
A Hardware-Defined Approach to

Software-Defined Radios: Improving Performance

Without Trading In Flexibility

by

Omid Aryan

S.B., Massachusetts Institute of Technology (2012)

ARCHUMI
MA SSACHUSETTS INS-flTE

OF TECHNOLOGY

OCT 2 9 2013

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

A uthor.

Department/f Electrical Engineering and Computer Science
May 24, 2013

Certified by
Prof. Hari Balakrishnan

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by..............................
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

A Hardware-Defined Approach to Software-Defined Radios:

Improving Performance Without Trading In Flexibility

by

Omid Aryan

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The thesis presents an implementation of a general DSP framework on the Texas
Instruments OMAP-L138 processor. Today's software-defined radios suffer from fun-
damental drawbacks that inhibit their use in practical settings. These drawbacks
include their large sizes, their dependence on a PC for digital signal processing oper-
ations, and their inability to process signals in real-time. Furthermore, FPGA-based
implementations that achieve higher performances lack the flexibility that software
implementations provide. The present implementation endeavors to overcome these
issues by utilizing a processor that is low-power, small in size, and that provides a
library of assembly-level optimized functions in order to achieve much faster perfor-
mance with a software implementation. The evaluations show substantial improve-
ments in performance when the DSP framework is implemented with the OMAP-L138
processor compared to that achieved with other software implemented radios.

Thesis Supervisor: Prof. Hari Balakrishnan
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Jonathan Perry for encouraging me to pursue this idea and for

all his support and championship along the way. I would also like to thank Prof. Hari

Balakrishnan for giving me the pleasure of working with his group, for all his great

comments and insightful suggestions on this thesis, and for all his contributions to

my education at MIT.

5

6

Contents

1 Overview 15

1.1 Introduction . 15

1.2 Motivation . 17

1.3 Related Work . 18

1.4 Hardware . 20

2 DSP Building Blocks 23

2.1 Encoder/Decoder . 24

2.1.1 Linear Block Encoding with Syndrome Decoding 25

2.1.2 Convolutional Encoding with Viterbi Decoding 26

2.2 Constellation Mapper/De-mapper . 28

2.3 Orthogonal Frequency-Division Multiplexing (OFDM) 29

3 Software Design 33

3.1 Code Structure 33

3.2 DSPLIB . 34

3.3 User Interface . 36

3.4 Pipelining . 37

4 Evaluation 39

4.1 Bit-Rate and Latency. 39

4.2 Bandwidth. 44

4.3 Block Analysis . 45

7

5 Future Work 5

6 Conclusion 57

A Code 59

A. 1 TX Chain Code.................................... 59

A.1.1 tx-process.c...................................59

A.1.2 parameters.h................................. 62

A.1.3 queue.h..................................... 63

A.1.4 encoder.h....................................64

A.1.5 mapper.h....................................67

A.1.6 ofdm.h......................................70

A.2 RX Chain Code.................................... 73

A.2.1 rx..process.c. 73

A.2.2 parameters.h 75

A.2.3 queue.h 77

A.2.4 decoder.h. 77

A.2.5 demapper.h. 84

A.2.6 iofdm.h 88

8

55

List of Figures

1-1 An ideal software defined radio. 16

1-2 Long-term vision for portable SDR. 18

1-3 USRP Setup. For the receiver chain, the USRP downconverts the

wireless signal to complex baseband samples and sends them to the PC

for processing via an Ethernet or USB cable. The reverse procedure

occurs for the transmit chain. 19

1-4 Logic PD Zoom OMAP-L138 eXperimenter Kit. 21

2-1 Proposed DSP building blocks to implement in software. 24

2-2 An example of a trellis used for Viterbi decoding. Each square repre-

sents a state and the arrows represent the transitions. The notation

a/bc on each arrow indicates that bit a was encoded and the parity

bits bc were sent as a result of the transition. 27

2-3 Constellation maps implemented for the current framework: (a) BPSK,

(b) QAM4, (c) QAM16, and (d) QAM64. 29

3-1 TX Chain Pipelining Pseudocode. 38

3-2 RX Chain Pipelining Pseudocode. 38

4-1 Bit-Rate comparison between the normal and optimized versions of

the framework implementation in the TX chain against five different

combinations of block parameters. 41

9

4-2 Bit-Rate comparison between the normal and optimized versions of

the framework implementation in the RX chain against five different

combinations of block parameters. 41

4-3 Latency comparison between the normal and optimized versions of the

framework implementation in the TX chain for a packet of size 1000

bytes against five different combinations of block parameters. 42

4-4 Latency comparison between the normal and optimized versions of the

framework implementation in the RX chain for a packet of size 1000

bytes against five different combinations of block parameters. 43

4-5 Bandwidth comparison between the normal and optimized versions of

the framework implementation in the TX chain against five different

combinations of block parameters. 44

4-6 Bandwidth comparison between the normal and optimized versions of

the framework implementation in the RX chain against five different

combinations of block parameters. 45

4-7 Performance comparison of linear block encoding for the normal and

optimized versions. The figure compares the latency associated with

converting a message block of length ENCODERLBK into a code-

word of length ENCODERLB-N between the two versions of the im-

plementation for different code rates (for each rate, ENCODERLBN

was set to 48 bits and ENCODERLB-K was chosen accordingly).

The average gain in performance is 787.7%. 47

4-8 Performance comparison of convolutional encoding for the normal and

optimized versions. The figure compares the latency associated with

the generation of ENCODERCVP parity bits between the two ver-

sions of the implementation for different code rates (with ENCODERCVP

values of 2, 3, 4, and 5 bits). The average gain in performance is 93.7%. 47

10

4-9 Performance comparison of the mapper block for the normal and op-

timized versions. The figure compares the latency associated with the

mapping of log 2 QAM bits into a constellation point between the two

versions of the implementation for different modulation schemes. The

average gain in performance is 59.2%. 48

4-10 Performance comparison of the OFDM block for the normal and opti-

mized versions. The figure compares the latency associated with the

construction of one OFDM block (with length OFDMN+OFDMCP

complex samples) between the two versions of the implementation for

different numbers of sub-carriers. Note that the length of the cyclic

prefix (OFDMCP) was set to 1/4th of the number of sub-carriers

(OFDMN) for each case. The average gain in performance is 118.9%. 48

4-11 Performance comparison of Syndrome decoding for the normal and op-

timized versions. The figure compares the latency associated with de-

coding one codeword (of length ENCODERLBN) into one message

block (of length ENCODERLB-K) between the two versions of the

implementation for different code rates (for each rate, ENCODERLBN

was set to 48 bits and ENCODERLBK was chosen accordingly).

The average gain in performance is 229%. 49

4-12 Performance comparison of Viterbi decoding for the normal and op-

timized versions. The figure compares the latency associated with

the Viterbi decoding for ENCODERCVTRIALS = 8 trials. No

performance gain was achieved for this type of decoding due to the

inefficiency of the DSPLIB functions for this operation. 50

4-13 Performance comparison of the de-mapper block for the normal and

optimized versions. The figure compares the latency associated with

the de-mapping of a constellation point into log 2 QAM bits for different

modulation schemes. The average gain in performance is 1818.9%. . . 50

11

4-14 Performance comparison of the iOFDM block for the normal and op-

timized versions. The figure compares the latency associated with

the deconstruction of one OFDM block (with length OFDMN +

OFDMCP complex samples) into constellation points for different

numbers of sub-carriers. Note that the length of the cyclic prefix

(OFDMCP) was set to 1/41h of the number of sub-carriers (OFDMN)

for each case. The average gain in performance is 20.4%. 51

4-15 TX Chain summarization of processing resource for each block as a

percentage of total. The figure can also be viewed as a comparison of

the latency due to each block in the construction of an OFDM block. 52

4-16 RX Chain summarization of processing resource for each block as a

percentage of total. The figure can also be viewed as a comparison of

the latency due to each block in the processing of an OFDM block. . 53

12

List of Tables

3.1 List of DSPLIB functions used in the present implementation. 35

3.2 List of DSP Building Block Parameters. 36

4.1 Combinations of DSP building block parameters against which the

Normal version and the Optimized version were run against. 40

13

14

Chapter 1

Overview

1.1 Introduction

In traditional wireless devices, the communication protocols are hard-wired into the

circuitry. In other words, the ASICs used are customized and programmed for the

particular operation of these protocols, and they cannot be reconfigured or updated.

For example, a typical cell phone consists of several different chips that allow it

to operate with different types of radio communications: cellular, WiFi, GPS, and

Bluetooth. Moreover, the cell phone can only operate with a specific protocol for each

of these communications, and the protocol cannot be upgraded to a newer version

after the phone has been designed. For instance, a cell phone designed for the 3G

cellular communications standard would be unable to operate or even updated to

operate with a newer standard such as LTE.

Nonetheless, the concept of a "software defined radio" (SDR) is bound to overcome

these limitations and to provide much more flexibility in designing wireless devices.

Rapid advancements in the capabilities and speed of digital computation has made it

possible to implement in software many components of a radio (such as filter banks,

modulators, and mixers) that are usually implemented in hardware. This has led to

the creation of a software defined platform that allows engineers to implement proto-

cols spanning the entire spectrum and enabling them to easily modify and enhance

their protocols by means of programming in software rather than having to change

15

the circuitry in hardware.

The structure of a radio can be divided into two general parts: the digital signal

processor (DSP) and the analog front-end (AFE). In an ideal SDR, the analog front-

end consists only of an antenna that is connected via digital-to-analog/analog-to-

digital converters (DAC/ADC) to the digital signal processor, where the DSP is

controlled entirely by software. This is shown in Figure 1-1. Of course, practical

limitations hinder the design of such a structure. For example, for protocols that

operate in the gigahertz frequency range, it is very difficult and costly to design

digital-to-analog/analog-to-digital converters that can operate on such high-frequency

signals.

Figure 1-1: An ideal software defined radio.

Furthermore, handling the entire digital signal processing in software and in real-

time can be quite challenging. Today's software defined radios implement a good

portion of the digital signal processing in FPGA-like environments (which can only be

modified through firmware) and the rest of the processing, which is done in software,

occurs within a PC on prerecorded data. Not only are these systems non-real-time,

but they are also entirely dependent on a PC for their software and are hence very

power hungry and non-portable.

In this project I aim to overcome these limitations. Specifically, I present a gen-

eral and basic software DSP implementation on the Texas Instruments OMAP-L138

16

processor. I show how one can improve the performance of the digital signal process-

ing in an SDR by utilizing the processor's library of assembly-level optimized DSP

routines, which offers the user a hard-wired hardware performance at the flexibility

of a software implementation. The hardware will be further explained in Section 1.4.

1.2 Motivation

The concept of a wireless software-defined network (WSDN) has gained quite some

recognition in the past few years [4]. In essence, the idea is to apply the principles

behind software-defined networks [10, 11] to wireless systems by creating abstractions

and modularity and by defining a wireless control plane and a wireless data plane. As

opposed to regular (wired) software-defined radios, where the hardware at the switches

need not be specialized, a WSDN node would require a software-defined radio in order

to allow for a software implementation of the wireless protocols. Hence, a successful

implementation of a WSDN depends heavily on high-performance software-defined

radios that are also portable.

The goal of this project is to provide an implementation of a digital signal process-

ing framework for an SDR to be used as part of a software defined wireless network

that is currently under development at the Wireless Center at MIT. The long-term

vision for this network is to establish a platform that allows researchers to experi-

ment their wireless protocols with real users and to also pave the way for research in

a software defined approach to wireless networks.

