 6qa(x, Q2)) - 6qa(Q 2)

~ (PSjqaO-"y5qajQ2|PS) (3.4)

known as the "tensor charge". ' Unlike its vector and axial equivalents, the tensor

charge is not conserved in QCD, so it has an anomalous dimension at one-loop. The

leading-log evolution of the tensor charge is[50]

4

2)= [a(p2)/a(p )] 3 ' 3a(i) , (3.5)

4The first moment of Aq, known as axial charge, measures (PSlqay 5 qaQ2 PS). In non-

relativistic limit, the tensor charge is equal to axial charge because for a non-relativistic quark, which

has only upper components, ( = @, both charges measure same quantity (PSjqZyy5qajQ2 IPS).

Therefore the differences between tensor charge and axial charge also provide a measure of the

relativistic nature of the quarks inside the nucleon.
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where nf is the quark flavor number, a(p) = g2 (p)/4ir with gs(u) the strong interac-

tion coupling at energy p .

Initial efforts have been made to calculate the tensor charge on the lattice[51].

Although the lattice is small (16' x 20) and the coupling is relatively strong (0 = 5.7),

the results are intriguing[51]. Also, there have been a lot of model discussions about

tensor charge in the literatures[50].

3.2 Proposals to Measure Transversity

In this section, we shall discuss the existing proposals to measure the transversity,

with emphasis on their advantages and disadvantages. The processes to be discussed

here are transversely polarized Drell-Yan process[44], A production in deep inelastic

scattering process(DIS) [45, 38], ATT/ALL in polarized jet production in PP scattering

[52, 53], twist-three single pion production in DIS [11], azimuthal asymmetry in single

particle semi-inclusive DIS[54].

As mentioned before, one has to measure the product of the transversity and

another chiral-odd soft QCD quantity in order to probe the transversity. A generic

(and complicated) example is shown in Fig. [2-1]. The lower soft vertex might be

the transversity distribution of the target. The compensating chirality flip can be

provided by a distribution or fragmentation at the upper vertex. The available chiral-

odd (i.e. chirality flip) quantities up to twist three are listed in section 3.1.2. With

these building blocks, it is possible to construct the proposals to measure 6q.

3.2.1 Transversely Polarized Drell-Yan in PP Collisions

As a matter of fact, the transversity first caught physicists' attentions when J. Ral-

ston and D. E. Soper discussed the transversely polarized Drell-Yan process in PP

collisions decades ago[44]. The process of interest is P1 P± -+ lIX . This process

measure the combination of 6q(x1) 0 6g(X2), where q(x) is the antiquark transversity

distribution. The advantages of this approach are

79



" Drell-Yan is well understood through next to leading order in perturbative

QCD[55].

* The RHIC Collider in its polarized mode will provide the beams.

However, there are several disadvantages which make it hard to probe the transversity.

" 6q is presumably small in the nucleon.

" Drell-Yan rates are generically low compared to purely hadronic processes at

colliders.

3.2.2 A Production in DIS

This method was first examined by Artru and Mekhfi[45], and then discussed more

thoroughly by Jaffe[38]. The process of interest is ePl' -+ e'AX, where the nucleon

beam is transversely polarized but electron beam unpolarized. This process enables

us to measure the product of 6q(x) 0 Jq(z). The advantages of this process are

e Polarized u-quarks exists at large x in N and small x in A, s-quarks also at

small-x in N and large-x in A .

The disadvantages are

" A may be rare in current fragmentation region.

" Quark--+ A fragmentation spin transfer is unknown at present.

3.2.3 Twist-three Single Pion Production in DIS

This process is proposed by Jaffe and Ji[11]. The process of interest is e'j5 - e'7rX,

single pion production when unpolarized electron hit a transversely polarized nucleon.

This process measure the transversity through the product of 6q(x) & d(z) E gT(x) 0

d(z), where gT(x) = g1 (x) + g2 (x) and 4(z) is unpolarized fragmentation function.

The advantages for this process are

e Pions are abundant in the fragmentation region of DIS.
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9 Accessible to HERMES or COMPASS with a transversely polarized target.

The disadvantages are

" The process is twist-three, suppressed by O(1/Q).

" The competing (twist-three) chiral-even mechanism, gT(x) 0 q(z), must be sub-

tracted away to expose the process of interest.

3.2.4 ATT/ALL in Polarized Jet Production

This method has been examined by several people[52, 53, 56]. The process of interest

is P1 P± -± jet(s)X, in which both proton beams are transversely polarized. This

process measures the quantity

6q(x1) 0 6q(x 2)

AG(xi) 0 AG(x 2 ) () AG(x1 ) 0 Aq(x 2 ) + -

where G(x) is the unpolarized gluon distribution, - indicates other possible terms.

The advantages for this process are

" Jets are abundant in the final state at colliders.

* Accessible to RHIC in the polarized collider mode.

But the disadvantages are

* The production of jets in collisions of transversely polarized protons is sup-

pressed for a variety of reasons. Most important is the fact that there is no

analog of transversity for gluons. Furthermore the quark-quark contribution is

suppressed by a color exchange factor[52].

3.2.5 Azimuthal Asymmetry in Semi-inclusive Single Parti-

cle Production in polarized DIS

Collins and his collaborators proposed to look for an asymmetry associated with a

plane defined in the current fragmentation region in DIS[54]. They suggested to
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measure the following azimuthal distribution

Cos p X -S (3.6)

which is sensitive to the transversity of the struck quark. Here q'is the virtual photon

momentum, which defines the fragmentation axis; f' is the momentum of the leading

meson; S1 is the polarization vector of the nucleon target. # is the so-called "Collins

angle".

This process measure the combination of cos # x 6q(x) 0 64(z) , which requires

there be significant phases generated by final state interactions (FSI) in the fragmen-

tation process because otherwise application of "naive time-reversal" symmetry[57],

(#, q, s+ - (j q, s) would forbid a Collins angle asymmetry(< cos q >= 0). The

advantages for this process are:

" The effect is twist-two.

" Every DIS event has a current fragmentation region.

" Accessible to HERMES or COMPASS running with a transversely polarized

target.

But there are also some disadvantages:

* Requires a FSI phase that does not average to zero summed over unobserved

hadrons, X.

3.3 Summary

The transversity distribution provides a further and more detailed measure of the

relativistic nature of the quarks inside the nucleon. However, it is hard to measure

it experimentally due to its odd chirality, which makes it decouple from the ordi-

nary DIS at leading twist. The difficulties of the existing processes so far to probe

the transversity propel people to continue to pursue new feasible ways. In the fol-

lowing several chapters, we shall describe a brand-new way to access the nucleon's
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transversity in semi-inclusive DIS or PP collisions. The basic idea is to consider the

interference between s and p waves of the two meson productions in polarized DIS or

PP collisions. The mechanism can also be used to probe valence quark distributions

in DIS.
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Chapter 4

Interference Fragmentation

Functions and the Nucleon's

Transversity

As discussed in chapter 3, the transversity distribution measures the correlation of

quarks with opposite chirality in the nucleon. Since hard scattering processes in QCD

preserve chirality at leading twist, transversity is difficult to measure experimentally.

For example, it is suppressed like O(mq/Q) in totally-inclusive deep inelastic scatter-

ing (DIS). Ways have been suggested to measure the transversity distribution. These

include transversely polarized Drell-Yan [44], twist-three pion production in DIS [10],

the so-called "Collins effect" [54], and polarized A production in DIS [45, 6]. However,

each of these has drawbacks, as discussed in chapter 3. For example, the Drell-Yan

cross section is small and requires both transversely polarized quarks and antiquarks

in the nucleon; twist-three pion production is suppressed by O(1/Q), and a gdf term

must be subtracted to reveal the transversity dependence; the Collins effect requires

a residual final state interaction phase in an inclusive process which we believe to be

unlikely (see below); the polarized A production suffers from a likely low production

rate for hyperons in the current fragmentation region and an as yet unknown and

possibly small polarization transfer from u-quarks to the A.

In this chapter we describe another way to isolate the quark transversity distri-
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bution in the nucleon that is free from many of these shortcomings. The process of

interest is two-meson (e.g. 7r+7r- or KK) production in the current fragmentation

region in deep inelastic scattering on a transversely polarized nucleon. Our analy-

sis focuses on the interference between the s- and p-wave of the two-meson system

around the p (for pions) or the # (for kaons). Such an interference effect allows the

quark's polarization information to be carried through k+ x k_ -S, where k+, k-, and

S1 are the three-momenta of 7+ (K), 7- (K), and the nucleon's transverse spin, re-

spectively. This effect is at the leading twist level, and the production rates for pions

and kaons are large in the current fragmentation region. However, it would vanish

by T-invariance in the absence of final state interactions( k+ -+ -k+, k- - -k-7

S 1 -> -S_) or by C-invariance(7r+ +4 7r-) if the two-meson state were an eigenstate

of C-parity. Both suppressions are evaded in the p (7r+7r-) and # (KK) mass regions.

The final state interactions of irir and KK are known in terms of meson-meson

phase shifts. From these phase shifts we know that s- and p-wave production channels

interfere strongly in the mass region around the p and # meson resonances. Since the

s- and p-waves have opposite C-parity, the interference provides exactly the charge

conjugation mixing necessary. Combining perturbative QCD, final state interaction

theory, and data on the meson-meson phase shifts, we can relate this asymmetry

to known quantities, the transversity distribution we seek, and to a new type of

fragmentation function that describes the s- and p-wave interference in the process

q - 7r+7r-(KK). Unless this fragmentation is anomalously small, the measurement

of this asymmetry may be the most promising way to measure the quark transversity

distribution.

Earlier works[54] have explored angular correlations of the form k1 x k 2 .- , where

k1 and k2 are vectors characterizing the final state in DIS. The simplest example would

be k1 = q'and k1 = k,, the momentum of a pion. These asymmetries, however, require

that the final state interaction phase between the observed hadron(s) and the rest

of the hadronic final state must not vanish when the unobserved states are summed

over. We believe this to be unlikely. We utilize a final state phase generated by

the two-meson final state interaction, which is well understood theoretically and well
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measured experimentally.

The results of our analysis are summarized by Eq. (4.14) where we present the

asymmetry for wr+7r-(KK) production in the current fragmentation region. Current

data on 7rr and KK phase shifts are used to estimate the magnitude of the effect as

a function of the two-meson invariant mass (see Fig. 4-2).

