Summarizing Audit Trails in the Aeolus Security
Platform m‘m’t“"

by -
Wissam Jarjoui

S.B., C.S M.LT., 2011

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2012

Author, PR e
Department of Electrical Engineering ‘and Computer Science
August 15, 2012

Certified by..................o e
Barbara H. Liskov
Institute Professor
Thesis Supervisor

Accepted Dy ..o
Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

Summarizing Audit Trails in the Aeolus Security Platform
by

Wissam Jarjoui

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2012, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Aeolus is a programming platform that supports the development of secure applica-
tions that preserve the confidentiality of information entrusted to them. An important
part of the Aeolus platform is an auditing subsystem that maintains a log in which it
stores information about cvery security related event that occurs while applications
run. The log allows later analysis to determine whether the security policies of the
application have been followed.

For an Aeolus user, analyzing an Aeolus event log can prove to be a daunting task,
especially when this log grows to include millions of records. Similarly, storing such an
event log can be very costly. The system I present in this thesis provides an interface
that allows the creation of user-defined summaries of the Aeolus audit trails, as well
as marking of events in the log for future archiving or deletion. Our system makes it
easier to analyze the Aeolus event log and less costly to store events of interest. This
is done through the use of a QuerySystem and SummaryObjects. 1 present the system
in the context of a sample application based on the financial management service
www.mint.com. The system is an extension to the Aeolus library; it is implemented
in Java code and uses PostgreSQL 9.0 as its primary database.

Thesis Supervisor: Barbara H. Liskov
Title: Institute Professor

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Barbara Liskov, for the
mentorship she gave me during my two years here at PMG. Her guidance helped
me navigate and learn a lot about systems security. I am truly grateful for the
understanding, patience and time investment she put in while helping me see this
project through; I hope that one day I would be able to reflect those traits as a
leader.

A big thank you to my colleague, David Schultz, for his tremendous help in this
project and my personal development; from suggesting and brainstorming ideas to
improve my project, to explaining technical concepts, and being a strong source of
knowledge and inspiration and a good role model in general. David, it has been a
pleasure working with you.

I would also like to thank James Cowling, Dan Ports and Barzan Mozafari and
everyone in 32-G908 for all the fun conversations and useful advice they provided. I
am very fortunate to have had the chance to hear and learn from their experiences,
and be inspired by them.

As this thesis culminates five years for me at MIT, I would like to take this chance
thank my friends and family. My friends, for being their for me, and for offering me
help even when 1 didn’t ask for it. Their presence was a home away from home, and
their support guided me in times of uncertainty. My family, without whom I would
not be where I am today, for their support and encouragement, for looking out for
me, and for setting the bar high. In one way or another, I will always have something
to learn from them.

Finally, 1 would like to thank MIT for all what it has given me, in both computer
science and real life. I thank Anne Hunter, my advisors, my professors and my TAs
for holding my hand when I took on different challenges. I thank the Stata Center, the
Green Building, and The Infinite Corridor for being the monuments of my experience
here at MIT, and I thank the Charles River, for being the source of calmness in a

very busy time. They will all be missed.

Contents

1 Introduction
1.1 Motivation for Summarization and Archiving

1.2 Thesis Qutline.

2 Aeolus System Overview

2.1 System Architectureo,
2.2 Information Flow Model
2.2.1 Principals, Tagsand Labels
2.2.2 Information Flow Rules
2.2.3 Authority
224 Compound Tags. L.
2.3 Programming Model L oL Lo
2.3.1 Threads and Virtual Nodes
2.3.2 Shared State Objectsand Boxes
2.3.3 Authority Closures and Reduced Authority Calls
234 Files
235 LogCollection.
3 Mint
3.1 Mint Model
3.1.1 Authority State Model
3.1.2 Files L
3.1.3 Shared Memory Objects

15
16
17

3.2 Implementation e

3.3 System Security

Auditing the Mint Application

4.1 Detecting Suspicious User Activity

The Summary System

5.1 Summarization Modelo

5.2 Summarization Workflow o000

5.3 TheQuery System
5.3.1 QuerySystem e
5.3.2 Query Attributes Lo L.

5.4 Producing Summaries and Marking Events
5.4.1 SummaryObjects
54.2 Summary Attributes o Lo

55 MarkingEvents

5.6 Discussion e e

Auditing Using Summarization

6.1 Summarizing User Sessions,
6.2 Summarizing File System Events
6.3 Summarizing User Trends

6.4 Sufficiently Summarized Information

Implementation

7.1 The Query System and The Summary Objects

7.2 The Database Manager
7.2.1 Runningin Hide Mode

Related Work

Summary of Contributions and Future Work

9.1 Contributions

37
40

43
44
44
45
46
47
47
48
49
50
50

53
53
59
60
61

63
64
64
66

67

69

9.2 Future Work

References

10

List of Figures

2-1 Aeolus System Architecture 19
2-2 Aeolus Log Collection. 24
3-1 Mint Authority State Model 29
3-2 Mint File System Hierarchy 31
3-3 Mint Shared State Objects 32
4-1 Mint User Activity Trend 39
7-1 Summarization System Architecture. 63

11

12

List of Tables

4.1 Bob’s Information Leaks 37
4.2 Mint Users Information 41
4.3 Mint Account activity foruser Jack 42
6.1 User Sessions o v e e 57

13

14

Chapter 1

Introduction

Maintaining the security of confidential online information, such as medical records
and financial data, is a very important task. Recent research has focused on Decen-
tralized Information Flow Control (DIFC) as the most promising approach to enable
application developers to secure information. DIFC is based on the principle that the
system tracks information as it flows through the system, and only allows informa-
tion to be released if the releaser has sufficient authority. In fact, DIFC allows for
fine-grained control of information flow so that security policies can be tailored to the
needs of individual users and organizations.

This thesis extends the security support provided by the Aeolus platform. Aeolus
is a platform that combines DIFC and an intuitive security model framework to make
it more convenient for developers to build secure applications on a distributed system.
Additionally, Aeolus provides automatic auditing of every security related event that
occurs while an application runs. Furthermore, it provides a way for applications to
log additional events that are meaningful at the application level. The audit trail is an
important component of overall security which allows for the discovery of errors that
cause security policies to be subverted; the audit trail can also be used to discover
attacks.

A common issue in most auditing systems, including the Aeolus system, is that
the audit trails can become extremely large. This is especially true if the system

being audited is large, e.g., has millions of users, and is long-lived. Therefore, a way

15

of reducing the stored information and making the important information more easily
accessible is needed.

This thesis addresses this problem. It provides a framework that allows groups
of events in the audit trail to be summarized: the important content of the group
of events is captured in a summary event, which is much smaller than the group.
Once information has been summarized, the base events that underlie the summary
can be moved to archival storage, or even deleted. An additional benefit is that
summary events make it easier to access application-specific information, than the
base events they summarize, because they can be defined to explain the information
in application-specific terms.

A final point is that the production of the summary events is itself controlled by
information flow. This is important because, everything a system does is detailed
in the audit log, and therefore, there is a potential for information leaks or data
corruption if the log could be accessed by an unauthorized party.

The next two sections describe the motivation and outline of this thesis.

1.1 Motivation for Summarization and Archiving

Summarization allows developers to group information that is spread out over the
Aeolus audit trails into smaller space. This allows for future archiving or truncation
of the Aeolus log, as well as possibly allowing for faster queries to be used.

Take for example a bank’s web administrator who is interested in detecting sus-
picious activity on customers’ bank accounts. One way to do this is to produce a
plot of the number of outbound transfers carried through a user’s account for every
week in the last year. Any spikes in the rate of outbound transactions per week
could mean that a user’s account has been compromised by an attacker. Finally, the
administrator might wish to periodically produce such a plot.

Producing such information is possible through the current auditing mechanisms
available in Aeolus. However, in order to accomplish such a task, the administrator’s

audit will have to scan all events in the system in the past year, which could span

16

millions of events, on a periodic basis, and this could be very costly in terms of time
and resources.