The envisioned network is composed of static base stations, which connect to the

Internet through a backbone Ethernet, and portable SDRs, which users carry with

them. The portable SDRs consist of a WiFi module that enables it to connect to the

user's wireless devices (e.g., smart phone, laptop, etc.), as well as the DSP and analog

front-end that provide it with a software defined platform to communicate with the

base stations. The base stations are also envisioned to be software defined, and their

implementation and functionality fall outside the scope of this thesis. The network

is illustrated in Figure 1-2.

17

Internet

User 1

Portable SDR

DSP+AFE WiFi

User 2

Portable SDR

DSP+AFE WiFi

Figure 1-2: Long-term vision for portable SDR.

1.3 Related Work

Although software-defined radios have yet to find their way into today's wireless

infrastructure and everyday consumer products, many vendors have produced them

for both research and experimentation purposes [6, 7, 9, 10, 14, 17, 21, 22]. Each

of these products offer different tradeoffs between software flexibility and hardware

performance. For example, while platforms such as GNURadio [10] and Vanu [21]

allow for total flexibility in software at the cost of performance, other platforms such

as WARP [22] and Airblue [14] offer higher performances at the cost of an FPGA

implementation.

The Universal Software Radio Peripheral (USRP) [6], designed by Ettus Research,

is a common software-defined radio used in academia. Despite its wide usage in

research settings, the USRP fails in many aspects to offer a practical implementation

of a software-defined radio. First, the device itself occupies quite a large space (22cm x

16cm x 5cm). In addition, it requires a PC to handle the digital signal processing

18

that is done in software.

Perhaps the most crucial aspect that makes the USRP unattractive even to the

research community is the fact that it is unfeasible to carry out the required DSP

operations of the system in real-time. As shown in the setup of Figure 1-3, once the

USRP downconverts the wireless signal to complex baseband samples, the samples

must travel through the Ethernet or USB cable that is connected to the PC, which

by itself adds latency to the system. Furthermore, once the samples reach the PC,

the digital signal processing of the samples occurs via a high-level language with

which the protocol was implemented. Clearly, the processing time required for a

program written in a language like C is substantially greater than that for a hard-

wired system, and it is not fast enough to handle the DSP operations required by a

real-time application.

Ethemet/USB

Figure 1-3: USRP Setup. For the receiver chain, the USRP downconverts the wireless
signal to complex baseband samples and sends them to the PC for processing via an
Ethernet or USB cable. The reverse procedure occurs for the transmit chain.

The SORA [17] platform is yet another type of software-defined radio commonly

used in academic settings that mitigates the latency issue of an SDR architecture by

applying parallel programming techniques on multicores. Despite the performance

gains that these techniques offer, they fail to provide a convenient implementation for

the user due to all the required software partitioning on multiple CPU cores. This

platform also suffers from needing a PC to handle the DSP computations.

Furthermore, a number of other platforms have been proposed that delegate all

or part of the signal processing and computations to an FPGA, making the platform

less dependable on a PC. Examples of these platforms are WARP [22], where the

19

PHY layer is delegated to an FPGA while the MAC layer is done in software, as well

as Airblue [14], were all the implementation is done on an FPGA using a high-level

hardware description language (Bluespec [5]). Even though such platforms offer a

much higher degree of performance compared to SDRs such as the USRP, they do

not offer the same flexibility and convenience of programming with a language such

as C.

In this thesis, I present an implementation that is capable of achieving the same

degree of flexibility achieved with platforms such as GNURadio but without having

to trade off much performance. The implementation is meant to be a very general

and basic DSP framework that would give a sense of how a complete implementation

would compare to other implementations of SDRs.

1.4 Hardware

The goal of this project is to implement a basic version of the digital signal processing

framework for the SDR introduced in Section 1.2 on the Texas Instruments OMAP-

L138 processor. The OMAP-L138 is a dual-core DSP+ARM processor designed for

low-power applications, making it a suitable choice for a portable SDR with a limited

power source. The work presented in this thesis is mainly focused on the DSP side of

the processor, while the general-purpose ARM core of the device will become useful in

future work when it becomes necessary to interface the SDR with the WiFi module.

Some other features of the processor include the following: clock rate of 375 MHz,

326 kB of internal memory (RAM/cache), 256 MB of external memory (SDRAM),

and 64 32-bit general-purpose registers.

Arguably the most important advantage of the OMAP's DSP processor is its

collection of general-purpose signal-processing routines that are callable from C pro-

grams. These functions are assembly-optimized and are included in the processor's

DSP Function Library (DSPLIB). By virtue of these functions, it is possible to achieve

low-level hardware performance at the flexibility of programming in software, making

the OMAP-L138 an ideal processor for use in a software-defined radio.

20

To carry out the implementations, the Logic PD Zoom OMAP-L138 eXperimenter

kit was used, which is a development platform for the OMAP-L138 processor that

makes available a large number of the processor's interfaces. The kit was generously

donated by Texas Instruments and is shown in Figure 1-4. TI's Code Composer

Studio v4.2.1 was used to develop the implementation (software written in C) and to

program the processor.

Figure 1-4: Logic PD Zoom OMAP-L138 eXperimenter Kit.

21

22

Chapter 2

DSP Building Blocks

The thesis presents an implementation of a general digital signal processing frame-

work for both the transmit and receive chains of a wireless system. Our goal is to

implement, in software, three of the common DSP building blocks that exist in to-

day's wireless systems, namely the encoder, constellation mapper, and OFDM. Figure

2-1 illustrates the building blocks developed in each chain. The present implemen-

tation is meant to be a very general and basic DSP framework that would give a

sense of how a complete implementation would compare to other implementations of

SDRs. Hence, many features such as QAM equalizers, synchronization, scramblers,

and CFO/SFO corrections have been omitted for the purposes of keeping the system

simple.

The elegance of developing these building blocks in software lies in the flexi-

bility it provides us with inventing new protocols and adding other blocks to each

chain. Hence, the building blocks presented here are by no means a description nor a

blueprint of how one should approach the digital signal processing of the SDR, and

the hope is that the framework presented in this project lays the foundation for future

innovations in designing wireless system protocols.

Furthermore, a software implementation of these building blocks enables us to

easily define various types of processing that occur within each block as well as the

ability to modify the parameters that are used for each type of processing. The

following sections further elaborate on this flexibility and present the different versions

23

TX
Chain

Info Baseband
bits samples

RX
Chain

Info Baseband
bits samples
4-m DeMappe lf l -

Figure 2-1: Proposed DSP building blocks to implement in software.

of processing that was implemented for each of these general DSP building blocks.

2.1 Encoder/Decoder

The encoding and decoding building blocks handle the processing between the in-

formation bits and codewords. By adding redundancy to the information bits, the

encoder improves the chances of the received bits being properly decoded in the face

of noise. In the present thesis I have implemented two of the common types of en-

coding/decoding schemes on the OMAP-L138 processor:

* Linear Block Encoding with Syndrome Decoding

" Convolutional Encoding with Viterbi Decoding

24

The following two subsections describe these two techniques, and the next chapter

digs deeper into their software implementations.

2.1.1 Linear Block Encoding with Syndrome Decoding

Linear block encoding involves taking k-bit blocks of the information bits and con-

verting each block into an n-bit coded block via a linear transformation that is defined

by a generator matrix. This can be shown in mathematical terms as follows:

D.G = C

where D is the 1 x k vector of the information bits, G is the k x n generator

matrix, C is the 1 x n codeword vector. All addition operations are done modulo 2.

Similarly, the decoding block is defined by a (n - k) x n parity check matrix, H,

that has the following property:

H.CT =0

for any valid codeword C.

If the generator matrix yields a systematic form of the codeword (where C is of

the form D1 D 2.. .DkPIP 2 ... Pn-k) then the matrix G can be decomposed into a k x k

identity matrix concatenated horizontally with a k x (n - k) matrix (A) that defines

the values for the code. We thus have:

G = Ikxk|A

Furthermore, the parity check matrix associated with this generator matrix will be

of the following form:

H AT|I J(k)x(n-k)

Let R be the received word at the decoder, which may contain errors. Hence R

25

has the form

R=C+E

where C is the code word sent at the encoder and E is the error vector associated

with noise. After receiving R, the decoder applies the parity check matrix to it as

follows:

H.RT = H.(C+ E)T =0+ H.ET = H.ET Q

Thus the vector Q that results from this operation depends on the error vector,

E, and not the codeword sent, C.

Suppose we wish to decode all received words with at most t errors. Hence, there

will be a total of

(n) ± (n) ± (n) +... ± (n)
0) 1 2 ' t)

patterns for the error vector E, and the same number of patterns for H.ET. Assuming

that our system yields a maximum of t errors, the resulting vector Q from the decoding

operation described above can only be of one of the latter patterns. Since these

patterns have a one-to-one relationship with the error vector patterns, the resulting

vector Q maps to a unique error vector E that indicates which bits have the errors.

We call each of these resulting vectors a syndrome. Therefore, by pre-computing

which syndrome maps to which error vector, we can infer which bits have an error by

mapping the syndrome that results from the decoding operation to an error vector.

2.1.2 Convolutional Encoding with Viterbi Decoding

Similar to linear block encoding, convolutional codes perform linear operations on the

information bits. Instead of blocks, however, convolutional encoding operates on a

sliding window of information bits. Specifically, with a window size of k, the encoder

generates p parity bits as a result of encoding the information bits within the window.

The window advances by one bit each cycle. Clearly, the larger the window size k,

26

the more information bits are encoded each cycle and the more resilient the code.

A generator matrix can be defined for a convolutional code. The encoding can be

shown in mathematical terms as follows:

G.W = P

where G is the p x k generator matrix, W is the k x 1 sliding window, and P is

the p x 1 parity bits that the encoder outputs.

The Viterbi decoder is a popular method for decoding convolutional codes. The

decoder uses an extended version of a state machine, called a trellis, to find the most

likely sequence of transmitted bits. Each column in the trellis is composed of the

different states (i.e., the different combinations of the first k - 1 bits of the sliding

window). Moreover, each state points to two other states in the next column, which

represent the state transitions upon receiving a "0" or "1" bit. Each such transition

also indicates the parity bits that the encoder would generate had it made that tran-

sition. An example of a trellis is shown in Figure 2-2.

00

01

10

11

Figure 2-2: An example of a trellis used for Viterbi decoding. Each square represents

a state and the arrows represent the transitions. The notation a/bc on each arrow

indicates that bit a was encoded and the parity bits bc were sent as a result of the

transition.

27

Using this trellis, the Viterbi decoder finds the most likely path the encoder took

given the received parity bits. The algorithm finds this path using two metrics: the

branch metric (BM) and the path metric (PM). The branch metric is associated with

each state transition and is equal to the Hamming distance between the received parity

bits and the expected parity bits for that transition (i.e., the number of positions at

which these two strings of bits are different). The path metric is associated with each

state and measures the Hamming distance between the sequence of parity bits along

the most likely path from the initial state to this state with the sequence of received

parity bits. The path metric of a state s at step i with predecessor states a and /

can by iteratively defined as follows:

PM[s, i + 1] = min(PM[a, i] + BM[a -+ s], PM[3, i] + BM[3 -+ s])

Thus, after a certain number of transitions, the algorithm chooses the state with

the smallest path metric and traces the most likely path ending at that state back to

the initial state while returning the bit sent on each transition.