The advantages of this method are: the effect is leading twist, hence there is no

1/Q suppresion; the meson pairs are copiously produced in the quark fragmentation;

the final state interaction phase can be measured in meson-meson scattering; the

final state interaction phase remains fixed even after the summation on the X states

is performed; it can be done at HERMES and COMPASS. The disadvantage is that

the cross section must be held differential to avoid the possible phase averaging to

zero.

We consider the semi-inclusive deep inelastic scattering process with two-pion

final states being detected: eN -+ e'7r+7r-X. The analysis to follow applies as well to

KK production. The nucleon target is transversely polarized with polarization vector

S,. The electron beam is unpolarized. The four-momenta of the initial and final elec-

tron are denoted by k = (E, k) and k' = (E', '), and the nucleon's momentum is P,.

The momentum of the virtual photon is q = k - k', and Q2  _ = -4EE'sin2 0/2,

where 0 is the electron scattering angle. The electron mass will be neglected through-

out. We adopt the standard variables in DIS, x = Q2/2P - q and y = P - q/P - k.

The u[(7rr)[--0] and p[(7r7r)i] resonances are produced in the current fragmentation

region with momentum Ph and momentum fraction z = Ph - q/q 2 . We recognize that

the 7rir s-wave is not resonant in the vicinity of the p and our analysis does not depend

on a resonance approximation. For simplicity we refer to the non-resonant s-wave as

the "-"

The invariant squared mass of the two-pion system is m 2 = (k+ + k-_) 2 , with

k+ and k_ the momentum of 7r+ and 7r-, respectively. The decay polar angle in the

rest frame of the two-meson system is denoted by E, and the azimuthal angle q is

defined as the angle of the normal of two-pion plane with respect to the polarization

vector S1 of the nucleon, cos = x k -- S/ k+ x k_ -1 . This is the analog of
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the "Collins angle" defined by the 7r+7- system[54].

To simplify our analysis we make a collinear approximation, i.e., 0 ~ 0, in

referring the fragmentation coordinate system to the axis defined by the incident

electron (the complete analysis will be published elsewhere[58]). At SLAC, HERMES,

and COMPASS energies, a typical value for 0 is less than 0.1. Complexities in the

analysis of fragmentation turn out to be proportional to sin2 0 and can be ignored at

fixed target facilities of interest. In this approximation the production of two pions

can be viewed as a collinear process with the electron beam defining the common 83

axis. Also we take S1 along the 21 axis.

Since we are only interested in a result at the leading twist, we follow the helicity

density matrix formalism developed in Refs. [37, 6], in which all spin dependence is

summarized in a double helicity density matrix. We factor the process at hand into

basic ingredients: the N -+ q distribution function, the hard partonic eq -+ e'q' cross

section, the q -+ (-, p) fragmentation, and the decay (-, p) -+ 7r7, all as density

matrices in helicity basis:

dx dy dz dm2 d cos E do$- H'H

h~ 2or - h2h' 2M - 1 ' 42%

d1 1 HH d27 ] 1)

where hi(h') and H(H') are indices labeling the helicity states of quark and nucleon,

and H 1 (H') labeling the helicity state of resonance the (-, p). See Fig. 4-1. In

order to incorporate the final state interaction, we have separated the q -+ 7+7r-

fragmentation process into two steps. First, the quark fragments into the resonance

(-, p) , then the resonance decays into two pions, as shown at the top part of the

Fig. 4-1.

We first discuss two-meson fragmentation, first examined in the second paper of

Ref. [54]. Here we introduce only those pieces necessary to describe s-p interference

in 7+7r-(KK) production. A full account of these fragmentation functions will be

given in Ref. [58]. A two-meson fragmentation function can be defined by a natural

87



generalization of the single particle case. Using the light-cone formalism of Collins

and Soper [59], the following replacement suffices,

lhX)out Out(hXI -+ 17r+7r-X)out out(7r+7r-XI. (4.2)

The resulting two meson fragmentation function depends on the momentum fraction

of each pion, z1 , z2 , the ir7r invariant mass, m, and the angles a and q$. The subscript

"out" places outgoing wave boundary conditions on the r7rX state. Two types of

final state interactions can generate a non-trivial phase: i) those between the two

pions, and ii) those between the pions and the hadronic state X. We ignore the

latter because we expect the phase to average to zero when the sum on X is per-

formed - l7+7r-X)out a (7+7r-)outX). Furthermore, if the two-pion system is well

approximated by a single resonance, then the resonance phase cancels in the product

(7F+7r-)outX) ((7r+7-)outXj. This leaves only the interference between two partial

waves as a potential source of an asymmetry. The final state phase of the two-pion

system is determined by the ir7r T-matrix [60]. We separate out the phase for later

consideration and analyze the (real) p-c- interference fragmentation function as if the

two particles were stable.

The s-p interference fragmentation function describes the emission of a p(-) with

helicity H1 from a quark of helicity h2 , followed by absorption of U(p), with helicity

H' forming a quark of helicity h'. Conservation of angular momentum along the 63

axis requires

H, + h' = H' + h2 . (4.3)

Parity and time reversal restrict the number of independent components of A:

psP(PS) =~pSP(PS) (aiy 44
H' H1 ,h2 h -H s-H 1,-h 2 -h'(

A/tH'H 1 ,h2 h'2 H1H',h'h2 (T - reversal) . (4.5)

Note that Eq. (4.5) holds only after the T-reversal violating final state interaction

between two pions is separated out. After these symmetry restrictions, only two
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independent components remain,

= ++ = ,-= A cs __ c< q, (4.6)

=1+ 10- = =~O_1_ fi0si+_ OC 6Q , (4.7)

and they can be identified with two novel interference fragmentation functions, ,,

64,, where the subscript I stands for interference. Here, to preserve clarity, the flavor,

Q2, and z have been suppressed. The helicity ± states of quarks are denoted +,

respectively. Hermiticity and time reversal invariance guarantee 4, and 64, are real.

From Eq. (4.7) it is clear that the interference fragmentation function, 64, is

associated with quark helicity flip and is therefore chiral-odd. It is this feature that

enables us to access the chiral-odd quark transversity distribution in DIS.

Encoding this information into a double density matrix notation, we define

d2 Mp
d dn -= Ao(m 2) {I 0 O 4 (z) + (+ 0 _ + a- 0 i+) 6q (z)} A*(m 2)

dz dM21

+A 1 (iM
2 ) {I rIo 4, (z) + (07- & q+ + a+ 0 ri-) 64, (z)} A*(n 2) (4.8)

where o± (i ± iU 2 )/2 with {a} the usual Pauli matrices. The 77's are 4 x 4 matrices

in (o-, p) helicity space with nonzero elements only in the first column, and the 4i's are

the transpose matrices ( =0 1 ,+ = r+T), with the first rows (0,0,1,0),

(0, 0, 0, 1), and (0, 1, 0, 0) for 4o, i+, and i/, respectively. The explicit definition of

the fragmentation functions will be given in Ref. [58].

The final state interactions between the two pions are included explicitly in

Ao(m 2 ) = -i sin 6oec" , A,(m 2 ) = -i sin 61e' , (4.9)

where 60 and 6 1 are the strong interaction irw phase shifts. Here we have suppressed

the M 2 dependence of the phase shifts for simplicity. The decay process, (a, p) -+ 7r7r,

can be easily calculated and encoded into the helicity matrix formalism. The result
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for the interference part is

d2D _ v6 _ sin E [ie-io (n- - i_) + ie4' (q+ - - V cot E ( o + 17)]
dcos~do 87r 2M

(4.10)

Here we have adopted the customary conventions for the p polarization vectors, 4E =

T(i ± i82)/v'2 and 60 = 3 in its rest frame with e's the unit vectors.

In the double density matrix notation, the quark distribution function F can be

expressed as [6]

F = q(x) I& I+ I Aq(x) 93 0 U3 + 13q(x) (-+ 0 o-- + a- a-+) , (4.11)
2 2 2

where the first matrix in the direct product is in the nucleon helicity space and the

second in the quark helicity space. Here q, Aq, and 6q are the spin average, helicity

difference, and transversity distribution functions, respectively, and their dependence

on Q2 has been suppressed.

The hard partonic process of interest here is essentially the forward virtual Comp-

ton scattering as shown in the middle of Fig. 4-1. For an unpolarized electron beam,

the resulting cross section is [6]

d2 .(eq - eq') _ e eq =++ (3 -y

dxdy 8 rQQ2 2y

+2(1 -y) , (4.12)
y

in the collinear approximation. Here eq is the charge fraction carried by a quark. We

have integrated out the azimuthal angle of the scattering plane.

Combining all the ingredients together, and integrating over 0 to eliminate the

q1 dependence, we obtain the transversity dependent part of the cross section for the

production of two pions (kaons) in the current fragmentation region for unpolarized
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electrons incident on a transversely polarized nucleon as follows

d a _ 7r e4 y

dx dy dz dm 2 d# 2 327r3 Q2m y

x sin 6o sin J 1 sin (6o - 61) Eeaqa(x) 64'(z) . (4.13)
a

Here the sum over a covers all quark and antiquark flavors.

An asymmetry is obtained by dividing out the polarization independent cross

section,

_doi - du _ r v x(1 -y)
A17 = du= -v46 (-) cos # sin 60 sin 61 sin (6o - 61)

dL + dar 41+(1 -y)2

Ea e 2 qa(x) 64a(z)
x , (4.14)

e~qa(x) sin 2 6o (z) + sin 2 61a(z)

where 4o and 41 are spin-average fragmentation functions for the a and p resonances,

respectively. This asymmetry can be measured either by flipping the target transverse

spin or by binning events according to the sign of the crucial azimuthal angle #. Note

that this asymmetry only requires a transversely polarized nucleon target, but not a

polarized electron beam.

The flavor content of the asymmetry AIT can be revealed by using isospin sym-

metry and charge conjugation restrictions. For 7r+7r production, isospin symmetry

gives 6i, = -6d, and 6,= 0. Charge conjugation implies Id = -f7. Thus there is

only one independent interference fragmentation function for irwr production, and it

may be factored out of the asymmetry, Ea e26qa6q = [4/9(6u-&i) -1/9(6d-6d)]6fz,.