Summarization solves this problem by allowing the web administrator to store
periodic computations as summaries themselves, and simply reusing these summaries
in future audits. For example, the web administrator could store the average number
of outbound transfers a user has made per week in the last year and use that as a
benchmark for future user activity. Furthermore, summarization supports the archiv-
ing and deletion of events by providing the administrator with a way to ensurc that

important information is not lost in the process.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 presents an overview
of the Aeolus security system. Chapter 3 presents a sample Aeolus application based
on the financial management service www.mint.com. Chapter 4 describes an example
of application-level logging and possible uses of the audit trails. Chapter 5 describes
the summarization models and interfaces. Chapter 6 describes examples of how to
use our summarization system. Chapter 7 describes the implementation details of
the system. Chapter 8 discusses related work. Chapter 9 reviews the contributions

of this thesis and presents some topics for future work.

17

18

Chapter 2

Aeolus System Overview

This chapter presents an overview of the Aeolus security platform, on which our
summarization system is based, and highlights relevant details such as log collection.
More complete descriptions of the Aeolus security platform and its log collection and

analysis can be found in Cheng [5], Popic [11] and Blankstein [3].

2.1 System Architecture

o R T

Internet

Figure 2-1: Aeolus System Architecture. High level overview of Aeolus system archi-
tecture.

The Aeolus architecture is shown in figure 2-1. The system consists of many
nodes, each of which is trusted to enforce Aeolus information flow rules.

Aeolus tracks information flow within each system node and between system

19

nodes. Nodes in the system communicate via RPC messages, those messages are
encrypted to protect their secrecy and integrity. Nodes outside the system are con-
sidered to be untrusted: information can flow outside of the system only if it is
uncontaminated, and information arriving from the outside is marked as having no
integrity.

Threads in Aeolus run on behalf of principals. The ability of a thread to carry
out privileged operations is determined by the authority of the principal it runs on
behalf of. Aeolus tracks the authority of principals in the authority state stored at the
authority server (AS). Principals, privileged operations and authority are described

in sections 2.2.1, 2.2.2 and 2.2.3, respectively.

2.2 Information Flow Model

This section describes the basic concepts and rules of the Aeolus security model.

2.2.1 Principals, Tags and Labels

Aeolus employs an intuitive security model to implement information flow control.
The model revolves around three key concepts: principals, tags and labels [4]. Princi-
pals represent entities in the system that create, modify and share information. Tags
represent security categories of information. A principal authoritative for a certain
tag can modify or share information categorized by that tag. Labels are sets of tags
and are used to determine whether information can flow from a source to a destination

based on the information flow rules described in the following section.

2.2.2 Information Flow Rules

Aeolus allows information to flow from a source S to a destination D only if the

following rules are satisfied:

SECRECYs C SECRECYp

20

INTEGRITYs 2 INTEGRITYp

Threads in an Aeolus node run with security and integrity labels associated with
them; objects such as files also have such labels. In Aeolus, a thread cannot modify
labels of objects; however, the labels of threads can change, and hence a thread would
have to modify its own labels in order to read or write data.

Certain label manipulations, called privileged manipulations arc unsafe because

they remove constraints on information flow:

1. Declassfication Remove a tag from a secrecy label.

2. Endorsement Add a tag to an integrity label.

A thread is allowed to carry out privileged label manipulations if it is running on

behalf of a principal that has authority for the tags affected by these manipulations.

2.2.3 Authority

Authority determines whether a thread can perform privileged label manipulations.
Authority starts with tag creation: when a thread creates a tag, its principal has
authority for that tag.

Subsequently, the Aeolus authority state can be modified through grant, act-for
or revoke operations. Grant operations allow a principal to delegate authority for a
particular tag to another principal. Act-for operations allow a principal to delegate
all of its authority to another principal. Revoke operations remove act-for and grant
links between principals. To avoid covert channels, Aeolus permits only threads with

null secrecy labels to modify the authority state.

2.2.4 Compound Tags

Applications frequently have sets of tags that are closely related. In order to simplify

the authority structure of the application, Aeolus allows for tags to be grouped upon

21

creation using compound tags. For example, in a medical clinic, patient data tags are
subtags of an ALL-PATIENT-DATA tag, a supertag.

A principal authoritative for a supertag is also authoritative for all of its subtags.
Similarly, having a supertag in a thread’s secrecy label is equivalent to having all
subtags in its secrecy label. This reduces label size substantially, and makes label
manipulations involving paricular groups of tags less expensive.

See figure 3-1 on page 29 for an example of an authority state model, detailing
act-for, grant and subtag relationships in the financial services application described

in chapter 3.

2.3 Programming Model

This section explains the programming abstractions Aeolus provides, and how they

support DIFC.

2.3.1 Threads and Virtual Nodes

Virtual nodes (VNs), shown as applications in figure 2-1, communicate via RPC and
have many threads inside them. A VN is given a principal when it is created and all
threads run with this principal or some principal it acts for. An RPC is run in its own
threads with the VN principal but the labels of the caller; on the return the labels
are sent back to the caller where they are merged with those of the caller: a merge
is a union of the secrecy labels and an intersection of the integrity labels. Then the

caller continues with its own principal.

2.3.2 Shared State Objects and Boxes

Within a virtual node, threads can share state via special Aeolus shared objects.
Aeolus gives threads access to a root shared memory object, with null labels.
Aeolus shared obects have immutable labels, and Aeolus ensures that the rules in

section 2.2.2 are respected. Users can create their own shared objects; Aeolus ensures

22

that label manipulations do not take place inside the object’s methods.

2.3.3 Authority Closures and Reduced Authority Calls

Aeolus provides developers with authority closures. An authority closure is an object
bound to a principal at the moment of creation. Threads can later call the closure’s
methods, which run with the closure’s principal. Authority closures allow threads to
process confidential information without being exposed to the information itself.

Aeolus also provides a mechanism for threads to reduce their authority, called
reduced authority calls. To make a reduced authority call, a thread specifies a function
and a principal to run it with. The calling thread’s principal must act for the principal
of the reduced authority call.

With those two mechanisms in place, Aeolus makes it possible to ensure that each
part of the application runs with only the authority it needs. Aeolus also provides a
principal that is not authoritative for any tags, Ppyprrc, for developers to use when

they need to ensure that a part of a program cannot leak any information.

2.3.4 Files

Aeolus provides a network file system that enforces DIFC. Similarly to shared memory
objects, files have immutable labels and the rules in 2.2.2 apply for information flow
in and out of them.

Files are yet another way (RPCs, shared memory objects) through which Aeolus
allows threads to communicate. A complete description of the Aeolus file system API

is presented in McKee [9].

2.3.5 Log Collection

Aeolus provides automatic auditing of every security related event that occurs while
an application runs; it also provides a way for applications to log additional events

that are meaningful at the application level.

23

Aeolus Node Authority Server

Aeolus NOdiI | Aeolus Node l

Log Collector Node

Figure 2-2: Aeolus Log Collection. Flow of logs to the log collection system.

Aeolus distributes log collection across all nodes in the system. VNs send events
that occur locally to the log collector as shown in figure 2-2. The log collector stores
the events for later processing and analysis, as explained in [3].

Acolus provides application-level logging to allow developers to log their own

events using the following interface:
AeolusLib.createEvent (String app.op, List<String> args)

This creates a new record in the Aeolus event log. The app_op and args argument
are stored as attributes for that record, allowing the developer to query the event log
based on the arguments they provided. The app_op parameter is used to to identify
the application operation name, and the args paramter allows the developer to specify

any additional information to store for the event.

Aeolus Event Attributes

Aeolus stores different attributes for different events that take place in the system.
Blankstein [3] provides a complete description of those attributes; here we will high-

light the ones more relevant to the use of summarization:

eveni_counter
The event counter uniquely identifies an event, and provides an ordering for the
occurrence of the event, i.e. events with a higher event_counter took place after

events with a lower event_counter.

timestamp

This is the real time at which the event happened.

24

secrecy
This is the secrecy label of the thread which caused the event, just before the

event took place.

integrily
This is the integrity label of the thread which caused the event, just before the

event took place.

op_name
This field specifies the type of the event, e.,g. a DECLASSIFY event, or a
SENDRPC event. Application-level events created with the above events all
have the APPLICATION_LVL operation name.

app-op
This field holds the name of the application-specific operation and is provided

by the developer as shown in the interface above (the first argument).

app_args
This field holds the arguments specified for an application-level event, also pro-

vided by the developer as shown in the interface above (the second argument).

running_principal

This field holds the principal of the thread that caused the event.

