
Data Collection and Management of a Mobile Sensor Platform

by

Abraham M. Rosenfeld
S.B., C.S. Massachusetts Institute of Technology, 2010

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

February 2013

Copyright 2013 Abraham M. Rosenfeld. All rights reserved.
The author hereby grants to M.I.T. permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole and in part in
any medium now known or hereafter created.

Depo ent of Electrical Engineering and
Computer Science
February 1, 2013

Certified by:

U

[Prof. Sanjay Sarma] Thesis Supervisor
February 1, 2013

Accepted by:

Author:

V

Prof. Dennis M. Freeman, Chairman, Masters of
Engineering Thesis Committee

[THIS PAGE INTENTIONALLY LEFT BLANK]

2

Data Collection and Management of a Mobile Sensor Platform

by

Abraham M. Rosenfeld
S.B., C.S. Massachusetts Institute of Technology, 2010

February 2013
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis explores the development of a platform to better collect and manage
data from multiple senor inputs mounted on a car sensor platform. Specifically,
focusing on the collection and synchronization of multiple forms of data across a
single mobile sensor system. The project will be implemented for three versions of a
light-sensing platform, and will cover the different methods of data collection and
different types of sensor devices implemented in each version. It will also cover the
different technical challenges faced when collecting and managing data across
multiple mobile sensors.

3

[THIS PAGE INTENTIONALLY LEFT BLANK]

4

Acknowledgments

I would like to thank Professor Sanjay Sarma for providing me with the guidance
and support throughout the entire project, as well as the MIT Mechanical
Engineering Department and CSAIL Department for providing me with the
resources and knowledge needed to complete this task. Sumeet Kumar, Stephen Ho,
Benjamin Green, and Joshua Siegel also provided invaluable support and insight
throughout the life of this project.

Finally I would like to thank my family and friends for their unconditional love,
support, and guidance throughout my entire academic career.

5

Table of Contents

A bstract .. 3
A cknow ledgm ents .. 5
Introduction ... 7

1.1 M otivation .. 7
1.2 M obile Sensor Platform ... 8
1.3 Objective .. 10

B ackground .. 11
2.1 M obile Sensors .. 11
2.2 Light Sensing Solutions .. 12
2.3 Proposed Solution .. 14

D esign M eth odology ... 15
3.1 Vision and M ilestones ... is

V ersion 1: Proof of Concept .. 17
4.1 D esign ... 17
4.2 Sensors ... 18
4.3 Im plem entation .. 20
4.4 O utcom e and Findings .. 21

V ersion 2: Increasing A ccuracy .. 23
5.1 D esign ... 23
S.2 Sensors ... 24
S.3 Im plem entation 28
SA O utcom e and Findings .. 29

V ersion 3: A Standalone System ... 33
6.1 D esign ... 33
6.2 Sensors ... 3S
6.3 Im plem entation .. 40
6.4 O utcom e and Findings .. 43

Further W ork .. 4 7
7.1 D ata Collection Upgrades .. 47

7.1.1 Polling vs. Pushing .. 47
7.1.2 Latency Issues and Testing .. 48
7.1.3 Error Checking and H andling ... 48

7.1.4 Graphic User Interface for Commercial Usage ... 49
7.2 D ata M anagem ent Upgrades ... 49

7.2.1 Sending Data of a Cellular Network to a Remote Server 49
7.2.2 D atabase Storage .. * so

7.2.3 Tim e Synchronization Im provem ents ... 50

Contributions .. 51

Literature Cited .. 53

6

Chapter 1.

Introduction

1.1 Motivation

In the modern world, data has all but become a commodity. However, the collection

and management of data is still an imperfect practice. Whether one is collecting data

from residential homes, large buildings, cars, trains, public transport, or even entire

cities, there are many ways to collect and manage data.

The collection of sensor data may appear to be a trivial solution. Sensors are made

to be data collection devices. However, in practice, data collection from multiple

sensors can be extremely challenging. Usually one is trying to collect data from an

existing system. For example: the building has already been built, the car already

made, and the city lights already standing; in these examples the infrastructure is

already built. The systems from which data is being collected are primarily static

and unchanging, making it difficult to integrate a data collection system with a

potentially inflexible system.

These inflexibilities can arise in many different ways. In buildings they may arise

from an existing archaic Building Management Software (BMS) that is nearly

impossible to communicate with. In cars it could be that the On Board Diagnostic

7

(OBD) system doesn't allow collection of a data point one is looking for. In city street

lighting, specific to this research, it could arise from lights just being widely

distributed throughout a city.

