
Using Gesture Recognition to Control PowerPoint

Using the Microsoft Kinect

by

Stephen M. Chang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

MASSACHUSET! 2T1 UE
OF -EC7 oY

OCT 2 9 2013

ULB ZA R IE S
@ Massachusetts Institute of Technology 2013. All rights reserved.

Author.

Certified

. . . . . . . . . . ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrica tineering and Computer Science
May 24, 2013

by... ...
Randall Davis

Professor of Computer Science
Thesis Supervisor

A ccepted by ..... ........... ..............................
Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee



2



Using Gesture Recognition to Control PowerPoint Using the

Microsoft Kinect

by

Stephen M. Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of a speech and gesture recog-
nition system used to control a PowerPoint presentation using the Microsoft Kinect.
This system focuses on the identification of natural gestures that occur during a Pow-
erPoint presentation, making the user experience as fluid as possible. The system uses
an HMM to classify the performed gestures in conjunction with an SVM to perform
real-time segmentation of gestures. The fusion of these two models allows the system
to classify gestures in real time as they are being performed instead of waiting un-
til completion. The incorporation of speech commands gives the user an additional
level of precision and control over the system. This system can navigate through a
PowerPoint presentation and has a limited control over slide animations.
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Chapter 1

Introduction

1.1 Motivation

In today's world, technology pervades nearly every aspect of the average person's

daily life. People interact with computers and other technology as frequently as

they do with other people and they should have the ability to communicate with

computers as naturally as they do with other humans. Speech is perhaps the most

comfortable form of communication between humans. It is quick, efficient, and allows

people to express themselves with great degrees of freedom, limited only by their own

vocabulary. Since the dawn of computers half a century ago, people have dreamed

of being able to have conversations with robots and other artificial intelligences as

easily as they do with other humans. Unfortunately, keyboard and mouse have been

the primary means of interfacing with computers even to this day. While effective in

many situations, they are limiting and not a particularly natural means of interaction.

Gesture recognition is a current area of research that is trying to address this problem.

Everyone is familiar with gestural interaction with other humans. It occurs naturally

during speech as a way people for people to express themselves. Gestures are a form

of body language that are essential to effectively communicate ideas in addition to

spoken language. People already gesture when communicating with other humans,

so why not use this mode of communication for natural interaction with computers.

13



1.2 Goal

This thesis aims to build a speech and gesture recognition system that uses natural

gestures to control a PowerPoint presentation. When people give PowerPoint pre-

sentations, they usually have a clicker object that can control the slides remotely.

However, holding onto the clicker during the presentation occupies the hand. When

a person's hand is already occupied, the range of motions and gestures that can be

performed is limited. This limitation is not necessarily a physical limitation; the pre-

senter may simply be (potentially unconsciously) unwilling to perform certain gestures

while their hand is occupied. The primary goal of this system is to free the user from

these restraints and automatically react to the naturally spoken words and gestures

throughout the presentation.

In many gesture recognition systems, the vocabulary of recognizable gestures are

contrived and unnatural. While they are usually not arbitrary as they have some log-

ical connection between the gesture and its response, they are not gestures that a user

would perform naturally on their own. This system focuses on recognizing natural

gestures and phrases that users would be likely to perform or say during a PowerPoint

presentation even without the system. By focusing the system's attention on natural

phrases and gestures, the user should not have to think about performing artificial

and awkward gestures to control the PowerPoint, which could potentially be even

more distracting to the user than holding onto a small clicker. The gesture recogni-

tion system should not hinder the user, allowing the human-computer interaction to

be as seamless and intuitive as possible.

1.2.1 What is a gesture?

In this thesis, a gesture is defined as a meaningful sequence of hand and arm poses

over time. A pose is simply a configuration of the arm and hand joint positions at

a single point in time. In this work, the body is divided into three sections: left

arm, right arm, and torso. For the types of gestures in this system, the two arms

14



Gesture Functionality Possible Speech
forward next slide "moving on"
backward previous slide "going back"
forward scroll skip ahead x slides "skipping the next x slides"
backward scroll skip back x slides "going back x slides"
pointing trigger animation none

Table 1.1: Possible gesture and speech combinations

are the most significant parts of the body that are tracked. The torso is used for

identifying the general location of the body with respect to the Kinect. The two

arms are analyzed separately allowing the gestures to be performed with either arm

independently of the other.

1.2.2 Target Gestures

This work focuses on two functions that are a key part of any presentation: navigation

through slides and triggering of onscreen animations. Desired navigation function-

alities are "next slide", "previous slide", and jumping forward or back any number

of slides or to a specific slide. These are general navigation commands that can be

applied to any PowerPoint presentation. The onscreen animation triggering, on the

other hand, are less consistent between each slide. The exact effect that the trigger-

ing command has on a slide is dependent on the design of the slide. Slides may have

any number of different animations or none at all. Common animations are on build

slides where there is a list of bullet points that are initially hidden and sequentially

revealed. The animation triggering function can be used to reveal each of these bullet

points. In general, the triggering command will cause the next (if any) animation to

occur.

Based on these desired functionalities there are five basic gestures that can be per-

formed with either hand: forward, backward, forward scroll, backward scroll, and

pointing. These gestures are diagrammed in Figure 1-1. Table 1.1 shows which ges-

tures control which functionalities as well as possible corresponding phrases.

15



1*i III
(a) Forward gesture: front view of body (b) Forward gesture: side view of body

4* I-tI
(c) Backward gesture: front view of body (d) Backward gesture: side view of body

(e) Forward scroll: front view of body

(g) Backward scroll: front view of body

(i) Pointing to side

(f) Forward scroll: side view of body

(h) Backward scroll: side view of body

(j) Pointing across body

Figure 1-1: This figure shows some basic body poses of the five different gestures with
the right hand from the front and side points of view. 1-li and 1-1j illustrate the two
different ways a user can perform a pointing gesture to the left: either by extending
the left hand out to the side or crossing the right hand across the body. Each of these
gestures can be performed with the left hand in the same manner.
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Figures 1-la and 1-1b show the how the forward gesture is performed: an outward-

directed extension of the arm that starts at the mid-torso level close to the body and

ends with an outstretched arm and an upward facing palm in front of the body. The

backward gesture, Figures 1-1c and 1-1d, is the opposite, performed as an inward-

directed movement with the arm starting with an outstretched arm palm-up and

ending close to the body, again at mid-torso level. The forward and backward scroll

gestures can be visualized as continuous and smooth repetitions of the forward and

backward gestures. Figures 1-le through 1-1h each show a single cycle of the forward

and backward scroll gestures. The pointing gesture can be performed in one of two

ways. Given a pointing direction, to the left of the body for example, the user can

use either hand to perform the pointing gesture: either with the left hand extended

out on the left side of the body (Figure 1-li), or with the right hand crossing in front

of the body resulting in a leftward point (Figure 1-1j).

