
An Illustrated Primer

by

Kendra Leigh Pugh

B.S., Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science ARfCVES

at the Tc ~X

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2 9

September 2012 U R RES

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author

Department 6f Electrical Engineering and Computer Science
August 7th, 2012

C ertified by
Dennis M. Freeman

Professor of Electrical Engineering
Thesis Supervisor

Accepted by- -
Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

An Illustrated Primer

by

Kendra Leigh Pugh

Submitted to the Department of Electrical Engineering and Computer Science
on August 7th, 2012, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Educational technology has received unprecedented attention recently, as the efficacy
of traditional education methods are coming into question. This thesis introduces the
Primer - an e-textbook that initially customizes the presentation of a given course's
content to the preferences of the reader, then gradually scales those customizations
back as the reader progresses through the e-textbook. The Primer is designed to assist
in the "two sigma" problem [1] of bringing the educational experience of a student
closer to that of receiving individual instruction from a competent tutor that uses
mastery learning techniques.

The Primer initially improves the accessibility of a new course to the student by
customizing the representation of the course's content to the student's needs; addi-
tional instructional videos, dereferencing of definitions, and hyperlinks back to the
defining information originally introducting a concept are provided given the students'
preferences. These customizations are based both on the strengths and weaknesses in
the student's background in the course's preresequites, and the information presen-
tation styles preferred by the student. The Primer reduces these customizations over
the course of the textbook so that the e-textbook gradually and eventually reflects
the delivery style intended by the e-textbook's author, and to give consistency across
users' e-textbook experience. The goal is a method of information delivery that is
personalized, yet standardized.

The Primer allows students to ease into an e-textbook without becoming dis-
couraged with the presentation style native to the e-textbook's field. It can prevent
the student from becoming discouraged by providing more support for areas of the
e-textbook's content in which the student has unstable grounding. The Primer was
implemented using readings from 6.01 and additional content from OCW Scholar, and
feedback was received from students as well as professionals in the field of educational
technology.

Thesis Supervisor: Dennis M. Freeman
Title: Professor of Electrical Engineering

3

4

Acknowledgments

I'd like to thank Dennis Freeman; primarily for guidance and support, ultimately for

a large amount of patience, and firstly for allowing me the opportunity to work on

the Primer.

I'd like to thank my parents, who simultaneously insisted on constraint satisfaction

to meet the qualifications of a Real Person TM, and insisted that I could do whatever

I wanted. I'm not sure I'm quite there yet with either, but I wouldn't have thought

it possible without your persistence.

Thank you to my friends, who put up with me gracefully. In particular, to Caitlin

Johnson, Sarina Canelake, Adam Hartz, and Alejandro Sedeno; Matt Malchano, Clara

Rhee, Danielle Magrogan, Coral Ash, Andrew Rowe, John Innes. This wouldn't have

been possible without you.

Thank you to Sal Khan, who helped me understand 18.06, and whose innovation

legitimized my interest in "TA stuff'

5

6

Contents

1 Introduction

1.1 Educational Technology .

1.2 The Primer .

1.3 Evaluation .

1.4 Contents .

2 Previous Work

2.1 Machines and the Study of Education

2.2 WWW and Online Education .

2.3 Electronic and Interactive Textbooks

3 The Primer

3.1 User Profiling .

3.2 Approaching Standardization .

3.3 Disclaimer .

4 Primer Interface

4.1 Admin

4.1.1 User Profile.....

4.1.2 Chapters

4.1.3 Definition Elements .

4.2 User

4.2.1 Login and Logout . .

7

11

11

12

12

13

15

15

17

18

21

22

22

22

25

25

25

26

27

28

28

4.2.2

4.2.3

4.2.4

Profile .

C hapters .

D efinitions .

5 Primer Architecture

5.1 Content .

5.1.1 Course Readings .

5.1.2 Definitions .

5.1.3 Videos .

5.2 Django .

5.2.1 M odels .

5.2.2 Views .

5.2.3 Templates .

5.3 Server .

5.3.1 Apache. .

5.3.2 mod..wsgi .

6 Feedback

6.1 Primer .

6.2 E-Textbooks. .

7 Contributions

7.1 The Primer

7.1.1 The Ideal

7.1.2 The Implementation

7.2 What's Next.

A Code

8

29

30

31

37

37

37

38

38

39

40

41

42

45

45

45

47

47

48

51

51

51

52

52

55

. .

. .

. .

. .

List of Figures

Administration Home

Admin User Profile Page

Example User Profile

Chapter Admin Page

Detailed view of Chapter Admin Page

Definition Elements Admin Page . . .

Detailed view of Definition Element Ad

Primer Masthead

Primer Login Page

Primer User Profile

Primer Excerpt

A Triggered Definition Element

Primer Chapters

Primer Definition Elements

Primer Definition Element

min Page.

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

5-1

5-2

9

26

27

28

29

30

31

32

32

Reference to the 'voltage' Definition Element .

The Primer Template Hierarchy

. 3 3

. 3 3

..... 3 4

.... 3 4

..... 3 4

..... 3 5

..... 3 6

43

. . . 44

10

Chapter 1

Introduction

This thesis explores the current state of educational technology, and attempts to

address an outstanding problem in educational technology with a new combination of

solutions. The outstanding problem in educational technology this thesis attempts to

address is known as the two sigma problem [1]. The new combination of solutions is

an e-textbook that initially adapts its presentation to the student's preferences, then

gradually scales back the customizations over the course of the e-textbook such that by

the end of the student's experience, the e-textbook is a more uniform resource across

students. This customized content delivery system will be referred to throughout as

The Primer.

1.1 Educational Technology

The Primer is introduced during an exciting time for the field of educational technol-

ogy. Unprecedented interest in educational reform and technology-enabled learning

sets the stage for a multitude of new approaches to a student's education, both in

the classroom and at home [10] [6]. Simultaneously, the size of a given class is

no longer necessarily limited by the size of a room, the number of desks or even

the number of instructors available; web publications [7] and Massive Open Online

Courses (MOOCs) [3] expand educational offerings to anyone willing to learn. The

proliferation of tablets and popular adoption of e-books has lead to a race for domi-

11

nation among various e-textbook publishing formats. The Primer is introduced at a

time where adaptation of its ideas could be beneficial to a great number of learners

worldwide.

1.2 The Primer

In the midst of all this innovation, the Primer is an attempt to carefully improve a

classic aspect of the higher education experience, the textbook, without sacrificing

any of its inherent benefits. An e-textbook device has the benefit of being lighter and

easier to carry than a traditional textbook, and and e-textbook can theoretically be

transferred to a new device when normal wear and tear affects the previous device.

A textbook with presentation style personalized to the reader can improve the rate

and quality of information transfer between the textbook and the reader.

But what of standardization? What if every economics student read a slightly

different version of The Wealth of Nations [9]? The downside of MOOCs is that

professional oversight of a student's experience may be diluted to the extent that it

is not guaranteed to be sufficiently rigorous or comparable to that of other students.

The Primer attempts to address all these issues. Too much customization and an

e-textbook experience isn't relatable to any other student in the course. Too little and

the experience provides little advantage over a traditional textbook. The Primer aims

to provide improvement over the traditional textbook experience without sacrificing

the benefit that comes from a common source of information.

1.3 Evaluation

The Primer was evaluated by several experts both familiar with the course content

upon which the Primer was based and expressing interest in the field of educational

technology. These experts are participants in educational technology efforts such as

OCW, the iCampus project, and edX. The experts were asked to read a sample of

the Primer under several different profiles, create a dynamic element for use within

12

the Primer, edit the Primer to include this dynamic element, and give feedback on

the experience.

1.4 Contents

Chapter 2 discusses both the historical and current related work relevant to the

Primer.

Chapter 3 is an overview of the goals of the Primer and the specifics of which

problems it does and does not solve.

Chapter 4 provides a detailed description of the Primer's user interface. It es-

tablishes both the educator and student's interface configurations, and indicates the

decisions that went into establishing the user interface as provided.

Chapter 5 presents the architecture of the Primer.

Chapter 6 reviews the evaluations of the Primer.

Chapter 7 concludes the thesis and indicates desirable possible extensions to the

Primer.

13

14

Chapter 2

Previous Work

Educational technology has a rich history; traditional technologies include those items

classically associated with a traditional instructional setting, such as blackboards,

chalk, textbooks, and lecture halls. Although these elements aren't typically indi-

cated by the contemporary use of the term 'Educational Technology', they are the

standard against which emerging technologies are measured. The past century, and in

particular the past ten years, have seen incredible advances and a myriad of options

proposed to improve upon these traditional technologies. The Primer is comparable

to or influenced by these advances.

2.1 Machines and the Study of Education

The first significant advancements in educational technology in the 20th century were

the introduction of training films and teaching machines. Thomas Edison's 1908

film Flypaper represents the first educational film in the United States, and Sidney

Pressey's teaching machine represents the first in a long effort towards an automated

tutor [8]. The Primer represents an element of educational technology that derives

both from educational film and machines that respond to student input; it would

be impossible without these two pieces of groundbreaking technology. Edison was

inspired by the blossoming industry of film; Pressey by the goal of providing teachers

with more individual time with students. Both goals are relevant to the Primer; it

15

intends to make use of the ubiquity of recording technologies and the ability of anyone

with a computer, a webcam and the Internet to make an instructional video, and to

improve personal learning experience so that more time with instructors can be spent

refining understanding and clarifying those difficulties a student encounters that can't

be approached by automated means.

Training film use boomed during World War II as soldiers needed basic instruction

before entering the field. This legitimized the presence of video in the instructional

setting. Simultaneously, the advances in behavior psychology by Skinner and others

legitimized the quantitative study of human experience in relation to learning. These

historical developments are relevant to the Primer in that the relevance of video to

the learner was not solidified until World War II, and that a quantitative approach

to measuring and changing students' experiences, rather than exclusively test scores

to measure performance, had not been legitimized. These advances solidified those

concepts.

The Primer makes heavy use of hyperlinks and hypermedia. Precursing the use

of hypertext and hypermedia, Vannevar Bush wrote of the utility of a device that

tracked the history of a person through research materials, called a memex [2], in

1945. Much later, Ted Nelson wrote and researched hypertext, hypermedia, and

transclusion in an effort to manifest a system similar to the World Wide Web.

Though the behavioral psychology movement focused on human learning, little

effort to relate the results of such experiments to the system of education was rec-

ognized before the ideas promoted by Edward Bloom. Bloom's famous "two sigma"

problem highlights the basics of the disparity between individual professional tutor-

ing and the experience inside a typical classroom [1]. The Primer attempts to bridge

the two sigma gap by personalizing the presentation of textbook information to the

student. This personalization is expected to improve retention of new information

and automatically reinforce information with which the student has difficulty.

16

2.2 WWW and Online Education

The Wold Wide Web contributes greatly to the idea of the Primer; the Primer is

designed to be accessed from a web server, and viewed on a personal computer, laptop,

mobile device, or tablet device. The advances in educational technology following the

proliferation of the World Wide Web provide a backdrop against which the Primer

can be evaluated.

One of the most ambitious efforts to introduce educational technologies that take

advantage of the web was the Microsoft iCampus Project [4]. Innovation such as Tech-

nology Enhanced Active Learning and online tutors used in MIT courses came out of

the iCampus project. These technologies center around human-computer interaction,

and much of the coursework associated with the technologies could be completed at

any time from any computer with a connection to the internet. The iCampus project

represents a step in the direction towards technologies such as the Primer.

Another step in the right direction is MIT's OpenCourseWare (OCW) [7]. OCW

is an archive of materials used during previous terms of MIT courses for instruction

and learning. The Primer's content is derived in part from OCW offerings; the OCW

offerings in turn were developed in response to student input on information not

readily absorbed through a traditional textbook. In addition, the Primer would be

an excellent resource for OCW Scholar. OCW Scholar are traditional OCW offerings

augmented with additional content and designed for independent learners to use in

absence of additional resources for learning, such as an instructor or course staff.

Similar to OCW scholar is The Khan Academy [6]. Started by Salman Khan as

an effort to educate his cousins over the internet, Khan Academy features over 3,200

instructional videos as well as exercises designed to teach anyone with an internet

connection the basics in a wide variety of disciplines. The success of Khan Academy

has led to experimentation in California and Colorado K-12 schools with the concept

of an "Inverted" or "flipped" classroom. In such a classroom, students watch videos

and absorb instructional materials at home, then practice skills with one another and

under the instructional guidance of teachers or tutors. The Primer is an example of

17

an educational technology that is both influenced by Khan Academy - educational

videos are available and practice sessions are tailored to the student - and would

augment the Khan Academy experience by providing a textbook.

Yet another emerging educational technology that makes use of the web is the

Massive Open Online Course, or MOOC. Similarly to sites such as OCW and The

Khan Academy, the Primer is an educational technology that could see exemplary use

in a MOOC. MOOCS are different from OCW in that they are designed to replace

the classroom experience, not archive it; a greater variety of materials are available,

typically including contact with an instructor for the course. MOOCs are a relatively

new concept; some MOOCs under development include MIT and Harvard's edX,

Udacity, and Stanford's Coursera.

2.3 Electronic and Interactive Textbooks

Though previously mentioned technologies have contributed to the emergence of The

Primer, The Primer is more related to electronic textbooks than any previously dis-

cussed technology. Electronic textbooks were originally developed in the 1960's by

Doug Engelbart at Stanford Research Institute. The advent of the web allowed mas-

sive distribution of electronic textbooks, and the development of electronic textbook

readers made electronic textbooks a viable alternative to paper media.

Today, competition for the electronic textbook market is still strong, and several

formats for electronic textbooks exist, including SCORM, HTML5, ePub and KF8.

The different formats are a result of different companies developing for the electronic

book market at the same time, as well as an independent effort to come up with an

open standard. The Primer is published in HTML5 to ensure the greatest compati-

bility with the largest number of devices. Closest in technological achievement to The

Primer is Nature Publishing's Principles of Biology, an interactive, modular textbook

that is customizable by the instructor for a course. Additional companies are also

introducing interactive electronic textbooks [5]. The difference between the Primer

and these technologies is that the Primer 's presentation is customizable at the user

18

level, by the user. In this way, the Primer represents a new direction for e-textbooks.

19

20

Chapter 3

The Primer

The Primer is an electronic textbook that customizes the presentation of information

to the stylistic preferences and educational strengths and weaknesses of the student

reader. The Primer is designed to do this in attempt to reduce the "two sigma" gap

- the performance difference between a student individually tutored using mastery

techniques and a student receiving traditional instruction. In some ways, the Primer

represents an inversion of Vannevar Bush's Memex [2] - instead of recording the trail

a student takes through a particular set of standard resources, the Primer tailors one

of many paths through a set of standard resources for the student and provides the

student with that path. The standard set of resources is always available.

The change the Primer induces is the number and depth of exposures to defini-

tions and assistive videos the student automatically receives. The student, as well as

any administrator, can change the student's preferences at any time - if a student's

proficiency in a particular area increases, or if their preference for video lectures de-

creases, those changes can be reflected by changing their corresponding setting in the

Primer.

The Primer is available anywhere there is an internet connection and a web

browser. The Primer can be viewed on a personal computer or a mobile or tablet

device. The profile a student develops with the Primer persists between a student's

sessions with the Primer.

21

3.1 User Profiling

The Primer engages in user profiling through explicit references to data stored in a

user profile. User profiles keep track of student proficiency in a number of sub-fields

relevant to the textbook's domain, as well as general student preferences for definition

availability.

3.2 Approaching Standardization

The Primer gradually scales back the customizations it makes by dividing a textbook

into chapters. Each chapter can have a different level of allowed customizations and

the level of customization can be adjusted across users. The Primer's customizations

can be adjusted by chapter; definitions and videos will be less or more likely to deref-

erence on the page based on these adjustments. Since adjustments to chapters affect

all users, the Primer can be standardized by manipulating chapter customizations. In

particular, customization by chapter allows later chapters to have fewer dereferences,

making those chapters more closely resemble the baseline layout of the textbook. In

this way, a more uniform textbook can slowly emerge over the administration of a

course, such that by the end of a course, all students' Primers look the same.

3.3 Disclaimer

The Primer is not an electronic tutor; it does not record students' interactions in

an effort to establish their skill levels. The Primer simply adjusts to the decisions

for information delivery that students make. The Primer is not a complete learning

system. Learning management systems also handle evaluation and administrative

tasks.

