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Abstract

A novel theoretical framework for analysis of indentation of magnetostrictives, based upon a linear
material response model, is developed. The governing set of partial differential equations is solved for
the case of an incompressible material, resulting in a solution which predicts the relationship between
the change in magnetic flux and the applied load near the area of contact between the indenter and
the specimen. This relationship (referred to as a <D-P curve) and the relationship between the applied
load and the indenter displacement (a P-h curve) together give a "signature" of the magnetostrictive
response of a given material. Quantitatively, the flux change is predicted to be very small.

A preliminary design concept of an experimental apparatus for the instrumented indentation of
magnetostrictive materials is presented. This design allows for the simultaneous measurement of load,
displacement, and magnetic flux. These measurements, in conjunction with the theoretical framework,
provide a new method for the characterization of magnetostrictive materials in bulk and thin-film form.

Thesis Supervisor: Professor Subra Suresh
Title: R.P. Simmons Professor of Materials Science and Engineering
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Chapter 1

Introduction

To see a world in a grain of sand

And a heaven in a wild flower

Hold infinity in the palm

And eternity in an hour

-William Blake

Indentation is a powerful materials characterization tool. Sharp indentation, for example, has been

used to determine material hardness for a century. Hertzian theory of the elastic contact of two solids,

developed in the 1880s, allowed scientists to predict the effects of indentation of a flat solid by a sphere.

Only within the last 20 or so years, however, has indentation technology developed enough to allow

experiments for measuring multiple material properties using Hertzian theory. Spherical indentation

creates a multiaxial, three-dimensional stress state, and because that complicated stress state is well

understood, indentation can be a quick and simple, yet powerful, measurement tool. In fact, indenters

are now commercially available over a size scale ranging from nano-scale to macro-scale indenters;

none of these, though, is suited for tests that would be appropriate for testing materials with coupled

properties, such as magnetostrictive materials.

"Magnetostriction" is a second-order coupling between the mechanical and magnetic behavior of

a material, first discovered by Joule in 1842 [1]. One of the most important magnteostrictive effects

is the change in length of a material parallel to an applied magnetic field. Magnetostrictive materials

are used in a variety of applications, including sonars [2], speakers, actuators, and transducers [1].

Understanding magnetostrictive theory is also important for applications where it is advantageous for

the magnetostrictive response to be minimized, as in computer hard disks and power transformers

13



CHAPTER 1. INTRODUCTION

(i.e., applications for which it is preferred that a mechanical deformation not accompany a change in

magnetization). About 20 years ago, so-called "giant" magnetostrictive materials were discovered, the

most notable of which is Terfenol-D (Tbo.3-xDy 0 7 Fe2 -y (0 < x < 0.03, 0 < y 5 0.1)) [3]. These

materials have a maximum magnetostrictive strain on the order of 1,000 microstrain, which is two orders

of magnitude larger than traditional materials (such as Nickel).

Investigations into indentation of materials with coupled properties have only been begun recently,

with the indentation of piezoelectric materials [4-6]. Taken separately, indentation and magnetostriction

are research topics of great complexity and depth. The power of instrumented indentation, however,

offers a new method of characterizing magnetostrictive materials. This thesis begins the investigation

into indentation of magnetostrictive materials.

The remainder of this introduction first presents a brief review of relevant subjects, including electro-

magnetism, magnetism in materials, magnetostriction, and indentation. The symbols and variables that

describe the pertinent physical quantities used in this thesis are then described. Finally, the motivation

and objectives are discussed and an outline of the thesis is presented.

1.1 Electromagnetism

All electromagnetic phenomena are governed by Maxwell's four equations. In the 1860s, James Clerk

Maxwell combined disparate electromagnetic equations, correcting inconsistent parts of electromagnetic

theory in the process, and put them into the form used to this day. The derivative form of these vector

equations, which apply to the indenter, specimen, and the surroundings, is as follows:

Gauss' Law V - =p (1.1)

dBN
Maxwell-Faraday Law V x = d (1.2)

Law of Conservation of Magnetic Flux V . B = 0 (1.3)

dD -
Ampere's Circuital Law V X H = + Jfree (1.4)

(See Table 1.1 for a list defining symbols used in this thesis.) Equation 1.1 relates the divergence

of the displacement field D to an electric charge density p. Equation 1.2 relates the electric field E

created by a temporally variable magnetic flux density B. Faraday's law of electromagnetic induction,

which states that

V = _(1.5)at

14



1.1. ELECTROMAGNETISM

(where V is the electric voltage and <b is the magnetic flux inside a given area), can be derived from the

Maxwell-Faraday law. Electromagnetic induction is the mechanism used to detect a changing magnetic

field with a pickup coil, as will be discussed in Ch. 4. Eq. 1.3 implies that there are no magnetic

monopoles, i.e., there are no magnetic "charges" as there are electric ones. It further implies that

magnetic field "lines" can not terminate at the surface of a material, as electric field lines do at the

surface of a conductor. Finally, Eq. 1.4 gives the magnetic field H produced by free electric currents

ifree and by temporally changing electric displacement fields.

A theory of potentials which aids in the solution of problems exists for electromagnetic theory.

Electric problems can be solved solely by utilizing an electric potential # such that E = -Vo. One

advantage of such a scalar potential # is that a constant can be added to it without changing the

solution for E (and thus the point of "zero" potential can be redefined for convenience).

The analogous method of solving magnetic problems requires a vector potential A such that B =

V x A. When there are no free currents, however, a magnetic scalar potential 0M may be defined that

will fully satisfy Maxwell's equations. The scalar potential is easier to use because it involves fewer

variables.

Magnetic fields are created by the motion of electric charges, either as macroscopic current in a

conducting wire or as the microscopic "current" produced by bound electrons (electron spin generally

dominates over the electron orbital motion contribution to the total magnetic field). The magnetic flux

density B is thus the sum of a global applied magnetic field H and the local atomic field M (referred

to as the magnetization), multiplied by the permeability of free space yo:

B = po(H + M) (1.6)

All three terms (B, H, and M) are often discussed as if independent from each other. For a perfectly

magnetically linear material, however, M is directly proportional to the applied field H; the propor-

tionality constant is referred to as the susceptibility X:

M = xf (1.7)

and thus the magnetic flux relations can be written as B = pRH, where AR = P0(1 + X).

The interaction of the magnetic fields due to each atom in a solid creates a plethora of material

behaviors. Materials may be categorized by their macroscopic responses to an applied field. Paramag-

netic materials are those for which the susceptibility is small but positive, thus creating a magnetic flux

density slightly larger than that due to the magnetic field itself: X 10- 5-10- 3. Diamagnetic mate-

rials are those for which the susceptibility is small and negative, and thus the magnetic flux density is

15



16 CHAPTER 1. INTRODUCTION

slightly smaller than it would be otherwise: x ~-10-5. Finally, ferromagnetic materials, the materials

which are of greatest relevance to this thesis, exhibit extremely large susceptibilities, up to x 106 in

modern materials. The high susceptibilities are due to the overlap of electron orbitals between atoms;

the "exchange" energy due to this overlap is minimized when the magnetic moments (i.e., the electron

spins) are parallel (the sum of all those parallel spins leads to the large susceptibilities of ferromagnetic

materials). Magnetostriction is generally only observed in ferromagnetic materials. Soft ferromagnetic

materials exhibit a linear relation between specimen magnetization and applied magnetic field, whereas

the magnetization of hard magnetic materials is dependent on the magnetization history of the speci-

men, i.e., there is hysteresis in the magnetization. Figure 1-1 shows the magnetization response to an

applied magnetic field for the above types of magnetic materials.

Mremanence

Hcoercivity Msaturation

- - Soft Ferro

/ Hard Ferro

-/ ----- Para

-- Dia

FIGURE 1-1: Magnetization curves for para-, dia-, and ferromagnetic materials.

While the exchange energy tends to align the magnetic moments with each other, there is another

energy term, the anisotropy energy, which tends to align the magnetic moments with a particular

crystal direction. This direction is referred to as the easy axis of magnetization. The internal energy of

the system increases (as a function of angle between the easy axis and the magnetization axis) as the

magnetization is rotated away from the easy axis. The general form of the anisotropy energy for cubic

crystals is

E = K1(a2a2 + a2a2 + a2a2) + K 2a2a2a2 (1.8)

where K, and K 2 are the anisotropy constants (and should not be confused with the Bessel functions

K, [x], which will be used later), and a,, a2, and a3 are the direction cosines with respect to the edges

of the cubic unit cell. Some magnetostrictive materials, such as Hiperco-50 and Terfenol-D, have

anisotropy energies that are nearly zero; among other things, this property implies that the change in

magnetization is large for a given applied stress.



1.2. MAGNETOSTRICTION

The magnetostatic energy of a specimen can be reduced via the formation of domains. A domain is

a region of material inside which the magnetization points uniformly in the same direction. Different

domains are, however, oriented in different directions. Appropriate distributions of domain orientations

can result in a bulk magnetization of zero (i.e., all the domains are randomly oriented or pointing anti-

parallel). Domains are generally on the order of 10 to 100 microns in diameter. A continuum mechanics

approach, such as that taken in this thesis, is appropriate when the size scale of the system (in this

case, the contact area) is significantly larger than the domain size.

Domain walls are the regions between domains where the local magnetization direction rotates from

the orientation of one domain to the orientation of the other. The thickness of domain walls is a result

of the balance between the exchange energy (which tends to align adjacent spins) and the anisotropy

energy (which tends to align spins with the easy axis). Walls are characterized by the angle between the

magnetization directions of the domains they separate; 180' and 90' walls are particularly common.

One final point about magnetism in materials is worth noting. A specimen magnetized along its

length and with no ends (i.e., either a closed ring or an infinitely long rod) exhibits an ideal magnetization

curve. Other geometries, however, are subject to an internal demagnetizing field due to the fact that

the magnetic flux lines do not close back on themselves via a path that resides entirely in the specimen.

The demagnetizing field "shears" the magnetization curve over (see discussion in Chapter 4), which

is equivalent to reducing the susceptibility of the sample. This effect will be an important design

consideration for the solenoid which will be used to magnetize our samples.

1.2 Magnetostriction

Magnetostriction' is a mechanical deformation or property change in a specimen due to a magnetic field,

or the development of a magnetization change in response to a mechanical strain. Any ferromagnetic

material (most of which are also magnetostrictive) has a spontaneous magnetization, as stated above.

Magnetic domains, within which all magnetic moments point in the same direction, can be distributed

with random orientations (assuming that the net magnetization of the bulk material is zero) throughout

the solid. Each domain is therefore already strained to its saturation magnetostriction (this is the volume

magnetostriction). The mechanical strain due to a magnetic field is referred to as the magnetostrain; the

symbol A is often used to refer to the uniaxial magnetostrain. Changing the direction of magnetization,

1The terms "magnetostrictive," "piezomagnetic," and "magnetoelastic" are used interchangeably in this thesis. In fact,

they do have subtly different meanings (piezomagnetism is a linear magnetomechanical effect, whereas magnetostriction

is a second-order effect that is often represented with a first-order notation [7]).

17



18 CHAPTER 1. INTRODUCTION

however, also changes the direction of magnetostriction, and it is this change which causes bulk strains

due to magnetostriction.

There are multiple models used to represent magnetostrictive properties. One model assumes a

magnetically saturated material (equivalent to a single domain), and therefore deals with saturation

values. The model we use for indentation of magnetostrictives is developed from a thermodynamic

approach [1]. This method allows a bulk perspective, and allows for a range of magnetizations (this is

possible by having multiple domains, each of which can be oriented in a different direction; summation

of the domains produces the bulk magnetization). Figure 1-2 shows the uniaxial magnetostrain A

developed parallel to a uniform applied magnetic field H.

,1

HA

L

Ho H

AH

FIGURE 1-2: Magnetostrain A versus magnetic field H

1.2.1 Types of Magnetostrictive Response

There are a few magnetoelastic effects which are particularly relevant to this work. The volume mag-

netostriction is, as the name implies, a uniform change in total volume with magnetization. This term

also depends on temperature (and it is through balancing the temperature dependence of volume mag-

netostriction against the thermal expansion coefficient that, for example, the Invar Ni-Fe alloys are able

to keep a constant volume over a large temperature range).

Joule magnetostriction refers to the anisotropic strain dependence of a material on an applied field.

When the term "magnetostriction" is used by itself, it often refers to Joule magnetostriction. This is



1.2. MAGNETOSTRICTION

because one of the primary uses of magnetostrictive materials is in actuators, in which an applied field

is oscillated slightly and causes an oscillating change in the strain parallel to the field, see Figure 1-2.

The Wiedemann effect refers to torsional, instead of longitudinal, magnetostrictive response. It is

usually created by running a current through a cylindrically magnetized cylinder; the resultant torsional

magnetization causes a torsional strain.

The AE effect is the change in elastic modulus with magnetic field. An applied stress causes a

change in magnetic field, which creates a magnetostrain. Therefore (especially at low applied fields) the

material strains more than it otherwise would, and thus has a lower elastic modulus at low fields than

it would were it not magnetostrictive. The modulus reaches a maximum at saturation magnetization.

1.2.2 Linear Magnetoelastic Model

The magnetostrictive constants defined in IEEE Standard 319 can be represented in tensor notation, but

it is important to realize that it is not a true tensor property (as opposed to the elastic or piezoelectric

properties, which are true tensor properties). It is written as a 3rd rank tensor because it relates a

strain or stress (2nd rank) to a magnetic field or field density (1st rank).

In a manner similar to what is done for third rank piezoelectric tensors, the magnetostrictive "tensor"

can be contracted from a three-subscript notation to two-subscript notation:

di _ 1 _ - O~ k (1.9)

by means of contracting the strain/stress component in the same way that strain/stress tensors and

stiffness/compliance tensors are contracted: 11 -+ 1, 22 -+ 2, 33 -+ 3, 23 or 32 -+ 4, 13 or 31 -* 5, and

12 or 21 -+ 6. The representation then reduces to

dmn - Mm = aEn (1.10)
O'-n OHm

Therefore the first number refers to the magnetic field (and hence ranges from 1 to 3), and the second

number refers to the stress/strain field (and can range from 1 to 6). Note that dijk -- dkn [1].