1.2.3 Communicative vs. Manipulative Gestures

In this work, we consider two types of gestures: communicative and manipulative.

Communicative gestures convey a complete idea with the gesture. A system can only

begin to react appropriately to a communicative gesture after it has been performed

to completion and has been disambiguated from other gestures. An example of a

communicative gesture on a touch screen is a "flick" to navigate between pages of an

application like a web browser or photo viewer. The system will not know to interpret

the gesture as a "flick" instead of a drag until the entire gesture has been performed.

Manipulative gestures by contrast give the user direct control of the system which

reacts in real-time to the gesture as it is being performed. An example of a manipu-

lative gesture is a two finger pinch-to-resize an image on a touch screen. As soon as

two fingers touch the image, the image starts to resize itself depending on the size of

the pinch.

In this system, the forward, backward, and pointing gestures are communicative

gestures and the scroll gestures are manipulative gestures. The system cannot accu-

17



rately interpret a forward, backward, or pointing gesture until it has been performed

to completion. On the other hand, the system should be able to identify when the

user is performing a scroll gesture and react accordingly. In this case, the system

should navigate forwards or backwards an additional slide each time another cycle

segment has been performed.

18



Chapter 2

Background

This gesture recognition and PowerPoint controlling system uses a number of different

technologies and techniques to achieve its goal. The major technologies used are

the Microsoft Kinect sensor for body input data, Support Vector Machines (SVMs)

and Hidden Markov Models (HMMs) for gesture recognition, and Carnegie Mellon

University's Sphinx4 Java library for speech recognition. These are described in this

section.

2.1 Microsoft Kinect

The Microsoft Kinect (Figure 2-1) is a motion sensing device with a variety of inputs

that performs real-time skeleton tracking. The Kinect was originally released in

November 2010 as an accessory to the Xbox gaming system for playing video games

without using a physical controller. In 2011, Microsoft released the Kinect SDK to

the public. The Kinect has a standard RGB camera, a 3D infrared depth sensor, and

Figure 2-1: Kinect sensor

19



Figure 2-2: Sample output skeleton from the Kinect, drawn in Processing

a multi-array microphone allowing a variety of different inputs signals to be used.

Body tracking had previously been its own area of research. With the release of the

Kinect SDK the general public was able to start using body tracking in their own

applications and research with little overhead and cost.

2.1.1 How It Works

The Kinect performs 3D depth sensing by emitting a structured point cloud pattern of

infrared (IR) light and calculating the depth from the images taken with its IR sensor.

Because this IR point cloud originates at a single point in the Kinect sensor, as the

distance from the Kinect increases, the point cloud pattern disperses proportionally

to the distance the light has traveled. By measuring the offset between the expected

location of the IR grid pattern at a calibrated distance and its actual location, the

Kinect can calculate the depth at each point in the projected point cloud. Using this

depth image, the Kinect can identify foreground objects and determine people and

their poses by comparing the detected body to millions of stored examples of body

poses. The Kinect then uses a randomized decision forest technique to map the body

depth image to body parts from which the skeleton representation can be built [13]

(Figure 2-2).

20



2.2 Recognition Tools

2.2.1 Support Vector Machines - SVMs

A Support Vector Machine (SVM) is model that can classify single n-dimensional

points based on a training set of points and a classification kernel. SVM classification

attempts to find classification boundaries between the points that maximizes the dis-

tance between the closest set of data points with opposite signs while simultaneously

minimizing the number of misclassified data points. The kernel function ,(xi, xj),

which can be linear, polynomial, Gaussian, etc., determines the type of classifica-

tion boundary used. This classification problem can be formulated as the following

primal-form optimization problem [2] [4] given the training vector xi E Rn, i = 1, ..., 1

and corresponding indicator vector y = R' where yi E {1, -1}:

arg min lIwII2 + C

subject to yi(wTq#(xi) + b) > 1 -

S 0, i 1, ..., ,

where #(x) is a fixed feature-space transformation, b is a bias parameter, n are the

slack variables that penalize misclassifications, and C is the regularization param-

eter for the n. This particular formulation of this optimization problem is known

as C-Support Vector Classification (C-SVC). However the quadratic programming

problem posed by this primal form is computationally complex. An alternative dual-

formulation of this problem, which is less computationally complex, is presented as

follows:
arg min laTQa - ea

subject to yTa = 0,

0 < ai < C, i = 1, ..., il,

where e = [1,...,1]T, Q is an i-by-i positive semidefinite matrix, Qij = yiyyK(xi, x),

and r, (xi, xj) #(xi)Tq(xj) is the kernel function. The dual form reformulates this

problem in terms of kernels allowing this classification problem to be easily applied

21



to higher dimensional feature spaces. This dual form is solved to give the optimal

w = yai#(xi)
i=1

which yields the decision formula

sgn(wT4(x) + b) = sgn( yiaj(K(xi, x) + b).
i=1

This C-SVC classifier is used to classify the skeleton poses. This project uses LIB-

SVM [3], an open source SVM library written in C++, to solve this problem. The

LIBSVM implementation uses a i(xi, xj) = exp(-/11xi - xj 112) where . = m fs.

In this formulation, the SVM classification problem is fundamentally a two-class prob-

lem. However, for this pose detection problem where each pose is a data point, the

n joints are the feature space, and the k different poses are the classification results,

there are more than two classes. A system that wants to identify specific poses and

not simply determine if there is a pose must go beyond this two-class formulation. To

solve this problem, LIBSVM uses a one vs. many approach that generates k SVMs

for each pose then uses a generalized Bradley-Terry [6] model that does pariwise com-

parisons to determine the SVM that produced the most likely result.

