
Chromatic Scheduling of Dynamic Data-Graph

Computations

by

Tim Kaler

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the AROH!VE
rNSTITUTE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2013 W 2.9 2MH3

Copyright 2013 Tim Kaler. All rig ts reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole and in part in any medium now known or hereafter created.

A u th or ..
Department of Electrical Engineering and Computer Science

May 24, 2013

Certified by
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by 'I
Dennis M. Freeman

Chairman, Department Committee on Graduate Students

Chromatic Scheduling of Dynamic Data-Graph Computations

by

Tim Kaler

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Data-graph computations are a parallel-programming model popularized by pro-
gramming systems such as Pregel, GraphLab, PowerGraph, and GraphChi. A fun-
damental issue in parallelizing data-graph computations is the avoidance of races be-
tween computation occuring on overlapping regions of the graph. Common solutions
such as locking protocols and bulk-synchronous execution often sacrifice performance,
update atomicity, or determinism. A known alternative is chromatic scheduling
which uses a vertex coloring of the conflict graph to divide data-graph updates
into sets which may be parallelized without races. To date, however, only static
data-graph computations, which do not schedule updates at runtime, have employed
chromatic scheduling.

I introduce PRISM, a work-efficient scheduling algorithm for dynamic data-graph
computations that uses chromatic scheduling. For a collection of four application
benchmarks on a modern multicore machine, chromatic scheduling approximately
doubles the performance of the lock-based GraphLab implementation, and triples the
performance of GraphChi's update execution phase when enforcing determinism.

Chromatic scheduling motivates the development of efficient deterministic paral-
lel coloring algorithms. New analysis of the Jones-Plassmann message-passing algo-
rithm shows that only O(A + In A in V/ In ln V) rounds are needed to color a graph
G = (V, E) with max vertex degree A, generalizing previous results for bounded de-
gree graphs. A new log-degree ordering heuristic is described which can reduce
the number of colors used in practice, while only increasing the number of rounds
by a logrithmic factor. An efficient implementation for the shared-memory setting is
described and analyzed using the CRQW contention model, showing that this algo-
rithm performs 6(V + E) work and has expected span O(A In A + 1n 2A In V/In In V).
Benchmarks on a set of real world graphs show that, in practice, these parallel algo-
rithms achieve modest speedup over optimized serial code (around 4x on a 12-core
machine).

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

3

4

Acknowledgements

Charles E. Leiserson, my advisor, has provided damned good advice and guidance

which has influenced the contents of this thesis and my decision to remain in academia.

His writing related suggestions have been especially helpful and, at times, amusing.

My coauthors William Hasenplaugh and Tao B. Schardl have made significant

contributions to the content of this thesis. In particular, the main results on parallel

graph coloring (chapters 6-9) would not have been possible without their work.

The Supertech research group as a whole has provided a variety of resources. It

has provided an engaged audience to listen to my presentations and provide valuable

feedback. It's provided a community effective researchers to serve as role models and

provide examples of high quality research. Finally, its provided wonderful collabora-

tors who have contributed their time and energy to help improve my research.

Thanks!

5

6

Contents

1 Introduction 9

I Chromatic Scheduling 17

2 Data-graph Computations 19

3 Analysis of Parallel Data-Graph Computations 25

4 Dynamic Chromatic Scheduling 29

5 Performance Evaluation of Prism 37

II Deterministic Parallel Coloring 41

6 Graph Coloring 43

7 Jones-Plassmann Coloring Algorithm 47

8 Log Degree Ordering Heuristic 53

9 Multicore Implementation of Jones-Plassmann 57

10 Conclusion 65

7

8

Chapter 1

Introduction

Graphs provide a natural representation for many systems from physics, artificial

intelligence, and scientific computing. Physical systems can often be decomposed

into a finite number of elements whose interactions induce a graph. Probabilistic

graphical models in AI are often used to represent the dependency structure of a set

of random variables. Sparse matrices may be interpreted as a graph for the purpose

of performing scientific computing. Generally, these representations are data-graphs

which have data associated with their vertices and edges.

A data-graph computation is an algorithm implemented as a sequence of local

updates on a data-graph. Each of these updates operates on the data at a vertex,

its incident edges, and its neighboring vertices, providing new data values for the

vertex. A data-graph computation typically proceeds in rounds in which a set of

vertices in the graph are updated. Data-graph computations may be either static,

where all vertices are updated in a round, or dynamic, where the set of vertices

for the next round is determined during the execution of the current round. For

example, a dynamic data-graph computation may schedule an update at a vertex only

if the value of its neighbors have changed by some threshold. Dynamic data-graph

computations avoid unnecessary work, which has been shown to improve the practical

performance of many applications [45, 47]. Static data-graph computations include

Gibbs sampling [18,19], iterative graph coloring [14], and n-body problems such as the

fluidanimate PARSEC benchmark [7]. Dynamic data-graph computations include the

9

Google PageRank algorithm [10], loopy belief propagation [52,56], coordinate descent

[15], co-EM [54], alternating least-squares [35], singular value decomposition [26], and

matrix factorization [59].

Parallelizing data-graph computations

The prevalence of data-graph computations in World Wide Web analysis, machine

learning, numerical computation, and other areas has inspired several systems for

parallelizing such applications, such as Pregel [49], GraphLab [45,47], PowerGraph

[27], and GraphChi [41]. These systems use three common methods to parallelize

data-graph computations: bulk-synchronous updates, lock-synchronized updates, and

chromatic scheduling. These methods vary in the types of data-graph computations

they can express and on the semantic guarantees they provide the programmer. These

differences stem mostly from each method's strategy for resolving race conditions

between parallel updates.

Before discussing these three methods, let us review the two types of races that can

affect a data-graph computation. A determinacy race [16] (also called a general

race [53]) occurs if two parallel updates access the same memory location and one

of those accesses is a write. A data race [53] exists if there is a determinacy race

between two updates which hold no common mutual-exclusion locks. Data races can

cause the result of a parallel data-graph computation to fail to correspond to any

sequential application of updates, and a determinacy race can cause nondeterminism.

A parallel data-graph computation guarantees update atomicity if the final result

of the computation corresponds to some sequential application of updates. It is

deterministic if all executions are guaranteed to produce the same result. Any

determinacy race can cause a program to become nondeterministic, but only data-

races can compromise update atomicity.

It is desirable for parallel data-graph computations to be both deterministic and

guarantee update atomicity. Determinism is valuable because it makes the execution

of a data-graph computation repeatable. Repeatability allows data-graph algorithms

to be debugged more effectively and makes it easier to implement fault tolerance

10

mechanisms, such as replicated state machines, when working with distributed sys-

tems. Update atomicity is valuable because it allows for the expression of a wider

class of data-graph algorithms which require updates to be applied in some sequential

order in order to guarantee correctness or good convergence properties.

Bulk-synchronous The bulk-synchronous method executes a data-graph compu-

tation in parallel as a sequence of rounds. During each round, the bulk-synchronous

method avoids nondeterminism by maintaining two copies of the data-graph: one

read-only and the other write-only. Updates applied during the round only modify

the write-only copy of the data-graph. After all updates in the round have been ap-

plied, the changes to the write-only data-graph are propagated to the read-only copy,

and the next round is ready to execute.

The bulk-synchronous method has been used to parallelize both static and dy-

namic data-graph computations. Pregel [49], for example, utilizes the bulk-synchronous

method and also supports dynamic scheduling. Row 1 of Figure 1-1 notes that the

bulk-synchronous method provides determinism, but not atomicity. For any pair of

updates executed in parallel, neither see the effect of applying the other, whereas the

second update would see the effect of the first if they were applied in some sequential

order.

Lock-synchronized The lock-synchronized method executes a set of updates in

parallel without violating update atomicity by using a locking protocol to guarantee

that any two updates which access the same memory location hold a shared lock.

Atomicity is provided by acquiring all necessary locks before applying the update

function and then releasing them afterwards. Deadlock is avoided by requiring that

each update function acquire its necessary locks in an order based upon a total or-

dering of all locks.

Locks can be used to parallelize both static and dynamic data-graph computa-

tions. GraphLab and PowerGraph, for example, utilize a locking protocol to guarantee

update atomicity while supporting dynamic scheduling. Row 2 of Figure 1-1 notes

11

Method Atomicity Determinism

1. Bulk-synchronous No Yes
2. Lock-synchronized Yes No
3. Chromatic scheduling Yes Yes

Figure 1-1: Comparison of three methods used in practice to parallelize data-graph com-

putations. Atomicity refers to the property that the data-graph computation corresponds

to some sequential application of local updates. Determinism refers to the property that the

computation is guaranteed to produce the same result for all possible executions.

that this method provides atomicity, but not determinism. The use of locks provides

atomicity by eliminating all data-races in the program. Using locks, however, does

not necessarily resolve determinacy races that can cause a data-graph computation to

be nondeterministic. Indeed, races to acquire locks may result in updates executing

in a different order in multiple executions.

Chromatic scheduling Chromatic scheduling [1,6] can be used to parallelize data-

graph computations while guaranteeing both update atomicity and determinism. A

chromatic scheduler executes updates in parallel based on the computation's conflict

graph-a graph which contains an edge between two vertices if updating them in

parallel could violate the atomicity of either update. For many data-graph algorithms,

the conflict graph is simply the undirected version of the data-graph. The conflict

graph is used to assign each vertex a color such that no two vertices of the same color

share an edge in the conflict graph. A chromatic scheduler sequences through the

colors, applying updates to all vertices of the same color in parallel. Since the number

of colors used in chromatic scheduling is inversely proportional to the parallelism, it

is desirable to color the conflict graph using a few colors as possible.

Row 3 of Figure 1-1 notes that chromatic scheduling is deterministic and pro-

vides update atomicity. Chromatic scheduling provides both of these guarantees

because vertices of the same color form an independent set in the conflict graph,

and hence they can be updated in parallel without violating the atomicity of any

update. To date, however, only static data-graph computations have employed chro-

matic scheduling. GraphLab, for example, supports chromatic scheduling for static

data-graph computations. It does not support chromatic scheduling of dynamic data-

12

Version T (s) T12 (s) Total updates
Bulk-synchronous PageRank 37.26 6.32 18,691,620
Chromatically scheduled PageRank 12.54 2.24 7,347,401

Figure 1-2: Performance comparison of the Jacobi and Gauss-Seidel (chromatic scheduling)
algorithms for computing PageRank. These data result from running the described algorithm
on a "power-law" graph with 1 million vertices and 10 million edges. All tests were run on
an Intel Xeon 2.67 GHz 12-core machine with 48 GB of memory.

graph computations. Indeed, the GraphLab team [461 notes, "While the chromatic

engine satisfies the distributed GraphLab abstraction . . ., it does not provide sufficient

scheduling flexibility for many interesting applications. In addition, it presupposes

the availability of a graph coloring, which may not always be readily available."

Price of atomicity and determinism

The guarantees provided by the bulk-synchronous and lock-synchronized methods

come at the expense of performance. The bulk-synchronous method can require up

to twice as much memory to store modifications to the data-graph during a round.

In addition, the bulk-synchronous method's lack of update atomicity can impact the

convergence speed of some algorithms. For example, Figure 1-2 shows that the chro-

matically scheduled PageRank converges approximately 2x faster than when imple-

mented using the bulk-synchronous method. The lock-synchronized method provides

atomicity, but requires the use of a locking protocol which introduces a significant

synchronization overhead. A comparison of the Not Atomic and Locks columns of

Figure 1-3 reveals that the use of locks can have a significant impact on performance.