These magnetostrictive constants are useful in that they measure the amount of change in strain for

a given change in magnetic field. Generally, only the maximum value for d33 (and the magnetic field

strength at which it occurs) is reported in the literature, as that is the parameter most important in

the design of transducers.
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CHAPTER 1. INTRODUCTION

1.3 Indentation

Indentation has been a useful technique in materials characterization for nearly a century. Since Hertz

developed the theory of indentation of two elastic solids [8], indentation has been used and studied

extensively. A comprehensive introduction to the mechanics of indentation can be found in Johnson [8].

Indentation provides a very interesting example of mechanical behavior. Hertz solved the general

problem of pressing two spheres into each other (see Appendix A for details) [8] which can be reduced

to pressing a sphere into a flat surface by setting the radius of one sphere to infinity. Hertz's results

give the stresses and displacements on the surface only. The potential methods of Boussinesq and

Cerruti [8] can be used to determine the stresses and displacements throughout an entire body, but

generally require numerical solution; Johnson [8] only gives the solution on the surface. Hamilton [9]

presents a simpler way to determine the displacements and stresses throughout the body, and in fact

gives a closed form algebraic solution for the stresses.

One of the most important results to come out of the classic indentation investigations was the

prediction that related the applied normal force P to the depth of indentation h for linear elastic

isotropic materials:

P = Ch2 1.1

where C = iv"E*, R is the composite radius of the two bodies, and E* is the composite elastic modulus

(see Appendix A for more details). Both load P and displacement h are relatively easy to measure

experimentally. Technological advances enabled the accurate measurement of these quantities, and

thus enabled the use of P-h curves as a materials characterization tool. By performing an indentation

test (and assuming that the properties and the geometry of the indenter are known), then, for example,

the Young's modulus of a specimen can be deduced from the C value obtained from fitting the P-h

response of an indentation test.

Indentation is an important test of materials because of its well-characterized multiaxial behavior.

The stress state throughout the body is known, and other related phenomena (such as pile-up or sink-

down near the indenter) are well-correlated with the elastoplastic properties of the indenter and the

material.

1.4 Description of Variables

Table 1.1 lists the symbols used in this thesis, their name, and their units. Note that

so = 1.254 - 10-6 H/m and co = 8.854. 1012 F/m. (See Appendix B for a list of unit conversions.)
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Symbol Description Units

B, Bi, B Magnetic flux density T

M, MA Magnetization A/m

H, Hi, H Magnetic field A/m

<1, <bD Magnetic flux Wb

OM Magnetic Scalar Potential A

p, pij, ft Permeability H/rn

x Susceptibility

F, Ei Electric Field V/m

13, D Electric Displacement C/r 2

P, Pi Polarization C/r 2

or V Electric Scalar Potential V

f Permittivity F/m

f Current Density A/M 2

-, o-ij, & Stress Pa

e, Eij, j Strain

u, wi Displacement rn

a Contact Radius m

Ci 1kl, C Stiffness tensor Pa

cij Simplified stiffness tensor Pa

C Curvature of a P-h curve N/m'.5

E Young's Modulus Pa

V Poisson's ratio

ViA, F Reluctivity m/H

A Magnetostrain

eij, eijk, e Magnetostriction coefficient T

dij, dijk, d Magnetostriction coefficient T/Pa

y Normalized radial position, r/a -

E Composite Variable = (1 - v 2 )poels/(E*a) T/m

TABLE 1.1: Symbols used
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FIGURE 1-3: Typical P-h curve; this is for unmagnetized Terfenol-D.

As seen in Eq. 1.6, B is bo times the sum of H and M. These three terms, however, are often

interchanged so that any of them is the sum (or difference) of the other two. One way of looking at

this is to consider H to be a "global" magnetic field due to large-scale applied currents, whereas M

is a "local" magnetic field due to atomic-scale currents. B, then, is the sum of these local and global

variables. Perfectly linear, magnetically soft materials have no intrinsic magnetization, but can be

magnetized by an applied field. In the case of a permanent (hard) magnet with no external applied

field, however, both H and B are needed to solve for Maxwell's equations. In this way, Eq. 1.6 is

manipulated to obtain whichever magnetic variable would be considered as primary. B is measured in

Tesla or Webers (units of flux) per square meter, whereas H and M are measured in terms of Amperes

per meter (equivalent to the amount of current per unit length of a solenoid).

The magnetic flux <b is often described as representing the individual "lines" of magnetic field. The

density of these lines is B and defines the strength of interaction of magnetic fields, but the flux itself

is extremely important. For the purposes of this work, the flux is useful for measuring the magnetic

changes near the point of contact, because the pickup coil used to detect these changes is much larger

than the area of the magnetic field. The field itself is of varying flux density, and so the most useful

variable to measure is the total flux, since this will signal the overall change in the magnetic field.

The stress o-i and the strain Eij describe the pressure (units of Pascals) and fractional displacements

(dimensionless; often expressed as a percentage) in a solid. The stiffness coefficients Cijkl (given in

units of Pascals) relate the stress necessary for unit strain. In indentation, the displacements u near

the indenter, measured in meters, are used to determine the local deformation. The contact radius a,

also measured in meters, is an extremely important length scale in determining the size of the region
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in which properties are being tested.

Figure 1-4 shows the coordinate system and certain dimensional parameters for spherical indentation.

Given enough material symmetries, spherical indentation is axisymmetric and therefore a cylindrical

coordinate system is used. A load P is applied to a sphere of radius R, which indents to a depth h

(sometimes referred to as J), with a contact radius a.

Load P

rDiameter D=2R

Indenter

FGd1 Innaoonnst-
Depth h or 8t

FIR E -: nenaio yse

There are four magnetostriction coefficients, which relate stress or strain to magnetic field or flux

density. The two most commonly discussed in this thesis are ei, and di,. eig, which relates a change in

stress to a change in magnetic field (or a change in flux density to a change in strain), has units of Tesla

(literally, Tesla per unit strain). di, relates a change in strain to a change in magnetic field (or a change

in flux density to a change in stress), and has umits of meters per Amp (strain units per magnetic field

units) or Tesla per Pascal. The scale of this coefficient is such that it is generally written in units of
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nanometers per Amp.

1.5 Motivation

As mentioned at the beginning of this chapter, magnetostriction is important for a number of applica-

tions. Beyond this, though, magnetoelastic coupling opens a window into the study of nanotribology

of an important class of magnetic materials-those used in computer hard disks.

A requirement for studying material properties and tribology is a clear understanding of the material

response to stimuli. In particular, it is desirable to predict material response to a stimulus and to extract

material properties from the data measured during a stimulus, i.e., the solution of both the forward

and the reverse problems are desirable.

One motivation for studying the indentation of magnetostrictive materials is the need for a quick

and simple yet powerful method of measuring material properties (both magnetic and elastic) of magne-

tostrictive materials. Such a tool would not only allow the characterization of newly developed materials;

it could also serve as a quality control device for manufacturers of magnetostrictive materials.

The computer hard disk industry is another area which could benefit from understanding the inden-

tation of magnetostrictive materials. According to Bhushan [10]: "Interface tribology is the limiting

factor in achieving the potential storage density [in magnetic storage]." Despite the importance of un-

derstanding nanotribology of hard disks, however, no fully coupled theory of magnetoelastic tribology

yet exists, to the author's knowledge. The most basic form of the disk head/substrate interaction to

study is indentation, and the easiest form of indentation to study is spherical indentation. In fact, a

spherical indenter can serve as a model of an asperity (either the disk head itself, or a non-flat section

of the substrate), and can be used to study the fundamental mechanics of contact. Using the spherical

indenter as a model, the well-understood contact mechanics results can be extended, then, to the hard

disk industry.

Indentation can not currently be used to study magnetostrictive materials or the tribology of mag-

netic materials for two reasons. First, as mentioned above, a fully coupled theory of indentation of

magnetostrictive materials does not exist. Second, there is no experimental apparatus which can simul-

taneously measure mechanical and magnetic changes. This thesis seeks to remedy both problems. Our

first objective is to create a theoretical framework for analyzing the indentation of magnetostrictive

materials. Our second objective is to design and construct a quantitative indentation setup for testing

the same materials. More specifically, the theory should predict the form of the P-h curves, as well as

an analogous form for magnetic data: 4-P curves. The experimental setup should be able to measure
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the same data.

Indentation can also be used to measure the decay of magnetization over time of a material at

elevated temperatures. The magnitude of the spontaneous magnetization decreases with temperature

until, above the Curie temperature, magnets lose all spontaneous magnetization. Furthermore, there is

a time-dependent decay of magnetization at elevated temperatures (below the Curie temperature) for

some magnets. The activation energy for depolarization was successfully measured for piezoelectrics

via indentation [6], and similar capabilities are expected for indentation of magnetostrictive materials.

1.6 Outline

In Chapter 2, the formulation of the problem is presented, the relevant literature is reviewed, and

the objectives of the research are outlined. Chapter 3 is the main theoretical chapter, wherein we

examine the constitutive equations, apply the equilibrium conditions to them, solve the resulting partial

differential equations and arrive at a general solution for a limiting case. A description of the experiments

to validate this theory is included in Chapter 4. Chapter 5 summarizes conclusions and recommendations

for future work. Appendix A summarizes the classical results for indentation of an elastic solid by a

sphere.
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Chapter 2

Problem Formulation

2.1 The Problem

Fundamentally, the challenge we face is to create a reliable and simple test which allows the determina-

tion of the magnetoelastic, as well as the elastic and magnetic, properties of a given material. "Simple"

means of such a design as to be easily usable, for example, as a quality control device for a manufacturer

of magnetostrictive materials. The development of such a test includes theoretical analysis as well as

experimental verification.

The theoretical problem is to determine the mechanical and magnetic response of a magnetostrictive

material to indentation. Indentation creates a three-dimensional state of stress, and is therefore much

more complicated than the uniaxial state of stress which has generally been treated in the literature

(with a few exceptions noted below). This stress state provides the benefit that it will, at least in

theory, allow the simultaneous measurement of multiple material properties in a single experiment,

instead of requiring multiple experiments (which would normally require different sample geometries)

to accomplish the same goal. But as will be seen in Chapter 3, it is also a hindrance in that it

significantly increases the difficulty of analysis. The related experimental problem is to design and test

a system which has the ease-of-use of indentation, while being able to accurately measure small changes

in magnetic fields.

Before analyzing the full magnetoelastic problem, it is informative to study the case of an uncoupled

material, i.e., one in which the magnetic and mechanical responses are completely independent. The

27



CHAPTER 2. PROBLEM FORMULATION

uncoupled problem has a material response described by

(2.1)

where the variables in each matrix are themselves material property matrices: & is the stress matrix,

P is the magnetic flux density matrix, C is the elastic stiffness tensor, A is the magnetic permeability

tensor, 9 is the strain matrix, and f is the magnetic field matrix. For an "uncoupled" problem, the off-

diagonal terms above are zero, and hence the mechanical (& = C9) and magnetic (P = Aft) solutions

can be derived independently. A coupled, linear material, has a material response as follows:

S0 jT 9
(2.2)

where d is the magnetostrictive constant matrix. The mechanical and magnetic components of a coupled

problem must be solved simultaneously.

Classical indentation theory gives a relation between applied load and relative displacement of the

indenter to the material, also known as the P-h curve. We expect the P-h curve of a magnetostrictive

material to deviate from the classical theory in predictable ways. There are more material parameters

for a magnetostrictive material than a simple elastic material, however, and so an additional set of data

would be needed to fully characterize the material. Prior work on indentation of piezoelectrics measured

electric current as a function of time during indentation to provide such additional data [4-6].

2.2 Literature Review

Almost all of the work to date on magnetostrictive materials has been on the uniaxial case, consider-

ing only a one-dimensional stress-strain state, as well as only a one-dimensional magnetic field (i.e.,

considered the strain parallel to the applied field or the change in the magnetization curve for a certain

stress applied in the same direction). In addition, most of the work has focused on the magnetostrain

response to an applied magnetic field, with very little investigation of the effect of applied strain on the

magnetic field'. Thermodynamics dictates that these two cases are the converse of each other, and so

studying one case should reveal similar information about the other case. However, we were not able

to find any studies with experimental proof of this conjecture.

1This is likely due to the fact that applications derived so far primarily rely on the magnetostrain response to an

applied field.
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De Lacheisserie [1] reviews the bulk of magnetoelastic research up to about 1990. All of the physical

effects which fall under the term "magnetostriction" are described in [1], both experimentally and

theoretically. He presents the linear magnetoelastic constitutive model used in this thesis. Material

property data on a number of magnetostrictive materials are collected therein (some of which is repeated

later in this work). Various applications of magnetostriction are also described.

Brown [11] provides a comprehensive review of magnetoelastic theory, much of it derived from

fundamentals. He goes in depth into a full theory which includes body couples and their effects, much

of which is not relevant to the present problem.

IEEE Standard 319 [7] defines the nomenclature of magnetostrictive behavior. Namely, it defines

the magnetostrictive constant matrices dij, eij, hij, and gij and presents their units. All four constants

are referred to simply as the "effective piezomagnetic coefficient." It also presents the equations of

state and notes which constant coefficients are non-zero. Note that, although Std. 319 describes the

magnetoelastic property constants with a 3rd rank pseudotensor, it does not impose restrictions on the

tensor elements due to crystal or other material symmetries.

d33 refers to the strain in the 3 direction due to a magnetic field applied in the 3 direction. Figure 1-2

shows the magnetostriction constant d33 in a graphical manner. It should be noted, however, that the

dij denote not only the strain response to an applied field, but conversely the field density response to

an applied stress:

d - (2.3)

While d33 , for example, could be estimated from the slope of a strain vs. field graph, such a practice

would be tedious and not extremely accurate. Unfortunately, we were not able to find any studies

which presented d33 as a function of field (or stress). At best, the maximum value for d33 (dmax)

alone is presented. Furthermore, as mentioned above, we were not able to find any studies which

demonstrated experimentally the equivalence shown in Eq. 2.3. Given the multiple mechanisms by

which the magnetization state of a body can change, it would not be surprising to find that, at a given

initial applied field, one mechanism is dominant under a change in the magnetic field but that a different

mechanism is dominant under a change in stress. For example, at low magnetic field a change in field

may cause the motion of 180' walls (which do not create any magnetostrain) whereas at the same field

a change in stress might cause 90' wall motion.

