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Chapter 1

Introduction

1.1 Thesis Organization

Chapter 1 provides some background and motivation behind this thesis project.

Chapter 2 analyzes the buck switching regulator as well as the control schemes and

current measurement methods. Chapter 3 describes the proposed methods for solving

the current problems. Chapter 4 goes in depth into specific challenges of each method,

as well as challenges that are shared by both methods. Some important circuits are

also described. Chapter 5 includes results from system level simulations and some

analysis. Chapter6 is the final chapter with conclusions drawn and some future work

to be explored.

1.2 Background and Motivation

As light emitting diodes (LEDs) become more widespread, they are beginning to

replace other types of lighting in popular applications. Three key metrics that LEDs

excel in are power efficiency, color accuracy, and intensity. While the power efficiency

is a given in most use cases, the color accuracy and intensity are factors of the control

method and result from careful current and voltage regulation. Because LEDs are

run off direct current, it is possible to control them digitally by modulating on or

off the current flowing through, thus retaining the correct color temperature while

17



Figure 1-1: Automotive lighting application for LED drivers[1].

changing the brightness.

One area that is beginning to make use of LEDs is car headlamps, like shown in

figure 1-1. Traditionally, they have been powered by halogen lamps and more recently

xenon lamps on the high end. In addition to the previously stated benefits, one huge

advantage of LEDs is the operating color spectrum, which includes colors that more

closely resemble daylight. Furthermore, in the past decade, headlamp manufacturers

have been attempting to greatly improve visibility through solutions such as the

Adaptive Frontlighting System (AFS) , which changes the area of illumination based

on factors such as other cars, weather, and speed (Figure 1-2).

Existing methods rely on a mechanical means to direct the light usually by con-

trolling a lens or mirror; using this method, it is generally difficult to generate a

precise illumination. While LEDs currently present a significantly more costly alter-

native, the much improved degree of control in which they can be used to illuminate

a scene justifies the switch. With an LED array, headlamp manufacturers can build

a much more reliable solution that does away with moving components and offers

much more flexibility in the presence of multiple drivers on the road. Another benefit

of LEDs that is often overlooked is the added style and customization options that

18



Figure 1-2: Illustration of different Advanced Frontlighting Systems scenarios[1].
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result from being more compact and easy to power.

1.3 Major Applications

The main benefit for the proposed chip applies to any application in which a constant

current source is needed over which the output voltage varies with time for multiple

channels. This includes but is not limited to the automotive lighting application men-

tioned previously. A constant current source with no output capacitor can ensure safe

operation in the event of a change in the output; for instance, if an LED shorts out,

there is no stored charge on a capacitor to allow a large current spike to damage the

entire LED string. The techniques described here allow for a compact, simple solu-

tion that fits the maximum number of output channels per chip that can be operated

independently, reducing the number of required external components and simplifying

the overall setup. Different channels are required for automotive applications because

different colors and types of LEDs are required for different functions, such as turn

signaling, day lighting, low-beams, and high-beams (Figure 1-3).

Figure 1-3: Why multiple channels are necessary[1].

While Linear Technology already has multi-channel LED drivers available for pur-

20



Table 1.1: Proposed table of specifications.

Parameter LT3595 Proposed Part
Analog Dimming Ratio 10:1 100:1
PWM Dimming Ratio (0200Hz) 5000:1 1000:1
Accuracy 90% 95%
Switching Frequency 2MHz 2MHz
Independent Channels 16 4
Max LED Current/Channel Up to 50mA Up to 2A

chase, none of the current products fit the use case exactly. The following image

(Figure 1-4) shows a general application of the most similar existing product. While

it does away with the sense resistor, its performance does not meet the requirements

for aforementioned applications, mainly in the areas of accuracy and current output.

Figure 1-5 shows a single channel - note the topology is not the traditional buck.

16-Channel LED Driver (Three LEDs per Channel), 20mA Current

OAiE 047jiF 047IL F 047ji .E.7F ~ O41

J~5J- i

F47'F 1i47pIF

8

TO47piF 47pF 047F 47pF

LED
-BRIGHT-

CNROL

o.47AF 0.47gT
4 - ~MMC

Figure 1-4: Closest existing Linear part, the LT3595[2].
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VIN 
-

45V TO047F Z.47pF

100k

LED
BRIGHTNESS -

CONTROL

3V TO



U

D

VIN V

RLOAD LN L

Figure 1-5: Simplified diagram of a single LT3595 channel, which uses the buck-mode
topology.

1.4 Proposed Table of Specifications

The idea behind this project is based on Zhen Lis work on a single pin, buck-mode

current source. In his thesis, Zhen proposes a method of sensing and regulating

current in a buck-mode topology using internal sense resistors [3]. This project aims

to address the two main problems with the buck-mode implementation: 1) accurate

on-chip sense resistors are difficult to fabricate, and 2) the buck-mode topology is

not ideally suited for applications such as car headlamps. Instead, a traditional buck

topology is a better fit, which opens up new possibilities as well as different problems

in terms of current sensing and regulation.

22
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Chapter 2

System Overview

2.1 Buck Switching Regulator

+I

VINy (

F

Q'-~
L

D

T~.

Figure 2-1: Simple buck switching regulator topology.

The topology of a synchronous buck switching converter is shown here in Figure 2-

1 [4]. A regulator includes the converter, as well as the control circuitry necessary

to generate the duty cycle function, Q. A more in-depth look at the buck regulator

system is provided later in the chapter.

The DC voltage source is connected to a pair of transistors that alternate switching

on and off to produce a stepped-down voltage at the load. In this simple open-loop

case, for a given input voltage and load, the output voltage is a simple function of

23



the switching duty cycle. The loop can then be closed to regulate to a certain output

voltage or current. In the case of the vehicle headlighting application, it is more

useful to regulate to a specific output current because the relationship between LED

light output and current is much more linear than it is with voltage. Thus, a current

source behavior for the buck converter, in which output voltage is not regulated, is

desired. This is achieved by setting the feedback so the duty cycle is dependent on

the current flowing through the load.

In the next sections, methods of sensing and regulating the current are compared.

2.1.1 Single Output Pin Buck Current Source

VIN V

T

-'YY~--4NJ'
~

NJ'

~

I

Figure 2-2: Typical application for a single buck LED driver channel.

The results of this work are intended for use in a multi-channel current source chip.

Above (Figure 2-2) is a single-channel implementation of such an application. Ex-

panding it to more channels simply involves more switch, control, and compensation

pins per channel, with the compensation pins possibly being optional, as discussed

later. The single pin aspect refers to the switch pin, which is the only external

connection to the load.

24
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2.2 Previous Work

2.2.1 Current Sensing

In this section, a few methods of current sensing that are regularly used are described

and illustrated (Figure 2-3) [5, 6, 7, 8].

External Sense Resistor: This method requires the use of an externally located

sense resistor, usually located in series with the inductor or load. Through measuring

the voltage across the voltage and applying Ohms law, one can determine the current

flowing through the resistor. The value of the sense resistor is usually small in order

to minimize the power lost in the resistor. The main disadvantage of this method is

it requires two extra external pins to measure the voltage across the resistor. Further

reducing the appeal of this method is the high relative cost of the actual sense resistor.

The more accurate the resistor, the more expensive it is. In cases where accuracy

is absolutely essential and there is only one channel, the benefits greatly outweigh

the cost. But in applications with multiple channels and a looser requirement on

accuracy, the external sense resistor loses appeal.

FET On-Resistance: Expanding on the idea of a sense resistor is the approach of

using the actual power switch on-resistance. The difference here is that the voltage is

measured across the transistor and using an average resistance value of the transistor,

the current flowing through it can be estimated. The goal of this method is to

address the two concerns listed previously cost and simplicity. By using the existing

power switches, the system becomes simpler and cost is reduced because no additional

sense resistors are required. Although this method does address the simplicity and

cost tradeoffs, the accuracy is greatly diminished. Unfortunately the transistors are

subject to process variations that can lead to a drop in accuracy of at least 20%! While

the cost savings on this method are great, the accuracy tradeoff is unacceptable for

an application like car head lighting, in which the color accuracy of the headlamp is

relatively important.