The Primer is not a Learning Content Management System (LCMS). An LCMS

typically involves the ability to create and manipulate entire learning courses; the

Primer is just an e-textbook. One similarity between LCMSes and the Primer is that

the Primer's definition elements could be construed as learning objects. The Primer

22

adjusts the learning path of a student to the students' preferences, but the Primer

stands-in for a textbook in a course, not all course materials.

The Primer is different from existing e-textbook solutions in the following ways:

although electronic textbooks are in existence today, none attempt to adjust presenta-

tion of information in the same ways and at the same level as The Primer. E-textbooks

that customize their presentation to the reader exist, but these customizations are

determined on the course level; all textbooks for students in a particular course look

the same. The Khan Academy website most closely approximates the pursuit of

experiences that differentiate The Primer from another e-textbook; however, Khan

Academy does not publish e-textbooks.

23

24

Chapter 4

Primer Interface

The front end of the Primer is the most important aspect of its functionality; cus-

tomized user experience means very little without discussion of user interface. This

section walks through the user interface functionality of the Primer.

4.1 Admin

The Primer has a few essential administrative components. Administrative compo-

nents in the Primer can be used to add, change, or delete users; add, edit, or delete

a user's profile preferences; add, change or delete chapter difficulty coefficients; and

add, change, or delete definition elements. Additional changes to the Primer, such

as changing chapter content, must be done by editing Django templates, discussed

in Chapter 5. The Primer's admin interface makes use of Django's automatic admin

interface, dj ango.contrib.admin. The main administration page is show in in figure

4-1.

4.1.1 User Profile

The user profiles pages allows administrators to add or make changes to a user's user

profile. The main page to access user profiles is shown in figure 4-2. An example of a

user profile is shown in figure 4-3. Note that user profiles contain five values; four of

25

Site administration

Groups #Add /change

Users +Add Cbange

Chapters #Add /Change

Definition elements #Add eChange

User profiles +Add eChange

Recant Actios

My Actions
/kpughProfile

User profile
,,fkpughProflte

User profile

*kpughProflle
User proile

bloomProfile
User Profile

freemanProfile
User profile

*hartzProfle
User profile

+hartzProfile
User profile

*hartz
User

/ freeman

/ basic-search
Definition element

Figure 4-1: Administration Home

the values indicate a user's self-described proficiency in one of four areas that are the

focus of 6.01, the course upon which this implementation of the Primer is based. The

fifth value indicates a user's general preferences regarding definition dereferencing.

4.1.2 Chapters

The chapters page allows administrators to add, delete, and make changes to the

difficulty coefficient associated with each chapter. The main page to access chapters

is show in figure 4-4. An example of a chapter admin page is shown in figure 4-5.

Chapter coefficients are used to modify the overall levels of definition dereferencing

that happens in a given chapter; the lower the value, the less likely it is that a

definition will be dereferenced. This enables the standardization of the presentation

of the Primer as users progress to later chapters.

26

Home Book, User profiles

Select user profile to change
Action, E----- O 0) of 4 selected

0 User profile

ShamtProffe

C freemanProfile

WoomProftl

O kpughProfile

4 user profiles

Figure 4-2: Admin User Profile Page

4.1.3 Definition Elements

The definition elements page allows administrators to add, edit, and delete definition

elements. The main page to access definition elements is shown in figure 4-6, and an

example definition element is shown in figure 4-7. Definition elements are the defi-

nitions and videos whose presentations are customized based on user preferences. In

this implementation of the Primer, they are vocabulary word definitions and videos

that are supplementary to the main e-textbook. Each definition element has a dif-

ficulty rating for each of the four main areas of focus in the e-textbook course. In

addition, each definition element has an overall difficulty rating associated with def-

inition elements. If these difficulty ratings, when multiplied by a chapter definition

coefficient, exceed the ratings specified by the user in their preferences, then the el-

ement in the 'triggered' field follows the element in the 'baseline' field in-line within

a chapter of the Primer. If not, then the 'baseline' field appears as a hyperlink to a

page featuring both the 'baseline' and 'triggered' fields. This functionality is detailed

and figures are available in the 'Definitions' section below.

27

Home Book User profies k ipughProffle

Change user profile

IUser. [kpug__A1#

DefintdtonRating:3

ProgrammlngBacfs

SystemsBackgrot

circultSBackgrou

I Probablltylackg 1

R Delete Save and add another Save and continue edit

Figure 4-3: Example User Profile

4.2 User

The Primer's user components are those aspects of the Primer meant for student

interaction. The chapters of the Primer are the main focus of user interaction, but

additional pages are required to make the Primer most useful. User pages feature

a masthead with links to the login, profile, chapter, and definition aspects of the

Primer, shown in figure 4-8. The user pages are described below.

4.2.1 Login and Logout

The Primer's login page is shown in figure 4-9. Users log into the Primer in order to

edit their profile preferences and allow the chapters of the Primer to adjust to their

preferences. The login page will also display one of several error messages associated

with logging in as appropriate. If a user is already logged in, the user's name will

appear in the error message and a link to the logout page will appear. If the user

28

Home Book Chapters

Select chapter to change
Action ..-- 0 of 8 selected

SChapuer2

Schapter 1

Q Chapter 4

QiChapter 3
0Chapter s

Cj Chapter 6

C0 Chapter 7

Q Chapter 8

8 chapters

Figure 4-4: Chapter Admin Page

login attempted is invalid or inactive, a message to that effect will also appear. If the

user selects logout, a short logout message appears along with a link to log in again.

4.2.2 Profile

The user's profile page is shown in figure 4-10. Users can view and edit their profile

from the user profile page. The profile page allows a user to control the way the

Primer appears based on their personal preferences; if their proficiency ratings exceed

the difficulty rating of a given Primer definition element in a given chapter multiplied

by the chapter's standardization coefficient, than the baseline version of the definition

element will appear. This calculation is performed for all areas of proficiency in the

course book as well as for a general definition difficulty. If any of the difficulty ratings

exceed the proficiency level of a user, than the triggered version of the definition

element will be displayed. Users can update their profile preferences and the change

29

I

Home) Book) Chapters,, Chapter 6 __ _

Change chapter

AdvanceMuftipIy4o -,

X Delete Save and add another Save and continue t

Figure 4-5: Detailed view of Chapter Admin Page

will immediately appear upon completion and submission of the HTML form.

4.2.3 Chapters

The chapter pages are the heart of the Primer. These pages display the basic e-

textbook content as well as the definition elements in their appropriate state given the

definition element and the logged-in user's preferences. An example of the Primer is

shown in figure 4-11. Note that images in the Primer are static and appear regardless

of user preferences; the Primer could be easily adapted to make this a user preference,

however. Figure 4-11 shows a definition element that has not been triggered; the

hyperlink will direct the user to a definition element page. Figure 4-12 shows the same

definition element triggered; the hyperlink is no longer available, and the definition

appears immediately after the baseline appearance of the definition element.

Links to all chapters are available on a separate chapters page, shown in figure

4-13.

30

Home). Book Defnition elements

Select definition element to change
Action 0 of 100 selected

I j Danition 4ernment

C] sftatamackIne

o belief-state

o) state.esdmation

Q PCAP

U statestimation yideo

Q interpreter

Ujexpression

o variable

0 mutaion

o aliasing

10 environment

0 object-oriented programming

c01dm

Q instance

Figure 4-6: Definition Elements Admin Page

4.2.4 Definitions

The definition elements are what make the Primer different from a regular e-textbook.

A list of all definition elements is available at the definitions webpage, shown in figure

4-14. Each definition element has its own page with both the baseline name of the

definition and the triggered content of the definition displayed. An example of this

page is shown in figure 4-15. Definition elements are also displayed within the chapter

pages, and their appearance changes based on the settings for the definition element,

the chapter, and the user coming together to create the particular definition reference.

31

Change definition element

Name: statejmachine

Chapter:

Chapter 3

Hold down *Cnntror. or "

SystemsThreshol]

:ommand* on a Mac. to select more than one.

arcuItsThreshooI

ProbabilityThresto

Basellne:

Triggered:

state machine

a method of modeling systems whose ou

DefnitionThreshl 2

Figure 4-7: Detailed view of Definition Element Admin Page

FiguProe aPer shead

Figure 4-8: Primer Masthead

32

Login Proffile hapters Definitions

Login Page
kpugh Is already logged ingouI frat chapt

Username:_
Password:

Figure 4-9: Primer Login Page

Lg Profil Chap"r Definitimn

Welcome to the Primer
You are logged in as kpugh

Edit your profile below.0 is a novice, 10 is an expert.
Definition Rating:[1
Programming Background i

Systems Background: 1
Circuits Background: J

Probability Background:'

1gut r

here is the first chapter

Figure 4-10: Primer User Profile

33

The laws for the flow of electrical curren are similar to those for the flow of an
incompressible fluid. The net flow of electrical current into a node must be zero.

The following circuit has three elements, each represented with a box.

Figure 4-11: Primer Excerpt

The laws for the fow of electrical current (the flow of electric charge through a
path in a circuit) are similar to those for the fow of an incompressible fluid. The net
flow of electrical current into a node must be zero.

The following circuit has three elements, each represented with a box.

Figure 4-12: A Triggered Definition Element

Login Profie Chapter Definitions

Chap0er2

CharCbapr 4
ChapmM 5
Chapff 6

Figure 4-13: Primer Chapters

34

L&gin Ptwfle ChaIpCr Definitions

SbeWie stale
.Sot Estiniation

* State Estimation Video
* IntrIete

. mutation
* abasitn

F envionm e r i
o QIljmpjsgdntedzom an
.clas

Smethad

" list C~peeso
. IaMbda

o state transiti diagra

.* amonl

Figure 4-14: Primer Definition Elements

35

Login Profile Chaptr Definitions

mutation
the action of changing the vahes associated with a particular data
stnrcture without also overwriting that data structure. In particular, when
a variable is mutated the variable name points to the changed structure

Back to Cpter 2
Back to patr 3

Figure 4-15: Primer Definition Element

36

Chapter 5

Primer Architecture

5.1 Content

The innovative aspect of the Primer is its customizable interface, but in order to

demonstrate the Primer, a suitable textbook had to be adapted to the Primer plat-

form. The Primer is most useful when content suitable for definition elements are

also incorporated; definitions and videos make the Primer different from a standard

e-textbook. The Primer was made from a collection of source materials that I had

access to; the 6.01 course readings and 6.01 OCW Scholar offerings.

5.1.1 Course Readings

I used the course readings for the MIT class 6.01: Introduction to EECS I from spring

term 2012. This textbook provided the optimum platform to demonstrate the power

of the Primer; the stylistic aspects of the authors in the 6.01 course readings are

preserved, yet the definitions and videos designed to present repetition of information

and information in a different way are readily accessible. The original I4TXfiles for

the 6.01 course readings were carefully adapted to HTML5, including transformation

of PDF figures into .jpg images. As a consequence of the adaptation, some small

features of the textbook changed; figure references were changed from the standard

ITEXmethod to simply "above" or "below" as the image reference appeared in the

37

source document. In addition, exercises in the 6.01 readings were visually distinct

from regular text; this distinction was removed for ease of conversion to HTML5 and

to ensure that the Primer rendered correctly on more browsers. These distinctions

could be added back in using CSS styling.

5.1.2 Definitions

Once the base of the textbook was established, material for the definition elements

in the Primer had to be established as well. While working for 6.01 OCW Scholar, I

developed "Weekly Summaries" of 6.01 course content. The purpose of OCW Scholar

over a traditional OCW offering is to increase the amount of support material avail-

able in order to enable independent learners. These summaries were based on my

experiences as a teaching assistant in 6.01 during spring semester 2011; students had

difficulty absorbing course material as presented, and these summaries attempted to

ameliorate those difficulties.

In particular, the "Vocabulary" section of the summaries provide those terms a

student would have great difficulty passing the course without understanding. These

terms were used as the basis for definition elements in the Primer. These terms are

exactly the kind of information that would be useful as definition elements - they are

chosen based on student feedback on what information is essential to the course, but

possibly missed on the individual efforts of a student through the course material.

Definitions for the vocabulary words were taken from the 6.01 course readings.

5.1.3 Videos

In addition to weekly summaries, I developed a number of short video presentations

for the 6.01 OCW Scholar website. These videos were also based on student feedback

as to the more challenging or unintuitive aspects of the course. The videos were also

organized to cover a short section of the 6.01 material at a time, breaking the material

into conceptual chunks that are also meant to be viewed about once per week. The

videos were distributed throughout the 6.01 readings in a manner that made sense

38

given the context of the chapters.

5.2 Django

The Primer was developed using the Django development framework. Django is an

open source Web 2.0 application framework, written in Python, which follows the

model-view-controller architectural pattern. This pattern is established through the

use of files; models, views, and controllers all live in separate files. Additional files

manage application settings. A single Django installation can run multiple websites,

each with their own content and applications. This means that multiple Primers can

be established using a single Django installation.

The "model" file, known as models .py in a Django application, allows a program-

mer to set up database tables automatically by writing Python classes. These classes

are then accessible through a Python database-abstraction API that can be used to

create, retrieve, update and delete objects.

The type of database can be specified in a separate settings file. Django has built-

in support for PostgreSQL, MYSQL, SQLite, and Oracle. Django will also accept

other database engines. I used SQLite for developing this application, but did not

have to manipulate the database tables directly, as the Django database abstraction

API made it easy to manage information in the database through Python.

The "controller" aspect of the model-view-controller architectural pattern is es-

tablished, somewhat confusingly, by a file called views .py. views . py controls the use

of database elements in webpages, and processes incoming HTML requests to create

or change the model data.

The "view" aspect of the model-view-controller architectural pattern is imple-

mented using Django templates. Django templates are HTML files containing a

Django-specific template language that allows hierarchical organization and exten-

sibility of different portions of HTML. Templates receive database and other infor-

mation as passed on from views. py and renders it in HTML, completing the MVC

architecture.

39

Two additional files complete the essentials in a Django website application. Each

Django project has a settings. py file, which specifies a variety of settings for a given

Django project. Settings include which database engine and database to use, the

location of static and media files, which applications and middleware are included,

logging configurations, and the location of the URL configuration.

The final file used in a given Django application is urls .py, the URL configuration

itself. URLs are matched through regular expressions to specific controller logic in

views. py, creating the final connection between website user and application.

The specific data models, view-rendering functions, and html templates used to-

gether describe the basic functionality of the Primer, and the specifics of three com-

ponents are described in further detail in the following sections of this chapter. The

code for the Django application is included in the appendicies.

5.2.1 Models

The Primer uses several model classes to store database information associated with

its administration. Users, definition elements, and chapters all require database stor-

age and transactions in order for the Primer to function.

The UserProf ile model class is the model class used to represent a given user's

profile. A user's profile contains his or her preferences regarding the appearance of

the Primer. In particular, the UserProf ile model class contains proficiency ratings

in the four main areas of 6.01, as well as a general rating of proficiency with defini-

tions. These values are used in calculations of the appearance of a particular Primer

definition object in the chapters view.

Since the Primer uses Django's default settings for administration of users, user

profiles must be initiated separately from users. For users and groups, the Primer

uses Django's django.contrib.auth.models classes.

Since Django includes a Python database-abstraction API, both users and user

profiles could be initiated in batches using a short Python script. Scaling the Primer

up to deal with an MIT class's worth of users is as simple as providing a file of

usernames and passwords.

40

The Chapter model class represents a given Chapter of the Primer. Chapter

models are necessary to retain the coefficient associated with the advanced nature

of a given chapter; these coefficients are used to determine whether a given Primer

chapter will have more or fewer dereferenced definitions.

The PrimerElement model class represents a Primer element, a learning object

whose appearance changes based on the comparison of a given user's preferences with

the PrimerElement's ratings. This class stores the ratings associated with a given ele-

ment, which are multiplied by the chapter's advancement coefficient to determine the

overall difficulty associated with a given PrimerElement. These ratings are compared

to the preferences specified by a given user's UserProfile attributes when deciding

whether to dereference the definition of a Primer definition object in the text of the

Primer.

The Def initionElement model class is a subclass of the PrimerElement model

class. PrimerElement model objects have difficulty ratings in the four main areas

of 6.01; Def initionElements have an additional rating for general definition diffi-

culty. DefinitionElements are subclassed to allow for extensibility to the Primer;

additional UserProf ile preferences could be added for comparison with different sub-

classes of PrimerElement. Different logic could be used to determine the rendering

of different subclasses.