2.2 Constellation Mapper/De-mapper

The constellation mapper is a digital modulation scheme whereby the codeword bits

are "mapped" into two-dimensional vectors, referred to as the constellation points,

whose values dictate the amplitude of the sine and cosine carrier waves. In our general

framework, the values are then passed on to the OFDM block that further modulates

these values, as described in the next section. The de-mapper performs the exact

reverse of the mapper, mapping the constellation points back to the codeword bits

after finding the constellation point that has the smallest Euclidean distance to the

received I-Q sample.

Depending on the number and location of the constellation points, the modulation

28

scheme is associated with different names (i.e., BPSK, QAM4, QAM16, etc.). The

constellation maps implemented for the current framework are shown in Figure 2-3.

Note that adjacent points on the same vertical or horizontal axis are equidistant from

one another and that the exact I-Q (constellation) values depend on the power with

which the complex samples are being sent.

I Q
A

01
0

1

10
0

(a)

0010 0011
* S

(c)

00
0

11

(b)
0

00000Q00000000c0wl1000001

0 S 0 0

000 000 00 00000

0O*@0
00=0 0WM0 000000 00001* *.*.

OWmo 0000 00omo 0O00

9 9 0

0000 0001
0 0

0100 0110
0 0

0101 0111
0 0

0000 10 000000 000001

0 e g
COMW 0W00 00001 000

@ 0 00
-~m 000000 00001mo

0 0 0
000000 10 001 00000WO

0 0 0

~0000 00 10 000WI 000000

000@0000O0

00 000M OWW oooo 00o

~00 ~00 0~ 0

m00 OW001 000001000001
0 9 * 0

0000W0000000 1 r

00 000001 000001 00001

0* * @

000@D00 0 I OW

(d)

Figure 2-3: Constellation maps implemented for the current framework: (a) BPSK,
(b) QAM4, (c) QAM16, and (d) QAM64.

2.3 Orthogonal Frequency-Division Multiplexing (OFDM)

The OFDM block performs further modulation on the complex samples in order to

make the signal more resilient to wireless phenomena such as multi-path and frequency

29

0

1011
0

1001
0

1010 1000
0 9

1101
9

1100
0

1111 1110

Ani

selectivity.

Two parameters are defined for this block: the number of subcarriers (N) and the

length of the cyclic prefix (C). For the OFDM block in the TX chain, the following

two steps are taken:

1. iFFT: the inverse discrete Fourier transform (iDFT) of the input sample block

of length N is computed to form the output block. To perform the computation,

the inverse Fast Fourier Transform is used in the current implementation.

2. Cyclic Prefix: the last C values of the previous operation is appended to the

beginning of the output block.

Denote the input sample block (computed by the mapper) as X[k] for 0 < k <

N - 1, and let x[n] be the inverse discrete Fourier transform of X[k] (i.e., x[n] =

IDFT{X[k]} for 0 < n < N - 1. Hence, x[n] is the output of step 1 above. Let z[n],
-C K n K N - 1, denote the output of step 2 where

[]x[N +n] if - C 5n< 0,

x[n] if 0 < n < N.

Suppose the discrete-time impulse response of the channel is h[n]. Assuming no

noise and that h[n] has at most C taps, the RX chain will receive the linear convolution

of z[n] and h[n], which is the equivalent of the circular convolution of x[n] and h[n]:

y [n] = Jr-[n] * h [n] = x [n] @ h [n]

for 0 K n K N - 1. According to the properties of the DFT we have

Y[k] = DFT{y[n]} = DFT{x[n] @ h[n]} = DFT{x[n]} x DFT{h[n]} = X[k]H[k]

for 0 K k < N - 1, where H[k] = DFT{h[n]}.

Therefore, to find the original values of X[k], the iOFDM block in the RX chain

must take the following steps upon receiving y[n]:

30

1. Remove the first C values of y[n].

2. Compute the N-point fast Fourier transform (FFT) of the remaining values of

y[n].

3. Divide the result by the DFT of the discrete-time impulse response of the chan-

nel.

The final result is then given as input to the de-mapper block.

31

32

Chapter 3

Software Design

This chapter delves into the structure of the framework's software implementation.

Section 3.1 presents an overview of the implementation and the code structure. Sec-

tion 3.2 describes the DSPLIB routines. Section 3.3 illustrates the user interface to

the framework, and Section 3.4 discusses the pipelining architecture that allows the

framework to achieve high throughput.

3.1 Code Structure

The framework's software implementation is composed of the transmitter (TX) chain

and the receiver (RX) chain, as shown in Figure 2-1. The TX chain takes information

bits as input and outputs complex baseband samples, while the reverse process takes

place in the RX chain. The code structure of each chain involves header files associated

with each of the blocks in Figure 2-1, in addition to the other components. These

files along with the main source file are as follows:

e txprocess.c/rxprocess.c: main source file for each chain where the pipelining

process (described in Section 3.4) occurs.

e encoder.h/decoder.h: header files for the encoding and decoding blocks. This

file includes functions for initializing and processing the linear block and con-

volutional encodings and their respective decodings, which are called from the

33

tx-process.c/rx-process.c source files.

" mapper.h/demapper.h: header file for the mapper/de-mapper block, which in-

clude the initialization and processing functions.

" ofdm.h/iofdm.h: header file for the OFDM/iOFDM block, which include the

initialization and processing functions.

" parameters.h: header file for setting the user-defined parameters of the system.

(Further discussed in Section 3.3).

" queue.h: header file associated with the data-structure used for pipelining data

between blocks. (Further discussed in Section 3.4).

Appendix A includes the code for each of these files.

3.2 DSPLIB

The OMAP's DSP processor offers a collection of general-purpose signal-processing

routines that are callable from C programs. These routines are assembly-optimized

DSP functions that allow for intensive digital signal processing computations to occur

in real-time at the flexibility of programming in software. They are included in the

processor's DSP Function Library (DSPLIB), and much of the present implementation

makes substantial use of them. Table 3.1 shows a list of the DSPLIB functions used

in the implementation, along with a description for each.

34

Table 3.1: List of DSPLIB functions used in the present implementation.
Function Description
void DSPF-sp-mat-mul (float *x, int rl, int ci, float *y, Matrix multiplication
int c2, float *r)
void DSPF sp-mat-trans (float *x, int rows, int cols, Matrix transpose
float *r)
void DSPF-sp-w-vec (float *x, float *y, float m, float *r, Weighted vector sum
int nr)
float DSPF-sp-vecsum-sq (float *x, int n) Sum of squares
void DSPF-sp-cfftr2_dit (float *x, float *w, short n) Complex radix 2 FFT

using DIT
void DSPF-sp-icfftr2_dif (float *x, float *w, short n) Complex radix 2 in-

verse FFT using DIF

35

3.3 User Interface

In addition to achieving an optimal performance for real-time applications, an objec-

tive for the present implementation has been to provide a framework that any user can

employ without having any knowledge about the internal structure or complexities

within each of the building blocks. All the user must do is to set his desired parame-

ters for each DSP block through the user interface that the implementation provides.

This objective is in lines with the long-term intentions of a wireless software-defined

network where abstractions are required to hide away the complexity and to allow

for modifiable protocols. A list of the parameters that a user can set for the different

building blocks is provided in Table 3.2.

Table 3.2: List of DSP Building Block Parameters.
Block Parameter Description

ENCODERV Encoder version: 0 for linear block,
1 for convolutional

ENCODERLBK Linear Block Encoding: Message

Length
ENCODERLBN Linear Block Encoding: Codeword

Length
code-matrix Linear Block Encoding: Code Ma-

trix
ENCODERCVK Convolutional Encoding: Constraint

Length
ENCODERCVP Convolutional Encoding: Number of

Parity Bits
ENCODERCVTRIALS Convolutional Encoding: Number of
(RX chain only) Trials for Viterbi Decoding
gen-poly-matrix Convolutional Encoding: Generat-

ing Polynomial Matrix

Mapper QAM Modulation Scheme: 2 for BPSK, 4
for QAM4, 16 for QAM16, and 64
for QAM64

QAMPOWER (TX chain Maximum Power for Constellation
only) Points

OFDM OFDMN Number of OFDM Sub-Carriers
OFDMCP Cyclic Prefix Length

36

3.4 Pipelining

To achieve maximum throughput, the data between the blocks is pipelined through

the use of queues in order to avoid starvation at the ends of the two chains, as well as

to prevent blocks from being called with insufficient data. The reason why the system

may encounter starvation or insufficient data at a block is that an operation (or an

integer number of operations) for one block does not necessarily produce the exact

number of input data samples needed at the following block to perform an operation.

Hence, the number of operations performed by each block varies from round to round,

and a pipelining architecture is needed to schedule the operation of each block.

For example, consider the following parameters for each block in the TX chain:

" Encoder: linear block with ENCODERLB-K = 4, ENCODERLBN = 7

" Mapper: QAM64

" OFDM: OFDMN = 32, OFDM-CP = 8

In the first round, two operations of the encoder block is needed to satisfy the 8-bit

input to the mapper. Notice that these two operations in fact will yield 2 x 7 = 14

bits, which means that 14 - 8 = 6 bits will be left over from these two operations.

Thus, in the next round the encoder block must only be called once to satisfy the

mapper's 8-bit input. Furthermore, once the mapper has created a total of 32 complex

samples and has ran out of bits to process, the scheduler must have the OFDM block

perform its operation instead of the encoder. This is because the goal is to achieve

maximum throughput, and since the OFDM block is closest to the output, it must

be given priority to the encoder block.

The relevant pseudocode for pipelining in the TX chain and RX chain is shown

in Figure 5 and Figure 6, respectively. For the TX chain, priority is given to the

OFDM block in order to output the samples at the fastest possible rate. Priority is

then given to the mapper, and then to the encoder. The reverse order of priority is

true for the RX chain. Note that "x-queue" refers to the output queue of block x.

37

loop
if mapper-queue.count > OFDMN then

OFDM()
else if encoder-queue.count > log 2 QAM then

Mapper()
else

Encoder(
end if

end loop

Figure 3-1: TX Chain Pipelining Pseudocode.

loop
if demapper-queue.count > number of bits required for LB or CV decoding then

Decoder()
else if iofdm.queue.count > 2) then

Demapper()
else

iOFDM()
end if

end loop

Figure 3-2: RX Chain Pipelining Pseudocode.

38

Chapter 4

Evaluation

To evaluate the performance of the aforementioned DSP framework on the OMAP-

L138 processor, the framework was implemented in two different versions:

" Normal version: this version of the implementation was meant to mimic the

performance that would be achieved with other software-defined radios, such as

the USRP, where all the digital signal processing is done via C and no assembly-

level optimizations are made. Hence, no use was made of any of the routines

inside DSPLIB for this version.

" Optimized version: in this version of the implementation, the DSPLIB routines

were used as much as possible in order to achieve the best performance from

the OMAP-L138 processor.

4.1 Bit-Rate and Latency

Each version was run against five combinations of the parameters described in the

previous section. The combinations are shown in Table 4.1. The evaluations were

done as follows: for each run, the number of cycles needed to process about 1000 bits

in the TX chain was measured for each version and the output samples were recorded.

(The exact number of processed bits depended on how many were needed to produce

an integer number of OFDM blocks). The result was used to calculate the achievable

39

bit-rates for the TX chain as follows:

btte - bits x clock-freq
cycles

where bits refers to the number of bits processed, clock-freq refers to the frequency

of the processor's clock (375 MHz), and cycles refers to the number of clock cycles

that was measured to complete the processing.

The measured bit-rates are shown in Figure 4-1. The output samples were then

processed in MATLAB to simulate a wireless channel. The resulting samples were

fed to the RX chain of the two versions, and the reverse process for the TX chain was

repeated to measure the bit-rates for the RX chain, which are shown in Figure 4-2.