Inductor Voltage: In the same vein as the using the FET on-resistance, another

method takes the approach of measuring the voltage across the inductor. This method

25



takes advantage of the current-voltage relationship of an inductor. The voltage across

an inductor is equal to the inductance times the change in current over time. By

integrating the voltage and knowing the inductor value, one can then determine the

current flowing through the inductor. The difficult aspect is knowing the inductor

value. In some easy cases, the inductor value can be specified by the manufacturer,

but that leads to inflexibility in the system. With automotive lighting, much of

the inductance is caused by wiring that runs from the electronics out to the actual

components. In such a case, the inductance is not so easy to take into account. The

alternative is to use a self-calibrating circuit that senses the inductance. Further

complicating the system is the fact that cables run to and from the load, so the

voltage across the inductor is not so simple to measure either.

Sense-FET: This last method is relatively new but is gaining popularity. It makes

use of a transistor, now referred to as sense-FET, sized much smaller than the power

switch at a ratio of approximately 1000:1 or greater. By forcing the same drain to

source voltage as the power switch across the sense-FET, the current flowing through

it is thus proportionally smaller by the same ratio. The main requirement of this

method is that the power switch must be located on-chip to ensure good matching

with the sense-FET. Even so, the matching between two transistors cannot be guar-

anteed above 95%. Further work, such as trimming or averaging, must be done to

increase accuracy.

2.3 Control Scheme

There are two main methods of control for a buck switching regulator: Current-mode

and Voltage-mode. Each has its advantages and disadvantages, which are described

below.

2.3.1 Voltage-mode Control

In voltage-mode control, the average current information is compared to a reference

voltage through an error amplifier. The output of that error amplifier is then com-

26



VIN FB

HG-i' .

SW

RsENSET

(a) External sense resistor

1FB

VIN

HG--IF

LG- i

(c) Inductor voltage integration

VIN

HG--I FBP

SW

LG--( eFT

(b) FET on-resistance

VIN

HG-;

Lw
-. n

SW-

(d) Sense-FET

Figure 2-3: Different current sensing methods.
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pared with a voltage ramp signal, which directly controls the duty cycle. Overall,

voltage-mode control is simpler to implement.

2.3.2 Current-mode Control

In current-mode control, the average current information is compared to a reference

voltage through an error amplifier, just like the voltage-mode control. After that, the

output of the error amplifier is compared with the peak current information summed

with a compensating ramp. Typical system representations are shown in Figures 2-4

and 2-5.

VREF Gc(s) Current Converter . VOUT
Control IL

Figure 2-4: Traditional current-mode control block diagram.

The type of control system used (Figure 2-6) is a slightly modified version of the

traditional peak current-mode control implementation. In the traditional system,

since the loop is regulating both voltage and current, it is usually necessary to obtain

a sensed current value. However, for a current source, the system is somewhat simpler

in that it just needs to regulate to the set current value.

2.3.3 Loop Analysis

Buck Converter Transfer Function

In this analysis, the output load is assumed to be a string of LEDs, which is approx-

imated as a voltage source for simplicity (Figure 2-7). Compared to the traditional

buck converter transfer function analysis [10], this modified configuration ends up sim-

pler because the voltage source replaces a resistor-capacitor network. Instead of two

28



VIN
OCK

S Q

R Q

LATCH

MPARATO

SLOPE COMP

L

L

R] ERROR AMP

Figure 2-5:
Unitrode[9].

Typical implementation of current-mode control. Redrawn from

Compensating Ramp

'AVG

--- OUT

Low-Pass Filter

Figure 2-6: Modified peak current-mode control for regulating only current.
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VIN V Q'

Figure 2-7: Simplification of load for analysis purposes.

switched equations of state, since there is no output capacitor, only the equation for

the inductor voltage remains.

dIL
i = L - d

dt

dIL _ VIN - VOUT QVOUT
dt L L

dIL _VIN .Qt VOUT

dt L L

dIL _VIN -VOUT

dt L L

Laplace Transform:

*VOUT is constant

(1 -QMt)

s - IL(S) = - d(s)

IL(S) = VIN 1
H(s) = -_

d(s) L s

The resulting transfer function of the buck converter without output capacitor as

a function of the duty cycle and using a voltage source at the output is a single pole

located at zero. The transfer function of the closed inner loop is shown below:

30
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IL(s) k -H(s)
G(s) = =

In(s) 1 + k - H(s)

But first the behavior of the current comparator, represented as the gain variable

k, must be derived. Finding the slopes of the inductor current (Figure 2-8) is useful

for deriving k.

c

~~1)

M -M2

DT T Time

Figure 2-8: Illustration of current during one period along with the corresponding
slopes.

VIN - VOUT
M 1 = L

L

VOUT

L

1 1
iL=ip- -[1 M 1 d2T 2 + -M 2 d'2T 2T 2 2

-IN V2 OUT 2+d,2
S V2T +2 T[d2Ld

-2L 2L
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VINT ~ D 2 T VOUTT VOUTT ~ D' 2 T
ZL = ,t - Vd VIN + L dV+OVOUU - j + 2VOUT

" L 2L L 2L VOT L 2L

Assuming VIN = VIN, VOUT = VOUT (i.e. no perturbation in VIN or VOUT):

VINT -
%L Z sP~ L d

LL d .~

INT

Thus: k = L-fsr
VIN

Closing that inner loop to get a transfer function as a function of the peak current

results in a system with a single pole located at a frequency related to the switching

frequency and some scaling factor.

G(s) = IL(S) fSW
Ia(s) fsw+s + 1

The inductor value actually cancels out from the pole location, meaning its sizing

only affects the ripple. The same goes for the input voltage. The only remaining

variable that determines this pole location is the switching frequency. Note that the

pole is not located at the switching frequency; due to the conversion from radians, the

pole location actually happens to be 2* 7r times smaller than the switching frequency.

This result is important to take into account when determining the compensation

capacitor.

Compensation Function

The compensation will likely only require a capacitor as a single pole for stability

purposes instead of a resistor-capacitor network as a pole-zero. The transfer function

for this system (Figure 2-9) can be derived as follows:

/OUT =iOUT _ GMIN
sC sC

VOUT GM

VIN sC
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VIN

+ IOUT

VT
GMM

Figure 2-9: Operational transconductance amplifier feeding a capacitor.

The pole is then located at zero, with the crossover frequency being at:

GM
fc= C

Given that pole location, the transconductance and capacitor size must be op-

timized to provide the minimum power consumption and die area, maximum noise

immunity.

Overall System

The resulting system has a maximum of three important poles: one each from the

compensation, buck converter, and low-pass filter. The low-pass filter has minimal

influence due to its high frequency pole location. In fact, it may even be possible to

completely remove the low-pass filter and use the compensating pole to low-pass filter

the error signal and end up with the same peak current value. In doing so, the system

is simplified into a two-pole system, in which the compensation value as well as the

gain can be easily adjusted for stability. Because the other pole is located at f,,/27r,
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the compensation must act as a dominant pole and ensure proper phase margin of

around 60 degrees. At first order, that means the pole must be placed approximately

5 times smaller than f,8 /27r for adequate phase margin. An optimized dominant pole

location is computed here in Figure 2-10 to achieve the quickest loop response.

10

to,

U04

-4

U

i -135-

-181!- -.~ -------- - " - -. -

10' 4o,
Frequency (Hz)

Id 10

Figure 2-10: Bode plot of optimally compensated control loop. Phase margin is 65
degrees with the crossover frequency occurring at 145 kHz.
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Chapter 3

Proposed Solutions

3.1 Current Sensing

With the benefits and drawbacks in mind, the current sensing method most suited

for the intended application is the sense-FET. Through the use of averaging or trim-

ming, the inaccuracies presented from poor matching can be overcome to provide an

acceptable level of accuracy without increasing the external component complexity.

While using the FET on-resistance also allows for a single-output pin solution, it is

much more difficult to trim the on-resistance to a specific value than it is to trim

two FETs to match. Out of the listed methods for sensing currents, the senseFET

provides the best balance between external circuit simplicity and output accuracy.