It is important to note that the secrecy and integrity attributes are important to
prevent information leakage in the system: a thread can only read those event records

if the DIFC rules in section 2.2.2 arc satisfied.

25

26

Chapter 3
Mint

Prior to the development of our summarization system, it was important to develop
a sense for what is needed from such a system, and what problems can it solve.
To answer these questions, I developed an Aeolus application based on the financial
management service mint.com; from here on we will refer to this application as the
“Mint application” or “our application”. The Mint application served as a case study
and guided the development of the summarization system.

In this chapter I present the Mint application model and implementation, sctting
the stage for later chapters that discuss logging and summarization for this applica-

tion.

3.1 Mint Model

Mint.com is an financial management service that provides its users with the ability
to monitor their bank accounts across different banks from one place. It also allows
users to run transaction analysis tools that will access the information of certain
transactions for each bank for the user, and generate a result. In addition, Mint runs
aggregate analysis for all user accounts.

For example, Bob could sign up on our application and add his Bank of America
account and his US Bank account for monitoring. This will cause our Mint application

to store credentials for both of these banks for Bob. Bob can then request a graph that

27

presents his expenditures on food in the last week, based on credit card transactions
retrieved from his banks. Bob’s usage of our application would also affect the general
aggregate analysis done over all Mint users.

This example gives us a starting idea of how should we build our authority struc-
ture. For instance, there should be a BOB-DATA tag associated with Bob’s infor-
mation (e.g. expenditure statistics, transactions, etc.) that only a principal running
on Bob’s behalf can declassify. Note that Bob’s password should never be revealed
to Bob himself, neither should any of Bob’s bank credential be revealed as well.
Furthermore, there’s a natural grouping of user data tags, and hence a super tag,
ALL-USER-DATA, could be useful to run the aggregate analysis tools for Mint.

We can also see the need to use Aeolus’ shared memory objects to store user session
information, and use Aeolus’ file system library to store persistent information on disk.
Other important Aeolus’ abstractions will come in handy as well, for example closures
for authentication as well as reduced authority calls for processing Bob’s history of
transactions.

In this section we examine the security model of the application more closely.

3.1.1 Authority State Model

In this section we identify the prinicpals running in the system, the tags associated
with different data, and the relationships between them. Figure 3-1 shows an overview
of the authority state model for Mint.

An intuitive way to list all necessary! principals, is to think of the different “clear-
ance levels” in the system: some information should be accessible by a user, some by
a bank, and some information should not be accessible at all. In the light of these

requirements, the application employs the following principals:

Mint principal
This princi'pal is authoritative for all tags in the system, and is used for aggregate

analysis of user data and user authentication.

!Neccessary by good design. The application could run with just one principal.

28

E \ - Fé
\.__‘ 7/ \“*--._h__\ / \ o & \ ,"-
\ e] i /

principal — — —>» authoritative for

Bl teo s SUDEAQ

[compoundtag ——» actfor

Figure 3-1: Mint Authority State Model. This diagram illustrates the authority state
model of the Mint application in an example where two banks are registered at the
application, Bank of America and US Bank. Users Bob and Dan have both signed
up. Principals are denoted Pcpume> and tags are denoted tcnames-

Bank principals

Each of these principals is authoritative for a particular bank’s tag.

User principals

Each of these principals is authoritative for a particular user’s tag.

Public principal
Described in section 2.3.3, this principal is used when no privileged operations

are necessary to ensure no information leaks.

Similarly, to separate data in the system according to its purpose, (e.g. user

password, user bank credentials, etc..), the application employs the following tags:

User data tags
Each of these tags is associated with data carrying a particular user’s informa-
tion. For example, history of a user’s transactions. Reading (or modifying) user

information requires declassifying (or endorsing) a user data tag.

Bank data tags

Each of these tags is associated with data carrying a particular bank’s infor-

29

mation. Reading a user’s bank credentials requires declassifying a bank data
tag. This tag is important so that only a bank’s closure (a closure bound to the

bank’s principal) is able to access a user’s bank credentials for authentication.

All-Users-Data tag
This tag is a super tag for all the user tags. Running aggregate analysis on

Mint user accounts requires declassifying this tag.

All-Banks-Data tag
This tag is a super tag for all the bank tags. Adding a new bank to Mint

requires endorsing this tag.

Authentication tag
This tag is associated with user’s Mint passwords. Authenticating a user’s Mint
credentials requires declassifying this tag. This tag is important to prevent
release of a user’s password to someone who might have gained access to their

account.

3.1.2 Files

The application uses Aeolus files for persistent storage. Figure 3-2 shows the hierarchy

of the Mint files and their labels, described below:

mint-dir
This is the root directory for the Mint application. The secrecy label is empty,
the integrity label contains the ALL-USERS-DATA and the ALL-BANKS-
DATA tags.

banks-dir
Contains a bank-info file for each bank that was registered to the applica-
tion. This directory has an empty secrecy label, and has the ALL-BANKS-
DATA tag in its integrity labels. Each of the bank-info files in this directory
has a BANK-DATA tag in both its secrecy and integrity labels.

30

Files Secrecy Label Integrity Label
=mint-dir {} {t Al users-oatas tat-sanks-Data}
§~-s§ban ks-dir {} {t aLLsanks-DaTa}
5---~Bank of America-info {tsankor-americat {tzankor-americat
“-~US Bank-info {tussank} {tussank}
5--§user s-dir {taLusers-oatat {taLLusers-patat

z"‘fBOb {tocs} {tsos}

{ i-bob-info {tsos} {tsos}

g---‘bob-password {taum} {tsos}

boh-bankofamerica-creds {teos, teankoF-AMERICA} {teos}

i %..bob-usbank-creds {tsos: tusaank} {taos}

E"“:‘DEH'I {tpan} {toan}
dan-info {toan} {toan}
+---dan-password {taumm?} {toan}
:....dan-usbank-creds {toan: tussankt {toan}

Figure 3-2: Mint File System Hierarchy. In continuation of the example in figure
3-1, Bob added credentials for Bank of America and US Bank to his account, and
Dan added credentials for US BANK to his account.Tags are shown under the secrecy
label and integrity label columns, and are denoted tcpome>- tBop and tpan are both
user data tags. tganvkx—or-america and tys_pank are both bank data tags. faury
is the authentication tag, and tar;-uvsers-para tag is a supertag as shown in figure

3-1.

users-dir

Has the ALL-USER-DATA tag in both its secrecy and integrity labels.
Contains a subdirectory per user, each subdirectory contains a USER-
DATA tag in its secrecy label, and a USER-DATA tag in its integrity

label. Each of these subdirectories contains the following files:

user-info
Contains the user tag for that user. This file has the USER-DATA tag
in both its secrecy and integrity labels.

user-password

Contains the user’s password. This file contains the AUTH tag in its
secrecy label, and the USER-DATA tag in its integrity label.

user-bank-creds
Contains user credentials for a particular bank. The users-dir direc-

tory contains one user-bank-creds file per bank the user added to their

31

account. This file has the BANK-DATA and USER-DATA tags in its
secrecy label, and the USER-DATA tag in its integrity label.

3.1.3 Shared Memory Objects

Figure 3-3: Mint Shared State Objects. This figure illustrates what shared memory
objects the Mint application uses. This diagram builds on the example presented in
Figure 3-2. Bob’s session had timed out, and no session object or last activity time
is stored for his username. Meanwhile, Dan’s session is still active, his session state
object is included in shared memory.

To allow for quick responsiveness to user requests, the application stores some
key information in shared memory. Figure 3-3 diagrams the different shared memory
object, their relations and what information they store.

A Mint Server State object that has null labels is stored as the Aeolus root object

and contains the following objects:

Bank Closures Map
A bank closure is used to retrieve user information from a bank. The bank
closure is authoritative for the tag of the bank it is working for. A bank closure
has null labels. This object maps each bank name to a bank closure, and has

null labels itself.

32

Session Objects Map
This object maps a username to a session object. A session object contains ses-
sion information about a user. It also contains a list of bank credential objects,
one for each bank a user has registered for, as well as the user’s Principal ID

(PID). A session object has the USER-DATA tag in both its labels.

Bank Credentials
A bank credentials object contains the user’s username and password for
that particular bank. It has a BANK-DATA tag and a USER-DATA tag
in its secrecy label, and a USER-DATA tag in its integrity label.