For the KK system, the isospin symmetry requires R, = 6d, and 69, # 0, implying

Za el6qa6d = [4/9(6u - a)+±1/9(6d - 6d)]6t + 1/9(6s -6s)4s. Similar application

of isospin symmetry and charge conjugation to the p and - fragmentation functions

that appear in the denominator of Eq. (4.14) leads to a reduction in the number of

independent functions: £t = di = Ui = di and si = ^ for i = {0, 1}. We also note

that application of the Schwartz inequality puts an upper bound on the interference

fragmentation function, 6q2 < 44041/3 for each flavor.
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Finally, a few comments can be made about our results. First, the final state

phase generated by the s-p interference is crucial to this analysis. If the data are not

kept differential in enough kinematic variables, the effect will almost certainly average

to zero. We are particularly concerned about the two-meson invariant mass, m, where

we can see explicitly that the interference averages to zero over the p as shown in

Fig. 4-2. Second, the transversity distribution is multiplied by the fragmentation

function 64,. Note that the transversity distribution always appears in a product

of two soft QCD functions due to its chiral-odd nature. In order to disentangle the

transversity distribution from the asymmetry, one may invoke the process e+e- -

(7+7r-X)(7r+7r-X) to measure 64, or use QCD inspired models to estimate it [58].

To summarize, we have introduced twist-two interference quark fragmentation

functions in helicity density matrix formalism and shown how the nucleon's transver-

sity distribution can be probed through the final state interaction between two mesons

(77r- or KK) produced in the current fragmentation region in deep inelastic scatter-

ing on a transversely polarized nucleon. The technique developed in this chapter can

also be applied to other processes. Straightforward applications include the longitu-

dinally polarized nucleon, and e+e- 4 (±r+7r-X)(7r+7r-X). A somewhat more com-

plicated extension can be made to two-meson production in single polarized nucleon-

nucleon collisions -- p -+ 7r+7r-X, etc. These applications will be presented in the

following chapters.
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H w

Figure 4-1: Hard scattering diagram for 7r+7r-(KR) production in the current frag-
mentation region of electron scattering from a target nucleon. In perturbative QCD
the diagram (from bottom to top) factors into the products of distribution function,
hard scattering, fragmentation function, and final state interaction. Helicity density
matrix labels are shown explicitly.
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Figure 4-2: The factor, sin 60 sin 6 sin(6o - 61), as a function of the invariant mass m
of two-pion system. The data on wirr phase shifts are taken from Ref. [61].

93

h2 h'2

h1 hi



Chapter 5

Probing the Nucleon's Transversity

Via Two-Meson Production in

Polarized Nucleon-Nucleon

Collisions

In chapter 4, we have studied the semi-inclusive production of two mesons (e.g. r+7r~,

7rK, or KK) in the current fragmentation region in DIS on a transversely polarized

nucleon. We have shown that the interference effect between the s- and p-wave of

the two-meson system around the p (for pions), K* (for rK), or <$ (for kaons) provides

a single spin asymmetry which may be sensitive to the quark transversity distribution

in the nucleon. Such interference allows the quark's polarization information to be

carried through the quantity k+ x k- - S1 , where k+, k-, and S_ are the three-

momenta of -F+ (K), -r- (K), and the nucleon's transverse spin, respectively. This

effect appears at the leading twist level, and the production rates for pions and kaons

are large in DIS. However, it would vanish by T-invariance in the absence of final

state interactions, or by C-invariance if the two-meson state were an eigenstate of

C-parity. Hence there is no effect in the regions of the two-meson mass dominated

by a single resonance. However, both suppressions are evaded in the p (wr+7r-), K*
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(7rK), and # (KK) mass regions where both s- and p-wave production channels are

active.

In this chapter, we extend our study to discuss the possibility of probing the

quark transversity distribution in the nucleon via two-meson semi-inclusive produc-

tion in transversely polarized nucleon-nucleon collisions. Various processes in trans-

versely polarized nucleon-nucleon collisions have been suggested to measure the nu-

cleon's transversity distribution since it was first introduced about two decades ago[44],

among which are transversely polarized Drell-Yan [44] and two-jet production[52, 53].

However, the Drell-Yan cross section is small and requires an antiquark transversity

distribution, which is likely to be quite small. The asymmetry obtained in two-jet

production is rather small due to the lack of a gluon contribution[52, 53]. On the

other hand, in the process described here, the gluon-quark scattering dominates and

only one beam need be transversely polarized. Unless the novel interference frag-

mentation function is anomalously small, this will provide a feasible way to probe

the nucleon's transversity distribution. The results of our analysis are summarized

by Eq. (4.14) where we present the asymmetry for 7r+-r-(7rK, KK) production in

transversely polarized nucleon-nucleon collisions.

We consider the semi-inclusive nucleon-nucleon collision process with two-pion

final states being detected: NN± -+ -r+7r-X. (The analysis to follow applies as

well to 7rK or KK production.) One of the nucleon beams is transversely polarized

with polarization vector S,, and momentum P,^. The other is unpolarized, with

momentum denoted by P,'. The experimentally observable invariant variables are

defined as s (PA + PB) 2 , t (Ph - PA) 2 , u. (P - PB)2 , and the invariants

for the underlying partonic processes are (P. + P) 2 , (p - p) 2 ,

(Pc - Pb) 2 , where Ph is the total momentum of the two-pion system, Pa, Pb, Pc, Pd

are the momenta for the underlying partonic scattering processes (see Fig. 4-1). The

longitudinal momentum fractions Xa, Xb and z are given by Pa = XaPA, P = XbPB and

Ph= zpc. The o-[(7r7r)/_ 0] and p[(irr) ] resonances are produced with momentum

Ph. We recognize that the 7r s-wave is not resonant in the vicinity of the p and our

analysis does not depend on a resonance approximation. For simplicity we refer to
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the non-resonant s-wave as the "a".

The invariant squared mass of the two-pion system is m 2 = (k+ + k_) 2, with

k+ and k_ the momentum of 7r+ and 7r-, respectively. The decay polar angle in the

rest frame of the two-meson system is denoted by 0, and the azimuthal angle # is

defined as the angle of the normal of two-pion plane with respect to the polarization

vector S1 of the nucleon, cos =+ x k_ - S/k+ x k_ IS-1. This is the analog of

the "Collins angle" defined by the r+7r system [54].

Since we are only interested in a result at the leading twist, we follow the helicity

density matrix formalism developed in Refs. [37, 6], in which all spin dependence is

summarized in a double helicity density matrix. We factor the process at hand into

basic ingredients (See Fig. 4-1): the N -+ q (or N -+ g) distribution function, the

hard partonic qqb -+ qcqd cross section, the q -+ (a, p) fragmentation, and the decay

(-, p) - 7r+7r-, all as density matrices in helicity basis:

d~u(NN± -+ 7r+7r-X)

dxa dxb dt dz dm 2 d cos 0 do.. H'H

[.F(Xa) 0 d 3 (qaqb -+ qcqd) d2 M d27 1 (5.1)
dxa dXb di dz dM2 d cos E) d® .I H'H

where H(H') are indices labeling the helicity states of the polarized nucleon. In

order to incorporate the final state interaction, we have separated the q - 7r+7-

fragmentation process into two steps. First, the quark fragments into the resonance

(-, p) , then the resonance decays into two pions, as shown in the middle of the

Fig. 4-1.

The s - p interference fragmentation functions describe the emission of a p(a)

from a parton, followed by absorption of -(p) forming a parton. Imposing various

symmetry (helicity, parity and time-reversal) restrictions, the interference fragmen-

tation can be cast into a double density matrix notation[35]

d M-= AO(mll2) {I 0 qj #1(z) + (u7+ 0 i- + - 0 +) 641 (z)} L*(m 2)
dz din 2

+A1(M 2 ) {I 0 17 Qj (z) + (or_ 0 q+ + or+ 0 q_) 641 (z)} A*(n 2 ) (5.2)
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where o (U1 ±icZ2)/2 with {oi} the usual Pauli matrices. The r's are 4 x 4 matrices

in (o, p) helicity space with nonzero elements only in the first column, and the i's are

the transpose matrices (yF = 0',9+ = 7,T = 4+), with the first rows (0,0,1,0),

(0, 0, 0, 1), and (0, 1, 0, 0) for io, +, and i_, respectively. The explicit definition of

the fragmentation functions will be given in Ref. [62].

The final state interactions between the two pions are included explicitly in

Ao(m 2 ) = -i sin 6oeo , A 1(m2 ) = -i sin ie 6 , (5.3)

where 60 and 6 1 are the strong interaction 7rwr phase shifts which can be determined

by the r7r T-matrix [60]. Here we have suppressed the m 2 dependence of the phase

shifts for simplicity.

The decay process, (a, p) -- 7r+7r-, can be easily calculated and encoded into

the helicity matrix formalism. The result for the interference part is [35]

d2co _ 2 sin E[iede (,q- - i_) + iei' (n+ - 2+) - V2cote (0  + 7o)]
d cos @d$ 8wr2m sn

(5.4)

Here we have adopted the customary conventions for the p polarization vectors, l± =

T(81 ± i82)/v 2 and ' = 83 in its rest frame with j's the unit vectors.

In the double density matrix notation, the quark distribution function Fq(x) in

the nucleon can be expressed as [6]

1 1 1
Fq(x) = Iq(x) II + 1 Aq(x) 93 0 U3 + I 6q(x) (o7+ 0 a- + a- 0 o+) , (5.5)

where the first matrix in the direct product is in the nucleon helicity space and

the second in the quark helicity space. Here q(x), Aq(x), and 6q(x) are the spin

average, helicity difference, and transversity distribution functions, respectively, and

their dependences on Q2 have been suppressed.

The gluon distribution function .T(x) in the nucleon can be written as

11
-() = 1G(x) 10 I + AG(x) 0S3.Fg(x) G3 x 2Ir g' (5.6)
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where I, and S' are 3 x 3 matrices in gluon helicity space with nonzero elements

only on the diagonal: diag(Ig)={1, 1, 1} and diag(S')={1, 0, -1} . Here G(x) and

AG(x) are the spin average and helicity difference gluon distributions in the nucleon,

respectively, and, just like in Eq. (5.5), their dependences on Q2 have been suppressed.

Note that there is no gluon transversity distribution 6G(x) in the nucleon at the

leading twist due to helicity conservation. This is one of the reasons why transverse

asymmetries in two-jet production are typically small, as pointed out by Ji[52], Jaffe

and Saito[53].

