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Abstract

In my research, I designed and implemented an online game accessable to a large
diverse audience via the Facebook social network to test out game theoretic results
and study social interactions. In this game, we designed scenarios that mirrored clas-
sic game theory situations, most prominantly the Iterated Prisoner's Dilemma game.
The game allows for Facebook users to play each other in the Prisoner's Dilemma
game while competing for a common goal. We then gather data on strategies em-
ployed by players and compare them to classic game theoretic results and try to
explain similarities and differences. We also look at social factors that were promi-
nant in decision-making for players. Analysis includes disecting which factors (e.g.
gender, age, etc.) affect players' decisions and understanding winning strategies. We
discovered that under the social setting of the experiment, factors that came into
play for users' decision-making included gender as well as potential payoffs. On the
other hand, game play history and whether or not two people were friends were not
significant in decision-making. Despite a high overall cooperation rate (over 70%),
the top players predominantly betrayed their opponents while never playing the same
opponent too many times. The game is implemented in Ruby on Rails while all data
analysis is done via Python scripts.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor
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Chapter 1

Introduction

Game theory, or more formally, "the study of mathematical models of conflict and

cooperation between intelligent rational decision-makers," is a field in economics that

seeks to model scenarios ranging from political science to psychology to biology. It

is a useful tool to help model and solve situations involving multiple parties making

decisions. In this chapter, we would like to introduce two games, the prisoner's

dilemma game and the chicken game. Then, we will briefly touch on iterated versions

of the prisoner's dilemma game, and finish by addressing how these games relate to

situations in real life.

1.1 Prisoner's Dilemma

The prisoner's dilemma is one of the oldest and most influential games studied in

game theory, first invented around 1950 by two Rand Corporation scientists. The

classic backstory for the prisoner's dilemma goes something as follows: You and your

friend have just pulled off the most amazing jewelry heist in the history of jewelry

heists. You flee successfully to your hideout and decide that laying low for the next

week is the best policy before deciding on what to do with all the stolen jewelry. Days

one through six pass without a hitch, but on the morning of the seventh, both you

and your friend are brought into the police station for questioning. Unfortunately,

you are put in a separate interrogation room from your friend. Your interrogator sits

15



down opposite you, the lights seem to dim, and he leans in. He says: I have one

question for you was your friend involved in robbing the jewelry store?

Of course this is a sticky situation you have the choice to betray your friend, or

keep silent. And likewise, you are certain that your friend is in the same situation in

the other room. What should you do?

In order to consider what to do, we need to explore the consequences for each

possible action. As presented in the story, each player has two choices, either to

betray the other (rat them out), or to cooperate with the other (by staying silent).

Thus, there are four possible outcomes:

" (P1: Cooperate, P2: Cooperate)

* (P1: Cooperate, P2: Betray)

" (P1: Betray, P2: Cooperate)

" (P1: Betray, P2: Betray)

In the classic prisoner's dilemma game, the consequences were as follows:

If one player betrays and the other stayes silent, the betrayer would walk free (cut

a deal with the police) while the silent party would have to serve three years. If both

players cooperated (stayed silent), then both players would have to serve one year

each. If both players ratted the other out (both betrayed), then each party would

serve two years. A convenient way to represent these consequences is in a payoff

matrix (or payoff diagram) shown in Table 1.1.

1.1.1 Solving the prisoner's dilemma game

The cononical prisoner's dilemma game is what is known as a "one-shot" game, which

means that each player submits their strategy simultaneously, and without knowledge

of the other's actions - for one game only. Thus, each player does not have information

on their opponent's history of play. The only information they have access to is the

payoff matrix.

16



Cooperate Betray
Cooperate (-1, -1) (-3, 0)

Betray (0, -3) (-2, -2)

Table 1.1: Payoff diagram representing the cononical prisoner's dilemma game. The
first column represents player one's choices while the top row represents player two's
choices. For each tuple of numbers, the first number is player one's payoff while the
second number is player two's payoff. For instance, if player one plays Betray and
player two plays Cooperate, we wind up at the square with payoff (0, -3). This means
that player one gains 0 whereas player two loses 3 (i.e. player one doesn't go to jail
and player two serves three years).

From table 1.1, we can logically deduce the ideal strategy for each player. As the

game is symmetric (payoffs only depend on the particular strategies played and not

on the players playing them), we will just consider player one's ideal strategy. We can

see that he should play Betray regardless of what player two plays. He will always

receive a higher payoff when he plays Betray since:

0 > -1(Betray, Cooperate) vs. (Cooperate, Cooperate)

-2 > -3(Betray, Betray) vs. (Cooperate, Betray)

Likewise, for player two, he will have the same considerations and end up playing

Betray. Thus, the outcome will be (Betray, Betray) whereby both players will serve

two years in prison. This is known as a Nash equilibrium (NE). A Nash equilibrium is

defined to be both players choosing strategies such that no player will want to change

their strategy (to be better off) while holding the other player's strategy constant. In

the prisoner's dilemma, we see that given one player plays Betray, the other player

will not want to change his strategy from Betray to Cooperate, thus a NE. On the

other hand, if one player is playing Betray while the other is playing Cooperate, this

would not be a Nash equilibrium since the player playing Cooperate stands to gain a

better payoff by switching to Betray.

This is the only pure strategy Nash equilibrium for the prisoner's dilemma game.

A pure strategy determines the move a player will make for any situation he could

17



Swerve Straight
Swerve (0, 0) (-1, 1)
Straight (1, -1) (-5, -5)

Table 1.2: Payoff diagram representing the chicken game.

face. This is in contrast to a mixed strategy which is an assignment of probabilities

to each pure strategy.

In [20], using Brouwer's fixed point theorem, Nash showed that for every finite

game, there exists a mixed strategy Nash equilibrium. For the prisoner's dilemma,

we can think of the pure strategy NE that we found, (Betray, Betray), simply as a

degenerate mixed strategy, where each player places a zero probability on playing

Cooperate.

1.2 The Game of Chicken

Another well-studied game is known as the game of chicken (sometimes referred to

as the "hawk-dove" game in biology). In this game, imagine two players are driving

towards each other at high speeds on a one-lane street. Each player is faced with

two choices: (Swerve, Straight). The two cars get nearer and nearer, and just before

impact, each player makes his choice.

As table 1.2 shows, the worst outcome for both players is if they both pursue the

Straight option, resulting in a car crash. However, if one player stays straight while

the other swerves out of the way, the player that stayed straight will be considered

the winner, while the player that swerved will be known as the "chicken," or loser.

This game is oftentimes used to model brinkmanshop in politics and international

relations. One such example is the Cuban Missile Crisis where both the United States

and Russia were pushed to the brink of war, and had both stayed their original

courses (Straight), then the result could have easily been a war. However, both

nations decided to step down and dismantle their armaments Swerve), avoiding a

catastrophe.

18



1.2.1 Solving the chicken game

Unlike the prisoner's dilemma, there does not exist a symmetric pure strategy NE.

Instead, there are three Nash equilbiria.

" (Swerve, Straight)

* (Straight, Swerve)

" Mixed strategy between Swerve and Straight

Again, for the pure strategies, we can verify that holding the opponent's player

constant, a player will not want to deviate. As for the mixed strategy, we can solve

for it by first choosing the mixed strategy for player one in order to make player 2

indifferent between his strategies. Then we do the same for player two to make player

one indifferent between his strategies.