For example, turning on GraphLab's locking protocol increased the runtime of the

PageRank benchmark from 3.7 seconds to 5.2 seconds.

The performance cost of obtaining determinism using the bulk-synchronous method

and atomicity using lock-synchronized updates suggests that the overhead of perform-

ing chromatic scheduling should be even higher.

This thesis shows, however, that chromatic scheduling often performs better than

the bulk-synchronous and lock-synchronized methods, even though these methods

provide weaker guarantees. A comparison of the Locks and PRISM columns of Fig-

ure 1-3 shows that on a set of four benchmarks, chromatic scheduling improves the

13

Benchmark Not Atomic Locks PRISM (this thesis)

1. Loopy belief propagation 2.6 2.8 1.5
2. PageRank 3.7 5.2 3.7
3. Alternating least squares 83.8 138.6 73.2
4. Alternating least squares with sparsity 108.1 142.8 93.3

Figure 1-3: Comparison of the relative performance of using locks and chromatic scheduling

to guarantee update atomicity for four dynamic data-graph computations. All measurements

are in seconds. Not Atomic is GraphLab with its locking protocol turned off so that it

does not guarantee atomicity. Locks is GraphLab using its locking protocol to guarantee

atomicity. PRISM is GraphLab using a new parallel engine and scheduling algorithm to

support dynamic chromatic scheduling. The runtime for PRISM includes the time required

to color the graph at runtime using a serial greedy coloring algorithm. Benchmarks were

run on an Intel Xeon X5650 with a total of 12 2.67-GHz processing cores (hyperthreading

disabled), 49 GB of DRAM, two 12-MB L3-caches each shared between 6 cores, and private

L2- and Li-caches with 128 KB and 32 KB, respectively.

performance of GraphLab by a factor of 1.5 to 2. When the conflict graph can

be colored using few colors, the cost of providing atomicity and determinism using

chromatic scheduling is small: the time required to generate a coloring of the com-

putation's conflict graph.

Deterministic parallel coloring

The semantic and performance advantages of PRISM motivate the development of

efficient deterministic parallel coloring algorithms. Although vertex coloring is NP-

complete [17], linear-time "greedy" heuristics exist which achieve at most A+ 1 colors,

where A is the maximum degree of nay vertex in the conflict graph. In practice, these

linear-time heuristics tend to produce even fewer colors.

The simplicity of the greedy coloring algorithm, however, makes it challenging to

develop a parallel algorithm that can achieve speedup relative to optimized serial code.

For example, speculative coloring algorithms [81, commonly used in practice, are not

suitable for PRISM. They produce a nondeterministic coloring, which eliminates one

of the semantic advantages of chromatic scheduling. In addition, speculative coloring

algorithms do not support the use of vertex-ordering heuristics which are commonly

used in conjunction with greedy coloring algorithms to reduce the size of the coloring

in practice.

We shall show, however, that the Jones-Plassmann coloring algorithm [371 admits

14

a work-efficient multicore implementation that achieves good speedup in practice.

Although the algorithm is randomized, it is deterministic when the randomness is

produced using a pseudorandom number generator. Pseudorandomness suffices to

reap many of the benefits of deterministic programs-debuggability and reproducibil-

ity. Additionally, we shall show that the Jones-Plassmann algorithm is amenable to

vertex-ordering heuristics that produce better colorings without sacrificing significant

parallelism.

Summary of contributions

This thesis includes the following contributions which were developed jointly with

William Hasenplaugh, Charles E. Leiserson, and Tao B. Schardl [30], all of the MIT

Computer Science and Artificial Intelligence Laboratory.

" Design and analysis of PRISM, a work-efficient parallel algorithm for executing

dynamic data-graph computations using chromatic scheduling.

" Implementation and performance evaluation of chromatic scheduling in the

shared and external memory setting by modifying two existing data-graph com-

putation libraries: GraphLab and GraphChi.

" Analysis of the Jones-Plassmann parallel greedy vertex-coloring algorithm for

arbitrary degree graphs. We prove that the algorithm colors a graph with max-

imum degree A in O(A + log A log V/log log V) rounds in the message passing

model.

" A new work-efficient implementation of the Jones-Plassmann greedy coloring

algorithm for the multi-core setting with O(log A) contention and O(A log A +

log 2 log V/ log log V) span. A performance comparison with an optimized se-

rial greedy coloring algorithm shows that the parallel algorithm is practical: it

achieves modest speedup over the optimized serial code even when run on a

small number of cores.

" A new vertex-ordering heuristic called log-degree ordering which can, in prac-

tice, decrease the number of colors used by the Jones-Plassmann coloring al-

gorithm in exchange for a modest (logarithmic) increase in span. We prove

15

that the Jones-Plassmann algorithm runs in 0 (A +log 2 log V/ log log V) rounds

when using the log-degree ordering heuristic.

Organization of thesis

This thesis is broken into two parts.

Part I explores how chromatic scheduling can be used to efficiently parallelize

data-graph computations. Chapter 2 provides a precise description of data-graph

computations, demonstrating the importance of update atomicity for the performance

of certain data-graph computations. Chapter 3 describes a simple static chromatic

scheduling algorithm and analyzes its parallel performance using work/span analy-

sis. Chapter 4 describes and analyzes PRISM, a chromatic scheduling algorithm for

dynamic data-graph computations. Chapter 5 evaluates the performance of PRISM

when implemented within two data-graph computation frameworks: GraphLab and

GraphChi.

Part II describes an efficient parallel coloring algorithm that can be used by PRISM

to perform chromatic scheduling. Chapter 6 introduces graph coloring and provides

context for our contributions. Chapter 7 introduces the Jones-Plassmann parallel

greedy coloring algorithm, and analyzes it's performance for arbitrary degree graphs.

Chapter 9 describes a work-efficient implementation of the Jones-Plassmann algo-

rithm for a modern multicore machine which achieves 3--5x speedup over optimized

serial code. Chapter 8 introduces the log-degree vertex-ordering heuristic and shows

that in practice it can significantly reduce the number of colors while only decreasing

the parallelism of Jones-Plassmann by a logarithmic factor.

The thesis ends with Chapter 10, which provides some concluding remarks.

16

Part I

Chromatic Scheduling

17

18

Chapter 2

Data-graph Computations

This chapter provides a formal introduction to data-graph computations and demon-

strates the performance benefits of both dynamic scheduling and update atomicity.

PageRank provides an illustrative example as an application whose performance ben-

efits significantly from both dynamic scheduling and atomic updates.

Defining data-graph computations

Data-graph computations are a convenient way of specifying many parallel algo-

rithms and applications. A data graph is an undirected graph G = (V, E) with

data associated with vertices and edges. The data-graph computation applies a user-

defined update function f to a vertex v E V to update values in v's neighborhood

- incident edges and adjacent vertices. The updates are typically partitioned into

a series of sequentially executed rounds such that each vertex v is updated at most

once per round. We characterize a data-graph computation as static if every vertex in

V is updated in every round, and as dynamic otherwise. The computation typically

continues either for a fixed number of rounds or, more usually, until a convergence

criterion is met.

The updates to two distinct vertices u, v E V are said to conflict if executing

f(u) and f(v) in parallel results in a determinacy race [16]-f(u) and f(v) access

a common memory location, and at least one of them writes to that location. The

conflict graph for a data-graph computation is the graph G, = (V, Cf) which con-

19

Update 1 Update 2

1 1 4/3- 1

-Va 2/3

2/3 =+ % (1/3) 4/3= + Y (2/3 + + Y)

Update 3 Update 4
Coloring 1: Update Coloring 2: Update

43 1 4/3 0.96s3 1,3 in parallel 1,4 in parallel

0.9722 0.9722

0.9722... =+% (4/9 + 1/2) 0.9653 = + % (0.9722*1/2 + 4/9)

Figure 2-1: Illustration of one computation round of PageRank with damping factor d =

1/2 on a 4 node undirected graph. The update function computes a new PageRank for v

as a function of its neighbors. Pr(v) = (1 - d) + d E> N/Dj where N and Di are the

PageRank and degree of the ith neighbor of v. The graph colorings 1 and 2 illustrate the

two possible parallelizations of this data-graph computation.

tains an edge (u, v) E Cf if the updates f(u) and f(v) conflict. Within a round, many

non-conflicting updates can be safely applied in parallel.

Formulating PageRank as a data-graph computation

The PageRank algorithm provides an illustrative example of a data-graph computa-

tion which benefits from both dynamic scheduling and update atomicity. The PageR-

ank algorithm can be formulated as a data-graph computation in which there is a

vertex for each webpage, and an edge (u, v) when site u links to site v. The vertex

data, in this case, contains a single number representing the associated webpage's

PageRank which is iteratively updated until convergence. The data-graph computa-

tion's update function is applied to each vertex modifying its PageRank according to

the formula PR(v) = (1 - d) + d >j N/Dj where d E (0, 1) is a damping factor, Ni

is the PageRank of v's ith neighbor, and Di is the ith neighbor's degree.

The conflict graph for PageRank can be determined by considering the sets of

updates which read and write shared data. The update function at vertex v reads the

PageRank of all neighboring nodes in order to update it's own PageRank. Figure 2-

1 highlights the regions of the graph which are read and written by the PageRank

20

Updates Per Iteration For Dynamic PageRank
web-Google

soc-Livejournal
S1.04858se+0 powerLaw --

32768

1024

E
z 32

0 10 20 30 40 50 60 70

Iteration number

Figure 2-2: Number of updates performed per iteration for a dynamically scheduled PageR-
ank application run on the non-synthetic web-Google and soc-LiveJournal graphs, and a
synthetic power law graph of 1 million vertices and 10 million edges.

application during one computation round. Note that there is a read/write conflict

between any two update functions operating on adjacent vertices. Therefore, the

conflict graph for PageRank is simply the undirected version of the data-graph.

A coloring of the conflict graph reveals sets of updates which can be executed

in parallel. For the example in Figure 2-1 there are two possible colorings which

correspond to running updates 1 and 4 in parallel or updates 1 and 3 in parallel.

Static versus dynamic scheduling

PageRank can be implemented as either a static or dynamic data-graph computation.

A static version of PageRank iteratively applies it's update function update function

to all vertices in the graph for a fixed number of iterations or until some global

termination condition is satisfied. This version of PageRank may perform unnecessary

work, however, because it may update vertices whose neighbor's values have not

changed-in which case the update would have no effect. A dynamic version of

PageRank, however, can determine at runtime whether it is worthwhile to apply an

update at a given vertex. For example, the update function for GraphLab's dynamic

PageRank algorithm in Figure 2-3 schedules an update at a vertex only if it has a

neighbor whose PageRank changed by some threshold.