Data on dmax for candidate test materials such as iron and Terfenol-D are common in the literature;

some of these references are listed in Section 4.1 along with the relevant values. Data for d15 (or e15

or any of the related constants), however, was much more difficult to find. Studies of the Wiedemann
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effect would be expected to report this value, but the studies found instead generally reported magnetic

field strengths and applied currents (which, in a magnetized cylinder, produce the mechanical torsion).

One paper, by Zhakov et al [12], does provide some data on Permendur (very close compositionally to

the Hiperco-50 material listed in Chapter 4), in the form of a different magnetostrictive constant h15

(recall that hij are magnetostrictive constants similar to dij).

Carman and Mitrovic [13,14] derived a nonlinear constitutive model for magnetostriction which

includes mechanical, magnetic, and temperature effects. The most notable part of their work is that,

instead of using the standard linear magnetomechanical coupling, they use an even-powered dependence

of the magnetostrain on magnetization which is, in fact, much more appropriate to the magnetoelastic

coupling (because the magnetostrain is an even function of magnetization). The advantage of their

theory is that only a single set of material property constants would be needed to completely characterize

a material (as opposed to the linear theory, where the material "constants" are in fact highly varying

functions of magnetic field and mechanical strain).

2.2.1 Indentation of Piezoelectric Materials

Results from the indentation of piezoelectric materials are useful to study because the linear constitutive

models are nearly identical in form, and there are a number of similarities between the equilibrium

equations which govern their behavior. The results of the research on indentation of piezoelectric

materials can serve as a guide for research into indentation of magnetostrictive materials.

Giannakopoulos and Suresh [4] first solved the problem of indentation of piezoelectric materials.

Starting with basic constitutive relations for coupled electromechanical systems, they derived solutions

for the general case of in-plane symmetry, for both conducting and insulating indenters.

The piezoelectric results can not simply be rewritten for magnetic systems, for a number of reasons.

First, the non-existence of magnetic monopoles means that the magnetic field can not be restricted

at the boundary in the same manner as the electric field (where the electric potential can be set to

zero by coating the surface with a conductive film and grounding that surface). Therefore the magne-

tostriction boundary conditions are "weaker." Second, the piezoelectric effect is a first order (linear)

effect, whereas magnetostriction is a second order effect. Finally, electric polarization is accomplished

by the separation, at an atomic scale, of charges; a material is depolarized when the charges are no

longer separated. A magnetostrictive ferromagnetic material, on the other hand, is always magnetized

and thereby strained to its saturation magnetostrain (on a local level - on a bulk scale, it can appear

to be demagnetized). Therefore, for both macroscopic as well as microscopic reasons, the indentation

responses of piezoelectrics and magnetostrictives are not directly comparable.
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Despite the above-mentioned differences between piezoelectric and magnetostrictive materials, there

is much useful knowledge to be gained from the prior work on indentation of piezoelectrics before

proceeding with magnetostrictives. Theoretically, the constitutive models for a linear response are

effectively identical. Experimentally (see below), the results provide a guide as to the type of the effects

(beyond direct measurement of property constants) to be examined.

Experimental work was carried out by Ramamurty et al. [5] and Sridhar et al. [6]. They demon-

strated the usefulness of the indentation technique for measuring not only the mechanical, dielectric

and piezoelectric properties, but also easily determining the polarization direction and measuring the

activation energy for polarization decay.

Ramamurty et al. [5] confirmed the theory of Giannakopoulos and Suresh by showing that the

curvature of the P-h curves (the C in P = Ch3/ 2 ) depended on whether or not the material was poled

as well as the electrical state of the indenter.

Sridhar et al. [6] determined that the poling direction could be determined simply through the sign

of the quasi-current produced by indentation. They also showed that the activation energy for decay

of polarization could be determined by a series of indentation tests. Finally, it was demonstrated that

measurement of electric current during indentation was able to determine the direction of polarization

of the specimen.

2.3 Objectives

This thesis is a first attempt at a theoretical and experimental investigation into the indentation of

magnetostrictive materials. The following results are presented in this thesis:

" A basic theoretical framework for spherical indentation of magnetostrictive materials.

" A relation between magnetic flux and indenter depth (or load) for the case of an incompressible

material (v = 0.5), solved using the above framework. This result can serve as a guideline for

developing experimental predictions as well as for more general analytical solutions.

" The outline of a method for dealing with variation with field (or stress) in magnetostrictive

property "constants".

" The preliminary design and construction of a new instrumented indentation setup which can

simultaneously measure load, depth, and magnetic flux.
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Chapter 3

Linear Material Model

The Book of Nature is written in mathematical characters.

-Galileo

This chapter first covers the equilibrium and constitutive equations as well as the boundary conditions

governing this system. These are combined into the general partial differential equations that need to

be solved. The general solution to these equations is then outlined, and some specific cases are solved.

3.1 Assumptions

Plastic deformation strongly affects the magnetic properties of the material, and therefore all indentation

experiments will be restricted to the elastic regime. (In order to accomplish this, the yield strength

of the material has to be taken into consideration when designing the indenter size and maximum

load.) As the model discussed in this chapter is a linear model, complete reversibility of strains and

magnetizations is assumed. This also means that the system is assumed to be linear on a local scale.

The constitutive models are assumed to be fully applicable to changes in field values as well as

absolute values. Thus, AB = po (A\H + AM) is true, with respect to an initial state Bo = yo(Ho + Ao).

Thus the current state of the system can be ignored, and only changes in the state of the system need

be studied.
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3.2 Equilibrium Equations

We are assuming regular equilibrium conditions. Beginning with mechanical equilibrium, the first

condition is that the sum of all forces on the body is zero (i.e., no net acceleration of the body):

- 0 (3.1)
axi

The next condition is the small strain equations (because of the assumption of linear elasticity):

1i u = j (- + &u) (3.2)
2 Oxj Oxj

The small strain equations assume continuity of displacements, and so the compatibility equations
.9e 2E. a 2 E 0

- 2a + .a=-- = 0 are redundant if the problem is formulated in terms of displacements.
3

The magnetic equilibrium equations were shown in Section 1.1. The first magnetic equilibrium condition

sets the divergence of the magnetic flux density to zero, or alternatively states that there are no magnetic

monopoles:

V - B = 0 (3.3)

The other magnetic equilibrium equation relates the curl of the magnetic field to the free currents and a

time change in the electric displacement field (and is also called the generalized Ampere circuital law):

V X H = Jfree + =ffree (3.4)

att
because we assume that 9 is zero.

3.2.1 Cylindrical Coordinates

The axisymmetry of spherical indentation together with the material symmetry allows the problem to

be recast in cylindrical (r, 0, z) coordinates (see Figure 1-4). The mechanical equilibrium equations in

cylindrical coordinates are

&O'rr +O0Urz +
0

rr - 00 35
+r + z= 0 (3.5)ar C9Z r
Ourz + z r = 0 (3.6)

Or 9z r

where r is the radial displacement away from the line of axisymmetry, z is the depth into the specimen,
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and the o-ij are the stress components. The small strain equations in cylindrical coordinates are

OUr
£rr Or (3.7)

E0 Ur (3.8)r

Ezz = (3.9)
Oz
OUr OUZ 3.0

Yrz = Erz Z + Or(3.10)

where Ur is the displacement in the r direction, uz is the displacement in the z direction, and the Eij

are the strain components. The divergence of B (conservation of magnetic flux) becomes

OBr+ + B 0 (3.11)
Or r Oz

where Bi are the components of the magnetic flux density. Ampere's law, V x H = Jfree, becomes

IOHl OH0  = Jr (3.12)
r 00 - z

OHr aHz= Jo (3.13)
Oz Or

09Ho Ho 1 aH,
OH0 +H r Or = Jz (3.14)
Or ~r r Dr

where Hi are the components of the magnetic field, and the Ji are the components of the current

density.

3.3 Other Information

3.3.1 Material Constants

The number of material constants influences the complexity of the problem. Property constants for the

general axisymmetric case (e.g., a polycrystalline or isotropic material with a cylindrical symmetry due

to an applied field) are presented in Table 4.1, and include 10 constants. But in fact, as will be shown

later, the materials we chose to examine first are not very anisotropic, and we can approximate them

as isotropic. This reduces the number of material constants, and simplifies considerably the involved

partial differential equations.
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3.3.1.1 Related Magnetostrictive Constants

Here is a brief proof that e31 = -e 33 /2. From Chikazumi [15], the change in length of a sample along

a certain direction is

-1 = cl 4322 +( 202 +a 232 1- (ala23132 + a2a3323 + a3al33f31) (3.15)
1 ell - C12 (11 2 3 3 C44

where the a. are domain magnetization direction cosines and the 3i denote the strain measurement

direction. Then for a, = O1 = 1, all others set to 0, the strain parallel to the applied field (which is

proportional to d33 and e33 ) is

-1 -2 d33 e33  (3.16)
1 3 c 1 1 - c 12

and for a, = #2 = 1, all others being 0, the strain perpendicular to the field (which is proportional to

d3l and e3 i) is

61 +1 B1-1  = - ~, d31 ~ e3 i (3.17)
1 3 C11 - C12

Taking their ratio shows that e3 i = -e 33/2. This reduces the number of independent magnetostrictive

constants from 3 to 2.

3.3.2 Scalar Magnetic Potential

According to Jackson [16] and Popovic [17], if Jfree = 0 in the region of interest, then V x H = 0

allows the use of the magnetic scalar potential B = -poVOM, for the same reason that V x E = 0

allows E = -VO (see Section 1.1). Physically, the magnetic scalar potential is directly analogous to

the electric scalar potential V. As we shall see later, it may be necessary to use this scalar potential

because it reduces the number of variables by one, from B, and B, to Om. Note that BO is not included

because it is zero.

3.3.2.1 Notes on components of B

The indenter/substrate system used here is, as noted in Section 3.2.1, axisymmetric. This means that

Bo = 0  = 0 and therefore the magnetic field is irrotational about the z axis. Since a = 0, we can

say that (since H= -VOM)

Br = -po (3.18)
i9r

and

BZ = -PO OOM (3.19)

36



3.4. CONSTITUTIVE EQUATIONS

3.4 Constitutive Equations

As discussed in Section 3.1, only changes in field values instead of absolute values will be considered.

The full form of the constitutive equations below would be written in the following form:

6& = a jg - e 31 (3.20)

6P = Z + p 611 (3.21)

To simplify notation, however, the "small variation" 3 symbol will be dropped hereafter'.

3.4.1 General Forms

The four possible variables to use in the constitutive equations are B, H, o, and e. There are four possible

representations. That is, there are four ways to write the linear constitutive relations, depending on

which two variables we choose to be the "dependent" ones:

1. Stress and magnetic flux density (o, B)

S=oH g _ jft

(3.22)

where OH are the elastic stiffness coefficients at constant H, J are the magnetostrictive constants,

and A are the permeability constants.

2. Stress and magnetic field (o, H)

& =oBg _hf3
(3.23)

where o0 are the elastic stiffness coefficients at constant B, h are the magnetostrictive constants

relating the change in magnetic field to the strain, and 0 are the reluctivity (effectively the inverse

of the permeability), relating the change in magnetic field to the change in magnetic field density.

3. Strain and magnetic flux density (E, B)

g = 9& +dif
(3.24)

1The elastic constants do not change with stress noticeably below the yield strength, whereas the magnetostrictive

constants do depend on the magnetic field. Since we assume a monotonic behavior of our materials (and the materials'

magnetization curves exhibit no hysteresis; see Chapter 4), the effects of a large (rather than infinitesimal) change in an

independent variable would be dealt with by integrating the constitutive equation over the proper range; see Section 3.9.3

for details.
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4. Strain and magnetic field (E, H)

(3.25)
B3 = -j&* + iOB

Given the mechanical equilibrium equations (which give a as a function of s) and the fact that

experimentally, displacements ui are measured instead of strains, it makes sense to use either the first or

second form above (i.e., (a, B) or (a, H) representation). Therefore, the third or fourth representations

will not be discussed further. It is less clear whether the (a, B) or the (a, H) representation is most

advantageous to use. It depends on whether we follow a straight analogy from the piezoelectric case

(i.e., just substitute the magnetic divergence equation for the electric one, and similarly for the curl

equation) or follow a more quasistatically "symmetrical" analogy (i.e., substitute V x H = Jfree for

V.D=pand V-B=0 for V x E=0.)

3.4.2 Stress and Magnetic Flux Density (-, B) Representation

Assuming in-plane (i.e., r-O plane) symmetry, there are only 10 independent material constants: 5

elastic, 3 piezomagnetic, and 2 magnetic. In cylindrical coordinates, the mechanical equations are

Orr = Clierr + c 12 EOO + c13ezz - e3 1Hz (3.26)

OO = C12Err + c11EOO + C13czz - e3 iHz (3.27)

zz = C13 (Err + EOO) + C33Ezz - e33Hz (3.28)

Urz = C44Erz - el5Hr (3.29)

and the magnetic equations are

Br = el 5erz + /p11Hr (3.30)

BZ = e31(Er + EOO) + e33ezz + P33Hz (3.31)

3.4.2.1 Particular Case: Isotropic Material

If we further assume that the material is isotropic (an elastically isotropic material is one for which

(C11 - c12) = c44 ), then the number of material constants reduces to 5: 2 elastic, 2 piezomagnetic

(because e31 = -e 33 /2; see Section 3.3.1.1), and 1 magnetic. For the isotropic case, c 13 -+ C12,

C33 -+ Ci, d 14 = -d 2 5 = 0 and P33 -4 p1 2

2 de Lacheisserie [8] states that in fact d14 has never been observed in any material.
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The constitutive equations become

Urr = Clerr + c12 (Eoo + E,,) - esiHz (3.32)

00= C11Eoo + 12(rr + Ezz) - e3lHz (3.33)

Ozz = Clzz + C12(Err + EOO) - e3 3Hz (3.34)

Urz = C44erz - el5Hr (3.35)

Br el 5sErz + btiiHr (3.36)

BZ= e3l(Err + oo) + e33ezz + 111Hz (3.37)

Later on the equations will be rewritten using the more common Young's modulus E, shear modulus

G, and Poisson ratio v. The stiffness constants are

E(1 -v) Ev E
= - v)1_) I C12 = ) 44 = G = (3.38)

(1 T+ v)(1 - 2v) '(I + v)(1 - 2v) '2(1 + v)

3.4.3 Stress and Magnetic Field (-, H) Representation

In a similar manner, we begin with Eqs. 3.23 from Section 3.4.1, where hij are the magnetoelastic

constants (analogous to eij or dij) relating strain and magnetic field. vij is referred to as the reluctivity,

and is effectively the inverse of the permeability p-ki. The relationship between hij, eij, and other

constants is:

hmi = vnmeni = VnmdnkCki (3.39)

emi = dmj 4= Am ha (3.40)

and from this we can see that h33 , h 31, and h15 are the "equivalents" to e33 , e3 l, and e 15. (As an

example: h33 = Vn3en3 = v33e33 because e13 = e23 = 0 due to the axisymmetry of the applied magnetic

field (only the H 3 component is assumed to be non-zero [1]).)