User Tags Map
The application stores the tag for each user that has an active session, this
allows the application server to access session objects with the user tag in their
label. User tags are stored as a mapping from username to tag. This object has

null labels.

Bank Tags Map
Bank tags are important to store in memory to allow for quick server response

time. They are stored as a map from bank name to bank tag. This object has

null labels.

User Last Activity Map
The time of a user’s last activity is used to identify which users are still active.

This information is stored as a mapping from username to last activity time.

This object has null labels.

3.2 Implementation

The application server runs on a VN, and receives user requests via RPC. Users can
sign up, login, logout, register a bank and retrieve expenditure statistics.

At startup, the system registers a number of banks. These are the banks which

33

the users can later add accounts for on their Mint account. The system is now ready
to accept users.

Users can register to the Mint service through a signUp RPC call:

signUp(username, password)
Signs up a new user with the username as username and password as password.
If username is available, associates those credentials with a newly-created user
data tag and a newly-created principal ID, then stores all this information on
disk under a new user directory, as per the file system hierarchy described in
section 3.1.2. The system also stores the newly created tag in the User Tags

Map. Throws an exception if this username is already used.

Users can then log in to modify their account and retrieve their information using

the following RPC call:

login(username, password)
Authenticates a user, and if successful, stores their information in a session
object, and updates their last activity time using the shared memory objects
described in section 3.1.3. The system authenticates the credentials by calling an
authentication closure, which adds the All User Data tag, verifies the credentials,
declassifies and terminates if the username and password are correct, throws an

exception otherwise.

Once a user logs in, they only have to include their username in pursuing requests
to carry out different actions. In each of the following RPC calls, authentication is
carried out by checking if the provided username has a session that has not timed
out yet (there is a last activity time associated with a session, and thus must not be

older than a certain amount of time, e.g. 15 minutes).

addBank(username, bankName, bankUsername, bankPassword)
Registers the specified bank for the specified username with the given creden-

tials. This request writes a user-bank-creds file to disk, with the tag of the user

34

in its integrity label, and the tag of the user and that of the bank in its secrecy
label.

downloadTransactions(username)
This action connects to each bank the user has registered for their account,
downloads the latest transactions for the user, processes them, and returns the
result. The RPC thread uses the closure of the bank to connect to the bank
and declassify the information returned. The thread then adds a user tag to
its secrecy label, and uses a reduced authority call to the public principal to
process the information; this ensures that information cannot be leaked while

it is being processed 2.

logout(username)

Terminates the user’s session, removing their information from shared memory.

removeBank(username, bankName)

Removes the specified bank from a user’s account.

For each RPC call, the thread handling the call starts running on behalf of Pynr,
and then reduces its authority as soon as possible to avoid errors leading to informa-
tion leakage. For example, in downloadTracations, after authenticating the user, the
thread reduces its authority to run on behalf of the users principal, then processes

the downloaded information on behalf of Ppyprre and then returns.

3.3 System Security

The use of a username in the implementation of the RPC calls defined above to
identify which user invoked those calls creates a vulnerability in our system. Alice
could send a downloadTransactions(“Bob”) request, and because the information is
being sent outside the Aeolus system, the information in the reply would have null

labels, and hence Alice could access Bob’s information.

20ne can imagine that the information is being processed by a different application in the system,
using this technique means our application does not have to trust that application.

35

Another problem that comes up is related due to the assumption that the user
is connecting from another Aeolus node. If this was not the case, i.e. the requests
are coming from outside the Aeolus system, sensitive information would be exposed
over the network (e.g. the user’s Mint credentials), which wouldn’t happen for RPCs
within the Aeolus system because those are encrypted®.

Both issues can be resolved by using standard cryptography mechanisms to en-
crypt and authenticate external communication. For example, encrypting all requests
and replies coming in and out of the system and, in addition, sessions can be iden-
tified by unguessable temporary session-ids, and, those session-ids would be used to
authenticate future requests in that session.

Finally, the security of application can be improved by introducing more principals
to the authority state model to make the information flow control more fine-grained.
For example, we could separate the authority to register banks from the authority to

authenticate users.

3Requests coming from outside the system could be RPC or HTTP requests.

36

Chapter 4

Auditing the Mint Application

In this chapter we discuss auditing and how the audit trail can be used for discovery.
As described in section 2.3.5, every security-related event is logged automatically
by Aeolus. In addition, applications can log events of their own. We take advantage
of this in the Mint system by logging application-specific events; an example is given
in section 4.1.
Events are stored in a table that we will refer to as the LOG. The LOG is useful
for discovery, which can be done by means of a query over the table. Table 4.1 and

figure 4-1 show two examples.

secrecy | integrity | user op_name timestamp

| |
————————— +- —— + + - -
{11} I {3 | Alex | DECLASSIFY | 2012-06-13 21:57:06.876
{11} I {} | Aline | DECLASSIFY | 2012-06-13 21:57:04.852
{11} P {3 | Jack | DECLASSIFY | 2012-06-13 21:56:45.73
{11} I {3 | Jack | DECLASSIFY | 2012-06-13 21:56:42.691
{112 I {3 | Mike | DECLASSIFY | 2012-06-13 21:56:40.649
{11} I {3 | Mark | DECLASSIFY | 2012-06-13 21:56:39.624

Table 4.1: Bob’s Information Leaks. This table shows the declassifies of Bob’s data
tag from users other than Bob himself. The columns are as described in section 2.3.5.

Table 4.1 shows principals that declassified Bob’s tag; thus, it shows which users
accessed Bob’s information. In a secure implementation of the Mint application, no

user principal other than Bob’s principal should be able to declassify Bob’s tag. How-

37

ever we introduced a bug in our implementation of the Mint application to demon-
strate how the LOG can be used for discovery, and hence we can see that many user
principals were able to declassify Bob’s tag - something that should never happen. In
this example, the LOG helps us discover the leakage of Bob’s information due to an
application error.

Figure 4-1 shows a graph of how many user requests, for each user, caused a
declassification of a user data tag for every b-second period since the application
launched; in other words, it shows the activity trend of each user. Any spike in the
graph for a particular user means that that user was abnormaly active in certain
periods of time. In this example, the LOG helps us discover if any user accounts have
been compromised.

In the following section we describe how the data for Figure 4-1 can be extracted

from the LOG.

38

Users Account Activity

loo il B eein g Gh s i :
. o

o | . - . o

80 _ : :
704 ' " :

40 | S b %

20 |l s P e il
N

10 |Esee T

Number of requests

Time (seconds) since application launch

B Bob @ Charlie @ Eve M Ted M Jon % Jack James B Mike = Mark ® Jamie
B Dave B Tod B Chris ® Ron ® Phil ® Tracy ® Leah B Kevin B Rose B Dina
@ Abby Helen ® Alex = Aline

Figure 4-1: This graph shows the activity trend of each user. Notice that the activity
for Jack spikes in the graph at multiple places. This could be the result of an attacker
accessing his account and issuing requests to quickly retrieve all of Jack’s financial
information.

39

4.1 Detecting Suspicious User Activity

In order to gather the information necessary to produce the graph in figure 4-1, we

add application-specific events to the LOG for each different action the user takes.
For example, when Bob signs up successfully with our application, we record his

username, “Bob”, as well as his data tag and the principal authoritative for that tag.

This is done using the following call!:

AeolusLib.createEvent (¢ ‘mint—user—signup’’,
Arrays. asList (
new String[] {‘‘Bob’’, ‘5677, ““10’’}));

This call causes a sign up event to be added to the LOG. To obtain a table detailing
the username, principal, data tag and other sign-up information of all users, we use

the following SQL query based on our application-specific events?:

select to_array(app-arg)[0] as pid,
to.array (app-arg)[1l] as username,
to_array (app-arg)[2] as tag,
timestamp as signed_up,
event_counter

from events

where op_name=’mint—user—signup’

Table 4.2 shows a possible result of running the query, with some extra information
about the time when each user signed up.
Finally, we can obtain the information necessary to create the graph in figure 4-1

using the following query:

select e.count, users.username,
e.to_timestamp as timestamp

from (select count(x), tags_modified,

'Recording the principal ID and the number of the tag is enough to retrieve the full information
about a principal and a tag from the AS.
2to.array is a procedure that turns a comma-delimited string into a PSQL array.