Let p be the probability that player one swerves, I-p be the probability of staying

straight. Let's also let q equal the probability that player two serves, and 1 - q the

probability he stays straight. We can now do the following:

Up1(p; q) = pqu 1(Swerve, Swerve) + p(l - q)u,1(Swerve, Straight)+

(1 - p)qui(Straight, Swerve) + (1 - p)(I - q)ui(Straight, Straight)

= p[qu,1(Swerve, Swerve) + (1 - q)ui(Swerve, Straight)]+

(1 - p) [qu,1(Straight, Swerve) + (1 - q)u,1(Straight, Straight)]

= p[Oq + -1(1 - q)] + (1 - p)[q + -5(l - q)]

= p(q - 1) + (1 - p)[-5+6q]

We see now that the term (q- 1) is the payoff if player one swerves, while (6q-5) is

the payoff from staying straight. Up1(p; q) is strictly increasing in p if (q- 1) > (6q-5)

(i.e. 5/4 > q); it is strictly decreasing with p if (q - 1) < (6q - 5) (i.e. 5/4 < q), and

is constant if (q - 1) = (6q - 5). Thus, player one's best response would be:

* p = 1 if q < 4/5

19



* p = 0 if q > 4/5

* p - [0, 1] if q = 4/5

Similarly, for player 2, since this is a symmetric game, so we see similar results.

We find that the mixed strategy nash equilibrium will be (4/5,4/5) where each

player swerves 4/5 of the time. We can check that this is indeed a mixed strategy

nash equilbrium by showing that by keeping one player's strategy constant (i.e. 4/5

of the time Swerve and 1/5 of the time Straight) the other player has no incentive to

change his strategy.

1.3 Iterated Games

To this point, we have only considered "one-shot" games where each pair of players

will only play the game once. However, it is a natural extension to think of an iterated

verson of each game where each game is played multiple times. We will focus mainly

on the prisoner's dilemma game henceforth as that is the main game that we will be

analyzing.

1.3.1 Iterated Prisoner's Dilemma (IPD)

Consider playing the prisoner's dilemma game multiple times. We saw previously

that the Nash equilibrium for a one-shot game was for both players to play Betray.

However, once we consider repeated versions of the game, things change. Let us

assume that this is an infinitely repeated game, that is, we will play an infinite

number of times (or for reality's sake, a large number of repetitions) 1. Let us also

introduce the notion of a "history," which will represent a history of plays that a

'We distinguish between and infinitely played game versus a finite (but large number of games).
In the finite version, we can use backwards induction to show that the same strategy Betray will still
be the best option for each player: consider the last iteration of the game - this is merely a one-shot
game scenario again, and both players will tend to the proven Nash equilibrium. Now, we consider
the game right before this last one, again, we can see that both players will play Betray. This logic
extends forward and we see that the one-shot Nash equilibrium will be played at every stage for a
finitely repeated prisoner's dilemma game. The infinitely repeated game has no such "last game,"
thus backwards induction cannot be used.
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Split Steal
Split ({,%) (0,S)
Steal (S, 0) (0, 0)

Table 1.3: Payoff diagram for the popular TV show Golden Balls.

player has done since the first game. Now, if we look at the IPD where players have

access to histories, players may no longer choose to play Betray at every time step.

As we will see in Chapter 2, Cooperation may start to emerge.

1.4 Games in Real Life

As mentioned before, game theory is used to model many real life situations in order to

better calculate the best strategy to use. In politics, when a crucial vote is presented,

game theory is an excellent model for voting and creating bills.

In international politics between countries, we saw that the late 20th century was

a rough time between the US and Russia. These encounters and decisions are modeled

using game theory.

Outside of such large-scale phenomena, one popular manifestation of the prisoner's

dilemma is in game shows including Golden Balls and Friend or Foe.

In Golden Balls, two contestants make it to the final round where a sum of money

is up for grabs (call it S). In this round, each contestant is presented with a pair of

golden balls. Inside each ball is either the word "Split" or the word "Steal," and the

players are allowed to know which ball is which for their own pair, but not for the

opponent's. Then, each player will be allotted some time to consider their choice,

and after this time is up, each will reveal his choice of "Split" or "Steal."

We can see the payoff diagram from 1.3. If both players choose "Split," then the

total prize money, S, will be split evenly between the two 2. If one chooses to "Steal"

while the other "Splits," then the player that "Steals" will take home all the money.

Finally, if both people try to "Steal," neither of them get any money.

2There is usually a very large variation in S, but most of the time it is at least $20,000 and has
been as high as $175,000
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We can map this game into the one-shot prisoner's dilemma game where "Split"

corresponds to Cooperate and "Steal" corresponds to Betray. However, there is a

slight twist now - there is no longer a unique Nash equilibrium. Any option other

than both players choosing "Split" is now a Nash equilibrium. This is a weak form

of our classic prisoner's dilemma where Betray was always the dominant strategy.

The final twist to this game show is the time allotted to the players before they make

their decisions. In this time, players are allowed to communicate with each other, and

potentially reach a consensus on actions. Most times during the show, this period

of time was spent on assuring the opponent that a player would choose "Split" and

asking that they do the same. One famous conversation went as follows:

Contestant A: I will not lie to you, I plan on choosing "Steal." I would like for

you to choose "Split." After the game ends, I will divide my winnings and give you

half. I promise.

Contestant B: In that case, why don't we just both choose "Split"?

Contestant A: Because I am telling you, I will choose "Steal." I will not choose

"Split." I encourage you to choose "Split" so I can give you half the money afterwards.

This back and forth went on for a while before the contestants were asked to show

their choices. If we assume that Contestant A is telling the truth, then the clear

choice for Contestant B is to choose "Split" since choosing "Steal" will most certainly

end in him receiving 0. The show ended in both players choosing "Split."

Thus, despite (Split, Split) not being a nash Equilibrium, it was the produced

outcome. In fact, in [28], the authors study this show and find that there are "un-

usually high rates of cooperation when the luck of the game reduces the stakes to

'merely' a few hundred Pounds." Thus, this brings in a new dimension to our anal-

ysis - the size of the stakes. In line with this finding, another interesting episode

included two contestants vying for a sum of 150, 000L (one of the largest sums in

the history of the show). During the allotted time for discussion, both contestants

vowed to choose "Split." Unfortunately, as the time came to reveal their choices,

one contestant had veered away from her promise and chosen "Steal." She justified

her choice with the simple statement, "I've been burned before." This alludes to the
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importance of histories and previous play which we will expand on in coming sections.
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Chapter 2

Game Theory & Iterated

Prisoner's Dilemma

We have shown in Chapter 1 that the one-shot prisoner's dilemma has a unique

pure strategy nash equilibrium. We then hinted at potentially different outcomes for

iterative game play. In this chapter, we will explore some of the important findings

regarding IPD, strategies for the IPD, and how well each strategy works.

2.1 The Iterated Prisoner's Dilemma - Revisited

Before we launch into the IPD, let us redefine the one-shot prisoner's dilemma a bit

more rigorously. We mentioned before about the payoffs of the game, but in table 2.1

we show the general payoff scheme.

The following inequalities must hold from [23]:

Cooperate Betray
Cooperate (A1, A) (A2, A3)

Betray (A3, A2 ) (A4 ,A 4 )

Table 2.1: Payoff diagram representing a general prisoner's dilemma game.
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2A, > A2 + A3

A3 > A,1> A4 > A2

The first rule is in place to prevent any tacit agreement for mutual cooperation.

This is explained by [5] as a constraint such

"that the players cannot get out of their dilemma by taking turns exploit-

ing each other. This assumption means that an even chance of exploita-

tion and being exploited is not as good an outcome for a player as mutual

cooperation."

The second constraint exists such that Betray strictly dominates Cooperate as

established in [17]

We see that our original nash Equilibrium still holds, and serves as a compelling

option for players to choose. However, joint defection yields A4 to each player, whereas

had they both cooperated, A, > A4 could have been achieved. Thus, if the game is a

single-shot game, Betray is the natural choice, but if the game is iterated over many

trials, with access to histories, it is no longer so clear. Learning may take place as

reputation comes into play, and players make seek to cooperate.