As gestures are sequences of skeleton positions over time, an SVM is not able to

perform gesture recognition on its own. While the SVM cannot actually identify en-

tire gestures, it is able to recognize when a skeleton is in a particular pose. These

poses are very useful when considering that gestures are nothing more than sequences

of skeleton poses.

2.2.2 Hidden Markov Models - HMMs

Hidden Markov Models (HMMs) are much better suited towards learning gestures

than SVMs. SVMs can classify single points, while HMMs can be used to classify

sequences of points. Markov Models are simply a collection of states that have tran-

22



sition probabilities between each state. The Hidden Markov Model is a variation on

the standard Markov models where the states are "hidden" and are reflections of the

known observable states. HMMs are great for learning gestures, which are simply

sequences of body positions. Given an input sequence of observation features, the

HMM can identify how likely it is that the sequence belongs to any of the classes

of sequences that the HMM was trained on. HMMs are already frequently used in

speech recognition systems [7] [11] and natural language modeling [9]. These HMMs

can also be applied to gesture recognition systems.

HMMs are characterized by two variables,

1. N, the number of hidden states, denoted as S = {S1, ..., SN}

2. M, the number of observation symbols in each state

three probability distributions,

1. A = {ajj}, the state transition probability distribution where

a, = P[qt+1 = Sj|qt = Sj] 1 < ijj N

2. B = {b,(k)}, the observation symbol probability distribution in state j where

bj (k)= [vkat tlqt= Sj] I1<j <N

3. 7r = {7ri}, the initial state distribution where

7ri =P[q1 = S] 1<&i<&N

and a vocabulary of observation symbols. Together, these components provide a

complete specification of an HMM [12]. N,M and the observation symbols describe

the general structure of the HMM, while A,B, and ir characterize the behavior of

23



the HMM. Given an HMM, the three probability distributions, A,B, and 7r, are

the parameters that must be adjusted to maximize the likelihood that a given set of

observation sequences is described by the HMM. For convenience, the full set of model

parameters will be represented as 6 = (A, B, 7r). This thesis uses the Kevin Murphy's

HMM toolbox for MATLAB' which implements the expectation-maximization (EM)

algorithm to train the HMMs and the forward algorithm for calculating the probability

of an observation sequence given a model.

EM Algorithm

The expectation-maximization (EM) algorithm [5] [10]is an iterative algorithm that

calculates the 6 to maximize the likelihood function p(X16) = 1 p(X, Zj6) where X
Z

are the observation variables and Z are the latent variables. The overall EM algorithm

is described as follows [1]:

1. Initialize old

2. E step - evaluate p(ZIX, 6 old).

3. M step - evaluate 6"~w = arg max p(ZIX, 601d)lnp(X, Z16).
0 z

4. If not convergence criteria not met, set 6 ,1d = 6 "ew and repeat from Step 2.

Because these parameters 6 fully characterize an HMM, these maximum likelihood

estimations will produce an HMM that maximizes the probability of the occurrence

of the training sequences.

Forward Algorithm

The forward algorithm calculates the probability at(i) = P(0102 ...Ot, qt = Si10)

of an observation sequence, 01, ... , Ot for each model 0 with the following inductive

procedure:

1. Initialization: a,(i) = -ribi(01), 1 < i < N.

lhttp://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html
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2. Induction:

N1 j

at+1i(j) = at (i) aij bj (Ot+ 1), 1 < t < T - 1,

1= <

N

3. Termination: P(O1) = Zc(i).

This procedure only takes O(N 2 T) calculations, which is a significant improvement

compared to O(2TNT) calculations using a naive enumerative method of all the

possible state sequences. Having the probability that a given observation sequence

will occur in each of the HMMs gives a viable means of classification. After running

the forward algorithm on a sequence for each model, the most likely classification is

simply the model that returns the highest probability.

2.2.3 Speech Recognition with Sphinx-4

The speech recognition in this system uses Sphinx-4, a Java speech recognizer devel-

oped by the Sphinx group at Carnegie Mellon University in collaboration with Sun

Microsystems Laboratories, Mitsubishi Electric Research Labs (MERL), and Hewlett

Packard (HP) [14]. The Sphnix-4 framework (Figure 2-3) has three primary modules:

FrontEnd, Linguist, and Decoder. The FrontEnd takes the raw input and extracts

the features. The Linguist has three components: an AcousticModel (HMMs that

encode the structure of the basic sound units), a Dictionary that provides a map-

ping between these sound units and the appropriate phonemes (the pronunciation

information of each sound in a language), and a LanguageModel that provides the

scope of language to be used in the application. The LanguageModel can be provided

in a variety of different formats, such as word grammars or n-grams. The Linguist

provides a SearchGraph which is any topological search space that allows the De-

coder to produce valid sequences of sounds and words from the set of input features.

The exact form of the topological search space depends on the implementation of the
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Application

C Too(Cotso \__ s + Utilities)

Recognizeri
DecodertEnd dinguist

SearchManager

(,Scorer )

Feature SearchGraph
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'I

Figure 2-3: "Sphinx-4 Decorder Framework. The main blocks are the FrontEnd, the
Decoder, and the Linguist. Supporting blocks include the ConfigurationManager and
the Tools blocks. The communication between the blocks, as well as communication
with an application, is depicted."2

SearchGraph. The Decoder does the final scoring of the possible valid words and

outputs the result to the application.

2 http://cmusphinx.sourceforge.net/sphinx4/doc/Sphinx4Whitepaper.pdf
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Chapter 3

How the system works

3.1 Gesture Recognition Approach

This system achieves gesture recognition by using both SVMs and HMMs. While

it appears that the HMM is perfectly suited for gesture recognition, an HMM alone

cannot solve this because we need to segment the continuous sequence of body move-

ments into distinct sequences for the HMM to classify.