0rr = cllerr + C12EOO + Cl3Ezz - h 3 jBz (3.41)

0'0 = cl2err + c11 EOO + C13ezz - h31 Bz (3.42)

Uzz = c13(err + Eoo) + c33ezz - h33 Bz (3.43)

grz = c44erz - hi 5Br (3.44)

Hr = -h 5Erz + ViBr (3.45)

Hz= -h3(Er + soo) - h33Ezz + V33Bz (3.46)
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CHAPTER 3. LINEAR MATERIAL MODEL

3.4.3.1 Particular Case: Isotropic Material

Applying the same simplifications as in Section 3.4.2.1

0rr = C11Err + c 1 2 (Eoo

0'00 = C11SOO + C12(Err

cZZ = C11Szz + C12(Err

Urz = C44Srz - hi 5 Br

Hr = hl5erz + p11Br

Hz = h3(err+soo)+

+ Ezz) - h31Bz

+ Ezz) - h31Bz

+ Eoo) - h 33 Bz

h 33 ezz+ iiBz

3.5 Partial Differential Equations

Having defined the appropriate constitutive equations, we next substitute them into the relevant equi-

librium equations to extract a system of partial differential equations which must be solved together

with the boundary conditions to determine the mechanical and magnetic response to indentation.

3.5.1 Stress and Magnetic Flux Density (-, B) Representation

Substituting the appropriate constitutive equations, Eqs. 3.26-3.31, into the equilibrium equations,

Eqs. 3.5, 3.6, and 3.11, we get

Oerr, Os00  
0 ~ZZ OHz1 +[Oerz - Hr~ 1 FC1 - c12=0

C1 Or + C 12 0 + C1 3  -- e 31 OH 44 e 15  r+ (Err - OOj) 0iBr ar (9r 9r. Oz Oz r

c 4 4  -e 15 I + Ic13 ] + [+9 +c33 -e 3 3  + [C44 -- e -
Or 4r 57z z )z 0z r r

= 0

0 erz n i Ber Osoo\ Oezz]
e15 + P11 + [1(e15Erz + t11Hr)+ [ + aE 9 + e 33  I = 0Or-3 OrI z O9z J O9z

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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3.5. PARTIAL DIFFERENTIAL EQUATIONS

Substituting in the small-strain equations, Eqs. 3.7-3.10, leads to the three partial differential equations

which must be solved:

1 aur Ur
_r_7 r2 )

1 9uz
+ r _ r

1 Ounz
r 57

0 2 ,.
+ C44 O2 +

a2UZ
+ C33 0z2

0 2 U, OHr OHz
(C13 + C4 4 ) Z--e 1 5 9-e 3 1 = 0

O Our. Ur '
+ (C13 + C44) O r +r

-e 15 ( r +

O 2 U, O (OUr Ur'\

+ e33 0 2 +e15 + 3a rrj

+9Z2 +- O+ il r +

OHZ
-e 33 z =0

Oz

OHZ
+pLt33 =0

Oz

An additional constraint is needed since these three partial differential equations contain four variables

(Ur,Uz, Hr, and Hz). One way to resolve this is to use the magnetic scalar potential described in

Section 3.3.2: H = -VOM.

+ C44 02 + (C13 + C44)
492 oro~z

+ 2u + C33 0z 2 (C13 + c44)+ OUr ±Ur

- e 1 5 Or 2

(02$e33 a2U + 5 - e3 a r+

(92 OM
+ till §r2

O2 0M _ 2 0M
- 59 ~31 = 0

r 09J

) 0M

92 0M
- 3 3 0Z 2  0

+ A z 2 =0

(3.56)

(3.57)

(3.58)

Cll 2

C44 (5r2

e15 (5z2

(3.53)

(3.54)

(3.55)

C11 3Or2

(02 uz,
C4 4 k. r 2

e-15 _ 72

1 g r2 U

1 Ouz\
r Or )

+1 O9uz'
r O9r)
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42 CHAPTER 3. LINEAR MATERIAL MODEL

3.5.1.1 Isotropic Material

Following the procedure as above (taking the equilibrium equations, substituting in the above consti-

tutive equations and the small-strain equations), the three partial differential equations become

1 OUr Ur\ + 2 Ur

r Or r 2 + c4 z 2 + (c12 + c44 ) arUz
O rOz

+ (CO2 + C44) (OUr Ur

-1502M +
-i Or2 +

lom)
r Or

(92 0M
-05O2 0

02 OM
+ Oz 2 =0

(3.60)

(3.61)

We can rewrite these equations using the more widely used Young's modulus E, shear modulus G,

and Poisson ratio v as shown in Eq. 3.38, and then they are:

+1 allr Ur + E 192 U

+r Or r2 ) 2(1 + v) Oz2

- ( 2 1
2(1 + v)(1 - 2v) f

02 2 M 2 O2

OrOz OzOr OrOz

(3.62)

+1 +U, ++r Or )
E(1 - v)

(1 + v)(1 - 2v)

- e15 Or2

e33 A2 + (e15 + e31) a (OUr + Ur

(02 OM
+ / 11 Or 2

1 O0M
r Or )

2M
(33 Oz2 = 0

(3.63)

10M + 2  0
r Or Oz 2 )

(3.64)

which contain only 5 constants. Note that the denominator in Eqs. 3.62 and 3.63 contains the term

1 - 2v. Later, we will take advantage of this to simplify the PDEs for the case of an incompressible

material (v = 0.5).

(
2
Ur

c11 Or 2
O2 ekM

-e5 Oz~r 12z=0
OrOz

( 02U
C44 Or 2

(02U u
e15 Or2

(3.59)

02z 
+ c 11 Oz2

0 2Uz
+ e33 Oz 2 + (e15 + e3) z (OUr fUr

+(m~3Oz-k Or r9

+ O2 +M 1O9M
+p1 Or2 r Or

E(1 - v)

(1 + v)(1 - 2v)

(2 Ur

E
2(1 + v)

(02Uz
0r2

02Z +
0z 2 +

(OUr
5r

Ur '
+ r )

e 15 Or2 + 1Ouz)r Orz)

+1 Ouz 3
+r Or )

+1 Ouz
+r 1 r j

E ) 0
2(1 + v)(1 - 2v) z



3.5. PARTIAL DIFFERENTIAL EQUATIONS

3.5.2 PDEs in the (-, H) Representation

Using the same equilibrium equations as above results in a set of PDE's which are almost identical

to Eqs. 3.62-3.64 (except that the Hi become Bi and ejk become hjk). Alternatively, treating the

magnetostrictive case in analogy to the piezoelectric case (this includes treating the electrostatic and

magnetostatic equilibrium equations which are both equal to zero as analogous), would dictate using

V x H = Jfree, which is the equivalent to V -D = p, instead of V -B = 0. In the piezoelectric case p was

set equal to zero, but that can not automatically be done for the magnetostrictive case. By not applying

any magnetic field and by indenting slowly (much slower than the speed of sound in the material; i.e.,

so as not to cause rapid changes in magnetization), however, it can be assumed that Jfree = 0. Note

that J. = 0 for a non-conducting indenter.

3.5.2.1 General Case: Cylindrical Symmetry

Following the discussion above, we can repeat the analysis for the general case. The only difference

is that these equations are derived from Eqs. 3.41-3.46 and Eqs. 3.12-3.14 instead of Eq. 3.11 (i.e.,

Ampere's law instead of the conservation of magnetic flux law). No currents are applied in the experi-

ments, and so free = 0. Specifically, by using a non-conducting indenter, we can force J, = 0 at the

surface. Then,

/4 2 U, 1 OU, Ur)\ 2 U, O2 Uz oBr OBZ
±u- - +C 4  (c13 + c 44 ) - h1 5  - h31  -0 (3.65)

Or r Or r 2  9z 2  Ornz Oz Or

O uz l Dz)0 2 uz6 Or
C44 a2z+ 10u + C33 a2Z+ (C13 + C44) 9 0U,+ Ur

Or2  r Dr Oz 2  Dz BrOzr
Ojr Br O49 (3.66)

h1 +- -h 33  =0
Or r Oz

h1 (a 2Ur + 2 uz 1 OBr
r 0rOz ± r2 Or 0 (3.67)

__2 ( 2 Ur 1 Or Ur' O2 Ur Br B
-(hi 5 + h 33 ) + h31  02+ -- U, h15ia + v" + V33 Or= 0 (3.68)

Oroz 49r2 r Or r2 ) 0z2 49z ar

Note that we now avoid the problem we faced before: We have four equations for four unknowns

(ur, Uz, Br, Bz).
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3.5.2.2 Isotropic Material

As in the last section, these partial differential equations simplify greatly under the assumption of

isotropy.

1 OU, Ur'
+r Or r2) + C44 Oz 2 + (C12 + C44) 0Uz -h 1 5 OBr -h 3 O = 0

araz O9Z Or

/O0 2Uz
C44 (r 2 +

1 Oz
r rJ

+ z2 + (c12 +c 4 4 )z (rau +t

(OBr
-h 1 Or

1 a2 Ur
h15 - -

r araz + O2 ,)
_jr2 )

(3.70)

+ -h33 OBZ =0) Oz

1 OBr
r Or

(3.71)

-(hi 5 + h33 ) 02 uz
OrOz

02U, 1 OUr+ h3 r2 + rr
Ur - O2Ur

-72 h1 Oz 2 9B
+ vl ( z

+ Or- 0

Using the stiffness constants relations, Eq. 3.38, we can rewrite the above as

1 OUr Ur + 1 a 2 Ur

r Or r2 2 OZ2
+ 1 0 2

2(1 - 2v) rz -j

-h 15  -h 31  =0
Oz Or

E [1 (0 2Uz

1+v/ 2 Or 2
(1 - v) 02uZ

+(1 -2v) 0Z2
19 ( O0,

+ 2(1-2v)Oz Or

(OB Br
Or r

02uz)
-r2

Ur
+r )]

BB
-h 33  =0

Oz

1 OBr
r 5 0

-(hi 5 + h33) 02 uzh3OrOz + h31 (Or2
1 OUr -Ur h52

+r Or r2 - hiOz2
+ 1 1 (OBr

+ v Oz
r OBz 0±7 Or =

3.6 Boundary Conditions

The magnetic boundary conditions are continuity equations, i.e., instead of absolute boundary condi-

tions (e.g. H = 0 at some position), they only the fields on either side of a boundary.

c11 2 Ur
'57Or 2 (3.69)

E
1+L

F(1 - v)
[(1 -2v)

(2 Ur

Or 2

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

+1 Ouz j
+r Or )

1 (02u U
h15- -r Oraz



3.6. BOUNDARY CONDITIONS

3.6.1 Mechanical

We invoke the standard assumptions for mechanical boundary conditions under a spherical indenter.

First, assume that the displacements go to zero far away from the indenter:

Ur,Uz - 1 as V/r 2 + z 2 - oo (3.77)
'r2 + z 2

Second, assume a rigid indenter (i.e., the indenter head doesn't deform):

uz(r, 0) = h - - V O<r<a (3.78)
D

Third, assume that the contact is frictionless:

(-rz(r, 0) = 0 V r >0 (3.79)

Finally, assume there are no other normal forces outside of the indenter contact area:

oZZ(r, 0) = 0 V r>a (3.80)

3.6.2 Magnetic

Let subscript 1 refer to the indenter, and subscript 2, the indented substrate. The general magnetic

boundary conditions are

B 1normal = B 2  1m (3.81)

Hitangent = H2tangent (3.82)

which state that the normal component of the magnetic flux density B is continuous across an interface,

as is the tangential component of the magnetic field H.

Referring to Figure 1-4, at the top and bottom of the body, using Eq. 3.81 (the surface normal

continuity condition), we see that

1o0Hzair = PrPHzmaterial + e31(err + Eoo) + e33ezz (3.83)

where the last two terms are the change in magnetization part of B. At the sides,

poHrair = r poHrmateriai + el5Erz (3.84)

Because the displacements (and therefore the strains) vanish far away from the indenter (within a

distance 7 to 10 times the contact radius), the strain components above vanish, and the above conditions

become at the sides and the bottom (not near the indenter on top)

(3.85)yoHair = PrOHn i
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One notable feature of Eq. 3.82 is that at the interface between two materials with a large perme-

ability difference, the magnetic flux density vector in the lower permeability material is nearly normal

to the interface. Equation 3.82 gives

Btangent B2tangent (3.86)

from which it is seen that B2tangent -+ 0 when p 1 >> P2. Physical arguments (and conservation of

energy) show that H -- 0 as r, z -+ oo.

As shown in Section 3.3.2.1, Ho = 0. For a non-conducting indenter, J = 0; therefore at the surface

(from Eq. 3.14)

1 0 (3.87)
r Or

3.6.2.1 Incompressible Material

As will be seen in Section 3.7.1, the case for an incompressible material (i.e., one for which v = 0.5)

is a special limiting case that is relatively easy to solve. The results from this case can be used as a

guide to the more general solution. The magnetic boundary condition on the surface near the indenter,

Eq. 3.83, will simplify in the case of an incompressible material as follows. Because Err + 00 + ,, = 0

for v = 0.5, Eq. 3.83 becomes

1oHzair = Pr1YOHzmateriai + (e33 - e31)Czz (3.88)

At r = 0 on the surface, Ezz = 0 (in the pure mechanical case), and so this boundary condition is

greatly simplified. In fact, it is no longer useful in solving the general material response equations; it

is an "output" function which tells us how the magnetic field changes at the surface. Equation 3.88 is,

however, useful in the experimental measurements. The above condition could also be assumed for the

case of near-incompressibility.