Several hard partonic processes contribute here, as shown in the middle of Fig. 5-

1. The cross sections can be written as follows (here we list only the relevant parts,

i.e. spin-average and transversity-dependent ones),

d3J(qaqb a qCqA) _r I Ic + 46O$ (a6 0 + a --~ a), (5.7)
dXa dXbdt 2 2 [ ® r c a t 7\

where subscripts a, b, c means that the helicity matrices above are in a, b, c parton

helicity spaces, respectively (See Fig. 5-1). cd and a&d are the spin-average and

transversity-dependent cross sections for the underlying partonic processes qaqb -+

qcqd, respectively, which are shown in the Table I.

Combining all the above ingredients together, and integrating over E to eliminate

the 4, dependence, we obtain a single spin asymmetry as follows,

AIT - dUT = -_ sin 60 sin 61 sin(6o - 61) cos 0
daI+dUT 4

[6q(xa) 0 G(xb) 0 6qg(z)]6&g + [6q(Xa) 0 G(xb) 0 6g-(z)]6&qg +

{[G(Xa) 0 G(xb)]u qq + [q(Xa) 0 G(X)]g + ...} 0 [sin 2 60 q(z) + sin2 6iqi(Z)]
(5.8)

where qo (z) and 41 (z) are spin-average fragmentation functions for the a- and p reso-

nances, respectively, and the summation over flavor is suppressed for simplicity. The

terms denoted by ... include quark quark and quark antiquark scattering contribu-

tions. This asymmetry can be measured either by flipping the target transverse spin
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or by binning events according to the sign of the crucial azimuthal angle q (See

Fig. 5-2). The "figure of merit" for this asymmetry, sin 60 sin 61 sin(6o - 61), is shown

in Fig. 5-3.

The flavor content of the asymmetry AlT can be revealed by using isospin sym-

metry and charge conjugation restrictions. For 7r+7r- production, isospin symmetry

gives 6ii, = -6d, and 6 s = 0. Charge conjugation implies 64y = -6g. Thus there is

only one independent interference fragmentation function for 7+7r- production, and

it may be factored out of the asymmetry, e.g. Ea 6qaojy = [(6u - 6 i) - (d - 6d)]6it.

Similar application of isospin symmetry and charge conjugation to the p and o frag-

mentation functions that appear in the denominator of Eq. (5.8) leads to a reduction

in the number of independent functions: i = =i = di and .4i = 9i for i = {0, 1}.

For other systems the situation is more complicated due to the relaxation of the Bose

symmetry restriction. For example, for the KK system, I2y = -q, still holds, but

&fti, 6d1 , and 6 ,, are in general independent. We also note that application of the

Schwartz inequality puts an upper bound on the interference fragmentation function,

6' < 44041/3 for each flavor.

The size of the asymmetry AIT critically depends upon the ratio of the s - p

interference fragmentation function and p and - fragmentation functions, which is

unknown at present. In order to estimate the magnitude of AIT, we saturate the

Schwartz inequality and replace the interference fragmentation with its upper bound,

i.e. 642 = 44041/3 for each flavor. Meanwhile, we assume the - and p fragmentation

functions are equal to each other. Thus, the fragmentation function dependences

cancel out in AIT. We also assume that the transversity 6q(x, Q 2) saturates the Soffer

inequality[49]: 216q(x, Q2)J - q(x, Q2) + Aq(x, Q2). We use the polarized structure

functions obtained by Gehrmann and Stirling through next-to-leading order analysis

of experimental data[63]. We also go to the region m = 0.83GeV, around which the

phase factor Isin 6o sin 61 sin(6o - 61)1 is large (See Fig. 5-3), and let cos 0 = 1. The

asymmetry as function of pT at \ = 500GeV and -F = 200GeV for pseudo-rapidity

, = 0.0 and q = 0.35 is shown in Fig. 5-4, where pe is the transverse momentum of

the jet. The size of asymmetry is about 12 - 15% at pT = 120GeV for 5 = 500GeV
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and about 17 - 20% at p T = 90GeV for v/s = 200GeV, which would be measurable

at RHIC.

A few comments can be made about our numerical results. Firstly, under the

above approximations, the asymmetry is independent of z. Of course, the experi-

ment may not be able to determine pT - the transverse momentum of the jet, so

direct comparison between our asymmetry and experimental data will require event

simulation. Secondly, because we don't know the sign of the unknown quantities yet,

we can not determine the sign of the asymmetry, the asymmetry shown in Fig. 5-4

should only be taken as its magnitude. Finally, in order to estimate the asymmetry,

we have made very optimistic assumptions about the novel interference fragmenta-

tion functions and transversity distribution functions, so our estimates here should

be regarded as "the high side".

To summarize, we have studied the possibility of probing the quark transver-

sity distribution in the nucleon via two-meson semi-inclusive production of (only one

beam) transversely polarized nucleon-nucleon collisions. We obtained a single spin

asymmetry that is sensitive to the quark transversity and estimated its magnitude.
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Table 5.1: Partonic cross sections for qq -+ qcqd (only spin-average and transversity-
dependent parts are shown here).
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Partonic process Spin Average Transversity Dependent

ab -+ cd Cross Section-aab Cross Section- &a
s 2+fi2  4 g

2+2e 9 _ 4
g qg j2 9 gf j2 9

-2+2 4 g 2
+f,

2  
9f 4

q9 q9 _2 9 gf j2 9

4 sg2+fL2 + 2+2 8 g2 4 9 4 9fiqq--qq 9 2 f2 27 fA 27 i 9 72

4 g 2+fi2 4 9fqq qq 9 j2 - 92

- - 4 (g2+,&2 + f2+j 8 ft2 8 fi 4 s f
9 j2 g2 27 9i 27 t 9 t2

4~ g2___ 4 9f
qi - i s2 9 j2

1 j2 +i 2  3 i2+f,2
gg qq 6 ji 8 g2
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Figure 5-1: Hard scattering diagram for two-meson semi-inclusive production in
nucleon-nucleon collision.

Beam Beam
P P

i -plane

Figure 5-2: Illustration of the pp collision at the center-of-mass frame and the so-called
"Collins angle" <0.
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Figure 5-3: The factor, sin 60 sin 61 sin(6o - 61), as a function of the invariant mass m

of two-pion system. The data on irwr phase shifts are taken from Ref. [61].
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Chapter 6

Interference Fragmentation

Functions and Valence Quark Spin

Distributions in the Nucleon

In this chapter, we extend our study on the interference fragmentation functions to

the case of a longitudinally polarized electron beam scattering off a longitudinally

polarized nucleon target. We show that the interference between the s- and p-wave

of the two-pion system around the p can provide an asymmetry [Eq. (4.14)] which

is sensitive to the valence quark spin distribution in the nucleon. Note that the

asymmetry would vanish by C-invariance if the two pions were in a charge conjugation

eigenstate. Hence there is no effect in regions of the ir7r mass dominated by a single

resonance. Significant effects are possible, however, in the p mass region where the

s- and p-wave production channels are both active and provide exactly the charge

conjugation mixing necessary.

The asymmetry we obtain throws pions of one charge forward along the frag-

mentation axis relative to pions of the other charge. If one integrated over the other

kinematic variables, whatever result persisted would appear as a difference between

the 7r+ and 7r- fragmentation functions correlated with the valence quark spin dis-

tributions. This effect in single pion fragmentation was proposed and studied some

years ago by Frankfurt et al. [65] and Close and Milner [66]. The asymmetry we
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describe is therefore one particular contribution to this more general effect, with the

advantage that it can be characterized in terms of 7rir phase shifts and two particle

fragmentation functions that appear in other hard processes.

Consider the semi-inclusive deep inelastic scattering process: e~N - e'7r+7r-X.

We define the kinematics as follows. The four-momenta of the initial and final electron

are k = (E, k) and k' = (E', '), and the nucleon's momentum is P,. The momentum

of the virtual photon is q = k - k', and Q2 2  = -4EE'sin2 6/2, where 0 is

the electron scattering angle. The standard variables in DIS, x = Q2/2P - q and

y = P -q/P - k, are adopted. We work at low 7r invariant mass, where only the s-

and p-waves are significant. The o[(7r7r)[-0] and p[(7r7r)[i-1 ] resonances are produced

in the current fragmentation region with momentum Ph and momentum fraction

z = Ph -q/q 2 .1 The invariant squared mass of the two-pion system is m 2 = (k+ + k) 2,

with k+ and k_ the four-momentum of 7r+ and r-, respectively. The decay polar

angle in the rest frame of the two-pion system is denoted by 0. Note that the

azimuthal angle qp of the two-pion system does not figure in present analysis and can

be integrated out.

Following Ref. [35], we use a collinear approximation, i.e., 0 ~ 0 for simplic-

ity, and work only to the leading twist (the complete analysis will be published

elsewhere[58]). Invoking the helicity density matrix formalism developed in Refs. [37,

6], we factor the process into various basic ingredients expressed as helicity density

matrices:

[dx dy dz dm2d cos E] HIH

hh 2 . _4i h2h' -2 4 - H1 H' -

H'H d h'1h1 dz dm2. h'h 2 -Cos. H1H1

where hi(h') and H(H') are indices labeling the helicity states of quark and nucleon,

and H1 (H') labeling the helicity state of the resonance (-, p). Physically, the four

'We recognize that the irir s-wave is not resonant in the vicinity of the p and our analysis does

not depend on a resonance approximation. For simplicity we refer to the non-resonant s-wave as

the "o-"
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factors on the right-hand side of Eq. (6.1) represent the N -4 q distribution function,

the hard partonic eq -+ e'q' cross section, the q -+ (a, p) fragmentation, and the

decay (a, p) - r7r, respectively. In order to incorporate the final state interaction,

we have separated the q -+ 7r+7r- fragmentation process into two steps. First, the

quark fragments into the resonance (u, p), then the resonance decays into two pions

(see Figure 1 of Ref. [35]).

The s-p interference fragmentation function describes the emission of a p(-)

with helicity H1 from a quark of helicity h2 , followed by absorption of o-(p), with

helicity H' forming a quark of helicity h'. Imposing various symmetry restrictions,

the interference fragmentation can be cast into a double density matrix [35]

d2  
- = Ao(m 2 ) {I0 io qj(z, m2) + (a+ 0i-+ a_ ®Th+)60(z, m2)} *(m2)

dz dm2

+A,(m2) {I 0 rIO (z, m2) + (- 77+ + 7+ 0 7-) 64I(z, m2) A*(n2)

(6.2)

where += (u 1 ± iU2)/2 with {a} the usual Pauli matrices. The 7's are 4 x 4

matrices in (a, p) helicity space with nonzero elements only in the first column, and

the i's are the transpose matrices (io = T = TT = q+), with the first rows

(0, 0, 1, 0), (0, 0, 0, 1), and (0, 1, 0, 0) for io, i+, and i_, respectively. The final state

interactions between the two pions are included explicitly in Ao(m 2 ) = -i sin 6oe"o

and A1 (m 2 ) = -i sin 6iezjl, with 60 and 6 1 the strong interaction irwr phase shifts.