Having lights spatially distributed brings up a major design decision for a data

collection system. In a distributed system of lights, does one collect data by

distributing a network of static sensors throughout the city, or does one create a

mobile sensor platform and mount it to city vehicle for data collection? Both

solutions have their pros and cons. A distributed network gives consistent data, but

it is expensive to deploy and maintain. A mobile senor platform is cheaper and

easier to upkeep, but hard to gain consistent and synchronized data.

1.2 Mobile Sensor Platform

In this project we chose to develop a mobile sensor platform as we considered it a

more feasible approach for wide-area coverage needed for city sensing. The pros of

having an easily upgradable and deployable system far outweigh the cons of the

complexity in collecting and managing data within a mobile solution. Along with

this, city municipalities often have fleets of vehicles to allow for this type of solution

to be possible.

Mobile sensor platforms are easily upgradable, as opposed to spatially a distributed

network of sensors, because there are fewer sensors to maintain. If one were to

8

distribute light sensors throughout a city for every single streetlight, then upgrading

the sensors would be just as cumbersome as initially deploying them. With a mobile

solution one is only dealing with a small fraction of the sensors, and for the same

reason, deploying the mobile system is far easier.

Mobile sensor platforms do complicate the collection and management of data. With

a distributed network of sensors one would know exactly when and where the data

was collected because the sensors are always in the same place. With a mobile

sensor platform, other information is needed in addition to the data of interest. GPS

location must be tagged and synchronized with the data, as well as any other

information needed to gain a more accurate location measurement. On top of this,

all data must be accurately time-synchronized to allow accurate post-processing of

the data.

Even with the complexities of a mobile sensor platform, for city sensing projects,

mobile sensor platforms prove to be the more robust solution. With mobile sensor

solutions one could crowd-source multiple systems using fleet vehicles in a city to

gain higher accuracy of street lighting levels, much like crowd-sourced geo-tagged

social media can be used to gain insight in disaster relief operations (Gao et al

2011). Overall, the advantages of building an accurate mobile sensor solution are

immense.

9

1.3 Objective

The objective of this thesis was to study and implement data management in a

mobile sensor platform for assessing the quality of street lighting in cities. The

platform was required to collect accurate and synchronized data. Along with the

collection, data management methods had to be developed to allow easy integration

with post collection analysis. A complete standalone system had to be developed in

order to possibly transition to a real world application.

10

Chapter 2

Background

2.1 Mobile Sensors

Mobile sensing has grown exponentially over recent years. With the emergence of

technologies like Google Maps Street View, massive amounts of data have been

collected in all facets of life (Anguelov et al 2010). Specifically, in the Field

Intelligence Lab (FIL) at MIT, there have been two projects that I have worked

closely with. The first is the thermal imaging system headed by Long Phan and

Jonathan Jesneck. The project was based on mounting infrared cameras on top of a

car and building thermal images of cities to provide useful information on energy

management for homeowners. The project's insight in data synchronization and

location correction immensely aided in the research for this thesis. A lot of what was

done with data management was bootstrapped from their successful project.

The second project from the FIL that I worked closely with was the CloudCar project

headed by Joshua Siegel and Eric Wilhelm. The project was based on collecting car

diagnostic information in real time and sending that information over the cell

network to a central server. The project's insight in multiple sensor data collection

and storage aided the direction I took for this thesis project.

11

2.2 Light Sensing Solutions

Street lighting is an area of high concern for cities experiencing financial setbacks.

Street lighting is expensive, and it is important that cities are optimizing the amount

of light they are providing while adhering to known lighting standards. Streetlight

levels have been tied to enhanced safety levels in residential areas (Hamsa et al

2009). However, it has gotten to a point where cities just shut streetlights off for a

period of time at night to save money, rather than attempting to better understand

how much light they are actually supplying and then analyzing a form of

optimization. The main reason they are unable to understand their current

streetlight situation is that they do not have an easy way of measuring light levels.

Throughout the course of this project we have encountered a number of existing

solutions to street light management in Spain and the United Kingdom. We have

spoken with numerous city officials on the standards and current solutions

employed to address street light management. The most common practices are as

follows:

" Having a city official drive scheduled routes and observe the status of

streetlights.

" Deploying static light sensors throughout the city on streetlight poles

(Jing et all 2007).