3.1.1 SenseFET Accuracy

The main issue with using a Sense-FET is the low accuracy resulting from poor

matching. If the sense-FET is accurate only to 10 or 20 percent, the resulting system

can only then be accurate at a maximum of the same amount. The poor matching

between the sense-FET and power switch is due to the ratio of sizes being so large.

That means no matter where the sense-FET is placed, a large variation in matching

within the large area taken up by the switch is unavoidable.
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3.1.2 Averaging

One way to mitigate the effect is to place sense-FETs at different points within

the area of the switch and then use a different FET for each switching cycle[11].

The average measurement ends up being very close to the desired ratio between the

switch and sense-FETs. The advantage of this method is no additional testing time is

required to guarantee some base level of accuracy, since the average of the sense-FETs

is designed to be already close to the actual value. They are more likely to be better

matched over temperature and load due to their locations being spread throughout

the switch device area.

3.1.3 Trimming

The other way to increase accuracy is to use a traditional trimming scheme to create

a parallel combination of FETs that are at the exact sensing ratio desired. This

entails the use of binary sized FETs and a trimming circuit to be operated at testing.

The advantage of this method is an absolute accuracy value can be achieved, with

no additional circuitry needed during operation. Of course a trimming circuitry is

required during testing to burn in the trim bits.

3.1.4 SenseFET Ratio

Ideally, the senseFET is set to mirror the actual current at the exact ratio set by the

size, which typically runs in the range of 1000:1 to 50,000:1 for this specific process[12].

However, in reality, the drain-source voltage at small currents can become so small

that accuracy becomes an issue. If the buck converter is meant to be run at a wide

output current range, this problem must be addressed. One remedy is to change

the ratio between the senseFET and power FET. By decreasing the effective size

of the power device, the ratio decreases and a larger signal is generated. Although

the tradeoff for this is additional circuit complexity, the accuracy and possibly power

efficiency gained is well worth it. Furthermore, an optimal balance between resolution

(steps) and overall complexity must be determined. It may also be necessary to
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implement some sort of hysteresis to prevent the ratio from switching back and forth

if the control voltage is noisy. To obtain a balance between accuracy and efficiency,

ratios of 10,000:1 and 1,000:1 are tested.

3.2 Regulation Schemes

Taking all of the previous work into account, three solutions for current sensing and

regulation in the previously described system are proposed in this paper.

The most similar solution to the traditional current-mode control scheme is to use

a sense-FET to generate a sensed current for the top gate and bottom gate, which

are then summed to provide the total current information (Figure 3-1). By sending

the current through a resistor, the summed sense currents can be converted into a

sense voltage that is proportional to the actual current. This voltage is then low-pass

filtered to obtain an average current value, which is compared to a control voltage

and used to regulate the system. A current-summing method such as this is the

subject of many previous works, but its use in a purely current-mode control system

is less well known. Most of the previous work focuses on special techniques, such as

averaging multiple sense-FETs, to increase the accuracy given poorly matched sense-

FETs[11]. However, with the proper trimming circuits, the matching can be trimmed

to the desired accuracy. This method from this point on is referred to as the current

summing method.

Instead of regulating using a reference control voltage, one way of simplifying the

loop is to regulate directly using a reference current. To do this requires a careful

feedback loop that first sets a control current through a sense-FET connected to the

switch pin. A transconductance amplifier connected to the other side of the sense-

FET measures the drain-source voltage as referenced to ground and outputs to the

compensation node. The system in Figure 3-2 regulates until the drain-source voltage

across the bottom switch is on average equal to the voltage across the sense-FET.

A slight modification of this approach is to use the compensation capacitor to low-

pass filter the signal instead of a separate sampling capacitor. Instead of sampling on
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Figure 3-1: Current summing method.
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Figure 3-2: Opposing transconductance amplifier method.
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the inputs, the amplifiers are fed a signal that alternates between the actual switch

voltage and ground. When the switch pin is connected, the amplifiers will be sourcing

or sinking the appropriate currents. When the inputs are grounded, the amplifiers

shall not output any current and the compensation node shall stay at a constant

voltage. The main advantage of this approach is it allows for a much larger capacitor

value since the compensation capacitor is usually located externally. As a side ben-

efit, it also reduces the number of circuit components used and somewhat simplifies

the circuit. The caveat to this approach is since the input to the transconductance

amplifiers is changing every clock cycle, the amplifiers have to respond more quickly

to keep up. A higher bandwidth requirement is then placed on these amplifiers.

VIN

HG HG-4+

HGJ ~ ICTRL
SW -

- SW +

LG 0-_ + Vc

Figure 3-3: (Single) Transconductance amplifier method.

The next approach (Figure 3-3) is similar to the previous approach but attempts

to remedy the bandwidth problems. The idea is to use a sample and hold scheme

on the bottom power FET to sense the average drain-source voltage. This voltage

is then fed to a transconductance amplifier, which pulls current due to the negative

voltage of the switch node. A matched transconductance amplifier also feeds into the

output of the first, which means at equilibrium, the two amplifiers shall provide the

same amount of current. Since they are matched, the voltage at the inputs shall be

exactly opposite. A sense-FET placed across the inputs of the second amplifier is fed

a control current. The system then regulates to a point in which the voltages across

both amplifier inputs are exactly opposite. This method is now referred to as the

transconductance amplifier method. Ultimately, the latter two methods are similar
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enough that for comparison purposes, only the first and third systems are actually

evaluated.
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Chapter 4

Analysis of Systems

Since the main focus of this work is to compare the different regulation schemes,

general circuits like oscillators and bandgap references are not discussed.

4.1 Current Summing

4.1.1 Operational Amplifiers

An operational amplifier is necessary to maintain the voltage between the source and

drain of the sense-FET to match the source-drain voltage of the power FET. The

simplest implementation is to use a source-follower instead of a full-on differential

amplifier. One caveat is the drain-source voltage must be somewhat large or else

the amplifier saturates and generates an incorrect sensed current. A common gate

differential pair is used to generate the sensed current. A common gate topology is

implemented over a common source topology for its speed; because the sensed current

is sensitive to the bias currents at low loads, a simple level shift is used to isolate the

signal path.

Top Gate Sense

The top gate sense circuit (Figure 4-1) is based on a common gate design, which

allows it to be fast. To prevent the circuit from slewing, a sample and hold capacitor
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is used at the switch node input to keep the generated current at approximately the

correct value while the top gate is off (Figure 4-2). If this is not implemented, the

generated current must slew from no current all the way to the correct value and then

back down to nothing.

SenseFET

SW o-

'BIAS 
QSENSETOP

Figure 4-1: Top gate sense amplifier.

One area of caution is in the timing of the sample and hold scheme. As VIN

increases, the time it takes for the switch node to pull up to the rail as the top switch

turns on increases as well. Thus, if the sampling signal is set to the same as the top

gate signal, the error due to the top gate sensing circuit will proportionally increase

with VIN. The sampling signal must be delayed a certain amount based on VIN-

When using the current summing approach, the idea is to add the sensed cur-

rents through a resistor to obtain a voltage. However, when switching between the

sensed top and bottom currents, there are some inaccuracies that follow through.
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SW

'BIAS

Figure 4-2: Modified top gate

r

sense amplifier.

The op-amps and current mirrors generating those sensed currents do not have infi-

nite bandwidth to keep up with the switching, so there is some time constant for the

sensed current to reach the appropriate level. For the bottom gate, because there is

zero voltage switching, the error at the switch node is only a diode drop. However,

for the top gate, the switch voltage must swing from close to ground all the way to

near the rail. This leaves the potential for an enormous amount of error from the top

gate current sense. One solution to this is to use a blanking signal at the turn-on

transient to block out the error term. Even with that in place, there is some error

term for the value that is held during the blanking.

Bottom Gate Sense

The bottom gate sense (Figure 4-3) is a little more complex in implementation than

the top gate sense because of the negative switch voltage. That requires both the sense

and power devices to be located before the input. Since the current is also flowing

in the opposite direction, a current mirror must be generated for a current-to-voltage
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conversion. Unfortunately, as the op-amp is switching from its regulation point and

the rail, the current mirror is generally in slow moving from triode to saturation,

which limits the bandwidth of the loop. However, because the output, which is low

impedance, is fed back into the input, a sample and hold cannot be implemented at

the input.