Here we have suppressed the m 2 dependence of the phase shifts. Note that 4, and 64,

depend on both m 2 and z. We expect that the principal m 2 dependence will enter

through the final state factors Ao and A,. To preserve clarity, the Q2 dependence

of the fragmentation functions has been suppressed. Henceforth we suppress the M2

dependence as well.

The decay density matrix, quark distribution function, and hard scattering cross

section have been given explicitly in Ref. [35]. For completeness we quote the results

relevant to the present analysis. The interference part of the decay density matrix
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(after integration over the azimuthal angle <) is

dcos - V3 s r 9 (00 + s0o) . (6.3)
dcose 27r m

The quark distribution function F is expressed as [6]

T= Iq(x) I1 I + 1 Aq(x) O-3 03 + 6q(x) (0-+ 0 a- + a 0 a+), (6.4)
2 2 2

where the first matrix in the direct product is in the nucleon helicity space and the

second in the quark helicity space. Here q(x), Aq(x), and 6q(x) are the spin average,

spin, and transversity distribution functions, respectively, and their dependence on

Q2 has been suppressed. Finally, for a longitudinally polarized electron beam, the

hard scattering cross section is given by [6]

d2 u-±(eq -+ e'q') e4e 2 +_(__-_y)2
q Y)'(I0 1 + r3 0 U-3)

dx dy 87r 2y

2(1-y) ) 2 - y
+ (u0~+@o+ u-_0 u+)±i (u~3 ®10 u o3)I,

y 2

(6.5)

in the collinear approximation, where the t sign refers to the initial electron helicity.

Here eq is the charge fraction carried by a quark, and we have integrated out the

azimuthal angle of the scattering plane.

The cross section can be obtained by putting all the ingredients together. To

facilitate our discussions, we define forward and backward cross sections, do.F and

do.B, where the 0 dependence has been integrated over the forward (0 < E < 7r/2)

and backward (7r/2 < 0 < ir) hemisphere in the two-pion rest frame, respectively.

For a longitudinally polarized nucleon target with a longitudinally polarized electron
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beam, we then obtain the following double asymmetry

( FB d - (dc4 - dc4)

(dUn + duiB ) + (dun + dUo

_ F vy (2 -) sin 6o sin 61 cos (6o - 61)
1 + (1 -y)2

a eZ qa (x) qa (z)

Ea e2qa(x) [sin2 6o (Z) + sin 2 6iai(z)]

where 4o and 41 are spin-average fragmentation functions for the a and p resonances,

respectively. The arrows f and 4 (t and 4) indicate the nucleon's (electron's) polar-

ization along and opposite to the beam direction. Note that in Eq. (6.6) the electron's

polarization is fixed and the asymmetry requires flipping the nucleon's polarization.

This result also holds when the electron and nucleon polarizations are exchanged.

The flavor structure of the asymmetry Aj4 is quite simple. Isospin symmetry

gives tr = -d 1 and sr = 0, and charge conjugation requires y = -q. This implies

Ea el ZAa Q = [4/9 AZu - 1/9 Adv] fIi, where Aq = Aq - Aq. Therefore All is

sensitive to the valence quark spin distribution. Note that the interference between

the two partial waves makes the interference fragmentation function da(z) charge

conjugation odd and accesses the valence quark spin distribution. The role of final

state interactions is quite different here than in Ref. [35]. Here the effect persists as

long as two partial waves of opposite C-parity are active, whether or not they are

out of phase. This is evidenced in Eq. (6.6) by the factor cos(6o - 61). Note that if

either 60 or 61 goes to zero and thus only one partial wave is active, the asymmetry

vanishes as required by charge conjugation. In Fig. 6-1 we have plotted the factor,

sin 60 sin 61 cos(6o - 61), as a function of the two-pion invariant mass m. It is positive

over the p region and hence the effect does not average to zero over this region. This

differs from the case of the transversity asymmetry derived in Ref. [35], where the

interference averages to zero over the p region due to a factor sin (6o - 61). We also see

from Fig. 6-1 that the interference peaks near the p mass, indicating that an optimal

signal would be in the vicinity of m ~ mp. It is unclear at this stage whether the
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effect would survive averaging over the z dependence of the interference fragmentation

function.

0

o,0.8

C0.6

0.4

0.2

0
0.5 0.6 0.7 0.8 0.9 1

m(GeV)

Figure 6-1: The factor, sin 60 sin 61 cos(6o - 61), as a function of the invariant mass m
of two-pion system. The data on ir7r phase shifts are taken from Ref. [61].

A similar forward-backward asymmetry appears in the unpolarized process

AFB -- - dB
duF+ du.B

V sin 6o sin 61 cos (6o - 61)

x
a e~qa (X) qy (z)a I

Ee2qa (x) [sin 2 60 d (Z) + sin 2 61 da(Z)

Isospin symmetry and charge conjugation again dictate that Ea e q, d' = [4/9 u, -

1/9 d,] ft, for r+7r- system, where q, = q - q. Given that the valence quark distribu-

tions u, and d, are known experimentally, this asymmetry can be used to determine

the interference fragmentation function 4'(z) and hence isolate the valence quark spin

distribution from A F. This point becomes more transparent when A F is combined

with AFB In this case, one can find an asymmetry independent of the interference
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fragmentation functions:

(don - do) - (dn - dub) _ y(2 - y) 4Azu - Ad . (68)

(dof - don) + (dor - d 4B 1 + (I - y) 2  4u, - d,

So, one may use 7r+7r- production on both nucleon and deuteron targets to measure

Au, and Ad,. Although the results in Eq. (6.8) are independent of z, one should

keep the cross section differential in z to avoid possibly washing out the effect.

Refs. [65, 66] explain how to use single meson (pion or kaon) production in deep

inelastic scattering to measure the valence quark spin distribution in the nucleon. It

is clear from Eq. (6.8) that our asymmetry is a particular contribution to the ones

described in Refs. [65, 66]. Ours is perhaps more under control since it is differential

in m 2 and expressed in terms of 7rw phase shifts. The single particle asymmetry

makes use of a larger data set. These independent ways of measuring the valence

quark spin distributions should both be pursued. In addition, the asymmetries we

have studied are sensitive to two particle interference fragmentation functions which

may be interesting quantities in their own right. These measurements may be carried

out in facilities such as HERMES at HERA and COMPASS at CERN, both of which

have sensitivity to the hadronic final state in electron scattering.

To summarize, we have discussed the applications of the twist-two interference

quark fragmentation functions introduced previously to the case of longitudinally

polarized electron beam and longitudinally polarized nucleon target. We obtain two

asymmetries: one provides a probe of the valence quark spin distribution, and the

other can be used to extract the interference fragmentation functions.
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Chapter 7

Conclusions

In this thesis, we have developed a new formalism to deal with the polarized pro-

cesses in quantum chromodynamics(QCD)-Helicity Density Matrix Formalism. We

applied it to propose new ways to measure nucleon's transversity, one of the least

known quark distributions inside the nucleon. The processes of interest are the two

pion semi-inclusive productions in the transversely polarized deep inelastic scatter-

ing(DIS) and nucleon nucleon collisions. A set of novel quark interference fragmenta-

tion functions are introduced in the framework of the helicity density matrix formalism

and used to probe the nucleon's transversity distributions. The single spin asymme-

try obtained in the transversely polarized PP collision is estimated to be about 10%

under assumptions for the unknown interference fragmentation and transversity dis-

tribution, which would be accessible at RHIC energy scale(Fs = 500GeV). It is also

used to probe the valence quark distribution inside the nucleon. The advantages of

this method over others are that the effect is leading twist, hence there is no 1/Q

suppression; the meson pairs are copiously produced in the quark fragmentation; the

final state interaction phase can be measured in meson-meson scattering; the final

state interaction phase remains fixed even after the summation on the X states is

performed; it can be performed in different experiments, e.g. RHIC, HERMES or

COMPASS.
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.1 Notations and Conventions

.1.1 Natural Units

As generally used in elementary particle physics, we use the natural units in this

thesis. The natural unit is such a system in which we write

c = h = , (1)

where c is the speed of the light, h is the Planck's constant.

Since [c] = distance/time and [h] ~ enegy -time, there is only one single ar-

bitrary unit remaining, which is usually chosen to be the unit of energy in ele-

mentary particle physics. The frequently used unit of energy are KeV = 10 3eV,

MeV = 10 3KeV, GeV = 10 3MeV . Other units such as length and time can be

translated to energy by the experimental values of some physical constants[41]

c = 299792458 m s-1

h = 6.5821220(20) x 10-22 MeV s

hc = 197.327053(59) MeV fm . (2)

.1.2 Metric

The metric tensor g,, is defined by

1 0 0 0

0 -1 0 0 (
9/1V = 99"v = ).(3)

0 0 -1 0

0 0 0 -1

Note that in this thesis the Greek letters represent the Lorentz indices(from 0 to 3),

while the Latin letters represent the space indices(from 1 to 3).
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A contravariant four-vector is denoted by

VP = (VO, v, V 2, 73),

which can be transformed into a covariant vector using the metric tensor g,, as follows

Vtt a (Vo, V1, V2,7 V3) = g, VV = (V7, -V17 _V27 _V3)

Summation over repeated Lorentz indices is assumed unless explicitly stated,

VpW, =VW, = gyV pWv = gt"VLV = VOWO - VIW 1 - V 2 W 2 _ V 3 W 3 .