5.2.2 Views

Views are where the control logic for the Primer resides. Views query the database

and receive user input, then perform any specified operations on that information,

then pass the results on to templates for rendering.

The definitions view controlls the display of individual definition elements on

the Primer website. It queries the database for the term and definition or video

associated with that term and sends them to a generic template that is used to

display any individual definition.

The chapter view handles the majority of logic that goes into determining the

custom appearance of the Primer. For a given chapter, a query of the definition

41

elements is done to determine which definition elements are relevant to that chapter.

Then, for each definition element, a comparison is done of that definition element's

thresholds to the user's background as specified by the user's profile. The definition

element's thresholds are multiplied by a coefficient determined by the chapter; this is

where the standardization through gradual regression to hidden definitions comes in.

If the threshold exceeds the background, than the definition element is dereferenced

and the definition or video will appear alongside the definition element's baseline

name in the text of the Primer website. If not, a hyperlink to the definition or video

will appear in the text of the definition's baseline name.

The site-login view handles users logging in. If a user attempts to log in while

another user is logged in, or with an invalid or expired username, he will be brought

back to the login screen with an error message.

The logging-in view handles the requests associated with user login. It queries

the database with the given username and password, checks to see if the username is

valid, checks to see if the user is active, and then logs the user in. Django uses the

PBKDF2 algorithm with a SHA256 hash for passwords.

The site-logout view handles site logouts. If a user is logged in, it logs the

current user out and provides a link back to the login page.

The prof ile view retrieves the user that is logged in's profile values for display

in a template. The difficulty rating preferences for the four main areas of 6.01 are

retrieved, as well as the general definition difficulty rating.

The submit-profile handles requests to change a user profile. It receives an

HTML POST request and updates the values associated with a user profile accord-

ingly, then passes the new values to a template to render immediately.

5.2.3 Templates

Djangos template engine provides a powerful mini-language for defining the user-

facing layer of an application. Templates are the "view" portion of the MVC archi-

tecture; they are the presentation logic. Unlike other parts of the Django development

framework, templates can be maintained by anyone with an understanding of HTML;

42

no knowledge of Python is required. This means that the requirements for authoring

a textbook using the Primer system is access to the admin pages, access to the tem-

plates, and knowledge of HTML. The Primer uses several templates in a hierarchical

arrangement to determine its presentation.

Templates are the place where user interface design for the Primer occurs. Chang-

ing the Django templates associated with the Primer changes the appearance of the

Primer itself. Stylistically, the Primer has been left with no CSS styling - its ap-

pearance adapts to the preferences of the browser and device and/or browser used to

access the Primer.

Templates are also the place where Primer chapter content is changed. In order to

add references to definition elements to the text of the Primer, a variable reference to

the Primer Def initionElement must be added to the appropriate chapter template.

An example of this variable reference appears in figure 5-1; voltage is the variable.

<p>WVoltage is a difference in electrical potential between two different
points in a circuit. We will often pick some point in
a circuit and say that it is "ground" or has voltage 0. Now, every
other point has a {{voltage}} defined with respect to ground. Because
voltage is a relative concept, we could pick <em:aanyc/evs> point in the
circuit and call it ground, and we would still get the same results. C/p>

Figure 5-1: Reference to the 'voltage' Definition Element

base.html is the base of the Primer template hierarchy. It contains the basic lay-

out of all templates that inherit from it. Django's template language allows template

inheritance - templates can inherit structure from other templates, and modify sec-

tions of templates called blocks in those inherited templates. The Primer's template

hierarchy is shown in figure 5-2.

login.html inherits from base.html. It determines the layout of the login page.

It includes a csrf-token, a protection against Cross Site Request Forgeries. A CSRF

attack occurs when a malicious Web site contains a link, a form button or some

javascript that is intended to perform some action on a Web site, using the credentials

of a logged-in user who visits the malicious site in their browser. In Django, for all

incoming requests that are not using HTTP GET, HEAD, OPTIONS or TRACE,

a CSRF cookie must be present. Using the csrf..token in login.html provides this

43

extends

extends

extends

Figure 5-2: The Primer Template Hierarchy

CSRF cookie. The csrf -token is used to provide secure login and must be used since

login is conduced using an HTML POST request.

prof ile.html inherits from base.html. It simultaneously displays the user profile

and provides the ability to edit it in an HTML form.

book-base.html inherits from base.html. It provides the template structure for

the chapters and definition templates.

chapter-base.html inherits from book-base.html. It provides layout specific to

the chapters page and individual chapters.

chapters.html inherits from chapter-base.html. It provides layout for the page

used to view all chapters.

Individual chapter templates inherit from chapter-base.html. These templates

control the layout of the Primer chapters. Definition elements are inserted into HTML

as variables; these variables are populated by the chapter view before being passed

to the template. These templates contain the 6.01 course readings, including images,

adapted to HTML5.

def initions-base.html inherits from book-base.html. It provides layout specific

to the definition templates.

def initions.html inherits from def initions-base.html. It controls the appear-

ance of the page where all definitions and videos featured in the Primer are available.

def initions...global.html inherits from def initions-base.html. It specifies the

44

appearance of a single definitions as viewed when selecting them from the def initions.html

page or from a chapter page.

5.3 Server

The Primer is hosted at a static IP address on the MIT network; this makes the

Primer accessible from any device with an internet connection. In particular, the

Primer has a simple design to make it readily usable from mobile or tablet devices.

5.3.1 Apache

The site is served by Apache 2.2. Although Django delivers with its own Python

development server, the amount of media demanded by an e-textbook requires a

more robust HTTP server. Apache supports a variety of features, many implemented

as compiled modules which extend the core functionality (mod-wsgi, discussed below,

is one such module). Apache also features virtual hosting, which allows one Apache

installation to serve many different websites. The Primer is hosted using a virtual

host; multiple Primers with different addresses could be hosted from the same server

using virtual hosting.

5.3.2 mod-wsgi

I used mod-wsgi, a popular mod for Apache, to host the Primer. mod-wsgi is an

Apache mod that can host any Python application which supports the Python WSGI

interface. mod-wsgi for the Primer is used in 'daemon mode', which means the appli-

cation is being run in its own process. This reduces the impact on the normal Apache

child processes used to serve up static files and host applications.

45

46

Chapter 6

Feedback

The Primer was reviewed by several professionals in the educational technology do-

main, both for specific feedback and to instigate a general discussion on the future

of textbooks. The Primer was also reviewed by students that had and had not taken

6.01 in previous semesters to gauge the utility of the Primer in comparison to the

standard 6.01 textbook. The feedback from resulting discussions is reviewed below.

6.1 Primer

Overall, the Primer is well-received. Experts approved of the basic idea of the Primer

and of the implementation details associated with the 6.01 e-textbook. The admin

user interface and template language was deemed intuitive enough to use to constitute

an e-textbook authoring tool. Students regarded the Primer as an improvement

upon the standard 6.01 textbook and expressed a desire for more courses, especially

introductory courses, to have e-textbooks like the Primer.

Several comments on how to improve the Primer were received. The current imple-

mentation of the Primer provides no way to gradually decrease the rating associated

with a definition element over the course of a given chapter. This means that if a

user becomes familiar with a definition before the chapter ends, the only way to turn

the triggered definition element off is to increase their proficiency rating in their user

profile in the middle of a chapter. Associating a particular difficulty rating with a

47

given location of a given definition element is a good idea; the same definition ele-

ment may have different difficulty ratings in different chapters due to different chapter

coefficients. Associating a unique difficulty rating with every instance of a particu-

lar definition element in the Primer may constitute micromanaging; nevertheless, a

granularity between every single instance and any instance within a chapter would

present an improvement. A short comprehension quiz or profile dialog box to adjust

profile settings within a chapter was suggested. On the other hand, some experts

were happy with the persistence of definition dereferencing throughout a chapter. If

in particular profile settings were adjusted automatically by some other extension,

some persistence of definition dereferencing was deemed desirable.

Users suggested a way to see the difficulty ratings associated with a particular

definition element. It would be beneficial to some users to understand why certain

definitions were dereferencing with certain profile settings. In addition, the difficulty

ratings could provide feedback to a user on his proficiency in the course relative to the

difficutly ratings associated with concepts in the Primer. Users also wanted to be able

to save progress through a given chapter, or the ability to use 'bookmarks' - this could

be achieved using HTML anchorpoints. The ability to highlight or annotate chapters,

and to toggle on and off highlights and annotations, was also deemed desirable.

In addition to lecture videos, users desired animation videos, such as of the pro-

gression of an environment as an object was instantiated or of state estimation. These

short videos could be cropped from the longer lecture videos or created separately,

increasing the frequency of video referencing within the Primer.

6.2 E-Textbooks

E-textbook discussion centered around the differences between the Primer and cur-

rent e-textbooks, and what the optimal e-textbook would look like. In general, the

customized presentation style of the Primer was deemed desirable in e-textbooks, and

tailoring e-textbook presentation to a given login or username was a feature left to be

desired in the state-of-the-art. E-textbooks for introductory courses would gain the

48

most from functionality like that of the Primer; e-textbooks for later courses would

have an audience with a more uniform background and more familiarity with the

language associated with a given domain.

49

50

Chapter 7

Contributions

The Primer represents a new advancement in educational technology. Both traditional

learning environments and MOOCs could benefit from the ideas and implementation

of the Primer. In this section I review the achievements of and possible extensions to

the Primer.

7.1 The Primer

7.1.1 The Ideal

The Primer represents a step towards a more personalized web-delivered user expe-

rience in either a traditional or open classroom. The Primer functions in all popular

web browsers and even from mobile and tablet devices. It incorporates the result of

student feedback on the difficulties associated with using available resources into new

resources that are designed to meet the needs of the individual student. It allows

students to control the way information is presented to them, and to preserve that

control in-between learning sessions. Unlike other e-textbooks, the Primer provides

an e-textbook with customizations at the user level.

51

7.1.2 The Implementation

This implementation of the Primer, using 6.01 and 6.01 OCW Scholar materials,

represents a usable alternative to the 6.01 course readings. The implementation of

the Primer in this thesis merely needs user and user profile setup for students in

order to be useful to the administration of 6.01. This implementation also has a

simple enough interface to administrators to constitute an e-textbook authoring tool.

7.2 What's Next

Several small extensions to the Primer were conceived but not implemented before

the completion of this thesis. A script to automate the creation of usernames and

passwords would further prepare the thesis implementation of the Primer for use with

a semester of 6.01. Primer elements that behave similar to definition elements but

have different properties or difficulty coefficients could be created easily. CSS styling

could be added to stylize the Primer or specific subsections of the Primer, such as the

exercises, to visually distinguish them from the main content of the e-textbook. A

self-serve account and profile creation page would reduce the amount of administrative

hassle associated with the Primer. Giving users the opportunity to save their progress

through the Primer could further reduce the setup required between learning sessions.

Larger extensions to the Primer could change the fundamental nature of the

Primer, but are still worth considering. As pointed out during feedback collection, the

ability to specify different difficulty ratings for a given definition element in a given

chapter would allow changes to the dereferencing of a given term or video within a

given chapter. This would represent an improvement as students are likely to become

familiar with a definition element after a limited amount of exposures, and being able

to decrease the amount of exposures in a given chapter without changing user profile

settings is desirable. This could be accomplished by a quiz or reminder to adjust user

profile settings.

Another extension worth consideration is the incorporation of communication be-

tween student and educator using the Primer. Primer administrators could leave

52

reading recommendations for struggling students, reading assignments for the entire

class, and annotations regarding adjustments to students' profiles. These features

would allow a more personalized interaction surrounding the Primer without incor-

porating a separate communication medium.

One advantage a traditional textbook still harbors over the Primer is the ability

to highlight and annotate text. The Primer would benefit from the inclusion of these

features; however, they present a significant enough design challenge to constitute a

large extension. Highlights and annotations could persist between sessions, and could

be toggled on and off as a user profile setting.

53

54

Appendix A

Code

settings.py

Django settings for primer project.

DEBUG = False

TEMPLATEIDEBUG = DEBUG

ADMINS = (

('Kendra Pugh', 'kpugh@mit. edu ') ,

)

MANAGERS = ADM[NS

DATABASES = {

'default ': {
'ENGINE': 'django.db.backends.sqlite3', # Add

postgresql-psycopg2 ', 'mysql ', 'sqlite3 or 'oracle '.

'NAME': '/srv/www/ primer/ sqlite3 /primer .db'

Or path to database file if using

sqlite3.

'USER': '', # Not used with sqlite3.

'PASSWORD': '' , # Not used with sqlite3.

'HOST': '', # Set to empty string for

localhost. Not used with sqlite3.

55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

'PORT': ' ' # Set to empty string for

default. Not used with sqlite3.

}
}

Local time zone for this installation. Choices can be found here:

http ://en. wikipedia. org/wiki/List-of-tz-zones-by-name

although not all choices may be available on all operating systems.

On Unix systems , a value of None will cause Django to use the same

timezone as the operating system.

If running in a Windows environment this must be set to the same as

your

system time zone.

TIMEZONE = 'America /NewYork'

Language code for this installation. All choices can be found here:

http ://www. il8nguy.com/unicode/language-ide ntifiers . html

LANGUAGECODE = 'en-us'

361 SITEID = 1

If you set this to False, Django

not

to load the internationalization

USE_I18N = True

will make some optimizations so as

machinery.

If you set this to False, Django will not format dates, numbers and

calendars according to the current locale.

USELION = True

461# If you set this to False, Django will not use timezone-aware datetimes

471USETZ = True

Absolute filesystem path to the directory that will hold user-uploaded

files .

56

37

38

39

40

41

42

43

44

45

48

49

50 # Example: "/home/media/media. lawrence . com/media/"

51 MEDIA.ROOT =

52

53 # URL that handles the media served from MEDIA-ROOT. Make sure to use a

54 # trailing slash.

55 # Examples: "http ://media. lawrence.com/media/", "http ://example. com/

media/"

56 MEDIAURL =

57

58 # Absolute path to the directory static files should be collected to.

59 # Don't put anything in this directory yourself; store your static files

60 # in apps' "static/" subdirectories and in STATICFILESDIRS.

61 # Example: "/home/media/media. lawrence.com/static/"

62 STATIC.ROOT =

63

64 # URL prefix for static files.

65 # Example: "http://media. lawrence.com/static/"

66 STATICJURL = '/static/'

67

68 # Additional locations of static files

69 STATICFILES-DIRS = (

70 # Put strings here, like "/home/html/static" or "C:/www/django/

static ".

71 # Always use forward slashes , even on Windows.

72 # Don't forget to use absolute paths, not relative paths.

73)

74

75 # List of finder classes that know how to find static files in

76 # various locations.

77 STATICFILESYINDERS = (

78 'django. contrib . staticfiles . finders . FileSystemFinder '

79 'django. contrib . staticfiles . finders . AppDirectoriesFinder '

80 # 'django. contrib .staticfiles .finders . DefaultStorageFinder',

81)

82

83 # Make this unique, and don't share it with anybody.

57

84 SECRETKEY = omitted

85

86 # List of callables that know how to import templates from various

sources.

87 TEMPLATELOADERS (

88 'django . template. loaders. filesystem . Loader'

89 'django . template . loaders . app _directories . Loader',

90 # 'django. template. loaders. eggs. Loader',

91)

92

93 MIDDLEWARECLASSES = (

94 'dj ango. middleware. common. CommonMiddleware',

95 ' django. contrib . sessions . middleware. SessionMiddleware',

96 'django. middleware. csrf. CsrfViewMiddleware',

97 'django. contrib .auth. middleware. AuthenticationMiddleware',

98 'django. contrib .messages. middleware . MessageMiddleware ' ,

99 # Uncomment the next line for simple clickjacking protection:

100 # 'django. middleware. clickjacking . XFrameOptionsMiddleware ',

101)

102

103 ROOTURLCONF = 'primer. urls'

104

105 # Python dotted path to the WSGI application used by Django's runserver.

106 WSGJAPPLICATION 'primer . wsgi. application'

107

108 TEMPLATEDIRS = (

109 # Put strings here, like "/home/html/django-templates" or "C:/www/

django/templates ".

110 # Always use forward slashes , even on Windows.

111 # Don't forget to use absolute paths, not relative paths.