Thus, the IPD is a more complicated game, harder to predict the outcomes for,

and the strategy may no longer be to solely Betray.

2.2 The Many Strategies of the IPD

In contrast to the one-shot prisoner's dilemma game, there are now numerous strate-

gies that can be employed to play the IPD. Here, we will consider some of the more

famous and influential strategies.
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2.2.1 AliD

This is our well documented strategy of always defecting (betraying). One of the

major upsides for playing AllD is the fact that you "can't lose." Indeed, by playing

this strategy, you will never be hit with your opponent betraying while you cooperate.

Furthermore, by playing this strategy, you can take advantage of very altruistic people

that play Cooperate often. In fact, if you are matched up against someone that plays

AllC, you will have the best strategy. The downside to playing AllD is that your

opponent will very quickly lose trust in you. The "trust" variable, defined in [24],

is the probability of responding cooperatively on the trial after both players have

responded with defection. Since the AllD strategy only profits off of the opponent

playing Cooperate, as the trust variable declines, the profitability of AllD declines as

well.

2.2.2 Tit-for-Tat (TFT)

The Tit-for-Tat strategy is described as follows:

* In the first round, always play Cooperate

e For every round t > 1, play what the opponent played at time t - 1.

We can see that this strategy derives its name from its nature of reciprocity. The

upsides of this strategy are quite apparent - if things are going well (each player is

cooperating), then "let the good times roll." However, if the opponent ever defects,

we need to punish them by defecting on the next round to send a message. In fact,

this theme is prevalent in reality, sometimes going under the name of "Live and Let

Live." For instance, during World War I, reciprocity of cooperation was prevalent

based on the desire for fresh rations. In his account of army life in [14], Hay writes:

It would be child's play to shell the road behind the enemy's trenchs,

crowded as it must be with ration wagons and water carts, into a blood-

stained wilderness.. .but on the whole there is silence. After all, if you
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prevent your enemy from drawing his rations, his remedy is simple: He

will prevent you from drawing yours.

This encapusulates the TFT strategy in the IPD as well. The downside to TFT

is noise, or the accidental betrayal. Imagine two players both playing TFT - both

will be playing Cooperate and doing well. Then, if one player accidentally switches

to Betray, they will forever be locked in an alternating cycle of (Cooperate, Betray)

and (Betray, Cooperate). From [5], we know that the payoffs for IPD discourage such

outcomes by placing their value below the always cooperating outcomes. Finally,

TFT, when faced with AllC, lacks the ability to exploit such play, instead of playing

Betray every time, it will simply cooperate, which yields a good result, but not the

best possible.

2.2.3 Pavlov (Win-stay, Lose-Shift)

As described in [21], the Pavlov strategy seeks to improve on the shortcomings of

TFT. The strategy follows the following rule:

" Play Cooperate at time t if both players played the same alternative at time

t - 1

* Else, Betray

This strategy gets its name from the fact that if the player receives either A1 or

A3 , it is considered a "win" and thus will repeat its previous move. If he receives

either A2 or A4, it is a "loss," and thus will prompt a shift in choice of play.

We see that the Pavlov strategy contains two main advantages over TFT. First,

it allows for the exploiting of the AllC strategy to maximize payoff. Second, it is less

susceptible to noise. If both players utlize the Pavlov strategy and are cooperating,

and one accidentally betrays, the next round both players will betray, but then will

return back to (Cooperate, Cooperate) afterwards. This return to joint cooperation

will never happen in TFT as seen above. The drawback to Pavlov comes when it
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Cooperate Betray
Cooperate (3, 3) (0, 5)

Betray (5, 0) (1, 1)

Table 2.2: Payoff diagram from Robert Axelrod's tournament.

plays an AllD opponent. For every other round, Pavlov will submit Cooperate versus

AllD's Betray.

2.2.4 Generous Tit-For-Tat (GTFT)

Generous Tit-For-Tat follows the same vein as the original TFT, but tries to improve

upon the noise resiliance. This strategy will always be the same as TFT, but after

an opponent betrays, there will be a probability p > 0 where it will play Cooperate.

In the original TFT strategy, p = 0.

2.3 Seeking the Best Strategy

In 1980, Robert Axelrod held a tournament of various strategies for the IPD game

with the payoffs documented in Table 2.2. Game theorests were invited to submit

strategies that would then be run by computers against each other to determine the

best strategy (as seen from total payoff). The strategies documented above as well

as many more were entered. The results of the tournament were groundbreaking.

The winner of Axelrod's tournament was the simple reciprocity strategy, Tit-For-Tat

(TFT).

After these results were published, Axelrod invited submissions for a second tour-

nament 1. Having seen the results from the first tournament, many versions of TFT

were submitted. However, the best performing entry of the 62 submissions was, once

again, Tit-For-Tat. Interestingly enough, despite the possibility for contestants to

submit strategies that were designed by others, there was only one submission of

'The second tournament was identical to the first except that for each round played, there was
a probability, p > 0 that the game would end after that round. As we will see in the next couple
sections, this design mitigates what is known as an "end-game" effect, briefly mentioned before in
finite vs. infinite repeated games.
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TFT, by its original creator, Anatol Rapoport.

After the second tournament, in [5], Axelrod talks about four factors that deter-

mined a winning strategy, namely:

" Niceness: Avoidance of unnecessary conflict by cooperating as long as the

other player does

" Provocability: Getting mad quickly and retaliating in the face of an uncalled-

for defection by the other

* Forgiveness: After responding to a provocation, don't hold a grudge

" Clarity: Act so that the other player can recognize and adapt to your pattern

We see that TFT satisfies these criteria very nicely. It starts by playing Cooperate,

and plays as long as the opponent cooperates as well - achieving niceness. It responds

quickly and retaliates against an opponent that plays Betray as it betrays in the

subsequent round. It forgives in the sense that once it retaliates, if the opponent

playes Cooperate again, TFT will revert back to cooperating. Finally, it is faily clear

when someone is playing this strategy due to is simplicity. Thus, it is not a huge

suprise that TFT faired as well as it did both times.

So, does this mean that TFT is the best strategy? Unfortunately, the answer is

a resounding no.

For instance, in [21], Nowak argues that Pavlov is a more successful strategy than

TFT, and backs up his claim with simulation results. This makes some sense given

that the Pavlov strategy seeks to patch up some of the shortcomings of TFT, see

section 2.2.3.

In [6], the authors demonstrate a strategy known as Gradual, which they show to

outperform both TFT and Pavlov in a 12-strategy round robin tournament. Gradual

performs exactly as TFT except when it comes to the opponent playing Betray. On

the first betrayal at time t, Gradual will betray once then cooperate twice. After

the second betrayal at time t' > t, Gradual will betray twice then cooperate twice.

After the nth betrayal by the opponent, Gradual will betray n times, then cooperate
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twice to re-establish cooperative grounds. We can see that this strategy has all the

same qualities as TFT except for its simplicity - Gradual requires memory since the

beginning of the game.

Thus, in both [6, 21], strategies are presented that defeat TFT, even though in

Axelrod's original tournament TFT emerges the victor over both of these strategies.

This conundrum captures the essence of a strategy's robustness. In [22], the authors

define a strategy, o- to be "robust," if in any population consisting of copies of two

types of strategies, - itself and some other strategy T, the strategy - is never worst

than r. The authors show that no strategy exhibits robustness in all population sets

of three or more strategy types.

Finally, in [2], even Axelrod himself gives three reasons for why TFT is not the

best strategy:

* TFT could have been beaten in the second round by any rule which was able

to identify and never cooperate with Random, while not mistaking other rules

for Random

" Had only the entries which ranked in the top half been present, TFT would

have come in fourth place, after the ones that came in 25th, 16th, and 8th.

" There is no best rule independent of the environment.