As the results in Figure 4-1 and Figure 4-2 indicate, the optimized version outper-

forms the normal version against all the different combinations for both chains. For

the TX chain, the average improvement in performance across the five combinations

is 85.4%, while for the RX chain, where the computations are much more intensive,

the average improvement is 975.6%.

Table 4.1: Combinations of DSP building block parameters against which the Normal
version and the Optimized version were run against.

Combination Encoder Mapper OFDM
1 Linear Block, rate =3/4 BPSK N = 32, CP 8
2 Linear Block, rate = 2/3 QAM4 N = 64, CP = 16
3 Convolutional, rate = 1/4 QAM64 N = 64, CP = 16
4 Convolutional, rate = 1/2 QAM16 N = 128, CP = 32
5 Linear Block, rate = 1/2 QAM64 N = 128, CP = 32

40

TX Chain Bit-Rate
180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

80.00 ENormal

60.00 *Optimized

3

Combination

1 2

U

4 5

Figure 4-1: Bit-Rate comparison between the normal
framework implementation in the TX chain against
block parameters.

U,

S4..Is

and optimized versions of the
five different combinations of

RX Chain Bit-Rate
180.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

80.00--------l

60.00-- ------ -- d

3

Combination

1 2 4 5

Figure 4-2: Bit-Rate comparison between the normal and optimized versions of the
framework implementation in the RX chain against five different combinations of
block parameters.

41

-

E

'Ui --
ONormal

111ptimnized

E Normal

MCOptimized

Furthermore, from the bit-rate we can also infer the latency associated with cre-

ating/processing a packet in the TX/RX chain:

latency = bit-rate x packetsize.

Figure 4-3 and Figure 4-4 show the latencies for a packet of size 1000 bytes (8000

bits) in the TX chain and RX chain, respectively. Note that although we see a much

better performance with the optimized version of the implementation, we still observe

very high latencies for creating/processing a packet. This indeed hinders the use of

even the optimized version in protocols with strict time constraints (such as 802.11),

and we leave it to future work to further optimize this version of the implementation

in order to make it more practical for real-world applications.

TX Chain Latency
0.35

0.3

0.25 -

0.2

0.15 -ENormal

0.1 - Optimized

0.05

0

1 2 3 4 5

Combination

Figure 4-3: Latency comparison between the normal and optimized versions of the
framework implementation in the TX chain for a packet of size 1000 bytes against
five different combinations of block parameters.

42

RX Chain Latency
3.5

3

2.5

2

1.5 U Normal

1 *Optimized

0.5

0
1 2 3 4 5

Combination

Figure 4-4: Latency comparison between the normal and optimized versions of the
framework implementation in the RX chain for a packet of size 1000 bytes against
five different combinations of block parameters.

43

4.2 Bandwidth

Using the same measurements done for the bit-rate, one can also calculate the band-

width that can be achieved with each version for the different combinations. This can

be done by measuring the number of complex samples that were outputted in the TX

chain per unit time and the number of samples that were processed in the RX chain

per unit time. More formally,

bandwidth =
samples x clock-f req

cycles

where samples refers to the number of complex samples that were outputted/pro-

cessed, clockjfreq refers to the frequency of the processor's clock (375 MHz), and

cycles refers to the number of clock cycles that was measured to complete the pro-

cessing. The results are shown in Figure 4-5 and Figure 4-6.

V

V

C

'U

TX Chain Bandwidth
180

160

140

120

100

80

60

40

20

0

0Normal

*Optimized

1 2 3

Combination

4 5

Figure 4-5: Bandwidth comparison between the normal and optimized versions of
the framework implementation in the TX chain against five different combinations of
block parameters.

44

Figure 4-6: Bandwidth comparison between the normal and optimized versions of
the framework implementation in the RX chain against five different combinations of
block parameters.

4.3 Block Analysis

This section presents an analysis of the amount each building block in the system

contributes to the overall improvement in performance. The contribution made by a

particular block also varies by setting different parameters for that block. To measure

these contributions, the number of cycles needed to complete one operation of each

block was measured and the latency of that operation was computed as follows:

latency - cycles
clock-freq

where clock-freq refers to the frequency of the processor's clock (375 MHz). An

operation for each block is defined to be a single call of that block's function (see

Figures 3-1 and 3-2). The following lists the operation that takes place when the

function of each block is called:

e Encoder, Linear Block: encoding one message block (of length ENCODERLBK)

into one codeword (of length ENCODERLBN).

45

RX Chain Bandwidth
200 -

180

160

140 -

120

100

80 ENormal

60 -Optimized

40

20
0

1 2 3 4 5

Combination

" Encoder, Convolutional: generation of ENCODERCV-P parity bits.

" Decoder, Linear Block: decoding one codeword (of length ENCODERLB.N)

into one message block (of length ENCODERLBK).

" Decoder, Convolutional: Viterbi decoding for ENCODER-CV..TRIALS tri-

als.

" Mapper: map log 2 QAM bits into a constellation point.

" De-mapper: de-map a constellation point into log 2 QAM bits.

* OFDM: construction of one OFDM block (with length OFDMN+OFDMfCP

complex samples).

* iOFDM: deconstruction of one OFDM block (with length OFDM-N+OFDM-CP

complex samples) into constellation points.

Figure 4-7 shows the improvement that the encoder block exhibited using linear

block encoding for different code rates. Note that the code rate for this type of

encoding is simply the ratio of the message block length to the codeword length (i.e.,
ENCODER-B-K). For these measurements, the codeword length was set to 48 bits and
ENCODER.LB-N

the message length was varied from 24 bits to 40 bits to yield the given rates. The

average gain in performance for this type of encoding is 787.7%.

Figure 4-8 shows the improvement that the encoder block achieved using con-

volutional encoding for different code rates. The code rate for this type of encod-

ing is simply the inverse of the number of parity bits sent for each input bit (i.e.,

ENCODERCVP). The average gain in performance for this type of encoding is 93.7%,

which is less compared to the linear block encoding case, although the latency is

smaller.

Figure 4-9 and Figure 4-10 show the improvement that the mapper and OFDM

blocks achieved, which were 59.2% and 118.9% respectively. The results of Figures

4-7, 4-8, 4-9, and 4-10 are all associated with the TX chain.

46

Encoder Latency (LB)
250

200

150

100 ENormal

*Optimized

50

0

"1/2" "2/3" "3/4" "4/5"

Code Rate

Figure 4-7: Performance comparison of linear block encoding for the normal and opti-
mized versions. The figure compares the latency associated with converting a message
block of length ENCODERLBK into a codeword of length ENCODERLBN
between the two versions of the implementation for different code rates (for each rate,
ENCODERLBN was set to 48 bits and ENCODERLBK was chosen accord-
ingly). The average gain in performance is 787.7%.

Encoder Latency (CV)
4

3.5

3

2.5

S2 -
U Normal

. 1.5

1
MOptimized

0.5

0

"1/2"# "11/3"1 "1/4"' "1/5"1

Code Rate

Figure 4-8: Performance comparison of convolutional encoding for the normal and
optimized versions. The figure compares the latency associated with the generation

of ENCODERCV-P parity bits between the two versions of the implementation

for different code rates (with ENCODERCVP values of 2, 3, 4, and 5 bits). The

average gain in performance is 93.7%.

47

Mapper Latency
35

30

25

a 20

4 15 - Normal

10 -
Optimized

5

0
BPSK QAM4 QAM16 QAM64

Modulation Scheme

Figure 4-9: Performance comparison of the mapper block for the normal and op-
timized versions. The figure compares the latency associated with the mapping of

log 2 QAM bits into a constellation point between the two versions of the implemen-
tation for different modulation schemes. The average gain in performance is 59.2%.

OFDM Latency
400

350

300

250 ----

200
-

1 U Normal50
1 Optimized

100

50

0
N=32 N=64 N=128

Sub-Carriers

Figure 4-10: Performance comparison of the OFDM block for the normal and opti-
mized versions. The figure compares the latency associated with the construction of
one OFDM block (with length OFDMN + OFDM-CP complex samples) between
the two versions of the implementation for different numbers of sub-carriers. Note
that the length of the cyclic prefix (OFDMCP) was set to 1/4 1h of the number of
sub-carriers (OFDMN) for each case. The average gain in performance is 118.9%.

48

Figures 4-11, 4-12, 4-13, and 4-14 show the improvement for the corresponding

blocks in the RX chain. Note that as opposed to the case of the TX chain, the de-

mapper block achieved the largest performance gain (1818.9%). Moreover, notice that

with Viterbi decoding for the decoding block, worst performance is achieved with the

optimized version compared to the normal version, which indicates the inefficiency of

the DSPLIB routines for this operation. Hence, an implementation that is optimized

for performance would use the same exact code as in the normal version for this

operation.

Decoder Latency (LB)
160

140 -

120 -

100 -

80

6 Normal

40 - L Optimized

20 -

0

"1/2" "2/3" "3/4" "4/5"

Code Rate

Figure 4-11: Performance comparison of Syndrome decoding for the normal and
optimized versions. The figure compares the latency associated with decoding
one codeword (of length ENCODER-LBN) into one message block (of length
ENCODERLBK) between the two versions of the implementation for dif-
ferent code rates (for each rate, ENCODERLBN was set to 48 bits and
ENCODERLB-K was chosen accordingly). The average gain in performance is
229%.

49

Decoder Latency (CV)
70

60

50

40

30 -0Normal

20 -E Optimized

10

0
"1/2" "1/3" "1/4" "1/5"

Code Rate

Figure 4-12: Performance comparison of Viterbi decoding for the normal and opti-
mized versions. The figure compares the latency associated with the Viterbi decoding
for ENCODERCVTRIALS = 8 trials. No performance gain was achieved for this
type of decoding due to the inefficiency of the DSPLIB functions for this operation.

Figure 4-13: Performance comparison of the de-mapper block for the normal and
optimized versions. The figure compares the latency associated with the de-mapping
of a constellation point into log 2 QAM bits for different modulation schemes. The
average gain in performance is 1818.9%.

50

De-mapper Latency
700

600

500

400 -

300 U Normal

200 - Optimized

100 -

0*

BPSK QAM4 QAM16 QAM64

Modulation Scheme

iOFDM Latency
700

600

500

400

300 - Normal

200 - Optimized

100

0

N=32 N=64 N=128

Sub-Carriers

Figure 4-14: Performance comparison of the iOFDM block for the normal and opti-
mized versions. The figure compares the latency associated with the deconstruction
of one OFDM block (with length OFDMN + OFDMCP complex samples) into
constellation points for different numbers of sub-carriers. Note that the length of the
cyclic prefix (OFDMCP) was set to 1/4 1h of the number of sub-carriers (OFDM-N)
for each case. The average gain in performance is 20.4%.

51

Figures 4-15 and 4-16 summarize the latencies for each block as a percentage of

the total latency corresponding to the construction/processing of an OFDM block in

the TX/RX chain for each combination in Table 4.1. These figures also represent the

amount of processing resource that is allocated to each block as a percentage of the

total processing resource required for the different combinations in each chain.

TX Chain Resource Allocation
90

80 -

70

S60
a' .'"1"

50 -
C* 40 -

a 30 -

20 - "4"1

10 - l'"

0
Encoder Mapper OFDM

Block

Figure 4-15: TX Chain summarization of processing resource for each block as a
percentage of total. The figure can also be viewed as a comparison of the latency due
to each block in the construction of an OFDM block.