BIAS L MIRROR J

'SENSEBOT

SenseFET

Figure 4-3: Bottom gate sense amplifier.

The approach to solving this problem is to hold the output state by breaking

the loop, effectively low-pass filtering the input. Because this bottom-gate sense is

mainly used for the averaging scheme - as opposed to the top-gate which is also used

for the peak current detection, having an accurate instantaneous current readout for

the bottom gate is not vital to the overall system accuracy. The caveat with this

if there is any non-zero voltage on the input, the amplifier is railed to one side or

the other. When the sampling capacitor is switched on, the railed voltage dominates

and the system slowly recovers based on the slew rate of the amplifier. Two methods

are explored to alleviate this problem. .The first idea is to implement a buffer that

is switched in during the off-time of the power device. This helps to maintain the

capacitor voltage at the output of the op-amp so it is not completely railed. There
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is a transient effect that causes some systematic offset. The other method is to add

a current buffer stage after the op-amp output to provide the current necessary to

charge the holding capacitor quickly, as shown in Figure 4-4. In doing so, a second

pole is created: one from the high gain node pi, and the other from the holding

capacitor at node P2. Although it settles on the correct value, the resulting loop

does not have adequate phase margin and oscillates to the final value. To fix that, a

zero must be inserted by placing a resistor (already shown) in series with the holding

capacitor at node p2.

SWenF1
SenseFET

BIAS 
L MIRROR

P1

P2

ISENSEBOT

Figure 4-4: Modified bottom gate sense amplifier with current buffer stage.

4.1.2 Charge Injection

Using a sample and hold scheme can lead to larger error due to charge injection[13].

If the sampling switches are only switched on for short amounts of time, the gate

capacitance can provide a direct path for charge to flow, skewing the held value.

However, if the system uses an averaging scheme, any extra charge becomes averaged

out over a relatively long period of time, thus reducing the error observed.

qh = -WLCox (VH - VIN - VT)
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A (VH - VL) CO L

C L

WLCox(VH - VIN - VT)

2CL

C0L W LCox
os =-(VH - VL)L -(VH - VT) L

CL 2CL

For the current summing topology, the switches must be carefully sized so that

settling time due to charge injection is as short as possible. A simple test bench

(Figure 4-5) is set up to determine the optimal gate sizing.

F-g-e.- ... ..... .je..ti.n swt ..s.... settg te t. 9% ................. .

Figur 4 5---------_-- Charg ine tin switch-- size------------ vs settling- tim to- 90 of_ final----- value........................... ..........

4.2 Transconductance Method

4.2.1 Gate to Source Voltage

INSERT diagram and point out relevant transistors

The difficulty in running a bottom-side current sense is that the switch node is

a negative voltage when the bottom switch is on. Because there is no negative rail,

some workarounds must be used to ensure operation. One method involves applying

a proportional current to a ground-referenced senseFET. The drain to source voltage

across that device shall be the same in magnitude as the voltage across the bottom

switch. However, since the senseFET source is at ground, the drain is positive instead
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of negative like the power device. Thus, the on-resistances of the two devices axe

slightly disproportionate. As the devices axe operated in the linear region, they axe

governed by the equation:

RON + Rconst
Pn Cox 11 (VGS - VTII)

The threshold voltages shall be the same around 1.5V, but the gate to source

voltages are slightly different. Because the current is flowing in the opposite direction

of the normal device polarity for both devices, the drains act like sources and vice

versa. The gates are tied together at 5V, but one source is at ground and the other

is a VDS below ground. Thus, they differ by approximately 300mV. The result is an

overdrive value that differs by a maximum of approximately 10% at the maximum

output current. Consequently, the on-resistance of the power device fluctuates based

on the change in drain voltage. The actual effect is less than 10% in the worst

case because of the device layout. The actual layout of the power devices is slightly

different than a conventional NMOS so there is a constant resistance term that lessens

the effect of the overdrive voltage. According to the graph below (Figure 4-6), the

effect of a different overdrive voltage ends up being at worst about 2%.

1:41klfl - -- ----- - -- * ------- - ----- ------------ -- -- -- ---- ----------- -- -- -- ------------ ........ ........ .............. .. . ....... -------------- I ---------- - ;- ------------- - --------------------------------- .... ----------------- -

---------------------- I --------- ---------------------- ------- -- ........... .. ..... ... ............... .. .................... ................... .......... ..... ...................... .. .. ... .................. .. ......... --- --------------------------------

-------------------------------- .......... ........... .. .. .... -------------- -- -------- --------------------------------- ---------------------------------------------------- ... .......... ....... ......................... ............. ..................

------------------ _ -_ ---- ....... .. .. .. ............ ... ..... ..... ........ .... .. .... .. .......... .... . ................ .. .. ......... ................................. ................................. ................................

-- ---------------------------- ----------------------- --------------------- --- ................................ - ------------------------- -- --- --------- - - -- ---------------------- ------------------------- ----- --- ------- ---- -- -- --
...... .- ---------- _ --- _ - ....... -------------- ---------------------- ------- - ------------- ------ ---------------- - . .......-- -------------------------------- ------- -- -------- ------ __ --------------- - ---------------- - -

-------------------- ----------- ....................... ...................... -------------------------_-- ................................ ................................ .................. -- ........... ......... ...... ........... .......... . ...............

................ ..... .............. ------_ ------- ------------- --- -- -- ------ -------------------------------------------------- ------------------------------------------------------------------ --- -------- ------------- -- -- ---- ----------- --

.............................. -------------------------------- ................................. ---------------------- - -- ---------------- -- ------------ ..................... ................................. - - -- - - -- -------
----------------------- .. ............... . ....... ...... ----------- ........... .... ...........................

-- --------- -------- ------- ------ ............. ................. ---- -- -- -- -----

_ _ - _ --_ _ --- ------ ------------------ --_ I .. .... ........................... ... - ----- ............. ................. * ------- -- --- ---------------- -- -- -- -- --- --------------------- ..... ................... .......... . ....................

.................. ............................................ ..... .. ................ .. .... .. .................... .. ................... ....... ....... ................. . ........ ................. ..................... ... ....... ---------------------------- -

- ----------------------- ......... ... -_ ------------------ .................... ....... ----------- ............. ..................... .................. ............ ......... ................... ....................

.. . ................... ..... ------------ ----- -- * ------------- ----- * -- ----- * .............. ..................... I ........ ................. I ......... ............... ................. ......... .................... .. ------------------ -- --

............................ - --------------- -- - ------- ---------- - ---- ------- . ............. . ------------- ................ ............... ..... ........................... --------------------------------- ............ ............. - --------------

-------------- ............ ----------- --------------- -------- -- -------------------- ---------------------- ------- - ---------------- ............... ....... ............... ........... ---------------- ............ .

--- -- ----- -------- 
.. .. ... :

- -- -- - ------------------ - ----------------- ............. ---------- -- - -- ---------------- -- - - ----- ---------- __ -- --------------- _ -....... ----------------- .............. ................. ............................ .................

. ......... ....... _ _ .......... - -------------------- .......... . .......... -------------------- .................................... .............. ............................................... --------------------------------- ----- - ....... ...................... - ............

. ......... ....................... ................................. ......... ....... . ......... ................. ................ I ................................ ............... . ........................... .............. _ _ ....... ........... -------------------

- -- - -- ---------------- -------- ---------------------- _--- ---------------- -- - - ............ ----- - -- ---- - ------ ------------------- ----------- ................. ------------------------------------- .... .. ..... .. ................ -------- -----------

................................ -------- -- W -- --- - -- ---- ----------- I ----------- ...........LS - -- -- -- -------------- --- --------------- ----- - - - - ----------- --------- ------- - - -- --------- -r-- ............

M . .. .. ................. ------ ........... I --------- ............ ......... - ................. ------------------- ------------ --------- ----------------- ........... --------------- -------------------------- --------- ------ ......... -

84 -- -- --------- _ -------- _------------------ - ....... . .......... ........ ------------ ;- .......... .. -- -- ....... ------------------------- ---------- ------ ............... ........... ............. .___ ---------- ------ ---------- ............. .......