Despite not reaching a clear best strategy for the IPD, we have discovered a set of

rules that govern a successful strategy, [5]. However, even if we follow these rules and

design a strategy around them (be it TFT, Pavlov, or Gradual), we are still highly

dependent on the opponent's actions for our success. If the opponent plays AllD, then

regardless of our strategy, we will never do well. Thus, in order to be successful, the

opponent needs to offer some cooperation. This leads us to the next widely studied

question of how to achieve cooperation.
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2.4 Achieving Cooperation

Despite the temptation of betrayal (higher payoff), [7, 16] show the perpetual shift

toward a cooperation regime. We now take a look at why cooperation amongst

individuals is so high, and what factors affect mutual cooperation.

In [4], Axelrod emphasizes that there are three elements to look at for determin-

ing whether cooperation would emerge: Payoff Structure, Future of Gameplay, and

Number of Actors.

2.4.1 Payoff Structure

The importance of the payoff structure is emphasized in [19, 27]. We saw from 2.1

and [23] that certain inequalities had to hold for the prisoner's dilemma payoffs.

However, in [27], we look at scaling effects on the payoffs. They argue that with a

high multiplicative factor, reasons for cooperation increase, whereas a less than one

multiplicative factor does not promote cooperation. One possible explanation for

behavior linked to payoff scaling is the risk appetite of the competitors. In [8], they

look at risk-averse versus risk-loving people and see how they respond to different

payoff amounts 2. Unfortunately, their results do not draw a significant relationship

between risk-appetite and behavior in the prisoner's dilemma game. Despite these

results, it is not unreasonable to expect a correlation between payoff amounts and

cooperation level. We will look at this in the next section pertaining to game design.

2.4.2 Future of Gameplay

Many studies focus on the possibility and certainty of future game play, i.e. the

probability that a game will end after any given round. In [4], Axelrod refers to this

as "The Shadow of the Future," and presents four factors promoting cooperation:

* Long time horizons

* Regularity of stakes
2They judge people's risk appetites based on their attitudes over a series of lotteries
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* Reliability of information regarding others' actions

9 Quick feedback about changes in others' actions

The first of these elements is very crucial - if contestants know that they will have

future interactions with their opponent, they are more likely to cooperate to maintain

good relations. In [19, 10], the importance of the possibility of continued game play

is emphasized. Both studies find that as the probability of continuation increases,

the probability of cooperation increases as well. In fact, [10] found that "expected

iteration decreased retaliation." Thus, not only does the probability of cooperation

increase with the probability of a next iteration, but the probability of retaliation

also decreases. This may stem from a player assuming that a mistake may have been

made by the opponent, and is more willing to forgive.

The regularity of stakes allows for steady game play without abnormal jumps.

Consider two stakes that are vastly different - it may be conceivable that a player will

cooperate in the lower stakes game. Then, once this trust is established, he may turn

around and betray in the higher stakes game - and dependent on the payoff multiple,

this may be a viable and profitable strategy.

The last two points highlight the transparency aspect of the IPD in that players

should be informed of how the opponent is playing in order for trust to build between

them. If one player is always surprised by the opponent's game play, then this does

not lend well to building cooperation between them - since he will never know when

the opponent may just choose to betray.

2.4.3 Number of Actors

As shown in Axelrod's tournaments, reciprocity was a very effective strategy. How-

ever, for this to be possible, players need to be able to identify defectors, focus on

retaliation, and have long-run incentives to punish defectors. As we increase the num-

ber of actors, this becomes more difficult. As [4] mentions - none of the cooperators

has the incentive to play the role of policeman and are content to be a free-rider on
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the willingness of others to enforce the rules. This difficulty of preventing defection

through decentralized retaliaton is known as the "sanctioning problem."

Thus, in a large world of betrayers, how can cooperation come about?

To answer this exact question, in [3], Axelrod looks at the concept of invasion of

strategies. He defines a strategy A as invading a strategy B if V(AIB) > V(BIB),

that is to say the expected payoff an A gets from playing a B is greater than that

from a B playing a B. This ties in closely with the evolutionary approach, namely,

the concept of invasion is parallel to the concept of a single mutant individual being

able to do better than the population average. He then goes on to show that TFT

can successfully invade AllD as long as there is at least a small portion of TFT's

interacting with each other. His results suggest that we only need around 5% of TFT

to invade a society of AllD.
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Chapter 3

Our Game - Designs and

Considerations

In this chapter, we explore the design of our IPD game as well as the questions

that we seek to answer. The first section will talk about the environment that we

have. The second and third section will look at the front-end design of our game and

the backend design. The final section will present the questions that we would like

to answer, questions that have either been theoretically (through simulation) shown

proven as well as some phenomena that come up in the social setting we utilize to

test the IPD.

3.1 The 21st Century as a Testing Ground

The 21st Century is a ripe testing ground for theories all around, especially economic

theories. The world has never before been so connected, where opinions can travel

around so quickly and so far. Take for instance the field of politics, shrouded in

secrecy just three decades ago. With the advent of the internet and information

sharing, not only are people learning about politics, they are engaging in discussions.

In [9, 26, 1], the authors discuss how the popular site Intrade seeks to predict polls

and elections. On Intrade, people are allowed to buy and sell contracts whose prices

are governed by the probability that a certain party will win the election. Some view
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this as a viable proxy for the outcome of elections.

Another widespread network is the Twitter network - connecting millions of people

monitoring each other's 140-character status updates, or "tweets." To get a sense of

how important these networks and social bindings are to us today, we witnessed the

power of a single tweet. In April of 2013, the Twitter account of the Associated Press

was hacked, and the following tweet was broadcast through the network:

Breaking: Two Explosions in the White House and Barrack Obama is

injured

To see the ripple effect of such a post, the Dow Jones immediately dropped 100

points, nearly 1% of its value.

Finally, the largest network today, Facebook commands over 1 billion users, con-

nected in a network of friends. It is in this network that we seek to study the empirical

results of running the IPD game. The Facebook network serves as an excellent source

for testing as users are allowed to play each other, and we can obtain a number of

details regarding the user.

3.2 Game Design (rev. 1)

We sought to implement a classic version of the IPD whereby Facebook users would

be allowed to play each other and compete against each other. We also included a

chicken game as well. In this section, we will look at some of the independent variables

we considered when designing the game, and the reasons behind the choices that we

made.

3.2.1 Stakes & Scaling

As we mentioned before in 2.4.1, we saw that [19, 27] emphasize the importance of

the payoff structure of the IPD game. Axelrod argues in [4] that payoff structures

is one of the three elements that would determine whether or not cooperation could

come about.
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From [11], the authors argue that from their empirical experiments, people only

learned to cooperate with A3 > 2.5, and they would learn faster for 3 > 4 (and

have a higher forgiveness rate). Thus, for our stakes, we decided to implement two

scenarios where the ratio of -\ was 2.5 and two scenarios where the ratio was 4. ForA2

the pair that had the ratio of 2.5, the two scenarios differed in that one scenario's

payoffs were scaled upward by a multiple of four from the other one. For the pair of

scenarios with a ratio of 4, the scaling factor on payoffs was 2.

By having these separate scenarios, we would be able to look at both how payoffs

and the - ratio affected decisions.
A2

3.2.2 Friends

The Facebook network is built on the concept of "friends." Each user is connected to

his or her friends, and that expands the network outwards. Presumably, one would

only be "friends" with someone else on Facebook if they actually knew each other in

real life. Thus, we decided that it would be interesting to see the social dynamic of how

we interface with our "friends" via the IPD game. In [18], they explore the aspects of

human friendship and how that affects cooperation in the prisoner's dilemma. They

conclude that humans tend to cooperate more with friends.