Dynamic scheduling can significantly improve the performance of the PageRank

application. Figure 2-2 plots the number of updates performed each iteration for the

21

void pagerank-update(gl-types::iscope &scope,

gl-types::icallback &scheduler) J

// Get the data associated with the vertex

vertex-data& vdata = scope.vertex-datao;

// Sum the incoming weights; start by adding the

// contribution from a self-link.

double sum = vdata.value*vdata.selfiweight;
const gl-types::edgejlist& in-edges = scope.in-edge-idso;

for (int i = 0; i < in-edges.sizeo; i++) {

graphlab::edge-id-t eid = in-edges[i];

// Get the neighobr vertex value

const vertex-data& neighbor.vdata =

scope.const-neighbor-vertex-data(scope.source(eid));
double neighbor-value = neighbor-vdata.value;

// Get the edge data for the neighbor

edge-data& edata = scope.edge-data(eid);
// Compute the contribution of the neighbor

double contribution = edata.weight * neighbor-value;

// Add the contribution to the sum

sum += contribution;

// Remember this value as last read from the neighbor

edata.old-source-value = neighbor-value;
}

// compute the jumpweight
sum = random-reset-prob/scope.num-vertices() +

(1-random-reset-prob)*sum;
vdata.value = sum;
const gl-types::edge-list& out-edges = scope.out-edge-idso;

// Schedule the neighbors as needed

for (int i = 0; i < out-edges.size(; i++) {
graphlab::edge-id-t eid = out-edges[i];
edgedata& outedgedata = scope.edge-data(eid);

// Compute edge-specific residual by comparing the new value of this

// vertex to the previous value seen by the neighbor vertex.

double residual =
outedgedata.weight *

std::fabs(outedgedata.old-source-value - vdata.value);

// If the neighbor changed sufficiently add to scheduler.

if(residual > termination-bound) {
gl_ types: :update-task task (scope. target (eid), page rank-update);

scheduler.add-task(task, residual);

i
}

}

Figure 2-3: The update function for the PageRank application in GraphLab.

22

dynamic PageRank application on three different graphs. For each graph the number

of updates performed each iteration decreases rapidly. By performing fewer updates,

the dynamic version of PageRank runs faster than the static variant. On a power

law graph of a million vertices and 10 million edges the static version of PageRank

performs approximately 15 million updates whereas the dynamic version performs

approximately 7 million updates. This translates into a reduction in total runtime.

The static version runs in 3.39 seconds and the dynamic version runs in 2.24 seconds.

Effect of atomicity on convergence

Update atomicity also improves the performance of the PageRank application by im-

proving its rate of convergence. Strategies for parallelizing data-graph computations

that do not provide update atomicity may perform additional work due to slower con-

vergence rates. The bulk-synchronous method, for example, is a method of paralleliz-

ing data-graph computations that does not provide update atomicity. The PageRank

data-graph computation can be implemented correctly in the bulk-synchronous by

maintaining two copies of each webpage's PageRank: a read copy that was computed

the previous round, and a write copy which will store the updated value for the cur-

rent round. This approach, however, sacrifices the atomicity of the PageRank update

function. The effect on convergence rates causes the bulk-synchronous version of

PageRank to be up to 2 x slower than the version with atomic updates.

This phenomenon applies more generally to iterative solvers for linear systems

which are known to have better convergence properties when each iteration utilizes

the most "up to date" values when updating a variable. The bulk-synchronous version

of PageRank corresponds to the Jacobi method for iteratively solving a linear system,

and the atomic update version corresponds to the Gauss-Seidel approach. Although

the Jacobi algorithm has more parallelism, the Gauss-Seidel algorithm is known to

converge up to 2x faster [38]. Indeed, Figure 2-4 demonstrates that the Jacobi version

of both the static and dynamic versions of PageRank performs more than twice as

many updates as the Gauss-Seidel variant.

23

Version T (s) T 12 (s) Total updates

1. Static Jacobi 42.02 9.71 33,500,033
2. Static Gauss-Seidel 16.26 3.39 15,000,015
3. Dynamic Jacobi 37.26 6.32 18,691,620
4. Dynamic Gauss-Seidel 12.54 2.24 7,347,401

Figure 2-4: Performance comparison of the Jacobi and Gauss-Seidel (chromatic scheduling)

algorithms for computing PageRank using both static and dynamic scheduling. These data

result from running the described algorithm on a "power-law" graph with 1 million vertices

and 10 million edges. All tests were run on an Intel Xeon 2.67 GHz 12-core machine with

48 GB of memory.

Dynamic data-graph computations with atomic updates

The PageRank example motivates the development of techniques to parallelize dy-

namic data-graph computations that guarantee update atomicity. Figure 2-4 illus-

trates four variants of PageRank with and without dynamic scheduling and update

atomicity. The Gauss-Seidel versions (rows 2 and 4) of PageRank which requires

update atomicity is approximately 3x faster than the Jacobi versions (rows 1 and 3)

of PageRank when using either static or dynamic scheduling. Dynamic scheduling

provides another 2x reduction in total updates. A comparison of rows 2 and 4 of

Figure 2-4 shows that the dynamically scheduled Gauss-Seidel version of PageRanks

runs approximately 30% faster than the static variant. The remainder of Part I of this

thesis develops a scheduling algorithm which uses chromatic scheduling to efficiently

parallelize dynamic data-graph computations while guaranteeing update atomicity.

24

Chapter 3

Analysis of Parallel Data-Graph

Computations

In this chapter, we describe how to analyze the parallel performance of data-graph

computations using work/span analysis. In particular, we analyze the performance of

CHROMATIC, a chromatic scheduling algorithm for static data-graph computations.

We will see that a parallel data-graph computation using CHROMATIC on a graph

G = (V, E) with a coloring of size X performs e(V+E) work in O(x(log(V/x)+log A))

span when the update function f(v) performs O(deg(v)) work in O(log deg(v)) span.

This implies that CHROMATIC achieves near linear speedup when the number of

processors P > Q((V + E)/(x(log(V/x) + log A))).

Work/span analysis

Work/span analysis [13, Ch. 27] is a technique for analyzing the theoretical perfor-

mance of parallel algorithms. The performance of a parallel algorithm depends on the

total number of operations it performs and on the length of the longest path in the

program's "computation dag". The work T of a parallel program is its total running

time on a single processor. The span T is its running time on an infinite number

of processors, assuming an ideal scheduler with no overhead.

The work and span of an algorithm can be used to accurately predict its parallel

speedup when a "greedy scheduler" is used to assign work to processors. A greedy

25

scheduler is a scheduler which will assign as much work as possible during each

timestep. Using a greedy scheduler, a program with work T and span T, can always

be executed in time Tp on P processors, where max{T1/P, To,} < Tp < T1 /P + To.

The parallelism TI/To is the greatest speedup T1/Tp possible for any number P of

processors. When the parallelism of an algorithm is much larger than P, then the

greedy scheduler bounds on Tp guarantee near linear speedup.

A static chromatic scheduling algorithm

Work/span analysis can be applied to theoretically analyze the parallel performance

of data-graph computations performed using CHROMATIC- a chromatic scheduling

algorithm for static data-graph computations.

The CHROMATIC algorithm executes a round of a data-graph computation via

a sequence of subrounds that each apply updates to a monochromatic set of ver-

tices. The CHROMATIC algorithm begins by dividing the set of vertices into X sets

A 1 ,... , A where x is the number of colors used to color the graph. This step can

be performed in O(E(V)) work and O(e(log V)) span with a parallel integer-sort

of the vertex set using each vertex's color as its key [211. To execute a round of

the data-graph computation CHROMATIC updates each set A 0,... , A. in series. The

updates within a given set Ai may be executed in parallel since the updates to two

vertices of the same color cannot be adjacent in the conflict graph. Figure 3-1 pro-

vides pseudo-code for CHROMATIC that executes computation rounds iteratively until

a termination condition is satisfied.

In general, the work and span of CHROMATIC during a particular computation

round depends on the work and span of the update function. It is common, however,

for update functions for data-graph computations to have similar parallel structure.

In particular, we refer to an update function f(v) as a standard update function

if it can be broken up into deg(v) updates fi(v),..., fdeg(V)(v) which each perform

0(1) work and may be evaluated in parallel. A standard update function can be

parallelized in 0(deg(v)) work and 0(log deg(v)) span by performing a parallel loop

over the index set i = 1, ... , deg(v), evaluating fi(v) in the body of the loop.

26

CHROMATIC(V, f, x)

1 sort the elements of V by color into A 0 , A 1 ,. .. , AX_ 1.
2 repeat

3 done = TRUE

4 fork=0toX-1
5 parallel for i = 0 to IA -- 1 reducing done
6 done A= f(Ak[i])
7 until done

Figure 3-1: Parallel pseudocode for CHROMATIC, a chromatic scheduler for static data-
graph computations. CHROMATIC takes as input the vertex set V, the update function f,
and the number of colors x used to color V. The reducing clause in the parallel for
on line 5 indicates that all the operations on the variable done should be combined with a
parallel tree. The update function f(v) returns TRUE if a termination condition has been
satisfied at v. CHROMATIC terminates once the termination condition has been satisfied by
all v E V.

It turns out, however, that the exact distribution of vertices amongst the x color

sets has a limited impact on the parallel performance of CHROMATIC. The following

theorem proves bounds for the work and span of CHROMATIC for standard update

functions. It shows that CHROMATIC has parallelism that is inversely proportional

to the number of colors x used to color the graph.

Theorem 1 CHROMATIC executes a round of a data-graph computation that applies

a standard update function to every vertex in V in E(V+E) work and O(x(log(V/x)+

log A)) span.

PROOF. The total work in one round of CHROMATIC is Ti = ; ZVEA, deg(v)

when f is a standard update function. Since the color sets Ai are nonintersecting and

their union is V, the total work is equal to the sum of all vertex degrees in the graph.

The handshaking lemma implies, therefore, that the work is T = O(V + E).

The span of one round of CHROMATIC is T,, = log Ai+maxVEAi{log deg(v)}.

The log Ai term in the span is due to the parallel loop on line 5 over the index set

1,..., Aij. The second term maxVEA 1{logdeg(v)} is due to the evaluation of the

update function in the body of the parallel loop.

The expression for the span can be simplified to remove its dependence on the

distribution of vertices amongst the color sets A 1,..., A,. The contribution of the

27

first span term E . log Ai can be simplified by noting that the sum of a pair

of logarithms log(a - E) + log(a + c) = log(a 2 _ f2) is maximized when c = 0. The

maximum value of Ej=1 . . log Aj, therefore, occurs when each set Ai contains an

equal number of vertices. This allows us to bound the contribution of the first span

term by x log(V/x). The second term can be simplified by using the maximum degree

of the graph A to bound the term maXvEAj{log deg(v)} by log A. An upper bound

on the span of a round of CHROMATIC, therefore, is T. = O(x(log(V/x) + log A)).

R

The analysis of CHROMATIC for general update functions closely matches the proof

of Theorem 1, but requires more cumbersome notation. Let T 1(f(v)) and To(f(v))

be the work and span of the update f(v). Then one can define the work and span

of f applied to a set Ai of vertices in parallel to be T1 (Ai) = ZVEA, T1(f(v)) and

T.(Ai) = maxVEAj T.(f(v)). The following corollary uses this notation to state the

general bound on the work and span of a round of CHROMATIC.

Corollary 2 A round of CHROMATIC applying a general update function f to every

vertex v E V in work T1 = E(T 1 (f (V))) and span T = O(x log(V/x)+xT,(f (V))).

28

Chapter 4

Dynamic Chromatic Scheduling

In this chapter, we describe PRISM, a work-efficient algorithm for the chromatic

scheduling of dynamic data-graph computations. Using the techniques developed

and applied in Chapter 3 when analyzing CHROMATIC, we analyze the parallel perfor-

mance of PRISM. We will first derive bounds on the work and span of PRISM for stan-

dard update functions for which f(v) performs O(deg(v)) work in O(log deg(v)) span.

In this case, for a graph G = (V, E) with max vertex degree A, PRISM updates a set

Q of vertices with EQ incident edges in E(Q + EQ) work and O(x(log(Q/x) + log A))

span. This analysis can be generalized to provide bounds on the work and span

of PRISM for arbitrary update functions. We will see that PRISM performs as well

asymptotically as CHROMATIC in the case in which Q = V.