Le
nw 4W 14V MAN 14V 196

Figure 4-6: Ramped current through NMOS power devices. SenseFET on-resistance
(top), Power FET on-resistance (middle), Percentage of difference (bottom)-
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Although the 2% error is small, this problem does not exist for the single transcon-

ductance amplifier topology because the drains are tied together and the sources are

regulated to the same voltage.

This problem also does not exist for the top side devices.

4.2.2 Transconductance Amplifier

For each possibility for implementing the transconductance method, there is a specific

requirement for the transconductance amplifier. Generally speaking, a transconduc-

tance amplifier takes a voltage at the inputs and turns it into a current at the output.

In the case of the single transconductance amplifier method, the requirement is it

needs to take both positive and negative input voltages near ground.

For the case of the opposing transconductance amplifiers, they need to take a

wider input range centered at ground and they need to be highly linear about that

point. Additionally, they need to be well matched; any mismatch between the two

amplifiers appears as an error in the output current.

There are a few factors to take into consideration. The first is whether the input

pair shall be NMOS or PMOS (Figure 4-7). Generally NMOS transistors are faster

but in this application, the input voltages will be near and possibly below ground.

Therefore, if the input pair is to be NMOS, a level shift is required to bring the

voltages up to the required minimum voltage. With a PMOS input pair, the input

voltages can generally be lower, but there is still a limit as to not push the NMOS

current mirrors into triode. For the purpose of this application, the switch node

shall not run more than a diode drop below ground; otherwise the gate on-resistances

are set too high. Thus, the lower bound on the input for a PMOS input pair only

needs to be enough to satisfy a drain-source saturation voltage plus diode drop. To

further reduce the acceptable input voltage, a folded cascode topology can be utilized.

The benefit of this is it reduces the voltage required to support the current mirror

down to two drain-source saturation voltages. Unfortunately, both approaches require

increased power consumption.

In the scenario of the single transconductance amplifier, both inputs shall sit very
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Figure 4-7: Simple transconductance amplifiers.
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close to ground, which means a simple P-type input pair with no folded cascode

implementation shall be adequate. For the opposing transconductance amplifiers,

the inputs are the positive and negative drain-source voltage of the bottom gate,

respectively. Because of that, either the level shifted N-type or folded-cascode P-type

implementations are required.

In order to maintain the proper transconductance, wide devices with short chan-

nels are required for the inputs. The current mirrors must also be wide to reduce the

drain-source voltage but have long channels for good matching. Unfortunately, for

the folded cascode topology, the output voltage of the amplifier sets the drain-source

voltage of the cascode device, leading to channel length modulation. This difference

becomes an output voltage-dependent offset that ultimately throws off the average

output current. Luckily, if the amplifier output is held to a small enough range, the

offset shall be relatively constant over different output loads. Any offset seen in actual

implementation can be canceled out by some constant current source. If this is not

sufficient, more exotic techniques often used in deep submicron CMOS processes can

be employed. For the process used at Linear and the purposes of this application,

those techniques are not necessary.

To address some accuracy issues that are discussed later, a transconductance am-

plifier is designed for the top gate that operates on the VIN voltage and has a ground-

referenced output (Figure 4-8). It is determined that a complementary NMOS input

pair folded cascode transconductance amplifier best meets the requirements. The re-

quirements are that it has to take inputs close to Vin but with the output being the

Vc node, which is an input to a low voltage, ground referenced circuit. Because of

the high voltage, protection devices are needed to limit the actual output voltage of

the circuit; all other devices used are low voltage for good matching. The additional

devices required for this design become the limiting factor when determining the Vc

range, which is then used for a voltage to current conversion with the current com-

parator. As in the case of the low-voltage transconductance amplifier, care is taken to

ensure minimal current offset due to the variable output voltage. Note that the input

drains are connected before the current source cascode devices. Because the inputs
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operate at relatively close voltages while the output voltage operates in the range of

approximately 1 - 4V, the current offset due to channel length modulation reflected

from the output voltage outweighs the offset due to channel length modulation from

the input pair. Adding any additional cascode devices further reduces the possible

output voltage range for lower VIN, which negatively impacts the resolution of the

subsequent voltage to current conversion.

IN- IN+

IBIAS 7 BAS

VIN-5

VIN

VBIAS

[-VDD

--- OUT

Figure 4-8: Transconductance amplifier for high voltage top gate sensing.

Unfortunately, the one of the most important aspects - matching between two

transconductance amplifiers, depends on process variation, which is more difficult to

control. The problem is especially difficult with a top gate and bottom gate sense,

as they are completely different topologies as opposed to matching two of the same

circuit. To overcome this, it may be necessary to perform some trim operations - or

else any offsets in the amplifiers can ruin any matching between the power device and

senseFET.
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Transconductance Amplifier Output Offset

In the opposing transconductance amplifier topology, if the two amplifiers are not well

matched, they will have some offset. If there is any inherent offset in the amplifiers, it

is reflected directly into the output current. Thus, much care must be taken in layout

to ensure the amplifiers are as well matched as possible. Luckily, the mismatch

between the two amplifiers can be trimmed out using the senseFET trim circuit.

Transconductance Amplifier Input Offset

The input referred offset of the transconductance amplifier shall also be reduced as

much as possible. The methods of doing this include using a large bipolar input pair

or some other techniques such as chopper or auto-zeroing[14]. It is also possible to

use trimming as well.

Transconductance Matching

Using the switched transconductance amplifiers connected to the same node, it is

important to maintain a similar transconductance. If there is any difference, the dif-

ference reflects directly into how much each part is weighted. The ideal case is for the

weighting to be equal at 50% duty cycle. However, as long as the transconductances

are relatively close, the error due to uneven weighting is negligible.

4.3 Common Issues

4.3.1 Sample and Hold vs. Sample and Off

One aspect that plays a factor in determining the output current error in the initial

sample and hold scheme is the holding error, which is proportional to the duty cycle.

With bottom-gate sensing, the error occurs when the bottom gate is off; the value

being held is the minimum value of the inductor current waveform. The calculated

average current is thus lower than the actual current, leading to a higher output

current. As shown in Figure 4-9, when sampling and holding, the error of the system
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Figure 4-9: Error in output current vs. duty cycle. Note the waveform plotted is
the control current minus the output current, so a negative value means the output
current is too high.

is greatest when the duty cycle is near 50%. This occurs because the current ripple is

greatest at medium duty cycle. The holding error is proportional to the ripple times

the off-time of the switch. While a small duty cycle has a large off-time of the switch,

the decrease in current ripple causes the overall error to be smaller than the case with

large ripple and a medium duty cycle; this explains the bow-like shape of the error

waveform.

One way to go about reducing the holding error is to turn off the measuring

scheme when the switch is also off. In theory, there is no holding error because

nothing is being held. However, this scheme then becomes more susceptible to any

non-idealities that would impact the measurement, such as the turn-on spiking. As the

duty cycle decreases, factors such as the body diode voltage drop will contribute the

same error for a constant period of time while the actual measurement time decreases,

thus increasing the effect on the measurement value. This causes the overall error to

increase as duty cycle decreases, effectively replacing the holding error with a different

error.

In the case of a low-duty cycle application, it may be acceptable to use only

bottom-gate sensing. But for a general purpose part, this is undesirable. The short-
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comings described are exactly the reasoning behind implementing the following sec-

tion.

4.3.2 Top Gate vs. Bottom Gate Sensing

To really understand why the problems from the previous section occur, it helps to

explore idea of sensing current on the top gate or bottom gate.

The situation for sensing on the top gate is directly analogous to sensing on the

bottom gate. The error occurs in top gate sensing when the top gate is off, and

the current value being held is the maximum current value. The calculated average

current is higher than the actual, thus the actual current is lower than desired. And

in contrast with bottom gate sensing, using the top gate could still be acceptable

for applications with high duty cycles. The issue becomes slightly more complex,

however, when observing the actual error over duty cycle. While it is true that the

incorrect value is held for the respective extreme duty cycle, the error observed in the

output current is also a function of the error in the held value, which also changes

with duty cycle. In fact, the error in the held value is largest for a moderate duty

cycle. This actually impacts the end result much more than the amount of time spent

holding the incorrect value.