One solution could be to take the approach used in speech recognition and look for

motion silence (lack of body motion). Gestures are sequences of body positions, and

a body cannot be gesturing if it is motionless. This approach is a good starting point,

however there are a number of limitations. A motion silence based system would only

work if the user froze after the completion of each gesture. This is not well suited

our focus of giving a PowerPoint presentation. The system's goal is to identify the

relevant gestures that are performed naturally and react accordingly. The assump-

tion of natural gestures is that people perform gestures continuously hence motion

silence is not always applicable: gestures are typically not immediately preceded and

followed by freezing in place. While there are often abrupt velocity changes before or

after a gesture, they are not particularly reliable measures of gesture beginnings and

endings. In initial tests using motion silence to segment the gestures, the thresholds

for determining motion silence were found to be unreliable. If the thresholds were
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too large, consecutive gestures would get grouped together. If the thresholds are too

small, the system would prematurely decide a gesture has ended, sending only partial

sequences to the HMMs. This erratic behavior is undesirable and made it difficult for

the system to reliably detect the starts and ends of gestures indicating that motion

silence may not be the most appropriate method for dividing these gesture sequences.

The approach that this system uses is to explicitly identify the beginnings and endings

(and other key points) of the gestures with an SVM. By using an SVM to identify

these poses instead of relying on motion silence, constraints are lifted off the user. For

instance, users can transition directly from one gesture to another gesture without

interruption. There is also the advantage that using an SVM will make the system

react more quickly to the gestures. With motion silence, the system has to wait for

some specified amount of time to pass after a gesture the skeleton has stopped moving

before it can determine that the gesture is definitely over. However, with the SVM

approach, once the "end" of the pose is identified, the system can send the skeleton

sequence to the HMM without delay.

3.1.1 Skeleton Preprocessing

The skeleton data provided by the Kinect are the joint positions in a coordinate

system where the Kinect is at the origin. Before these features are sent to the SVM,

they are converted to a body-centered coordinate system and scaled. The body

origin is defined as the 3D centroid of the left, right, and center hip positions. The

conversion from the Kinect's world coordinates to the body coordinates makes future

classification of the skeletons robust to the body's relative position to the Kinect

sensor. These body-centered coordinates are then scaled to the range [1, u] in order

to avoid bias for features that have larger numerical values, (i.e., for joints that are

farther from the origin).
X - Xmin x-

Xmax ~ Xmin u -

, (X - Xmin)(U - 1)

(Xmax - Xmin)
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AnkleLeft FootLeft Head KneeLeft ShoulderRight
AnkleRight FootRight HipCenter KneeRight Spine
ElbowLeft HandLeft HipLeft ShoulderCenter WristLeft

ElbowRight HandRight HipRight ShoulderLeft WristRight

Table 3.1: List of 20 joints provided by the Kinect. Bolded joints are the 8 arm and
hand joints used in the gesture recognition.

where x is the original feature, x' is the scaled feature, and [Xmin, Xmax] are the values

that indicate the minimum and maximum values of the feature in the entire training

set. The next step of data preprocessing is the selection of the relevant joints that

the models are trained on. Out of the 20 joint positions provided by the Kinect, only

8 are used for this gesture recognition (Table 3.1). These are the arm joints: hand,

wrist, elbow, and shoulder for both left and right arms.

For the SVM, those scaled, body-centered arm joints are the final form of the feature

set. The features for the HMMs are further augmented. While each SVM instance is

a single skeleton feature vector, HMMs require a sequence of feature vectors. With

this sequence of skeleton poses, it becomes useful to include joint velocities as ad-

ditional features. The addition of joint velocities incorporates not only the overall

speed of the gesture, but also directionality at each point. These velocities can be

potentially useful in the discrimination of gestures that occupy the same physical

space but pass through those spaces differently. These velocities were calculated with

a sliding window w = min(3, ceil(gestureLength/3)). The ceil(gestureLength/3)) is

used to assure that there will be a window of an appropriate size even in the case of a

skeleton sequence that is very short (<10 frames). This window size was determined

empirically by looking at the average gesture segment lengths shown in Table 3.2.

It should be noted that the SVM feature set could also be augmented to include

joint velocities as is done for the HMM features. While the SVM itself only receives

a single skeleton at a time, the overall system receives a constant stream of skeletons.

The system could keep a rolling window of past skeletons from which velocities for
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Gesture Average Frames Std Dev
Forward 28.8907 4.0585
Backward 37.7568 20.3833
Fwd Scroll (start-end) 10.5285 4.7573
Bwk Scroll (start-end) 10.0545 6.8098
Fwd Scroll (start-start) 14.7841 1.7342
Bwk Scroll (start-start) 14.8336 2.0040
Fwd Scroll (end-end) 14.5779 2.3535
Bwk Scroll (end-end) 14.7146 2.3715

Table 3.2: Average length of gesture segments

every skeleton could be computed as each new skeleton is received. This augmenta-

tion to the SVM feature set was not done in this implementation, but could improve

the SVM's ability to identify the start and end poses of each gesture.

3.2 System Architecture

3.2.1 Data flow

This system is composed of a number of different interconnected programs and mod-

ules. There are 3 main components:

1. KinectDaemon (C#) - serializes joint data, streams it over network

2. PowerPoint Controller (Java) - fuses speech, pose, and gesture recognition to

control PowerPoint

3. MATLAB - data manipulation, HMM, and SVM learning and classification

Figure 3-1 diagrams the overall data flow through the system. The Skeleton Visualizer

is not one of the three main components mentioned above because it is not essential

to the system. It is an optional application written in Processing' that shows a

visualization of the skeleton. This gives the user some feedback about what kind of

data the system is receiving. The Kinect is also unlisted above. While it performs

'Processing is an open source programming language that builds off of Java. Processing is used to
programmatically create drawings and animations using Java libraries, but with a simplified syntax.
www.processing.org
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libsvm-3.14 HMM Toolbox
(MATLAB) (MATLAB)

Figure 3-1: A diagram of the overall system architecture showing the data flow

much of the raw data processing, it is ignored in this section and is treated as a

black box sensor that simply outputs skeletal joint positions. Section 2.1 discusses

the Kinect data processing in more detail.

KinectDaemon

The joint data starts in the KinectDaemon project. The KinectDaemon project is an

open-source project that sends out Kinect joint data over a simple TCP server [8]. The

KinectDaemon is a C# program that accesses Microsoft's official Kinect SDKv1.O.

The data can be sent either as serialized C# objects to other C# programs or as

JSON strings encoding the joint data. Sending the data as JSON strings makes it
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Figure 3-2: A diagram of the PowerPoint Controller architecture and data flow

convenient for any program to use the basic skeleton information without needing

other SDKs to access the Kinect. Another benefit of using this server system to

stream the data is that multiple applications can use the Kinect data simultaneously.