Unfortunately, simply being a friend with someone on Facebook does not guaran-

tee that the pair are friends in reality (a simple look through this author's Facebook

friends will reveal that he still interfaces with less than a quarter of them). Thus, to

serve as a proxy for friendship, we looked at how many mutual friends two people

shared. This perhaps better captures the friendship of two people. If two people are

friends in real life, there is a high probability that they will share a group of friends

(reflected via number of mutual friends).

3.2.3 User Qualities

Similar to the friendship information, Facebook keeps tabs on a number of personal

details that we will access and record. These details include:
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9 gender

* political affiliation

* religious affiliation

* age

We will focus on both age and gender as everyone with a Facebook account is

required to have those fields. By including these options, we can explore interactions

between users who have different qualities and test for their significance. For instance,

we can see whether or not males are more likely to cooperate with fellow males or

females.

3.3 Backstory & Frontend

In this section, we will look at the backstory of the game as well as decisions governing

the design and implementation of the frontend. The ordering will closely follow the

layout of the game itself.

3.3.1 Homepage

As we thought about how to frame our game's backstory, we sought a bit of inspiration

from [15], where Kaminski describes the innerworkings of Polish prisons. Thus, as we

were going to test the IPD game in a social setting, we figured that we might as well

make the backstory one about serving time in prison.

Therefore, we decided to craft the story around the user being sent to prison and

trying to get out in as little time as possible. We required users to log in via Facebook

before they were allowed to play such that we would have access to their information.

Appendix B-1 shows the homepage that we created to our game.

Each player would start with 250 weeks of prison time. Then for each game that

they played, dependent on the outcome of the game, they could potentially lose time

off of their sentence. The goal was to reach 0 weeks of prison time the quickest by
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playing the least number of games (time spent in prison is equivalent to the number

of games a user plays).

3.3.2 Stages

Upon signing into their Facebook account, users were then presented with the "Stages"

page where they could choose which "stage" they wanted to play on, seen in B-2. As

we talked about earlier in 3.2.1, different stakes and payoffs required different stages

that users could play on. We created six stages, aptly named for a prison backdrop:

* Stage 1 - Dining Hall

" Stage 2 - Kitchen

" Stage 3 - Cell

" Stage 4 - Yard

" Stage 5 - Hospital

" Stage 6 -+ Office (Interrogation Room)

Each stage represented an independent game with different payoffs, seen in figs. B-

3 to B-8. The dining hall allowed for players to get familiar with the interface and

play with an Al without affecting their prison time. The yard was a chicken game

and the other four were IPD games with varying payoffs.

The payoff diagrams for each stage (other than the dining hall) can be seen in

tables A.1 to A.5. Note that the hospital and the office represent the "high-stakes"

IPD games while the kitchen and the cell have lower stakes.

3.3.3 Game Information

There are two additonal informational pages, one to show the user's own statistics

for the games that he has played (B-9), and the other to view the leaderboard (B-

10). The statistics page allows for users to see how many times they have played
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Cooperate versus the times they have played Betray. Furthermore, they can see these

same statistics for how opponents have played against them (i.e. how many times

they have been cooperated with or betrayed).

The leaderboard page lets users see how well they are doing compared to others.

Users can rank people by time left or by how quickly other users have gotten out of

prison. We implemented this to increase the competitive level amongst users playing

our game. When users complete the game (get out of prison), their prison time resets

to 250 weeks and the second column shows how many weeks they required to get out

of prison (games played). This helps to encourage users to continue playing to try

and beat their previous record.

3.4 Game Mechanics

We tried to make sure that the game was as easy and smooth to play as possible.

Thus, to play a game a user will:

1. Login on our site

2. Select stage they wish to play on

3. Challenge a friend or select Challenge random user

4. Input their strategy

This will send a challenge (or open game) to their opponent so that when he logs

in to our game, he will see that he has an outstanding game. He can then go to the

stage where the chalelnege was issued and click on Betray or Cooperate. Immediately,

he will be able to see the results of that game while the original challenger will see it

the next time he logs on.

To promote people to play, we allow for users to invite their Facebook friends

directly from our website. Furthermore, when a user issues a challenge (starts a game

with) an opponent, a Facebook notification is sent to the opponent to remind them

to play.
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3.5 Additional Considerations

One of the items we wrestled with during the design and construction of the game

was how to label the choices each player faced when starting or responding to a

game. In [29] the authors explore how the labeling of users' choices in the prisoner's

dilemma game can influence a player's decision on whether to cooperate or not. They

compared situations when the labels were the researchers' conventional vocabulary

(such as "cooperate" and "defect") versus non-representational labels (such as "a"

and "b"). They found that when users were exposed to the conventional vocabulary

used by reseachers, the cases of cooperation increased.

When we were designing our game, we wanted to establish a connection between

the researcher's interpertation of the option and the presentation to the players. In

the end, we decided to label our strategies as we would normally refer to them: Betray

and Cooperate.

Another item that we discussed thoroughly was whether or not to show player

histories during games. This is definitely a consideration especially since it may

affect a user's decision. In [13], the authors conclude that with more memory (i.e. a

longer history), players were more likely to cooperate since opponents would be able

to see their past behavior. For our game, we decided on a hybrid approach to try

to confirm this result. We would randomly allow roughly half of the games access to

user histories '. For these games, both users would be able to see up to the past five

actions of their opponent on this level.

Along with histories, players would be able to view how much time their opponent

had left in prison. This option allows us to look at actions by and against users with

little time left. In [25], Rapoport explores start and end effects for the IPD game.

He concludes that when the probability the existance of another round diminishes,

so does the probability of cooperation. Thus, for players with little prison time

1We accomplished this by seeing if the parity of each user's user id (sequentially generated on

order of signup) matched. If they did, then each user would be allowed access to histories. We chose

this strategy over just randomly allowing for history access since that approach would be potentially
exploitable - constant refreshing of the page would eventually yield a user access to their opponent's
history
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remaining, it is possible to see how this results plays out. Furthermore, we can also

see how players respond to an opponent with little time left.

The final consideration was the aspect of communication between players. The

classic IPD game did not allow for communication between the two players. In [12],

the authors study the impact of allowing players to send messages and promises to

each other during the IPD. For our game design, we chose to not allow for user

communication within the game itself - though there is not much that we can do to

stop users from communicating outside of the game environment.

3.6 Backend Design

To keep track of the all of the data and game play, we designed a three table modular

database as seen in 3-1.

Figure 3-1: DB Schema with user, games, and stages table

User ID Game ID
Name User ID

Created At Opp ID
Score User Strat
Gender Opp Strat
Politics Completed
Religion Created Time
Birth Date Updated Time

Stage ID
User Time Left
Opp Time Left
User History

Level (Stage Number) Opp History
Stage Name FB Friend
Description Parity Match

Mutual Friends

The User Table allows us to obtain information on each user as they sign up for
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our game via Facebook. For each new user, a new line will be generated in this table

with all the required fields (if the user provided them on Facebook).

For each level created, we update the Stages Table. Level corresponds to a number

(1-6) that represents the stage.

The Games Table keeps track of every game that is created and played. Below is

a breakdown of some of the important fields:

" User ID - Identifies which user is playing (this user is the one being challenged)

* Opp ID - Identifies the user that is the challenger (creator of the game)

" User Strat - Strategy played by the user

" Opp Strat - Strategy played by the challenger

" Completed - Whether or not the game has been completed (i.e. played by both

parties)

" Created Time - Time when the game was created

" Updated Time - Time when the game was played by the opponent (user that

was challenged)

" User/Opp History - Percentage of last 5 games that Betray was played

" FB Friend - Whether or not the User and Opp are friends on Facebook

" Parity Match - Whether or not to show player histories (see 3.5)

* Mutual Friends - Number of mutual friends on Facebook

With these three tables, we can piece together the game play history for different

players and look at their strategies across time, players, etc.
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3.7 Language and Implementation

We used Ruby on Rails to create the application and currently utilize PostgreSQL

as our backend system. Our application is hosted on Heroku and is accessible via:

prisoners-dilemma.herokuapp.com

3.8 Game Design (rev. 2)

After launching our application, we received over 1000 user signups and over 3000

completed games. Despite these promising results, we still noticed that there was an

overall waning interest in continuing to play the game as well as a number of users

that signed up but never played a single game. Thus, we decided to improve the game

for a second launch, with changes geared towards more intuitive game play for new

users as well as incentives to keep users playing.