Thus, each method has its benefits and drawbacks. With top gate sensing, the

duty cycle is limited on the low-end, since the top gate needs to be on for a certain

amount of time to calculate a relatively accurate current. And instead of the dip in

output accuracy like shown in Figure 34, there would be a bump. The opposite is

true for bottom gate sensing, with the limit being on the high end of the duty cycle.

All circuit elements being equal, the advantage goes to bottom side sensing because

the circuit can be referenced to ground, while the top-side circuit would have to be

floating with the input voltage. For a circuit to float with the input voltage, which

can go up to 60V or more, the techniques are not necessarily difficult, but the circuit

is inherently more difficult to implement because care must be taken to ensure the

devices operate with safe voltages.

Neither top-gate sensing nor bottom gate sensing on its own is ideal. The goal is
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to obtain the maximum performance on the widest possible output current range, so

it would be advantageous to combine the best of both worlds - that is, sense on the top

and bottom gates. Through sensing on both the top and bottom gates, there is little

holding error because something is always measuring the actual inductor current. The

method of sensing both gates can be clearly demonstrated with the current summing

approach. Each circuit is activated for its respective portion of the duty cycle and

outputs a current proportional to the inductor current; the resulting currents are then

summed together. It is possible that there is some error due to transitioning between

the top and bottom gate sensing, but since it is averaged over the entire period, that

error should be negligible. With the transconductance amplifier-based design, it is

also possible to apply a top and bottom gate sensing method, as shown in Figure 35.

Of course, some of the disadvantages remain from top and bottom gate sensing, such

as high voltage and complex circuits.
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Figure 4-10: How to implement sensing on both top and bottom gates.
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4.3.3 Balancing Top and Bottom Sense Circuits

The simplest is to use only one gates sensing mechanism at a time and switch off

around 50% duty cycle. Hysteresis can be employed to ensure there is no switching

back and forth due to noise, but with two discrete levels, it is likely there will be

a discontinuous jump in output current at the transition regardless of where it is.

Instead, the best way to avoid the duty cycle dependent error is to just combine the

top and bottom gate sensing circuits and turn off each respective circuit off when it

is not in use. This in effect weights the top or bottom sensing circuits based on the

duty cycle so the gate that is on for longer affects the result more.

For the current summing method, it is already taken care of because the instanta-

neous current is calculated and then low-pass filtered to obtain the average from both

gates. On the other hand, for best accuracy, the two transconductance amplifier-

based methods require a method of switching between the top and bottom sensing

circuits. The ideal result is a completely linear relation between duty cycle and out-

put current. But due to mismatches and offsets, the top and bottom average sensing

circuits likely do not match up, leading to an undesirable discontinuity if they are

individually used. Any discontinuity is undesirable because that leads to either a

missing code or a code overlap. For better continuity and consistency, it may make

sense to have a range in which both sense circuits are regulating. In the end, the

simplest method is to connect each circuit for its respective portion of the period,

effectively weighting each circuit using the duty cycle signal. The average shall then

be a continuous function for all duty cycles.

However, there still remains some error in this implementation! The drain to

source capacitance on the top and bottom gates introduces more error into the calcu-

lation. Between the two, the top gate error significantly outweighs the bottom gate

error. This is because the bottom gate has zero-voltage switching from the body

diode conducting before the switch turns on. Thus, the maximum voltage drop at

the switch node will be a diode drop. However, with the top gate, there is no body

diode to start conducting current, so the switch node starts at OV and then swings
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up to the rail. This introduces a huge error into the system because instead of seeing

just a few hundred millivolts, the current sense circuit is led to believe there are tens

or hundreds of times more current flowing through the top switch. The solution to

this is described in the next section.

4.3.4 Sample Blanking Circuit

When the top switch turns on, its drain-source capacitance is charged all the way

up to the input voltage. In order for the channel to properly form, that capacitance

must be first discharged, which takes the form of a large current spike through the

top switch. Much of that current goes into charging the bottom switch capacitance.

So for any current measuring circuits connected, it appears like a lot more current is

flowing through the inductor than it actually is. This throws off the accuracy of the

current averaging circuit, and thus, a blanking signal shall be used for the top gate

transconductance amplifier to blank out that initial spike.
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Figure 4-11: Voltages do not rise up immediately when the switch is turned on.

Just blanking out that initial spike is not enough to fix the problem. If the

remaining duration of the period is fully sampled, then the period sampled becomes

asymmetric. One simple method to block out the largest spikes is to attach an inverter

to the switch node and or that signal to the gate control signal. Thus, once the switch
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Figure 4-12: Voltages do not rise up immediately when the switch is turned on.

voltage passes a certain threshold, most of the spike is already settled. Then as the

top gate turns off, the switch voltage once again decreases and the sampling stops

there as well.

A similar problem exists for the bottom switch, but as it is soft-switched, the

inaccuracy that results is far less than what results from the top switch. Thus, it is

left as is.

In practice, it is not critical to achieve extremely precise sampling times and worry

about matching delays because in this implementation, both the top and bottom

switches are being sampled. In the case where only a single gate is being sampled,

at one of the extremes of duty cycle, a large current spike will throw off the current

estimation greatly. But when it is being averaged over an entire duty cycle, its effect

is greatly reduced and becomes a constant over all duty cycles. As simulated, this

error term becomes negligible and a blanking circuit is not actually needed to achieve

the desired accuracy levels.

4.3.5 Sampling Error and Blanking

Due to the current spike on the high gate, blanking is implemented. However, the

most simple implementation of using just a inverter to determine when the switch
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node has passed a certain threshold still generates some error to the sampled current.

Most of the current spike is eliminated, but during the turn-off, since there is a slight

delay from the inverter, there is a short time in which the switch samples a low

switch voltage, believing it to be a large top gate current. Since the bottom gate is

still measuring during this time, the error is a constant throughout duty cycle, as the

duration of the error remains a constant regardless of how long the top gate is on.

4.3.6 Voltage to Current Converter

In any case, it is important to keep track of the output voltage range at the Vc

node. Both top and bottom sensing circuits must be able to regulate for the designed

range of the Vc node, which is then translated into a current that feeds into the peak

current comparator. Setting a large voltage range gives higher overall resolution but

puts tighter constraints on the output stages of the circuits that precede it. It also

means the gain of the error amplifiers does not have to be as high.

4.3.7 Peak Current Detection

Since the feedback method used is peak current-mode, there must be a way to deter-

mine the peak current quickly and somewhat accurately. High accuracy is not a major

concern because the feedback loop is capable of compensating for any peak current

inaccuracies, as it is regulating the average current using circuits that are focusing

on high accuracy. Untrimmed, it is possible to achieve approximately 10% accuracy

between the peak sensing and power devices. In the current summing method, the

existing average current detection is just a low-pass filtered version of the sensed

inductor current. Thus, no additional circuitry is necessary. For the other two meth-

ods, the average current sensing circuits hold only that - averaged information. The

peak detection circuit uses a reference current generated from the compensation node

voltage to set the desired peak current. Then, a comparator trips when the inductor

current reaches that preset value. Effectively, this method controls the duty cycle.

For the comparator topology, it is simplest to use a common base differential pair
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as shown in Figure 4-13. The reason for having a sense-FET on both sides is to

match the offset due to the bias currents. This extra bias current does not have much

effect on the voltage across the power device, but since the sense-FET is thousands of

times smaller, the bias current causes a significant offset. Thus, to achieve the desired

accuracy, it is necessary to account for the offset. It is also important to implement

some hysteresis (not shown) so the output does not fluctuate with noise. This circuit

is only necessary on the top side gate, as the inductor current only increases when

the top gate is on.

SW

SenseFET

VCOMP 'PEAK

'BIAS

Figure 4-13: Peak current sense comparator.
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4.3.8 Overcurrent Protection

It is necessary to implement an overcurrent limit to prevent damage to components.

While the external loop is designed to be able to handle this, there is no guaran-

tee of catching a large transient spike. Thus, a separate comparator with a hard-

programmed limit is also included. The design is exactly the same as the peak cur-

rent comparator but uses a constant current reference instead of a variable current

sink based on the compensation node voltage. This hard limit adjusts based on the

sense ratio - although in the actual circuit implementation, no additional circuitry

is needed for the adjustment because the power device change already takes care of

that. For large currents, the current limit will be X. For small loads, the hard cur-

rent limit will be Y. These limits generally are determined by practical values for

the inductor, which factors into the current ripple. For a monolithic chip, the power

devices are known, so it is much easier to set the current limits. Like the peak current

sensing circuit, the overcurrent detection does not require exact matching between

the sense-FETs and the power device.