52

RX Chain Resource Allocation
70

60 -

50

40

3 E"2"1
30

a.
20 -41

10 N"5"

0

Decoder De-mapper iOFDM

Block

Figure 4-16: RX Chain summarization of processing resource for each block as a
percentage of total. The figure can also be viewed as a comparison of the latency due
to each block in the processing of an OFDM block.

53

54

Chapter 5

Future Work

The current thesis provided a very general DSP framework for the OMAP-L138 pro-

cessor. The next step would be to complete the framework by adding additional

building blocks and enhancing those that already exist. Afterwards, the processor is

to be integrated with an analog front-end to form a complete software-defined radio

in order to achieve the vision described in Section 1.2. Of course, designing the analog

front-end carries with it challenges of its own, especially in maintaining our desire for

a low-power software-defined radio that is small in size. Nevertheless, having elimi-

nated the need for a PC and an FPGA for the DSP operations while achieving faster

performance with the OMAP-L138 processor is surely considered to be a big step

towards achieving this goal.

55

56

Chapter 6

Conclusion

The thesis discussed the implementation of a general DSP framework on TI's OMAP-

L138 processor. This processor was used in order to overcome the disadvantages that

exist in software-defined radios today: large size, dependence on a PC, and high laten-

cies. Aside from being low-power and small in size, the processor offers a collection of

assembly-level optimized routines for common DSP functions. These routines allow

us to achieve the flexibility of implementing wireless protocols in software while hav-

ing to trade in much less performance. Our evaluations also confirmed the enhanced

performance of implementing protocols on this processor and showed substantial im-

provements to implementations that utilize non-optimized software.

57

58

Appendix A

Code

A.1 TX Chain Code

A.1.1 tx-process.c

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<stdio.h>

<c6x.h>

<csl-types.h>

<cslr-dspintc.h>

<socOMAPL138.h>

<cslrtmr.h>

<cslr-syscfgO-_MAPL138.h>

<math.h>

"parameters.h"

"queue.h"

"encoder.h"

"mapper.h"

"ofdm.h"

void Initialize(void);

void Process(void);

void Encoder(void);

void Mapper(void);

void OFDM(void);

59

/************Initialize Queues************/

queuef encoder-queue = {0,0,"EncoderQueue"};

queuef mapper-queue = {0,0,"MapperQueue"};

queuejf ofdm-queue = {0,0,"OFDMQueueT};

int data-ptr = 0;

/*********MAIN FUNCTION**************/

void main (void)

{

Initialize();

while(1){

Process();

}

}

/*********INITIALIZATION*************/

void Initialize(void)

{

int i;

int j;

int n;

for (j = 0; j<BUFLENGTH; j++){

output-buffer[j] = 0;

outputbuffer-r[j] = 0;

output-buffer-i[j] = 0;

qam-buffer-r[j] = 0;

qamnbuffer-i[j] = 0;

}

encoderlbinito;

mapper-init(;

ofdm-init(;

60

}

/*********PROCESS*************/

void Process(void){

if (mapper-queue.count >= 2*(int)OFDMN){

OFDM(;

}else{

if (encoderqueue.count >= log((int)QAM)/log(2)){

Mapper();

}else {

Encoder();

}

}

}

/*********ENCODER BLOCK*************/

void Encoder(void)

{

if ((int)ENCODERV==O){

encoder_lb (data, &data-ptr, &encoder-queue);

}else{

encodercv (data, &data_ptr, &encoder-queue);

}

}

/*********MAPPER BLOCK*************/

void Mapper(void)

{

mapper(&mapper-queue, &encoderqueue);

}

/*********OFDM BLOCK*************/

void OFDM(void)

{

ofdm(&ofdm-queue, &mapper-queue);

}

61

A.1.2 parameters.h

#ifndef PARAMETERS_H_

#define PARAMETERS_H-

/*****************USER INTERFACE*****************/

#define ENCODERV 0 //0 for LB, 1 for CV

#define ENCODERLBN 48

#define ENCODERLBK 24

#define ENCODERCVK 3

#define ENCODERCVP 2

#define QAM 64

#define QAMPOWER 1

#define OFDMN 128

#define OFDMCP 32

/ **/

#define ENCODERLBNK (int)ENCODERN-(int)ENCODERK

#define ENCODERLBCMSIZE (int)ENCODERK*(int)ENCODERN_K

#define ENCODER_LB_GMSIZE (int)ENCODERK*(int)ENCODERN

#define ENCODER_CV_GPMSIZE (int)ENCODERCVK*(int)ENCODER_CV_P

#define PI 3.14159265358979

#define MAXQUEUESIZE 6000

#include "input-data.h"

#include "dsplib674x.h"

float gen-matrix[ENCODERLBGMSIZE];

/*****************USER INTERFACE*****************/

float gen-poly-matrix[ENCODERCVGPMSIZE] = {O,1,1,1,1,1};

float code-matrix[ENCODERLBCM-SIZE] =

{1,0,1,0,1,O,1,0,1,O,1,0,1,0,1,0,1,0,1,0,1,0,1,0,

1,0,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0,0,0,1,1,0,

0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,1,1,

62

0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0,

1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,

1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,

1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,

0,0,1,0,1,0,1,0,0,0,1,1,1,0,1,0,1,1,0,0,0,0,1,1,

1,0,0,0,1,0,1,1,1,0,1,0,0,1,1,0,1,0,1,0,1,1,1,0,

0,0,1,0,1,1,1,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,1,0,

1,0,0,1,1,0,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,

1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,

0,1,1,0,1,1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,

1,0,0,1,1,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,

1,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,

0,0,10,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,

1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0,1,0,1,0,1,0,

1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,

0,0,0,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,1,

1,0,1,0,1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,

0,0,0,0,1,1,1,1,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,1,

1,0,1,0,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,

1,0,1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,

1,111

#endif /*PARAMETERSH_*/

A.1.3 queue.h

#ifndef QUEUE_H_

#define QUEUE_H_

#include "parameters.h"

/*******Queue Structure*********/

struct queueF{

int front;

63

int count;

char *name;

float buffer[MAXQUEUESIZE];

};

typedef struct queueF queue_f;

/*******Push Element into Queue*************/

void pushQueue-f(queue-f *q, float x){

if (q->count < (int)MAXQUEUESIZE){

int index = (q->front + q->count)%MAXQUEUESIZE;

q->buffer[index] = x;

q->count = q->count + 1;

}

else{

printf("ERROR: Buffer %s Overflow! \n",q->name);

}

}

/*******Pop Element from Queue*************/

float popQueue-f(queue-f *q){

if (q->count > O){

float v = q->buffer[q->front];

q->front = (q->front+1)XMAXQUEUESIZE;

q->count = q->count - 1;

return v;

}else{

printf("ERROR: Buffer %s Empty! \n",q->name);

return 0;

}

}

#endif /*QUEUEH_*/

A.1.4 encoder.h

64

#ifndef ENCODER_H_

#define ENCODER_H_

#include "parameters.h"

#include "queue .h"

/***LINEAR BLOCK ENCODING INITIALIZATION***/

void encoder-lb-init(void){

//Initialize Generating Matrix

int i, j;

for (i = 0; i<ENCODERLB-K; i++){

for(j = 0; j<ENCODER-LBN; j++){

if (j<ENCODERLBK){

if (i==j){

gen-matrix[(i*(int)ENCODER-LBN)+j] = 1;

}

else {

gen-matrix[(i*(int)ENCODER-LBN)+j] = 0;

}

}

else{

genmatrix[(i*(int)ENCODERLBN)+j] =

code-matrix[(i*(int)ENCODERLBNK)+(j-

ENCODERLBK)];

}

}

}

}

/***LINEAR BLOCK ENCODING OPERATION***/

void encoderjlb (float *data, int *data-ptr, queue-f *encoder-queue){

int i;

float kdatabuffer[ENCODERLBK];

float ndatabuffer[ENCODERLBN];

for (i = 0; i<ENCODERLBK; i++){

65

k_data-buffer[i] = data[*data-ptr];

*data-ptr=(*data-ptr+1)%BUFLENGTH;

}

DSPF-sp-mat-mul (k-databuffer, 1, (int)ENCODERLBK, gen-matrix, (int)

ENCODERLBN, n-databuffer); //DSPLIB

for (i = 0; i<ENCODERLBN; i++){

pushQueuef (encoder-queue,(float)(((int)ndatabuffer[i])%2));

}

}

/***CONVOLUTIONAL ENCODING OPERATION***/

void encoder-cv (float *data, int *data-ptr, queuef *encoder-queue){

int i;

float kdata-buffer[ENCODER_CV-K];

float p-data-buffer[ENCODERCVP];

for (i = 0; i<ENCODERCVK; i++){

if ((*data-ptr)-(((int)ENCODERCVK)-1)+i >= 0){

k_databuffer[i] = data[(*data-ptr)-(((int)ENCODERCVK)-1)+

i];

}else{

k_databuffer[il = 0;

}

}

DSPF-sp-mat-mul (gen-poly-matrix, ENCODERCVP, ENCODER_CV_K, k_data_buffer

, 1, p-databuffer); //DSPLIB

for (i = 0; i<ENCODER-CVP; i++){

pushQueuef (encoder-queue, (float) (((int)p-databuffer [i])%2));

}

*data-ptr=(*data-ptr+1)%BUFLENGTH;

}

#endif /*ENCODERH_*/

66

A.1.5 mapper.h

#ifndef MAPPER_H_

#define MAPPERH_

#include "parameters.h"

#include "queue.h"

#include <math.h>

/********************DEFINE CONSTANTS***********************/

#define SQ2 1.4142135623

#define q4a SQ2/2

#define q16a SQ2/6

#define ql6b SQ2/2

#define q64a SQ2/14

#define q64b (3*SQ2)/14

#define q64c (5*SQ2)/14

#define q64d SQ2/2

float BPSKconst[2] [2] = {{1,0},{-1,0};

float BPSK-encoding[2] [1] = f{Wf0}};

float QAM4_const [4] [2] = {{q4a,q4a},{-q4a,q4a},{-q4a,-q4a},{q4a,-q4a}};

float QAM4_encoding[4][2] =f{{,},{1,0},{0,1}1,1}};

float QAM16_const[16][2] = {{ql6a,ql6a},{ql6b,ql6a},{ql6a,q16b},

{q16b,ql6b},{ql6a,-q16a},{q16a,-q16b},{q16b,-ql6a},

{ql6b,-ql6b},{-ql6a,-ql6a},{-q16a,q16b},{-ql6b,ql6a},

{-ql6b,ql6b},{-ql6a,-q16a},{-ql6b,-ql6a},{-q16a,-q16b},

{-q16b, -q16b}};

float QAM16_encoding[16][4] =

{{O,O,O,O},{O,O,O,1},{O,O,1,O},{O,O,1,1},{O,1,O,O},{O,1,O,1},

{O,1,1,O} ,{0, 1, 1,1},{1,0,0,0} ,{1,0,0, 1},{1,0, 1,O},{1,0, 1, 1},{1,1,0,0},{1, 1,0,1}

{1,1,1,0},{1,1,1,1}};