3.8.1 Jumpstarting New Players

With over 400 signups that never played a game, we decided that the largest barrier

to entry was getting the first game started for the user. Essentially, these 400 users

would sign in, try and start a game unsuccessfully, and then give up. To solve this,

we implemented two new features - game recommendations and an Al masquerading

as a regular player.

Game Recommendations

Once a user signs in and goes to a stage, there will be three recommended players

to play against. As seen in fig. B-11, a user will be provided two friends and one

random user to challenge - he simply needs to press Betray or Cooperate, and the

game begins. This is a vast improvement from before where a user needed to figure

out how to start a game - now all it takes is the click of a button.

AI

We have also implemented a bot that plays TFT on Stage 2 and Gradual on Stage

3. We have it such that if a user does not have any outstanding games waiting for
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him to finish, the bot will start one against him - thus providing a game against new

users once they log in.

We hope that these two new features will help to draw in new users and promote

game play.

3.8.2 Incentives to Continue Playing

In our first release, we had a number of users that played around 30 games, got

released from prison, and then never played again. However, as we would like users

to play as many games as possible, we implemented two new changes to try to keep

users in the game longer. First, we decided to increase the jail time to 350 weeks. This

would naturally promote more game play for users seeking to get out prison. Second,

we decided to offer a (monetary) prize for the top four users (with the quickest prison

release times). With more than just bragging rights on the line, users will play more

games and play more carefully.

Beyond just Facebook users, we also added in the capability to distribute our

game to Amazon Mechanical Turk (MTurk) players. These players would be able

to go through a 350-week cycle, and upon finishing would receive a small monetary

compensation. Utilizing MTurk allows for us to have more users play consistently.

This will hopefully result in more games generated on a consistent basis and keep

users engaged beyond their first prison cycle.

3.8.3 Other Changes

Beyond these changes, we once again brought up the topic of showing user histo-

ries. Our original approach of randomizing when users saw their opponents' histories

seemed, in retrospect, too opaque for users. We often received questions of why some

user histories were shown while others were not. Furthermore, it was not clear to

users whether or not their history would be shown against a certain opponent in the

future if it wasn't shown currently (i.e. will my current game play affect my future

reputation against the same opponent). Due to these confusions (see the Analysis
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section below for why this was detrimental to our results), we decided to allow users

to always see their opponent's cooperation rates over the past few games (against

all users). This hones in on the aspect of reputation and makes it a key factor in

decision-making for players.

A final change we made for Rev. 2 was allowing game request receivers to see their

oppoenent's recent game history against them. This may result in a shift towards

more cooperators starting games - we shall see once we gather the data.
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Chapter 4

Questions and Hypotheses

With the plethora of data that the Facebook network provides, there are many inter-

esting questions that we can ask. In this chapter, we look at questions and hypotheses

that we can form. The next chapter will seek to analyze the data we have collected

and discuss the veracity of our hypotheses.

4.1 Some Basic Questions and Hypotheses

Overall Play

The first question that comes to mind is how people played? Specifically, did

people betray or cooperate more in a general sense? When thinking about this, we

consider that if this game were memoryless, then as the authors in [13, 11] wrote,

AliD would be a dominant strategy. However, since we display histories for roughly

50% of the games played along with the ability for users to remember their opponents'

names (from Facebook), our IPD is not memoryless. In [3, 16], the authors argue

that cooperation exists and grows over time.

We hypothesized that more people would play Cooperate given both the existence

of histories as well as human forgiveness. People may come to realize that to achieve

the long run success, cooperation may be necessary.

We can then look at the best overall strategy - i.e. what did the best-performing

player do in his gameplay?
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Factors Affecting Decisions

From Facebook, we are able to harvest a number of attributes for each player, and

it is possible to consider which of these factors are statistically significant in swaying

a player's decision.

History - We believe that the higher the betrayal rate of an opponent, the more

likely a user will betray that person.

Stage (Payoffs) - We believe that the higher the payoffs, the more likely betrayal

will occur. We refer to the "raw" payoff and not the ratio of the payoffs. This would

seem probable because a betrayal (versus an opponent's cooperation) would yield a

significant payoff.

Friends - We believe that being friends (and having more mutual friends) would

tend to promote cooperation as well as forgiveness.

Gender - We think that playing against a female would promote cooperation

whereas playing against a male may lead to more betrayals. The generalization of

females being "kinder" might suggest this hypothesis.

Age - We think that perhaps older people would tend to cooperate more, as they

are more trusting.

4.2 Some More Advanced Questions

Beyond the simple questions, we can also consider some more advanced approaches

to understanding how people played.

Pair plays

For instance, for each pair of people, over extended iterations, what strategy does

each player play, and is it dependent on the aforementioned factors?

Between pairs of players, we can also look at the string of plays each does - are

there longs strings of C's or D's?
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Chapter 5

Results and Analysis

In this chapter, we will present the data received from our first release (rev. 1). We

will then seek to answer the questions posed above and draw some conclusions.

5.1 Results

The following is a snapshot of the statistics on users and games played during our

first release:

Games

We ran our application on Facebook for around three weeks. In that time, we had

12,000 games started, 6,000 finished games, and 3,500 finished games played between

real players (2,500 were against a tutorial bot).

Users

In this time, we had nearly 800 users sign up. 26% were female and 74% male.

The average age of a user was just under 30 years old with a standard deviation of

12 years.
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5.2 Analysis

5.2.1 Overall Analysis

In the previous section, we raised the question of how overall game play would look.

Our data on game play for completed games is shown in 5-1.

Figure 5-1: How users play over time

Strategies Played Over Time
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Time (Bundle of 100 games)

The graph bundles games into 100-game segments and orders them according to

time. We can see that there is an overwhelming number of Cooperates as compared

to Betrays. In fact, there is only one set of 100 where the betray option ever overtakes

cooperate, and a slim margin at that. From this graph, we can also see that in the

beginning (first 600 completed games), cooperation levels were very high. Thus, when

people started playing, a "start effect" as discussed in [25].

A more conclusive calculation yielded (for all IPD games):

Pr(Opp BetrayslOpp's First Game) = 0.38

Pr(User BetrayslUser's First Game) = 0.36

These results align nicely with our graphical representation - we see that there is

a majority of users that cooperate on their first move (both starting and answering

games).
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5.2.2 Factors Affecting Decisions

In the previous section, we listed a number of factors that may affect how players

make decisions. Here, we delve into our dataset and see which factors were significant,

and how they affected the outcome.

First, we created two regressions where the dependent variables are the opponent's

strategy (game starter) and the user's strategy (responder). We took all of the factors

mentioned above and set them as independent variables to see how significant they

were.