A boldface letter denotes a three-vector,

V = (VI, V 2, V3) = (VX7VV

The gradient operator is defined by

OX=

a 
0xP

(0O,01,02,03) =

(00,01,02,03) =

(t, a, a,

( , , a
at' axy

The four-momentum operator is

pP 4 ial

where V = (VX, VY, Vz) = (01, a2, 03) =

= (i00, -iV) ,

x 0 ) -ay, Oz
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(4)

(5)

(6)

(7)

0a),
az

ay
0
0z

(8)
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.1.3 Some special tensors

Four-dimensional totally antisymmetric Levi-Civita tensor E""P"

The four-dimensional totally antisymmetric Levi-Civita tensor E"P' is defined by

""pU = -{ ;

if {jI, v, p, a} is an even permutation of {0, 1, 2, 3}

if {p, v, p, a} is an odd permutation of {0, 1, 2, 3}

otherwise

Useful identities:

" "'P''

E IVPaIL I p cYa

IVaEVP or

eL"PfeJ6 
P'c'

f "LVPC cEAV
f "V~ VP o

E pLvpor EtvPT

-E (VP '

-det (g"o')

-det (gao')

- 2det (ga')

-24 ,

where a = p, v, p,

where a = v, p, 0,

where a = p, 9,

-, and a' = p', v', p',o '

and a' = v', p', -'

and a' = p', a'

where det means the determinant of a matrix, e.g. for a = p, a and a = p', o'

det (g ') = PI, 9C , = gPP g u' - 9g / gP I .
g""or

Three-dimensional totally antisymmetric tensor Eijk

The definition of Eijk is very similar to "P'!,

+1

ijsk = -1

if {ijk} is an even permutation of {123}

if {ijk} is an odd permutation of {123}

otherwise
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Useful identities:

fijkElmn 6 iIGjm6 kn -
6 jn 6 km) - 6 im( 6 j16 kn -

6 jn 6 kl) - 6 in(0jm6 kl - 6 jl 6 km)

EijkElmk = 
6 ilEjm - 6im 6 j1

Eijk6 Ijk 26i,

Eijk~ijk - 6 (14)

Kronecker delta

1 ifi=j (

0 otherwise

=3. (16)
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.2 Dirac Matrices and Spinors

.2.1 Dirac Algebra

Dirac matrices

The Dirac -y matrices satisfy the following anticommutation relations

{-p, 7yv} = 7yALyv + f-y7'y = 2g,.

1y0 is hermitian, whereas -yZ antihermitian,

"y At = 'YO yhyY .

A matrix, which anticommutes with 7yA, 'y5 is defined by

5 0 1 23 Ai'po t
'75 = ZIYYYf 7 7 --- Ef~' Y' Y 7

2
IY5

{PY5, -Y' I =0

A useful tensor &-" is defined as

op" = [-Y, yi] .2

Useful Identities

= 4

7" Y , Y 0 Y
Y 7,7Y I

a I37A7p

'Y70t/Y 7Y f

= -2-y a

= 4g" a,

= -2-A "
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(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



-Y , -Y 13 7 7 = Y- 2(-'713 IT A + -Y7 7077) 

=

(7a7- = - 7yagoy + 'Y7ga - 'Yygao)75 ,

Tr" 

Tr7y5

Tror"

Try""y 5

Trylyv"

Tr(odd# of y's)

Tr-ylyv yPfy"

Tr 5 ,yyyvyPf

0

0

0

0

0
4(9/A 9 0,9 ILgvo + glia vp)

4(g"l"gP" - ip /"+ "

- 4 i6li"P = 4~~IepcT

.2.2 Two Representations for Dirac Matrices

Dirac representation

0 -1

0
S 2ip 20i

7 5 P 10 1

5 0
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(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)



where pi and o& are two copies of Pauli matrices,

1 1p =a = (0

1

2
p= a = ( 0

i

and I is the unit matrix in 2 x 2 space

1

0

0

1)

Chiral representation

70= -P I= (

2 2
7( = ip0=

'75 =p3

(
0 -I

-i 0

0 a i
-a i 0

I 0

0 -I
(40)

.2.3 Dirac Spinors

Dirac equations

The Dirac spinor u(ps) describing a free fermion with mass m and spin s satisfies the

Dirac equation

(41)(f - m)u(ps) = 0 ,

and its adjoint t(ps) = ut(ps)y' satisfies

(42)

where p2 = m21 ,2 = -m 2 and s -p = 0 .
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3 3p =ca =

0

1

0( 0
-1)

(38)

(39)

i~ps)(4 - M) = 0 ,



The antifermion satisfies

where V(ps) vt(ps) 0 .

Normalization

(f - m)v(ps)

v (ps)(f - m)

i(pr)u(ps) =

V (pr)v(ps) =

i(pr)7y"u(ps) =

;v(pr)'y"v(ps) =

= 0,

= 0,

- 2m 6rs

2 p1 6rs ,

2p"6rs .

Projection operators

A+(p)

A (p)

P(ps)

E Zu(ps)i(ps) =+ m,
S

S v(ps) ;v(PS) = -M,
S

-u(ps>1I(ps) 2 (1 + 74

(1 ± -y5)u(p)i(p) (1 - 7Y5) = (1±i 7s) Eu(P)i(P) (1 F 75)

2(1 t 75)fi . (46)
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.2.4 Helicity and Chirality for Massless Fermions

Helicity

The helicity A for a moving particle is defined as its polarization projection along its

momentum direction. It is defined as the eigenstates of the following helicity operator

I =

where E is spin operator as defined by

(47)

Z I ijkU jk = 75"0 ,
2

and p1 is the module of the particle's three momentum P .

Pu(pA) =Au(pA).
I P

Chirality

Chirality of a massless fermion is defined as the eigenvalue of the chirality operator

75

7y5u(ps) = +u(ps)

Chirality = Helicity for Massless Fermions

The Dirac equation for massless fermions is

fu(ps) = 0.

Multiplying it by y5-Y 0 = - y 2 3 yields

_u(ps) = _y5 (ps),

where we have used the fact that JpJ = p0 for the massless fermions.
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Therefore it can be concluded that a massless fermion's chirality is equal to its

helicity(it is opposite for an antifermion).

The Dirac spinors in chiral representation

An explicit form of the spinor in chrial representation for a massless fermion is

u+(k) = v_ (k) =
v'k e i*

0

0

u_(k) = v+(k) =

0

0

-V/k e-i*k

for any light-like vector k,, where

k = ko ± kz, k_ = k, + ik, = |k , (54)

and the antiquark helicity states are chosen to be

v(kA) = Cii(kA)T , (55)

where C = i-y 2  is the charge conjugate matrix, and T means taking the transpose

of a matrix.
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.3 Color SU(3)

The 3 x 3 SU(3) traceless color matrices T a satisfy

[Ta,Tb] = if abcTc , (56)

where a = 1, ..., 8 is color index, fabc are the antisymmetric SU(3) structure constant

with non-zero values given by

a b c fabC

1 2 3 1
1 4 7 1

156 21 5 6 1
22 4 6}
22 5 7

3 4 5
23 6 7 -1

4 5 8 V3

6 7 8 -M r e

A convenient representation for T a is Gell-Mann representation

0

T'= 1

0

T 3 10

0

0

T = 0

0

0

1 0

0 0

0 0

0 0

-1 0
0 0

0 -i

0 0 ,

0 0

0 0

0 -i ,

i 0

0

T2= i

0

0

T4= 0

0

T2~ 0

0

T 810

T2~ "3

0
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-i 0

0 0

0 0

0 1

0 0
0 0

0 0
0 1

1 0

(57)

0

1

0

0

0

-2



The structure constants dabc are defined as

{Ta, Tb} = 6ab + dabcTc
1 3

and Ta satisfy

T aT b = 1 [l 6 ab + (dabc + if abc)T C

Some useful relations:

Tr(T a)

Tr(Ta Tb)

Tr(TaTbTc)

Tr(TaTbTaTC)

Tr(TaTbTbTa)

= 6Jj - i6i6kI,

= 0,
1 6 ab

2

= (dabc + if abc)4 (

= 1 o6b ,
12

16
3

The structure constants also satisfy the following Jacobi identities:

f abefecd + fcbefaed + fdbe face = 0

f abedecd + fcbedaed + fdbe face = 0

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

Three relations derived from the Eq. (60) are very useful to compute the color traces

involving a summation over a color index,

Tr(TaFITaF 2 )

Tr(TaF1)Tr(Tar 2 )

Tr(TaFr1
2T a)

1= -Tr(]1F)Tr(F 2) -2
1I Tr(FIF

2 ),

1 1= -Tr(F 1 F 2 ) - 1 Tr(F 1 )Tr(F 2),
2 6
4

= -Tr(F 1 F2),3

where 1 and F2 are any combinations of the color matrices. For example, it is easy

123

(58)

(59)

(68)

(69)

(70)



to obtain

Tr(TaTbTc)Tr(TaTTb) = Tr(TTc

2
2 Tr(TcTc)
3
8 1
33'

__7

3

CTb) - Tr(TbTc)Tr(TcTb)

111
- 22x 8,

(71)
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.4 Feynman Rules of QCD

.4.1 External Lines

* quark in initial state ... u(p)

" quark in final state ... -(p)

" antiquark in initial state ... ) (p)

" antiquark in final state ... v(p)

" gluon in initial state ... (A)

where "(A) is the polarization vector for a gluon with lielicity A. It satisfies

f,(A)cY(A') = - 6o and f - k = 0 with k,, being the momentum of the gluon.

* gluon in final state ... E*II(A)

" ghost in initial or antighost in final state ... 1

* ghost in final or antighost in initial state ... 1

.4.2 Internal Lines

i6i
* quark propagator - --

* gluon propagator -iab - -
P 2 + if

+ (1 - p)PP'
(p2 +iM)2

gauge parameter = 1 is Feynman gauge, = 0 is Landau gauge.

-i6 ab
* ghost propagator -. --

P2 +ite

.4.3 Interaction Vertex Factors

* quark-quark-gluon vertex

-igS"YITi
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P

Figure -1: Incoming quark line

p~ a-.

p
Figure -2: Outgoing quark line

0-

p
Figure -3: Incoming quark line

P

Figure -4: Outgoing quark line

F - :I m g ni

Figure -5: Incoming gluon line

Figure -6: Outgoing gluon line

P

Figure -7: Incoming ghost line

P

Figure -8: Outgoing quark line

P

Figure -9: Quark propagator line

k

Figure -10: Gluon propagator line
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. three-gluon vertex

-gsfabc [(PI - P2),Lvt + (P2 - P3)A9p + (P3 - Pi),gu] (73)

* four-gluon vertex

-ig fabcfcde(9Av9p - 9gA9PV)

-ig2facefbe(9AP9va - 9g9,V)

-igfadefcbe (gAvgpo - 9gAP9gV)

(74)

* ghost-ghost-gluon vertex

9sfabcPp (75)

.4.4 Loops and Combinbatories

* For each loop with undetermined momentum k, there is a J d kintegral - - (2w) 4

" For each closed fermion loop, there is an extra factor - - - - 1 .