112 '/srv/www/primer/templates'

113)

114

115 INSTALLEDAPPS = (

116 'django. contrib . auth',

117 'django. contrib . contenttypes',

58

118 'django . contrib . sessions '

119 #'django. contrib. sites ',

120 'django. contrib . messages ',

121 'django. contrib . st aticfiles '

122 # Uncomment the next line to enable the admin:

123 'django. contrib .admin',

124 # Uncomment the next line to enable admin documentation:

125 # 'django. contrib. admindocs ',

126 'book',

127)

128

129 AUTHPROFILE-MODULE = 'book. U s e r P r o file '

130

131 # A sample logging configuration. The only tangible logging

132 # performed by this configuration is to send an email to

133 # the site admins on every HTTP 500 error when DEBUG=False.

134 # See http://docs. djangoproject.com/en/dev/topics/logging for

135 # more details on how to customize your logging configuration.

136 LOGGING = {

137 'version': 1,

138 ' disable-existing _loggers ': False

139 'filters ': {

140 'require-debugfalse ': {

141 '() ': 'django. utils . log. RequireDebugFalse'

142 }

143

144 'handlers': {

145 'mail-admins': {

146 'level': 'ERROR',

147 'filters ': ['require-debug-false',

148 'class ': 'django. utils . log. AdminEmailHandler'

149 }

150

151 'loggers': {

152 'django.request': {

153 'handlers ': ['mailiadmins']

59

154

155

156

157

158

models.py

from django.db import models

from django.db.models.signals import post-save

from django. contrib. auth. models import User

class UserProfile(models.Model):

user = models.OneToOneField(User)

definitionRating = models. IntegerField ()

programmingBackground = models. IntegerField ()

systemsBackground models. IntegerField ()

circuitsBackground = models. IntegerField ()

probabilityBackground = models. IntegerField ()

def __unicode-_(self):

return str(self.user) + "Profile"

60

'level ': 'ERROR',

'propagate': True,

},
}

urls.py

from django. conf. urls import patterns , include , url

Uncomment the next two lines to enable the admin:

from django.contrib import admin

admin. autodiscover ()

urlpatterns = patterns ('http:// flahp . mit. edu/'

url(r'^book/', include('book.urls')),

url (r '^admin/' , include (admin. site . urls)),

)

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 def create -user-profile (sender , instance , created , **kwargs)

19 if created:

20 UserProfile . objects . create (user=instance)

21

22 post-save . connect (create-user-profile , sender=User)

23

24 class Chapter (models . Model):

25 def __unicode__(self):

26 return "Chapter " + str(self.id)

27 advanceMultiplyer = models. DecimalField(max-digits=4, decimal-places

=3)

28

29 class PrimerElement (models. Model):

30 name = models. CharField (max-length=100)

31 chapter = models. ManyToManyField (Chapter)

32 programmingThreshold = models. IntegerField ()

33 systemsThreshold = models. IntegerField ()

34 circuitsThreshold models. IntegerField ()

35 probabilityThreshold = models.IntegerField()

36 baseline = models. CharField(max-length=1000)

37 triggered models. CharField (max-length=1000)

38

39 def -_unicode_(self):

40 return self .name

41

42 class DefinitionElement (PrimerElement):

43 definitionThreshold = models. IntegerField ()

views.py

1

2 from django . http import HttpResponseRedirect , HttpResponse

3 from django. core. urlresolvers import reverse

4 from book. models import Chapter, UserProfile , PrimerElement,

DefinitionElement

5 from django. shortcuts import get-object.or-404 , render-to-response

61

6 from django. template import Request Context

7 from django. contrib. auth import authenticate , login , logout

8

9 def index(request):

10 return render-to-response('book/index. html')

11

12 def definitions (request , def-element):

13 primerElement=DefinitionElement . objects . get (name=def-element)

14 chapters = [x.pk for x in primerElement . chapter. all ()]

15 name = primerElement. baseline

16 definition = primerElement. triggered

17 return render-to-response ('book/definitions/definitions-global . html',

{
18 'chapters' : chapters,

19 'name' : name ,

20 'definition ' : definition })
21

22 def chapter(request , chapter-id)

23 if not request . user. is-authenticated ()

24 return render-to-response('book/login.html', {

25 'error-message ': 'you must be logged in to use the

Primer'

26 }, context -instance=(RequestContext (request)))

27 else:

28

29 primerDictionary = {}

30 primerChapter = Chapter. objects . get (pk=chapter id)

31 currentProfile = UserProfile . objects . get (user=request .

user)

32 mul = primerChapter. advanceMultiplyer

33 for element in DefinitionElement . objects . filter (chapter=

primerChapter) :

34 if ((element. definitionThreshold * mul > \
35 currentProfile . definitionRating) or

36 (element . progr ammingThreshold * mul > \

37 currentProfile . programmingBackground) or

62

38 (element . systemsThreshold * mul > \

39 currentProfile . systemsBackground) or

40 (element. circuitsThreshold * mul > \

41 current Profile . circuitsBackground)

or

42 (element. probabilityThreshold * mul > \

43 current Profile . probabilityBackground

44 primerDictionary [element .name] = \

45 element. baseline + " (" + \

46 element.triggered + ")

47 else:

48 primerDictionary [element. name] = \

49 '<a href ="../../ definitions/'+ \

50 element .name +'/">' + element. baseline + \

51 ''

52

53 return render.-to -response('book/chapter/'+ \

54 str (chapter.id)+'. html'

55 primerDictionary)

56 def site-login(request):

57 if request . user. is-authenticated ()

58 return render..to-response('book/login.html', {

59 'error-message ' : str (request . user) + ' is already logged

in ' +

60 'logout first

chapter<a>'

61 }, contextinstance=RequestContext (request))

62 else:

63 return render _to-response ('book/login . html'

context-instance=RequestContext (request))

64 def logging-in (request):

65 if request . user. is-authenticated ()

66 return render..to..response ('book/login. html', {

67 'error-message ': str (request . user) + ' is already logged

in logout'

63

68 }, context-instance=(RequestContext(request)))

69 username = request .POST['username']

70 password = request .POST['password']

71 user = authenticate (username=username , password=password)

72 if user is not None:

73 if user. is-active

74 login(request , user)

75 return HttpResponseRedirect (reverse ('book. views.

profile ' ,
76 else:

77 return renderto-response ('book/login . html', {
78 'error-message ' : 'inactive user'

79 } context -inst ance=RequestContext (request))

80 else:

81 return render-to-response ('book/login. html', {

82 'error-message ': "Invalid Login",

83 }, context-instance=RequestContext (request))

84

85 def site-logout (request)

86 logout (request)

87 return HttpResponse(" Congratulations! You are logged out. <a

hre f='../login/'>login ")

88

89 def profile (request):

90 user = request.user

91 current Profile = UserProfile . objects . get (user=request .user)

92 return render-to-response('book/profile.html', {
93 'user ' : user ,

94 currentProfile ' : currentProfile

95 }, context instance=RequestContext(request))

96

97 def submit-profile(request):

98 user = request.user

99 currentProfile = UserProfile . objects . get (user=user)

100

101 currentProfile. definitionRating = request .POST['definitionRating '3

64

102 currentProfile .programmingBackground = request .POST['

programmingBackground ']

103 currentProfile . systemsBackground = request .POST[

systemsBackground ']

104 currentProfile . circuitsBackground = request .POST['

circuitsBackground ']

105 currentProfile . probabilityBackground = request .POST['

probabilityBackground']

106 currentProfile .save ()

107 return render-to-response ('book/ profile . html' , {

108 'user ' : user ,

109 'currentProfile ' currentProfile

110 }, context-instance=RequestContext (request))

book/urls.py

1 from django. conf. urls import patterns , include , url

2 from django. views. generic import ListView

3 from book.models import Chapter, DefinitionElement

4

5 # Uncomment the next two lines to enable the admin:

6 from django. contrib import admin

7 admin. autodiscover ()

8

9 urlpatterns = patterns('book.views'

10 url (r '^$' , 'index ')

11 url (r'^login/$' , 'site-login')

12 url (r'^logging-in/$', 'logging-in')

13 url (r 'logout/$ ' 'site-logout '),

14 url (r '^ chapter /(?P<chapter-id >\d+)/$' , 'chapter')

15 url (r 'chapters/$',

16 ListView . as-view (queryset=Chapter. objects . all

(),
17 context-object name='

chapterlist ',

65

18 template-name='book/chapter/

chapters . html'))

19 url (r ' profile/$', 'profile ') ,

20 url (r '^ submit-profile /$ ' , 'submit..profile ')

21 url(r 'definitions/(?P<def-element>\w+)/$',

definitions ') ,

22 url(r'^definitions/$'

23 ListView. as-view (queryset=DefinitionElement.

objects . all () ,

24 context-object..name='

definitionslist

25 template name='book/

definitions/definitions

html ')),

26 url (r '^admin/' , include (admin. site . urls)),

27)

admin.py

1 from book.models import Chapter, DefinitionElement , UserProfile

2 from django. contrib import admin

3

4 admin. site . register (Chapter)

5 admin. site . register (DefinitionElement)

6 admin. site . register (UserProfile)

base.html

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <link rel="stylesheet" href=" style. css" />

5 <title>{% block title %}The Primer{% endblock title%}</title>

6 </head>

7

8 <body>

9 <div id="masthead">

66

10 Login Profile<

/a> Chapters <a href="/book/

definitions /">Definitions

11 </div>

12 <div id="content">

13 {% autoescape off %}

14 {% block content %}{% endblock %}

15 {% endautoescape %}

16 </div>

17 </body>

18 </html>

book-base.html

1 {% extends "base. html" %}

login.html

1 {% extends " base. html" %}

2

3 {% block content %}

4 <hl>Login Page</hl>

5

6 {% if error-message %}<p>{{ error-message }}</p>{%

endif %}

7

8 <form action="/book/logging-in/" method-" post">

9 {% csrf-token %}

10 Username: <input type="text" name=" username">

11 Password: <input type=" password" name=" password ">

12 <input type="submit" value="Login" />

13 </form>

14 {% endblock %}

profile.html

1 {% extends "base.html" %}

2

3 {% block content %}

67

4 <hl>Welcome to the Primer</hl>

5 <p>You are logged in as {{user.username}}</p>

6 Edit your profile below. 0 is a novice , 10 is an expert.

7 <form action=" /book/submit-profile/" method=" post">

8 {% csrf-token %}

9

10 Definition Rating: <input type="text" name-" definitionRating" value={{

current Profile . definitionRating }} />

11 Programming Background: <input type=" text" name=" programmingBackground"

value={{currentProfile .programmingBackground}} />

12 Systems Background: <input type="text" name="systemsBackground" value={{

currentProfile .systemsBackground}} />

13 Circuits Background: <input type="text" name="circuitsBackground" value

={{currentProfile . circuitsBackground}} />

14 Probability Background: <input type="text" name-=" probabilityBackground"

value={{currentProfile . probabilityBackground}} />

15 <input type="submit" value=" Submit" />

16 </form>

17

18 <p>logout here</p>

19 <p>here is the first chapter</p>

20 {% endblock %}

definitions..base.html

1 {% extends "book/book-base.html" %}

2

3 {% block title %}The Primer{% endblock %}

4

5 {% block content %}

6 <hl>{% block word %}Your Word goes here {% endblock %}</hl>

7

8 <p>{% block definition %}Your definition goes here{% endblock %}</p>

9

10 <br \>

11 {% for chapter in chapters %}

68

12 Back to Chapter {{chapter}}

13 {% endfor %}

14

15

1

2

{% endblock %}

definitions.html

{% extends "book/ book-base. html" %}

definitions-list %}

title %}Primer Definitions{% endblock %}34 % block

4

51{% block content %}

{% if d efinitions -list %}

{% for definition in

<a href="/book/definitions/{{

.baseline }}

{% endfor %}

<p>No definitions are available .</p>

{% endif %}

{% endblock %}

12

13 {% else %}

14

15

16

17

6

7

8

9

10

11

definition .name }}/">{{ definition

definitions-global.html

{% extends "book/definitions/definitions-base .html" %}

{% block word %}

{{name}}

{% endblock %}

{% block definition %}

{{ definition }}

{% endblock %}

chapter-base.html

69

1

2

3

chapters.html

Example chapter - 8.html

1

2

3

{% extends "book/chapter/chapter-base. html" %}

{% block content %}

4I<hl>Long-term decision-making and search</hl>

5

6

7

8

9

10

<p>In the lab exercises of this course , we have implemented several

brains for our robots. We used wall-following to navigate through the

world and we used various linear {{controller}}s to drive down the hall

and to control the robot head. In the first case , we just wrote a

program that we hoped would do a good job. When we were studying

70

{% extends "book/book-base.html" %}

{% block title %}Primer Chapter{% endblock %}

{% extends "book/chapter/chapter-base. html" %}

{% block title %}Primer Chapters{% endblock %}

{% block content %}

{% if chapter-list %}

{% for chapter in chapter-list %}

Chapter {{ chapter. id

}}</1i>

{% endfor %}

{% else %}

<p>No chapters are available .</p>

{% endif %}

{% endblock %}

11 linear controllers , we, as designers , made models of the controller 's

12 behavior in the world and tried to prove whether it would behave in

13 the way we wanted it to , taking into account a longer-term pattern of

14 behavior .</p>

15

16 <p>Often, we will want a system to generate complex long-term patterns

of

17 behavior , but we will not be able to write a simple control rule to

18 generate those behavior patterns. In that case , we'd like the system

19 to evaluate alternatives for itself , but instead of evaluating single

20 actions , it will have to evaluate whole sequences of actions , deciding

21 whether they 're a good thing to do given the current state of the

22 world . </p>

23

24 <p>Let 's think of the problem of navigating through a city , given a road

25 map, and knowing where we are. We can't usually decide whether to

26 turn left at the next intersection without deciding on a whole path.</p>

27

28 <p>As always , the first step in the process will be to come up with a

29 formal model of a real-world problem that abstracts away the

30 irrelevant detail. So, what, exactly , is a path? The car we're

31 driving will actually follow a trajectory through continuous

32 space(time) , but if we tried to plan at that level of detail we would

33 fail miserably. Why? First , because the space of possible

34 trajectories through two-dimensional space is just too enormous.

35 Second, because when we're trying to decide which roads to take, we

36 don't have the information about where the other cars will be on

37 those roads, which will end up having a huge effect on the detailed

38 trajectory we'll end up taking. </p>

39

40 <p>So, we can divide the problem into two levels: planning in advance

41 which turns we'll make at which intersections , but deciding 'on-line ',

42 while we're driving, exactly how to control the steering wheel and the

43 gas to best move from intersection to intersection , given the current

44 circumstances (other cars, stop-lights, etc.).</p>

45

71

46 <p>We can make an abstraction of the driving problem to include

47 road intersections and the way they're connected by roads. Then,

48 given a start and a goal intersection , we could consider all possible

49 paths between them, and choose the one that is best .</p>

50

51 <p>What criteria might we use to evaluate a path? There are all sorts

of

52 reasonable ones: distance , time , gas mileage , traffic -related

53 frustration , scenery , etc. Generally speaking , the approach we' 11

54 outline below can be extended to any criterion that is additive: that

55 is , your happiness with the whole path is the sum of your happiness

56 with each of the segments. We'll start with the simple

57 criterion of wanting to find a path with the fewest "steps"; in

58 this case , it will be the path that traverses the fewest

59 intersections . Then in the Uniform Cost section we will

60 generalize our methods to handle problems where different actions have

61 different costs .</p>

62

63 <p>One possible algorithm for deciding on the best path through a map of

the

64 road intersections in this (very small) world

65 <p>

66 <p></p>

67

68 <p>

69 would be to enumerate all the paths , evaluate each

70 one according to our criterion , and then return the best one. The

71 problem is that there are lots</ern> of paths. Even in our little

72 domain, with 9 intersections , there are 210 paths from the

73 intersection labeled <TIS</TTh> to the one labeled <JT>G</T>. </p>

74

75 <p>We can get a much better handle on this problem, by formulating it as

76 an instance of a graph search (or a "state-space search") problem,

77 for which there are simple algorithms that perform well. </P>

78

79 <p><h2>St ate -space search</h2>

72

80 We' 11 model a state-space search problem formally as

81

82 <i> a (possibly infinite) set of states</emn> the system can be in;

83 a <emi>starting state, which is an element of the set of states

84 a goal test, which is a procedure that can be applied to

85 any state , and returns <tt>True</tt> if that state can serve as a

86 goal;(Although in many cases we have a particular goal state

87 (such as the intersection in front of my house), in other cases,

88 we may have the goal of going to any gas station , which can be

89 satisfied by many different intersections .)