This is not strictly necessary, but does allow the user to run the Skeleton Visualizer

application concurrently as the gesture recognition is being performed.

PowerPoint Controller module

The PowerPoint Controller is the primary destination for the KinectDaemon's joint
data. The PowerPoint Controller is the high level controller that fuses the different

modalities of inputs and pose/gesture classifications. Figure 3-2 diagrams the overall

architecture of the PowerPoint Controller project. The SkeletonListener and Speech-

Listener modules run concurrently on their own threads and notify the PowerPoint

Controller module when new skeleton or speech data is acquired. Each new skele-

ton is sent to the SVM to classify the body pose. The body poses are then used

to determine when to start and stop the recording. the skeleton sequences to be sent

to the HMM for gesture recognition. Section 3.3 describes this exact process in depth.

The PowerPoint Controller module is also responsible for combining the speech in-
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formation with the classified gestures to determine the user's desired outcome and

send the appropriate commands to a PowerPoint presentation. This fusion of speech

and gestures is described more fully in Section 3.4. The PowerPoint Controller mod-

ule exerts control over a presentation by running in the background and injecting

keystrokes. While not the most sophisticated solution, the module would easily be

able to incorporate a Java-compatible API for programmatically manipulating a Pow-

erPoint presentation.

Trainer module

The Trainer is a parallel class to the PowerPoint Controller class that is used to collect

data and train HMM models if so desired. The system is not fully automated and is

primarily meant to collect data which are later used to train the models separately

in MATLAB. While the Trainer does not produce finalized models, it can collect and

format gesture sets, then save them as a MATLAB dataset. The Trainer module also

has speech integration that allows a single user to collect fully formed gesture sets

without aid. For each gesture class, the user can indicate the beginning and ends of

each gesture example with the following phrases: "begin gesture" to start recording

and "cut gesture" to stop recording an example. After all the examples for a single

gesture class has been collected, the user can start collecting gestures for the next

class by saying "next gesture". The integration of speech in the training module

allows the user to efficiently exert control over the system and indicate exactly when

the gestures should start and end without disrupting the actual gesture execution.

3.3 Gesture Abstraction

One of the problems that arises between the communicative (forward/backward/pointing)

and manipulative gestures (scrolling) is the reaction time. The HMM is only able to

classify a gesture once it has been performed to completion. That is the original

reasoning for using the SVM in the first place. The SVM determines where the start

and end of the gesture is and sends it to the HMM to be further classified. This
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works well for the short communicative gestures where the meaning becomes unam-

biguous only after it has been performed to completion. This is not the case for

manipulative gestures which are meant to elicit a response from the system as it is

being performed (i.e., before the gesture is finished). There needs to be some way

to identify that this gesture is being performed at the same time it is being performed.

Real-time detection of these manipulative gestures is achieved by abstracting the

forward and backward scrolling gestures as a quick and repetitive succession of their

respective forward and backward communicative gestures. Take the forward scrolling

gesture for instance. It is a repetitive cyclic motion composed of the forward ges-

ture and the return of the hand to the starting position. Each cycle passes through

two poses, close and far, which are the poses that are used to split each cycle into

these two motions. These repetitive cyclic motions can be visualized with the plots

of the gesture's joint positions over time as in Figure 3-3. The forward scroll plot in

Figure 3-3b shows a sequence of 'mounds' that have the same general shape as the

forward gesture (3-3a). The plateaus in the y and z axes in the forward gesture are

a result of the arm freezing momentarily in its end position, or in the far pose.

The forward gesture starts with the arm in a close position, follows a concave-down

curved path outward until it reaches a far position. The return motion is the reverse;

the arm starts in the far position, follows a concave-up curved path toward the body

until it reaches a close position. The backward scroll gesture is the same, but in

reverse. The cycle generally follows the same path as the forward scroll, but rotates

in the opposite direction and the backward gesture starts in the far position and ends

in the close position.

This poses an interesting problem. The start pose of one gesture is the exactly

the same as the end pose of another gesture. The original goal of the poses was to

identify the beginning and endings of the gestures to send to the HMM for classifi-

cation. However, if the system uniquely knew the start and end pose of each gesture

before sending it to the HMM, the HMM would be little more than a confirmation
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of the gesture that the SVM has already classified. What the SVM actually provides

are key poses that may potentially be the start or end of a gesture.

There are 3 meaningful poses that the SVM aims to classify:

1. close: hand is held in front of the body at the mid-torso level (between waist

and chest) within a forearm's distance from the body, about one foot

2. far: hand is outstretched at mid-torso level in front of the body

3. pointing: hand pointing behind the body above shoulder level (either out-

stretched to the side or across the body with the opposite arm)

The pointing gesture is classified solely with the SVM. This system's goal is to pick out

meaningful gestures from the presenter's natural gestural movements. The pointing

gesture where an arm is outstretched to the side and angled behind the speaker's body.

Pointing is a very deliberate gesture because the arm positions of a pointing gesture

lies so far outside the body's natural range of gestural movement. As a consequence,

it is unlikely that the presenter will unintentionally perform a pointing gesture. This

assumption does not hold true for the other four gestures that are performed at the

mid-torso level directly in front of or just to the side of the body. The mid-torso level

in front of the body is the zone where a speakers hands most often reside while giving

a presentation. Consequently it is likely that the speaker will match a close or far

pose without performing the notable gestures, thus requiring the HMM to determine

if these poses are indeed part of a recognized gesture.

3.4 Controlling a PowerPoint Presentation

3.4.1 Identifying Scroll Gestures

With the gesture abstraction described above, there are essentially only 3 identifiable

gestures: forward, backward, and pointing. Despite there only being 3 identifiable

gestures, the system still needs to differentiate between the 5 original gestures. This
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is achieved by keeping track of the recently classified gestures within a time frame.

The system keeps track of the average length of the singular forward and backward

gestures. In its default state, the system is idling and waiting for a gesture. During

this idling state, once a forward or backward gesture is identified, the system begins

to wait for another gesture.

If the specified time threshold elapses without identifying another gesture, the gesture

is classified as a singular forward or backward gesture. On the other hand, if another

gesture is identified within the allotted time, the system classifies the gesture se-

quences as a scroll gesture. The sequence of recently identified gestures are recorded.