Complexity of dynamic scheduling

The primary challenge in implementing a provably good dynamic scheduling algo-

rithm is guaranteeing that the work to update a set of vertices Q c V depends

only on the size of Q. This guarantee is important because, in practice, Q may be

much smaller than V. A given round of a data-graph computation may, for exam-

ple, update only a single perturbed vertex. It is straightforward to devise dynamic

chromatic scheduling algorithms that fail to provide this guarantee. For example, the

static chromatic scheduling algorithm CHROMATIC can be modified to check a sched-

uled bit associated with each vertex before executing an update. The scheduled bit

29

for a vertex is set to TRUE when an update should be applied to it in the next round.

This modified version of CHROMATIC is not work-efficient for two reasons. The first

reason is that Q(V) work is required to check whether an update is scheduled at

each vertex. The second reason is due to possible write-contention on the "scheduled

bit" which can increase the work of a parallel algorithm on a multicore machine by

requiring a processor to wait additional timesteps to obtain exclusive write access

to a memory location. This chapter describes PRISM- a provably good dynamic

chromatic scheduling algorithm.

Analyzing memory contention

Work/span analysis does not usually consider the effect of memory contention. In

fact, the effect of memory contention can be safely ignored as long as the number of

parallel writes which contend for any given memory location is bounded by a constant

- since a constant delay in memory operations will not change the asymptotic work

and span of an algorithm. Unbounded contention, however, can have a large impact

on a parallel algorithm's performance when it is implemented on a multicore machine.

Unbounded contention can arise in dynamic data-graph computations when schedul-

ing an update at a vertex in the next computation round. For example, if a single

byte is used to indicate whether a vertex has been scheduled, then up to A contention

may occur if multiple neighbors of that vertex attempt to schedule its update at the

same time.

All but one of the parallel phases of PRISM have bounded contention. The one

exception is the procedure used to deduplicate sets of scheduled vertices. For this

phase, we shall analyze contention in the CRQW model [21,221, where concurrent

reads to a variable can be accomplished in constant time, but concurrent writes to

the same memory location are serviced in FIFO order by the memory system. In

the CRQW model, the deduplication of scheduled vertices can be accomplished by

invoking the randomized integer-sorting algorithm from [21] which sorts n nonnegative

integers less than n using 6(n) work and E(lg n) span in expectation.

30

PRISM(V, f, Q, X)
1 parallel for v E Q
2 INSERT(A. color[wid], v)
3 repeat
4 done = TRUE

5 fork=0toX-1
6 X = COLLECT-SET(Ak)
7 done A= (X == 0)
8 parallel for i = 0 to IXI - 1
9 if i ==|X - 1 or X[i $ X[i +1] /Vk Vk U {X[i

10 S = f(X[i])
11 parallel for u E S
12 INSERT(A. color [wid], u)
13 until done

Figure 4-1: Pseudocode for PRISM, a chromatic scheduler for dynamic data-graph compu-
tations. PRISM takes as input the vertex set V, the update function f, an initial set Q of
vertices to process, and the number of colors X used to color V. Each update f(v) returns a
subset of the vertices neighboring v to process in a subsequent color step. The variable wid
stores the ID of the current worker, which is used to access worker-local storage.

COLLECT-SET(A)

1 X = GATHER(A)

2 fail = TRUE

3 while fail
4 Randomly choose h: V - {0, 1,..., X13 - }
5 RADIX-SORT-BY-HASH(X, h)

6 fail = FALSE
7 parallel for i = 0 to jX - 11 reducing fail
8 fail V= (h(X[i] == h(X[i + 1]) A (X[i] =, X[i + 1])
9 return X

Figure 4-2: Pseudocode for COLLECT-SET, which collects the activations in the P worker-
local arrays Ak [0],. . . , Ak [P - 1] to produce a version of the activation set Ak where all
duplicate vertices are stored adjacent to each other. GATHER is assumed to empty the

vectors storing A as a side effect.

Design and analysis of PRISM

Figure 4-1 gives the pseudocode of PRISM. Conceptually, PRISM operates much like

CHROMATIC, except that, rather than process vertices in a static array in color step

k, PRISM maintains an activation set Ak for each color k-a set of activations

for vertices of color k that occurred since color step k in the previous round. After

PRISM loads the initial set of active vertices Q into the activation sets (on lines 1-2),

31

PRISM executes the rounds of the data-graph computation by looping over the colors

0, ... , X - 1 (on lines 5-12) until it finds no vertices to update in a round. Within a

single color step k, PRISM executes all updates f(v) on distinct activated vertices v in

Ak (on lines 8-12). PRISM stores an activation set Ak using worker-local storage. For

a P-processor execution, PRISM allocates P vectors Ak[01,... , Ak[P -1], one for each

worker. Each worker-local set Ak[Pi] is implemented as a vector that uses incremental

resizing to support INSERT operations in 9(1) worst-case time. Each update returns

a set S of activations (line 10), and then PRISM distributes the set of activations to its

activation sets in parallel (on lines 11-12). The use of activation sets avoids the need

to perform Q(V) checks each round to determine which vertices should be updated.

By using worker-local storage, no contention occurs when inserting a vertex into

an activation set (on line 12). However, it is possible for a vertex to appear in the

activation sets of multiple workers because a vertex may be activated by any of its

neighbors. A given worker can ensure that no duplicate vertices appear in its local

activation set by performing lookups in a worker local hash table that contains the

set of previously inserted vertex ids. Preventing a vertex from appearing in multiple

activation sets could be accomplished by having all workers utilize a shared data-

structure supporting atomic lookups of a vertex's activated state. For example, an

array of V bytes could be used to avoid duplicates by having each worker perform a

compare and swap on the ith byte in the array before adding the vertex with id i to

its activated set. This approach, however, requires a data synchronization operation

for every activation. Furthermore, when the number of processors is large there could

be significant contention on the byte array as multiple processors attempt to write to

the same cache line.

The alternate strategy used by PRISM is to allow a vertex to appear in multiple

activation lists, but prevent it from being updated more than once. If all of the

worker's activation lists are merged and sorted based on the vertex id, then a duplicate

vertex can be identified by checking whether its predecessor in the activation list

shares its vertex id. To process the distinct vertices in activation set Ak, PRISM calls

COLLECT-SET, depicted in Figure 4-2, to collect the activations in the worker-local

32

activation sets for Ak and sort them into a single array X in which, for each distinct

vertex v in Ak, all copies of v are adjacent in X. The appendix contains a proof

that, with probability 1 - 2/jAkl, COLLECT-SET operates in e(Ak) expected work

and O(lg n + lg P) expected span in the CRQW contention model.

To bound the work, span, and contention of PRISM, we first analyze the work,

span, and contention of COLLECT-SET.

Lemma 3 With probability 1 - 2/n, the function COLLECT-SET collects the set of

n activated vertices Ak of color k from all P worker-local arrays and groups dupli-

cates together in expected E(n) work and expected O(lg n + Ig P) span in the CRQW

contention model.

PROOF. Let us first analyze one iteration of COLLECT-SET. First, GATHER on line 1

collects the contents of the P worker-local copies of Ak into a single array X in e (n)

work, e(lg n + lg P) span, and no contention. To do this, GATHER first performs

a parallel prefix-sum over the sizes of the worker-local arrays Ak[O], ... , Ak[P - 11

to determine a location in X for each worker-local array, followed by P parallel

copies to copy the worker-local arrays into X in parallel. Next, line 4 chooses a

random hash function h: V -4 [jX13] from the vertices V to 31gn-bit numbers, and

line 5 calls RADIX-SORT-BY-HASH to sort X by h. RADIX-SORT-BY-HASH may

be implemented with 3 passes of the stable linear-work sorting algorithm from [21],

in which case RADIX-SORT-BY-HASH executes in expected e(n) work and expected

E(lg n) span with probability 1 - 1/n in the CRQW contention model. Finally, lines

7-8 checks the sorted X to verify that all adjacent elements in X are either duplicates

or have distinct hashes, requiring E(n) work, e(lg n) span, and bounded contention

to compute.

We now verify that, with probability 1 - 1/n, a constant number of iterations

suffices. The probability that one iteration of lines 3-8 fails is precisely the prob-

ability that any two distinct vertices u and v in X hash to the same value. If h

is pairwise independent, then for any two distinct vertices u and v in X, we have

Pr{h(u) = h(v)} = 1/n 3 . By a union bound, the probability of a collision between any

33

two vertices in X is at most EX Pr{h(u) = h(v)} <1/n. COLLECT-SET thus runs

in the stated work, span, and contention bounds with probability (1-1/n)2 > 1-2/n.

We now bound the expected work and expected span to compute a single color

step, i.e. to perform one iteration of lines 5-12 of Figure 4-1.

Theorem 4 Consider the execution of color step k of PRISM with P workers. Let

Ek = Z Vy, deg(v). With probability 1 - 2/lAk|, color step k of PRISM executes with

expected work T1 = e(Ak + Ek) and expected span T.. = O(lg Ak + lg P + lg A) in

the CRQW contention, where A is the degree of G.

PROOF. We analyze the code in Figure 4-1. By Lemma 3, with probability 1 -

2/IAkI, the call to COLLECT-SET on line 6 performs expected E(Ak) work, expected

E(lg Ak + lg P) span, and bounded contention. The result of line 6 is the array X, a

version of Ak where duplicate vertices are stored next to each other. The loop over X

on lines 8-12 touches every element of X a constant number of times in e(Ak) work,

E(lg Ak) span, and no contention. Next, line 10 calls f on each unique element in X

once, incurring Ek work and lg A span.

Each update f(X[i]) activates some set S of vertices for future color steps, which

lines 11-12 insert into the worker-local arrays in parallel. Because each worker-local

array is implemented as an incrementally resizing vector, each insertion takes E(1)

worst-case time. Moreover, because the number of vertices activated by some f(X[i])

is bounded by the work of f(X[i]), lines 11-12 execute in e(deg(X[i])) work and

E(lg deg(X[i])) = O(lg A) span per update f(X[i]). Summing the work and span

over all vertices in Vk completes the proof. E

From Theorem 4, we conclude that, with high probability, PRISM achieves at worst

the same theoretical bounds as a chromatic scheduler for static data-graph computa-

tions. Consequently, PRISM is work-efficient, incurring no additional overhead (with

high probability) over a chromatic scheduler for static data-graph computations. The

following corollary formalizes this observation.

34

Corollary 5 Consider a data-graph computation to apply the update function f to a

graph G = (V, E) with degree A. Let P be the number of workers executing the data-

graph computation. Suppose that, in one round of the data-graph computation, the set

V' C V of vertices are updated, where |V'| > P, and let A denote the activation set of

V', the union of Ak over all color steps k in the round. Then, with probability 1-2/|A|,

the expected work and span of PRISM match the work and span of CHROMATIC.

PROOF. For didactic simplicity, we assume that an update f(v) executes in work

e(deg(v)) and span e(lg deg(v)). A chromatic scheduler for static data-graph com-

putations can execute a round of this data graph computation in E(V + E) work and

O(X lg(V/x) + x ig A) span with no contention. Let E' be the set of outgoing edges

from all vertices in V'. By Theorem 4, with probability 1 - 2/AJ, PRISM executes

all updates vertices V' in a round in expected work E(A + V'+ E'), expected span

O(x lg(A/x) + x lg P + x lg A), and bounded contention. If V' = V, then because

the f must perform work to activate a vertex v E V', we have JAl < JE'l. Finally,

because JAl < JEl < lVl2, we have xlg(A/x) = O(xlg(V/x)). Hence, the expected

work and expected span bounds for PRISM are bounded above by the work and span

of CHROMATIC. LI

35

36

Chapter 5

Performance Evaluation of Prism

In this chapter, we evaluate the performance of PRISM by implementing it in GraphLab

and GraphChi. We will see that PRISM improves the performance of GraphLab by a

factor between 1.5 and 2 on a set of four benchmarks and that PRISM improves the

performance of GraphChi's execute update phase by a factor between 2 and 3 when it

guarantees determinism. The impact of coloring size on the parallelism and runtime

of chromatically scheduled data-graph computations is also analyzed empirically.