3.7 Solution

A solution for the stress/magnetic flux density (o, B) representation only is detailed here. The solution

presented is applicable at the surface of the body only, for reasons which are discussed below.
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3.7. SOLUTION

3.7.1 Particular Solution: Isotropic, Incompressible (v = 0.5) Solid

Starting with the isotropic partial differential equations from Sec. 3.5.1, in the limit as v goes to 0.5

(i.e., as we approach the ideal of an imcompressible solid)3 , the constitutive equations can be simplified

(by multiplying both sides by the term (1 - 2v) and letting v = 0.5) to

E(1 - V) a2U, 1 Our U, E a2U;z
0 = E1+v ) r2 ( O r 45 )r2 ) 2(1+v)Oraz (3.89)

E(l - V) a2U , E a Our Ur0 = +u +E- (3.90)
1+v Oz 2  2(1+ v)Oz Or r

(O 2uZ 1 uOz a 2 uZ0 = e15 (B2 + -r 75T +e33 z20 Or rr ) ±H33 0
H

+((e1+e) a + + Hr + +Hz (3.91)
Oz r r Or r 49z

Eqs. 3.89 and 3.90 should in fact lead to the classical indentation solutions of Ur and uz for a

spherical indenter, because the magnetoelastic coupling has been removed from these equations by

virtue of letting v go to 0.5. The only remaining coupling is in Eq. 3.91, and it is weaker than in the

general case. Since Err + E00 + Ezz = 0 for an incompressible solid, we can replace Eq. 3.91 with the

following:

_2_z 1 O_ a 2Uz (Hr Hr OHaz0 = e15  + + (e33 - e15 - esl )  2 + mi + + (3.92)
Or2 r r ) 9Or r z)

Besides being the solution for the idealized case of an incompressible material, this may be useful

when dealing with composites, where a magnetostrictive material would be combined with, perhaps, a

rubber or other material with v close to 0.5, and for cases where v approaches 0.5, like Terfenol-D.

3.7.1.1 Homogeneous Solution

Since Eqs. 3.89-3.90 will result in the classical indentation solution, u, and uz are already known, and

only H, and Hz remain to be solved. First, the general solution for the homogeneous case is obtained.

Remembering that H = -VM, the homogeneous portion of Eq. 3.92 is

O2q$M 1 ONM O2 bM
+ Or + Oz+ = 0 (3.93)Or2 r Or Oz2

3Incompressible materials exhibit conservation of volume, and thus e31 = -E33/2. The mechanical and magnetic

behavior should almost completely decouple, then, because e3l = -e33/2.
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Using separation of variables, we let 0M = R(r)Z(z), where R and Z are functions solely of r and z,

respectively. Then we arrive at the two following ordinary differential equations:

d2 R ldR_
d2 + = R - +AR (3.94)dr2 r dr

d 2 Z _ -AZ (3.95)
dZ

2

The sign of A determines the type of solution. Equation 3.94 is in the form of Bessel's equations,

and results in either the regular or the modified Bessel functions, depending on A. Eq. 3.95 results

in either an exponential solution or a sine and cosine solution, again depending on the sign of A. For

A < 0, the solutions are

00

R(r) = E (siJo [r -An +s 2 -KO [r VAn] (3.96)
n=1

Z(z) = s exp (-z/-An) + s4n exp (Z/-An)) (3.97)
n=1

where Jn [x] and Kn [x] are the Bessel function of the first kind and the modified Bessel function of the

second kind, respectively 4 . For A > 0, the solutions are

00

R(r) = E (siIo [rVn + s 2-Ko [r /n]) (3.98)
n=1

00

Z(z) = E (ssn cos (z/ A) + S4n sin (z An)) (3.99)
n=1

and from dimensional arguments, we set An OC .

For reasons which will become apparent later, we use the solution for A < 0 for the region inside the

contact radius, r < a, and the solution for A > 0 for the region outside, r > a. By imposing continuity

at r = a, these solutions become continuous functions.

3.7.1.2 Non-Homogeneous Solution

The non-homogeneous part of Eq. 3.92 is

( 12Uz 1 Ouz 3 62Uz
e15 _52 + _ + (333 - e15 2e1 r Or2 ± r,\2 49

4 Bessel functions are solutions to the equation z
2

y" + zy' + (z
2 

- n
2

)y = 0. The functions are referred to as Bessel

functions of the first and second kind, Jn [x] and Yn [x] respectively. Modified Bessel functions are solutions to the equation

z
2
y" + zy' - (Z2 + n

2
)y = 0. The functions are referred to as modified Bessel functions of the first and second kind, In [x]

and Kn[x] respectively. For the case presented here, n = 0.
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This is functionally dependent only on u, - namely on its first derivative with respect to r as well as

its second derivatives with respect to r and with respect to z. An analytic form for u, at the surface

(z = 0) is given in Johnson [8] (see Appendix A for details). This form, however, has no dependence

on z, and so we can not use it to evaluate Ou,/Oz or 2nuz/Oz 2 (and we will have to be cautious about

its applicability to &uz/r because we may want uz as a function of r and z). We therefore need to

evaluate the full functional dependence of u, near the surface.

The displacement along the z direction, uz, can be determined in a number of ways - methods

discussed in Hamilton [18] and Johnson [8] are two examples. Numerical integration using the potential

method presented by Johnson [8, pp. 45-50] is the most straightforward. For the case of a frictionless

contact,

T= f drd (3.100)

S

where p( , ,) is the pressure distribution over the contact area, S is the contact area, and p is the

distance from a point in the contact area to any point in the body. For Hertzian pressure distribution

and a cylindrical coordinate system, the integral is

p~r202) x a Pr2 r;- dr2 d02
T r2 dr2 d02 =21 a Pr2  1 d (3.101)

if P 1 0 J -z 2 +r2 +r2 - 2rr2 cos(01 - 02)S1 2

where P is the total applied load, r1 and 01 are coordinates for a point inside the contact area, and

r 2 , z and 02 are coordinates for a point inside the body of the solid. We use T to find u,:

U 4G 2(1 - v)T - z ) (3.102)

where G is the shear modulus.

The numerical integration to evaluate uZ and subsequent numerical derivatives show that a2 U /Oz 2

is effectively zero at the surface (z = 0), and therefore the middle term in Eq. 3.92 is zero and can

therefore be ignored. Eq. 3.92 then becomes

0 = e( + + p + H + (3.103)
r2 +r r Or r Oz

In order to simplify notation later on, we set

(c =Hr + +a (3.104)
Or r Oz

F = -e 15  02 + r 0 (3.105)
(0 r2 r9)
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If e1 5 = 0, then the system is completely decoupled: the third partial differential equation, Eq. 3.92,

reduces to solely magnetic terms (which were in turn derived from the magnetic divergence equation).

Then we have an infinite set of possible solutions; but with no "driving force," the trivial solution (with

all magnetic fields equal to zero) is the only one left.

Note that this result highlights the importance of ei5, a constant which is generally not reported in

the literature (except for the reference discussed in Chapter 2 and general descriptions of e 15 being on

the order of one-half of e 33 ).

The numerical integration also shows that near the surface

- (-z09u 0 and - ( ~Ou,' 0 (3.106)
oz Or Oz Or2

Therefore we do not need to use the numerical integration results for u but can instead directly use

the analytical forms shown in Johnson [8], provided the resulting solution is applied only at z = 0.

The z displacements (uz, see Appendix A, Eqs. A.8 and A.9) for r < a are

9UZ 7rpo 1 - v2
Or 2a E

O2 UZ _ rpo 1 - v2

Or 2  2a E

and so

-in = - 2 e15 = -ir) (3.107)

where~~~ 0=E i he1
where E = - e15, E* is the composite elastic modulus, and po is the maximum contact pressure.

Similarly, the z displacements (see Eqs. A.8 and A.9) for r > a are

09U 1- V2 Po a2(a
- Pa 1 - - r arcsin

Or E a ( r2r

O2Uz _ 1-V 2 po a 1 + a
r2 E a r a r

Combining these and switching to the dimensionless radial unit y = r/a gives

Fout = e - - 2 arcsin = E - 2 arcsinG)) (3.108)

Figure 3-1 shows the plot of F both inside and outside the contact radius.

Fields inside the contact radius: When choosing solutions to Eqs. 3.94-3.95, it is apparent that

the solutions for A < 0 are the most appropriate, because it provides for an exponential decay in z
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FIGURE 3-1: Plot of the differential function F vs. r/a.

and also a strong decay in r - it is obvious that the magnetic field can not continually increase with

distance from the point of contact. Because the magnetic field can not go to infinity as z -- oo, s 4, is

immediately zero. Similarly, since the magnetic field should not blow up at z = 0, s2 = 0. This leaves

a solution which decays exponentially away from the surface, and which has a smooth, well-behaved

r dependence near the origin. Because A, defines a relevant length scale for each term in the solution

series, setting A, = -- is appropriate for the region inside the contact radius, because this defines

a set of length scales: g, 1 , ri..Letting i -~ y, the solution can now be written as

0-0

OM = R(r)Z(z) = knJ 2] exp (- ) (3.109)
n=1

where kn. =sln - S3 ..

In order to determine the complete non-homogeneous solution, let kn become a function of r, then

solve Fin = E-,in for kni. This change in the kn has implications for calculating H., which is defined as

-&qM/oz. Appyling this definition gives

F Z(z) + kn]
Hz = R(r) kn + Z(z) J (3.110)

But, as will be shown below, kn are solved as functions of r only, and so Okn/0z = 0. Thus the second

term above is zero for this solution. In a more general way, the second term in Eq. 3.110 is expected to

be much smaller than the first term, however, and so neglecting it is a good approximation.

The easiest way to solve for the cna is to approximate Fin with the appropriate Bessel functions,

and then match the coefficients of each Bessel function. For reasons which will be apparent later, the

3.7. SOLUTION
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fitting function is chosen to be

Yin = Clin (JO [Y] + J1 [Y]) + C2in (Jo 4

Finally, solve for the cai by requiring the area un

be equal for both rin and -Fin, i.e.,

j Fin dY = Fin d-y

Finly=o.01 = Yinly=o.ci

"'in|,=0.99 = FinLy-o= 99

See Table 3.1 for the solution. The fit is excellent,

2 - the discrepancy is never larger than 0.01%.

TABLE 3.1:

-3.13

-3.135

-3.14

-3.145

Ji + C3in (jo [']+ Ji 7 (3.111)

ler the curve as well as the height at two points to

Area under the curve

Height at r = 0.01a

Height at r = 0.99a

as can be seen from the vertical range in Figure 3-

Values of the constants for r < a.

in

Fin ~E-

0.2 0.4 0.6 0.8 1 a

FIGURE 3-2: Comparison of the indentation PDE rin to the fitting function Fin.

Returning to the "homogeneous" solution, and letting z = 0, the solution for 0M is now

3

ki [Y]Jo 1= k1in[y]Jo [y] + k2e [y]J0  + k 3 i[y]Jo
n=1

(3.112)

Constant Value

Clin -1.4242E

c2in 11.9915E

C3in -13.7089E
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For a given value of n,

0 2 dM 1 00M kn aJ0  Jo Ok, 92 Jo kn + J a 2 kn
+-5-2=-- + + k,2 + 2 + -2Or2  r Or r r r Or "r 2  Or Or +J13r 2

)
Jkn ( k2 Jo 1 k A 2 k1 Jn (3.113)(= n +k O ±J +' 2 Or J r Or 0r2 ) r Or

where the Jo[y/n] has been abbreviated to Jo. The first two terms are simply the solution of the

homogeneous equation, and hence always sum to zero. The last term is the reason why r'in was approx-

imated with Cn (Jo + Ji): The first derivative of Jo [y/n] is equal to - (1/n) J1 [y/n]. Then the functions

k, 1n [-y] are found by solving the differential equations which result from equating the coefficients in

front of Bessel functions (and noting that Oy = Or), i.e., by setting -Fin = Ein and matching terms

with identical Bessel functions:

1 Ok. [-y] 1 k~ [] 7 -nin (3.114)
ar Oy a 2  19Y 2

2 -kn =( -1 cnin (3.115)
a 7 an PI1

By treating the equations algebraically, ak [-Y] can be solved for in Eq. 3.115 and then substituted

back into Eq. 3.114, which results in the differential equation

-ncni [y] 1 92 kni [Y] - (3.116)
27p11 a2  9Y2  P11

which has a general solution of

1K bnl + bn27 - 1a2ncan y + 2+1y2  2 na2ncni Y ln - (3.117)

where bn, + bn2-7 is the homogeneous solution, and the remainder is the particular solution. All bn1 and

bn2 are set equal to zero, except for b1 l, which will be used to satisfy the requirement that the magnetic

fields must be continuous at r = a.

Fields outside the contact radius: Unfortunately, the solution described above is not appropriate

for r > a, because of the oscillatory behavior of Jn[r]. Kn[r] would be a much better solution, given

that it decays to zero as r -> oo, but for A < 0 Kn[r] has an imaginary component. Assuming A > 0

instead gives the solutions Eqs. 3.98-3.99. Because In[r] going to infinity as r -+ oo is a non-physical

solution, si, = 0. Using a positive value for the An results in a sine and cosine dependence for z, but

the solution has already been limited to the region near z = 0, so the z dependence is unimportant.