" For each closed loop containing n identical bosons, there is a symmetry factor
1
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0- ~- -~-.

P

Figure -11: Ghost propagator line

p', j

k, a, s

Figure -12: Quark-quark-gluon vertex

C, V

P3

,P] b,

P2

a, X

Figure -13: Three-gluon vertex

d, y c, v

aX1
a, X b, p

Figure -14: Four-gluon vertex

Sp', a

k, b, p

Sp, c

Figure -15: Ghost-ghost-gluon vertex
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.5 2-to-2 Differential Cross Sections

.5.1 Invariant Amplitude

The invariant amplitude M is related to the S matrix through the relation

Soa = 60a - i (2,) 4 _ (po - pa)MA4,

fli (2Ej)
(76)

where a and /3 represent the initial and final states, i runs through both initial and

final states.

.5.2 2-to-2 Differential Cross Section

For the process 1 + 2 -± 3 + 4 + ... + n, the differential cross section is

(27) 4  d3A
do- =2)(j 64 (1 P, (P1 + P2)) IM3a 12

4 (P- P2) 2 - mIM2 i=3 (27r) 3 (2Ei) =3

The 2-to-2 differential cross section in its center-of-mass frame is given by

do ( 1 P2,
dQcm 64r 2s Pcm

(77)

(78)

where dQcm = d cos Ocmdocm . The invariants s, t and u are defined by

P2\ 
- /P4

\P3

t
t

Figure -16: Illustration of a 2-to-2 scattering.
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s = (P1 + P2)2 = (p3 + p4)2

t = (p1-p3) 2 =(p2-p4) 2 ,

u = (P1 - P4) 2 = (P2 - P3) 2 .

Momentum conservation implies pi + P2 = P3 + p4 .

The initial and final center-of-mass momenta pcm and p',m are given by
2C

s - (mi + m 2 )2] [S - (mi - m 2)21

- (in 3 + m 4)2] S - (m 3 - M4)2]

t is the momentum transfer squared and is given by

t = tmin + 2pcmp'm(cos Ocm - 1),

tmin = (El m - Ecm3) 2 _ (Pcm - P'm)2

with the energies of the particle 1 and 3 in center-of-mass frame

S + M2 - ,
E +m i 1  i 2

1~m  2,Fs
2 2

S s+ m2 - in
2fi

Therefore, we can have dt/d cos Ocm = 2pcmp'm Substituting it into the cross

section, and consider that the amplitude is independent of the azimuthal angle q>cm,

one can have

d t
1 . (89)
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(79)

(80)

(81)

Pcm

P'cm

4s

4s SS

(82)

(83)

(84)

where

(85)

(86)

(87)

(88)



.6 Light-Cone Representation of Dirac Matrices

.6.1 Light-cone variables

Light-cone coordinates (x+, x, ±I) are defined as a linear combinations of the ordi-

nary coordinates (x0, x1, x2 , x 3) as below

x+ - (X0+ ±x 3 )

1

X-= (x 1 ,x 2 ) . (90)

In this representation, the metric g,,, has following form

I if t +, v=-or =-, v = +

g,= -1 ifp=v=1orp =v=2 (91)

0 otherwise

such that

x-y-g y X/Iy= x+y+X-y+ i ±yr . (92)

x+ is to play the role of the time in the light-cone formalism, therefore P-, the

momentum component conjugate to x+, has the role of the energy. (P+, PL) is the

three-momentum that specifies the state of a particle in the light-cone formalism.

Two very useful light-like vectors in the light-cone formalism are

p = (1, 0, 0,1) ,

1
nA = (1, 0, 0, -1) . (93)

v'2A

with properties

P2 22 0 , p -n = ,

p- =0 , n+ = 0 . (94)
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A actually selects a specific frame. For example, A = M/v/2 selects the hadron rest

frame while A -+ oc selects the infinite momentum frame.

.6.2 Light-Cone Representation of Dirac Matrices

The light-cone representation for the Dirac matrices are ,

0 a.3
p0 = P1 ( or

o.03 0

Y = I i- = 0 ia (95)
or -o

73 2 3
"Y zP () 0 0.3 0

o. 3 0
5" = 3a ( or = 0 -or.3'

(96)

where 1= 1 or 2 , 'y5 = i10 7 273 . Here we also write the Dirac matrices in terms

of the cross products of two copies of the Pauli matrices: p' and O-i( = 1, 2, 3). It is

easy to check that eq. (96) satisfy the usual algebra, {y", y'"} = 2g!Iv

A set of projection operators P± on the upper and lower two component sub-

spaces are defined by,

1 1
s = - 7 7 ( s

2 2
1

y* = (_ 0 tY 3 ),

(97)

with the properties:

P_ + P = 1
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1

P =(0

0
0)

(98)

where

a 3 = ( 1

0

0

--1)
(99)

.6.3 Good and Bad Components of Dirac Field

The "light-cone projections" of the Dirac field, 0+ = P+V) and 0_ = P_0 are known

as the "good" and "bad" light-cone components of 4 respectively. To save on sub-

scripts we shall frequently replace V)± as follows,

(100)

Hence

V) = (P+ + P_) = q + x . (101)

The Dirac equation can be projected to two two-component equations using the

projection operators P+,

iy-D-x

iy+D+O = -yD X +mX, (102)

= -igAT. In the light-cone gauge A+ = 0. + is the evolution

("time") parameter, but the first of eq. (102) only involves a/a-, so it appears that

x is not an independent dynamical field. Instead the Dirac equation constrains x in

terms of # and Ai at fixed +

Z7-A0 = -X - . # + m#ag (103)

Therefore, the good components # should be regarded as independent propagating
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degrees of freedom; the bad components X are dependent fields - actually quark-gluon

composites: X = F[O, A-L]. [6] In the helicity basis, where

a.3 o

3 z [ 21 ( 7)2]= (104)
2 0 .3

is diagonalized, both the good and bad components of b carry helicity labels - the

eigenvalues of E3 ,

- 75? = L . (105)
X+ ~~X+

\X-j \+X-;

Helicity and chirality are identical for the good components of 4' but opposite for the

bad components. This will be used to sort out the chirality and helicity selection

rules.

Every factor of X in the light-cone decomposition of a light-cone correlation func-

tion contributes and additional unit of twist to the associated distribution function,

e.g.

#tf# ++ twist 2 ,

qt X++ twist 3 ,

x X -+ twist 4 ,

(106)
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.7 Quark Distribution and Fragmentation Func-

tions

We table the quark distribution and fragmentation function for different targets,

associated with their relations with the helicity amplitudes. The asterix on the helicity

amplitudes indicates a bad component of the Dirac field.

.7.1 Quark Distribution Functions

Table 1: Quark distributions in a spin-0 hadron through twist-
three.

Twist Name Helicity Amplitude Measurement Chirality

Two fi (x) F0.,01 Spin Average Even

Three e(x) Fol*,o1 Spin Average Odd

Table 2: Quark distributions in a nucleon through twist-three.

twist Q(1/Qt- 2) Name Helicity Amplitude Measurement Chirality

Two fi(x) ±, + F _i, I _ Spin average Even

Two g1(x) F±,1 - ±1 I Helicity difference Even

Two hi(x) F1,_1 Helicity flip Odd

Three e(x) F1 1 ±-, + Fi I Spin average Odd

Three hL(x) FY-,* - Y1j_._. Helicity difference Odd

Three gT(x) Fo Helicity flip Even
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Table 3:

three.
Quark distributions in a spin-i hadron through twist-

.7.2 Quark Fragmentation Functions

136

Twist Name Helicity Amplitude Measurement Chirality

Two fi(x) F1,g + _ + -O1,og Helicity average Even

Two b,(x) Y., 1 + -F1 _ 1 - ,og Quadruple Even

Two g1 (x) - Helicity difference Even

Two hi(x) FO1_ + Ti_ IOl Helicity flip Odd

Three ei(x) , +Y 1 _*, 1 ~ + YFo*,og Spin Average Odd

Three b2 (x) -F1*,i + T1_ j., 1 - 2TO1*,0. Quadruple Odd

Three h2 (x) F1*,g - 1-j-1 Helicity difference Odd

Three g2 (x) F* 1 _ + .FI_1%01  Helicity flip Even
T 2 2 H

Three A92 (X) To*,-g - _ *,Ol Helicity flip Even
2. 2-



Table 4: Quark fragmentations to a spin-0 hadron through twist-
three.

Twist Name Helicity Amplitude Measurement Chirality

Two fi(z) F0.,01 Spin Average Even

Three 6(z) F1 *,0 Spin Average Odd

Table 5: Quark fragmentations to

three.

1
a spin--

2
hadron through twist-

137

twist O(I/Qt- 2) Name Helicity Amplitude Measurement Chirality

Two fi(z) 1 ± I ±ll +Yi 1 _ Spin average Even

Two p1 (z) Y1i 1± - Yg 1 _1  Helicity difference Even

Two hi(z) FO1,1_1 Helicity flip Odd

Three 6(z) f + F 1 _ Spin average Odd

Three hL(Z) .F 1 * l - 1 1  Helicity difference Odd
c 2 2i

Three T (Z) fe-_Helicity flip Even



Quark fragmentations in a spin-1 hadron through twist-
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Table 6:

three.

Twist Name Helicity Amplitude Measurement Chirality

Two fi (z) T, + Ti Y I _ +Yfo Helicity average Even

Two bi(z) .T11 ,11 + Ti - 2 Quadruple Even

Two p1 (z) T, - T, Helicity difference Even

Two h (z) J0 0 ,1_1 + F_ 1 0 1  Helicity flip Odd
22' 2

Three 61(z) , + _ + Spin Average Odd

Three I2(z) 2T- + - Quadruple Odd

Three h2 (z) - Helicity difference Odd

T 2 2 ,c

Three A 2 (Z) -Iol * _ - fi_1-%0 Helicity flip Even
2 2 2 2



.8 Spin Structure of the Nucleon in QCD

.8.1 Angular Momentum Operator in QCD[21]

In accordance with the Noether theorem, there exists a symmetry generator TV

associated with the translational invariance in QCD, which is conserved, ,,Tm'" = 0.