90 a successor function</eMn>, which takes a state and an action as

91 input , and returns the new state that will result from taking the

92 action in the state ; and

93 a legal action list,

94 which is just a list of actions that can be legally executed in this

domain.

95

96 The decision about what constitutes an <enm>action</en> is a

97 modeling decision . It could be to drive to the next intersection , or

98 to drive a meter, or a variety of other things , depending on the

99 domain. The only requirement is that it terminate in a well-defined

100 next state (and that , when it is time to execute the plan , we will

101 know how to execute the action.) </p>

102

103 <p>We can think of this model as specifying a <i>labeled graph</i> (in

the

104 computer scientist 's sense), in which the states are the {{node}}s,

105 action specifies which of the arcs leading out of a node is to be

106 selected , and the successor function specifies the node at the end of

107 each of the arcs.</p>

108

109 <p>So, for the little world above, we might make a model in

110 which

111

73

112 The set of states is the intersections <tt>{'S' , 'A', 'B', 'C', 'D

' , 'E'1 , 1'P', 'G' , 'H'}</ tt>.

113 The starting state is <tt>'S'</tt>.

114 The {{goal}} test is something like:

115 <pre>

116 lambda x: x == 'H'

117 </pre>

118

119 The {{legal-action-list}} in this domain are the numbers <tt>0</tt>

, <tt>1</tt>,

120 <tt>.. .</tt>, <tt>n-1</tt>, where <tt>n</tt> is the maximum number of

successors

121 in any of the states.

122 The map can be defined using a dictionary:

123 <pre>

124 mapi = {'S' : ['A', 'B'],

125 'A' : ['S', 'C', 'D'],

126 'B' : ['S', 'D', 'E'],

127 'C' : ['A', 'F'],

128 'D' : ['A', 'B', 'F', 'H'],

129 'E' : ['B', 'H'],

130 'F' : ['C' , 'D', 'G'],

131 'H' : ['D', 'E', 'G'],

132 'G' : ['F', 'H']}

133 </pre>

134 where each key is a state and its value is a list of states that can

135 be reached from it in one step .</p>

136

137 <p>Now we can define the {{successor-function}} as

138 <pre>

139 def maplsuccessors(s, a):

140 return mapl[s][a]

141 </pre>

142 but with an additional test to be sure that if we attempt to take an

action

143 that doesn't exist in <tt>s</tt>, it just results in state <tt>s</tt>.

74

144 So, for example, the successor reached from state <tt>'A'</tt> by taking

145 action <tt>1</tt> is state <tt>'C'</tt>.

146

147 </p>

148

149 <p>We can think of this structure as defining a <i>search tree</i>, like

150 this:

151 <p></p>

152

153 It has the starting state , <T1J>S</T1>, at the

154 root node, and then each node has its successor states as children.

155 Layer <tt>k</tt> of this tree contains all possible paths

156 of length <tt>k</tt> through the graph. </p>

157

158 <p><h3>Representing search trees</h3>

159 We will need a way to represent the tree as a Python data structure as

160 we construct it during the search process. We will start by defining

161 a class to represent a search node, which is one of the circles

162 in the tree.</p>

163

164 <p>Each search node represents:

165

166 The state of the node;

167 the action that was taken to arrive at the node; and

168 the search node <enm>from which this node can be reached.

169

170 We will call the node from which a node can be reached its

171 parent</en> node. So, for example, in the figure below

172 <p></p>

173

174 we will represent the node with double circles around it with its

175 state , <tt>'D'</tt>, the action that reached it , <tt>1</tt>, and its

parent

176 node, which is the node labeled <tt>'B'</tt> above it .</p>

177

178 <p>Note that <erm>states and nodes are not the same thing! In this

75

tree , there are many nodes labeled by the same state ; they represent

different paths to and through the state.</p>

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

It 's pretty

</ pre></p>

<p>There are a couple of other useful methods for this class . First

the

<tt>path</tt> method, returns a list of pairs <tt>(a, s)</tt>

corresponding

to the path starting at the top (root) of the tree , going down to this

node. It works its way up the tree , until it reaches a node whose

parent is <tt>None</tt>.

<pre>

def path(self):

if seIf . parent =- None:

return [(self . action , self . state)]

else :

return self . parent .path() + [(self . action , self . state)1

</pre>

The path corresponding to our double-circled node is <tt>((None, 'S')

(1, 'B') , (1, 'D'))</tt>.</p>

<p>Another helper method that we will find useful is the <tt>inPath</tt>

method, which takes a state , and returns <tt>True</tt> if the state

occurs anywhere in the path from the root to the node.

<pre>

def inPath(self, s):

if s = self . state:

76

<p>Here is a Python class representing a search {{node}}.

straightforward .

<pre>

class SearchNode:

def -- init--(self , action , state , parent):

self.state = state

self . action = action

self .parent = parent

212 return True

213 elif self.parent = None:

214 return False

215 else:

216 return self.parent.inPath(s)

217 </pre></p>

218

219 <p><h3>Basic search algorithm</h3></p>

220

221 <p>We' 11 describe a sequence of search algorithms of increasing

222 sophistication and efficiency. An ideal algorithm will take a problem

223 description as input and return a path from the start to a goal state

224 if one exists , and return None, if it does not. Some algorithms will

225 not be capable of finding a path in all cases.</p>

226

227 <p>How can we systematically search for a path to the goal? There are

228 two plausible strategies

229

230 Start down a path, keep trying to extend it until you get stuck, in

231 which case , go back to the last choice you had, and go a different

232 way. This is how kids often solve mazes. We' 11 call it <ent>depth-first

</emi> search .

233 Go layer by layer through the tree , first considering all paths

234 of length 1, then all of length 2, etc. We' 11 call this breadth-

first search.

235 </p>

236

237 <p>Both of the search strategies described above can be implemented

using

238 a procedure with this basic structure:

239 <pre>

240 def search(initialState , goalTest , actions , successor):

241 if goalTest(initialState):

242 return [(None, initialState)]

243 agenda = EmptyAgenda()

244 add(SearchNode(None, initialState , None), agenda)

77

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

78

while not empty(agenda):

parent = getElement(agenda)

for a in actions :

newS = successor(parent.state , a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN. path ()

else :

add(newN, agenda)

return None

</pre>

We start by checking to see if the initial state is a {{goal}} state

If

so, we just return a path consisting of the initial state .</p>

<p>Otherwise , we have real work to do. We make the <enm>root</en> node

of

the tree. It has no parent, and there was no action leading to it , so

all it needs to specify is its state , which is <tt>initialState</tt>, so

it is created with

<pre>

SearchNode(None, initialState , None)

</pre></p>

<p>During the process of constructing the search tree , we will use a

data

structure , called an agenda, to keep track of which {{node}}s

in the

partially-constructed tree are on the fringe , ready to be expanded, by

adding their children to the tree.

We initialize the agenda to contain the root note. Now, we enter a

loop that will run until the agenda is empty (we have no more paths to

consider) , but could stop sooner.</p>

<p>Inside the loop, we select a node from the {{agenda}} (more on how we

decide which one to take out in a bit) and <i>expand it</i>. To expand

277 a node, we determine which actions can be taken from the state that is

278 stored in the node, and <en>visit the successor states

that

279 can be reached via the actions. </p>

280

281 <p>When we visit a state , we make a new search node (<tt>newN</tt>, in

the

282 code) that has the node we are in the process of expanding as the

283 parent , and that remembers the state being visited and the action that

284 brought us here from the parent.</p>

285

286 <p>Next , we check to see if the new state satisfies the goal test . If

it

287 does, we're done! We return the path associated with the new node.</p>

288

289 <p>If this state it doesn't satisfy the {{goal}} test , then we add the

new

290 {{node}} to the {{agenda}}. We continue this process until we find a

goal

291 state or the agenda becomes empty. This is not quite yet an

292 algorithm, though, because we haven 't said anything about what it

293 means to add and extract nodes from the agenda. And, we'11 find , that

294 it will do some very stupid things , in its current form.</p>

295

296 <p>We' 11 start by curing the stupidities , and then return to the

question

297 of how best to select nodes from the agenda.</p>

298

299 <p><h3>Basic pruning, or How not to be completely stupid</h3></p>

300

301 <p>If you examine the full search tree , you can see that some of the

302 paths it contains are completely ridiculous . It can never be

303 reasonable , if we're trying to find the shortest path between two

304 states , to go back to a state we have previously visited on that same

305 path. So, to avoid trivial infinite loops , we can adopt the following

rule :</p>

79

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

<pre

def search(initialState , goalTest , actions , su

if goalTest(initialState):

return [(None, initialState)]

agenda = [SearchNode(None, initialState , IN

while agenda != []:

parent = getElement(agenda)

for a in actions:

newS = successor(parent. state , a)

newN = SearchNode(a, newS, parent)

if goalTest (newS):

return newN. path ()

elif parent . inPath(newS):}/ETEX

pass

ccessor):

one)]

else :

add(newN, agenda)

return None

</pre>

We've added code to our basic algorithm.

It just checks to see whether the current state already exists on the

path to the node we're expanding and, if so, it doesn't do anything

with it. </P>

80

<P>

Don't consider any path that visits the same state twice.

<p>If we can apply this rule , then we will be able to remove a number of

branches from the tree , as shown here:

<p></p>

It is relatively straightforward to modify our code to implement this

rule :

3401<p>The next pruning rule doesn 't make a difference in the current domain

but can have a big effect in other domains:

<P>

If there are multiple actions that lead from a state <tt>r</tt> to a

state

<tt>s</tt>, consider only one of them.

<P>

To handle this in the code, we have to keep track of which new states

we have reached in expanding this node, and if we find another way to

reach one of those states , we just ignore it. The changes to the code

for implementing this rule are shown:

<pre>

def search (initialState goalTest actions successor):

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

one)]

else :

newChildStates . append (newS)

add(newN, agenda)

return None

</pre>

Each time we pick a new node to expand, we make a new empty list , <tt>

newChildStates</tt>, and keep track of all of the new states we have

81

if goalTest(initialState):

return [(None, initialState)]

agenda = [SearchNode(None, initialState , N

while agenda != []:

parent = getElement(agenda)

newChildStates = [3
for a in actions :

newS = successor(parent.state , a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

elif newS in newChildStates:

pass

elif parent.inPath(newS):

pass

373 reached from this node.</p>

374

375 <p>Now, we have to think about how to extract nodes from the agenda.</p>

376

377 <p><h3>Stacks and Queues</h3>

378 In designing algorithms , we frequently make use of two simple data

379 structures: stacks and queues. You can think of them both as

380 abstract data types that support two operations: <tt>push</tt> and <tt>

pop</tt>. The <tt>push</tt> operation adds an element to the stack

or queue,

381 and the <tt>pop</tt> operation removes an element. The difference

382 between a stack and a queue is what element you get back when you do a

383 <tt>pop</tt>.

384

385 stack: When you <tt>pop</tt> a stack , you get back the

element

386 that you most recently put in. A stack is also called a LIFO, for

387 last in, first out</eMn>.

388 <i> queue: When you <tt>pop</tt> a queue, you get back the

element

389 that you put in earliest . A queue is also called a FIFO, for

390 <enm>first in , first out.

391 </p>

392

393 <p>In Python, we can use lists to represent both stacks and queues. If

394 <tt>data</tt> is a list , then <tt>data.pop(0)</tt> removes the first

element

395 from the list and returns it , and <tt>data.pop(</tt> removes the last

396 element and returns it .</P>

397

398 <p>Here is a class representing stacks as lists . It always adds new

399 elements to the end of the list , and pops items off of the same end,

400 ensuring that the most recent items get popped off first .

401 <pre>

402 class Stack:

403 def _-init__(self):

82

404 self.data = []
405 def push(self , item):

406 self .data. append (item)

407 def pop(self):

408 return self.data.pop()

409 def isEmpty(self):

410 return self.data is [}
411 </pre> </p>

412

413 <p>Here is a class representing stacks as lists . It always adds new

414 elements to the end of the list , and pops items off of the front

415 ensuring that the oldest items get popped off first

416 <pre>

417 class Queue:

418 def __init__ (self):

419 self.data = []

420 def push(self , item):

421 self. data. append (item)

422 def pop(self):

423 return self.data.pop(0)

424 def isEmpty(self):

425 return self.data is []
426 </pre></p>

427

428 <p>We will use stacks and queues to implement our search algorithms .</p>

429

430 <p><h3>Depth-First Search</h3>

431 Now we can easily describe {{ depth-first -search }} by saying that it 's

432 an instance of the generic search procedure described above, but in

433 which the agenda is a <emn>stack: that is , we always expand the

434 node we most recently put into the agenda.</p>

435

436 <p>The code listing below shows our implementation of depth-first

437 search.

438 <pre>

439 def depthFirstSearch(initialState , goalTest , actions , successor):

83

440 agenda = Stack ()

441 if goalTest(initialState):

442 return [(None, initialState)]

443 agenda. push(SearchNode(None, initialState , None))

444 while not agenda.isEmpty(:

445 parent = agenda.pop()

446 newChildStates = []
447 for a in actions :

448 newS = successor (parent . state , a)

449 newN = SearchNode(a, newS, parent)

450 if goalTest(newS):

451 return newN.path()

452 elif newS in newChildStates:

453 pass

454 elif parent.inPath(newS):

455 pass

456 else :

457 newChildStates . append (newS)

458 agenda. push (newN)

459 return None

460 </pre>

461 You can see several operations on the {{agenda}}. We:

462

463 <ii> Create an empty <tt>Stack</tt> instance , and let that be the agenda

464 Push the initial node onto the agenda.

465 Test to see if the agenda is empty.

466 Pop the node to be expanded off of the agenda.

467 <i> Push newly visited nodes onto the agenda.

468 </ul

469 Because the agenda is an instance of the <tt>Stack</tt> class

subsequent

470 operations on the agenda ensure that it will act like a stack, and

471 guarantee that children of the most recently expanded node will be

472 chosen for expansion next.</p>

473

84

474 <p>So, let 's see how this search method behaves on our city map, with

start

475 state <'TL>S</TIz and goal state <TI>F</TT>. Here is a trace of the

algorithm (you

476 can get this in the code we distribute by setting <tt>verbose = True</tt

477 before you run it.)

478 <pre>

479 depthFirst ('S' , lambda x: x = 'F' , mapiLegalActions , map1successors)

480 agenda: Stack([S])

481 expanding: S

482 agenda: Stack([S-->A, S-1->B])

483 expanding: S-1->B

484 agenda: Stack([S-0->A, S-1->B-1->D, S-1->B-2->E])

485 expanding: S-1->B-2->E

486 agenda: Stack ([S-0->A, S-1->B-1->D, S-1->B-2->E-1->H])

487 expanding: S-1->B-2->E-1->H

488 agenda: Stack ([S-0->A, S-1->B-1->D, S-1->B-2->E-1->H-0->D, S-1->B-2->E

-1->H-2->Gj)

489 expanding: S-1->B-2->E-1->H-2->G

490 8 states visited

491 [(None, 'S') , (1, 'B') , (2, 'E') , (1, 'H') , (2, 'G') , (0, 'F')]

492 </pre></p>

493

494 <p>You can see that in this world, the search never needs to

495 "backtrack", that is , to go back and try expanding an older path on

496 its agenda. It is always able to push the current path forward until

497 it reaches the goal.

498 Here is the search tree generated during the depth-first search process.

499 <p></p>

500

501

502 <p>Here is another city map (it 's a weird city , we know,

503 but maybe a bit like trying to drive in Boston):

504 <p></p>

505

85

In this city,

depth-first search behaves a bit differently (trying to go from <TI>S</

T> to

<TE>D</TT> this time)

<pre>

depthFirst ('S', lambda x: x = 'D', map2LegalActions, map2successors)

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

S-1->B-2->F])

S-1->B-2->F-1->G])

</pre>

In this case, it explores all possible paths down in the right branch

of the world, and then has to backtrack up and over to the left

branch. </p>

<p>Here are some important properties of {{depth-first-search}}:

 It will run forever if we don't apply pruning rule 1,

potentially going back and forth from one state to another,

forever.

 It may run forever in an infinite domain (as long as the path

it 's on has a new successor that hasn't been previously visited , it

can go down that path forever; we'11 see an example of this in the

last section).