Setting An = a+ is appropriate for the region outside the contact radius, because this defines a set of
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length scales: !, 21, 3, ... Again letting L -+ y, the solution can now be written as

OM = R(r)Z(z) = kn,,Ko [ny] cos (- ) (3.118)
n=1

and we follow the same solution method as above. As can be seen from Figure 3-1, however, the fitting

function will need more than three terms in order to closely approximate the behavior of Fout, given

that it goes to infinity at r = a but quickly decays to zero away from the contact radius. Six terms is

seen to be adequate for approximating the curve:

FoUt =cot (Ko [y] + K 1 [-y]) + 20t (K0 [2 y] + K, [2-y]) + C3out (Ko [3y] + K 1 [3]) (3.119)

+ C4out (Ko [4-y] + K 1 [4y]) + c50 ut (Ko [5y] + K 1 [57]) + c60 ut (Ko [6 -y] + K 1 [6y])

Then solve for the cout by requiring the area under the curve as well as the height at three points as

well as the derivative at two points to be equal for both rout and Tout, i.e.,

] 2out dy = J 2FOut dy Area under the curve
0 0

routlY=1.04 = ToutI 04 Height at r = 1.04a

rout = .Fout-. = Height at r = 1.3a

Fout ly=2. 6 = FOut ly=2.6 Height at r = 2.6a

Derivative at r = 1.3a
dr -1 dr y1

_____ _ dDerivative at r = 2.6a
dr y2.6 dr ,=2.6

The upper limit of integration for the integral above would in theory be oo, but the fit converges

rapidly as seen in Figure 3-3 (and this is expected given that all response decays quickly away from the

indentation point), so using an upper limit of 20a is perfectly acceptable. The Kn[x] function does not

have a singularity at r=a as IF, (the analytical indentation solution) does, so the fit will be non-ideal.

The height of the functions were set equal at the two points listed above for the simple reason that

these points were those that balanced the singular behavior near r = a with the continually positive

value which decayed to zero as r -+ oo. See Table 3.2 for the solution. The fit is quite close, as can be

seen from Figure 3-4.
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C4out

-13000 4

-14000

-15000

-16000

-17000

0 0 * 0 . 0 0

Upper
, ,Limit

7.5 10 12.5 15 17.5 20 ofy

FIGURE 3-3: The value of C4out /0 as a function of the upper limit of integration.

Constant Value

clout 3.39770

c20ut -154.820

C3out 2, 312.30

C4out -13, 117E

C5out 29,400e

C6out -18,7150

TABLE 3.2: Values of the fitting constants for r > a.

Examining the "homogeneous" solution for r > a, and letting z = 0, it is clear that

knout [7]Ko [ny] =kiout [y]Ko [-y] + k2out [y]Ko [2y] + k3out [y]Ko [3-]
n=1 (3.120)

+ k40ut [y]Ko [4-y] + k5out [y]Ko [5-y] + k6out [y]Ko [6y]

Eq. 3.113 still applies to the knout. Because the basis function is now Ko[ny] instead of Jo[y/n],

Eq. 3.115 becomes

2 9knou 1[]
a 0-Y

N pCnout (3.121)

which modifies Eq. 3.114 as

1 - 2 knout [-] - cout
+2 0Y 2

Al

- i
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7

6

5

4

3

2 rout

-out

r

2 3 4 5 6 7 8  a

FIGURE 3-4: Comparison of the indentation PDE Fout to the fitting function Feut.

This equation has the solution of

_ 12 __c_S(bni + bn 2  Y a2Cnout y + " y o 2 + -- a2Cnut -y I (3.123)
P11 2n 2 2n

where bnl + bn2 is the homogeneous solution, and the remainder is the particular solution. Again set

all bn, and bn 2 equal to zero, except for b11, which will be used to satisfy the requirement that the

magnetic fields must be continuous at r = a.

Note that the solution both inside and outside the contact radius is given for z = 0. A solution as

a function of depth in the body (i.e., as a function of z) can be determined by setting z to a non-zero

value, evaluating the displacement functions at that value of z, and then reapplying the above method

with these new functions.

3.7.2 Complete Solution

Combining the results of the previous section, the solution to the magnetic scalar potential is obtained

as follows:

P114i = (bi'in + 0.7121Ea 2y(1 - ln[y]) - 0.71210a 27 2) Jo[y]exp ( i)

+ (-11.992a 2 y(1 - ln[-y]) + 5.99580a 2Y2) Jo[ ] exp (2z (3.124)

+ (20.5630a 2 y(1 - In[y]) - 6.85450a 2 Y2) Jo[j] exp ( z
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and

/1110Mout (bilout - 1 '6847ea 2y(1 - ln[y]) + 1.6847Ea 2 y2) Ko[y] cos (Z
2 rz

± (38.327Oa 2_Y(1 - ln[-y]) - 76.6540a 2 Y2 ) Ko[2y] cos

+ (-381.300a 2_Y(1 - In[-y]) + 1143.90a 2_Y2 ) Ko[3-y] cos 3rz
14ir ) (3.125)

+ (1619.20a 2 _Y(1 - In[y]) - 6476.9ea 272 ) Ko[4-y] cos (315

+ (-2892.90a 2_y(1 - In[y]) + 144659a 2 Y2) Ko[5-y] cos 5rz

+ (1518.50a 2 Y(1 - In[-y]) - 9111.10a2 _y2 ) Ko[6-y] cos

By requiring that the magnetic fields be continuous at the contact radius, i.e.,

_Min _ O5 Mout and _ aoM0it (3.126)

ar ra=a 09 ra 4Z r=a

the remaining two constants are determined to be b1  = -10.193E0 2 and bi, = -2.13040a 2

Hr H

40 2

30 1.5

20 1

10 0.5

r r

2 3 4 5 1 2 3 4 5

FIGURE 3-5: The final form of a) Hr and b) H, at z = 0 with the constants solved

as above.

3.8 Measureable Quantities

Given the experimental geometry (see Section 1.4), the most feasible way of measuring magnetic re-

sponse is to place a small pickup coil on the sample, centered under the indenter. This enables the

detection of the change in flux <D as a voltage (see Eq. 1.5). The results of Section 3.7 can be compared

to the experimental results.
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To measure the magnetic field, then, we need to know the relation between the magnetic flux and

our computed quantity, H. For a pickup coil positioned on top of the sample (see Chapter 4), the flux

4:z' is

27r r 2

= B dA= JJIprLOHzr dr dO (3.127)
A 0 r1

where r1 and r 2 define the region inside the flux pickup coil being integrated. Because there is no

dependence on 0, this simplifies to

'1z =27r/ IHzr dr = 27r 1 1 ( Hzinr dr±+ Hzt r dr (3.128)

rl (0 a

3.8.1 Isotropic, Incompressible Material

An analytical solution to Eq. 3.127 using the solution for H from Section 3.7 is easy to obtain. The

form of the solution for H is independent of the applied load - only the magnitude depends on the

load. Integrating the magnetic field as in Eq. 3.128 (and noting that the p terms from Eq. 3.128 and

Eqs. 3.124-3.125 cancel out):

4 zin = -27r(0.2286a 3
e) (3.129)

Dzout = 0 (3.130)

and similarly for the r component,

drin = -27r(1.595a 30) (3.131)

rout = -27r(5.599a 30) (3.132)

These solutions are proportional to a3 . From the definition of 0, it is apparent that

3) 1 - V 2 2a = 1-* ei 5poa (3.133)

The most interesting data to look at in the experiments will be the vertical flux Wz vs. either load P

or displacement 6. It is apparent, then, that

1 -v 2 3
bz = -1.436 V e15P (3.134)E* 21r

and, since J = (p R2 )1/3,

4z = -1.436(1 - v2) 2 /- e15j3/2 (3.135)
7r
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Most obviously, these equations are the functional dependence of the magnetic flux on applied load

or on indentation depth. It is seen, however, that the flux as a function of depth does not depend on the

Young's modulus of the material, or alternatively that the flux as a function of load does not depend

on the radius of curvature of the indenter. This is understandable, given that this solution is for an

incompressible material. Determining e15, for example, would then be a simple matter of measuring

the slope of a <b-P curve.

From Berlincourt [19], we expect eim to be on the order of }e 33 . Values of e15 are therefore (see

Table 4.1) on the order of 500 Tesla per unit strain. Applying this theory, which is only truly applicable

in the case of an incompressible material, to the properties of Terfenol-D for a typical indentation test

(where the composite radius of curvature R = linch and the maximum load applied P ~ 5N) shows

that the total flux change will be extremely small:

0.91 3
<), = -1.436 - -01 P a 500 T - 5 N a 4 Maxwells = 4. 10-7 Webers (3.136)

40 - 109 Pa 27

This flux change is extremely small; it is near the limit of resolution for current commercial fluxmeters.

Magnetic noise in the environment could drown out such a signal. An appropriately sized and placed

gaussmeter, though, should be able to detect such a signal.

The solution for <br suggests that the horizontal (r) flux will be much stronger. Unfortunately,

mounting a horizontal pickup coil in the indenter is extremely impractical.

3.9 Outline of Other Solution Methods

The solution presented above is of course not unique in its methodology and assumptions. Solutions

for other values of Poisson ratio can be evaluated. Solutions from the other representation (i.e., o-, H

instead of o-, B) could also be studied. In addition, the solution above makes certain assumptions which

may not be tenable for actual experiments. Namely, it assumes that the magnetostrictive constants

are, in fact, constant as a function of magnetic field or stress state. This is known to not be true [1, 7].

Some aspects of the above limitations are discussed in this section.
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3.9.1 Particular Solution: Isotropic, Compressible (v = 0) Solid;

Representation

At the opposite end of the compressibility spectrum is the case of complete compressibility: v = 0.

1 Our Ur
+ r -r - - r2 )

E 0 2 Ur E 02u,
2 Oz 2 2 OrOz

OHr OHz
z 0 1Or 0

+ 2UZ E 0 OUr
+F E z2 2 Oz Or -e15 aOr

OHz
e33  0z =0

az

02U z+ e 3 3 0z2 1OUr 
Ur+(e,5 + e31)O r

+ ti Hr
+r

+Hr + H9H\ 0
r Oz

This system of equations does not separate and simplify as much as in the incompressible case. By

making some interesting coordinate changes, however, we can reduce the equations to a simpler, mostly

decoupled set of equations. Specifically, we perform the three following transformations:

Ou 2e15 H
Or F

OUr Ur

r
e3 - H
E

z -+ -z/4

with the aim of simplifying the PDEs.

-e 33/2), Eqs. 3.137-3.139 then become

(3.140)

(3.141)

(3.142)

Using these transformations (and remembering that e3 i =

S 2 Ur+ E 0 (Ouz )'=
2 0z 2 + 2 z Or=

+E 0 ( u,
+2 Oz Or

+ (e15 + e31)

e31 OH

5 OHz
4 Oz 0

O (OUr + Ur)
Oz Or 7)

OHr
+ mi r 5-+

+ 2e 5 (OHr
E (Or

H,
r

+ O =0
O9z)

/O2u

(a, B)

E (O2uZ
2 Or2

+1 Ouz
+r Or )

(3.137)

e15 (g2
1 Ouz
r Or

(3.138)

(3.139)

(Ouz)
OUr Ur\(Or

O OUr
E5r (Or

(Ouz~~

Ka7}

Or)

(3.143)

E (
2 r

e15 02z 
+e 33 0z2

(3.144)

(3.145)
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The second equation does not completely decouple the mechanical and magnetic behavior. (The

Z' -+ -z/4 equation was not used above; if it were, then dz' -- -4dz, and the second equation would

decouple, but the first equation would not.) The coupling of the material properties in Eq. 3.145,

though, is interesting: there is a factor of 25 + p1 multiplying the H, terms, and (e5 + e31) e U + P11

multiplying the Hz term.

3.9.2 Stress and Magnetic Field (a, H) Representation

The following is an outline of an alternative solution method, using the PDEs derived in Section 3.5.2

as a starting point. It should be reiterated that this solution assumes Jfree = 0.

3.9.2.1 Isotropic, Incompressible Material

By use of v = 0.5, the first two equations again decouple from the latter equations. But now, instead

of a single equation with magnetic variables, there is a system of two equations.
1(O 2

Ur O2 u\ 1 Br

h15 - + -2 11- - 0 (3.146)
r \roz Or2  r Or

2Uz (O2U 1 Or Ur' O2 Ur OBr Bz
-(hl+ h3) ahz + h 31 ar2 + 1 0r r2 - h15 z2 + v1  az + B =0 (3.147)

If we again use separation of variables, we have to go to the magnetic scalar potential anyway,

because the PDEs involve both Br and B_. So, letting B= -pyVqM,

1 2qM 0 (3.148)
r Or 2

O92qM 9
2
0M 0(3.149)

Orz Ozar

and if Om = R(r)Z(z), then

1 02 R- -- = 0 (3.150)
rR Or 2

ORODZ ORO&Z
aRZ +z aR Z = 0 (3.151)
Or az Or Oz

3.9.3 Magnetostrictive "Constants"

Recalling the definition of the dij from Eq. 1.10 and referring to Figure 1-2, it is apparent that the

general functional behavior of d33 is as shown in Figure 3-6. We would expect similar behavior as a

function of load, but no plots of B versus o- have been found in the literature to confirm this expectation.
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33

H

FIGURE 3-6: General functional behavior of d33.

The maximum load applied in the experiments can be large enough to create a noticeable change in

magnetization, limited only by the restriction that it not create any plastic deformation in the material

(see Section 4.2.1.3). The maximum stress inside the specimen is, therefore, relatively large and it is

not unreasonable to expect the magnetostrictive constants to change significantly. This effect could be

accounted for by integrating dij over the changing stress. This would be straightforward in the context

of a uniaxial test, as the total uniaxial strain would simply be the integral of the d33 over the magnetic

field (alternatively, the total change in B 3 would be the integral of d 33 over the change of O-33). In fact,

the calculated magnetization change versus load would depend on the original state (initial magnetic

field and stress) of the specimen because the original state would define the lower bound of the integral

(i.e., the start and end points of the integration would be different values of H in Figure 3-6 above).

Extending this technique to the three-dimensional stress state characteristic of indentation, however,

would be quite difficult.
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Chapter 4

Experimental Design

Officer: "It's never been calibrated, you know."

Captain/Scientist: "It's a planet-destroying superlaser! We can turn that whole world

into rubble. How well does it need to be calibrated?!?"

-Kevin J. Anderson's "Champions of the Force"

In addition to a theoretical framework for analyzing indentation of magnetostrictive materials, an

experimental apparatus is required which can simultaneously measure mechanical data (e.g., load and

displacement) and magnetic data (e.g., magnetic flux). No such apparatus is currently commercially

available. This chapter presents a preliminary experimental design concept for such an apparatus.

An experimental apparatus can not be properly designed without some knowledge of the properties

of the materials to be tested, and so the first section of this chapter presents and discusses relevant

properties of some candidate materials. The second section details the design of the apparatus. Next

is a suggested experimental procedure. Last is a discussion of the experimental indentation of magne-

tostrictive materials.