In this way, the system keeps a tally of the direction of each identified scroll cycles. As

each new scroll cycle is identified, the running tally is updated. If the identified cycle

direction matches the majority of the recent cycle directions, it is counted towards

the overall scroll gesture. If the direction contradicts overall direction of the scroll so

far, it does not send a command to the PowerPoint presentation but is still counted

towards the tally in case the overall direction of the scroll reverses. This procedure

provides a method for real-time error correction for each of the scroll segments as

well as count the number of scroll cycles. This allows the system to reliably identify

the direction of a scroll gesture without having to wait for the entire gesture to be

performed to completion.

3.4.2 Speech Integration

PowerPoint can be controlled with either gestures alone or a fusion of speech com-

mands and gestures. Each of the 5 programmed gestures, forward, backward, forward

scroll, backward scroll, and pointing, have default actions associated with them. The

addition of speech commands can have one of two effects on the resulting action:

either augment or nullify the command.

Gestures are nullified by the speech if the direction of the spoken command contradicts

the direction determined by the gesture recognition. The only commands that are
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Gesture Action
forward forward one slide
backward backward one slide
forward scroll forward n slides, determined by number of scrolls
backward scroll backward n slides, determined by number of scrolls
pointing trigger animation, not next slide

Table 3.3: Default gesture commands

Speech Gesture Action
skipping ahead x slides forward scroll forward x slides
skipping back x slides backward scroll backward x slides
skipping to slide x forward scroll skip directly to slide x if x >current slide
skipping to slide x backward scroll skip directly to slide x if x <current slide
skipping to first slide forward scroll skip to first slide
skipping to last slide backward scroll skip to last slide
skipping to beginning forward scroll skip to first slide
skipping to end backward scroll skip to last slide

Table 3.4: Speech augmentations of gesture commands

augmented by speech are the scrolling gestures. The default scroll action is to count

the number of scrolling repetitions and navigate the appropriate number of slides

forward or backward. The speech commands can override this default behavior and

specify either the exact number of slides to navigate in either direction or the exact

destination slide. All other speech and gesture combinations will have no effect on

the resulting action.
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Figure 3-3: Graphical representation of gestures, plotting joint positions over time
with respect to the body center
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Chapter 4

Results

4.1 Training the Models

4.1.1 SVM

The SVM training labels were determined manually by stepping through the skele-

ton sequences for each gesture training example and noting the frames at which the

different poses occur. Any skeleton pose that was not one of the three close, far, or

pointing, poses was labeled as a non-pose example. After the labels have been initially

identified with the skeletons, they can be verified by overlaying them on plots of the

gestures as in Figure 4-1. The close and far poses are indicated as vertical lines on

the plots. Close poses are indicated in black and far poses are indicated in blue.

Viewing these SVM training labels in this way shows that the labels do make in-

tuitive sense. In Figure 4-la, the close poses are located at the local minima in the

x direction, local maxima in the z direction, and halfway between the minima and

maxima in the y direction as the hand joints are increasing. This corresponds to the

hand when it is closest to the body center (x direction), farthest from the Kinect

sensor (z direction), and halfway between the cycle peaks as the hand is rising (y)

direction. In each cycle, the poses can occur a number of times depending on the

speed of the gesture. If the cycle is acted out more slowly, the hand spends more time
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Figure 4-1: Graphical representation of gestures, plotting
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joint positions over time

in the zone associated with the different poses.

4.1.2 HMM

The HMM training procedure is much simpler. The training examples are collected

with the Trainer module as described in Section 3.2.1. Once the different training

examples have been collected, they are manually checked for quality using the gesture

plots. There are a number of issues that may be wrong with the training gestures.

Two gestures may not have been spliced properly and would be combined as a 'single

gesture' in the eyes of the HMM. There may also be undesired joint motions within

a single gesture. This could be caused by either unintentional bodily motion, or

malfunction in the Kinect's skeleton output. Once these gestures are checked for
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quality, corrected and have had features extracted, they are simply run through the

HMM training algorithms with the appropriate parameters.

Parameter Determination

To find the optimal HMMs, the number of hidden states Q and Gaussian mixtures M

in each state were determined empirically by enumerating through cross-validation of

the different combinations of Q and M. Given a set of training gestures, they were

divided into training validation sets and each trained on the given combination of

input parameters. When varying both Q = {1, 2,3,4, 5} and M = {1, 2,3, 4}, the

validation sets yielded results that were completely independent of M, the number

of mixtures in each hidden state. Based on this independence, M = 1 was chosen as

the final value for the HMMs for simplicity. Even though larger values of M would

produce the same results, they would add unnecessary computation time to the HMM

training phase.

The search for the optimal number of states Q was performed over a wider range of

values to make trends more visible. The values used in this exhaustive cross-validation

search were M = 1 and Q = [2 : 28]. The results are are shown in Figure 4-2. This

graph shows that there are diminishing returns for models with more than 2 states,

and a significant drop in validation accuracy for models with more than 4 states. As

the number of states continues to grow, the effects of overfitting begin to appear.

At Q = 22, the validation accuracies have reached 100% again, indicating that the

models have grown overly complex and have overfit the training data.
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Figure 4-2: Cross-validation of test sets varying number of states in HMM. Dimin-
ishing returns for more than 2 states and over fitting for more than 10 states.

4.2 Classification Accuracies

4.2.1 SVM

Pose Classification Accuracies

The SVM was tested by running full test gestures through the system, taking the

SVM labels, plotting the labels along the gesture plots and manually counting the

number of times the labels occur in the correct locations. Figure 4-3 shows an example

of this SVM label plot. The black lines show close poses and the blue lines show far

poses. The plot in Figure 4-3 also shows that each pose is often labeled multiple

times in quick succession as the hand passes through a range of positions that match

the SVM's model. A label is counted as "correct" if the SVM identifies a viable

pose accurately at least once each time the hand passes through the appropriate

location. For instance, in this backward scrolling gesture, the first two "far poses"

are missed completely while the rest are considered accurately classified. Compared

to the manual SVM labels in Figure 4-1, the labels are generally in the right locations,

but have significantly more classified poses. This result is more desirable than having

too few or wrongly identified poses. These results are still useful, especially with the
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Gesturing Hand All poses Close Poses Far Poses Pointing Poses
Right 84.7325% 97.9923% 73.5907% 100%
Left 83.0785% 99.0708% 67.9056% 100%
Both 83.8780% 98.5523% 70.0635% 100%

Table 4.1: Overall SVM classification accuracies for both left and right hands

non-pose skeletons identified in between the close and far poses.