4.3.9 Peak/Over-Current Blanking Circuit

For the over current comparator described above, it would not function properly if

implemented on its own. Unfortunately, the switch node experiences ringing due to

various parasitic inductances and capacitances, which might lead to false trips. The

useful information is only available once the ringing dies down, so a blanking circuit

is necessary to block out the ringing. According to a model with nH bond-wires and

30ohm parallel dampening resistance from radiated energy, the ringing goes away

after approximately 10ns, which corresponds to 5% minimum duty cycle. A simple

blanking circuit of a constant 10ns delay should generally be sufficient for the current

comparators for the VIN voltage range used, although that may change if a larger

range is desired. The simplest implementation is just an inversion of the clock signal,

as long as the clock pulse width is set to the necessary value.

One issue to keep in mind is that combined with the W-switching, the minimum
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blanking time required changes due to the larger gate capacitance of the larger power

switch and as well as the need for extra driver stages. Due to this, it is necessary to

either set the blanking time based on the large switch or to change blanking times

depending on which switch is being used.

Doing a valley current regulation scheme places a similar constraint on the high

end of the duty cycle. There is not much benefit, if any, because the bottom switch is

soft-switched, which means the period of time in which the body diode is conducting

also has to be blanked.

4.3.10 Shoot-Through Protection

A shoot-through protection circuit (Figure 4-14) is implemented using some logic

gates and delays to prevent both switches from being on at the same time. In essence,

the circuit simply ensures there is a delay before each gate is turned on so the other

gate is able to first shut off completely. Using ideal switches, this is not a factor.

But left unaccounted for, the shoot-through current will become the main power

loss factor - if the chip does not blow up! It also has a large impact on accuracy;

implementing the shoot-through protection circuit decreases error by 2-3%. This

likely occurs because during the time in which both switches are conducting, the

assumption that the switch current is equal to the inductor current is no longer true.

4.3.11 Sense Ratio Adjusting Circuit

The sense ratio adjusting circuit (Figure 4-15) employs the concepts of a basic flash

ADC to choose the correct sense ratio based on the user-defined control voltage. A

larger control voltage shall increase the ratio between the switch and sense-FET,

while a smaller control voltage shall decrease the ratio. This circuit is designed with

a non-ideal control signal in mind, with noise being the main issue. Thus, each of

the comparators in the ADC has a bit of hysteresis programmed in to prevent the

circuit from switching rapidly between sense ratios at the transition voltages in the

presence of noise. Theoretically, this circuit can be used with any number of step
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Figure 4-14: Shoot-through prevention circuit.

sizes to achieve the sense ratio desired for any control voltage. However, considering

space constraints as well as the marginal benefits of adding more steps, it is much more

practical to stick with the fewest steps possible. In this case of a 100:1 analog dimming

ratio, having only one step - two ratios, provides the most benefit for accuracy; any

marginal benefit of additional steps is outweighed by the cost in size and complexity.

As implemented with any of the proposed topologies, changing the sense ratio

by adding or reducing senseFETs does not give any real benefit to the measured

voltage, which is the limiting factor at lower currents. While it does boost the signal

by increasing the sensed current, the boosted signal happens to be after the point

of greatest impact; the drain to source voltage on the power FET remains the same

regardless of the ratio, which means the amplifier must maintain the same drain-

source voltage on the sense-FET as well. A way to get around this is instead of

changing the senseFET, to adjust the actual power FET, which effectively changes

the on-resistance and provides a larger or smaller drain-source voltage that actually

helps to reduce the error (Figure 4-16). This method is called W switching[15]. Since

the drain to source voltage is smaller for low currents, increasing the on-resistance

boosts that signal, making it easier for the amplifiers in the regulation circuit. The

original motivation behind W switching is to increase the efficiency at low output
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Figure 4-16: Expected error of 2-ratio system with relation to output current.

currents, which is a positive side effect as well. The three main losses in a buck

converter result from switching loss (Figure 4-17), gate charge loss, and conduction

loss. Listed below are the equations for each:

PCON =VOUT

PCOND = IOUTRDS(ON)
VIN

1
PSW = 2-VDSIDtSWfSW

PGATE = QGVDDfSW

As the output current decreases, the conduction loss reduces by a square factor

and the switching loss decreases linearly. However, the gate charge loss remains

constant, so the gate charge loss becomes a bigger factor compared to the other losses.

While more complicated solutions exist, such as resonance or gate drive reduction,

the simplest way to reduce the gate charge loss is to reduce the gate capacitance,

given a set internal rail and switching frequency. By using two separate power FETs

of different sizes, the smaller one can be used for lower output currents without the

penalty of a large gate capacitance. While the conduction loss increases with the

smaller device due to a larger on-resistance, since the power loss is a square factor
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Figure 4-17: Timing diagram of high-side switching losses. Adapted from Klein[16].

of the current, the increase in conduction loss shall still be less than the decrease

in switching loss. In practice, changing the gate size only shifts the current peak

efficiency curve, as shown in Figure 2 of Williams et al [15].

In terms of practical implementation, the largest gains are made with two separate

power FETs; any additional FETs for increased resolution will at best only provide

a small marginal benefit and at worst significantly require more space. For layout

purposes, the smaller power FET can be placed separately from the larger one, with

no regards to matching between them. Instead, either two senseFETs can be used

with their own trim circuits or one senseFET with two separate trim circuits. One

important note to keep in mind is the when the sense ratio changes, the voltage-to-

current gain from the compensation node must be adjusted as well, or else the peak

current value becomes set for the wrong ratio. Left on its own, the compensation node

voltage adjusts to the new regulation point, resulting in an undesired transient. To

account for the new regulation point, the safest method is to reset the compensation

node and allow the loop to bring it back up.

For the purpose of this specific application, if the maximum output current is
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aimed at 2A, the larger power FET M2 shall be sized accordingly for maximum power

efficiency, with the smaller power FET MI sized approximately ten times smaller

(Figure 4-18).

M1

Q W

M2

Figure 4-18: W-switching mechanism.

4.3.12 PWM Control

The PWM control circuitry runs open-loop, as the PWM frequency is relatively slow

- around 200Hz. For a 1000:1 PWM dimming ratio, that requires a 5ps minimum

on-time. Because of the inductor, the ramping down of current takes some time. But

because there is no output capacitor to charge up the next cycle, there is also no worry

about just shorting the output to ground. The most straightforward implementation

of PWM control is to AND the PWM signal with the clock.

The Vc node voltage must be held during PWM off to allow for a fast turn-on time.

If it is allowed to run freely to any voltage, since both gates are off, the regulation loop

tries to run more current through the switches, pushing the node voltage higher and

higher. The node voltage sticks high until the PWM on signals and the peak current

is subsequently set too high, leading to a large output current overshoot and slow

correction back to the intended value. For something like a 1000:1 PWM dimming

ratio, this is unacceptable, as the circuit shuts down again before even having a chance

to settle to the correct output value.
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4.3.13 Trim Circuit

There are two main points where trimming is crucial. The first is the actual senseFET

to ensure the sense ratio is as expected. Trimming is necessary for the senseFETs

in both cases to ensure an accurate match of the drain-source voltages because as

shown in Figure 4-19, the standard deviation of the FET drain to source voltage is

approximately 10% of the mean. It would be futile to aim for less than 5% error if

the sense ratio is going to be off by more than 10%.
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4-19: Histogram of drain-source voltage of randomized sense-FET over 1000

The second critical trimming component is the control current source. If that

current is not accurate, then having the correct sense ratio will be negated.

Elements in which extreme accuracy is not necessary include the peak current de-
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tection circuit, which include the corresponding senseFET and the voltage-to-current

resistor. If the previously mentioned elements are trimmed, the control loop can

compensate for any inaccuracies presented in the peak detection circuit.