Chromatic scheduling in GraphLab

We implemented PRISM in GraphLab v1.O to add support for chromatic scheduling

of dynamic data graph computations. The scheduler interface was modified to expose

the method getActivationSet() which returns update tasks on a mono-chromatic set of

vertices. Each activation set is implemented using worker local storage as a dynamic

array. We evaluated PRISM in GraphLab by comparing its performance on a set of

four benchmarks to the "edge consistency" locking protocol that provides the same

data consistency guarantees as chromatic scheduling by acquiring locks on updated

vertices and their incident edges.

The GraphLab applications for loopy belief propagation, PageRank, and alternat-

ing least squares were used to compare the relative overheads of chromatic scheduling

and lock-based synchronization. Loopy belief propagation was run on a subset of

the Cora dataset of computer science paper citations [50,58] which has an MRF of

37

Benchmark Seconds # Updates (106)
Sweep- VC Sweep-EC PRisM-EC Sweep-VC Sweep-EC PRISM-EC

Loopy belief propagation 2.6 2.8 1.5 (0.1) 2.19 2.22 2.20

PageRank 3.7 5.2 3.7 (1.3) 10.21 10.18 9.75
Alternating least squares 83.8 138.6 73.2 (1.0) 4.17 3.99 3.85

Alternating least squares with sparsity 108.1 142.8 93.3 (1.0) 4.03 3.88 3.85

Figure 5-1: Performance comparison of PRISM (PRISM-EC), GraphLab's edge consistency

locking protocol (Sweep-EC), and GraphLab's vertex consistency locking protocol (Sweep-

VC). All benchmarks were run using 12 cores. GraphLab was run using its "sweep" scheduler

which provides scheduling semantics equivalent to PRISM. The time to color the graph

serially is included in the PRIsM-EC runtime, and also provided separately in parenthesis.

160K vertices, and 480K edges. PageRank was run on the web-Google dataset of 87K

websites and 5M links [42]. Two versions of alternating least squares, one of which

enforces a sparsity constraint on computed factors, was run on the NPIC500 dataset

consisting of 88K noun phrases, 99K contexts, and 20M occurrences [51].

All benchmarks were run on an Intel Xeon X5650 with a total of 12 2.67-GHz

processing cores (hyperthreading disabled), 49GB of DRAM, two 12-MB L3-caches

each shared between 6 cores, and private L2- and Li-caches with 128 KB and 32 KB,

respectively.

The benchmark results in Figure 5-1 show that PRISM is approximately 1.5-2

times faster than GraphLab's edge consistency locking protocol. Furthermore, PRISM

is often faster than GraphLab's much weaker vertex consistency locking protocol,

which only serializes updates occurring at the same vertex. The latter observation

can be attributed to our use of the Intel Cilk Plus runtime system, and a lower per

task scheduling overhead. This suggests that PRISM provides the properties of data

consistency and determinism at low cost. The performance comparison becomes even

more favorable when we consider that PRISM's runtime includes the time required to

color the graph using a serial greedy coloring algorithm. The time required to color

the graph can be reduced through the use of parallel graph coloring algorithms, and

may not be necessary at all if a coloring has been previously computed.

The scalability of PRISM was measured by comparing its speedup to GraphLab's

dynamic scheduler with and without its edge consistency locking protocol. Figure 5-2

compares the speedup achieved on a PageRank benchmark for these three programs

relative to the fastest serial program. The speedup curve for PRISM is noticeably

38

12
PageRank Scalability

Chrornatic
10 Not ic

Lne edup-

Figure -2: Spedup plo of NotAtomicLocks, n Chomtc n1-2 oesfr h

8

CL

0.

4

0 2 4 6 8 10 12

Number of CPUs

Figure 5-2: Speedup plot of Not Atomic, Locks, and Chromatic on 1-12 cores for the
PageRank benchmark run on a random power law graph of 1 million vertices and 10 million
edges. Speedup is measured relative to the fastest serial program. Not Atomic refers to
GraphLab with its locking protocol turned off, Locks refers to GraphLab with its edge
consistency locking protocol used to provide atomicity, and Chromatic refers to the version
of GraphLab utilizing PRISM to provide atomicity using chromatic scheduling.

Dataset GraphChi PRISM GraphChi PRISM
(execute updates) (execute updates) (total time) (total time)

cit-Patents 2.38 1.93 22.24 21.98
Mediawiki 33.13 11.86 239.72 209.87

Figure 5-3: Benchmark results for 4 iterations of PageRank in GraphChi. All measure-
ments are in seconds. Performance comparison of two ways to guarantee determinism in
GraphChi. Serialize Conflicts provides determinism by serializing all conflicting updates
within a round. Chromatic provides determinism by using PRISM. The runtime for Chro-
matic includes the time required to color the graph at runtime.

steeper than the speedup curve for Locks demonstrating that PRISM not only out-

performs Locks in terms of raw performance, but can also exhibit superior parallel

scalability.

Chromatic scheduling in GraphChi

GraphChi [41] is an extension of GraphLab to the external memory setting which can

provide both determinism and atomicity. It divides a graph into shards stored on disk,

and applies updates to each shard in series. GraphChi can guarantee atomicity and

determinism by serializing all updates which conflict with another update in the same

shard. This approach often sacrifices a large amount of parallelism. For example, on

a PageRank application 30% of all updates were serialized on the cit-Patents dataset

and 70% were serialized on the Mediawiki dataset.

39

S

512

256

128

64

32

16

cit-Patents -

web-Google
12 as-skitter --

10

C

2

32 64 128 256 32 64 128 256

Number of colors Number of colors

Figure 5-4: Effect of the number of colors used on parallelism and runtime of PageRank.

To perform chromatic scheduling in GraphChi, the sub-graph associated with each

of its shards is colored at runtime. Once a shard is colored, the color assignment is

stored on disk with the other vertex data. Figure 5-3 demonstrates that chromatic

scheduling can improve the performance of GraphChi's execute update phase by a

factor of 3 when using GraphChi's deterministic engine.

Parallelism as a function of the graph coloring

The parallelism present in a data-graph computation when using PRISM can depend

on size of the graph coloring. To explore this effect, we used the Cilkview scalability

analyzer [31] to analyze the parallelism of PRISM on the PageRank application when

the size of the coloring is varied. To obtain larger graph colorings, we modified the

greedy coloring algorithm to select the smallest available color greater than r, where r

is chosen uniformly at random from the range [0, R) for each vertex. Larger colorings

were then obtained by coloring the graph for R = 16,32,...,256. The results in

Figure 5-4 indicate that the size of the graph coloring can have an impact on the

scalability of data-graph computations when chromatic scheduling is used. When

parallelism is scarce larger colorings can also translate into an increase in runtime.

40

cit-Patents -
web-Google-

as-skitter-s--

-~~ --b-s-------.

Part II

Deterministic Parallel Coloring

41

42

Chapter 6

Graph Coloring

Chromatic scheduling utilizes a vertex coloring of the conflict graph in order to iden-

tify sets of nonconflicting updates that can be applied in parallel. In the next four

chapters, we explore how such a vertex coloring can be generated in parallel on a

multicore machine.

This chapter provides an brief overview of related work on vertex-coloring algo-

rithms. We review the classic serial greedy coloring algorithm and discuss a common

variant, the Welsh-Powell algorithm, which utilizes a vertex-ordering heuristic to re-

duce the number of colors used in practice. We will then review previous work on

parallel greedy coloring algorithms including the Jones-Plassmann coloring algorithm

which will be analyzed in greater detail in Chapter 7.

Greedy graph coloring

Optimally coloring the vertices of a graph is a known NP-complete problem [17]. Al-

though polynomial-time approximation algorithms are known [61], linear-work greedy

algorithms are often used in practice due to their practical efficiency - typically they

perform only one or two passes over the data.

The lexicographically first [12], [28, Appendix A] greedy coloring of a graph

G = (V, E) can be computed by processing each vertex in an order defined by a

permutation 7r. A processed vertex v is assigned a color greedily by picking the

lowest numbered color that has not been assigned to any of v's neighbors. For a

43

graph with max vertex degree A, this algorithm runs in E(V + E) time and uses at

most A + 1 colors. Figure 6-1 gives pseudocode for this greedy algorithm based on

an arbitrary permutation 7r of V.

Vertex ordering heuristics

Practitioners often use heuristics to pick an ordering of the vertices that may allow

GREEDY to use fewer colors. The degree-ordering heuristic [3,23,37], for example,

orders the vertices by decreasing degree so that larger degree vertices are colored first.

The degree-ordering heuristic seems to allow GREEDY to use fewer colors in practice.

The classic Welsh-Powell greedy coloring algorithm [60], in fact, can be viewed as an

execution of GREEDY utilizing the vertex-ordering heuristic.

One disadvantage of the degree-ordering heuristic, however, is that it is vulnerable

to adversarial input graphs which force GREEDY to produce a coloring with A +1 col-

ors. For instance, although the "crown" graph on IVi vertices is 2-colorable, GREEDY

produces a IVI/2 coloring using degree ordering [36]. The random-ordering heuris-

tic which utilizes a random permutation of the vertices can use fewer colorings in

practice for certain adversarial graphs.

Parallel graph coloring

Luby explored parallel randomized greedy coloring [48] and inspired many papers

[4,24,25,43] on the topic of parallel coloring, including methods for derandomizing.

Several deterministic parallel coloring algorithms [5, 39,401, based on the algebraic

construction of Linial [44] have been shown to be theoretically fast. Unfortunately,

none of these algorithms is work efficient, that is, uses as little asymptotic work as

the greedy algorithm.

Given a random permutation 7r on the vertices of a graph G, Jones and Plass-

mann demonstrated that a parallel implementation of GREEDY runs deterministically

in expected O(ln V/ ln ln V) rounds in the message-passing model [11,20], assuming

that the graph has bounded degree. Of course, the assumption of bounded degree

also circumvents the issue of contention, which is a real issue when implementing

44

GREEDY(G = (V, E), 7r)

1 i=0
2 while there are uncolored vertices
3 let v be the ith vertex in V by the ordering wr
4 v. color = lowest numbered color not taken by any u E Adj [v]
5 i=i+1

Figure 6-1: The serial greedy graph-coloring algorithm in pseudocode based on the Welsh-
Powell [601 coloring algorithm. GREEDY colors all vertices of a graph G = (V, E) in the
order dictated by the permutation ir.

graph algorithms on modern multicore machines. We shall both analyze the Jones-

Plassmann algorithm for large degree and demonstrate that it can be made to operate

work efficiently and with small span using the CRQW contention model.

45

46

Chapter 7

Jones-Plassmann Coloring Algorithm

This chapter examines JP, the Jones-Plassmann parallel greedy coloring algorithm [371.

Given a random permutation ir on the vertices of a graph G = (V, E) of bounded

degree, Jones and Plassmann demonstrated that JP runs deterministically and work-

efficiently in expected O(In V/ ln in V) rounds in the message passing model [11, 201.

We extend this analysis to arbitrary degree graphs showing that JP runs in expected

O(A + ln A ln V/ In ln V) rounds in the message passing model.

