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Abstract

We present a novel approach to solving SAT problems in parallel by parti-
tioning the entire set of problem clauses into smaller pieces that can be solved
by individual threads. We examine the complications that arise with this
partitioning, including the idea of global variables, broadcasting global con-
flict clauses, and a protocol to ensure correctness. Along with this algorithm
description, we provide the details of a C++ implementation, ParallelSAT,
with a few specific optimizations. Finally, we demonstrate that this approach
provides a significant speedup on a set of SAT problems related to program
analysis.
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Chapter 1

Introduction

The Boolean satisfiability problem (SAT) is a classic computer science prob-

lem. Along with its many theoretical appearances, it appears in many ap-

plication contexts, including electronic design automation (EDA) and model

checking [MS08]. Unfortunately for these applications, SAT also has the well-

known property of being an NP-complete decision problem. Therefore, a large

amount of research has been put into reducing the exponential search space of

SAT. Indeed, modern SAT solvers can handle large amounts of variables and

clauses by exploiting the structure of the problem.

On a different note, computer architecture is currently going through "if not

a revolution, certainly a very vigorous shaking-up" [HS08]. This shake-up is

coming in the form of multi-core architectures. As we fit more and more tran-

sistors on a processor in accordance with Moore's law, we are still limited by

their clock speed, which cannot be increased due to overheating. The current

solution is to put more processors (cores) on a single chip which can commu-

nicate through shared hardware caches.
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With these new parallel systems, researchers have sought to harness their

power to solve SAT problems. We present a new approach to solving SAT

problems in parallel using the idea of partitioning the problem into smaller

pieces that can be solved by individual cores. We will first look at the influences

of our SAT solvers, including sequntial SAT solvers and the current parallel

approach. Next in chapter 2, we will describe the algorithm specifics, break-

ing it down into several modules. In chapter 3, we examine the actual C++

implementation of the above algorithm, showcased with a few optimizations

that significantly boost performance. Chapter 4 will look at some benchmarks

to see how our system fares versus modern state of the art solvers. Finally,

chapter 5 will include some ideas for future work as well as some concluding

remarks.

1.1 Background

1.1.1 Serial SAT Solvers

We will briefly describe the structure and workflow of a typical serial conflict-

driven clause learning (CDCL) SAT solver, whose inner workings were initially

proposed by the CHAFF solver [MMZ+01] and the enhanced implementation

of the Davis-Putnam algorithm by Bayardo and Schrag [JS97]. Our motivation

for this explanation is mainly that the implementation of our algorithm is built

on top of an existing Minisat distribution, maintaining the same modules that

compose a CDCL solver. For a more complete description, consider reading

the original Minisat paper [ES03].

1. Propagation - Taken mainly from CHAFF, the propagation process in-

14



volves the setting of variables that are forced by the previously set vari-

ables. When a variable is forced to be set to two different values, we en-

counter a conflict, and enter the analysis module. In most SAT instances,

the majority of the time in a CDCL solver is spent during propagation.

2. Analysis - Modern solvers build on the ideas presented by the GRASP

algorithm [MSS96], in which a conflict is analyzed to produce a new

learnt clause, and a state of assignments to revert the solver to, which

is called backtracking. This new learnt clause is used to prune down the

search space.

3. Decision - When there is no unit information to propagate, a variable,

according to some set of heuristics, is set to some arbitrary value. We

call this type of variable a decision variable. The number of decision

variables in the current trail is referred to as the decision level.

The execution finishes when a top-level (decision level zero) conflict is found

(unsatisfiable), or a satisfying assignment is found (satisfiable). A summary

of these modules can be found in Figure 1-1.

1.1.2 Portfolio Parallel SAT Solver

The standard parallel SAT solver is built around the portfolio approach. The

strategy behind this approach is to give each thread a copy of the entire SAT

instance. Next, each thread searches on their own instance (usually with a

different random seed or a different algorithm in an attempt to give each a dif-

ferent search space), and the system finishes when one thread has found either

satisfiable or unsatisfiable. As an optimizaiton, as threads learn clauses, they

can broadcast these clauses (typically if they are sufficiently small, as smaller

15



Input File

Top level All assigned

Conflict found Assume assignment
Propagate 4

Non-top levelyo ""

Learn conflict clauseoe clause No propagation leftand backtrack No propagation left

Analyze Decide

Figure 1-1: A diagram of the major modules of a modern-
day CDCL SAT solver. Layout taken from http://www.mpi-
inf.mpg.de/vtsa09/slides/leberre1.pdf.

clauses generally give more information on the instance) in order to help the

other threads in their search process. A more in depth explanation can be

found in the SATzilla paper [XHHLb].

The main problem with this approach is the space needed as we scale up

the algorithm. As we add on more and more cores, we incur a O(n), where n

is the number of threads, space cost as we are forced to copy the entire SAT

instance into each solver. We will attempt to create a solver that is orthogonal

to a portfolio solver such that it will be viable to run both approaches on the

same cluster, achieving better results in terms of space and time than simply

running one approach alone.
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Input File

Copier

input File Input File ,,,Input File

Solver Solver ,t ,a Solver

Figure 1-2: A sample portfolio architecture.
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Chapter 2

Description of Algorithm

2.1 Briefing

Outlined below is the overall description of the algorithm. As mentioned

above, our implementation is based on top of Minisat, so we will describe the

algorithm in terms of the modules built into Minisat (and most modern SAT

solvers).

2.2 Partitioning and Global Variables

For reference, consider the following SAT problem in conjunctive normal form

(CNF): the conjunction (AND) of m clauses w1 ... w,, each of which is a dis-

junction (OR) of one or more literals, which is the occurence of one of n binary

variables x1 ... x, or its compliment.

The first step in the workflow is the partitioner module, which is not present in

a sequential SAT solver. The partitioner's job is to create k partitions, where

19



k is equal to the number of threads desired by the user. Each ki partition con-

tains some disjoint subset of the m clauses which will be given to a particular

thread as its own, smaller, SAT instance to solve.

Input CNF

Set of clauses

Partition 1 Partition 2

Partition 3

Solver Solver Solver

Figure 2-1: A sample partition with three threads.

By splitting up the problem into pieces, we hope to gain a speedup by

having each thread work on a portion of the entire problem. If all partitions

20



are found to be satisfiable and are consistent in the assignment of all variables,

then the entire instance is satisfiable, and if just one partition is found to be

unsatisfiable, then the entire instance is unsatisfiable.

For example, consider the following small SAT problem, with only five clauses

and four variables:

W1 = XIV X2

W2 = V 2

3 X 1 V 2

4 = V x 2

W5  X3 V x 4

w, A Wi2 A W3 A wJ4 A wJ5

As the reader might notice, this SAT instance is unsatisfiable (due to clauses

w1, w2, L3, W4, which in layman's terms requires that x1 and X2 be simultane-

ously the same and different values, which is, of course, impossible).

For simplicity, say we want to split this problem into two partitions (meaning

we have two threads solving this SAT problem). A partitioning algorithm could

split this problem as shown in Table 2.1, with thread 1 receiving Wi A w2 Aw 5,

and thread 2 receiving w3 Aw 4.