Trimming will also help for the transconductance amplifiers; if they are un-

matched, the top and bottom sense circuits will be weighted unevenly. However,

assuming the transconductances are close in value, the effect of uneven weighting will

be negligible.

However, trimming is not required in all parts of each scheme. For example, in the

case of the opposing transconductance amplifiers, the average current is controlled

through a set of trimmed senseFETs. Since all methods are still employing peak-

current detection, a separate senseFET is required for that purpose as well. But

because the average current is already accurately measured and stored on the com-

pensation node, the peak current sensing does not have to be extremely accurate.

Thus, the senseFET for that need not be trimmed as carefully as the others - or

possibly at all.
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Chapter 5

Circuit Testing

5.1 Results

Since experimental circuits are not fabricated, the circuits designed are tested through

simulation in LTSPICE with various test setups. For ease of testing, most circuits are

tested under specific conditions with some ideal models to isolate errors due to that

specific block only. Full, system-level simulations are also run, although the results

can only verify some general specifications.

Figure 5-1 illustrates the averaged output current as the output voltage is ramped

from OV to 40V, which is also the value of VIN, the supply voltage. The output

current holds within the limits of 5% error from approximately 2V to 39.7V, which

corresponds to a range of 5% to 99% of the supply voltage. The upper limit is key, as

it allows the supply voltage to just slightly higher than the voltage needed to drive

the load.

From Figures 5-2 and 5-3 above, note for the 200mA case, the error grows much

larger than 5%. This is because the output current is right at the boundary for W-

switching, with the sense ratio set at the larger value to maintain consistency with

the IA and 500mA cases. The error reduces down within acceptable limits with a

smaller sense ratio.

The waveform of Figure 5-4 shows the ramp-up of a 100Hz PWM signal at 1000:1

dimming ratio. The initial ramp-up time is dependent on the inductor value, but
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Figure 5-1: Averaged Output Current vs. Output Voltage for transconductance
method.

note how the output current quickly reaches and stabilizes at the correct value.

5.2 Known Issues

5.2.1 Duty Cycle Limitations

There are a few key aspects involving the regulation scheme and physical limitations

that determine the possible duty cycle range.

The main limitation comes from the use of a peak current sensing circuit. Because

the regulation loop is dependent on a circuit that compares the top gate current to

some regulated current, there is some minimum time required for the top gate to

be on. This comparison is done very quickly, but the issue that slows down the

entire process is the ringing of the switch node. This ringing is likely to cause the

comparator to trip prematurely, before the inductor current has a chance to reach the

desired average value. Because of that, a blanking circuit must be implemented for
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the duration of the ringing, but that means the top gate must at least be on for that

much longer. The duty cycle at the low end is then limited to the shortest possible

blanking time that can be used without prematurely tripping the comparator.

The main duty cycle limitations are related to the turn-on times for the power

devices. Since the average current is being measured on both the top and bottom

gates, accuracy at low or high duty cycles shall remain within acceptable ranges.

Thus, the turn-on times relate to the driver delay and device rise times, which shall

remain within 10 nanoseconds. At worst case, this presents a 2% boundary at either

extreme.

5.2.2 Efficiency at Low Output Currents

While the W-switching method reduces the power loss in the power devices, it does

not reduce the quiescent current due to the regulation circuitry. The biggest con-

tributors to power loss at small output currents are the transconductance amplifiers.

To achieve adequate bandwidth while minimizing noise requires a relatively large

compensation capacitor paired with a corresponding large transconductance. While

a large transconductance on its own does not necessarily mean a large operating

current, the use of the amplifier for measuring the drain-source voltage of the power

devices requires it to operate over a large input range approximately ± 300mV. That

means at the very least the output stage of the transconductance amplifier must be

operating with a large current, which does not decrease as the power device size is

reduced. Thus, the efficiency of the part also suffers as a result of this tradeoff.

5.3 Layout Considerations

One of the most important aspects of an on-chip current sensing topology is the actual

chip layout. Even the best design cannot escape the non-idealities due to the layout;

in some cases, layout becomes even more important than the design itself! While this

thesis does not explore actual chip layouts for these topologies, some of the major

issues are considered.
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In each of the methods explored, a senseFET is used to match the drain to source

voltage on the power device. It is crucial that the voltage matched is accurate, or

else any steps after that cannot do anything to correct for that initial offset. Thus,

a trim circuit is necessary to correct for any mismatches in the ratio. However, to

ensure high accuracy across operating regions and temperature, the senseFET must

also match the temperature coefficient of the power device. In addition to the device

itself, the resistance and temperature coefficients of the metal leads must also be

matched together.

In implementing the W-switching, it is not essential to match the small and large

devices as long as there are two separate trim circuits to take that into account.

However, to save space, it makes sense to use a portion of the larger device for the

lower loads and then to turn on the entire device for high loads. This is slightly more

complex to drive than the case in which two separate devices are used, with only one

turned on at a time. One significant difference appears in the gate charge of each

device; the smaller device turns on first unless a delay is implemented so both turn

on at the same time.

5.4 EMI Considerations

Since the main application for this circuit is automotive lighting, electromagnetic

interference (EMI) is of great importance. The circuit must stay outside of the radio

bands or else it may interfere with the radio reception. This is the main reason for the

high switching frequency of 2MHz to stay out of the AM band. The use of a slope

compensation ramp is to prevent any sub-harmonic oscillation, which might interfere

with the radio bands. Furthermore, operation must strictly stay within continuous

mode, with no frequency modulation.

Since radiated EMI generally is an issue that can be solved externally with ground-

ing planes and metal enclosures, it is not discussed here.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the end, all three methods are determined to be viable methods for this specific ap-

plication of on-chip current sensing and regulating, given ideal devices and processes.

Because the intended purpose is just a current source with no voltage feedback, the

system is for the most part stable, with only two dominant poles. This leaves many

degrees of freedom in which to architect the actual circuit implementations. How-

ever, taking the non-idealities into account, there are some methods that are easier

to implement than others in reality.

The single transconductance amplifier topology is the preferred method because

of its simplicity and accuracy. It is simple because it uses a transconductance am-

plifier that does not have to be matched with anything. Given an absolute accuracy

requirement, it only needs to be paired up with a matched and trimmed senseFET to

work properly and accurately. The peak detection circuit, implemented separately,

does not have to be extremely accurate because the average will be taken into ac-

count already. An added benefit is that the compensation capacitor can be located

on-chip, since the circuit blocks can all be implemented with enough bandwidth that

the compensating pole can be pushed out to the theoretical maximum; this means

another pin can be saved per channel.

In contrast, the opposing transconductance amplifier topology requires two well-
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Table 6.1: Summary of Schemes

matched transconductance amplifiers in addition to the matched senseFETs. Making

it even more difficult is the fact that in normal operation, they must be sourcing and

sinking the exact same current, respectively. That means they must be highly linear

with an extremely low offset around ground. While entirely possible, this requires

much more work to implement accurately than the single transconductance amplifier

method.

Finally, the current summing method presents what seems to be a simple option

as well. Because it is generating the exact sensed currents from the top and bottom

gates, all that stands between the peak and average currents is a low-pass filter.

Unfortunately, the peak sensed current is not so useful for the purpose of the peak

current comparator because of the need for a holding capacitor. Thus, it is necessary

to also implement the same peak current comparator as the other methods. Although

it is simple in theory, this method suffers from bandwidth issues, as the amplifiers

must slew at each turn-on transient, leading to high levels of inaccuracy at low output

currents. Because of this instability, the compensating capacitor must be larger to

lower the unity gain frequency before the extraneous poles and zeros appear. There

is no real way to mitigate this issue because any attempts to increase accuracy in

either the averaged or peak measured current will lead to a reduction in accuracy in

the other.
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6.2 Future Work

Figure 6-1: BMW concept of laser headlighting[17].

Even though LED technology has not yet fully matured, car manufacturers are

already looking ahead to the next generation (Figure 6-1). The benefit of lasers over

LEDs is even lower power consumption coupled with a significantly smaller physical

footprint. Since LEDs and lasers operate on similar principles, they should both

be operable using the methods proposed in this paper. In fact, since the methods

proposed are all for accurate constant-current sources, they are extremely well-suited

for powering laser diodes.
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