Tm" is called as energy-momentum tensor, which is gauge invariant and symmetric,

T-" = T"'. The Noether current associated with Lorentz transformations is a rank-3

tensor constructed entirely from T"[67],

MI A = xVTIIA - xAT (107)

It is very easy to verify that MIA is conserved because T" is symmetric and con-

served. Mt"A is gauge invariant and has no totally antisymmetric part,

6apvAMP"A - 0 (108)

or equivalently

M/"A + MApv + MvAt = 0. (109)

The generators of Lorentz transformations are defined as

J"= J d3xMOv. (110)

It is very easy to verify that Jmv is conserved, d Jpv - 0, and obey the Lie algebra of

the Poincard group

[P, PV = 0,

JV, PA i(gilAPV - gAP), (111)

JIm " JA ] = i(gILA J "" - g vA Jp a - g9p JvA + g v J A)

where P f d3xT0I is the generator of the translation group.
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The energy-momentum density tensor of QCD is as follows[68]

T"CD D " p' + I F"0 - F a, (112)

where the covariant derivative DBD - D with D=& -igA. The symmetrization of

the indices p and v in the first term is indicated by(p-v).

Substituting Eq. (112) into Eq. (107), a short algebra yields the angular momen-

tum density tensor for QCD as below,

M6CD = x"v(y DA +7yA D1 )O - 4 xA (7YA Dv +v" D")o

4 4 a
- (x"F" Fa - xAFI"" F, - F" a x - x~gil") . (113)

Clearly, there is no breakup of the tensor into pieces that one can identify as being due

to the quark spin, gluon spin, quark orbital angular momentum, and gluon orbital

angular momentum. However, note that there is an arbitrariness in the definition

of MAVA, that is, in the context of some field theory let B[1]["A] be some operator

antisymmetric in ([t, /3) and (v, A) (B[ 3]["A] may contain an explicit factor of the

coordinate x), then we can define a new tensor by adding a superpotential

M'p"A = MI"A + 0B ["][vA] , (114)

which is conserved and antisymmetric in v and A, the Lorentz generators J'9" defined

from MvA are the same as J",

JIVA = JVA + Jd3xajBil [vA] - Jv (115)

for field configurations which vanish at spatial infinity. By choosing a suitable super-

potential, one obtains[21]

= iNb"(xBv - xV9D)4b + 4Yy[y' ,7v]4

-F"(xl8a - xva")A, - F" aAv + F avAP . (116)
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Now the terms in Eq. (116) correspond successfully to the spin and orbital angular

momenta of the quarks and gluons.

.8.2 Angular Momentum Sum Rule[21, 31]

Now we apply the results of the previous section to the nucleon system. According to

the definition, a nucleon moving in the z direction with momentum PP and helicity

1/2 satisfies
1

J' 2 P+) = -1P+) , (117)
2

where J12 = f d3xM 01 2 .

Thus one can write down a spin sum rule,

1 _

2 = (P+ J12 P+)/(P+ P+)2
1

= -AE +ZAg+L +L, (118)
2

where the matrix elements are defined as (2 = 5 = y0 1 Y2 3),

AE= (P + IS3qlP+) = (P + J d3 V) 3 7 P+),

Ag = (P + |3g|P+) = (P +| d x (E1 A2 - E2 A1 ) |P+),

Lq (P + I 3qIP+) = (P + / d3x i't>7 0 (x 10 2 _ 201)4' Ip+)

L9  (P + IL3g IP+) = (P + f d3x EZ(X20 1 _ X1 0 2 )A IP+) , (119)

where for simplicity we have neglected the normalization of the state. E i- -F Oia

- (00A - zA 0a + IgsfabcAObAc) is the color electric field.

It is clear from the above that AE and Ag are the quark and gluon helicity

contributions to the nucleon spin, and Lq and L9 are the quark and gluon orbital

angular momentum contributions. Apart from S3q, the other three operators S39 ,

L3q and L3 g are not manifestly gauge invariant, and thus a decomposition of the

nucleon spin is in general gauge-dependent. [Note that X.Ji gives a gauge invariant

decomposition of angular momentum operator in his recent paper[69]. However, he
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proved that the new gauge-invariant operators satisfy the same evolution equation as

the old gauge-dependent ones. Therefore, here we will still use the gauge-dependent

ones to demonstrate the calculations.] Furthermore, the matrix elements depend on

the choice of Lorentz frame. Only in light-front coordinates and light-front gauge [70]

Ag is the gluon helicity measured in high-energy scattering processes. We henceforth

work in this coordinates and gauge [71] (the index 0 in Eq. (110) is now replaced by

.8.3 JTH Evolution Equation of Angular Momentum at Lead-

ing Order [31]

The evolution equation to leading-log order of quark and gluon angular momenta can

be obtained by calculating the anomalous dimensions

AE 0 0 0 0 AE

d AG ICF LO 0 0 AG
d-, (120)

dt

Lq -CF a -CF n Lq

Lg -L ICF - L

which contains the well-known Altarelli-Parisi evolution equation for the quark and

gluon helicity contributions at leading-log[33]. The solution of this evolution equation

can be obtained straightforwardly,

AE(t) = const ,
4AE t ( 4AZ'

Ag(t) = - +- Ago+ I
0 to /0

L1 (t) = 1A + 1 3nf + (t/to)-2(16+3nf)/(90o) L(0) + A 1- 3 nf

2 2 16 + 3nf 2 2 16 + 3nf
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L9 (t) M + 16 163 + (t/t 0 ) 2 (1 6+ 3n)/(9 o) Lg(0) + Ag(0) - 1 1663n _

L9 (t) 16A~) + 3n 216 + 3i 1

(121)

Given a composition of the nucleon spin at some initial scale Q2, the above equa-

tions yield the spin composition at any other perturbative scales in the leading-log

approximation. From the expression for Lg(t), it is clear that that the large gluon

helicity at large Q2 is canceled by an equally large, but negative, gluon orbital angular

momentum.

Neglecting the sub-leading terms at large Q2, we get,

1 1 3nf
2 216+3nf

1 16
Jg L + Ag -1 1 (122)

2 16 +3nf

Thus partition of the nucleon spin between quarks and gluons follows the well-known

partition of the nucleon momentum [34]. Mathematically, one can understand this

from the expression for the QCD angular momentum density MvI 3 = T"ax 3 - ThOxa.

When MAI" and T",3 are each separated into gluon and quark contributions, the

anomalous dimensions of the corresponding terms are the same because they have

the same short distance behavior.

It is interesting to speculate phenomenological consequences of this asymptotic

partition of the nucleon spin. Assuming, as found in the case of the momentum sum

rule[72], that the evolution in Q2 is very slow, then the above partition may still be

roughly correct at low momentum scales, say, Q2 - 3 GeV 2 . If this is the case, from

the experimentally measured AE we get an estimate of the quark orbital contribution

at these scales,

Lq= 0.05 ~ 0.15 . (123)

To find a separation of the gluon contribution into spin and orbit parts, we need to

know Ag, which shall be measurable in the future[73]. However, if Q2 variation is

rapid, the asymptotic result implies nothing about the low Q2 spin structure of the
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nucleon. Unfortunately, no one knows yet how to measure Lq to determine the role

of Q2 variation. In his recent paper, X.Ji related angular momenta of the nucleon

to some form factors in the so-called deep virtual Compton scattering process[69].

He pointed out that some informations about the spin structure, especially orbital

angular momenta, could be probed in this kind of process.
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.9 Matrix representation for the tensor operators

and corresponding helicity bases

.9.1 J=1/2

1 0 1 0

0 1 0 -1
(124)

0 - 0 0

0 0 V0

1 0
>= (125)

0 1
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Hol=

/

H 1 =V

J

0 -1 0

0 0 -1

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 0 0

0 0 -1

1 0 0

0 -2 0

0 0 1

,H 2 = 6

I,

'/

N'
0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

(126)

(127)

.9.2 J=1

/ /

K
H=

( (

/

S

/
/

0 0 0

1 0 0

0 1 0

/

0 -1 0

0 0 1

0 0 0

0 0 0

1 0 0

0 -1 0

I11 >=

1

0

0

0

1

0
\I/

0

0

1
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.9.3 J=1(gluon case)

G0

1 0 0

0 1 0

0 0 1

/

0

1>=

(

G0i=

1 0 0

0 0 0

0 0 -1
/ /

/
0 0 1

0 0 0

(128)

0 0 0

0 0 0

1 0 0
/ i

0 0

/

1

0

0 )

l ->-

/ \

0

0

K1)

(129)
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.9.4 J = 0 or 1(s and p wave interference)

H1(01) =

H11 (01) =

Hd(10) =

/

K
(

0 0 0 -1

0 0 0 0

0 0 0 0

0 0 0 0

0 -1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

(

, HJ(01) =

/

H1(10) =

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

/

H!1 (10) =

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

/
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Ho (11) =

Hl(11) =

H2(11)=

0 0

0 0

0 -1

Hol (11) =

H11 (11) =

0 0)

(
0 0 0 0

0 1 0 0

0 0 -2 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S0 0 0

S0 -1 0

0 0 0 0

0 0 0 0

0 1 0 0

0

H (11)=v6

0 0 0 1 )

0 1 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0
I
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I

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 -1



H 2(11)= v/

H22 (11) = V

00 >=

1

0

0

0

/

0 0 0 0

0 0 -1 0

0 0 0 1

0 0 0 0

/
/
N

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0
/

, I11 >=

0

1

0

0

Ho (00) =

0

0

1

0

/

(
0 0 0 0

0 0 0 0

0 1 0 0

0 0 -1 0

1 0 0 0

0 0 0 0

0 0 0 0

0 00 0
/
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(133)

0

0

0

\\
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.9.5 Angular momentum operators

J = 1/2

1 0 0 1

Jo2= , J_ =

0 -1 0 0

0 v-2 0

0 0 v/2-

0 0 0

SJ

/
0 0 0

/2 0 0

0)

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 -1
I

/
0 0 0 0

0 0 v,2 0

0 0

0 0

0 v/2

0 0?

/

0 0 0 0

0 0 0 0

0 A/2 0 0

0 0 V/ 0)

(136)
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J = 1

0 0

1 0

/

(134)

'I

Jo =

1 0 0

0 0 0

0 0 -1lx 'I

(135)

J = 0, 1 s and p interference

/ \

Jo=

tx
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