Thread 1 Thread 2
X1 V X x 1 V X 2

zi vx2 IV T_T1V X2  71V2
x 3 V x 4

Table 2.1: A concrete partitioning example with 2 threads
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Now we encounter the fundamental dilemma with this new approach to paral-

lel SAT solving. Thread 1 could find the satisfying assignment x1, x2, x3 , x4 =

TRUE, and thread 2 could find the satisfying assignment x1 = TRUE, x 2 =

FALSE, thereby concluding that the entire instance is satisfiable, even though

we clearly see that the instance is unsatisfiable. The problem, as the reader

may notice, is that the threads have a different value for a variable that they

share: x2. The rest of the algorithm is designed around solving this problem.

2.3 Global Variables

For now, however, we will focus on the partitioner, and to do so we define two

terms:

1. Global variables: variables that are in at least two partitions. In the

above case, x, and x2 are global variables.

2. Local variables: variables that are in exactly one partition. In the above

case, x3 and x4 are local variables to thread 2.

In our algorithm, we have a shared global store, which is a mapping of

global variables to their current value, either FALSE or TRUE. Each thread is

able to read and write to this global store. Similarly, each thread has their

own local store, where they store the value of the local variables. Much of the

mechanisms in this algorithm are built around maintaining eventual consis-

tency in each thread's view of the values of the global variables, ensuring that

when we terminate, each thread agrees on the set of assignments.

In general, a good partitioning algorithm will attempt to accomplish two

22



goals: balance the work amongst the threads and minimize the number of

global variables. The first of these goals is difficult: it is hard to determine

which partitioning splits the work up evenly amongst the threads. The second

of the these goals will be examined in more depth in later sections, but at

a high level, minimizing global variables reduces the communication between

threads, which can be a bottleneck in the algorithm. The number of global

variables is a prime indicator of how fast this approach will run: zero global

variables cuts the problem size in half for two partitions, while have every vari-

able be global gives little benefit and slows down the solving through constant

communication between threads.

We note that the rest of the algorithm does not depend on any notion on how

the clauses are partitioned. Therefore, any algorithm to fit an application's

needs can easily be interchanged into the system to optimize performance.

The goal of this project was not to create a strong partitioning algorithm, so

a library called METIS [KK95] was used. We also present a much simpler

algorithm which creates a "natural" partition. Both of these will be explored

in the Implementation section.

2.4 Search

The two policies that must hold during the search process are the following:

1. If a variable is declared a forced variable (set through propagation rather

than decision), it must be implied only by the thread's own local trail

and not be related to the global store.

2. Whenever a global variable is changed assignments in the global store

23



(setting to TRUE from FALSE, or set to FALSE from TRUE), a conflict

clause consisting of only global variables must be broadcasted to all

threads explaining why the current global store is incompatible with a

satisfying assignment. This allows other threads to change their local

trail accordingly.

The goals of these policies are twofold: any clauses learned by a thread are

actually valid and are independent of the constantly changing global store,

and at the end of the execution, each thread will have the same local value for

each of the global variables.

2.5 Decision

The first module of the search algorithm that we will focus on is the decision

module. As the reader may recall from above, when a solver no longer has any

unit information to propagate, it chooses an unset variable and assigns it to an

arbitrary value. This will either produce new unit information to propagate,

cause a contradiction in the local trail, or find a satisfying assignment.

Modern day SAT solvers use many heuristics (the most popular being ac-

tivity: how often a variable is seen in the search, usually during the learning

process) to choose which variable is the next to be set in the decision process

[MMZ+01]. Our algorithm uses the same heuristics, but with one very impor-

tant exception, all global variables are picked before any local variables. Note

that this does not imply that all global variables are assigned values before any

local variables are assigned values, as local variables can still be set through

the propagation of global variables.
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Why do we pose this added restriction of deciding global variables before

local variables? The primary reason is associated with the learning module of

the solver. When we find a contradiction in our set of assignments that some

global variable gi is forced to have two different values, then we are assured

that the reason for this contradiction is entirely because of decisions of global

variables. Thus, a learned clause produced by an analysis procedure can be

composed of entirely global variables that we can in turn broadcast to other

threads.

When we have chosen which variable, xi, to set next and we want it to be

set to an arbitrary value v. Our algorithm's response can be divided into four

subcases:

1. xi is a local variable: Setting xi does not affect any other thread, there-

fore we can simply set xi to v locally and continue as normal.

2. xi is a global variable:

(a) xi is not set in the global store: We are the first to set this variable!

Atomically set xi to v in the global store and in the local trail and

continue the search.

(b) xi is set to v in the global store: It just so happened that xi is

already set to the desired value, therefore we can set xi to v locally

and continue.

(c) xi is set to T in the global store: Because the decision process is

arbitrary, we minimize the disturbance in the global store by taking

25



the value and setting xi to U locally.

As shown in the above cases, the general theme of the decision module is that

it doesn't particularly matter which value we decide to take when setting a

new decision variable, so it is least intrusive to take the value already in the

global store if possible.

2.6 Propagation

The propagation module of a solver is a function that propagates unit infor-

mation as dictated by the set of clauses and current assignments.

Consider the situation when we discover through propagation that xi must

have the value v. Once again, we can characterize our algorithm with a case

analyis:

1. xi is a local variable: Similar to the decision module case, setting xi

has no affect on other threads, so we can simply set xi = v locally and

continue propagation.

2. xi is a global variable:

(a) xi is not set in the global store: Same as the decision module, this

thread happened to be the first to want to set xi, so it can atomically

set xi = v, without worrying about consistency among the threads.

(b) xi is set to v in the global store: Once again, because the value

in the global store is the desired value, the thread can set xi = v

locally and be consistent with the global store.

26



(c) xi is set to U in the global store: Now we reach the first non-trivial

case. We cannot simply take the value in the global store as we

did in decision module and continue with propagation because then

our local assignment would be invalid. We will examine this case

in further detail below.

2.6.1 Handling global store conflicts

There are two scenarios when a local assignment is incompatible with the

global store, during propagation as shown above, and during backtracking

which will be discussed in the Analysis and Backtracking section. In either

case, we must resolve the conflict. Specifically the thread can either backtrack

to an earlier level and begin searching again with the global store's value or

it can change the value of the variable in the global store and broadcast the

"reason" why this variable had to be changed. Our algorithm adopts the sec-

ond approach. We found the first approach could easily lead to infinite loops

as each thread is waiting for the overall situation to change, which, of course,

never does if no thread is changing the state of the global store.

Therefore, when a thread learns through propagation that the global store

is inconsistent, it flips the variable's value in the global store (either from

TRUE to FALSE or FALSE to TRUE) and broadcasts a clause explaining why

this variable was forced to be switched. Now the question arises, what literals

should the broadcasted clause contain? To answer this, we use the notion of

an implication graph as first described by the GRASP SAT solver [MSS96].

As described in the above paper we can create an implication graph, I, by

defining the vertices and edges as follows:

27



1. Each vertex in I corresponds to a variable assignment xi = v.

2. The predecessors of xi are the set of variables that forced that variables

assignment. For example, if a thread had the clause X1 V x2 , and x1 =

FALSE, then x 2 = TRUE is forced and there is an edge from x1 to X2 . A

decision variable, on the other hand, has no predecessors because there

is no set of variables that forced its assignment; it was just an arbitrary

choice.

3. An extra vertex corresponding to the conflict in the global store, which

is the negation of some vertex already in I.