* User Strategy -+ user-strat-num where 1 = Betray, 0 = Cooperate

" Opponent Strategy - opp-strat-num where 1 = Betray, 0 = Cooperate

" User Gender - user-gender

" User Age -+ user-age

" Opponent Gender -+ opp-gender

" Opponent Age -+ opp-age

" Facebook Friends or Not -+ fb-friend-num where 1 = True, 0 = False

" Number of Mutual Friends -+ mutualfriends

* Maximum Reward of a Stage -+ max-reward

" Cost Benefit Ratio (see section 3.2.1) --+ cdratio

The regressions run (in STATA):

1. regress user-strat-num user-gender user-age opp-gender opp-age fbifriend-num mu-

tual-friends max-reward cdratio, robust

2. regress opp-strat-num user-gender user-age opp-gender opp-age fb-friend-num mu-

tual-friends max-reward cdratio, robust
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Table 5.1: User Strategy Regression

user-strat-num t-statistic

user-gender
user-age

opp-gender
opp-age

fb-friend-num
mutual-friends

max-reward
cdratio

_cons
N

t statistics in parentheses
=*p < 0.05

-0.0398
-0.00263**

0.0668*
0.000868

-0.104
-0.000306

0.00647***
-0.0295*
0.524***

2213

**P < 0.01

Table 5.2: Opponent Strategy Regression

opp-strat-num t-statistic

user-gender
user-age

opp-gender
opp-age

fb-friend-num
mutual-friends

max-reward
cdratio

cons
N

t statistics in parentheses
=*p < 0.05

-0.113***
-0.000587
0.251***
0.00220

-0.00478
0.000632

0.00712***
-0.0459***

0.243***
2213

**P < 0.01

(-6.52)
(-0.78)
(9.51)
(1.51)

(-0.09)
(1.36)
(4.99)

(-4.10)
(3.97)

***p < 0.001
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(-1.85)
(-3.11)
(2.47)
(0.55)

(-1.93)
(-0.70)
(3.72)

(-2.11)
(7.22)

***P < 0.001



History

The two regressions results are seen in 5.1 and 5.2, respectively.

We use max-reward and cdratio as proxies for stages instead of using the level

number (since larger doesn't necessarily mean a higher payoff).

It seems that different factors come into play depending on whether or not a user is

starting a game (opp-strat) or finishing a game (user-strat). However, shared between

the two are gender considerations, stage considerations, and a lack of Facebook friend

considerations.

5.2.3 Gender

From both 5.1 and 5.2, we see that gender plays a significant role. In particular for

the game starter (Opp game play):

Pr(Betray|Opp = Female) > Pr(Betray|Opp = Male)

Pr(BetraylUser = Female) < Pr(BetraylUser = Male)

And for the game finisher (User game play):

Pr(Betray|Opp = Female) > Pr(Betray|Opp = Male)

Pr(BetraylUser = Female) < Pr(BetraylUser = Male)

In words, this means:

* When responding to games, players choose to betray more when the opponent

(game starter) is female rather than male

" When responding to games, males chose to betray more than females

" A female starting a game will more likely choose to betray than a male starting

a game

" Players betray less when starting games against females than against males
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We look more closely in our data, and see the following:

Females starting games chose to betray 32.6% of the time, whereas males only

chose to betray 19.3% of the time. In responding to games, males betrayed 44.1% of

the time versus only 29.2% of the time for female respondents.

From 5-2, we see that females tend to cooperate more (77%) versus males (71.5%):

Figure 5-2: Male vs. Female
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If we disegard who start's the game, Table 5.3 shows overall gender vs. gender

cooperation statistics:

Table 5.3: Cross gender cooperation dynamics

Player Gender Opponent Gender Player Cooperation Rate

Male Male 0.676
Male Female 0.78
Female Male 0.677
Female Female 0.79

We see that when playing a female, people cooperate more than if they play

against a male. The highest cooperation rates occured when females played females,

while the lowest occured when two males played against each other. The two middle

rows suggest that males tend to cooperate more with females while females betray

males much more.
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5.2.4 Stage & Payoffs

We saw from our regressions that the stage (proxied via max payoff and cdratio)

was statistically significant in affecting a player's decision. The experiments from

[11] showed that a higher A3 ratio promoted more cooperation. Since it is not a

memoryless game, this would make sense. However, for stages with higher payoffs, it

would seem that the temptation of betrayal would be much higher (as the potential

gain would be greater).

Our data yields Table 5.4:

Table 5.4: Cooperation rates by stage

Cooperation Rate Games Played cdratio

Stage 2 0.725 763 2.5
Stage 3 0.746 574 4
Stage 4 0.798 630 -
Stage 5 0.576 816 2.5
Stage 6 0.673 766 4

Our data lines up very nicely to the results presented in [11]. Between the two

lowest (max payoff) stages, 2 and 3, stage 3 had a higher cooperation rate, correlating

with a higher cdratio. Likewise, for the two highest payoff stages, 5 and 6, stage 6 has a

higher cooperation rate, while maintaining a higher cdratio. The highest cooperation

rate came on stage 4, the chicken game, which has the highest cdratio. Thus, it makes

sense that in this non-memoryless setting, people are less willing to be betray on that

stage.

Another observation we see here is the effect of max payoff on betrayal rates.

Comparing stages with the same cdratio, we see that the stage with a higher max

payoff (i.e. higher temptation for betrayal) has a lower rate of cooperation.

5.2.5 Facebook Friend Status

One of the major benefits of utilizing the Facebook network as our proliferation

method is the ability to gather information about users and their opponents - one
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aspect being whether or not two users are friends. We used two metrics to determine

friendship between players:

1. Whether or not the two players were friends on Facebook

2. The number of mutual friends between two players on Facebook

We believed that the second option was actually a better proxy for how close two

people were since the criteria for "friending" someone on Facebook is not terribly

demanding.

However, as tables 5.1 and 5.2 show, these factors were not significant in a user's

game play. If we only look at mutual friends between players, we can then set different

thresholds (number of mutual friends) to see cooperation rates when the pair of players

share more mutual friends than the threshold versus when they share less than the

threshold.

Table 5.5: Effect of different thresholds of mutual friends on cooperation rates

Cooperation Rates

Threshold Above Threshold Below Threshold Difference
1 0.716 0.668 0.048
3 0.703 0.67 0.033
5 0.71 0.686 0.024

10 0.712 0.687 0.025
20 0.7 0.693 0.007
50 0.704 0.693 0.011

100 0.655 0.698 -0.043

From Table 5.5, we can confirm the statistical insignificance of friendship on coop-

eration rates. For the most part - having mutual friends leads to a higher cooperation

rate - however, it is not true that having more mutual friends would promote higher

cooperation rates.

5.2.6 Histories

The original topic of whether or not to show histories for players proved to be a

difficult decision. In the end, for rev. 1, we decided to "randomly" show histories
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between players - at least hoping it woud look random to the users. We would then

be able to see how viewing history would affect players' decisions.

We did a stage by stage analysis of how showing histories (and not the history

itself) would affect user choice.

Table 5.6: Stage by stage cooperation rates with vs. without history shown

Without History With History

Cooperation Rate Games Played Cooperation Rate Games Played
Stage 2 0.754 374 0.698 389
Stage 3 0.73 283 0.763 291
Stage 4 0.775 327 0.823 303
Stage 5 0.569 403 0.582 413
Stage 6 0.649 396 0.7 370

Table 5.6 shows that there is a slight edge towards cooperation when histories are

shown (except for stage 2).

If we restrict our data set to only when histories are shown, we can determine the

significance of the history itself (i.e. if a user has betrayed 20% or 80% in their last

five games).

Table 5.7: Regression on user strategy when histories are shown

user-strat-num t-statistic

user-gender 0.00239 (0.08)
user-age -0.00226* (-2.29)

opp-gender 0.0493 (1.41)
opp.age -0.000151 (-0.09)

fb-friend-num -0.129 (-1.59)
mutual-friends -0.000210 (-0.28)

max-reward 0.00438 (1.82)
cdratio 0.00731 (0.40)

user-history 0.00523*** (16.07)
opp-history 0.000672 (1.62)

_cons 0.303** (3.13)
N 1109

t statistics in parentheses
=*p < 0.05 **p < 0.01 ***P < 0.001
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Table 5.8: Regression on opponent strategy when histories are s

opp-strat-num t-statistic

user-gender -0.00837 (-0.43)
user-age -0.000373 (-0.68)

opp-gender 0.120*** (3.66)
opp-age -0.000448 (-0.52)

fbifriendnum -0.0870 (-1.14)
mutual-friends 0.000644 (0.92)

max-reward -0.00224 (-1.37)
cdratio -0.00762 (-0.61)

user-history 0.000697* (2.56)
opp-history 0.00802*** (27.88)

_cons 0.121 (1.91)
N 1109

t statistics in parentheses
=*p < 0.05 **P < 0.01

hown

***P < 0.001

From tables 5.7 and 5.8, we can see that when histories are shown, users (respon-

dants to games) are heavily influenced by their own past actions, while opponents

(game starters) are influenced by their own past actions. The tables suggest that

players are not swayed much by their counterparty's histories, and hold steady to

their own patterns.