12

* Having city officials block off a road and measure the light levels with

lux meters at ground level. This method is used to measure light levels

of roads against set standards (European Standard 2003).

The first practice is the most common. The human observation is used to measure

the light levels in a city. This is not ideal for a number of reasons. First, it is tedious

and expensive to hire somebody to monitor lights in a city. They must drive multiple

routes over multiple days to cover the entire city. Secondly, it is an inconsistent and

inaccurate measuring tool. Every person may perceive acceptable light levels

differently. And lastly, it is not guaranteed to fit to the city/state standards of

lighting levels. Every city must achieve a stated level of street lighting, however, it is

nearly impossible for a human being to measure light to the degree of one or two lux

consistently.

The second practice is better at accurately measuring light levels, but has its own

drawbacks. Firstly, the light sensors are placed on the actual street light pole a few

meters below the light source. Although this measures the light correctly at that

point, we are interested in the lighting levels at street level. Secondly, the amount of

upkeep it takes to make sure the sensors are working properly may be just as

cumbersome as if they had somebody driving routes and analyzing the lights. There

are systems that exist that allow for monitoring and controlling of streetlights

(Huang et al 2004), however these systems tell us little about the performance of

the streetlight's past whether it is on or off.

13

The third practice is the most accurate form of measurement. However, blocking off

a road is costly and slow. It would take a city official many months to block off

individual roads at night in order to measure the light levels with lux meters for the

entire city. However, this is the current test city officials use to make sure streetlight

levels are adhering to the standards (European Standard 2003).

There exists an opportunity for a fast and inexpensive way of measuring streetlight

levels within high accuracy in cities. This is the opportunity our project tried to

address.

2.3 Proposed Solution

This project aimed to develop a mobile sensor platform for measuring streetlight

levels in a city. The mobile sensor platform had to be inexpensive and accurate

enough to compare the measured data against city standards of streetlight levels.

The prototype developed must be standalone and supply data in a way such that

post-processing analysis could be done easily. If a cheap standalone solution could

be developed, a crowd-sourced solution using a fleet of vehicles could be used to

monitor the streetlight levels in a city.

14

Chapter 3

Design Methodology

3.1 Vision and Milestones

Creating a system that would be able to collect synchronized light, video, and

location data was the overarching goal from the beginning of this project. The

sensors needed to achieve this would be luminosity sensors that measured the light

levels at a given point, video frames that could be analyzed to determine the type of

lamp and location of a streetlight, and location sensors that could be used to collect

very accurate information on where the other data points were taken. Initially, the

system was to be developed as a proof of concept. Could multiple devices be

mounted on a car to produce accurate and usable data? From the proof of concept,

the two main goals were to achieve better accuracy and to create a standalone

system. The broad milestones were as follows:

" Collecting and synchronizing GPS, IMU, OBD-Il, video, and light data onto a

PC

" Improving the location and light data accuracy

* Migrating the system to run through a microcontroller

" Storing the collected data on a SD card through a microcontroller

15

The initial milestone was to be a proof of concept. Improving the accuracy of the

data was needed to achieve desired accuracy of the system. Microcontroller

migration was needed to achieve a standalone system.

16

Chapter 4

Version 1: Proof of Concept

4.1 Design

Version 1 was the initial proof of concept. The goal was to design a car mounted

platform that would collect video and light data and synchronize it with location

data. In order to do so, we designed the platform to have 4 inexpensive cameras

mounted in a semicircle to cover the 180-degree plane above the car, as well as 3

light sensors arranged to cover the same plane. Figure 1 is a flowchart showing the

dataflow of Version 1:

MlapIe sensor devices
sending data to a central

software system (laptop) using
dfferet connecdons and

prowocols.

AN hncoming data is given a
Imestamp upon arival. This

system is only subjed to errors
when data collection is delayed;

wIth current connecon speeds this
error Is negligIle.

Extemal storage device holds
the data to be analyzed at a

future time. A large amount of
memory allows for extended

periods of data collection.