As "Efficient Conflict Driven Learning in a Boolean Satisfiability Solver" [ZMM01]

describes, any cut that separates the conflict variable and the decision vari-

ables of this graph will be a valid learned clause that is implied by the original

SAT instance. However, we have the additional constraint that our clause

must consist of strictly global variables. Therefore, we cannot simply take the

minimum-cut (smaller clauses convey more information than larger clasues)

like most modern SAT solvers do, as it may contain local variables.

The simplest solution, and the one that we selected, is to take the cut that

contains the entire set of decision variables. Therefore our conflict clause will

be of the form d V d2 ... V d, V ci, where di is the set of decision variables and

ci is the literal that is forced locally. Our choice of deciding global variables

has vindicated itself now: if we find a conflict with the global store through

propagation, then our set of decision variables is entirely global.
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Claim: If we encounter a conflict in the global store while setting a global

variable, gi, through unit propagation, the set of decision variables is com-

posed entirely of global variables.

Proof. Assume for the sake of contradiction that our set of decision variables

is not entirely global. This, of course, implies that there is at least one local

variable, Li, in the set of decision variables. Since we are setting gi through

unit propagation, this implies that it was not set by the decision process.

However, this violates our process of picking global variables first, as it would

have been chosen before Li. 0

Let's look at an example for concreteness and clarity. Consider the follow-

ing set and division of clauses with two threads (variables labeled with gi and

li are global and local variables, respectively).

Thread 1 Thread 2

-- V T2 V Y3 V l1  g1 V 92

1 V - 3g V g 4

Y3 V 12

Consider the following trail for thread 1 (we adopt the convention that capital

letters are decision variables while lower case letters are forced variables set

through unit propagation): G, = TRUE, G2= TRUE, G3 = TRUE, and 11 =

TRUE. As we can see by the clauses for thread 1, this forces the assignment

94= FALSE. However, suppose that thread 2 has already set G4 = TRUE, as

shown in Figure 2-2, in its search process.

Therefore, thread 1 will encounter an inconsistency in the global store. Thread

1 creates the implication graph shown in Figure 2-3. As proposed, we take
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Global Store

g, = TRUE

gz = TRUE

g3=TRUE

g4 = TRUE

G, = TRUE, G2 = TRUE, G3 = TRUE, & = TRUE, I2= TRUE, g4 = FALSE G4 = TRUE

Thread 1 local trail Thread 2 local trail

Figure 2-2: Thread 1 encounters that its local trail is incompatible with the
global store.

the cut that includes the global conflict variable as well as the set of decision

variables, producing the clause T- V Tj V T2 V T3. Intuitively, this clause can

be seen as a clause representing the statement: our set of decision variable

assignments AND g4 being TRUE is NOT a compatible assignment. Using De

Morgan's Law we can reduce that statement to the above clause.

Now, thread 1 flips the variable g4 in the global store from TRUE to FALSE,

adds the conflict clause to its own database and broadcasts the clause as the

reason why this variable was forced to be flipped. Finally, thread 1 continues

propagation as normal. A summary of this process can be found in Figure 2-4
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G1 = G2 = G3 =
TRUE TRUE TRUE

Cut to create conflict clause

TRUE TRUE

FALOE Conflict Node

Figure 2-3: Thread l's implication graph with the scenario described above.
It takes the cut encompassing all of the decision variables, creating the conflict
clause Y- V Yi V Y2 V 3.

Global Store

g,=TRUE

g2=TRUE

g3 =TRUE

g4= FAL SE

G, =TRUE, G2 TRUE, G3 = TRUE, h = TRUE, 2= TRUE, g4 = FALSE G4 = TRUE

Thread 1 local trail Thread 2 local trail

Figure 2-4: Thread 1 flips the value in the global store and broadcasts a clause
explaining the switch.
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2.7 Analysis and Backtracking

The analysis and backtracking module of Minisat and other SAT solvers is

largely based off of ideas presented in the GRASP SAT solver [MSS96]. The

workflow of this module is to first create a learned clause based on the conflict

dictated by the set of decision variables, then backtracking to some decision

variable and pushing it as forced due to the new learnt clause. Because conflict

analysis does not effect the state of any variables in the system, we can use

the same procedure without modification. However, the output of the analysis

procedure, a conflict clause and a level to backtrack to, requires a little more

attention.

Let w, be the learned clause created by the conflict analysis procedure, and

k be the level that we should backtrack to according to this same procedure.

Note that k is not necessarily equal to the current decision level minus one,

as GRASP has shown, it is sometimes more efficient to jump back multiple

decision levels at a time. Finally, let d[k] be the decision variable at level k,

and v be the value we will set to d[k] after we backtrack.

As is customary by now, we split into cases (and subcases!):

1. d[k] is a local variable: Backtracking a local variable has no bearing on

the global store, so we can safely push d[k] as forced with w, as the reason

clause.

2. d[k] is a global variable: We now want to set d[k] to v in the local trail

(as a forced variable), as well as in the global store. Note that this

could involve changing the current value in the global store. As with all
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cases when flipping a variable in the global store, we must broadcast a

clause explaining why this variable was forced to be flipped. However,

we encounter a subtle problem: the analysis procedure has no notion of

local and global variables, and could produce a clause, wl, which contains

a mixture of both. We must maintain the invariant that all broadcasted

clauses consist entirely of global variables, so we divide into two subcases:

(a) wi consists of entirely global variables: It just so happened that our

conflict analysis procedure produced an acceptable clause that we

can broadcast. Atomically set d[k] = v and broadcast wi.

(b) wi is mixed with global and local variables: While we can add this

clause to our own local database, we cannot broadcast wi. There-

fore, we need to create a new clause that explains why d[k] is set

to v in the global store. Fortunately, this is the same problem as

creating a global conflict clause during propagation (Section 2.6.1),

and we can use the exact same procedure to produce a new conflict

clause wg. Atomically set d[k] = v and broadcast wg.

Thus, we abide by our two invariants: whenever we backtrack and push a

global variable as forced (thereby changing its value in the global store) it

was entirely from our own set of local clauses and we broadcasted a clause

explaining why it was forced to be changed.

2.8 Correctness Protocol

Throughout the search process, threads will concurrently be changing global

variables as they attempt to find a satisfying assignment. At the end of the

execution, all threads must have the same value locally for each global variable
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compared to the global store and all threads must return the same result (ei-

ther satisfiable or unsatisfiable). Therefore, we must develop a protocol for the

threads to maintain eventual consistency, that is, at the end of the execution,

these properties will hold true.

2.8.1 Ensuring global variable consistency

As described above in the propagation module, as a particular thread is prop-

agating it may discover that it is forced to set a global variable to a different

value than in the global store. To ensure progress and maintain consistency,

we must broadcast a conflict clause describing why this variable has changed.

This was also shown to be the case in the Analysis and Backtracking section.

When another thread receives such a clause, there must be a mechanism for

the receiver to know which global variable was changed such that it is not

forced to scan the entire global store to see if it is out of sync. While many

mechanisms are feasible, we chose to make the first variable of the broadcasted

conflict clause the global variable that was changed by the broadcaster. To

make this more concrete, consider the following clause received by a thread:

T1 V -2 V g3 ... V gn

As mentioned above, the first variable, g1 , is designated to be the variable that

flipped values in the global store by the broadcasting thread. At this point,

we have three cases:

1. gi is not in the receiver's trail: In this case, the receiver can simply
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add the broadcasted clause to its database and proceed with search as

normal.