4.1 Material Properties

Properties of the materials chosen for study and their sources are shown in Tables 4.1 and 4.2. Note

that the cij and eij data are generally for single crystals.

The values for e15 and e33 in Table 4.1, shown in parentheses, were calculated from other data [1,3,12,

others] using Eq. 3.40. Question marks indicate that data could not be found in the literature. Elastic

stiffness components were measured at zero magnetization.
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c11 C1 2  C44 Max. ei 5  Max. e 33 A33

Units GPa Tesla Ao

110 to
Pure Ni 250 160 118 ? (-704)

600 [20]

150 to
Pure Fe 241 146 112 ? ?

5000 [20]

5-10

Tbo.3 Dyo. 7 Fe. 9- 2  141 [3] 64.8 [3] 48.7 [3] (,500 (640) or 3-4 [21]

to 800) (910) 1.8 [22]

10-15 [23]

Hiperco? ? ? (104 [12]) (104 - 105 [12]) 800 to

(2%-V Permendur) I I 4500 [1]

TABLE 4.1: Tensor Property Values for Single Crystals

Iron and nickel were chosen because their magnetostrictive behavior has been extensively studied,

and so results from indentation tests could be compared to data from the large body of literature.

Terfenol was chosen because it is one of the most important magnetostrictive materials in use today.

Finally, Hiperco-50 was chosen because of its near-zero anisotropy energy and its high yield strength (as

mentioned before, it is necessary to avoid plastic deformation of the samples, and thus materials with

higher yield strengths are preferred). The Poisson ratio of Hiperco-50 has not been reported to date,

so the ci are not given in Table 4.1. Its Young's modulus is close to that of iron, so the components of

the stiffness tensor are expected to be comparable. These components could be measured directly by

spherical indentation.

4.2 Apparatus

4.2.1 Design

Combining mechanical indentation and magnetic field measurements leads to a set of competing re-

quirements for and strong limitations on the experimental apparatus. In the most basic form of these

experiments, spherical indentation is done while measuring the change in magnetic field near the inden-

ter. Conceptually, the easiest way of doing this is to wind a wire around the indenter to form a pickup

coil, as shown in Figure 4-1. In reality the apparatus is slightly more complicated.
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Property Units Pure Ni Pure Fe Terfenol-D Hiperco-50

Mechanical

Density g/cm 3  8.90 7.88 9.25 8.12

44 © 0 Oe [3]

106 L 4 kOe [3]

EH = 29_40 [211

Young's Modulus GPa 207 200 EH = 45-55 [24] 207

EB=15-25 [24]

E = 40 [25]

E = 30 [26]

Poisson's Ratio v 0.31 0.29 0.4 [25] ?

Yield (Rupture) Strength MPa 138 130 700 compression [27] 300-400
28 tension [27]

Vickers Hardness GPa 0.7-1.0 2.44 6.06 [28] ?

Magnetic

TCurie Kelvin 631 1043 653 1213

Msaturation Tesla 0.63 2.16 1.0 [29] 2.2

Magnetoelastic

9-25 [13]

5-11 [21]

d"'" (for various 17-23 [23]

values of pre-stress /A -3.1 10-15 [30] 38?

and offset magnetic 40-45 [31]

field) 8.5 [32]

30-50 [33]

25-200 [34]

Asaturation - 10- 5  10- 5  10-3 60 .10-6

TABLE 4.2: Miscellaneous Material Property Data
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Pickup
Coils

Indenter

Sample

FIGURE 4-1: A diagram of a basic indenter/pickup coil arrangement.

A pickup coil detects flux (,b = B 4) by integrating a changing voltage (V = -N&/elt, where N

is the number of turns of wire; N should be maximized to create as large a voltage signal as possible).

Ideally, the pickup coil would be of approximately the same diameter as the generated field in order to

measure the entire field, but this can not happen for two reasons. First, the diameter of the generated

field is too small. Consider the size of the indenter contact radius to see why this is so. The contact

radius a = (3PR/4E*)1/3 is at most 200 pm in our experiments, and theory (See Chapter 3) predicts

that most of the change in magnetic field will be inside the contact area, so the major change in field will

occur inside an area with a diameter less than 0.5 mm. Wrapping wires around a post with a diameter

less than 0.5 mm is impractical. Second, the mechanics of indentation requires that the indenter should

be at least 10 times the size of the contact area [35]. This requirement alone already forces a ratio of

total pickup coil area to the signal area of 100:1, which has implications for the amount of noise and

drift in the flux signal.

An indenter/pickup coil design has been completed; a diagram is shown in Figure 4-2. An Instron

4505 screw-driven tensile testing machine has been modified for these experiments. The indenter is

mounted on the fixed crosshead. The sample is mounted on the mobile crosshead. A magnetic pickup

coil is also mounted on the indenter and is centered on the sample. A 50 lbs. load cell is mounted

above the indenter to accurately measure the applied load, and a photonic sensor (see Section 4.2.1.4)

is mounted near the indenter to accurately measure displacement. The load cell, photonic sensor, and

the pickup coil are connected to a National Instruments data acquisition card on a PC; LabView reads

in, plots, and saves the data.
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4mm
2 mm

Hz

ttttftttttttt I
Pickup Ia ~1ttftffffttt

C isMirror tI it t t ft t t 
M ir t t t ,t f f t,

Indenter _mm t tttt It

Sceic ofi iiia magnetiic
field near f th cotct area.f

Clamp 4 C v o t i t.
N I I c I v i f t u p i oio [ A

sion~~~~~~~~~~~~~~~ ca be sinfcn at th lod an dipaeet enonee in ths exeiets an aecr

Sample Phoonic t t e a a u c i tht fth at
f o m t t I l m i w i t b I t s

Sensor tIttnit tDtt t

Schematic of initial magnetic
. . .. . .field near the contact area.

FIGURE 4-2: Close-in view of the indenter arrangement.

Note that the clamps are very important for the unloading portion of microindentationi [36]. Adhe-

sio n a be significant at the loads and displacements encount heed olenoids heriments, and a secure

clamp on the sample is necessary to ensure an accurate unloading curve. Given that the samples are

ferromagnetic, the clamping will also be necessay to secure the samples in place.

4.2.1.1 Solenoid Design

The "linear" magnetoelastic response of magnetostrictive materials depends on the magnetization of

the material, and therefore we must be able to apply a variable magnetic field to our sample. The best

way to do this is to enclose the indenter in a solenoid, as shown in Figure 4-3. Note that, because of

space restrictions inside the solenoid, the mirror is extended down on an aluminum rod (which slides

freely in a groove in the side of the main column) to a space below the solenoid, where there is room for

the micrometer stage-mounted photonic sensor. Also note the complete use of non-magnetic materials

near the indenter except for the iron yoke to avoid affecting the fields. The solenoid would consist

of copper wires wrapped tightly around a DelronTM tube. The inner diameter of the solenoid would

1 "Microindentation" refers to instrumented indentation at a load on the order of a few grams; it generally means

that the indentation depth is on the order of micrometers. One important characteristic is that it uses an independent

displacement sensor. We implement this via a photonic position sensor which uses the intensity of light reflected off a

mirror to measure distance.
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be 5.1 cm, the outer diameter of the windings would be 12 cm, and the length would be 25 cm. See

Montgomery [37] for details of solenoid design.

Fixed Crosshead

Magnetically Iron50LodCl

Soft Steel Yoke
Non-magnetic
303 Stainless Steel - - - - - - -. xxxxxxx

. . ... . .. xxxxxxxx

. Solenoid Wires - '-

(14 gauge) xxxxxxxx

........ xxxxxxxxS Aluminum -------- x xx xx xx x

...-- -- -XXXXXxXXX

Top View of Solenoid/Yoke: 25cm xxxxxxxx
P ... .... xxxxxxxx

........ xxxxxxxx
Solenoid .Solenoid

x x x x xSupport

xxx x xx and Guide

FIGURE 4-3: Cross-sectional view of the indenter,

inset figure shows the top view of the iron yoke and

solenoid, and iron yoke.

the solenoid.

Part of the solenoid design process is to determine the maximum required field strength. This

is controlled by two factors: the magnetic field required for saturation in an ideal case, and the de-

magnetization factor. Remember that the permeability of a material is related to the susceptibility:

P = po(1 + x). A given sample geometry has an effective susceptibility, given by the following relation:

Xef f = X (4.1)
1 + nx

where n is the demagnetization factor described in Section 1.1. n -* 0 as a rod becomes infinitely long,

and n -* 1 as the rod becomes infinitesimally short. The samples used are disks on the order of 2.5 cm

in diameter and 1 mm to 7 mm thick, and so the demag factor n is greater than 0.5. For this case, then,

x = 500 gives Xeff a 2. The resulting low value for the relative permeability means that the desired

field strength in the material must be created almost exclusively with the solenoid.

The

-5 cm-
12cm-
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Ideally, an extremely long solenoid with a variable power supply would provide a variable magnetic

field strength. Size and power limitations along with the sample demagnetization factor, however,

require an iron yoke to augment the solenoid's applied field (which can only achieve about 485 Gauss).

The large bore size required to fit the indenter and sample is one factor limiting the maximum field

strength; heat generation is another factor. Iron is very soft, however, and is therefore easily saturated

with a small field. It has a saturation magnetization of about 2.2 Tesla.

The ideal magnetization curve (for a ring of material, i.e., a closed circuit, or an infinitely long rod)

of a soft magnetic material, as shown in Figure 4-4, has a discontinuity between +M, and -M, at

H = 0 (i.e., y = oo). A gap in this circuit shears the curve over, giving it a finite slope. By choosing

this gap size properly, we can control the range of magnetization available and thereby provide control

over the strength of the field in the gap by changing the applied field from the solenoid.

M

1
Perfect
Magnetization

Sheared 0.5
Curve

H arbitrary
- - - II units )

-1 -0.5 0.5 1

-0.5

/ 1

FIGURE 4-4: Perfect and sheared magnetization curves, in arbitrary units.

Design of the solenoid and iron yoke is done using linear magnetic circuit theory. The sum of all

electromotive forces (EMF) and resistive drops in a magnetic circuit equals zero:

Z NI -Z Rm,] = 0 (4.2)

where NI, the current-turns (i.e., the current times the number of windings), is for any type of EMF

(e.g., solenoids, permament magnets), and Rm is the reluctance. The reluctance of a section is equal to

its length divided by the product of its permeability and cross-sectional area: Rm = l/(yA,). Because

the permeability of iron is so much higher than air, the assumption that all magnetic flux is confined

to the iron yoke is a reasonable one. Assuming a yoke thickness of about 2 cm, a solenoid length of
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about 25 cm, a yoke bore diameter of 5 cm, and a gap height of about 2.5 cm, then the iron reluctance

(which is on the order of 2 - 10 5 A/T M2 ) is a tiny fraction of the gap reluctance (which is on the order

of 10 7 A/T M2 ). Assuming a magnetic field density in the air gap of 4000 Gauss, the electromotive

force required from the solenoid is about 11,700 Amp-turns. For a solenoid with an inner diameter of

5 cm and an outer diameter of 12 cm, using 14 gauge wire, this translates into about 110 W of power

required (4 Amps at 28 Volts); the temperature change of the solenoid due to resistive wire heating

after 10 minutes is expected to be less than 8'C.

Note that, as shown in Figure 4-3, all pieces of the indenter and load train except for the solenoid

yoke are made of non-magnetic 303 stainless steel. The iron yoke is made of a magnetically soft

cold-rolled steel.

4.2.1.2 Pickup Coil and Fluxmeter Considerations

The sensitivity of a pickup coil is proportional to the number of turns N in the coil (remember V =

-N&M/6t). Most fluxmeters report units of Maxwell-turns. That is, the actual number of Maxwells

measured is the reported number of Maxwell-turns divided by the number of turns in the pickup coil.

Most fluxmeters have a minimum range of 1000 Maxwell-turns. A coil with 150 turns would therefore

in theory be able to report down to a range of about 6.7 Maxwells (equivalent to, for a pickup coil of

the same diameter as mine but with a uniform magnetic field, a field density of 213 Gauss). LakeShore

Cryotronics fluxmeter model 410 uses Volt-seconds as the basic unit of measurement. It has a minimum

range of 3 mV-s, which is equal to 300,000 Maxwell-turns. The sensitivity is 5 pV-s, which is equivalent

to 5 - 10- 7 Webers (50 Maxwells).

Even if indentation were to cause an extremely large change in field density (as high as, say, M,),

the total flux change would be small because the change would occur only over a small area. Consider:

<1 = BAcontact = (1 T) (7r - 150- 10 6 m 2 ~0~ Webers = 10 Maxwells (4.3)

So it becomes clear that measurement of the magnetic field will be difficult.

In a 2 mm x 2 mm cross section, using 38 gauge wire (the thinnest which could easily be acquired

and wound), a maximum of about 250 turns could in theory be wound. In practice, we were able to

wind 110 ±10 turns.

4.2.1.3 Indenter Design

There are three conditions which govern the radius of curvature of the indenter head. The most

important one is that the sample be at least 10 times as thick as the contact radius, in order to ensure
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that classical indentation results (which assume an infinite half-space) still apply. The next most

important condition is that the material not be plastically deformed, so that the magnetic state of the

body does not permanently change. The final condition is that the depth of indentation be large enough

that noise from the indenter machine and imperfections in the spherical nature of the indenter do not

overwhelm the signal. Mathematically, these three conditions are:

E*t3  (4
a < 0.1t - R < 0.00133 (4.4)

_ 31 E*vJ1
Pmax 1-1yield - R > 0.3813 E/2 (4.5)

Oyield

9 P 2

6 hmin R 16E*2h 3  (4.6)

Figure 4-5 plots these three conditions for Terfenol-D, assuming a composite modulus2 of 40 GPa,

a maximum depth of indentation of 1.5 pm, a sample thickness of 2.4 mm, and a yield strength of

250 MPa. (This is the limiting yield strength of the steel indenter; Terfenol has a higher compressive

rupture strength.)

Radius () Sample
0.05- All three ess

conditions

0.04_ are met

0.03- Minimum
identation

0.04-

0.01-
Yield

Strength
.~~ ~ ..I . . . I Load (N

5 10 15 20

FIGURE 4-5: Design of the indenter head for use with Terfenol-D. Each line indi-

cates the border of one design condition, and the shading and arrow indicates in

which direction the condition is violated. The triangular area is where all three are

met simultaneously (i.e., on the opposite side of the shading for all three lines).