float QAM64_const[64][2] = {{q64a,q64a},{q64b,q64a},{q64a,q64b},{q64b,q64b},

{q64d,q64a},{q64c,q64a},{q64d,q64b},{q64c,q64b},{q64a,q64d},

{q64b,q64d},{q64a,q64c},{q64b,q64c},{q64d,q64d},{q64c,q64d},

67

{q64d,q64c},{q64c,q64c},{q64a,-q64a},{q64a,-q64b},{q64b,-q64a},

{q64b,-q64b},{q64a,-q64d},{q64a,-q64c},{q64b,-q64d},{q64b,-q64c},

{q64d,-q64a},{q64d,-q64b},{q64c,-q64a},{q64c,-q64b},{q64d,-q64d},

{q64d,-q64c},{q64c,-q64d},{q64c,-q64c},{-q64a,q64a},{-q64a,q64b},

{-q64b,q64a},{-q64b,q64b},{-q64a,q64d},{-q64a,q64c},{-q64b,q64d},

{-q64b,q64c},{-q64d,q64a},{-q64d,q64b},{-q64c,q64a},{-q64c,q64b},

{-q64d,q64d},{-q64d,q64c},{-q64c,q64d},{-q64c,q64c},{-q64a,-q64a},

{-q64b,-q64a},{-q64a,-q64b},{-q64b,-q64b},{-q64d,-q64a},{-q64c,-q64a},

{-q64d,-q64b},{-q64c,-q64b},{-q64a,-q64d},{-q64b,-q64d},{-q64a,-q64c},

{-q64b,-q64c},{-q64d,-q64d},{-q64c,-q64d},{-q64d,-q64c},{-q64c,-q64c}};

float QAM64_encoding[64][6] =

{{0,0,0,0,o,0},{,o,0,0,0,1},{0,0,0,0,1,0},{0,o,o,o,1,1},

{0,0,0,1,0,0},{o,,o,1,o,1},{o,0,01,1,0},{o,o,1,1,1},{oo,1,o,o,0},

{O,0,1,0,0,1},{0,0,1,0,1,O},{O,0,1,O,1,1},{O,0,1,1,,0},{O,0,1,1,O,1},

{0,0,1,1,1,o},{0,,1,1,1,1},{0,l,0,0,oo},{o,l,,0,0, 1},{o,,0,0,1,0},

{o,1,0,o,',1},{0,',0,',0,0},{0,',o,1,o,1},{,1,ol,1,o},{0,1,0,,1,1},

{o, 1, 1,O,0,O}.,{O,l, 1,0,0,1},{0,1,1,o,1,o},{o,1,l,o, 1,1},{0,1, 1,1l,0,0},

{O,1,1,1,O,1},{O,1,1,1,l,O},{O,l,l,1,1,l},{l,0,O,O,0,O},{1,0,O,0,0,1},

{l,o,o,o,1,0},{l,o,0,o,1,1},{',0,o,1,0,o},{l,o,0,',o,l},{1,o,o,l,',o},

{l,O,O, 1, 1,1},{1,0,1,O,0,O},{l,0,1,O,O,1},{l,O, 1,0, 1,O},{1,O,1,O, 1,1}

{1 ,0, 1, 1,0,0},{1,0, 1, 1,0, 1},{1 ,0, 1,1,1,0},{1 ,0,1,1,1, 1} ,{1, 1,0,0,0,0},

{',',0,0,0,1},{'1,O,,0,1,O},{',1,0,0,1,1},{',1,O',,O,},{1,1,O,1,O,1},

{1,1,0,1,1,0},{1,1,0,1,1,1},{1,1,,0,0,0},{1,1,1 ,0,0,1},{1,1,1,0,1,0},

/***DEFINE BLOCK VARIABLES***/

float *mapper-const;

float *mapper-encoding;

int bits;

float block[64];

float diff[64];

/ ****************************/

/***MAPPER INITIALIZATION****/

void mapper-inito{

68

int i;

switch((int)QAM){

case 2:

mapper-const = &BPSK-const[0][0];

mapper-encoding = &BPSKencoding[0][0];

bits = 1;

break;

case 4:

mapper-const = &QAM4_const[0][0];

mapper-encoding = &QAM4_encoding[0][0];

bits = 2;

break;

case 16:

mapper-const = &QAM16_const[0][0];

mapper-encoding = &QAM16_encoding[0][0];

bits = 4;

break;

case 64:

mapper-const = &QAM64_const[0][0];

mapper-encoding = &QAM64_encoding[0][0];

bits = 6;

break;

default:

printf("ERROR: Please enter valid QAM parameter.\n");

exit(0);

break;

}

}

/******MAPPER OPERATION******/

void mapper(queue-f *mapper-queue, queue-f *encoder-queue){

int i;

int j;

for (i=0; i<bits; i++){

block[i] = popQueue-f(encoder-queue);

69

}

for (i=O; i<(int)QAM; i++){

if (bits > 1){

DSPF-sp-w-vec (block, &mapper-encoding[i*bits], -1, diff,

bits);

}else{

diff[0] = block[0] - mapper-encoding[i];

}

if (DSPF-sp-vecsum-sq (diff, bits) == O){

for (j=O; j<2; j++){

pushQueue-f(mapper-queue, (int)QAMPOWER*

mapper-const[(i*2)+j]);

}

break;

}

}

}

#endif /*MAPPERH_*/

A.1.6 ofdm.h

#ifndef OFDM_H_

#define OFDM_H_

#include "parameters.h"

#include "queue.h"

#include <math.h>

#define OFDM_2N 2*(int)OFDMN

float w[OFDMN] ;

/*****Generate Real and Imaginary Twiddle

70

Table of Size n/2 Complex Numbers*******/

gen-w-r2(float* w, int n)

{

int i;

float pi = 4.0*atan(1.0);

float e = pi*2.0/n;

for(i=O; i < (n>>1); i++)

{

w[2*i] = cos(i*e);

w[2*i+1] = sin(i*e);

}

}

/********Bit Reversal************/

bit-rev(float* x, int n)

{

int i, j, k;

float rtemp, itemp;

j = 0;

for (i=1; i < (n-1); i++)

{

k = n >> 1;

while(k <= j)

{

j -= k;

k >>= 1;

}

j += k;

if(i < j)

{

rtemp = x[j*2];

x[j*2] = x[i*2];

x[i*2] = rtemp;

itemp = x[j*2+1];

x[j*2+1] = x[i*2+1];

x[i*2+1] = itemp;

71

}

}

}

/***OFDM INITIALIZATION****/

void ofdminit(){

gen-w-r2(w, OFDMN); //Generate coefficient table

bit-rev(w, OFDMN>>1); //Bit Reversal required for use with DSPLIB routine

}

/***OFDM OPERATION****/

void ofdm(queuef *ofdm-queue, queue-f *mapper-queue){

int i;

float ofdm-buffer[OFDM_2N];

for (i=0; i<OFDM_2N; i++){

ofdmbuffer[i] = popQueue-f(mapper-queue);

}

//iFFT

bit-rev(ofdmbuffer, OFDMN);

DSPF-sp-icfftr2_dif(ofdm-buffer, w, OFDMN);

//First push cyclic prefix

/1(1/N) factor because of inverse FFT

for (i=0; i<2*OFDMCP; i++){

pushQueuef (of dm-queue, (1. O/UFDMN) *ofdmnbuffer [OFDM_2N - (2*

OFDM-CP) + i]);

}

//Then push FFT chunk

//(1/N) factor because of inverse FFT

for (i=0; i<OFDM_2N; i++){

pushQueue-f(ofdm-queue, (1.0/OFDMN)*ofdmbuffer[i]);

}

}

#endif /*OFDMH_*/

72

A.2 RX Chain Code

A.2.1 rx-process.c

#include <stdio.h>

#include <c6x.h>

#include <csl-types.h>

#include <cslr-dspintc.h>

#include <socOMAPL138.h>

#include <cslrtmr.h>

#include <cslr-syscfgO-OMAPL138.h>

#include <math.h>

#include "parameters.h"

#include "queue.h"

#include "iofdm.h"

#include "demapper.h"

#include "decoder.h"

#include "input-samples.h"

void InitializeBuffers(void);

void Process(void);

void Decoder(void);

void Demapper(void);

void iOFDM(void);

/******Initialize Queues******/

queue-f decoder-queue = {0,0,"DecoderQueue"};

queue-f demapper-queue = {0,0,"DemapperQueue"};

queue.f iofdm-queue = {0,0,"iOFDM_Queue"};

int inp-buf-ptr = 0;

float channel[OFDM-2N];

/*********MAIN FUNCTION**************/

void main (void)

{

73

InitializeBuffers();

while(1) {

Process();

}

}

/*********INITIALIZATION*************/

void InitializeBuffers(void)

{

int i;

int j;

int n;

/***Get Input Samples***/

for (i = 0; i<INPUTSAMPLESLENGTH; i++){

input[2*i] = inputsamples-real[i];

input[(2*i)+1] = input-samples-imag[i];

}

decoder-lbjinit();

decodercvinitO;

demapper-init(;

iofdm-init (channel);

}

/*********PROCESS*************/

void Process(void){

if ((ENCODERV==0 && demapper-queue.count>=ENCODERN) 11

(ENCODERV==1 && demapper-queue.count >= ((int)ENCODERCVTRIALS*(

int)ENCODERCVP))){

Decodero;

}else{

if (iofdmnqueue.count >= 2){

Demappero;

}else{

74

iOFDM(;

}

}

}

/*********DECODER BLOCK*************/

void Decoder(void)

{

if((int)ENCODERV == O)

decoderjlb (&demapper-queue, &decoder-queue, rec_data, &recdata-ptr

}else{

decoder-cv (&demapper-queue, &decoder-queue, rec-data, &rec_dataptr

}

}

/*********DE-MAPPER BLOCK*************/

void Demapper(void)

{

demapper(&iofdmnqueue, &demapper-queue);

}

/*********iOFDM BLOCK*************/

void iOFDM(void)

{

iofdm(&inp-buf-ptr, &iofdm-queue, channel);

}

A.2.2 parameters.h

#ifndef PARAMETERS_H_

#define PARAMETERSH_

#include "input-samples.h"

75

#include <math.h>

#include "dsplib674x.h"

/*****************USER INTERFACE*****************/

#define ENCODERV 0 //0 for LB, 1 for CV

#define ENCODERLBN 48

#define ENCODERLBK 24

#define ENCODERCVK 3

#define ENCODERCVP 2

#define ENCODERCVTRIALS 8

#define QAM 64

#define OFDMN 128

#define OFDM-CP 32

#define ENCODERLBNK (((int)ENCODERLB-N)-((int)ENCODERLBK))

#define ENCODERLBCODESIZE (int)ENCODERLBK*(int)ENCODERLB_N_K

#define ENCODERLBICODESIZE ((int)ENCODERNK*(int)ENCODERK)

#define ENCODERLBPARCHECKSIZE ((int)ENCODERNK*(int)ENCODERN)

#define ENCODERLBERRORSIZE ((int)ENCODERN*(int)ENCODERN)

#define ENCODERLBSYNDSIZE ((int)ENCODERN*(int)ENCODERNK)

#define ENCODERCVSTATESBITS 2

#define ENCODERCVSTATES 4

#define MAXQUEUESIZE 4000

#define OFDM_2N 2*(int)OFDMN

#define PI 3.14159265358979

float input[INPUTLENGTH];

/*****************USER INTERFACE*****************/

int gen-poly-matrix[ENCODERCV_] [ENCODERCV_K] = {{0,1,1},{1,1,1}};

float code-matrix[ENCODERLBCODESIZE]

={1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,

1,0,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0,0,0,1,1,0,

0,0,0,0,1,0,1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,1,1,

0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0,

76

,,iq-ananb,, apnTDul#

apnTDUT#

H-H3GODHG 9UTj9p#

H-'dSGODSG J9PuJT#

14-japoaap V-Z-V

'111"Ply XI S'G amius

q-ananb U-Z-V

/*-H-SHHIHWVUVd*/ JTPu8#

T c T c T ' T c T c T c T c T 9 T c T ' T c T 9 T c T c T c T c T 4; T c T c T c T 4 T c T c T