2. g1 is in the receiver's trail, but its value is the same as the value in the

global store: This can occur in executions where a variable is changed

values many times before the broadcasted clause is actually assimilated

by the receiver. Because the value is as the thread desires it, we can

proceed with search as normal.

3. g1 is in the receiver's trail, and its value is different from the local store

of the receiver: The receiver must backtrack to the level in which this

variable was set. Our implementation immediately sets -g as a decision

variable as an optimization, although this is not necessary.

Once again, we note that every time a global variable is flipped in the global

store, a clause is broadcasted explaining the change. Therefore, as long as

each thread receives every broadcasted clause, at the end of the execution

every thread will have the same values for the global variables in their local

trail.

2.8.2 Search result consistency protocol

Now we proceed to the problem of having each thread return the same value

at termination: either satisfiable or unsatisfiable. At first glance this seems

to be a rather simple protocol. However, developing a protocol in which each

thread has equal responsibilities while still maintainining that each thread has

the same eventual view of the global variables proved to be unwieldy and

confusing. Thus, we settled on a master/slave protocol where one thread is

designated the master and the rest are slaves. Before we delve into the respon-
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sibilities of the parties, let us first introduce the different types of messages

that are used in the protocol:

1. FOUNDSATISFYINGASSIGNMENT : A message sent from the slave to

the master indicating that they have found a satisfying assignment.

2. FOUNDUNSATISFIABLE : A message sent from the slave to the master

indicating that they have found their instance to be unsatisfiable.

3. STILL FINISHED : A message sent from the master to a slave asking

whether the slave currently has found a satisfying assignment. This

message has an a monotonically increasing sequence number associated

with it.

4. FINISHED _ACK : A message sent from the slave to the master indicating

that they still have a satisfying assignment. In other words, the slave

has not received a broadcasted clause that forced it to backtrack. This

message also has a sequence number attached to it that is equal to the

sequence number of the STILLFINISHED message that triggered it

(explained in detail below).

5. NOT-FINISHEDACK : A message sent from the slave to the master

indicating that they no longer have a satisfying assignment. This can

occur when a broadcasted clause forced them to backtrack.

6. UNSATISFIABLE : A message sent from the master to a slave indicating

that the entire instance is unsatisfiable.

7. UNSATISFIABLE _ACK : A message from a slave to the master indicating

that they have received the UNSATISFIABLE message.
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8. RETURNSAT : A message sent from master to a slave indicating that it

is safe to return satisfiable.

9. RETURNUNSAT : A message sent from master to a slave indicating that

is is safe to return unsatisfiable.

The responsibilities of each party is as follows:

Slave: When a slave finishes its search process, it can either find satisfiable or

unsatisfiable. We begin with the unsatisfiable case as it is more straightfor-

ward simply because if one thread finds unsatisfiable, then we know the entire

instance is unsatisfiable, which is not true of a satisfiable result.

If a slave finds its partition to be unsatisfiable, the protocol is as follows:

1. Send a FOUNDUNSATISFIABLE message to the master.

2. Wait for an UNSATISFIABLE message from the master.

3. Send an UNSATISFIABLEACK message to the master.

4. Wait for a RETURNUNSAT message from the master and return unsat-

isfiable.

Similarly, if any slave ever hears an UNSATISFIABLE message from the

master, it responds with an UNSATISFIABLEACK and returns unsatisfiable

when it receives a RETURNUNSAT message.

Now we move on to the satisfiable case. As mentioned above, if one thread

discovers a satisfying assignment for their partition, it does not necessarily

mean the entire instance is satisfiable. Therefore, the system must ensure two
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properties before it finally returns satisfiable: every thread has found a sat-

isfying assignment and every thread has the same snapshot of values for the

global variables in their local trail. With this in mind, the protocol for when

a slave finds a satisfying assignment is as follows:

1. Send a FOUNDSATISFYINGASSIGNMENT to the master.

2. If the slave begins searching again due to a broadcasted clause, send NOT

_FINISHEDACK to the master and begin searching again.

3. Wait for a STILL FINISHED message (with some sequence number n)

from the master.

4. If the slave is not currently searching, send back a FINISHED-ACK with

sequence number n.

5. Wait for a RETURNSAT message from the master and return satisfiable.

Note that it may be possible that a slave can send a FINISHEDACK with

a sequnce number n and not receive a RETURNSAT message. This occurs

when the master thread believes all threads are finished, but in reality some

are still searching. Only in the case where each slave has responded to the

same sequence number will the master send back the RETURNSAT message

(explained in more detail below).

The summary of the entire protocol for each slave thread can found in the

pseudocode of Figure 2-5 and for the more pictorially inclined, examine Fig-

ure 2-6.
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Master: The single master thread has more responsibilities than the slave

threads. Its duties include tracking the state of the slave threads along with

controlling when slave threads are allowed to return a value from their search.

Once again, we will examine two cases, unsatisfiable and satisfiable results.

In the unsatisfiable case, we can break this down further into two subcases: A

slave finds unsatisfiable (i.e, the master thread receives a FOUND _UNSATISFIABLE

message) or the master thread itself finds unsatisfiable. In either case, the

master thread uses the following protocol:

1. Send an UNSATISFIABLE message to each slave thread.

2. Wait for an UNSATISFIABLE _ACK message from each slave thread.

3. Send a RETURNUNSAT message to each slave thread and return unsat-

isfiable.

The satisfiable case is a bit more involved. For this case, the master thread

needs to store two values: an integer sequence number, seqrnum, that is

monotonically increasing and an array of boolean values, finished-threads, of

length equal to the number of threads. As the name might indicate, if fin-

ished-threads[i] is set, then the master thread believes thread i has found a

satisfying assignment (note that this implies that the threads are numbered

from 0 to n - 1). Using these data structures, the protocol is as follows:

1. Set finished-threads[my-thread-id] to TRUE.

2. If you hear a FOUND-SATISFYING _ASSIGNMENT message from thread

i, set finished-threads[i] to TRUE.
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3. If the slave begins searching again due to a broadcasted clause, set fin-

ished-threads [mythread-id] to FALSE and begin searching again.

4. When all bits are set in finished threads, send a STILL FINISHED mes-

sage to each slave with sequence number equal to seq.num, then incre-

ment seq-num.

5. If you hear a FINISHEDACK from each slave with the correct sequence

number, send RETURN-SAT to each slave and return satisfiable.

6. If you hear a NOT -FINISHEDACK from thread i, set finished-threads[i]

to FALSE and go to step 2.

An explanation of the above protocol is probably in order. The general strat-

egy is that the master thread waits until it believes all threads, including itself,

have found a satisfying assignment. When it has heard from all threads, it

sends out a STILL FINISHED message asking if the slaves are truly finished.

If all threads agree to a particular sequence number, then we know that all

threads have the same set of values for the global variables, and we are safe to

finish.

The summary of entire protocol for the master thread can be found in the

pseudocode of Figure 2-7.
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1: function SLAVESEARCH

2: loop

3: if find unsatisfiable then > I found unsat!

4: Send FOUNDUNSATISFIABLE to the master thread

5: while waiting for UNSATISFIABLE from the master do

6: sleep

7: end while

8: Send UNSATISFIABLEACK to the master thread

9: while waiting for RETURN-UNSAT from the master do

10: sleep

11: end while

12: return unsatisfiable

13: end if

14: if hear UNSATISFIABLE from the master then > Someone else found

unsat!