Shortcomings

Despite these statistically significant results, they are not 100% straightforward.

There necessarily exists some omitted variable bias in these results. For one, users

were not informed on when histories were shown (hoping that they would assume

this system was random). Thus, a user could not draw the conclusion that if a game

against a player revealed that player's history, then the next game against the same

player would also show histories. Furthermore, players were not informed that history-

showing was symmetric, i.e. if I can see your history, you can see mine. Therefore,

when players decide whether or not to betray, given that a history is shown, the

"reputation" effect comes into play. Because of the lack of information to players

regarding histories, different players proabably reached different conclusions - and

thus reacted differently to the "reputation" effect.
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5.2.7 Other Ineffective Factors

The Facebook network provided us a number of other fields to record as well, including

religion, education, etc. However, these fields on Facebook are not required, and thus

we did not have this information on a majority of people. The other field that we did

know for everyone was the age field. As shown in tables 5.1 and 5.2, a player's age

was not significant in determining game play.

5.3 Pairs

We can look at repeated interactions between pairs of people. Due to the fact that we

have multiple levels and players don't play at the same time, the chronological order

of players' decisions is hard to track. However, we can still look at overall cooperate

and defect rates for extended interactions. We restrict the data to pairs of players

that have played at least 20 games between them. 1

Table 5.9: Cooperation rates between pairs of players with at least 20 games played
against each other

Player 1 ID Player 2 ID P1 Coop Rate P2 Coop Rate Games Played

231 68 1.000 0.963 27
2 22 0.731 0.654 26

231 2 0.896 0.483 29
228 223 0.955 0.818 22

2 37 1.000 1.000 24
2 11 1.000 0.913 23

Table 5.9 is very telling - especially in the IPD context. We see that there is a

majority that perfer to Cooperate when they play against the same opponent for a

large number of games. The pair [231, 2] is the only exception. The reason for this

discrepancy lies in the fact that 231 was an AliC bot. Thus, as soon as player 2 caught

on, the best strategy would be A1lD which is what caused the dip in cooperation rate.

'There was one pair that had 93 games played between them. They had colluded such that for
one round, one player would always Cooperate while the other always Betrayed, and then the next
round they would switch roles. They are not counted in this data
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5.4 Winners

We utilized the Facebook network for many reasons - one of them being that friends

are competitive with friends. Due to this competitive edge, people playing our game

would most likely want to beat their friends (hence the existance of a leaderboard).

In this section, we will briefly look at the top players and how they played. Again,

similar to the analysis of pair play in 5.3, we are limited to looking at sketches of

overall play.

Table 5.10: Statistics of Top Players

Player ID Prison Time Coop Rate # of Unique Opps. 2nd Longest Pair Streak

108 24 0.000 19 3
166 24 0.240 13 2
74 25 0.351 24 5

113 26 0.000 19 3
110 26 0.459 43 15
224 27 0.372 58 2
41 28 0.000 34 2

When we see Table 5.10, we note a few ingredients to winning shared amongst

the top players.

5.4.1 Betray, betray, betray

There is not a signle player in the top 7 that has a cooperation rate higher than 50%

whereas the overall cooperation rate for players was high up in the 70s. We see that

taking advantage of others cooperating is key in winning and getting ahead.

5.4.2 Play one, move on

We tracked the number of unique opponents as well as the second longest streak of

game playes amongst a pair of players. We note that the number of unique opponents

is quite high (compared to the time in prison) for all of these top players. 2

2Many of these players finished the game (got out of prison) multiple times, thus their unique
opponent numbers might be a bit high.
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Furthermore, we tracked the second longest streak of games between pairs of

players. For instance, for the top player, 108, we looked at all of the games that he

played, and took note of the second largest number of games played between him

and the same opponent. We looked at second largest due to the fact that the actual

largest number was due to playing the AliC bot - and exploiting it repeatedly.

From these statistics, we see that the top players maintain a strategy of playing

different opponents, and never playing too many games against the same opponent.

5.4.3 How to Win

We can now start to form a strategy that these top players utilize:

* Play different players

" Betray them

* Never play the same player too many times - move on to new opponents

This strategy works nicely in our environment as we saw the high overall cooper-

ation rates, as well as start effects of cooperation.
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Chapter 6

Conclusion

Here, we will briefly talk about the design and implementation of our Facebook game.

Then, we will summarize our results and analysis, and comment on some of the

shortcomings of these results - and suggestions for future improvements.

6.1 Design and Implementation

We created a Facebook game to run the Iterated Prisoner's Dilemma in a social set-

ting. The Facebook network provided us with a number of independent variables

(gender, age, etc.) to allow us to study the social effects of playing the IPD. Further-

more, being based on Facebook introduced a competitve aspect between players that

hopefully promoted "smarter" play by users.

We implemented the game in Ruby on Rails, hosted on Heroku. The analysis of

the data was done via Python.

6.2 Results and Analysis

Our first version (rev. 1) garnered over 800 user sign ups and 3,000 completed games.

Our analysis showed an overwhelming percentage (over 70 percent) of cooperation

from players. Furthermore, we saw that gender and payoff (stage) played significant

roles when users played. Other factors such as age and whether or not two users were
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friends did not influence players' decisions.

When we analyzed the top players of our game, we noticed a pattern of game play:

* Play different players (don't play the same player too much)

" Betray

This was extremely effective against a predominantly cooperative user base. Fur-

thermore, by varying opponents, these top players could betray without having to

deal with the repercussions that may have resulted due to access to histories and

reputation effects.

6.3 Shortcomings and Improvements

We conducted our experiment on the Facebook network, and thus were not able to

use a "controlled setting." Therefore, we were not able to study the chronology of

decision making of players (and how it evolved).

Despite this shortcoming, we were still able to analyze long-term pair relationships

as well as winning strategies. Furthermore, the social setting afforded us new variables

that would not be available in a controlled setting - yielding great results and analysis

from a social perspective as well.
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Appendix A

Tables

Cooperate Betray
Cooperate (3, 3) (-2, 5)

Betray (5, -2) (0, 0)

Table A.1: Payoff diagram for the Kitchen.
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Cooperate Betray
Cooperate (6, 6) (-2, 8)

Betray (8, -2) (0, 0)

Table A.2: Payoff diagramfor the Cell.

Cooperate
Betray

Cooperate

(6, 6)
(12, 0)

Betray
(0, 12)

(-12, -12)

Table A.3: Payoff diagram for the Yard.

Cooperate Betray
Cooperate (12, 12) (-8, 20)

Betray (20, -8) (0, 0)

Table A.4: Payoff diagram for the Hospital.

Cooperate Betray
Cooperate (12, 12) (-4, 16)

Betray (16, -4) (0, 0)

Table A.5: Payoff diagram for the Office.
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Appendix B

Figures

:ure B-1: The landing page for our
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Figure B-3: Stage 1 - The Dining Hall
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Figure B-6: Stage 4 - The Yard

Figure B-7: Stage 5 - The HosDital
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Figure B-9: User's statistics on games played
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Figure B-10: Leaderboard of all users
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Figure B-11: Recommended challenges
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