 It doesn 't necessarily find the shortest path (as we can see

from the very first example).

86

agenda: Stack ([S])

expanding: S

agenda: Stack([S-0->A, S-1->B])

expanding: S-1->B

agenda: Stack([S-0->A, S-1->B-1->E,

expanding: S-1->B-2->F

agenda: Stack([S-0->A, S-1->B-1->E,

expanding: S-1->B-2->F-1->G

agenda: Stack([S-0->A, S-1->B-1->E])

expanding: S-1->B-1->E

agenda: Stack ([S-0-->A])

expanding: S-0->A

7 states visited

[(None, 'S') , (0, 'A') , (2, 'D')

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

return

</pre></p>

None

87

 It is generally efficient in the amount of space it requires to

store the agenda,

which will be a constant factor times the depth of the path it is

currently considering (we'll explore this in more detail later).

</p>

<p><h3>Breadth-First Search</h3>

To change to {{ breadth.first-search}}, we need to choose the oldest

rather than the newest paths from the agenda to expand. All we have

to do is change the agenda to be a queue instead of a stack , and

everything else stays the same, in the code.

<pre>

def breadthFirstSearch(initialState , goalTest , actions , successor):

agenda = Queue()

if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState , None))

while not agenda.isEmpty(:

parent = agenda.pop()

newChildStates = [1
for a in actions:

newS = successor(parent.state , a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN. path ()

elif newS in newChildStates:

pass

elif parent.inPath(newS):

pass

else :

newChildStates . append(newS)

agenda. push (newN)

576 <p>Here is how {{breadth-first-search}} works, looking for a path from <

Th>S</Tr> to

577 <TT>F</TP> in our first city:

578 <pre>

579 >>> breadthFirst ('S' , lambda x: x == 'F' , mapiLegalActions ,

map1successors)

580 agenda: Queue ([S])

581 expanding: S

582 agenda: Queue([S-0->A, S-1->B])

583 expanding: S-0->A

584 agenda: Queue([S-1->B, S-0->A-1->C, S-0->A-2->D])

585 expanding: S-1->B

586 agenda: Queue([S-O->A-1->C, S-0->A-2->D, S-1->B-1->D, S-1->B-2->E])

587 expanding: S-0->A-1->C

588 7 states visited

589 [(None, 'S') , (0, 'A'), (1, 'C'), (1, 'F')1

590 </pre>

591 We can see it proceeding systematically through paths of length two,

592 then length three , finding the goal among the

593 length-three paths. </p>

594

595 <p>Here are some important properties of breadth-first search:

596

597 Always returns a shortest (least number of steps) path to a goal

598 state , if a goal state exists in the set of states reachable from

599 the start state.

600 It may run forever if there is no solution and the domain is

infinite .

601 It requires more space than depth-first search.

602 </p>

603

604 <p><h3>Dynamic programming</h3></p>

605

606 <p>Let's look at breadth-first search in the first city map example, but

this

607 time with goal state <1>G</TT>:

88

608 <pre>

609>>> breadthFirst('S', lambda x: x == 'G', mapiLegalActions,

mapisuccessors)

610 agenda: Queue ([S])

611 expanding: S

612 agenda: Queue([S-O->A, S-1->B])

613 expanding: S-0->A

614 agenda: Queue([S-1->B, S-0->A-1->C, S-0->A-2->D])

615 expanding: S-1->B

616 agenda: Queue ([S-0->A-1->C, S-0->A-2->D, S-1->B-1->D, S-1->B-2->E])

617 expanding: S-O->A-1->C

618 agenda: Queue ([S-0->A-2->D, S-1->B-1->D, S-1->B-2->E, S-0->A-1->C-1->F

])

619 expanding: S-0->A-2->D

620 agenda: Queue ([S-1->B-1->D, S-1->B-2->E, S-O->A-1->C-1->F, S-Q->A-2->D

-1->B, S-O->A-2->D-2->F, S-0->A-2->D-3->H])

621 expanding: S-1->B-1->D

622 agenda: Queue ([S-1->B-2->E, S-0->A-1->C-1->F, S-Q->A-2->D-1->B, S-O->A

-2->D-2->F, S-0->A-2->D-3->H, S-1->B-1->D-0->A, S-1->B-1->D-2->F, S

-1->B-1->D-3->H])

623 expanding: S-1->B-2->E

624 agenda: Queue ([S-0->A-1->C-1->F, S-0->A-2->D-1->B, S-Q->A-2->D-2->F, S

-0->A-2->D-3->H, S-1->B-1->D-0->A, S-1->B-1->D-2->F, S-1->B-1->D-3->

H, S-1->B-2->E-1->H])

625 expanding: S-0->A-1->C-1->F

626 16 states visited

627 [(None, 'S') , (0, 'A'), (1, 'C'), (1, 'F'), (2, 'G')]

628 </pre>

629 The first thing that is notable about this trace is that it ends up

630 visiting 16 states in a domain with 9 different states. The issue is

631 that it is exploring multiple paths to the same state. For instance ,

632 it has both <tt>S-0->A-2->D</tt> and <tt>S-1->B-1->D</tt> in the agenda.

633 Even worse , it has both <tt>S-0->A</tt> and <tt>S-1->B-1->D-0->A</tt> in

634 there! We really don't need to consider all of these paths. We can

635 make use of the following example of the dynamic programming

636 principle :</p>

89

637

638 <p><i>The shortest path from <TI'>X</TT> to <TT>Z</TrC> that goes through

<T'>Y</Th> is made

639 up of the shortest path from <TI'>X</TI'> to <'T>Y</TT> and the shortest

path from

640 <',T>Y</Th> to <TIZ</T>.</i></p>

641

642 <p>So, as long as we find the shortest path from the start state to some

643 intermediate state , we don't need to consider any other paths between

644 those two states; there is no way that they can be part of the

645 shortest path between the start and the goal. This insight is the

646 basis of a new pruning principle:

647 <p>

648 Don't consider any path that visits a state that you have already

649 visited via some other path.

650 </p>

651

652 <p>In {{breadth.first..search}}, because of the orderliness of the

expansion

653 of the layers of the search tree , we can guarantee that the first time

654 we visit a state , we do so along the shortest path. So, we'll keep

655 track of the states that we have visited so far , by using a

656 dictionary , called <tt>visited</tt> that has an entry for every state we

657 have visited .(An alternative representation would be just to

658 keep a Python <tt>set</tt>) of visited {{node}}s. Then, if we are

659 considering adding a new node to the tree that goes to a state we have

660 already visited , we just ignore it . This test can take the place of

661 the test we used to have for pruning rule 1; it 's clear that if the

662 path we are considering already contains this state , then the state

663 has been visited before. Finally , we have to remember, whenever we

664 add a node to the agenda, to add the corresponding state to the

665 visited list .</p>

666

667 <p>Here is our {{breadthfirst.search}} code , modified to take advantage

of

668 dynamic programming.

90

669 <pre>

670 def breadthFirstDP (initialState , goalTest , actions , successor)

671 agenda = Queue()

672 if goalTest(initialState):

673 return [(None, initialState)]

674 agenda.push(SearchNode(None, initialState , None))

675 visited = {initialState: True}

676 while not agenda.isEmpty(:

677 parent = agenda.pop()

678 for a in actions:

679 newS = successor(parent. state , a)

680 newN = SearchNode(a, newS, parent)

681 if goalTest(newS):

682 return newN. path()

683 elif visited .has-key(newS):

684 pass

685 else :

686 visited [newS] = True:

687 agenda. push (newN)

688 return None

689 </pre>

690 So, let 's see how this performs on the task of going from <TT>S</T> to

<TI'>G</TI >

691 in the first city map:

692 <pre>

693 >>> breadthFirstDP ('S' , lambda x: x = 'G' , mapiLegalActions ,

map1successors)

694 agenda: Queue ([S])

695 expanding: S

696 agenda: Queue([S-0->A, S-1->B])

697 expanding: S-Q->A

698 agenda: Queue ([S-1->B, S-Q->A-1->C, S-O->A-2->D])

699 expanding: S-1->B

700 agenda: Queue ([S-0->A-1->C, S-0->A-2->D, S-1->B-2->E])

701 expanding: S-0->A-1->C

702 agenda: Queue ([S-0->A-2->D, S-1->B-2->E, S-Q->A-1->C-1->F])

91

703 expanding: S-0->A-2->D

704 agenda: Queue ([S-1->B-2->E, S-0->A-1->C-1->F, S-0->A-2->D-3->H])

705 expanding: S-1->B-2->E

706 agenda: Queue ([S-0->A-1->C-1->F, S-0->A-2->D-3->H])

707 expanding: S-0->A-1->C-1->F

708 8 states visited

709 [(None, 'S') , (0, 'A'), (1, 'C'), (1, 'F'), (2, 'G')]

710 </pre>

711 As you can see , this results in visiting significantly fewer states.

712 Here is the tree generated by this process:

713 <p></p>

714

715 In bigger problems , this effect will be amplified hugely , and will

716 make the difference between whether the algorithm can run in a

717 reasonable amount of time, and not.</p>

718

719 <p>We can make the same improvement to {{depth-first-search}}; we just

need

720 to use a stack instead of a queue in the algorithm above. It still will

721 not guarantee that the shortest path will be found, but will guarantee

722 that we never visit more paths than the actual number of states. The

723 only change to breadth-first search with dynamic programming is that

724 the new states are added to the beginning of the agenda.</p>

725

726 <p><h3>Configurable search code</h3>

727 Because all of our search algorithms (breadth-first and depth-first

728 with and without dynamic programming) are all so similar , and we don 't

729 like to repeat code, we provide (in file <tt>search.py</tt>) a single

730 configurable search procedure. It also prints out some information

731 as it goes, if you have the <tt>verbose</tt> or <tt>somewhatVerbose</tt>

732 variables set to <tt>True</tt>, and has a limit on the maximum number of

733 nodes it will expand (to keep from going into an infinite loop).

734 <pre>

735 def search(initialState , goalTest , actions , successor

736 depthFirst = False , DP = True, maxNodes = 10000):

737 if depthFirst:

92

738 agenda = Stack()

739 else :

740 agenda = Queue()

741

742 startNode = SearchNode(None, initialState , None)

743 if goalTest(initialState):

744 return startNode.path()

745 agenda. push (startNode)

746 if DP: visited = {initialState: True}

747 count = 1

748 while not agenda. isEmpty () and maxNodes > count:

749 n = agenda.pop()

750 newStates = []

751 for a in actions:

752 newS = successor (n. state , a)

753 newN = SearchNode(a, newS, n)

754 if goalTest(newS):

755 return newN.path()

756 elif newS in newStates:

757 pass

758 elif ((not DP) and n.inPath(newS)) or

759 (DP and visited .has-key(newS)):

760 pass

761 else :

762 count += 1

763 if DP: visited [newS] = True

764 newStates. append (newS)

765 agenda. push (newN)

766 return None

767 </pre></p>

768

769 <p><h2>Connection to state machines</h2>

770 We can use state machines as a convenient representation of

771 state-space search

772 problems. Given a {{state-machine}}, in its initial state , what

sequence

93

773 of inputs can we feed to it to get it to enter a done state? This is

774 a search problem, analogous to determining the sequence of actions

775 that can be taken to reach a goal state .</p>

776

777 <p>The <tt>getNextValues</tt> method of a state machine can serve as the

<tt> successor</tt> function in a search (the inputs to the machine

are the

778 actions). Our standard machines do not have a notion of legal actions;

779 but we will add an attribute called <tt> legalInputs</tt>, which is a

list of values that are legal inputs to the

780 machine (these are the actions , from

781 the planning perspective) to machines that we want to use with a

782 search .</p>

783

784 <p>The <tt>startState</tt> attribute can serve as the initial state in

the

785 search and the <tt>done</tt> method of the machine can serve as the goal

786 test function .</p>

787

788 <p>Then, we can plan a sequence of actions to go from the start state to

789 one of the done states using this function , where <tt>smToSearch</tt> is

790 an instance of <tt>sm.SM/tt>.

791 <pre>

792 def smSearch(smToSearch, initialState = None, goalTest = None, maxNodes

= 10000,

793 depthFirst = False , DP = True):

794 if initialState = None:

795 initialState = smToSearch.startState

796 if goalTest None:

797 goalTest = smToSearch. done

798 return search(initialState , goalTest , smToSearch. legalInputs

799 # This returns the next state

800 lambda s , a: smToSearch. getNextValues (s , a) [0]

801 maxNodes = maxNodes,

802 depthFirst=depthFirst , DP=DP)

803 </pre>

94

804 It is mostly clerical : it allows us to specify a different initial

805 state or {{goal}} test if we want to , and it extracts the appropriate

806 functions out of the {{state-machine}} and passes them into the search

807 procedure. Also, because <tt>getNextValues</tt> returns both a state

and

808 an output , we have to wrap it inside a function that just selects out

809 the next state and returns it .</p>

810

811 <p><h2>Numeric search domain</h2>

812

813 <p>Many different kinds of problems can be formulated in terms of

finding

814 the shortest path through a space of states. A famous one, which is

815 very appealing to beginning calculus students , is to take a derivative

816 of a complex equation by finding a sequence of operations that takes

817 you from the starting expression to one that doesn't contain any

818 derivative operations. We' 11 explore a different simple one here:

819

820 The states are the integers.

821 The initial state is some integer; let 's say 1.

822 The legal actions are to apply the following operations: <tt>{2n,

n+1, n-1, n^2, -n\}</tt>.

823 The goal test is <tt>lambda x: x = 10</tt>

824

825 So, the idea would be to find a short sequence of operations to move

826 from 1 to 10.</p>

827

828 <p>Here it is , formalized as state machine in Python:

829 <pre>

830 class NumberTestSM(sm.SM):

831 startState = 1

832 legalInputs = ['x*2', 'x+1', 'x-1', 'x**2', '-x']

833 def __init__(self, goal):

834 self.goal = goal

835 def nextState (self , state , action):

836 if action = 'x*2':

95

837 return state*2

838 elif action = 'x+1':

839 return state+1

840 elif action = 'x-

841 return state-1

842 elif action = 'x**2':

843 return state**2

844 elif action = '-x':

845 return -state

846 def getNextValues (self , state , action):

847 nextState = self . nextState (state , action)

848 return (nextState , nextState)

849 def done(self , state):

850 return state = self .goal

851 </pre></p>

852

853 <p>First of all , this is a bad domain for applying {{depth-first-search

854 Why? Because it will go off on a gigantic chain of doubling the

855 starting state , and never find the goal. We can run {{

breadth-first-search }},
856 though. Without dynamic programming, here is what happens (we

857 have set <tt>verbose = False</tt> and <tt>somewhatVerbose = True</tt> in

the

858 search file):

859 <pre>

860 >>> smSearch(NumberTestSM(10), initialState = 1, depthFirst = False, DP

= False)

861 expanding: 1

862 expanding: 1-x*2->2

863 expanding: 1-x-1->0

864 expanding: 1--x->-1

865 expanding: 1-x*2->2-x*2->4

866 expanding: 1-x*2->2-x+1->3

867 expanding: 1-x*2->2--x->-2

868 expanding: 1-x-1->0-x-1->-1

96

869 expanding: 1--x->-1-x*2->-2

870 expanding: 1--x->-1-x+1->0

871 expanding: 1-x*2->2-x*2->4-x*2->8

872 expanding: 1-x*2->2-x*2->4-x+1->5

873 33 states visited

874 [(None, 1), ('x*2', 2), ('x*2', 4), ('x+1', 5), ('x*2', 10)]

875 </pre>

876 We find a nice short path, but visit 33 states. Let's try it with DP:

877 <pre>

878 >>> smSearch(NumberTestSM(10), initialState = 1, depthFirst = False , DP

= True)

879 expanding: 1

880 expanding: 1-x*2->2

881 expanding: 1-x-1->0

882 expanding: 1--x->-1

883 expanding: 1-x*2->2-x*2->4

884 expanding: 1-x*2->2-x+1->3

885 expanding: 1-x*2->2--x->-2

886 expanding: 1-x*2->2-x*2->4-x*2->8

887 expanding: 1-x*2->2-x*2->4-x+1->5

888 17 states visited

889 [(None, 1), ('x*2', 2), ('x*2', 4), ('x+1', 5), ('x*2', 10)]

890 </pre>

891 We find the same path, but visit noticeably fewer states. If we change

892 the goal to 27, we find that we visit 564 states without DP and 119,

893 with. If the goal is 1027, then we visit 12710 states without DP and

894 1150 with DP, which is getting to be a very big difference.</p>

895

896 <p>To experiment with {{depth-first-search}}, we can make a version of

the

897 problem where the state space is limited to the integers in some

898 range. We do this by making a subclass of the <tt>NumberTestSM</tt>,

899 which remembers the maximum legal value , and uses it to restrict the

900 set of legal inputs for a state (any input that would cause the

901 successor state to go out of bounds just results in staying at the

902 same state , and it will be pruned.)