15: Send UNSATISFIABLEACK to the master thread

16: while waiting for RETURNUNSAT from the master do

17: sleep

18: end while

19: return unsatisfiable

20: end if

21: if find satisfiable then

22: Send FOUNDSATISFYINGASSIGNHENT to the master thread

23: while waiting for STILL-FINISHED message from the master

thread do
24: Read messages and begin searching again if read clause, send

NOTFINISHEDACK to master

25: end while

26: Send FINISHEDACK to the master thread

27: while waiting for RETURNSAT do

28: sleep

29: end while

30: return satisfiable

31: end if

32: end loop

33: end function

Figure 2-5: Protocol for result and global variable consistency for each slave

thread.
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Hear RETURNUNSAT

Wait for RETURNUNSAT
from master UNSATISFIABLE

WAITING Hear UNSATISFIABLE from
master, send

UNSATISFiABLEACK

Hear UNSATISFIABLE from
the master, send

UNSATISFIABLEACK 
FOUND

UNSATISFIABLE

Wait for UNSATISFIABLE
from master

Found unsatisfiable, send
FOUNDUNSATISFIABLE to

master

Search

Hear broadcasted clause, Found satisfiable, send
send NOTFINISHED ACK FOUNDSATISFYINGASSIGNMENT

to master to master

FOUND
SATISFIABLE

Hear STILL FINISHED (seqnum n)
from master, send back

FINISHEDACK (seqnum n)
Hear RETURNSAT

Figure 2-6: The slave protocol in state machine form.
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1: function MASTERSEARCH

2: loop

3: if find unsatisfiable OR hear FOUNDUNSATISFIABLE then

4: send UNSATISFIABLE to each slave thread

5: while wait for UNSATISFIABLEACK from each thread do

6: sleep
7: end while
8: send RETURNUNSAT to each slave thread

9: return UNSATISFIABLE
10: end if
11: if find satisfiable assignment then
12: finished-threads[my-thread-id] +- TRUE

13: end if

14: if FOUNDSATISFYINGASSIGNMENT from thread i then

15: firished-threads[i] +- TRUE

16: end if

17: if NOTFINISHED-ACK from thread i then

18: finished-threads[i] +- FALSE

19: end if

20: if all booleans are set in finished-threads then

21: send STILL-FINISHED message to each slave

22: seq-num <- seqrnum + 1

23: numfirnished = 1 > I am finished!

24: loop > Now play the waiting game!
25: if numfinished == NUM-THREADS then

26: send RETURNSAT to each slave

27: return SATISFIABLE
28: end if

29: if FINISHEDACK from slave with sequence number ==

seq.num - 1 then

30: num-finished <- num-jinished + 1
31: end if

32: if NOTFINISHEDACK from thread i then

33: finished-threads[i] <- textscFalse

34: break out of loop
35: end if

36: end loop

37: end if

38: end loop

39: end function

Figure 2-7: Protocol for result and global variable consistency for the master
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FOUND
SATISFIABLE
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All indices set in finished-threads send from thread i, set finished-threads~i] = 1
STILLFINISHED to each slave with Hearsegnum NOTFINISHEDACK,

set finished-threads[i] = 0

BEL EVE
SATISFIABLE Wait for FINISHEDACK from each

slave with correct seqnumn

Heard FINISHEDACK from each
slave, send RETURN_-SAT to each

slave

Figure 2-8: The master protocol in state machine form.
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Chapter 3

Implementation

3.1 Briefing

With a better understand of the high level view of the algorithm, now we ex-

amine the actual implementation. The code was written in C++/Python and

utilizes Minisat and OpenMP as the main foundations, both of which are de-

scribed below. It can be cloned at https://bitbucket.org/maxnelso/parallelsat.

3.2 Minisat

The algorithm is built on top of the most popular, robust, and open-source

SAT solver, Minisat, first created by Niklas Een and Niklas S6rensson in 2003

[ESO3]. Despite its age, it is still world class in terms of performance, and new

iterations come out regularly with new optimizations. The International SAT

competition holds Minisat in high regard: there is a special category called

"Best Minisat Hack", which is for solvers that are built on top of Minisat.

45



Perhaps more important than its speed, however, is the design of Minisat.

It was created with the idea that others would extend it with new optimiza-

tions. Therefore, it has clearly defined methods and data structures for all

the standard pieces of a SAT solver: clauses, variables, propagation, conflict

analysis, etc. Indeed, most of the implementation, excluding the message pass-

ing system and global variable system, were simply modifications to existing

functions within Minisat.

3.3 OpenMP

The other main foundation we build upon is the C++ multithreading library

called OpenMP [DM98]. OpenMP provides a simple API for all things multi-

threading: creation and deletion of threads, mutual exclusion mechanisms like

locking and wrappers around critical sections, along with other utility funcu-

tions, such as memory fences for flushing variable states and "barriers", which

wait for all threads to reach a point in the code before proceeding. Despite

being more "high-level" than a more fine-grained alternative such as POSIX

Threads (Pthreads), OpenMP is known for being extremely performance con-

scious. The OpenMP infrastructure is so widespread that it was recently was

proposed to become integrated with the C++ standard for language level par-

allelization.

3.4 Partitioning algorithm

The partitioner implements a Partitioner interface by completing one method

PARTITION(STRING path, INT num-threads, SOLVER solvers/]). This method

must prepare the solvers[] array for search by creating the clause database for
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each solver.

To begin talking about our implementation of the partitioner (once again, this

can easily be swapped out for some application specific partitioner), we must

discuss the input to ParallelSAT, the DIMACS file, which describes a SAT in-

stance. Taken from (http://people.sc.fsu.edu/ jburkardt/data/cnf/cnf.html),

the grammar for a DIMACS file (with the slight ParallelSAT modifications) is

as follows:

1. The file may begin with comment lines. The first character of each

comment line must be a lower case letter "c". Comment lines typically

occur in one section at the beginning of the file, but are allowed to appear

throughout the file.

2. The comment lines are followed by the "problem" line. This begins with

a lower case "p" followed by a space, followed by the problem type, which

for CNF files is "cnf', followed by the number of variables, followed by

the number of clauses.

3. The remainder of the file contains lines defining the clauses, one by one.

A clause is defined by listing the index of each positive literal, and the

negative index of each negative literal. Indices are 1-based, and for

obvious reasons the index 0 is not allowed.

4. The definition of a clause may extend beyond a single line of text.

5. The definition of a clause is terminated by a final value of "0".

6. The file terminates after the last clause is defined.
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Furthermore, we add the restriction that the variables are named from 1 ... V,

where V is the number of variables.

The partitioner converts this DIMACS file into n partitions, where n is the

number of threads as specified by the user. Next, it adds clause Wk solvers[i]

database if Wk is in partition i.

However, this is not sufficient, as a thread also needs to know which variables

are global. We adopt the convention that the first g variables are designated

as the global variables. Thus, if there are 45 global variables with two threads,

the variable 16 in the Minisat representation would be a global variable, while

the variable 51 would be a local variable to that particular instance. Note

that Minisat labels its variables from 0 to k - 1, so 44 would be the last global

variable in the above example. This also has the added benefit that in the

Minisat internal representation of variables, we can easily check if a variable v

is global through the check v < g.

Now that we know what the general workflow of one of these partitioners, let's

examine the two partitioners we used in our implementation: a partitioner

using the library METIS and a more simpler "natural" partitioner algorithm.