60(TcOcTcOeTcOcT'gOcTcTtTgOcTcOtOcOcOcOeTcOcTcOl;T

cO'TcOcTtOtOcOtT'OgOcOcTcOtT'OgTcTcTtTtOtOcTcOcT

cTtTcTcTcT4gTcOtOcTcTcOcTcOcTcTcOcTcTcTcTeOcOgOtO

cOcTcOcT4rTcOcTcTcOcTcTtOcOcTcOcTcTeTcOcTcOl;TcOcT

cTcTcOcTcOcTcOcOcOcT'O'TcTsTeOcTcOtOcTeTtOcOcOgO

cOgT'TgTcOcTcOcTcOcTtOcTcOcTsOcTcOcTgOcTcTcTcTcT

tOcTcOcT4OcTcOcTcTcT(T(T'OcTgOcOcOcTcOcTcO4TgOcT

cOcTcTsTcOcOtOcT4;OsTcOcT'OcTsOcTtTcT'TcOcO4lTcOgO

cTcTcOcOcOcTcTtTcOcTcTcTcOcTcOcTcTcOcOgOtOcTcOcT

cOcTeOcTeOeTcOcTcOcTcOgOcOcOcOgTcTtTtOcTcTcOcOcT

cOeTcTcTcOdOcTcOcTcOcOcTcTcTcOeTtOcT(TcTcOcTcTcO

gOeTtOtTeOcTcOcTcOcTcTcTcOcTcOcTcOfTcOcT4'OcTcOcT

cOcTcO'TcOcTcOcTcOcTcTcTcOcTcOcOgOeTcOcTcTcOcOcT

cOeTcOcTcT4'TcOcTcOcTcTcTgOcOcOcTcOgTcTcTcOcTcOcO

cOcTsTcTcOcTcOeTtOcTcTcOcOsTcOcTsTsTcOcTcOgOtOcT

9 T c T cococococ TcTcOcTcOcT(TclcOcOcOcTcOcTcO'T'OcO

tOcTcOtTcOcTcOcTcOcOcO'T'O(TcOcTcO'TtTcOcOtTcT'T

cO'TcO'TcOl'TcOcT"O'OcTcTcOcTgOcOcOcOcO4lTcO'TtOcT

cTcTcOcTcO'TcT'TcOcT'OcT'OcTcOcTcOcTcO'TcOcOcO'T

)l

struct pred

{

int states [2];

int states-output-parity[2][ENCODERCVP];

int states-output.bit[2];

};

typedef struct pred PREDECESSORS;

int CVSTATES_4[4][2] = {{0,0},0,1},1,0},1,1}};

float icode-matrix[ENCODERLBICODESIZE];

float par-check-matrix[ENCODERLBPARCHECKSIZE];

float error-matrix[ENCODER-LBERROR_SIZE];

float syndrome-matrix[ENCODERLBSYNDSIZE];

float syndrome-matrixT[ENCODERLBSYNDSIZE];

PREDECESSORS preds[ENCODERCV-STATES];

/***SYNDROME DECODING INITIALIZATION***/

void decoderlbinit(void){

int i;

int j;

int e;

float sb;

//Initialize Parity Check Matrix and Syndromes

DSPF-sp-mattrans (codematrix, (int)ENCODERLBK, (int)ENCODER-LBNK,

icodematrix);

//Then compute parity check matrix

for (i = 0; i<(int)ENCODERLB_N_K; i++){

for(j = 0; j<(int)ENCODERLB.N; j++){

if (j<(int)ENCODERLB-K){

par-check-matrix[(i*(int)ENCODERLB-N)+j] =

icode-matrix[(i*(int)ENCODERLBK)+j];

}

else{

78

if (i+((int)ENCODERLBK)==j){

par-checkmatrix[(i*(int)ENCODERLBN)+j] = 1;

}

else {

par-checkmatrix[(i*(int)ENCODERLBN)+j] = 0;

}

}

}

}

//Find

for (i

Syndromes

= 0; i<(int)ENCODERLBN; i++){

for (j = 0; j<(int)ENCODERLBN; j++){

if (i==j){

errormatrix[(i*(int)ENCODERLBN)+j] = 1;

}

else{

errormatrix[(i*(int)ENCODERLBN)+j] = 0;

}

}

}

for (e = 0; e<(int)ENCODERLBN; e++){

for (i = 0; i<(int)ENCODERLB_N_K; i++){

sb = 0;

for (j = 0; j<(int)ENCODERLBN; j++){

sb = (int)((sb + (par-check-matrix[(i*(int)

ENCODERLBN)+j]*error-matrix[(e*(int)

ENCODERLBN)+j])))%2;

}

syndrome~matrix[(e*(int)ENCODER_LB_NK)+i] = sb;

}

}

}

/***SYNDROME DECODING OPERATION***/

79

void decoder-lb (queue-f *demapper-queue, queuef *decoder-queue, float *rec-data,

int *rec-data-ptr){

int i;

int j;

int e;

float rec[ENCODERLBN];

float syndrome[ENCODERLBNK];

float sb;

int counter;

int found-syndrome = 0;

float synd-temp[ENCODERLBNK];

for (i = 0; i<(int)ENCODERLB_N; i++){

rec[i] = popQueue-f(demapper-queue);

}

DSPF-sp-mat-mul (par-check-matrix, (int)ENCODERLBNK, (int)ENCODERLBN,

rec, 1, syndrome);

for (i=0; i<(int)ENCODERLB_N_K; i++){

syndrome[i] = (float)(((int)syndrome[i])%2);

}

if (DSPF-sp-vecsum-sq(syndrome, (int)ENCODERLBNK) ==)

for (i = 0; i<(int)ENCODERLBK; i++){

pushQueue-f(decoderqueue,rec[i]);

}

}else{

errorcounter = errorcounter + 1;

for (e = 0; e<(int)ENCODERLB_N; e++){

DSPF-sp-w-vec (syndrome, &syndrome-matrix[e*(int)

ENCODERLB-NK], -1, syndtemp, (int)ENCODERLBNK);

if (DSPF-sp-vecsum-sq(synd-temp, (int)ENCODERLB-NK) == 0){

found-syndrome = 1;

for (j = 0; j<(int)ENCODER_LBK; j++){

pushQueuef (decoderqueue, (float) ((int) (rec [j

]+error-matrix[(e*(int)ENCODERLBN)+j])

80

}

break;

}

}

if (found-syndrome == O){

for (j = 0; j<(int)ENCODERLBK; j++){

pushQueue-f(decoderqueue,0);

}

}

}

}

/***VITERBI DECODING INITIALIZATION***/

void decodercvinit(void){

int i;

int j;

int p;

int s;

int ob;

int sb;

int ns;

int parity[ENCODERCVP];

int newstate;

int k-buf[ENCODERCVK];

//Initialize preds

for (s=0; s<ENCODERCVSTATES; s++){

for(ob=0; ob<2; ob++){

//Find next state

ns = ob;

for (i=1; i<(int)ENCODERCVSTATESBITS; i++){

ns = ns + (CVSTATES_4[s][i]*pow(2,((int)

ENCODERCVSTATESBITS)-i));

}

81

preds[ns].states[count[ns]] = s;

preds[ns].states-output-bit[count[ns]] = ob;

for (sb=O; sb<ENCODERCV-STATESBITS; sb++){

k_buf[sb] = CVSTATES_4[s][sb];

}

k-buf[((int)ENCODERCV-K)-1] = ob;

//Find outputed parity bits

for (p = 0; p<ENCODERCVP; p++){

preds [ns] .statesoutput -parity[count[ns]] [p] =

0;

for (j = 0; j<ENCODER-CVK; j++){

preds[ns].states-output-parity[count[ns

]][p] = (preds[ns].

states-output-parity[count[ns]][p]

+ (gen-poly-matrix[p][j]*k-buf[j]))

%2;

}

}

}

}

}

/***VITERBI DECODING OPERATION***/

void decoder-cv (queuef *demapper-queue, queue-f *decoder-queue, float *rec-data,

int *rec_data_ptr){

int Predecessor[ENCODER_CV_STATES][ENCODERCVTRIALS];

int PM[ENCODERCVSTATES][ENCODERCVTRIALS];

int t;

int i;

int s;

int p;

int bmO; //branch metric 0

int bml; //branch metric 1

int pm0; //path metric 0

82

int pml; //path metric 1

int min-pm;

int beststate;

float recbuf[ENCODERCVSTATES-BITS];

float outbuf[ENCODERCVTRIALS];

for (t=O; t<ENCODER_CV_TRIALS; t++){

for (i=O; i<ENCODERCVP; i++){

rec-buf[i] = popQueue-f(demapper-queue);

}

for (s=0; s<ENCODERCVSTATES; s++){

//Compute branch metrics.

bmO = 0;

for (p = 0; p<ENCODERCVP; p++){

bmO = bmO + (((int)rec.buf[p] + preds[s].

states-output-parity[0][p])X2);

}

bml = 0;

for (p = 0; p<ENCODERCVP; p++){

bml = bml + (((int)rec-buf[p] + preds[s].

states-outputparity[1][p1)%2);

}

if (t==0){

pmO = bm0;

pml = bm1;

}else{

pmO = PM[preds[s].states[0]][t-1] + bmO;

pml = PM[preds[s].states[1]][t-1] + bml;

}

//Find predecessor

if (pmo<pml){

Predecessor[s][t] = 0;

PM[s][t] = pmo;

}else{

83

Predecessor[s][t] = 1;

PM[s][t] = pml;

}

}

}

min-pm = PM[0][((int)ENCODERCVTRIALS)-1];

beststate = 0;

for (s=1; s<ENCODER_CVSTATES; s++){

if (PM[s][((int)ENCODERCVTRIALS)-1] < min-pm){

min-pm = PM[s][((int)ENCODERCVTRIALS)-1];

beststate = s;

}

}

for (t=((int)ENCODERCVTRIALS)-1; t>=0; t--){

outbuf [t] = preds [best-state] .statesoutput-bit [Predecessor[

beststate] [t]];

beststate = preds[beststate].states[Predecessor[beststate][t]];

}

for(t=0; t<ENCODER_CV_TRIALS; t++){

pushQueue-f(decoder-queueout-buf[t]);

}

}

#endif /*DECODERH_*/

A.2.5 demapper.h

#ifndef DEMAPPER_H_

#define DEMAPPER_H_

#include "parameters.h"

#include "queue.h"