Induced priority dag

The Jones-Plassmann algorithm colors a graph according to a "priority dag" that is

induced by an ordering -r of the vertices. We say that a priority dag G, = (V, E,)

is induced by ir on the undirected graph G = (V, E) when G, and G share the same

vertices and there is a directed edge (u, v) in E, for some (u, v) E E if ir(u) > wr(v).

We call r(v) the priority of vertex v.

When selecting a color for a vertex v E V, GREEDY only considers colored neigh-

bors, which are precisely those that come before v in the permutation wr, or equiva-

lently Pred[v]. So, once every predecessor u E Pred[v] has been colored, v is also free

to be colored. Jones and Plassmann [37] exploited this observation to produce an

asynchronous parallel coloring algorithm, referred to here as JP, which produces the

same deterministic output as GREEDY given the same inputs. JP operates by first

finding the priority dag G, = (V, E,) induced on a graph G = (V, E) by permutation

47

7r. Then, a message travels along the directed edge (u, v) C E, only after vertex u has

been successfully colored, notifying vertex v. Once v has received IPred[v]I messages,

then v may be colored and send all successors of v similar messages.

JP(G = (V, E), -r)

1 parallel for all v E V

2 Pred [v] = {u E Adj[v] I -x(u) > 7r(v)}
3 parallel for all v E V I Pred[v] 0

4 COLOR(v)

COLOR(v)

1 v. color = lowest available color

2 parallel for all v 8uce E Succ[v]

3 if v is last of vssc,'s predecessors

4 COLOR(Vsucc)

Figure 7-1: JP implements the parallel greedy graph coloring algorithm of Jones and

Plassmann [37] using the recursive method COLOR. JP produces the same identical coloring

of a graph G = (V, E) given an arbitrary permutation on the vertices 7r as GREEDY given

the same inputs.

Jones and Plassmann showed that O(In V/ In In V) expected rounds in the message-

passing model suffices to greedily color a graph G = (V, E) of bounded degree

A = E(1) given a random vertex permutation 7r. We will show that, in fact, JP

needs only O(A + In A In V/ In In V) expected rounds to color any general graph G

with degree A given random permutation 7r.

Bounding the longest directed path in a random-induced priority

dag

We show that the length of the longest directed path in the priority dag G, induced

on a graph G by a random permutation 7r is likely to be bounded and consequently

that JP runs in the same number of rounds in the message-passing model. We bound

the longest directed path in G, by first demonstrating that any particular sufficiently

long path in G is unlikely to be a directed path in G,. We then use the union bound

to show that no such path is likely to exist in G,. However, first we will prove a

useful lemma.

48

Lemma 6 For a, 1 > 1, define the function g(a,13) as

g(a, 1) = eIln (e)
In # a In#

For all # > e2 , a > 2 and # > a, we have g(a,0) > 1.

PROOF. We consider the cases when a > e2 and when a < e2 separately.

First, we consider the case when a > e2 . The partial derivative of g(a,#) with

respect to 1, Og(a, 0)/&90, is

2 Ina aln13 #=le- n
13In 2 3(e2 mna

> 0

since a in 3/e 2 In a > 1 when a > e2 and 1 > a. Thus, g(a, #) is a nondecreasing

function in its second argument when a > e2 and 1 > a. Since we have

g(a, a) = e 21a n e an
lna a lna\

> 1 ,

it follows that g(a,3) > 1 for a > e2 and 1 > a.

Next, we consider the case where e 2 > a > 2. We make use of the fact that

213/e ln 1 > v O for all 1 > e2 to bound

2lna (1ln a'g(a,#) = e2 In e
In# a In#

> e2ln2 n2)
In#0 In n0)

2 In n2 In 0

2 In13

>1 .

49

F-I

Theorem 7 Let G = (V, E) be an undirected graph with n = IVI vertices and de-

gree A. Let G, be a priority dag induced on G by a random permutation ir of V such

that all vertex orderings are equally likely. For any constant C > 0 and sufficiently

large n, there exists a directed path with e2 (1 + E) (A + In A in n/ In in n) vertices in

G, with probability at most n-'.

PROOF. This proof begins by demonstrating in the same manner as Jones and

Plassmann [371 that the probability of a k-vertex path in G, is at most n(eA/k)k.

Let p = (v1 , V2,... ,v) be a k-vertex path in G. For p to be a path in G., we must

have that ir(vi) < 7r(v 2) < ... < 7r(vk). Of the k! permutations of the vertices in p,

exactly one is so ordered, and thus the probability that p is a path in G, is at most

1/k!. We now count the number of k-vertex paths in G. There are n choices for v, and

then at most A choices for each vi given the path (vi, v2 ,. .. , Vi1), for i = 1, 2, ... , k.

Thus, the total number of k-vertex paths is at most nAk. By the union bound, the

probability that a k-vertex path exists in G, is at most nAk/k! < n(eA/k)k which

follows from Stirling's approximation [13, p. 57].

For the choice k = e2(1 + c) (A + In A In n/ In Inn), we now bound the probability

that a k-vertex path exists in G,. We consider the cases when A < In n and In n < A

separately.

For the case when A < Inn, we assume that A > 2 since the theorem is trivially

true when A E {0, 1}. We apply Lemma 6 with a = A and n = inn and diminish

the magnitude of the negative exponent to conclude

n(eA/k)k = n exp(-kln(k/eA))

(nA Innn A
Ininn Alninn

= n exp(-(1 + c)(In n) g(A, In n))

<n-(1+c) Inn

= n~C .

50

For the case A > In n, we use the facts that k > (1+ c) In n and k > e2A, whence

we have

n(eA/k)k < n(/)k*

<n- (1+-) Inn

n-.

Corollary 8 Let G = (V, E) be an undirected graph with degree A, and let G, be

a priority dag induced on G by a random permutation ,x of V. Then, the expected

length of the longest directed path in G, is 0 (A + In A In V/In In V). El

Lemma 9 Let G = (V, E) be a graph with degree A. For any random permutation

wr of V, the number of rounds in the message-passing model for Algorithm JP to

vertex-color G is equal to the length of the longest directed path in the priority dag

G, induced on G by ,r.

PROOF. This proof is paraphrased from [37]. Algorithm JP requires at least as

many rounds to color the graph G as the length k of the longest directed path p

in the priority graph G,. This is clear, since the processing of each vertex in p is

dependent on its predecessor.

Furthermore, Algorithm JP requires at most k rounds to color G. Suppose not.

Then there must be a k + 1-vertex path p' = (v 1 , v2 , .. . , Vk+1) in G,. There must be

some vertex v' E p' such that no predecessor of v' is processed in the round imme-

diately preceding v', otherwise, there would be a k + 1-vertex path in G,. However,

Algorithm JP colors every vertex v in the round immediately following the round of

the last predecessor of v, which is a contradiction. El

Corollary 10 Let G = (V, E) be a graph with degree A. For any random permutation

w of V, the expected number of rounds in the message-passing model for Algorithm

JP to vertex-color G is 0(A + In A in V/ In In V). El

51

52

Chapter 8

Log Degree Ordering Heuristic

This chapter introduces the log-degree ordering heuristic for greedy coloring algo-

rithms. We prove that the log-degree ordering heuristic can be used by JP while

increasing the span by only a logarithmic factor. The effectiveness of the ordering

heuristic is evaluated empirically on a set of large real world graphs by comparing the

number of colors obtained when using different vertex-ordering heuristics.

Practitioners use ordering heuristics to reduce the number of colors that greedy

coloring algorithms use [2, 9]. Ordering heuristics permute the vertices of a graph

to help greedy coloring algorithms find colorings using a small number of colors.

Although for every graph G = (VE) there exists a permutation of the vertices 7r*

such that GREEDY(G = (V, E), wr*) produces a coloring using the minimum number

of colors, finding such a 7r* is well known to be NP-hard [29]. Several ordering

heuristics have been developed with much success on real-world graphs, however. A

particularly popular ordering heuristic is the degree-ordering heuristic [3,23,37], in

which vertices are ordered in decreasing order of degree. More precisely, the degree-

ordering heuristic permutes the graph G by -x such that, for two vertices u, v E V, we

have ir(v) < ir(u) if deg(v) < deg(u). Because it is deterministic, the degree-ordering

heuristic is vulnerable to adversarial input graphs which force GREEDY to produce a

coloring with A + 1 colors. For instance, although the "crown" graph on IVI vertices

is 2-colorable, GREEDY produces a IVI/2 coloring using degree ordering [36].

We introduce the log-degree ordering heuristic, which exhibits nearly the same

53

asymptotic span as random ordering with MULTICORE-JP and generates colorings

with approximately as few colors as degree ordering on real-world graphs, while main-

taining robustness in the face of adversarial graphs. For the log-degree heuristic pri-

ority function 7r, 7r(v) is less than 7r(u) for two vertices u, v E V if [log(deg(v))] <

[log(deg(u))l or RAND(V) < RAND(u) and [log(deg(v))l = flog(deg(u))], for some

random permutation function RAND.

Theorem 11 Using the log-degree heuristic priority function 7r, Algorithm MULTICORE-

J P colors all vertices of a graph G = (V, E) with degree A in expected O(A In A +

In 3A In V/ In ln V) span.

PROOF. Let Vi ; V be the set of vertices such that [lgldeg(v)Il = i for all v E V4.

The log-degree heuristic guarantees that for every vertex v E V4 and u E V, we

have wr(v) < 7r(u) when i < j. Thus, the longest directed path p in the priority

dag G, induced on G by 7r must traverse some subset of vertices in VpgAj then

VrigAj_1 and so on down to V1 . The log-degree heuristic also guarantees that for two

vertices v1 , v 2 E Vi, the priorities wr(vl) and 7r(v 2) are uniformly random. It then

follows from Corollary 8 that the expected length of the longest path through Vi is

Q(2' + i In V/ ln In V). By linearity of expectation, it follows that the expected length

of the longest path p through V = {V 1, V2 , . ., Vg A]} is

[Ig Al ln
E[|p|| = O(2' +i InV)

In V
= o(A +ln 2A

In ln V

Finally, the theorem follows by Lemma 13. l

Figure 8-1 illustrates the effect of different ordering heuristics on the depth of the

priority dag G, and on the number of colors used by MULTICORE-JP. For some

graphs, such as web-Google and cit-Patents the use of vertex ordering heuristics

appears to have little beneficial impact on the depth of the priority dag. For soc-

LiveJournal and com-orkut, however, the input ordering induces a priority dag that

54

is about double the depth of that induced by the random ordering. This highlights

the importance of incoporating randomness into the vertex orering to handle adver-

sarial graphs. The log-degree ordering heuristic consistently induces a priority dag

of similar depth to a random order. Furthermore, the number of colors used with

the log-degree ordering is comparable to that of the degree ordering heuristic. These

results demonstrate that the log-degree ordering is an appealing compromise between

the random and degree ordering heuristics. The log-degree ordering provides theoret-

ical guarantees on the parallelism of JP while producing colorings of similar quality

to the degree-ordering heuristic.

Graph Info # Colors Depth of G,

Name 10 DO 10 DO

V E A RO LDORO LDO

soc-LiveJournall 352 324 76 43

4,847,571 85,702,474 20,333 330 327 41 40

web-Google 44 45 24 29

916,428 8,644,102 6,332 44 44 30 28

com-orkut 175 87 98 47

3,072,627 234,370,166 33,313 129 99 41 45

cit-Patents 17 14 19 45

16,518,949 33,037,900 793 20 15 40 44

as-skitter 103 71 53 42

11,095,299 22,190,604 35,455 83 71 34 39

Figure 8-1: In practice, the number of colors needed by a greedy coloring algorithm
can be reduced by applying vertex ordering heuristics. We compare the performance of
MULTICORE-JP to an optimized serial algorithm under four different ordering heuristics:
Input order (IO), Random order (RO), Degree order (DO), and Log-degree order (LDO).