3.4.1 METIS Partitioner

METIS is a library that takes in a graph, G, as input and outputs a file that

assigns each node in G to a partition. METIS was designed for parallel com-

puting, and its goal is to balance the partitions as much as possible as well as

minimizing the "connections" between the partitions, which requires interpro-
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cess communication. As one might guess, the "connections" in our case are

the global variables.

We will not go into the specifics of the input/output format of METIS, as

that can be found in excellent detail in their documentation [Kar]. However,

the question of what G is composed of must be addressed. The original algo-

rithm was to create G as follows:

1. V clause wi in the SAT instance S, create a node ui.

2. V pair of clauses wi and wj in S, create an edge between ui and uj if and

only if there exists a variable, Vk, such that uk E wi A wj.

Clearly by minimizing the connections in partitions of G, we minimize the

global variables. While this produced better partitions than our current al-

gorithm, for larger problems, G became too large (as there are O(n2) edges,

where n is the number of clauses), and METIS was incapable of finishing in

a reasonable amount of time. However, if the problem is small enough or has

the correct properties, the above algorithm may be a better choice than the

revised algorithm that is presented below.

The algorithm we actually use to produce G is as follows:

1. V variable vi in the SAT instance S, create a node ti. Call this set of

nodes T.

2. V clause wi in S, create a node ui. Call this set of nodes U.

3. V pair of nodes ti, ui in T, U (respectively), create an edge between tj

and ui if and only if variable vi C clause wi.
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Note that this bipartite graph approach scales in O(n * m), where n is the

number of clauses and m is the number of variables in the SAT instance. This

has shown to speed up the partitioning process, and METIS will finish in a

reasonable amount of time even for very large problems.

Thus, we pass this graph into METIS which outputs a file that assigns each

node to a partition. Note that the partitioning of the t2 nodes are of no use to

us, as we only care about the partitioning of the clauses.

3.4.2 Natural Partition

For some SAT problems, there is plenty of locality within the input DIMACS

file. Therefore, one effective algorithm is to simply divide the input file into

n parts, where n is equal to the number of threads. We call this a natural

partition. While this doesn't produce as good of partitions as the METIS

approach, actually producing the partition is magnitudes faster, leading to

an overall faster system. The benchmarks we examined use this partitioning

algorithm as an example of a sample application where custom partitioners

are useful. An example natural partition with four threads can be found in

Figure 3-1.

3.4.3 Creating the Set of Global Variables

In both algorithms, the next step is to figure out the set of global variables.

The procedure is simply the brute force version: iterate through the entirety

of the variables, and if the variable appears in more than one partition, then

it is a global variable. Fortunately, we can build up the following hash map as

we are parsing the inital DIMACS file:
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Input CNF

Set of clauses

Partition 1 Partition 2 Partition 3 Partition 4

Solver Solver Solver Solver

Figure 3-1: A sample natural partition with four threads.

var-to-clauses: vi -+set of clauses wi s.t vi E L.j

Which greatly simplifies the global variable detecting process.

We aren't quite finished, though, as we must complete the final mapping of

global variables to the first g variables of the solver instances. Note that this

may leave gaps in certain partitions. For example, partition 1 and partition

2 could share some variable gi, but partition 3 does not have a clause that

contains gi. Therefore, we must give special care in each solver instance to

still allocate space for this missing variable, otherwise a local variable could

be mistaken for a global variable.
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3.5 Global Variable Representation

Now we proceed into the search implementation, beginning with how the global

variables are represented in the system. Minisat represents variables with an

integer from 0...n - 1. We adopt the same strategy, with the additional

information that the first g variables are global variables. We represent the

state of these variables with a simple array of length g, named globaLvars,

that contains the current state of global variables (either TRUE, FALSE, or

UNSET). Because we allocate the first g variables to be global variables, we

can set gi (where gi is an integer as represented in Minisat) by setting the

value in globaLvars[gd]. To avoid reader-writer problems, we also need a lock

on each global variable. Thus, we have another array named globaLvars-locks,

that is a one-to-one mapping to the globaLvars array. By having an array of

locks, we reduce contention across the threads for the price of a small mem-

ory overhead. A thread must acquire the lock for a particular global variable

before it changes its value.

3.6 Clause and Message Communication

The clause and message communication module is one of the most important

pieces of the system. First and foremost are the many learned clauses that

threads pass around to each other, but the system also must handle the cor-

rectness protocol (Section 2.8). Theriefore, an efficient implementation in this

area is paramount. The interface for the system should be simple: we have

the following operations (optional arguments are enclosed in braces):

1. READMESSAGES()
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2. SENDCLAUSE(CLAUSE* clause)

3. SENDMESSAGE(MESSAGETYPE msg-type, [INT seq-num], [INT thread-recipient]).

The main data structure involved in the communication system is the double

buffer, which as the name suggests, is two buffers. The general idea behind the

double buffer data structure is to reduce contention amongst threads: writers

are working on one buffer, while the reader is working on a completely different

buffer. Each thread contains exactly one of these double buffers which acts

as its inbox for incoming messages. Therefore, every thread has a pointer to

every other thread's double buffer. Let us examine the double buffer of thread

ti, with b1 and b2 being the two buffers that compose the double buffer.

Initially, both b, and b2 are empty. We begin in state WRITE_Bi , which

means that other threads are writing clauses and messages to b1. When b,

becomes full with clauses and messages (currently the size is 1024 variables),

the writer waits for b2 (the read buffer) to be empty, indicating the owner of

the double buffer has read all of the incoming messages. When it is empty,

the writer performs a swap operation: it sets the state of the buffer to WRITE

-B2 and writes its message to b2 , the new write buffer. Now the owner of the

buffer reads messages from bl.

Note that there are some concurrency issues here. For example, two threads

could be attempting to write to the same write buffer at the same point and

the result is garbled. Therefore, we need to protect these critical regions with

locks. Specifically, whenever a thread attempts to add a clause to the write

buffer (which involves checking how full the buffer is and the actual writing to
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Thread 2

b1 b2 b1 b2
b1 b 2

Thread 1 Double Buffer Thread 2 Double Buffer Thread n Double Buffer

Figure 3-2: Each thread has a pointer to every other's double buffer. Other
threads write to a write buffer while the owner reads from the read buffer.
These buffers swap as the write buffer becomes full.

the buffer), it takes a lock out on that specific double buffer.

We also have the issue of some messages being never read by the owner of the

double buffer. For example, consider the following execution with two threads:

1. Thread 1 writes message m to thread 2's write buffer, bi. However, bi is

not full and thus we do not swap buffers.

2. Thread 1 returns with some value.
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Clearly, thread 2 will not receive m because thread 1 will send no more mes-

sages and b1 will remain forever the write buffer. Therefore, we add one more

operation to our system: FLUSHMESSAGES(INT thread-id). This operation

checks to see if the read buffer of thread ti is current empty, and if it is, swaps

the read and write buffers. Now thread ti is able to read the unseen mes-

sages without waiting until the write buffer is full. The FLUSHMESSAGES()

procedure is useful when we want threads to read our messages immediately

(usually during the correctness protocol). Note that this operation implies

that readers are consistently reading messages, or a writer could be waiting

for the read buffer to be empty indefinitely.