40

Table 4.2: Mint Users Information. This is a table detailing the information about
users signing up during a simulated run of the Mint application. The pid column
denotes the user’s principal, the username column denotes the user’s username, the
tag column denotes the user’s data tag, the signed_up column denotes the time at
which the sign up event took place, and the e_ctr column denotes the unique event_-

— — ——— — — —— o — — —— — — —— — — — —— — — — - — m— ——— e —

username | substring | signed_up | e_ctr
wissam | 4 | 2012-06-13 21:56:36.207 | 131
david | 7 | 2012-06-13 21:56:36.207 | 445
dan | 10 | 2012-06-13 21:56:37.338 | 793
Bob I 11 | 2012-06-13 21:56:37.338 | 1148
Charlie | 12 | 2012-06-13 21:56:37.338 | 1211
Eve | 13 | 2012-06-13 21:56:37.338 | 1274
Ted | 14 | 2012-06-13 21:56:37.338 | 1337
Jon | 15 | 2012-06-13 21:56:37.338 | 1400
Jack | 16 | 2012-06-13 21:56:37.338 | 1463
James | 17 | 2012-06-13 21:56:37.338 | 1526
Mike | 18 | 2012-06-13 21:56:37.338 | 1589
Mark | 19 | 2012-06-13 21:56:37.338 | 1652
Jamie | 20 | 2012-06-13 21:56:38.578 | 1715
Dave | 21 | 2012-06-13 21:56:38.578 | 1778
Tod | 22 | 2012-06-13 21:56:38.578 | 1841
Chris | 23 | 2012-06-13 21:56:38.578 | 1904
Ron | 24 | 2012-06-13 21:56:38.578 | 1967
Phil | 25 | 2012-06-13 21:56:38.578 | 2030
Tracy | 26 | 2012-06-13 21:56:38.578 | 2093
Leah | 27 | 2012-06-13 21:56:38.578 | 2156
Kevin | 28 | 2012-06-13 21:56:38.578 | 2219
Rose | 29 | 2012-06-13 21:56:38.578 | 2282
Dina | 30 | 2012-06-13 21:56:38.578 | 2345
Abby | 31 | 2012-06-13 21:56:38.578 | 2408
Helen | 32 | 2012-06-13 21:56:38.578 | 2471
Alex | 33 | 2012-06-13 21:56:38.578 | 2534
Aline | 34 | 2012-06-13 21:56:38.578 | 2597

counter number of the sign up event.

41

count | username | timestamp
_______ T R ———e e
22 | Jack | 2012-06-13 21:56:40-04
4 | Jack | 2012-06-13 21:56:35-04
42 | Jack | 2012-06-13 21:56:50-04
72 | Jack | 2012-06-13 21:57:00-04
90 | Jack] 2012-06-13 21:56:45-04
12 | Jack | 2012-06-13 21:56:55-04
22 | Jack | 2012-06-13 21:57:05-04

Table 4.3: Mint Account activity for user Jack. This table shows the number of
declassifies done by Jack’s principal in each five-second period since the application
launched. The count denotes such number.. The username column denotes the user
who’s data tag is in question. The timestamp column denotes the start of the 5-second
period. A table containing similar information for all users would be a precursor to
producing the graph in figure 4-1, but here we only show this data for user Jack for
simplicity.

(to_timestamp (((extract (epoch

from events.timestamp)/5)::int)*5))
from events where tags_modified
in (select tag from users) group by
(to_timestamp (((extract (epoch

from events.timestamp)/5)::int)*5)),
tags.modified)

as e inner join users on e.tags_.modified=users.tag

Table 4.3 shows a the result of a modified version of this query that shows in-
formation just for the user Jack. This query provides us with a count of how many
requests by Jack caused a declassification of a user data tag for every 5-second period

of time since the application launch.

42

Chapter 5

The Summary System

This thesis is concerned with providing mechanisms that allow the size of the log
to be controlled. A log for a large system (e.g., the Mint application with millions
of users) is going to be very big, and the problem gets worse if the system is long-
lived. A way to reduce the log is to delete or archive events. Typically, this will be
done for events in the past, e.g., events collected last year are less important than
recent events. However, there is no way that Aeolus can decide by itself what events
are important: this has to be done by the application. A further point is that the
application may need to retain some of the information in the events, at least those
that are being deleted; again the application has to specify what information should
be retained.

For example, if we store the number of declassifies a user’s principal carries out
per user session, we would require many fewer events to be stored in the log table to
formulate a pattern of the user’s activity, and, eventually detect suspicious behavior
patterns. Thus, we could choose to delete events that have been summarized, without
loss of the summarized information.

Our system is designed to support this process. We provide an interface that can
be used by application code to create summaries (also referred to as summary events)
and to mark events for deletion or archiving; from this point forward we refer to these
as the marked events. Summaries are stored in a SUMMARY table and therefore

queries can be used to perform discovery on them if desired.

43

5.1 Summarization Model

An application uses our summary system from within a VN. This has the following

ramifications:

e Every access to the LOG or SUMMARY table must obey our information flow
constraints. The thread can only read events from these tables whose secrecy
labels are contained in those of the thread, and vice versa for integrity labels.
Also, all events that are added to the SUMMARY table will have the labels of

the thread at the moment the event is added.

The thread producing the summaries or deletes runs with the authority of some
principal. For example, a thread creating a summary in the Mint application
would likely run the Py ;n7 principal. Thus the thread can use its authority to

declassify as needed to produce a summary with the appropriate labels.

e The user code can run an arbitrary Java computation to produce the summary
from the events being summarized. This computation could be a simple one,
such as a count of the number of the DECLASSIFY events encapsulated by a
summary, or a more complex one, such as a categorization of the users activity as

normal or suspicious based on the different events encapsulated by the summary.

e The activities of the user code will be audited in the usual way. Thus it will be
possible to run discovery over these events, and if desired the user code can log

additional events in the base log by using the Aeolus interface.

In the following section, we describe the typical use cases that our system aims to

address.

5.2 Summarization Workflow

A typical workflow of how an application might use our system to produce a summary

is as follows:

44

1. Possibly run some queries to establish a context for the events to be summa-
rized or marked. For example, identifying Jack’s principal 1D is necessary to
summarize the number of declassifications carried out by Jack’s principal in a
particular session. Such a context could be established by retrieving a table

detailing each user’s information as shown in table 4.21.

2. Run a query to identify the events to be summarized or marked, for example,

all the declassifications carried out by Jack’s principal per session.

3. Compute the information that goes into the summary, for example, whether or
not the number of declassifications caused by Jack’s principal for a particular

session is too high.
4. Possibly produce and store the summary.

5. Possibly mark all events covered by the summary.

The next two sections describe how our system allows applications to query, summa-

rize and mark events.

5.3 The Query System

Steps 1 and 2 above are used to establish the context and then to identify the events
to be summarized or marked. Since these activities are likely to be performed peri-
odically, it is useful to allow the queries to be defined once and then used over and
over.

For example, the queries in section 4.1 could be run many times over the lifetime
of the application.

However, an application might need to use a particular query with different pa-
rameters - for example, the Mint application might want to run a query to find out

the last login time for different users.

1Other necessary information for this summary example is to identify the start and end of Jack’s
sessions.

45

A further point is that queries could be run over the LOG or the SUMMARY
table, or both. It is up to the application to specifically identify which tables the
query will run over.

The following two sections describe the interface we provide to support these use

cases, as well as the QUERY table which we use to store query records.

5.3.1 QuerySystem

An application can use our system by calling QuerySystem.getInstance(). This will
provide the application with an instance of our system, which can then be used to

call the following methods for managing and running queries in the QUERY table:

addQuery(name, gquery_text)
Adds a query with a NAME as name and TEXT as query-tezt. If a query with

that name already exists, throws an exception.

runQuery(name, vals)
We allow applications to provide incomplete query text (values replaced by

placeholders) to allow for reuse of the queries with different parameters.

This method runs the query with the name name, replacing any existing pa-
rameter placeholders in the query TEXT with the values in the vals array, and

returns the underlying set of event records.

The addQuery and runQuery methods log the type of the operation, e.g. “query-add”
or “query-run”, as well as the name (and query parameters in the case of runQuery)
of the query involved.