55

56

Chapter 9

Multicore Implementation of

Jones-Plassmann

This chapter extends the Jones-Plassman coloring algorithm to the shared-memory

setting. While JP is fast in the message-passing model, there are two challenges

which must be overcome to implement it efficiently on a modern shared-memory

machine. The first challenge arises on line 1 of COLOR, when a vertex is to be

colored, in finding the lowest available color quickly, efficiently, and in parallel. The

second challenge arises in line 3 of COLOR when multiple workers contend for shared-

memory locations in an attempt to discover whether a vertex is ready to be colored.

We address both of these challenges and present an implementation MULTICORE-JP

which colors all vertices of a graph G = (V, E) given a random permutation ir of V

in expected O(A In A + In 2A In V/ In In V) span and E(V + E) work in the CRQW

contention model. Empirical results show that the multicore version of JP achieves

3-5 x speedup on 12 cores over the optimized serial code when both use the log-degree

ordering heuristic.

Finding the smallest available color

A simple method for coloring a vertex v scans its neighbors in parallel and marks

the ith entry of a byte-array of size deg(v) if the ith color has been assigned to

a neighbor. The byte-array can then be scanned to identify the smallest available

57

color. This approach, however, can suffer from write contention if multiple processors

attempt to write to the same memory location in the byte array.

In MULTICORE-JP, an alternative approach which suffers from less memory con-

tention is used to identify the smallest available color. In line 1 of MULTICORE-

COLOR we assign v. color the lowest numbered color currently not taken by any

vertex u E Pred[v]. The procedure GET-COLOR solves the problem of quickly and

efficiently assigning the color using a parallel integer sort [21] and a parallel MIN re-

duction [13, Ch.27]. colors[i] and candidates[i] correspond to Ci and Si, respectively,

in Lemma 12.

Lemma 12 To assign the lowest available color to a vertex with degree A requires

0(A) work and E(log A) span in the CRQW contention model.

PROOF. The lowest available color must lie in the interval [0, A] since there are at

most A neighboring vertices which can take at most A of the A + 1 possible colors.

Let Ci be the minimum of A + 1 and the color of the ith predecessor in ascending

sorted order. If C is not already sorted, it may be sorted using the method of Gibbons

et al. in O(A) work and 0(log A) span in the CRQW contention model [21]. If Co

does not equal 0, then it is available and we can select it. Otherwise, we proceed.

We define the ith available color Si as C2+1 if Cj+1 > Ci and A+1 otherwise, which

represents a gap between the colors taken by the predecessors. Each available color

can be computed in parallel in E(A) work and E(ln A) span and the lowest available

color is the least among them. Finally, we find the minimum color in parallel using a

binary tree, collecting the S array pairwise with a MIN reduction [13, Ch.27] taking

E(A) work and E(log A) span. l

Assigning responsibility for vertex coloring

The second implementation challenge occurs in line 3 of MULTICORE-COLOR(v)

where the caller detects whether or not all predecessors Pred[vsuce] of a vertex vsuce E

Succ[v] have been colored and, crucially, whether or not the caller of Is-L AST-TO-ARRIVE(vUu~c)

is responsible for coloring v,. For correctness, exactly one call to the method

58

IS-LAST-TO-ARRIVE(v) must return TRUE for each vertex v E V, which implies

that the method must appear to take place atomically [34, Ch.2]. A naive way to

implement Is-LAST-TO-ARRIVE is to use of an atomic counter v.counter for each

vertex v E V, which is initialized to jPred[v] . Then, v.counter may be decre-

mented via an atomic FETCH-AND-DECREMENT(V. counter) call upon each call of

Is-L AST-TO-ARRIVE(V). If the return value of FETCH-AND-DECREMENT(V. counter)

is 1, then the caller is indeed the last to arrive and is responsible for coloring ver-

tex v. This implementation has two drawbacks. First, it requires the use of an

atomic read-modify-write instruction-and therefore a strictly more powerful ma-

chine [33]-since it is not possible to provide mutual exclusion to an arbitrary num-

ber of threads with E(1) state without such an instruction [34]. Second, an atomic

counter occupying a single location in memory creates the opportunity for mem-

ory contention, as each worker calling IS-LAST-TO-ARRIVE(v) must obtain exclusive

ownership [55] over the memory location containing v. counter prior to executing

FETCH-AND-DECREMENT(V. counter), which creates an O(A) delay due to memory

contention.

MULTICORE-JP(G = (V, E), 7r)

1 parallel for all v E V
2 INIT-VERTEX(v)
3 parallel for all v E V I Pred[v] 0
4 MULTICORE-COLOR(v)

MULTICORE-COLOR(V)

1 v.color = GET-COLOR(V)
2 parallel for all v 8uce E Succ[v
3 if Is-LA ST-TO-ARRIVE (sUCC, v)
4 MULTICORE-COLOR(SucC)

Figure 9-1: MULTICORE-JP is an implementation of the basic recursive structure of Al-
gorithm JP adapted for a modern shared-memory multicore computer. That is, algorithms
that comprehend memory contention and computations local to each vertex are developed to
make methods Is-LAST-To-ARRIVE and GET-COLOR, respectively, fast and efficient. INIT-

VERTEX creates the binary tournament structures which are used by Is-LAST-To-ARRIVE.

We implement Is-LAST-TO-ARRIVE(v) using a tournament, which quickly and

efficiently decides if the caller should color vertex v E V. Figure 9-2 depicts a tourna-

59

Is-LAST-TO-ARRIVE(v, Vpred)

1 i = v. leaf-index [vpdI
2 while i is not root of tournament tree

3 i = i.parent
4 if I am first to this node

5 return FALSE
6 return TRUE

GET-COLOR(V)

1 if Pred[v] == 0 return 0
2 colors = PARALLEL-INTEGER-SORT(Pred[v])
3 if colors[0] > 0 return 0
4 parallel for i = 0 to IPred[v]I - 2
5 if colors [i + 1] > colors [i] + 1
6 candidates [i] = colors[i] + 1
7 else
8 candidates [i] = IPred [v]I + 1
9 return PARALLEL-FIND-MIN(candidates)

ment, where the dark circles denote a loss and an arrow denotes a win. A tournament

resembles a binary tournament barrier [32] except that for our purposes only one

worker needs to know that all predecessors of a vertex have been colored, whereas a

barrier forces all participating workers to wait. We define the winner of a node in the

tournament as the last to arrive. Any worker which finds that it is first to arrive loses

and is free to do other work, satisfied that some other predecessor will be responsible

for coloring the vertex. The winner moves toward the root of the tree, competing

at each node until it loses or wins the root node, in which case it is responsible for

coloring the vertex. We determine the ordering of the two workers at a node in the

tournament using Peterson's Algorithm for two-thread mutual exclusion [571, which

does not require the use of an atomic read-modify-write instruction. The single shared

variable in Peterson's Algorithm is the only memory location in the tournament that

is written concurrently and by exactly two workers. Furthermore, the critical section

of each node in the tournament is held for E(1) time yielding bounded contention.

In line 1 of Is-LAST-TO-ARRIVE(v, Vpred) local variable i is assigned the value

v. leaf-index [vwd], an assignment which maps each predecessor of v to a unique leaf

in the tournament tree. During the initialization phase in line 2 of MULTICORE-JP,

60

-1

2
-- 3

-4

Figure 9-2: A tournament before and after the last predecessor calls Is-LAST-To-ARRIVE.
The legend specifies the order in which each predecessor arrived. Dark circles indicate
that the predecessor arrived first at the node in question, whereas arrows indicate that the
predecessor arrived last and proceeded on toward the root.

the mapping v. leaf-index[u] is defined for each vertex v E V and u E Pred[v] via a

hash-table which is constructed in e(Pred[v]) work and span.

Theorem 13 Given any arbitrary permutation 7w of vertices V, if Algorithm JP

requires O(R) rounds to color a graph G = (V, E) with degree A in the message-

passing model then Algorithm MULTICORE-JP has O(R in A) span in the CRQW

contention model.

PROOF. By Lemma 9 the number of rounds in the message-passing model required

by JP to color the graph G equals the length of the longest directed path through

the priority dag G, induced on G by 7r. There are at most A participants in the

tournament of any particular vertex. A tournament is a balanced binary tree, thus

the number of steps through any such tournament is 0(log A), each of which takes

E(1) time. The winner of the tournament for a vertex v assigns a color using the

method GET-COLOR in O(In A) span by Lemma 12. Thus, there is at most O(In A)

delay through any vertex and Algorithm MULTICORE-JP colors G with permutation

7r with O(R In A) span in the CRQW contention model. l

Corollary 14 Given a random permutation r of the vertices in a graph G = (V, E),

Algorithm MULTICORE-JP colors all vertices in expected O(A in A+ln2A In V/In In V)

61

span in the CRQW contention model.

Theorem 15 The expected work required for MULTICORE-JP to color all vertices of

a graph G = (V, E) is 6(V + E) and thus is work-efficient.

PROOF. Consider the tournament tree for a vertex v with Pred[v] participants and

exactly 2(Pred[v] - 1) internal edges (it is a complete binary tree). As exactly one

winner follows each edge in the tournament, the work associated with it is e(Pred[v]).

As well, the coloring of vertex v requires e(Pred[v]) work by Lemma 12. Every edge

in G participates in exactly one tournament, thus the total work in all tournaments

and vertex colorings is E (E). Because every vertex in G is processed exactly once,

it follows that the expected total work required for MULTICORE-JP to color every

vertex of a graph G is E(V + E). El

Empirical evaluation

The performance of our multicore implementation of the Jones-Plassmann algorithm

was evaluated on a set of five benchmark graphs and four vertex ordering heuristics.

The algorithm was compared against a serial greedy coloring algorithm that utilized

the same ordering heuristics. The vertex ordering is provided to each algorithm in a

convenient format: the serial code is provided a sorted list of vertex identifiers, and

MULTICORE-JP is provided a mapping of vertex id to a priority. Providing the serial

code a presorted list is, in a sense, giving it an advantage - since in practice it may

be necessary for it to perform a sort. This experimental decision, however, allows the

results to be more easily interpreted.

Both implementations were optimized to obtain the best possible performance on

our experimental machine. In particular, the GET-COLOR routine for both MULTICORE-

JP and GREEDY was optimized to track the assignment of colors to neighbors using a

64-bit bit-vector, which produces a color in E(1) time if the color is in {0, ... ,63}. In

addition, MULTICORE-JP makes use of software prefetching to parallelize access to

the successors in line 2 of MULTICORE-COLOR. Finally, each leaf of the tournament

structure in Is-LAST-To-ARRIVE resolves E(1) predecessors, allowing us to merely

62

hash the vertex number to a leaf rather than store the mapping in v. leaf -index.

This optimization reduces overhead while still bounding the contention. Figure 8-

1 suggests that the log-degree ordering heuristic indeed delivers a number of colors

comparable to degree ordering without compromising performance relative to random

ordering.