3.6.1 Clause and Message Format

Now we examine the structure of the messages passed in the communication

channel. We have two types of messages, regular learned clauses, composed of

LIT (literal) objects in Minisat and special messages used for the correctness

protocol. To simplify the scheme, we encode the special messages as regular

clauses. We noted that Minisat variables are integers from 0...n - 1, i.e.

they are non-negative. Therefore, we use the first nine negative integers as

our special messages, as shown in Figure 3-3. Furthermore, for both clauses

and messages, we append a header to each message that corresponds to the

size of the message so the reader knows how much of the buffer to read of the

buffer for a particular message. This header is also encoded as a LIT object

in Minisat.
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1. FOUNDSATISFYING-ASSIGNMENT : CLAUSE(LIT(-1))

2. STILLFINISHED : CLAUSE(LT(-2), LIT(seq_num))

3. FINISHEDACK : CLAUSE(LIT(-3), LIT(seqnum))

4. NOTFINISHEDACK : CLAUSE(LT(-4))

5. RETURNSAT : CLAUSE(LIT(-5))

6. FOUNDUNSATISFIABLE : CLAUSE(LT(-6))

7. UNSATISFIABLE : CLAUSE(LLT(-7))

8. UNSATISFIABLEACK : CLAUSE(LIT(-8))

9. RETURNUNSAT : CLAUSE(LIT(-9))

Figure 3-3: A description of the nine types of special messages. They are

encoded using the same clause infrastructure built into Minisat.

3.7 Optimizations

3.7.1 Activity

A common heuristic for choosing the next decision variable is based on activ-

ity. That is, as we learn new clauses, modern SAT solvers bump the activity

of the variables inside these clauses. This heuristic has proven to be effective

in speeding up solve times. However, we have the idea of global variables, so

we need to modify this heuristic slightly. For example, consider the following

high-level scenario with two threads:

Thread 1 and thread 2 share some set of global variables, g. Thread 1 is

incredibly constrained on the values of some subset of g, lets call this set si.

Consequently, we will call the other subset of global variables s 2 , which is

g - si. This means that thread 1 has a relatively low set of values for si
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that does not leave its instance unsatisfiable. On the other side, thread 2

has many sets of assignments of si, but s 2 is constrained. Ideally, we would

want thread 1 to work on s, and thread 2 to work on s 2 without the other ar-

bitrarily deciding values in the other set, which will disrupt the search process.

We can mimic this behavior using the activity mechanism built into Minisat.

Whenever a thread receives a broadcasted clause, it decreases the activity of

all the variables in the clause. The justification is the following: if a thread

hears many of the same variables from another thread, it is working hard on

discovering information about that particular variable, and arbitrarily setting

it to a different value through decision will only hamper its progress. We

found that this added heurstic increased performance significantly in nearly

every instance in our test suite.

3.7.2 Sleeping and Empty Read Buffers

When a thread finishes its execution, unless it is the last thread to finish, it

spins reading messages from other threads, waiting to terminate or to begin

searching again. Thus, a thread is constantly reading the outgoing double

buffers of each thread, which involves acquiring and unacuiring locks. As one

might expect, this slows the communication channel immensely as the writer

has difficulty acquiring the lock, which in turn delays the reader from actually

hearing the message that will allow it to terminate! Therefore, we add a small

sleep (10 microseconds) for each finished thread before attempting to read all

messages again.

In a similar vein, we also keep a flag for each double buffer called read-empty,
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which returns true if the read side of the double buffer is empty. When a thread

attempts to read messages from other threads, it firsts checks the read-empty

flag before acquiring the lock on the double buffer, reducing load on the double

buffer when there is nothing to be read.

Both of these optimizations proved to give significant speedups.
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Chapter 4

Benchmarks

4.1 Briefing

We now examine how our system fares versus the sequential Minisat, along

with a state of the art portfolio SAT solver, PeneLoPe [AHJ+12]. PeneLoPe

utilizes clause sharing along with a standard portfolio approach and was re-

cently awarded second place in the parallel division of SAT Challenge 2012

(the winner's source code faced compability issues with our benchmark frame-

work, and was therefore not used).

The hardware we used to run the tests was an MIT CSAIL server named

sketchi running Debian 2.6.26-29 and whose hardware specifications include

roughly 7 GB of RAM and an Intel Core2 Quad CPU at 3 GHz.

The set of benchmarks we used are admittedly not the standard industrial

benchmarks used in SAT competitions. Rather, they are from a program anal-

ysis tool called Sketch used in the Computer Assisted Programming (CAP)
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group at CSAIL. In general, these problems have the "big but easy" property:

they have a large amount of variables and clauses, but for modern SAT solvers,

are solvable in a reasonable amount of time. Our justification in using these

benchmarks is to demonstrate how a tailor-made partitioning algorithm can

provide large speedups given the correct application. In this case, we used the

natural partitioning algorithm due to the fact that the instances provided have

a large degree of locality within the input files: the probability of a variable

being in two clauses who are a large distance away from each other in the input

file is relatively low. Thus, by splitting the file into simple, uniform, pieces,

we can create a good partition with little overhead.

Finally, the procedure we used to produce the results shown in Table 4.1

are to run each SAT instance twenty times in an attempt to smooth out the

randomness that can occur in SAT problems as well as parallel applications.

Of these twenty trials we took the median values for RAM usage and time.

Finally we summed these medians for each instance in the benchmark suite,

arriving on the totals found in the above table. The Count column refers to the

number of instances in that particular benchmark. PeneLoPe and ParallelSAT

were both run on 2 threads.

4.2 Analysis

First and foremost, the results point to a speedup on nearly every instance

compared to Minisat. The two set of benchmarks where ParallelSAT (and

PeneLoPe) run slower, doublyLinkedList.sk and isolateRightmost.sk, are small

instances where the overhead of parallelism is too much. In general, as the

instances get larger and larger (as in the case of ConcreteRoleAffectationSer-
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Benchmark Count Minisat PeneLoPe ParallelSAT
RAM Usage (MB) Time (s) RAM Usage (MB) Time (s) RAM Usage (MB) Time (s)

ConcreteRoleAffectationService.sk 55 3394.36 532.57 17361.5 307.96 11472.19 331.52
Pollard.sk 2 8.43 0.06 292.0 0.19 191.68 0.08
SetTest.sk 7 37.88 0.28 1022.0 0.79 663.71 0.35
auction.sk 36 3000.93 373.47 13507.5 487.21 7887.53 100.1

compress.sk 18 100.44 1.08 2628.0 2.76 1742.24 1.86
diagStencil.sk 49 2450.05 33.97 12339.5 68.24 8026.23 37.78

diagStencilClean.sk 43 2069.22 27.42 10723.0 65.63 6801.4 31.9
doublyLinkedList.sk 7 14.68 0.05 1022.0 0.11 647.01 0.06

enqueueSeqSK.sk 8 20.44 0.14 1168.0 0.24 743.32 0.12
isolateRightmost.sk 4 10.13 0.03 584.0 0.1 371.72 0.05
jburnim-morton.sk 11 104.55 1.11 1606.0 2.71 1129.16 2.75

karatsuba.sk 6 21.86 0.26 876.0 0.47 560.61 0.22
listReverse.sk 5 20.7 0.3 730.0 0.64 477.31 0.24

Table 4.1: Table of benchmarks for SAT problems provided by Sketch for two
threads.

vice.sk and auction.sk), both ParallelSAT and PeneLoPe give large speedups.