84

#define SQ2 1.4142135623

#define q4a SQ2/2

#define q16a SQ2/6

#define ql6b SQ2/2

#define q64a SQ2/14

#define q64b (3*SQ2)/14

#define q64c (5*SQ2)/14

#define q64d SQ2/2

float BPSKconst[2][2] = {{1,0},-1,0}};

float BPSKencoding[2][1] = {{1},{I};

float QAM4_const[4][2] = {{q4a,q4a},{-q4a,q4a},{-q4a,-q4a},{q4a,-q4a}};

float QAM4_encoding[4][2] ={{ }1,0},0,1},1,1}};

float QAM16_const[16][2] = {{ql6a,ql6a},{ql6b,ql6a},{ql6a,ql6b},

{ql6b,ql6b},{ql6a,-ql6a},{ql6a,-ql6b},{q16b,-ql6a},

{ql6b,-ql6b},{-ql6a,-ql6a},{-ql6a,ql6b},{-qt6b,ql6a},

{-ql6b,ql6b},{-ql6a,-ql6a},{-ql6b,-ql6a},{-ql6a,-ql6b},

{-q16b,-q16b}};

float QAM16_encoding[16][4] =

{{O,O,O,O},{O,O,O,1},{O,0,O,},{O,O, 1, 1},{O,1,O,O},{O,1,O,1},

{O,1,1,O},{O,1,1,1},{1,,O,O},{1,,O,1},{1,O,1,O},{1,O,1,1},{1,ioo},{iiOi},

{1,1,1,O},{1,1,1,1}};

float QAM64_const[64][2] = {{q64a,q64a},{q64b,q64a},{q64a,q64b},{q64b,q64b},

{q64d,q64a},{q64c,q64a},{q64d,q64b},{q64c,q64b},{q64a,q64d},

{q64b,q64d},{q64a,q64c},{q64b,q64c},{q64d,q64d},{q64c,q64d},

{q64d,q64c},{q64c,q64c},{q64a,-q64a},{q64a,-q64b},{q64b,-q64a},

{q64b,-q64b},{q64a,-q64d},{q64a,-q64c},{q64b,-q64d},{q64b,-q64c},

{q64d,-q64a},{q64d,-q64b},{q64c,-q64a},{q64c,-q64b},{q64d,-q64d},

{q64d,-q64c},{q64c,-q64d},{q64c,-q64c},{-q64a,q64a},{-q64a,q64b},

{-q64b,q64a},{-q64b,q64b},{-q64a,q64d},{-q64a,q64c},{-q64b,q64d},

{-q64b,q64c},{-q64d,q64a},{-q64d,q64b},{-q64c,q64a},{-q64c,q64b},

{-q64d,q64d},{-q64d,q64c},{-q64c,q64d},{-q64c,q64c},{-q64a,-q64a},

{-q64b,-q64a},{-q64a,-q64b},{-q64b,-q64b},{-q64d,-q64a},{-q64c,-q64a},

{-q64d,-q64b},{-q64c,-q64b},{-q64a,-q64d},{-q64b,-q64d},{-q64a,-q64c},

85

{-q64b,-q64c},{-q64d,-q64d},{-q64c,-q64d},{-q64d,-q64c},{-q64c,-q64c}};

float QAM64_encoding[64][6] =

{{0,0,0,0,0,O},{0,0,0,,0,1},{0,0,0,0,1,0},{0,0,,0,1,1},

{0,0,0,1,0,0},{0,0,O,1,0,1},{0,0,0,1,1,0},{0,O,0,1,1,1},{0,0,1,0,0,0},

{0,0,1,0,0,1},{0,0,1,0,1,0},{0,0,1,0, 1,1},{0,0,1,1,0,0},{0,0,1,1,0,},

{0,0,1,1,1,0},{0,0,1, 1,1,1},{0,1,0,0,0,0},{0,1,0,0,0,1},{0,1,0,0,1,0},

{0,i,0,0,1,1},{0,1,0,1,0,0},{0,1,O,1,O,1},{0,1,0,1,1,0},{0,1,0,1,1,1},

{0, 1, 1,1,0, 1} ,{0,1,1,1,1,0},{0, 1, 1,1,1, 1},{1,0,0,0,0,0} ,{1,0,0,0 ,0,1}

{1,0,0,0,1,0},{1,0,0,0,1,1},{1,0,0,1,0,0},{1,0,0,1,0,1},{1,0,0,1,1,0},

{i,0,0,1,1,1},{1,0,1,0,0,0},{1,0,1,0,0,1},{1,0,1,0,1,0},{1,0,1,0,1,1},

{1,0,1,1,0,0} ,{1,0, 1, 1,0, 1} ,{1,0, 1, 1,1,0},{1,0, 1,1, 1,1},{1, 1,0,0,0,0},

{1,1,0,0,0,1},{1,1,0,0,1,0},{1,1,O,0,1,1},{1,1,0,1,O,0},{1, 1,0,1,0, 1},

{1,1,0,1,1,O},{1,1,0,1,1,1},{1,1,1,0,0,0},{1,1,1,0,0,1},{1 ,1,1,0,1, 0},

{1,1, 1,0, 1, 1},{1, 1, 1,1,0,0},{1, 1, 1,1,0,1},{1,1,1,1,1,0},{1,1,1, 1,1,1}

/***DEFINE BLOCK VARIABLES***/

float *mapperconst;

float *mapper-encoding;

int bits;

float block[64];

float diff[64];

/***DE-MAPPER INITIALIZATION****/

void demapper-init(){

int i;

switch((int)QAM){

case 2:

mapper-const = &BPSKconst[0][0];

mapper-encoding = &BPSKencoding[0][0];

bits = 1;

break;

case 4:

mapper-const = &QAM4_const[0][0];

mapper-encoding = &QAM4_encoding[0][0];

86

bits = 2;

break;

case 16:

mapper-const = &QAM16_const[0][0];

mapper-encoding = &QAM16_encoding[0][01;

bits = 4;

break;

case 64:

mapper-const = &QAM64_const[0][0];

mapper-encoding = &QAM64_encoding[0][0];

bits = 6;

break;

default:

printf("ERROR: Please enter valid QAM parameter.\n");

exit(0);

break;

}

}

/******DE-MAPPER OPERATION******/

void demapper(queuejf *iofdm-queue, queuef *demapper-queue){

int i;

int j;

float rec[2];

float diff [2]

float d-min;

float d.temp;

int QAMconst = 0;

rec[0] = popQueue-f(iofdm-queue);

rec[l] = popQueue-f(iofdm_queue);

DSPF-sp-w-vec (rec, &mapper-const[0], -1, diff, 2);

d_min = DSPFsp-vecsum-sq (diff, 2);

for (i = 1; i<(int)QAM; i++){

DSPFsp-w-vec (rec, &mapper-const[i*2], -1, diff, 2);

d-temp = DSPFsp-vecsumnsq (diff, 2);

87

if (d-temp < d-min){

QAMconst = i;

dmin = d-temp;

}

}

for (j = 0; j<bits; j++){

pushQueue-f(demapper-queue,mapper-encoding[(QAM-const*bits)+j]);

}

}

#endif /*DEMAPPER_H_*/

A.2.6 iofdm.h

#ifndef IOFDMH_

#define IOFDMH_

#include "parameters.h"

#include "queue.h"

float w[OFDMNl;

/*****Generate Real and Imaginary Twiddle

Table of Size n/2 Complex Numbers*******/

gen-w-r2(float* w, int n)

{
int i;

float pi = 4.0*atan(1.0);

float e = pi*2.0/n;

for(i=0; i < (n>>1); i++)

{

w[2*i] = cos(i*e);

w[2*i+1] = sin(i*e);

88

}

}

/********Bit Reversal************/

bit-rev(float* x, int n)

{

int i, j, k;

float rtemp, itemp;

j = 0;

for (i=i; i < (n-1); i++)

{

k = n >> 1;

while(k <= j)

{

j -= k;

k >>= 1;

}

j += k;

if(i < j)

{

rtemp = x[j*2];

x[j*21 = x[i*2];

x[i*2] = rtemp;

itemp = x[j*2+1];

x[j*2+1] = x[i*2+1];

x[i*2+1] = itemp;

}

}

}

/***iOFDM INITIALIZATION****/

void iofdm-init(float *channel){

int i;

gen-wr2(w, OFDMN); // Generate coefficient table

bitrev(w, OFDMN>>l);

89

//Initialize channel (arbitrary for now)

for (i=0; i<OFDMN; i++){

channel[(2*i)] = 1;

channel[(2*i)+1] = 0;

}

}

/***iOFDM OPERATION****/

void iofdm(int *inp-buf-ptr, queue-f *iofdmnqueue, float *channel){

int i;

float tempi, temp2, temp3;

float iofdmbuffer[OFDM-2N];

int cp = (int)OFDMCP;

int t;

//Skip Cyclic Prefix

t = ((*inp-buf-ptr)+(2*cp))%((int)INPUTLENGTH);

*inp-buf-ptr = t;

//Extract OFDM chunk

for (i=0; i<OFDM_2N; i++){

iofdm-buffer[i] = input[*inp-buf-ptr];

*inp-buf-ptr = (*inp-buf-ptr+1)%((int)INPUTLENGTH);

}

//FFT

DSPF-sp-cfftr2_dit(iofdmbuffer, w, OFDMN);

bit-rev(iofdm-buffer, OFDMN);

//Y=HX so divide Y by H to get X

for (i=O; i<OFDMN; i++){

tempi = iofdmbuffer[2*i]*channel[2*i] + iofdmbuffer[(2*i)+1]*

channel[(2*i)+1];

temp2 = iofdm-buffer[(2*i)+1]*channel[2*i] - iofdm-buffer[2*i]*

channel[(2*i)+1];

90

temp3 = DSPFsp-vecsumsq (&channel [2*i], 2);

pushQueue f(iofdmnqueue, templ/temp3); //real

pushQueue f(iofdm_queue, temp2/temp3); //imag

}

}

#endif /*IOFDMH*/

91

92

Bibliography

[1] H. Balakrishnan. Linear Block Codes: Encoding and Syndrome Decoding. MIT

6.02 Lecture Notes, Feb. 2012.

[2] H. Balakrishnan. Convolutional Codes: Construction and Encoding. MIT 6.02

Lecture Notes, Oct. 2011.

[3] H. Balakrishnan. Viterbi Decoding of Convolutional Codes. MIT 6.02 Lecture

Notes, Oct. 2011.

[4] M. Bansal, J. Mehlman, S. Katti and P. Levis. OpenRadio: A Programmable

Wireless Dataplane. In HotSDN, 2012.

[5] Bluespec. http://ww.bluespec.com. Bluespec Inc.

[6] USRP. http: //www. ettus. com. Ettus Inc.

[7] FlexRadio. http: //www. flexradio. com. FlexRadio Systems.

[8] R. Gallager. Principles of digital communication. Cambridge University Press,

2008.

[9] GENESIS. http://www.genesisradio. com. au. GenesisRadio.

[10] GNURadio Software Radio. http://gnuradio.org/trac.

[11] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, T. Hama, and S. Shenker. Onix: A Distributed Control Platform for

Large-scale Production Networks. In Proc. OSDI, October 2010.

93

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner. Openflow: enabling innovation in campusnet-

works. In SIGCOMM Comput. Commun. Rev., 38(2):6974, 2008.

[14] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrishnan.

Airblue: A System for Cross-Layer Wireless Protocol Development. In ANCS,

Oct. 2010.

[15] A. Oppenheim. and R. Schafer. Discrete-time Signal Processing. Pearson, 2010.

[16] D. Reay. Digital Signal Processing and Applications with the OMAP-L138 eX-

perimenter. Hoboken, N.J.: Wiley, 2012.

[17] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu, W. Wang,

and G. M. Volker. SORA: High Performance Software Radio Using General Pur-

pose Multi-core Processors. In NSDI, 2009.

[18] Texas Instruments, "OMAP-L138 C6-Integra DSP+ARM Processor", OMAP-

L138 datasheet, Jun. 2009 [Revised Oct. 2011].

[19] Texas Instruments, " TMS320C67x DSP Library Programmers Reference Guide",

TMS320C6000 DSP Library, Jan. 2010.

[20] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cam-

bridge University Press, 2005.

[21] Vanu software radio. http: //www.vanu. com. Vanu, Inc.

[22] Rice university wireless open-access research platform (WARP).

http://warp.rice.edu.

94