Table 4.1 shows the general results of the SVM classifications with both the left and

right hands. The overall classification rate of correct poses labels is 83.8780%, identi-

fying pointing poses with 100% accuracy, close poses with 98.5523% accuracy, and far

poses with 70.0635% accuracy. While the SVM accuracy is quite high for identifying

pointing and close poses, the far poses have room for improvement. These results

are explored further by looking at the different ways in which the gestures can be

performed.

There are three different general locations where the forward, backward, and scroll

gestures can be performed: hands near the waist gesturing in front of the body (low),

hands in front of the chest gesturing in front of the body (mid), and hands near the

waist gesturing to the side of the body (side). By dividing the gestures up in this

manner, the hands pass through slightly different regions of space yielding differing

results. Table 4.2 shows that there is no one region that performs the best for every

pose. The low region has the highest accuracy (100%) for identifying close poses, but

also the lowest accuracy for far poses (52%). The mid region has the highest overall

accuracy with classification rates >90%.

Gesture Segmentation Accuracies

The results so far have shown the accuracies of each pose in isolation. However the

application of the SVM is to be able to identify splice points in addition to segment-

ing the scroll gestures. This is evaluated by determining how many of the individual

'cycles' in each scroll gesture are identified at least once. Remember that these cycles

may be defined by both enclosing close and far poses, or either close or far pose. As
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Region Hand All Poses Close Poses Far Poses
Low Right 76.9802% 100% 53.9604%
Low Left 66.4179% 100% 32.8358%
Low Both 71.3058% 100% 52.6117%
Mid Right 95.6204% 99.7567% 91.7274%
Mid Left 92.0872% 95.6422% 92.8899%
Mid Both 93.8017% 97.6387% 92.3259%
Side Right 78.4226% 96.7262% 72.0238%
Side Left 85.7692% 98.9744% 73.3333%
Side Both 82.3691% 97.9339% 72.7273%

Table 4.2: SVM classification accuracies for different regions

a repetitive cycle, a single pose for each cycle is sufficient enough to divide the over-

all scroll gesture into appropriately sized segments to send to the HMMs. Table 4.3

shows these cycle classification results.

Despite the shortcomings in being able to identify every close and far pose in every

gesture, the SVM is able to identify 99.92% of the cycles missing only 2 out of 2455

cycles. Even when the gestures are performed in the low region and the correct pose

classification rate is as low as 71%, the cycle identification rate is at 100%.

4.2.2 HMM

Forward vs. Backward

With much of the gesture abstraction done with the SVMs, the HMMs only have the

single job of differentiating the direction of the forward vs. backward gestures. Note

that the pointing gesture is excluded from the HMM discussion in this section because

it is classified solely by the SVM with 100% accuracy. In the differentiation of the

forward vs. backward gestures it is effective to join the forward gestures with the for-

ward scroll segments and the backward gestures with the backward scroll segments as

the abstraction suggests. This abstraction increases the accuracy of the discrimina-

tion by a few percentage points as well as simplifies the higher level logic of the system.
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Region Hand Direction Both poses Close only Far only Miss Identified
Low Right Forward 75.5319% 24.4681% 0% 0% 100%
Low Right Backward 35.1852% 64.8148% 0% 0% 100%
Low Left Forward 51.7073% 48.2927% 0% 0% 100%
Low Left Backward 18.1818% 81.8182% 0% 0% 100%
Mid Right Forward 99.4737% 0% 8.8670% 0% 100%
Mid Right Backward 84.6154% 15.3846% 0 0% 100%
Mid Left Forward 91.1330% 0% 8.8670% 0% 100%
Mid Left Backward 86.2661% 13.3047% 0.4292% 0% 100%
Side Right Forward 88.2716% 0.6173% 19.1358% 0% 100%
Side Right Backward 33.9080% 70.1149% 5.1724% 0.5747% 99.4845%
Side Left Forward 91.3265% 7.6531% 1.0204% 0% 100%
Side Left Backward 53.6082% 45.3608% 0.5155% 0.5155% 99.4845%
All Both Forward 82.5175% 14.0734% 4.5455% 0% 100%
All Both Backward 52.1739% 48.2075% 0.1526% 0.1526% 99.8474%
All Both Both 66.3136% 32.3014% 4.2926% 0.0815% 99.9186%

Table 4.3: Forward and Backward scroll segmentation accuracies. Shows the percent-
age of individual scroll cycles that are identified by close, far, both bounding poses,
and the cycles that are missed completely.

Right Hand Left Hand
Unabstracted gestures 69.61% 75.69%
Abstracted gestures 69.81% 78.23%
Percentage change +0.29% +3.36%

Table 4.4: HMM
models.

classification accuracies using abstracted and unabstracted gesture

There are two HMMs for each gesture, one model for each hand. These models classify

the correct hand performing the gesture with 100% accuracy. Without abstracting the

gestures into the two gesture classes and leaving the four gestures separate, the HMM

classification accuracies are 69.61% and 75.69% for right and left hands respectively.

With the abstraction and combining the gestures in the HMM, the classifications are

69.81% and 79.23% for right and left hands. This does not significantly affect the

classification rate of the right hand models, but increases the left hand classification

rate by 3.36%. These results are shown in Table 4.4.
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Model (Right) Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Combined 70% 61% 78% 65% 85% 54%
Start-end 75% 66% 84% 70% 89% 61%
End-end 69% 63% 82% 72% 90% 56%

Start-start 75% 64% 77% 64% 82% 59%
Model (Left) Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Combined 80% 75% 67% 66% 82% 81%
Start-end 82% 77% 75% 69% 82% 78%
End-end 80% 75% 77% 78% 95% 89%

Start-start 81% 77% 63% 63% 78% 81%

Table 4.5: Comparison of HMMs that use different combinations of scroll segments.

Scroll Segments

With the gesture abstraction and the unreliability of the SVM giving the HMMs

gestures that all start and end at the same locations, the HMM uses all segment

combinations from the training gestures in the HMMs. This means that for any given

training scrolling gesture with n cycles there are 3n segments used to train the HMM.