Graph Info Input (10) Random (RO) Degree (DO) Log-degree (LDO)

Name T, T T6 T1 T. T1 T. T1

V E A TV/T12 T1iT12 T8/T 12 T1 /T12 T8/T 12 T1IT12 T5 /T 12 T 1/T12

soc-LiveJournall 0.89 2.79 1.72 2.9 1.3 2.46 1.71 2.5

4,847,571 85,702,474 20,333 1.8 5.61 3.51 5.92 3.29 6.23 4.35 6.35

web-Google 0.11 0.27 0.17 0.29 0.14 0.25 0.17 0.25

916,428 8,644,102 6,332 1.7 4.21 4.27 7.07 3.81 6.94 4.64 6.89

com-orkut 2.32 9.19 3.28 10.09 2.89 8.27 3.25 8.62

3,072,627 234,370,166 33,313 1.18 4.67 1.96 6.03 2.03 5.83 2.3 6.11

cit-Patents 0.61 1.57 1.78 1.73 0.85 1.64 1.65 1.66

16,518,949 33,037,900 793 2.58 6.65 7.68 7.48 3.79 7.37 7.17 7.22

as-skitter 0.22 0.74 0.88 0.77 0.29 0.64 0.71 0.64

11,095,299 22,190,604 35,455 1.5 5.09 6.57 5.74 2.28 5.1 5.65 5.13

Figure 9-3: Empirical comparison of an optimized serial greedy coloring algorithm with

MULTICORE-JP. All units are in seconds.

The results of this evaluation are summarized in Figure 9-3. The time T, provides

the runtime of an optimized serial greedy coloring algorithm, T provides the runtime

of MULTICORE-JP algorithm when run on a single core, and T 12 provides the runtime

of MULTICORE-JP when run on 12 cores. For the random, degree, and log-degree

orderings MULTICORE-JP achieves 3-5 x speedup on 12 cores over the optimized serial

code. It appears to perform a bit worse on the input ordering - obtaining only 1.5-3 x

speedup. This difference is likely due to the serial code's more predictable memory

access pattern when using the input order.

63

64

Chapter 10

Conclusion

In this thesis, I have shown how chromatic scheduling and deterministic parallel col-

oring algorithms can be used to implement dynamic data-graph computations that

provide update atomicity and guarantee determinism. The latter benfit of determin-

ism can be obtained at low cost through the use of the MULTICORE-JP algorithm.

These techniques, therefore, can be used to improve both the performance and se-

mantic guarantees of existing systems including GraphLab and GraphChi.

Several avenues remain to be explored more deeply in future work. There are

opportunities to further improve the performance of data-graph computations in the

multicore setting. It is likely, for example, that data-graph computations would bene-

fit a scheduling algorithm that attempts to use each processors local cache optimally.

Another interesting area for future work is the use of chromatic scheduling for dynamic

data-graph computations in distributed systems. Scaling data-graph computations

to a cluster environment requires that one implement fault tolerance mechanisms to

maintain correctness when individual nodes fail. The algorithms presented in this

thesis may be utilized to guarantee that each node in such a cluster is determin-

istic - allowing for simpler fault tolerance strategies. A replicated state machine,

for example, could be used for each node in the cluster. Alternatively, logs could be

maintained for each node recording its communication with other nodes in the cluster

- allowing a node to be "restored" by simply playing back the communication logs

to a new machine.

65

66

Bibliography

[1] L. Adams and J. Ortega. A multi-color sor method for parallel computation. In

International Conference on Parallel Processing, pages 53-56, 1982.

12] Md. Mostofa Ali Patwary, Assefaw H. Gebremedhin, and Alex Pothen. New

multithreaded ordering and coloring algorithms for multicore architectures. In

Proceedings of the 17th international conference on Parallel processing - Volume

Part II, Euro-Par'11, pages 250-262, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin.

A comparison of parallel graph coloring algorithms, 1995.

[4] Noga Alon, Ldszl6 Babai, and Alon Itai. A fast and simple randomized parallel

algorithm for the maximal independent set problem. J. Algorithms, 7:567-583,

December 1986.

[51 Leonid Barenboim and Michael Elkin. Distributed (A + 1)-coloring in linear (in

A) time. In 41st Annual ACM Symposium on Theory of Computing, STOC '09,

pages 111-120, New York, NY, USA, 2009. ACM.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed

Computation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989.

[71 Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-

SEC benchmark suite: Characterization and architectural implications. In

67

Proceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, October 2008.

[8] Doruk BozdaA, Assefaw H Gebremedhin, Fredrik Manne, Erik G Boman, and

Umit V Catalyurek. A framework for scalable greedy coloring on distributed-

memory parallel computers. Journal of Parallel and Distributed Computing,

68(4):515-535, 2008.

[91 Doruk BozdaA, Assefaw H. Gebremedhin, Fredrik Manne, Erik G. Boman, and

Umit Catalyurek. A framework for scalable greedy coloring on distributed

memory parallel computers. Journal of Parallel and Distributed Computing,

68(4):515-535, 2008.

[101 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Comput. Netw. ISDN Syst., 30(1-7):107-117, April 1998.

[11] Richard Cole and Ofer Zajicek. The APRAM: Incorporating asynchrony into

the PRAM model. In Proceedings of the 1989 ACM Symposium on Parallel

Algorithms and Architectures, pages 169-178, Santa Fe, New Mexico, June 1989.

[12] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf.

Control, 64:2-22, March 1985.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, third edition, 2009.

[14] Joseph C. Culberson. Iterated greedy graph coloring and the difficulty landscape.

Technical report, University of Alberta, 1992.

[15] J E Dennis Jr. and Trond Steihaug. On the successive projections approach to

least-squares problems. SIAM J. Numer. Anal., 23(4):717-733, August 1986.

[16] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy

races in Cilk programs. In Proceedings of the Ninth Annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA), pages 1-11, June 1997.

68

[17] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H.

Freeman and Company, 1979.

[18] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to cal-

culating marginal densities. Journal of the American Statistical Association,

85(410):398-409, 1990.

[19] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distribu-

tions, and the Bayesian restoration of images. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, PAMI-6(6):721 -741, November 1984.

[20] Phillip B. Gibbons. A more practical PRAM model. In ACM Symposium on

Parallel Algorithms and Architectures, pages 158-168, June 1989.

[211 Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. Efficient low-

contention parallel algorithms. In Proceedings of the sixth annual ACM

symposium on Parallel algorithms and architectures, SPAA '94, pages 236-247,

New York, NY, USA, 1994. ACM.

[22] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The QRQW

PRAM: Accounting for contention in parallel algorithms. In Proceedings of the

Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 638-648,

Arlington, Virginia, January 1994.

[23] Robert K. Gjertsen Jr., Mark T. Jones, and Paul E. Plassmann. Parallel heuris-

tics for improved, balanced graph colorings. Journal of Parallel and Distributed

Computing, 37:171-186, 1996.

[24] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel

symmetry-breaking in sparse graphs. In SIAM J. Disc. Math, pages 315-324,

1987.

[25] Mark Goldberg and Thomas Spencer. A new parallel algorithm for the maximal

independent set problem. SIAM Journal on Computing, 18:419-427, April 1989.

69

[261 Gene H. Golub and William Kahan. Calculating the singular values and pseudo-

inverse of a matrix. Journal of the Society of Industrial and Applied Mathematics

Series B: Numerical Analysis, 1964.

[27] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. Powergraph: distributed graph-parallel computation on nat-

ural graphs. In USENIX Conference on Operating Systems Design and

Implementation, OSDI, pages 17-30, Berkeley, CA, USA, 2012. USENIX As-

sociation.

[28] Raymond Greenlaw, James H. Hoover, and Walter L. Ruzzo. Limits to Parallel

Computation: P-Completeness Theory. Oxford University Press, USA, April

1995.

[29] Frank Harary. Graph Theory. Addison-Wesley, 1972.

[30] William Hasenplaugh, Tim Kaler, Charles E Leiserson, Schardl, and Tao B.

Chromatic scheduling of dynamic data-graph computations, including parallel

coloring of arbitrary-degree graphs. Test, 2013.

[31] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The cilkview

scalability analyzer. In SPAA, pages 145-156, 2010.

[32] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier

synchronization. Int. J. Parallel Program., 17(1):1-17, February 1988.

[331 M. Herlihy. Wait-free synchronizatoin. ACM Transactions on Programming

Languages and Systems, 13(1):124-149, January 1991.

[34] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[35] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products.

Journal of Mathematical Physics, 1927.

70

[36] David S. Johnson. Worst case behavior of graph coloring algorithms. In

Proceedings of the 5th Southeastern Conference on Combinatorics, Graph

Theory, and Computing, Winnipeg, Ontario, Canada, 1974.

[37] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. SIAM

Journal on Scientific Computing, 14(3):654-669, May 1993.

[38] D. P. Koester, S. Ranka, and G. C. Fox. A parallel Gauss-Seidel algorithm for

sparse power system matrices. In SuperComputing '94, pages 184-193, 1994.

[39] Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In

Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms

and Architectures, SPAA '09, pages 138-144, 2009.

[40] Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph

coloring. In PODC, pages 7-15, 2006.

[41] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: large-scale graph

computation on just a pc. In USENIX Conference on Operating Systems Design

and Implementation, OSDI, pages 31-46, Berkeley, CA, USA, 2012. USENIX

Association.

[42] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.

Community structure in large networks: Natural cluster sizes and the absence

of large well-defined clusters. CoRR, abs/0810.1355, 2008.

[43] Nathan Linial. Distributive graph algorithms global solutions from local data. In

Proceedings of the 28th Annual Symposium on Foundations of Computer Science,

SFCS '87, pages 331-335, Washington, DC, USA, 1987. IEEE Computer Society.

[44] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput.,

21(1):193-201, February 1992.

[45] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. Distributed GraphLab: a framework for machine

71

learning and data mining in the cloud. Proceedings of the VLDB Endowment,

5(8):716-727, April 2012.

[461 Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. Distributed graphlab: a framework for machine

learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716-727, April

2012.

[471 Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph M. Hellerstein. Graphlab: A new parallel framework for machine

learning. In Conference on Uncertainty in Artificial Intelligence (UAI), July

2010.

[481 Michael Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4):1036-1053, 1986.

[49] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, SIGMOD '10, pages 135-146, New York,

NY, USA, 2010. ACM.

[501 Andrew McCallum. Cora data set. Available from http: //people. cs.umass.

edu/-mccallum/data.html.

[511 Tom Mitchell. NPIC500 data set. Available from http: //www. cs. cmu.edu/~tom/

10709_fallO9/NPIC500.pdf, 2009.

[521 Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation

for approximate inference: An empirical study. In Proceedings of Uncertainty in

AI, pages 467-475, 1999.

[531 Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM

Letters on Programming Languages and Systems, 1(1):74-88, March 1992.

72

[54] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of

co-training. In Proceedings of the 9th International Conference on Information

and Knowledge Management, CIKM '00, pages 86-93, 2000.

[55] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for

multiprocessors with private cache memories. In Proceedings of the 11th annual

international symposium on Computer architecture, ISCA '84, pages 348-354,

New York, NY, USA, 1984. ACM.

[56] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[57] G. L. Peterson. Myths about the mutual exclusion problem. Information

Processing Letters, 12(3):115-116, June 1981.

[58] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In In

ICDM, pages 572-582. IEEE Computer Society Press, 2006.

[59] A. M. TURING. Rounding-off errors in matrix processes. The Quarterly Journal

of Mechanics and Applied Mathematics, 1(1):287-308, 1948.

[60] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number

of a graph and its application to timetabling problems. The Computer Journal,

10(1):85-86, 1967.

[61] David P. Williamson and David B. Shmoys. The Design of Approximation

Algorithms. Cambridge University Press, New York, 2011.

73