97

903 <pre>

904 class NumberTestFiniteSM (NumberTestSM):

905 def __init- _(self , goal, maxVal):

906 self.goal = goal

907 s e I f . maxVal = maxVal

908 def getNextValues (self , state , action):

909 nextState = self .nextState (state , action)

910 if abs(nextState) < self .maxVal:

911 return (nextState , nextState)

912 else:

913 return (state , state)

914 </pre>

915 Here's what happens if we give it a range of -20 to +20 to work in:

916 <pre>

917>>> smSearch(NumberTestFiniteSM(10, 20), initialState = 1, depthFirst =

True,

918 DP = False)

919 expanding: 1

920 expanding: 1--x->-1

921 expanding: 1--x->-1-x+1->0

922 expanding: 1--x->-1-x*2->-2

923 expanding: 1--x->-1-x*2->-2--x->2

924 expanding: 1--x->-1-x*2->-2--x->2-x+1->3

925 expanding: 1--x->-1-x*2->-2--x->2-x+1->3--x->-3

926 expanding: 1--x->-1-x*2->-2--x->2-x+1->3--x->-3-x**2->9

927 20 states visited

928 [(None, 1), ('-x' , -1), ('x*2', -2), ('-x', 2), ('x+1', 3), ('-x', -3),

('x**2', 9), ('x+1', 10)]

929 </pre>

930 We generate a much longer path!</p>

931

932 <p>We can see from trying lots of different searches in this space that

933 (a) the DP makes the search much more efficient and (b) that the

934 difficulty of these search problems varies incredibly widely.</p>

935

936 <p><h2>Computational complexity</h2>

98

937

938 <p>To finish up this segment, let 's consider the computational

complexity

939 of these algorithms. As we've already seen , there can be a huge

940 variation in the difficulty of a problem that depends on the exact

941 structure of the graph, and is very hard to quantify in advance.

942 It can sometimes be possible to analyze the average case running time

943 of an algorithm , if you know some kind of distribution over the

944 problems you're likely to encounter. We' 11 just stick with the

945 traditional <i>worst-case analysis</i>, which tries to characterize the

946 approximate running time of the worst possible input for the algorithm.

</P>

947

948 <p>First , we need to establish a bit of notation. Let

949

950 <tt>b</tt> be the <i>branching factor</i> of the graph; that is

the

951 number of successors a node can have. If we want to be truly

952 worst-case in our analysis , this needs to be the maximum branching

953 factor of the graph.

954 <tt>d</tt> be the <i>maximum depth</i> of the graph; that is , the

955 length of the longest path in the graph. In an infinite space , this

956 could be infinite.

957 <tt>l</tt> be the <i>solution depth</i> of the problem; that is

the

958 length of the shortest path from the start state to the shallowest

959 goal state.

960 <tt>n</tt> be the <i>state space size</i> of the graph; that is

the

961 total number of states in the domain.

962 </p>

963

964 <p>{{ depth-first-search }}, in the worst case , will search the entire

search

965 tree. It has <tt>d</tt> levels , each of which has <tt>b</tt> times as

many paths as

99

966 the previous one. So, there are <tt>b^d</tt> paths on the <tt

>dth</tt> level.

967 The algorithm might have to visit all of the paths at all of the

968 levels , which is about <tt>b^{d+1}</tt> states.

969 But the amount of storage it needs for the agenda is only <tt>b*d</tt>.<

/P>

970

971 <p>{{breadth-first-search}}, on the other hand, only needs to search as

deep

972 as the depth of the best solution. So, it might have to visit as many

973 as </tt>b^{l+1}</tt> nodes. The amount of storage required for

the agenda can be

974 as bad as </tt>b^l</tt>, too.</p>

975

976 <p>So, to be clear , consider the numeric search problem. The branching

977 factor <tt>b = 5</tt>, in the worst case. So, if we have to find a

sequence

978 of 10 steps , breadth-first search could potentially require visiting

979 as many as <tt>5^{11} = 48828125</tt> nodes!</p>

980

981 <p>This is all pretty grim. What happens when we consider the DP

version

982 of {{breadth-first-search}}? We can promise that every state in the

state

983 space is visited at most once. So, it will visit at most <tt>n</tt>

states.

984 Sometimes <tt>n</tt> is <i>much</i> smaller than <tt>b^l</tt>

(for instance , in a

985 road network). In other cases , it can be much larger (for instance

986 when you are solving an easy (short solution path) problem embedded in

987 a very large space). Even so, the DP version of the search will visit

fewer

988 states , except in the very rare case in which there are never multiple

989 paths to the same state (the graph is actually a tree). For example,

990 in the numeric search problem, the shortest path from 1 to 91 is 9

991 steps long , but using DP it only requires visiting 1973 states , rather

100

992 than <tt>5^{10} = 9765625</tt>.</p>

993 {{basic-search-video}}

994 <p><h2>Uniform cost search</h2></p>

995

996 <p>In many cases , the arcs in our graph will actually have different

997 costs. In a road network , we would really like to find the shortest

998 path in miles (or in time to traverse) , and different road segments

999 have different lengths and times. To handle a problem like this , we

1000 need to extend our representation of search problems, and add a new

1001 algorithm to our repertoire .</p>

1002

1003 <p>We will extend our notion of a successor function , so that it takes a

1004 state and an action , as before , but now it returns a pair <tt>(newS,

cost)</tt>, which represents the resulting state , as well as

1005 the cost that is incurred in traversing that arc. To guarantee that

1006 all of our algorithms are well behaved, we will require that all costs

1007 be positive (not zero or negative).</p>

1008

1009 <p>Here is our original city map, now with distances associated with the

1010 roads between the cities.

1011 <p></p>

1012

1013 We can describe it in a dictionary , this time associating a cost with

1014 each resulting state , as follows:

1015 <pre>

1016 map1dist {'S' : [('A', 2), ('B', 1)],

1017 'A' : [('S' , 2), ('C', 3), ('D' , 2)],

1018 'B' : [('S' , 1) , ('D' , 2) , ('E' , 3)] ,

1019 'C' : [('A' , 3), ('F' , 1)] ,

1020 'D' : [('A' , 2) , ('B' , 2), ('F', 4) , ('H', 6)],

1021 'E' : [('B' , 3), ('H' , 2)] ,

1022 'F' : [('C', 1) , ('D' , 4) , ('G', 1)] ,

1023 'H' : [('D', 6), ('E' , 2) , ('G', 4)],

1024 'G' : [('F', 1), ('H' , 4)]}

1025 </pre></p>

1026

101

1027 <p>When we studied {{ breadth-first..search }}, we argued that it found the

1028 shortest path , in the sense of having the fewest nodes , by seeing that

1029 it investigate all of the length 1 paths , then all of the length 2

1030 paths , etc . This orderly enumeration of the paths guaranteed that

1031 when we first encountered a goal state , it would be via a shortest

1032 path. The idea behind <emn>uniform cost search</ent> is basically the

1033 same: we are going to investigate paths through the graph , in the

1034 order of the sum of the costs on their arcs. If we do this , we

1035 guarantee that the first time we extract a {{node}} with a given state

1036 from the {{agenda}}, it will be via a shortest {{path}}, and so the

first time

1037 we extract a node with a {{goal}} state from the agenda, it will be an

1038 optimal solution to our problem.</p>

1039

1040 <h4>Priority Queue</h4>

1041 Just as we used a stack to manage the agenda for depth-first search

1042 and a queue to manage the agenda for bread-first search, we will need

1043 to introduce a new data structure , called a <en>priority queue to

1044 manage the agenda for {{uniform-cost -search}}. A priority queue is a

data

1045 structure with the same basic operations as stacks and queues , with

1046 two differences

1047

1048 Items are pushed into a priority queue with a numeric score , called

a cost.

1049 When it is time to pop an item, the item in the priority queue with

the least cost is returned and removed from the priority

queue.

1050

1051 There are many interesting ways to implement priority queues so that

1052 they are very computationally efficient . Here, we show a very simple

1053 implementation that simply walks down the entire contents of the

1054 priority queue to find the least -{{cost}} item for a pop operation. Its

1055 <tt>data</tt> attribute consists of a list of <tt>(cost , item)</tt>

pairs.

1056 It calls the <tt>argmaxIndex</tt> procedure from our utility package,

102

1057 which takes a list of items and a scoring function , and returns a pair

1058 consisting of the index of the list with the highest scoring item, and

1059 the score of that item. Note that , because <tt>argmaxIndex</tt> finds

1060 the item with the highest score</enm>, and we want to extract the

item

1061 with the <eni>least cost, our scoring function is the <erm>negative</

em>

1062 of the cost.

1063 <pre>

1064 class PQ:

1065 def __init__ (self):

1066 self.data = []
1067 def push(self , item, cost):

1068 self . data. append ((cost, item))

1069 def pop(self):

1070 (index, cost) = util . argmaxlndex(self. data, lambda (c, x): -c)

1071 return self. data. pop(index) [1] # just return the data item

1072 def isEmpty(self):

1073 return self.data is []

1074 </pre></p>

1075

1076 <h4>UC Search</h4>

1077 Now, we're ready to study the {{uniform-cost-search}} algorithm itself .

1078 We will start with a simple version that doesn't do any pruning or

1079 dynamic programming, and then add those features back in later.

1080 First , we have to extend our definition of a <tt>SearchNode</tt>, to

1081 incorporate costs. So, when we create a new search {{node}}, we pass in

1082 an additional parameter <tt>actionCost</tt>, which represents the {{cost

}}

1083 just for the action that moves from the parent node to the state.

1084 Then, we create an attribute <tt>self. cost</tt>, which encodes the cost

1085 of this entire path, from the starting state to the last state in the

1086 path. We compute it by adding the path cost of the parent to the cost

1087 of this last action , as shown by the red text below.

1088 <pre>

1089 class SearchNode:

103

1090 def -- init_ (self , action , state , parent , /BTEX\redtext{actionCost}/

ETEX):

1091 self.state = state

1092 self. action = action

1093 self.parent = parent

1094 if self.parent:

1095 self . cost = self . parent . cost + actionCost

1096 else :

1097 self. cost = actionCost

1098 </pre></p>

1099

1100 <p>Now, here is the search algorithm. It looks a lot like our standard

1101 search algorithm , but there are two important differences:

1102

1103 The agenda is a priority queue.

1104 Instead of testing for a goal state when we put an element

1105 into the {{agenda}}, as we did in {{ breadth-first -search}}, we test

for a

1106 goal state when we take an element out of the agenda. This is

1107 crucial , to ensure that we actually find the shortest path to a goal

1108 state .

1109

1110

1111 <p><pre>

1112 def ucSearch (initialState , goalTest , actions , successor)

1113 startNode = SearchNode(None, initialState , None, 0)

1114 if goalTest(initialState):

1115 return startNode. path()

1116 agenda = PQ()

1117 agenda.push(startNode , 0)

1118 while not agenda.isEmpty(:

1119 n = agenda.pop()

1120 if goalTest(n. state):

1121 return n.path()

1122 for a in actions:

1123 (newS, cost) = successor (n. state , a)

104

1124 if not n.inPath(newS):

1125 newN = SearchNode(a, newS, n, cost)

1126 agenda.push(newN, newN.cost)

1127 return None

1128 </pre></p>

1129

1130 <h4>Example</h4>

1131 Consider the following simple graph:

1132

1133 <p></p>

1134 Let 's simulate the uniform-cost search algorithm , and see what

1135 happens when we try to start from <tt>S</tt> and go to <tt>D</tt>:

1136

1137 The agenda is initialized to contain the starting node. The

1138 agenda is shown as a list of cost , node pairs.

1139 <pre>

1140 agenda: PQ([(0, S)])

1141 </pre>

1142

1143 The least-cost node, <tt>S</tt>, is extracted and expanded, adding

1144 two new nodes to the agenda. The notation <tt>S-0->A</tt> means that

1145 the path starts in state <tt>S</tt>, takes action <tt>0</tt>, and goes

to

1146 state <tt>A</tt>.

1147 <pre>

1148 0 : expanding: S

1149 agenda: PQ([(2, S-0->A), (1, S-1->B)])

1150 </pre>

1151

1152 The least-cost node, <tt>S-1->B</tt>, is extracted, and expanded,

1153 adding one new node to the agenda. Note, that, at this point, we

1154 have discovered a path to the goal: <tt>S-1->B-1->D</tt> is a path to

1155 the goal , with cost 11. But we cannot be sure that it is the

1156 shortest path to the goal, so we simply put it into the agenda, and

1157 wait to see if it gets extracted before any other path to a goal

1158 state.

105

1159 <pre>

1160 1 expanding: S-l->B

1161 agenda: PQ([(2, S-0->A), (11, S-1->B-1->D)])

1162 </pre>

1163 </I i>

1164 The least -cost node, <tt>S-0->A</tt> is extracted , and expanded ,

1165 adding one new node to the agenda. At this point, we have two

1166 different paths to the goal in the agenda.

1167 <pre>

1168 2 : expanding: S-0->A

1169 agenda: PQ([(11 , S-1->B-1->D) , (4, S-0->A-1->D)])

1170 </pre>

1171

1172 Finally , the least -cost node, <tt>S-O->A-1->D</tt> is extracted.

1173 It is a path to the goal , so it is returned as the solution.

1174 <pre>

1175 5 states visited ; Solution cost: 4

1176 [(None, 'S') , (0, 'A') , (1, 'D')

1177 </pre>

1178

1179 </p>

1180

1181 <h4>Dynamic programming</h4>

1182 Now, we just need to add dynamic programming back in, but we have to

1183 do it slightly differently . We promise that , once we have <errn>expanded<

/emt> a node, that is , taken it out of the agenda, then we have

1184 found the shortest path to that state , and we need not consider any

1185 further paths that go through that state . So, instead of remembering

1186 which nodes we have visited (put onto the {{agenda}}) we will remember

1187 nodes we have expanded (gotten out of the agenda) , and never

1188 {{visit}} or {{expand}} a node that has already been expanded. In the

code

1189 below, the first test ensures that we don't expand a node that goes to

1190 a state that we have already found the shortest path to, and the

1191 second test ensures that we don't put any additional paths to such a

1192 state into the {{agenda}}.