We do not support deletion of queries from the QUERY table because summaries

could refer to them, as described in section 5.4.

A final point is that runQuery will return only records that the calling thread is

allowed to see per the rules in section 2.2.2.

46

5.3.2 Query Attributes

For each record stored in the QUERY table, we store the following attributes:

NAME
This field is provided by the application. It can be used to identify the purpose
of the query, for example, query 4.1 could be named “Mint Sign-ups”.

TEXT
This is the text of the query. This does not have to be a complete query:
again, we allow the application to leave query parameters unspecified, replaced
with placeholders in this field, so that a record can be re-used with different
parameters to represent different queries. The following is an example of what

this attribute might hold as a value:

select *x from LOG where event_counter=7

AT~
\A ¥

over the LOG and SUMMARY tables, which already have labels. To avoid any

A~ mnt
wuv 7]

confusion and prevent the use of our interface as a covert channel, we require that a

thread have null labels when adding a query to the QUERY table.

5.4 Producing Summaries and Marking Events

An application can use queries in the QUERY table to set up a context for summa-
rization and to identify events to be summarized. The application can then store a
summary of those events in the SUMMARY table. The application might then choose
to mark the events encapsulated by a particular summary event, or summarize a group
of summary events.

For example, a summary of the information presented in figure 4.1 would detail
all the users other than Bob who accessed Bob’s information, along with the period
of time during which those accesses happened (identified by a start event_counter and

an end event_counter).

47

The following two sections describe the interface we provide to support producing
summaries and marking events, as well as the SUMMARY table which we use to store

summary records.

5.4.1 SummaryObjects

In this section we describe SummaryObjects. SummaryObjects provide an interface
for applications to create and add summaries to the SUMMARY table, as well as
mark their events.

The interface we expose is as follows:

SummaryObject(query_name, query_params)
Retrieves the events identified by the query query_name with parameters query._-

params.

addSummary(summary_name, summary_args)
Adds the summary represented by this SummaryObject to the SUMMARY ta-
ble with name as summary-name and arguments as summary_args. Stores the

calling threads’ secrecy and integrity labels of the summary object.

getEvents()
Returns a set of records that this summary object covers. This set of records is

determined when the summary object is created.

mark(query-name, query_params)
Marks the group of events underlying this SummaryObject. The query_name
and gquery_params identify a subset of the events covered by this summary object
that should NOT be marked. If the arguments are null, all events covered by

this summary object will be marked.

The reason we allow some events to be identified as not markable is because there
are events in the log that Aeolus won't allow to be deleted; in particular all events
that record changes to the authority state, e.g., creating a principal, or allowing one

principal to act-for another. It seems likely that the application will also have some

48

events that it does not allow to be deleted. The arguments to the mark method allow

these events to be identified.

In our scheme, we depend on being able to identify events underlying a partic-
ular summary by their event_counter. Hence we require all queries used to produce
SummaryObjects to include an event_counter attribute.

Finally, The addSummary and mark methods log the type of the operation, e.g.
“summary-add” or “summary-mark”, as well as the name and parameters of the

underlying query.

5.4.2 Summary Attributes

For each record stored in the SUMMARY table, we store the following attributes:

EVENT_COUNTER

Unique identifier for each record.

NAME
Similar to NAME in the QUERY table, this field is provided by the application

and could be used to identify the content of the summary record.

ARGS
This field is provided by the application. It stores the application’s computation
of the summary. In the example mentioned above, this could be the list of users

accessing Bob’s information over a particular period of time.

QUERY_NAME
This field is provided by the application. It identifies the query in the QUERY

table that identifies the events summarized by this record.

QUERY_PARAMS
This field is provided by the application. It stores the parameter values for the
query identified by the QUERY_ID if any.

49

SECRECY
This is the secrecy label of the thread that added the summary record.

INTEGRITY
This is the integrity label of the thread that added the summary record.

TIMESTAMP

The real time at which this summary was created.

5.5 Marking Events

Our system allows but does not require the production of a summary event in con-
junction with marking. For instance, a SummaryObject can be created, then used to
mark events, without the application having to call addSummary.

Since our system was not intended to alter the LOG or SUMMARY table, we keep
track of marked events in two additional tables: LOG-MARKED and SUMMARY-
MARKED. Those tables contain event counters of events that have been marked by
the application.

Our system does not show marked events in the results of later queries. Since
those events are not deleted, and could be made visible to the user, although our
system does not do this at present.

Finally, our system only provides a mechanism to identify marked events, and

leaves the question of how to archive and delete those events as further work.

5.6 Discussion

It is possible that an application uses our system that to summarize pre-existing
summaries. For example, the Mint application, after summarizing declassify events
for user data tags per user session, could use those summaries to summarize declassifiy

events for user data tags per month.

50

Our system supports this functionality since it does not make any strong assump-
tion about queries in the QUERY table. This allows the application to treat events
in the LOG or SUMMARY table the same way while summarizing.

Finally, by allowing applications to protect events from being marked, and inter-
nally preventing important Aeolus events from being marked, our system provides a

way to prevent application errors from deleting important information.

51

52

Chapter 6

Auditing Using Summarization

In this chapter we give examples of how our system can be used to summarize and

access information for the Mint application, as well as mark certain events.

6.1 Summarizing User Sessions

In this example we show how to summarize a user’s actions per session. In particular,
for a session for the user Bob, we will record which of the user actions presented in
section 3.2 (e.g. addBank, downloadTransactions) he requested.

This should not be a hard task since we use application-level logging to track all
of Bob’s actions. However, we will need to create some context before producing the
summaries to identify any one of Bob’s sessions.

First, we initialize the query system, which we will use to add and run queries:

//QuerySystem uses the singleton paradigm
QuerySystem system = QuerySystem.getInstance ();

We then set up a query that retrieves the princpal ID and data tag for a particular
user. Note that in our implementation, the name of the LOG table in the database

1s events.

String users_query = ‘‘select

to_array (app-args)[1] as pid,

33

to_array (app.args)[2] as tag,
event_counter

from events

where app-op=’'mint—user—signup’

and to_.array(app-args)[0] = ?777;

system.addQuery (¢ ‘user—info’’, users_query);

This query is based on logging events when users sign up as described in section 4.1.
The app_args attribute contains three pieces of information; the username, principal
ID, and data tag, as a comma-delimited string. The query produces a tuple with the
principal ID in the first column, data tag in the second column and event_counter of
the signup event in the third column for a particular user. It does so by looking for
signup events, which have the attribute app_op as “mint-user-signup”, for a particular

username, stored in the first index of the app_args attribute.

We now add some queries that will help identify the logins and logouts for a

particular user:

// When a user, say Bob, logs in, we execute the
// following code:

/*

AeolusLib. createEvent(

72

““mint—user—login ’’, Arrays.asList(
new String [[{ ‘‘Bob’’}));

*/

// and similarly for logouts.

// The following query produces a tuple that contains
// the login

54

// times and event_counters for a particular user.
String user_logins = ‘‘select
timestamp as start,
event_counter
from events
where app-op='mint—user—login’

and app-arg[0]=7"";

// The following query produces a tuple that
// contains the logout
// times and event_counters for a particular user.
String user_logouts = ‘‘select
timestamp as start ,
event_counter
from events
where app-op='mint—user—logout’

and to_array(app-args)[0]=7"";

// add the queries to the QUERY table
system .addQuery (‘ ‘logins’’, user_logins);

system .addQuery (‘ ‘logouts’’, user.logouts);

Users cannot login if they are already logged in, and they are logged out after a
certain period of time. Hence, for events far enough in the past, we can assume that
there is a one-to-onc pairing between user login events and user logout events. We

can now use the information from those queries to identify Bob’s sessions:

// A ResultSet is a set of records.
ResultSet bob_logins =

system .runQuery (* ‘logins’’, new Object[]{‘‘Bob’’});
ResultSet bob_logouts =

59

system.runQuery (‘ ‘logouts’’, new Object[]{‘‘Bob’’});

// The first login and logout for Bob will
// define the endpoints of the first session.

if ((! bob_logins.next()) || (!bob_logouts.next())){

return;

// Information for the first session

String username = ‘‘Bob’’;

long start_counter = bob_logins.getLong(3);

long end_counter = bob_logouts.getLong(3);
Timestamp start_time = bob_logins.getTimestamp (2);

Timestamp end_time = bob_logouts.getTimestamp (2);

A ResultSet is a set of records. Calling the nezt() method on the ResultSet objects
move their cursor to the first record. We first make sure that Bob logged in to our
system once in the past and then logged out. We then retrieve information from the
ResultSet using the getLong() and getTimestamp(). These methods retrieve a value
at the given column number from the ResultSet and cast those values to their relevant
types. Details of the ResultSet class and how its methods work can be found in [10].