Figure 4-6 plots the three conditions for Hiperco-50, assuming a composite modulus of 110 GPa, a

maximum depth of indentation of 0.5 pm, a sample thickness of 1.5 mm, and a yield strength of 250

2 See Appendix A for a definition.
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MPa. (This is a slightly conservative estimate for the yield strength; the exact yield strength for my

sample is not known, but is estimated to be anywhere from 200 to 400 MPa.)

Radius (m)

0.05 - Sam >1e
AFD thee Thick Eess

con tnsh
0.04- - ar

0.03- Yi Jd
Stre gth

0.02 --
Ind ntation

0.0 epth

2 4 6 8 10 12 14 Load (N)

FIGURE 4-6: Design of the indenter head for use with Hiperco-50. Each line in-

dicates one condition, and the shading and arrow indicates in which direction the

condition is violated. The small triangular area is where all three conditions are

met simultaneously.

4.2.1.4 Displacement and Load Measurement

Instrumented microindentation requires a system of displacement measurement which is independent

of the indenter's mechanisms (i.e., which accurately reports erdiulareto the aindenter head, and

not some point away from and under compression with the indenter head) [36].

Displacement is measured using an MTI 2000 Fotonic Sensor, which reflects light off of the mirror

shown in Figures 4-2 and 4-3. This optic sensor has a resolution of about 0.01 Mm. Load is measured

using a Sensotec TM 50 lb. load cell. The resolution of this load cell is about 0.01 N; experimental noise

limits its precision to about 0.1 N.

4.2.1.5 Permanent Magnets

Before expending the time, money and effort to construct a powerful solenoid, tests we're conducted using

small permanent magnets to create a local field, by placing them underneath the sample. Two types of

round permanent magnets (with the magnetization direction perpendicular to the plane of the circle)

were purchased from Dexter Corporation, Billerica, MA. The magnetically weaker ones were made of

A-.1_._.._1 __ _ "AdwaiLl
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Ferrite, with a diameter of 1.18 inches, a thickness of 0.524 inches, and a remanent magnetization of

3,850 Gauss. The other ones were made of AlNiCo, with a 1.00 inch diameter, 0.375 inch thickness,

and a remanent magnetization of 8,200 Gauss.

4.2.1.6 Construction

Construction of the experimental setup described above has begun. It is shown in Figure 4-7. The

Instron 4505 machine itself is made of ferromagnetic materials, but these are far away from the indenter

head and specimen, and thus do not significantly affect the magnetic field there. Calibration and testing

using this setup is being performed.

(a) Indenter setup (b) Zoom of indenter and specimen

FIGURE 4-7: Photo of experimental setup
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4.2.2 Improved Designs

Hall probe gaussmeters provide much more accurate and sensitive measurements of magnetic field than

pickup coils. These gaussmeters utilize the Hall effect to measure fields down to the milligauss range.

On first inspection, it would seem that a Hall probe could not get close enough to the indentation area

to provide a representative signal (see Section 4.2.1.2). By integrating the Hall probe "slab" with an

indenter, however, the probe can be centered on the indenter and brought close to the indentation. The

probe would have to be made of a material which has either zero or a known response to stress, and

the effective modulus of the "composite" indenter would need to be properly accounted for. Figure 4-8

diagrams the geometry of such a gaussmeter/indenter system.

ImStainless
Steel]

Semiconductor
Epoxy fastened Hall probe Bolt fastened

FIGURE 4-8: Two designs for a Hall probe-based magnetic indenter. The electrical

leads to the Hall probe are not shown.

A more challenging design would involve making the indenter head itself out of a semiconductor, thus

allowing measurement of the magnetic field directly at the contact area. Another, more complicated

possibility is to use giant magnetoresistive (GMR) films. As the name implies, the resistance of GMR

films changes drastically with changes in the magnetic field. A GMR thin film could be deposited on

the indenter and its resistive response calibrated with a locally applied field.

4.3 Experimental Procedure

1. Horizontally position the sample underneath the indenter

2. Raise lower croshead with manual controls so that sample and crosshead are close (preferably

within 50 ptm), but not touching (use visual inspection to ensure separation of surfaces)
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3. Bring lower crosshead higher (but not in contact) with fine controls set at 10 - 20 pm/minute, in

order to give the tensile testing machine a baseline from which to improve its speed control'.

4. Set experiment indent speed, and change any necessary parameters in the data acquisition program

(e.g., data acquisition rate).

5. Calibrate photonic sensor if the lower crosshead has been moved more than 1 mm away from the

indenter head since the last calibration.

6. Apply the magnetic field if the solenoid is being used:

(a) Raise the solenoid into position, vertically centered on the sample.

(b) Slowly apply power to the solenoid until the desired field strength is attained.

7. Start the data acquisition program averaging the signal from the load cell.

8. Once LabView has finished zeroing the load, start the lower crosshead moving up.

9. Stop the crosshead motion once the load is about 1 Newton below the maximum desired load (due

to the delayed response of the tensile testing machine), then reverse the direction of the crosshead.

10. Once unloading is complete and the indenter has moved a few microns away from the surface,

stop the data acquisition program recording and reset it in preparation for the next run.

3 At the low speeds used for these indentations, the tensile testing machine (which has a minimum speed of 1 pm/min)

can not immediately move at the exact set speed; it moves at a slower speed, gets a baseline from which to determine its

real speed, then corrects the speed based on that. If it has just moved at a similar speed (e.g., 10 pm/min instead of 5

Am/min) in the same direction, then it can accurately produce the new set speed without requiring a new baseline.
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Chapter 5

Conclusions and Recommendations

So many worlds, so much to do,

So little done, such things to be.

-Alfred, Lord Tennyson

5.1 Conclusions

Indentation of magnetostrictive materials has the potential to be of use in a number of fields, most

notably in the tribology of computer hard disks. Both a theoretical framework and an experimental

design are required to fulfill that potential.

A theoretical framework for the analysis of indentation of magnetostrictive materials was presented.

This framework allows the solving of the forward problem, that is, the prediction of specimen response

given the material properties. Further, the reverse problem can be solved using the same framework, that

is, extraction of material properties from the measurement of appropriate data during an indentation

test.

This framework is based on a linear model of material response as presented in IEEE Standard 319.

A set of three partial differential equations governing magnetostrictive behavior was presented. Next,

these equations were solved for the case of an incompressible material. This limiting case (for which

Poisson's ratio v = 0.5) provides many useful results. First, a closed form relation between the magnetic

flux produced by an applied load was derived. The flux is seen to be directly proportional to the load,

and the constant of proportionality includes the magnetostrictive constant e15 . Therefore, a <b-P curve

could be measured experimentally, and e15 could be determined from the slope of the curve. Alternately,
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predictions of the magnetostrictive response for particular material conditions can be made. Second,

the magnitude of the flux change is predicted to be extremely small. As mentioned in Chapter 1, a fully

coupled theory of indentation of magnetoelastic materials has not heretofore been published. Much

work remains to be done in refining the theory presented above, but the results derived in this thesis

constitute an important step in the direction of a fundamental understanding of the indentation of

magnetoelastic materials.

A preliminary experimental design for the indentation of magnetostrictive materials was then pre-

sented. This design incorporates the many competing design requirements of a mechanical indenter and

a magnetic measurement system and solenoid. It would allow quantitative measurement of the vertical

component of the magnetic flux just above the indenter contact area.

5.2 Future Work

5.2.1 Theory

The analytical solution presented in Chapter 3 is valid at the material surface, i.e., for z = 0. Solutions

throughout the specimen could be obtained by solving for the classical mechanical displacements under

an indenter, and substituting these displacements in for the non-homogeneous component of the partial

differential equation that describes the coupling effect.

More general analytical solutions should also be developed. The case of a general value of Poisson

ratio in the linear material model will be much more difficult than the incompressible case, because the

three partial differential equations will not decouple.

A material model more appropriate to the experimentally observed material response should be

developed. Magnetostrain has been observed to depend approximately quadratically on specimen mag-

netization. A nonlinear model which has such a quadratic behavior has been proposed, and is discussed

briefly below.

5.2.1.1 Nonlinear Material Model

Carman and Mitrovic [13,14] derive the constitutive equations for a nonlinear magnetostrictive material

response. The motivation for doing this is that the magnetostrain is, in fact, an even function of

the magnetization. Their results, ignoring thermal coupling, are presented below. Beginning with a

thermodynamical derivation, they arrive at a definition of the energy differential

dU = -ijdeij + HmdBm + TdS

78

(5.1)



5.2. FUTURE WORK

This is then used to create a Helmholtz free energy, which is then expanded in a Taylor series about an

initial energy and terms which are not seen experimentally (e.g., linear terms) are discarded. Finally,

they present constitutive laws in the (o, B) representation:

Bm = Hpy4 n + eijHngijnm+ { eiEkHQik1nm (5.2)

Oij = eklCH k- H gijnm - HnfH EkQijkinm (5.3)

where p is magnetic permeability tensor, g is the new magnetostrictive tensor, Q is a higher order

coupled stiffness tensor, and superscripts indicate variables held constant. The terms in braces are

higher order terms which could be included, but may not be required. More detailed knowledge of the

functional dependence of magnetostriction will indicate whether or not the term is required. Note that

the product Hmgijnm in the second equation could be interpreted as the eijk used in the linear model.

This nonlinear model could be used as the constitutive model for a numerical solution of the equi-

librium equations presented in Chapter 3.

5.2.2 Experiments

Given the design considerations presented in Section 4.2.1, an indenter with a much smaller load and

displacement range should be used in order to obtain more accurate data as well as greater control over

the indentation depth. In addition to the experiments described in Chapter 4, there are numerous other

related projects to be done. These include experimental investigations into the decay of magnetization

due to elevated temperatures and indentation using a ferromagnetic indenter.

Sridhar et al [6] accurately measured the activation energy for decay of polarization in a piezoelectric

material by repeatedly performing an indentation test, heating the material for some interval, then

indenting again. The magnitude of the spontaneous magnetization decreases with temperature until,

above the Curie temperature, magnets lose all spontaneous magnetization. Furthermore, there is a time-

dependent decay of magnetization at elevated temperatures for some magnets. There are numerous

differences in the polarization/magnetization behavior between piezoelectrics and magnetostrictives,

but indentation does provide the potential for a simple tool for investigating magnetization decay in

hard magnets.

The theory derived in Chapter 3 assumed a non-ferromagnetic indenter. Interesting results are

expected for the case of a ferromagnetic indenter. This is expected due to the fact that the magnetic field

is nearly perpendicular in air just outside a ferromagnetic material. Experiments using a ferrogmagnetic

indenter should be conducted in order to further investigate this response.
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Appendix A

Classical Indentation Results

This appendix presents a brief summary of the classical results of elastic indentation of two spheres [8].

A.1 Geometry

Figure A-1 shows the coordinate system and labels the bodies and their properties for indentation.

The composite modulus of the system is defined as

E* =
-. (1 + E1-E2 (A.1)

and the "composite" radius of curvature (where both spherical surfaces are convex with respect to each

other) is

(A.2)

All my samples will be polished flat, and so R2 --+ 0c. Then R -+ R 1.

A.2 General Values

For a circular point contact, the radius of the contact circle for a load P is:

3PR 3

a =. 4E*

The maximum contact pressure is

(A.3)

Po = (2 32
(6PE* 2 3

= r3 R2
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LLoad P

FIGURE A-1: Coordinate system and property values for indentation

And the separation between distant points is

a2

6-
R

(A.5)

The maximum shear stress is -r = 0. 3 1po at r = 0, z = 0.48a.

Or = 1(1- 2v)po at r = a, and z = 0.

The maximum tensile stress is
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A.3 Displacements and Stresses

The equations for the displacements are as follows.

ur~r z 0)= -(1- 2v)(1 + v-) a2  (

(1 - 2v)(1 + v) a2

ur(rz = 0) = 3E rP

uz(r, z = 0) = 1 v2 (2a2 - r2)E 4a a- 2

uz(rz = 0) =
1 Ev 2 P (2a2 - r 2) arcsin(a/r) + r 2 (a/r)

r < a (A.6)

r > a (A.7)

r < a (A.8)

r > a (A.9)

The stresses are as follows. On the surface, inside the loaded circle,

Ur/po

0o/po

O-z/Po

1-2v a2){1

1-2v

= 1- r )1/2

( 2)3/2
~1 - ) - (

_(1 r 2)3/2 }

- 2v (1

And on the surface outside the loaded circle,

Ur/po = o /po = (1 - 2.)

and of course o_ = 0. Along the z axis within the solid, the stresses are

Or/PO = Co/po = -(1 + v) 1 - arctan(a/z)} +

Oz/PO = - (14 )-

1 + z2 y

2~j a2~

Figures A-2 and A-3 below show the Ur and uz functions at z = 0. Figure A-4 shows the stress

components at z = 0.

2)1/2

r 21/2

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

r -
) 

32

a -
) 

1
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FIGURE A-2: ur vs. r at z = 0 under a spherical indenter, assuming v = 0.3. Note

the scale on the vertical axis (uE*/poa, which is on the order of 10- 7 microns).

Uz - -
a po

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2
r

0.5 1 1.5 2 2.5 3 a

FIGURE A-3: uz vs. r at z = 0 under a spherical indenter, assuming v = 0.3. Note

the scale on the vertical axis (urE*/poa, which is on the order of 10-7 microns).
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FIGURE A-4: Stresses vs. r/a at z = 0 under a spherical indenter, assuming v = 0.3.

Note the scale on the vertical axis (o/po).
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Appendix B

Unit Conversions

Given the numerous unit systems used in magnetics as well as mechanics, the following unit conversions

were found to be useful:

1 dyne/cm 2

1 Oe

1 Henry

1 Maxwell

1 Tesla

1 Volt-second

1 psi

1 Tesla

1 m/A

= 10- Pa

= 79.577 A/m

= lkg m 2 / C2

= 10-8 Weber

= 10 4 Gauss

= 1 Weber/m 2

1 Weber

= 6894.8 Pa

= 1 Weber/m 2

= 1 N/A. m

= 1 Tesla/Pa
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