If every cycle i in the gesture has a "start" si and an "end" pose ej, the HMM uses

the cycle segments defined by (si, ej), (si, sj+1), and (es, ej+). The models where

these segment combinations are separated into their own HMMs have slightly higher

classification accuracies than the HMM that combines all the combinations. Table 4.5

shows the classification results of these different models on a number of different test

sets.
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Chapter 5

Conclusion

5.1 Evaluation of Results

With final classification accuracies ranging between 70-80% for the forward-backward

gestures distinctions and 100% for the pointing gestures, the system works fairly re-

liably. In addition, the real-time counting of cycles in the scroll gestures provides

increased levels of accuracy for scroll classification. By determining the overall scroll

direction with a running tally of every cycle, the system can prevent any misclassified

cycles in real time. This prevents undesired behavior in the controlled PowerPoint

presentation and increases the overall effectiveness of the PowerPoint controller. Even

in real time, the misclassified scroll cycles are just ignored. While this requires the

user to keep scrolling to compensate for potentially missed, it is less disruptive for no

action to occur than for the wrong actions to be performed. The system is designed

so in the cases where a scroll gesture needs to be precise, the user can use speech

commands to gain fine control over the system.

This gesture recognition system that combines SVMs and HMMs allows for com-

fortable gesture recognition and control of a PowerPoint presentation. The gestures

that can be identified by gesture recognition systems are often contrived and unnatu-

ral. While the range of identifiable gestures are relatively limited, they are performed

naturally in the context of giving a PowerPoint presentation.
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5.2 Limitations and Areas for Improvements

Speech Integration One of the limitations in this system is in the speech inte-

gration. The speech commands must be spoken to completion before the gestures

are performed. This creates an unnatural disconnect between the speech and the

gestures. Another possible solution would be to prevent the system from reacting to

a gesture until the speech has been fully processed. However, there are a number

of reasons that would make this approach undesirable. The primary reason is the

trade-off between the importance of speech versus the speed of the system's reaction

to performed gestures. For this particular system where speech is not required and

gestures are often performed independently, it seemed more important to have a re-

active system than one that waits for speech to finish. This leads into the second

problem, which shows why the system cannot begin to react to the performed ges-

tures as it finishes processing speech. Some of the relevant commands, such as "move

ahead 3 slides", are dependent on the current presentation. Beginning to navigate

slides before that particular speech command is understood could result in confusing

effects. One case is if there are more than 3 scroll cycles, the slides would progress

past the destination slide then suddenly skip back to it. Even though the end result

is the same, this behavior would be confusing to an audience that is trying to follow

the slides.

Gesture Segmentation The procedure for segmenting the gestures also has room

for improvement. With the wide range of poses that are classified by the SVM, the

start and ends of each gesture or gesture segment are still ambiguous, as shown in

Figure 4-3. The current solution is to identify the gesture "start" as the first start

pose and the gesture "end" as the last end pose. This is a reasonable solution for

the singular forward and backward gestures, as it ensures that the entire gesture is

captured. This is slightly different in the case of the scroll gestures. The fact that

the close and far poses are interchangeable as the "starts" and "ends" of each scroll

segment means that there is quite a bit of variability between the segments sent to

the HMM for classification during testing. One approach could be to train a more
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accurate SVM, which could narrow down the range of identified poses and solve this

problem. However, this more restrictive SVM could miss more poses completely which

would have the opposite effect on the system. Another approach could be to develop

a more sophisticated procedure for determining the gesture "start" and "end" from

the pool of possible poses.

Generalizing the System More general improvements could be to further gen-

eralize the system with more gestures and actions. With the expansion of different

gestures and controllable actions, it would be useful incorporate an API that offers

programmatic control over PowerPoint presentations. There is also room for training

the system on different users. As every person will perform the gestures differently,

it would be useful to collect more data from other people to generalize the models.

User tests would also be useful to identify further potential deficiencies in the overall

recognition system.
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Appendix A

Plots of all gestures

This appendix shows the different plots of the five different gestures (forward, back-

ward, forward scroll, backward scroll, and pointing) each performed in two different

ways. The first four gestures are performed in front of the body and out to the side

of the body. The pointing gestures are performed with the arm extending out to

the side as well as across the body. The resting state for the arms is when they are

hanging straight down at the side of the body.
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Figure A-1: Forward gesture: right hand in front of body
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Figure A-2: Forward gesture: right hand to side of body
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Figure A-3: Backward gesture: right hand in front of body
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Figure A-4: Backward gesture: right hand to side of body
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Figure A-5: Forward scroll: right hand in front of body
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Figure A-6: Forward scroll: right hand to side of body
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Figure A-7: Backward scroll: right hand in front of body
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Figure A-8: Backward scroll: right hand to side of body

57

I I I

V - --.-

500

0I-

x - -

I

-±7 
V

-500

N -200

.. ..... .... ...... ....... . ..... ..... . ..........

0

I V



0
0-

0
CL

x

-50

100

I
0 1 1 1
0 20 40 60 80 100 120 140

Time

0

500

0

-500

1000

500

0

7-I - --- _ __ _

0 20 40 60 80 100 120 140
Time

500
0 20 40 60 80 100 120 140

Time

Figure A-9: Pointing to right with right hand
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Figure A-10: Pointing to left with right hand crossing in front of the body
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Appendix B

JSGF Speech Grammar

<ones>= one I two I three I four I five I six I seven I eight I nine;

<teens>= ten I eleven I twelve I thirteen I fourteen I fifteen I sixteen seventeen

eighteen I nineteen;

<tens>= twenty I thirty I forty I fifty I sixty I seventy I eighty I ninety;

<singleAction>= going I moving;

<skipAction>= (skipping I skip);

<direction>= forward I ahead I on I back I backwards;

<number>= <ones>I <teens> <tens>I (<tens><ones>);

<location>= beginning I start I (first slide) I end I (last slide);

<singleCommand>= <singleAction>l <direction>;

<multipleCommands>= (<singleAction> <skipAction>) <direction> <number>slides;

<automaticSkip>= skipping I <direction>;

<skipCommand>= <skipAction>to ((slide <number>) I location);

public <command>= <singleCommand>I <multipleCommand>I <automaticSkip>I

<skipCommand>;
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