Table 6.1 shows a possible table that contains a list of user sessions. We are now
left with the problem of identifying the different actions that took place within any

sessoin (identifiable by a start event_counter and an end event_counter).

String user_session_actions_query = ‘‘seclect
app-op
from events
where app.op like ’mint—user—\%’

and to_array(app-args)[0] = 7

56

username | start_counter | end_counter

|
wissam] 168 | 373
david | 482 | 1075
dan | 830 | 1086
Ted | 2644 | 22675
Leah [2690 | 19437
Alex | 2736 | 7786
Jamie | 2782 | 5991
Dina | 2828 | 7336
Mark [2874 | 18576
Helen I 2920 | 6312
Jon | 2966 | 18370
Mike | 3072 | 18321
Jack | 3118 | 16342
Eve i 3164 | 7735
Charlie | 3210 | 7434
Phil] 3450 | 19535
Tod J 3684 | 5895
Chris | 3924 | 18075
James J 3870 | 7635
Dave] 4110 | 18223
Aline | 4253 | 18773
Rose | 4580 | 17816
Ron | 4626 | 19689
Kevin | 4891 | 17865
Tod | 5931 | 17714

Table 6.1: User Sessions. This table shows start and end event counters for different
user sessions. Start and end times are omitted for simplicity.

o7

and event_counter > ?

and event_counter < 7’7;

system .addQuery (¢ ‘user—sessions—actions’’,

user_sessions_actions.query);

Now that we’ve identified one of Bob’s sessions, i.e. the first one, and have a query
to find out his actions during that session, we can go ahead and summarize Bob'’s
actions during his first session. For each session we produce a summary that contains
the username, the actions carried out, and the event_counters and timestamps that
identify the start and end of that session.

In this example, and the ones that follow, we assume that the method pro-
cess(events) is a user-defined method that processes a set of events and produces
a string summary of those events. In this example, such a summary string would be
the comma-delimited list of activites requested by the user in this session. For exam-
ple, if a user registers Bank of America to their account and downloads all of their
transactions in one session, the process() method will produce the following summary

for that session “addBank-bankofamerica,downloadTransactions”.

Object [] vals = new Object[] {username,
start_counter , end_counter,
start_time , end_time };

SummaryObject so = new SummaryObject (

‘‘user—session—actions’’, vals);

String summary = process(so.getEvents());

so .addSummary (¢ ‘ user—session —summary ’ ',

String . format (*‘\%s, \%d, \%d, \%s, \%s’’,
username, start.counter, end_counter, start_time,

end_time , summary));

58

In this section, we showed how to produce a summary for Bob’s actions for his first
session. This summary would contain Bob’s username, start and end timestamps and

event counters of his first session, as well as all Bob’s actions in that session.

6.2 Summarizing File System Events

In this example we explore how to summarize information about file system events;

we show how to store information about file accesses in the last week.

String fs_access = ‘‘select
from events
where filename<>'’
and roundweekdown (timestamp)’’;

i

system.addQuery (¢ ‘fs_week_access’’, fs_access);

long now = System.currentTimeMillis ();

Object [] vals = Object []{new java.sql.Timestamp(now)};
SummaryObject so = new SummaryObject(‘‘fs_week_access’’,

vals);

String summary = process(so.getEvents());
so .addSummary (‘ ‘ File accesses’’,

String . format(‘‘\%d, \%s’’, now, summary));

The above code will store a summary of the file system events in the last week!. Only
file system events usc the filename attribute in the LOG, hence we use that to retrieve

all file system events?.

Lroundweekdown is a function that rounds down the timestamp to the start of the last week. It
does the same as the query in section 4.1 which groups timestamps to 5-second periods (except this
one is a one week period).

2The DATE_SUB substracts an interval of time from a date, as described in [12].

99

After producing the summary, we might wish to mark most file system events, ex-
cept for the ones that change the file system hierarchy (adding or removing directories

or files). We could do this as follows:

String fs_protect = ‘‘select % from events
where op_name = ? or op.name = 77’
system .addQuery(‘ ‘protect—fs—events’’, fs_protect);
so.mark(‘ ‘protect—fs—events’’,
new Object []{ ¢ ‘CREATEDIRECTORY’,
‘ ‘REMOVEDIRECTORY’ ", ‘‘CREATEFILE, ‘‘REMOVEFILE’’});

6.3 Summarizing User Trends

As a final example, we will show how records in the SUMMARY table itself could
be summarized, producing summaries of summaries. In this section we will further
summarize session summaries. To build on what we encountered in section 6.1, let’s
assume that more of Bob’s sessions have been summarized. We can now coalesce
them to detail Bob’s activity per week. The following code shows how to do so for

the last week.

String session_summary_query = ‘‘select =*
from SUMMARY
where name=user—session —summary
and to_array(args)[0]="7?
and to_array(args)[3]::timestamp > DATESUB(?,
INTERVAL 7 DAY)
and to_array (args){3]::timestamp < DATESUB(?,
INTERVAL 14 DAY) ' ’;

system.addQuery (‘ ‘session —summary’’, session_summary._query);

60

Timestamp now = new Timestamp (System.currentTimeMillis ());
Object [] vals = new Object[]{‘‘Bob’’, now};
SummaryObject so = new SummaryObject(‘session—summary’’,

vals);

// Create a summary based on the sessions in the last week
String summary = process(so.getEvents());

so .addSummary (¢ ‘ weekly—user—activity ’’, summary);

6.4 Sufficiently Summarized Information

The summaries produced in sections 6.1 and 6.2 overlap in what they summarize. For
example, adding a user-bank-creds file to the file system happens only when a user
adds a bank to their account, i.e. when they request the addBank(...) user action.
Hence this particular piece of information, that a user ’A’ registered bank 'B’ to their
account, could be concluded from two summaries: one that summarizes the user’s
actions per session (or per week), and one summarizing the file system operations.
There are many other examples in which summaries could overlap in what they
summarize, and it is one of the reasons why we choose to leave it up to the application
to decide if and when certain events are “sufficiently summarized”, and are ready for

marking, rather than trying to determine that ourselves.

61

62

Chapter 7

Implementation

Aeolus Application

Query System Summary Objects

Database Manager

Authority
Relational Database Server

Figure 7-1: Summarization System Architecture. This diagram illustrates the com-
ponents involved in the summarization system we provide.

The codebase for this thesis is implemented in approximately 4000 lines of Java
code, of which 3000 implement the Mint application and 1000 implement the summa-

rization system. The focus of this chapter is the implementation of the summarization

63

system.

Figure 7-1 presents a high-level overview of the summarization system compo-
nents. The application uses the Query System (QS) and Summary Objects (SOs) to
produce summaries and mark events. The Database Manager (DBM) stores queries
and summaries in a PostgreSQL relational database [12], as well as retrieves results of
queries. On VN startup, we create the extra QUERY, SUMMARY, LOG-MARKED
and SUMMARY-MARKED tables necessary for the running of the summarization
system.

The rest of this chapter describes the implementation of those components.

7.1 The Query System and The Summary Objects

The QS provides the interface described in section 5.3.1 and a Summary Object
provides the interface described in section 5.4.1. Summary Objects store the name
and parameters of the underlying query locally.

Both the QS and the SOs are responsible for logging calls to their methods as
described in sections 5.3.1 and 5.4.1.

7.2 The Database Manager

All communications to the relational database go through the DBM. The DBM pro-
vides an internal interface for the QS and SOs to carry out the various operations

necessary.

setUpSummarizationSystem()

This method creates the

This method is called by the QS.

addQuery(name, query_text)
Executes a SQL INSERT statement to add a record to the QUERY table with

64

the values name and query_tezt. Throws an exception if the labels of the calling

thread are not empty.