The other main result is the RAM usage between the three solvers. The

sequential solver, Minisat, of course utilizes the least amount of RAM. The

portfolio SAT solver, on the other hand, utilizes at least twice as much RAM as

the sequential solver because it must copy all of the original clauses along with

the overhead of parallelism. While ParallelSAT also incurs a memory overhead

due to the extra parallelism of locking and clause exchange, it is considerably

less than PeneLoPe. To see why this is true, we recall that by partitioning

the instance's clauses, we are not required to copy the entire clause set into

multiple solvers like the portfolio approach. This RAM difference between the

two parallel solvers will grow linearly as the number of threads increase, as the

portfolio approach must copy the clause set n times, where n is the number of

threads.

One interesting metric of SAT solvers is the number of unit propagations

in the search process. As mentioned above, most of the time of in the search

process is spent propagating unit clauses, so the number of propagations is a
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Benchmark Count Minisat Propagations ParallelSAT Propagatations
ConcreteRoleAffectationService.sk 55 2777300343.0 420645632.0

Pollard.sk 2 140010.0 430192.0
SetTest.sk 7 703612.0 541096.0
auction.sk 36 1506597911.0 643000835.0

compress.sk 18 3592054.0 2770737.0
diagStencil.sk 49 71006295.0 33420183.0

diagStencilClean.sk 43 53883492.0 41390472.0
doublyLinkedList.sk 7 167020.0 114878.0

enqueueSeqSK.sk 8 673308.0 238847.0
isolateRightmost.sk 4 49140.0 111365.0
jburnim-morton.sk 11 3059776.0 3578750.0

karatsuba.sk 6 1548812.0 832792.0
listReverse.sk 5 1750041.0 1442374.0

Table 4.2: Propagations per benchmark for two threads. Note that this is the
sum of the propgations for both threads.

convenient hardware independent metric between SAT solvers. The results for

the total number of propagations with two threads can be found in Table 4.2.

We note that in most cases (especially larger SAT instances), ParallelSAT

performs many less propagations than Minisat. This decrease in propagations

suggests that ParallelSAT is not mainly getting its speedups due to the added

parallelism, but rather the new approach of splitting the clause set into pieces

and performing search with this partitioning in mind. Thus, this approach

can be used in a sequential setting as well.

We also examined the cumulative distribution function (CDF) of propagations

on particular SAT instances. SAT search is an inherently random procedure,

so the CDF provides a helpful view of how the solver behaves over many runs.

We discovered that ParallelSAT behaves more efficiently compared to Minisat

as the instances grow larger and larger. We show a case study of five instances

of the auction.sk benchmarks. We note that as the numbers of the instance
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increase in our benchmarks, the number of variables and clauses increase (ihe,

satSYN_12.cnf will be larger than satSYN-3.cnf).

As Figure 4-1 through Figure 4-5 indicate, Minisat becomes more and more

random as the instances grow larger, while ParallelSAT stays relatively less

random and becomes more efficient.

,el

CDF of propagations

0 5000 10000 1500
propagations

2000 25000

Figure 4-1: CDF of propagations for the smallest instance, sat-SYNA1.cnf

Now let's proceed to the most important metric of SAT solvers, the CPU

Time. ParallelSAT runs quicker than PeneLoPe on every instance except the

ConcreteRoleAffectationService.sk suite. Meanwhile, Parallel SAT completes

the auction.sk set of benchmarks in roughly one fifth the time of PeneLoPe. To

analyze this large discrepency, we will do a brief case analysis. We examined

the largest instance in each set whose parameters can be found in Table 4.3.

As we note in the above table, the instance in the auction.sk benchmark suite

not only has less global variables, but also has roughly one fifth the ratio of

63

1.0
- minisat

parallel-sat

0.8

0.6

0.4

0.2

0.01



1.0

0.81-

0.6

0.4

0.2F

-0 100000 200000 300000 400000 500000 600000 700000 800000
propagations

Figure 4-2: CDF of propagations for satSYN-9.cnf
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Figure 4-3: CDF of propagations for satSYN_17.cnf

global variables to the total number of variables. Having a low global variable

count helps in many ways, including:

1. Reducing the amount of times a thread is forced to backtrack due to a

broadcasted clause.

2. Reducing the traffic on the messaging system.
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Figure 4-4: CDF of propagations for satSYN-25.cnf
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Figure 4-5: CDF of propagations for satSYN-33.cnf

3. Reducing the number of times a thread is forced to acquire a lock before

setting a global variable.

Certainly there are other factors at play, but we have found that the global

variable count and subsequent global count total number of variables ratio is

one of the most consistent indicators of how well ParallelSAT will perform on
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Suite ConcreteRoleAffectationService.sk auction.sk
Name sat-SYN_135.cnf satSYN_35.cnf

Variables 479973 1564422
Clauses 1834125 7994473

Global Variables 2352 1273
Global / Total .0049 .0008

Table 4.3: Comparison of two particular SAT instances with two threads using
the natural partitioning algorithm

an unknown SAT problem.

To be fair, these instances have the nice property that there are a relatively

small amount of common variables between the clauses, so the partitions are

generally very good. However, these benchmarks show that this approach can

be very effective given the right class of problems.

4.3 Scaling

Scaling this approach to four threads and beyond is one the main weaknesses

of the current iteration of the algorithm. As a case study, we examine one

set of benchmarks, diagStencil.sk, comparing two threads versus four threads.

The results for CPU time are shown in Figure 4-6.

Although omitted, the trend exacerbates itself as the number of threads

grows even larger. This increase in CPU time can be attributed to the increase

in global variables, as shown in Figure 4-7.
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Figure 4-6: When the algorithm scales to more threads, the performance drops
considerably. This can be attributed to a larger number of global variables
which requires more interprocess communication.
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Figure 4-7: The number of globals grows considerably with more threads.
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Chapter 5

Future Work and Conclusion

5.1 Future Work

As mentioned in the Scaling section, the main weakness of this algorithm is

scaling to a greater number of cores. Extensions of this algorithms should focus

on mitigating the problems that are associated wtih more threads, including

greater numbers of global variables and more communication between threads.

One idea is to modify the the design decision to pick global variables first

in the decision module. However, this would greatly increase the difficulty

in producing global conflict clauses suitable for broadcasting. On the other

hand, there could be great benefit in selecting some variables before others, as

activity heuristics have shown us.

Another idea to explore is broadcasting clauses that contain local variables.

You could imagine a situation where a global variable is constrained by a

small set of local variables. To convey information about this global variable
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to other threads, the thread must construct large clauses consisting of only

global variables, which could be much smaller and simpler with local variables

added. This would force other threads to be accomodating of new variables

into their system, but could boost performance in the right context.

Lastly, a bottleneck for the general SAT case (with low locality in the in-

put file) is the partitioner. Therefore, new approaches to partitioning (even

for more specific applications like the high locality case), would be helpful.

5.2 Conclusion

In conclusion, we have presented a new parallel algorithm for solving SAT

problems using the idea of partitiong the clause set into seperate pieces. We

have shown how, given the right application, this approach can give signifi-

cant speedups while simultaneously using less RAM than a world-class parallel

portfolio SAT solver. While the current algorithm does not scale particularly

well with added cores, this approach can be used alongside the portfolio ap-

proach in a computing cluster for a potentially faster and certainly more space

efficient solver than running the portfolio solver alone on all cores.
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