106

1193 <pre>

1194 def ucSearch(initialState , goalTest , actions , successor)

1195 startNode = SearchNode(None, initialState , None, 0)

1196 if goalTest(initialState):

1197 return startNode. path()

1198 agenda = PQ()

1199 agenda. push (startNode , 0)

1200 expanded = { }
1201 while not agenda.isEmpty(:

1202 n = agenda.pop()

1203 if not expanded.has\-key(n.state):

1204 expanded [n. state] = True

1205 if goalTest(n. state):

1206 return n.path()

1207 for a in actions:

1208 (newS, cost) = successor (n.state , a)

1209 if not expanded.has_key(newS):

1210 newN = SearchNode(a, newS, n, cost)

1211 agenda. push (newN, newN.cost)

1212 return None

1213 </pre></p>

1214

1215 <p>Here is the result of running this version of {{uniform-cost-search}}

on

1216 our bigger city graph with distances:

1217 <pre>

1218 mapDistTest (mapidist , 'S' , 'G')

1219 agenda: PQ([(0, S)])

1220 0 : expanding: S

1221 agenda: PQ([(2, S-0->A), (1, S-1->B)1)

1222 1 : expanding: S-1->B

1223 agenda: PQ([(2, S-0->A), (3, S-1->B-1->D), (4, S-1->B-2->E)])

1224 2 : expanding: S-O->A

1225 agenda: PQ([(3, S-1->B-1->D), (4, S-1->B-2->E), (5, S-Q->A-1->C), (4, S

-0->A-2->D)])

1226 3 : expanding: S-1->B-1->D

107

agenda: PQ([(4, S-1->B-2->E), (5, S-0->A-1->C), (4,

-1->B-1->D-2->F), (9, S-1->B-1->D-3->H)])

S-0->A-2->D) , (7, S1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

4 : expanding: S-1->B-2->E

agenda: PQ([(5, S-0-->A-1->C) , (4, S-->A-2->D), (7, S-1->B-1->D

(9, S-1->B-1->D-3->H) , (6, S-1->B-2->E-1->H)])

agenda: PQ([(5 , S-0->A-1->C) , (7, S-1->B-1->D-2->F) , (9, S-1->R

-3->H) , (6, S-1->B-2->E-1->H)])

5 : expanding: S-0->A-1->C

agenda: PQ([(7, S-1->B-1->D-2->F) , (9, S-1->B-1->D-3->H) , (6, S

-2->E-1->H) , (6, S-0->A-1->C-1->F)])

6 : expanding: S-1->B-2->E-1->H

agenda: PQ ([(7, S-1->B-1->D-2->F) , (9, S-1->B-1->D-3->H) , (6, S

-1->C-1->F) , (10, S-1->B-2->E-1->H-2->G)])

6 : expanding: S-Q->A-->C-1->F

agenda: PQ ([(7, S-1->B-1->D-2->F) , (9, S-1->B-1->D-3->H) , (10,

-2->E-1->H-2->G) , (7, S-0->A-1->C-1->F-2->G) 1)

agenda: PQ ([(9, S-1->B-1->D-3->H) , (10, S-1->B-2->E-1->H-2->G) ,

-0->A-1->C-1->F-2->G)])

13 states visited ; Solution cost: 7

[(None, 'S') , (0, 'A') , (1, 'C') , (1, 'F') , (2, 'G')

</pre></p>

<p><h3>Connection to state machines</h3>

When we use a {{state-machine}} to specify a domain for a cost-based

search , we only need to make a small change: the

<tt>getNextValues</tt> method of a state machine can still serve as the

<tt>successor</tt> function in a {{search}} (the inputs to the

machine are the

actions). We usually think of <tt>getNextValues</tt> as returning the

next state and the output: now, we will modify that interpretation

slightly , and think of it as returning the next state and the

incremental {{cost}} of taking the action that transitions to that next

state. This has the same form as the the <tt>ucSearch. search</tt>

procedure expects a {{successor-function}} to have, so we don't need to

change anything about the <tt>smSearch</tt> procedure we have already

defined.</p>

108

S-1->B

(7, S

-1->D

-1->B

-0->A

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

12681the end of the path:

<pre>

>>> bigTest ('G', 'X')

0 : expanding: G

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

expanding:

G-2->H

G-1->F

G-0->I

C-2->H-2->T

C-2->H-0->D

C-Q->I -3->J

G-0->I-0->C

C-2->H-2->T-1->R

G-2->H-1->E

G-2->H-0->D-0->S

CG-0->I-2->L

G,-O->I -3->J-2->M4

G-2->H-0->D-2->B

G-0->I -0->C-0->A

G-0->I-3->J-1->K

C-2->H-2->T-1->R-1->V

109

<p><h2>Search with heuristics</h2></p>

<p>Ultimately , we'd like to be able to solve huge state-space search

problems, such as those solved by a GPS that can plan long routes

through a complex road network. We'11 have to add something to

{ {uniform-cost-search}} to solve such problems efficiently.

Let's consider the city below, where the actual distances between the

intersections are shown on the arcs:

<p></p>

<p>If we use {{uniform-cost-search}} to find a path from <tt>G</tt> to <

tt>X</tt>,

we expand states in the following order (the number at the beginning

of each line is the length of the path from <tt>G</tt> to the state at

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

14.2

20.7

25.5

30.1

32.3

36.7

40.5

44.3

45.9

50.4

50.5

52.6

54.7

54.7

54.8

58.5

1288 66.0 : expanding: G-0->I-3->J-1->K-1->N

1289 68.5 : expanding: G-0->I-3->J-2->M-1->P

1290 68.6 : expanding: G-0->I-2->L-1->O

1291 69.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y

1292 82.7 : expanding: G-0->I-3-->J-2->M-1->P-1->Q

1293 84.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z

1294 86.7 : expanding: G-0->I-2->L-1->O-1->W

1295 95.6 : expanding: G-(->I-2->L-1->O-2->U

1296 95.9 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z-2->AA

1297 39 nodes visited ; 27 states expanded; solution cost: 105.9

1298 [(None, 'G') , (2, 'H') , (2, 'T') , (1, 'R') , (1, 'V') , (2, 'Y') , (2, 'Z')

, (2 ,'AA') , (1, 'X')

1299 </pre>

1300 This search process works its way out , radially , from <tt>G</tt>,

1301 expanding nodes in contours of increasing path length. That means

1302 that , by the time the search expands node <tt>X</tt>, it has expanded

1303 every single node.

1304 This seems kind of silly : if you were looking for a good route from

1305 <tt>G</tt> to <tt>X</tt>, it 's unlikely that states like <tt>S</tt> and

<tt>B</tt>

1306 would ever come into consideration .</p>

1307

1308 <p><h4>Heuristics</h4></p>

1309

1310 <p>What is it about state <tt>B</tt> that makes it seem so irrelevant?

1311 Clearly , it 's far away from where we want to go. We can incorporate

1312 this idea into our {{search}} algorithm using something called a

1313 heuristic function. A heuristic function takes a state as an

1314 argument and returns a numeric estimate of the total cost that it will

1315 take to reach the goal from there. We can modify our search algorithm

1316 to be biased toward states that are closer to the goal , in the sense

1317 that the heuristic function has a smaller value on them.</p>

1318

1319 <p>In a path-planning domain, such as our example, a reasonable

heuristic

1320 is the actual Euclidean distance between the current state and the

110

1321 goal state ; this makes sense because the states in this domain are

1322 actual locations on a map.</p>

1323

1324 <p><h4>A*</h4></p>

1325

1326 <p>If we modify the {{uniform-cost-search}} algorithm to take advantage

of a

1327 heuristic function , we get an algorithm called <TT>A^*</TL> (pronounced

'a

1328 star ') . It is given below, with the differences highlighted in red.

1329 The <errn>only</enm> difference is that , when we insert a {{node}} into the

1330 priority queue, we do so with a {{cost}} that is <tt>newN.cost +

heuristic (newS)</tt>. That is , it is the sum of the actual cost of

the

1331 path from the start state to the current state , and the estimated cost

1332 to go from the current state to the goal.

1333 <pre>

1334 def ucSearch(initialState , goalTest , actions , successor , /BTEX\redtext{

heuristic }/ETEX):

1335 startNode = SearchNode(None, initialState , None, 0)

1336 if goalTest(initialState):

1337 return startNode .path()

1338 agenda = PQ()

1339 agenda. push (startNode , 0)

1340 expanded = { }

1341 while not agenda.isEmpty(:

1342 n = agenda.pop()

1343 if not expanded.has-key(n. state):

1344 expanded [n. state] = True

1345 if goalTest(n. state):

1346 return n.path()

1347 for a in actions:

1348 (newS, cost) = successor (n.state , a)

1349 if not expanded.has -key(newS):

1350 newN = SearchNode(a, newS, n, cost)

1351 agenda. push (newN, newN.cost + heuristic(newS))

111

1352 return None

1353 </pre></p>

1354

1355 <p><h4>Example</h4>

1356 Now, we can try to search in the big map for a {{path}} from <tt>G</tt>

to

1357 <tt>X</tt>, using , as our heuristic function , the distance between

1358 the state of interest and <tt>X</tt>. Here is a trace of what happens

1359 (with the numbers rounded to increase readability):

1360

1361 We get the start node out of the {{agenda}}, and add its children.

1362 Note that the costs are the actual path cost plus the

1363 {{heuristic}} estimate.

1364 <pre>

1365 0 : expanding: G

1366 agenda: PQ([(107, G-0->I) , (101, C-1->F) , (79, G-2->H)])

1367 </pre>

1368

1369 The least cost path is <tt>G-2->H</tt>, so we extract it , and add

1370 its successors.

1371 <pre>

1372 14.2 : expanding: G-2->H

1373 agenda: PQ([(107, G-0->I) , (101, G-1->F) , (109, G-2->H-0->D) , (116, G

-2->H-1->E) , (79 , G-2->H-2->T) })

1374 </pre>

1375 </ li>

1376 Now, we can see the {{heuristic}} function really having an effect.

The

1377 path <tt>G-2->H-2->T</tt> has length 30.1, and the path <tt>G-1-F</tt>

has

1378 length 20.7. But when we add in the heuristic cost estimates , the path

1379 to <tt>T</tt> has a lower cost , because it seems to be going in the

right

1380 direction. Thus, we select <tt>G-2->H-2->T</tt> to expand next:

1381 <pre>

1382 30.1 : expanding: G-2->H-2->T

112

1383 agenda: PQ([(107, G-0->I) , (101, G-1->F) , (109, G-2->H-0->D), (116, G

-2->H-1->E) , (100, G-2->H-2->T-1->R)])

1384 </pre>

1385 </Ii>

1386 Now the path <tt>G-2->H-2->T-1->R</tt> looks best , so we expand it.

1387 <pre>

1388 44.3 : expanding: G-2->H-2->T-1->R

1389 agenda: PQ([(107, C-0->I) , (101, G-1->F) , (109, C-2->H-O->D), (116, G

-2->H-1->E) , (10 3.5 , C-2->H-2->T-1->R-1->V)])

1390 </pre>

1391 </Ii>

1392 Here, something interesting happens. The node with the least

1393 estimated cost is <tt>G-1->F</tt>. It 's going in the wrong direction

1394 but if we were to be able to fly straight from <tt>F</tt> to <tt>X</tt>,

1395 then that would be a good way to go. So, we expand it:

1396 <pre>

1397 20.7 : expanding: G-1->F

1398 agenda: PQ([(107, G-0->I) , (109, G-2->H-0-->D) , (116, G-2->H-1->E) ,

(103.5, G-2->H-2->T-1->R-1->V) , (123, G-1->F-->D) , (133, G-1->F-1->

C)])

1399 </pre>

1400

1401 Continuing now, basically straight to the goal, we have:

1402 <pre>

1403 58.5 : expanding: G-2->H-2->T-1->R-1->V

1404 agenda: PQ([(107, G-0->I) , (109, G-2->H-0->D) , (116, G-2->H-1->E),

(123, C-1->F-0->D) , (133, G-1->F-1->C) , (154, G-2->H-2->T-1->R-1->V

-1->E), (105 , G-2->H-2->T-1->R-1->V-2->Y)])

1405 69.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y

1406 agenda: PQ([(107, G-0->I) , (109, C2->H-0->D) , (116, G-2->H-1->E),

(123, C-1->F-O->D) , (133, C-1->F-1->C) , (154, G-2->H-2->T-1->R-1->V

-1->E), (175, G-2->H-2->T-->R-1->V-2->Y-0->E), (105, C-2->H-2->T

-1->R-1->V-2->Y-2->Z)])

1407 84.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z

1408 agenda: PQ([(107, G-0->I), (109, C-2->H-0->D), (116, G-2->H-1->E),

(123, G-1->F-->D) , (133, G-1->F-1->C) , (154, G-2->H-2->T-1->R-1->V

113

-1->E), (175, G-2->H-2->T-1->R-1->V-2->Y-0->E), (151, G-2->H-2->T

-1->R-1->V-2->Y-2->Z-1->W) , (10 6 , G-2->H-2->T-1->R-1->V-2->Y-2->Z

-2->AA)])

1409 95.9 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z-2->AA

1410 agenda: PQ([(107, G-0->I) , (109, G-2->H-Q->D) , (116, G-2->H-1->E),

(123, G-1->F-0->D) , (133, G-1->F-1->C) , (154, G-2->H-2->T-1->R-1->V

-1->E) , (175, G-2->H-2->T-1->R-1->V-2->Y-0->E) , (151, G-2->H-2->T

-1->R-1->V-2->Y-2->Z-1->W) , (106, G-2->H-2->T-1->R-1->V-2->Y-2->Z

-2->AA-1->X)])

1411 18 nodes visited; 10 states expanded; solution cost: 105.9

1412 [(None, 'G') , (2, 'H') , (2, 'T') , (1, 'R') , (1, 'V') , (2, 'Y') , (2, 'Z')

, (2, ',AA') , (1,7 'X')}

1413 </pre>

1414 </I i>

1415 </p>

1416

1417 <p>Using {{A-star}} has roughly halved the number of {{nodes}} {{visit}}

ed and {{expand}}XSed.

1418 In some problems it can result in an enormous savings , but , as we' 11

1419 see in the next section , it depends on the heuristic we use.</p>

1420

1421 <h4>Good and bad heuristics</h4></p>

1422

1423 <p>In order to think about what makes a heuristic good or bad, let 's

1424 imagine what the perfect heuristic would be. If we were to magically

1425 know the distance , via the shortest path in the graph, from each node

1426 to the goal , then we could use that as a heuristic. It would lead us

1427 directly from start to {{goal}}, without expanding any extra nodes. But

1428 of course , that 's silly , because it would be at least as hard to

1429 compute the heuristic function as it would be to solve the original

1430 search problem.</p>

1431

1432 <p>So, we would like our heuristic function to give an estimate that is

1433 as close as possible to the true shortest-path-length from the state

1434 to the goal, but also to be relatively efficient to compute. </p>

114

1435

1436 <p>An important additional question is : if we use a heuristic function

1437 are we still guaranteed to find the shortest path through our state

1438 space? The answer is : yes , if the heuristic function is admissible<

/en>. A heuristic function is admissible if it is guaranteed

1439 to be an underestimate</enm> of the actual cost of the optimal path

to

1440 the goal. To see why this is important , consider a

1441 state <tt>s</tt> from which the goal can actually be reached in 10

1442 steps , but for which the heuristic function gives a value of 100.

1443 Any {{path}} to that state will be put into the {{agenda}} with a total

{{cost}}

1444 of 90 more than the true cost . That means that if a path is found

1445 that is as much as 89 units more expensive that the optimal path, it

1446 will be accepted and returned as a result of the search.</p>

1447

1448 <p>It is important to see that if our heuristic function always returns

1449 value 0, it is admissible. And, in fact , with that {{ heuristic }}, the

1450 <T'E>A[*]</JT> algorithm reduces to uniform cost search .</p>

1451

1452 <p>In the example of navigating through a city , we used the Euclidean

1453 distance between cities , which, if distance is our cost , is clearly

1454 admissible; there 's no shorter path between any two points. </P>

1455

1456 <p>

1457 Would the so-called 'Manhattan distance ', which is the sum of the

1458 absolute differences of the <tt>x</tt> and <tt>y</tt> coordinates be an

admissible

1459 heuristic in the city navigation problem, in general? Would it be

1460 admissible in Manhattan?

1461 </p>

1462

1463 <p>

1464 If we were trying to minimize travel time on a road network (and so

1465 the estimated time to travel each road segment was the cost), what

1466 would be an appropriate heuristic function?

115

1467 </p>

1468

1469 <p>

1470 {{ CostsHeuristics.andAstarvideo}}

1471 {% endblock %}

116

Bibliography

[1] B. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational Researcher, 13(6):4-16, 1984.

[2] Vannevar Bush. As We May Think. Atlantic Monthly, 176(1):641-649, March
1945.

[3] edX. edx. http: //www. edxonline. org/, June 2012. [Online; accessed 22-June-
2012].

[4] MIT-Microsoft iCampus alliance. icampus. http: //icampus .mit . edu/, January
2007. [Online; accessed 22-June-2012].

[5] inkling. inkling. https: //www. inkling. com/, June 2012. [Online; accessed
22-June-2012].

[6] Khanacademy. Khanacademy. http: //www. khanacademy. org/, June 2012. [On-
line; accessed 22-June-2012].

[7] OpenCourseWare. Opencourseware. http: //ocw. mit. edu, June 2012. [Online;
accessed 22-June-2012].

[8] Sidney Pressey. A simple apparatus which gives tests and scores - and teaches.
School and Society, 23:373-376, 1926.

[9] Technology Review. Feedback. http: //www. technologyreview.com/letter/
426443/f eedback/, January 2012. [Online; accessed 22-June-2012].

[10] The RSA. Changing education paradigms. http: //comment. rsablogs .org. uk/
2010/10/14/rsa-animate-changing-education-paradigms/, June 2012. [On-
line; accessed 22-June-2012].

117