This method is called by the QS.

runQuery(name, vals)

This call carries out the following actions, in order:

1. Executes a SQL SELECT statement to retrieve the query text from the
QUERY table.

2. Uses a Java PreparedStatement to combine the query text with the values
in the vals array, and throws an exception if the expected number or type

of parameters do not match the ones provided.

3. Modifies the query to exclude any marked events. For example, if the
combined query text was

select * from events where

nnnnnn Ve 3 e 4 ?

app-Oopp= 1l u—-user——signup
the DBM modifies it to the following

select x from (select =
from events where app_op='mint—user—signup’)
as e where e.event_counter not in

(select event_counter from events—marked)

We usc a subquery to carry out the task to avoid having to parse the query

for a an already-cxisting where clause in the query.

4. Executes the combined query text and retrieves the set of records covered

by that query.

5. Removes from the retrieved set of records any records that the calling
thread is not allowed to view per the DIFC rules described in section

2.2.2, then returns the resulting set of records.
This method is called by the QS and the SO constructor.

65

addSummary(s_name, s_args, g_name, q_ args, tstamp)
s_name is the summary name, g_name is the query name (similarly for s_args
and g_args. tstamp is the timestamp. Executes a SQL INSERT statement to
add a record to the SUMMARY table, using the arguments and labels of the

calling thread as as values for the record.

This method is called by the SOs.

mark(query_name, query_params)
Executes a SQL INSERT statement to add events to the LOG-MARKED and
SUMMARY-MARKED tables to identify marked records. Event counters in
the SUMMARY table contain a non-numeric character to distinguish them from
event counters in the LOG. The DBM uses this knowledge to distinguish where
to add a marked event (LOG-MARKED or SUMMARY-MARKED).

This method is called by the SOs.

In an ideal implementation, our system would be using the PostgreSQL Informa-
tion Flow Control database provided by David Schultz [13]. This would push the tasks
of enforcing empty labels when adding queries and filtering query results according

to the label of the calling thread to the database itself to handle.

7.2.1 Running in Hide Mode

Once events are marked, they are hidden from the application in future queries. This
is implemented by introducing a two views, LOG-UNMARKED and SUMMARY-
UNMARKED, that only contains events that are in the LOG and SUMMARY tables
but not in the LOG-MARKED and SUMMARY-MARKED tables. We expose only
the names of the LOG-UNMARKED and SUMMARY-UNMARKED views to the
application for writing queries.

Our system can be extended to implement a no-hide mode, where the LOG-
UNMARKED and SUMMARY-UNMARKED views show exactly the same records
as the LOG and the SUMMARY tables.

66

Chapter 8

Related Work

Dealing with large audit trails is a problem that security platforms other than Aeolus
face as well. In our summarization system, we allow the application to summarize
events in the audit trail before deleting or archiving them.

The intrusion detection system BackTracker [7] allows applications to track intru-
sion points into a system by analyzing operating system events, which are represented
as a dependency graph. BackTracker also provides an analysis tool, GraphGen, to
analyze those dependency graphs. As those dependency graphs get larger, GraphGen
allows a system administrator to trim certain pre-defined events from analysis, as well
as allows the administrator to define further events to be trimmed by use of regular
expressions. Whereas trimming events allows for dependency graphs to be analyzed
faster, there is an associated risk of losing important information when events are
trimmed. Furthermore, those events are never fully removed from the system, they
are only rcmoved from the analysis tool, and hence the storage space for the audit
trail isn’t reduced. In contrast, our summarization scheme makes it safer for applica-
tions to remove events after summarizing them, while still allowing for the important
information contained in those events to be available for analysis through the event
summaries.

The importance of allowing systems that rely on audit trails to reduce the size
of the audit trail while still maintaining important information is well-recognized in

the research community ([14, 2, 8]). However, not many systems have been built

67

to address this problem ([1]). Possible uses of data compression [1] and artificial
intelligence [6] techniques have been surveyed and discussed to in the past, but to our

knowledge none has been implemented.

68

Chapter 9

Summary of Contributions and

Future Work

9.1 Contributions

In this thesis, we present a summarization system that allows applications to summa-
rize information in their Aeolus audit trails, as well as mark events for later archiving
or deletion. We also present a query system that makes it easier for applications to
both use our summarization system and query the Aeolus audit trails in general.

Note that summarization presents information in a condensed form. If that in-
formation is what is needed to run discovery queries, running these queries over the
SUMMARY table will provide better performance than having to fetch all the under-
lying events from the LOG.

9.2 Future Work

The are two main directions in which our system could be extended in the future.
The first is improving the expressive power and performance of the current system.

An example of the former is that it might be useful to define a “no-mark” query

just once and have it apply to every marking to rule out certain events from being

marked. Note that this matches how we do things in Aeolus (where events recording

69

modifications of the authority state are never marked). This approach could replace
the current arguments to the mark method described in section 5.4.1, or it could
be used in conjuction with those arguments; the latter approach would allow the
application to identify events to not mark in a way that is specific to a particular call
of the mark method.

An example of the possible performance improvement is to provide the ability for
the application to have materialized views. For example, in the Mint application, it
would be really useful if the application could define a view that would produce the
signup information of all users (shown in table 4.2) whenever requested. The presence
of such a view could greatly speed up later uscs of that query.

The second direction to extend our system is to allow applications to handle
archiving and deletion. Right now we only mark events but we do not archive or
delete them. Ultimately, though, it will be necessary do support those functions.
But again the application will have to be specific about what to do: some marked
records might be deleted, some might be archived, and some might be archived and
then deleted. A possible direction to providing archiving and deletion is to allow the
application to define particular queries to do the delete or archive, e.g., there could
be a query that deletes all base events for sessions for users who no longer use mint
and where those sessions are older than a year, or a query that deletes all but the
events that add and remove banks, and archives those events.

Note that if events are archived we might also like to allow them to be fetched.
The idea is that the user might want to “drill down”: they have obtained information
from the summaries and have decided they need to see the specific events that led
to that summary. This is another feature that such an arhiving and deletion system

should include.

70

Bibliography

(1] Julia Allen, Alan Christie, William Fithen, John McHugh, Jed Pickel, and
Ed Stoner. State of the practice of intrusion detection technologies. Networked
Systems Survivability Program CMU/SEI-99-TR-028, Carnegie Mellon Univer-
sity, CMU Pittsburgh, PA 15213-3890, January 2000.

[2] Edward Roback Barbara Gutman. An Introduction to Computer Security: The
NIST Handbook. National Institute of Standards and Technology, Gaithersburg,
MD 20899-0001, oct 1995.

[3] Aaron Blankstein. Analyzing audit trails in the Aeolus security platform. Mas-
ter’s thesis, MIT, Cambridge, MA, USA, June 2011.

[4] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron
Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov.
Abstractions for usable information flow control in Aeolus. In Proceedings of the
2012 USENIX Annual Technical Conference, Boston, MA, USA, June 2012.

[5] Winnie Wing-Yee Cheng. Information Flow for Secure Distributed Applications.
Ph.D., MIT, Cambridge, MA, USA, August 2009. Also as Technical Report
MIT-CSAIL-TR-2009-040.

[6] Jeremy Frank. Artificial intelligence and intrusion detection: Current and future
directions. June 1994.

[7] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Trans.
Comput. Syst., 23:51-76, February 2005.

[8] Teresa F. Lunt. A survey of intrusion detection techniques. Computers and
Security, 12(4):405 - 418, 1993.

[9] F. Peter McKee. A file system design for the aeolus security platform. Master’s
thesis, MIT, Cambridge, MA, USA, September 2011.

[10] Oracle. Java Platform, Standard Edition 7 API Specification, 2012.

[11] Victoria Popic. Audit trails in the Aeolus distributed security platform. Master’s
thesis, MIT, Cambridge, MA, USA, September 2010. Also as Technical Report
MIT-CSAIL-TR-2010-048.

71

[12] PostgreSQL Development Team. PostgreSQL 9.0.4. PostgreSQL Global Devel-
opment Group, 2010.

[13] David Schultz. Decentralized Information Flow Control for Databases. Ph.D.,
MIT, July 2012.

[14] Spafford and Gene et al. Audit trail reduction. Online, http://www.cs.purdue.
edu/coast/projects/audit-trails-reduce.html, 1999.

72