Figure 1: Version 1 flowchart

17

The light sensors (SUN Spots), cameras, and GPS were all connected by wireless,

Ethernet, and Bluetooth protocols respectively. The devices would relay information

over communication ports on a PC, and the PC would be running simple applications

to collect and store the incoming data. Figure 2 shows a picture of the actual mount:

Surveillance Camera Light Sensor

Platform

Thule roof rack

Figure 2: Version 1

4.2 Sensors

The sensors used are as follows:

GPS: BT-Q818XT

Accuracy: 3 - 15 m

Sampling rate: 10 Hz

Cost: $ 73.95/unit

Figure 3: QStarz BT-Q818XT (source:
http://www.qstarz.com/Products/GPS%20P
roducts/BT-Q818XT-F.htm)

18

This GPS unit communicates over Bluetooth at 10 Hz and has an accuracy range

from 3-15 meters. The BT-Q818XT GPS unit was selected on its relatively

inexpensive cost and level of accuracy. It is not the most accurate GPS on the

market; however for the application it is very affordable and easily used as a proof

of concept It also has a high sampling rate to allow for greater spatial resolution.

Light Sensor: Sun Spot

Resolution: -2 Lux

Sampling rate: 10 Hz

Cost: $ 100.00 /unit

Figure 4: SunSpot (source:
http://www.sunspotworld.com/)

In this version we had 3 of these light sensors to capture light from directly above

and from each side. The light sensor has a resolution of about 2 lux and a sampling

rate of 10 Hz. Again, for proof of concept this sensor allowed for fairly easy

integration into our system. It was definitely overkill for what we needed a light

sensor to achieve, but we didn't want to waste too much time integrating a light

sensor with more integration overhead.

The camera system used was a very inexpensive security camera package including

4 video cameras and a DVR. The security camera system did not allow for the

certain adjustments to be made in the system, such as light gain, and it really proved

19

to be fairly ineffective in trying to locate the light fixtures, as there was too much

noise in the video. In future versions, better camera systems were used and lamp

detection was achieved.

4.3 Implementation

The data collection implementation of Version 1 was fairly straightforward. Each

device had a dedicated communication port on the PC and a separate data collection

application. Because each device pushes data automatically, the applications only

needed to listen on a specific port and then handle the data accordingly. All data was

stored in a separate time-stamped .csv file. Also, separate libraries for each device

needed to be developed to parse and understand the different protocols of incoming

data. In pseudo-code, the implementation looked like the following:

While(Com Port has data)
{

collect one whole line of data;
}
add timestamp to the collected data
append data to the .csv file

The data management was the most complicated part of the Version 1

implementation, specifically data synchronization. It was decided that all incoming

data be time-stamped using the local PC time. This would allow the addition of new

devices to be added to the system and synchronized fairly easily. This solution was

one that worked well when a PC was used, but in later versions this method had to

be updated when a simple microcontroller was used. The thought process was that

as long as the data was coming through a centralized point, that centralized point

.2 0

should be in charge of synchronizing the data. The results from this version were

positive.

4.4 Outcome and Findings

Version 1 was a success and we were able to collect usable data. The main issue

with Version 1 was that data was not accurate enough. This was a result of low-end

sensors being used and not enough data being collected. The light sensors used

could be upgraded for higher resolution, and the GPS data could be paired with IMU

data in order to increase location accuracy (as seen in Version 2) (Krakiwsky et all

1988). However, this version was successful enough to be tested on our first trip to

the UK and Spain.

Figure 5: Version 1 being mounted in Spain.

On the trip we were able to test the mobile sensor platform in Birmingham UK, Soto

De Real Spain, and Torrejon Spain. During the trip we met with many city officials

21

interested in this new technology and passionate about their city streetlights. Our

perspective of the overarching goal of the project was enhanced and a great deal

was learned about the current state of streetlight monitoring and streetlights in

general.

On our return we developed a visualization application that would display the

information gathered in an informative and appealing way. What the application

produced was luminosity maps in a Google Earth format. Figure 6 is an example

taken from Torrejon Spain:

Figure 6 Luminosity map of Torrejon Spain

Version 1 taught us not only that this project was possible, but that it was also a

needed tool desired by the industry.

22

Chapter 5

Version 2: Increasing Accuracy

5.1 Design

Version 2 was a step beyond the initial proof of concept. The main shortcoming of

Version 1 was that it did not achieve the desired level of accuracy. The light sensors

were not accurate enough, having just a lux range of 2 lux, and the location data

were not accurate enough either, having a worst case accuracy range of 15 meters.

In order to achieve higher accuracy, more research was done in order to find light

sensors that could achieve the resolution desired. In terms of gaining higher location

accuracy, an IMU and an OBD-I sensor were added to allow for location correction

on analyzed data (Phan 2012). Overall, not much changed in the overall flow of data,

but the number and types of sensors used was quite different from Version 1.

Figure 7 is a flowchart showing the dataflow of Version 2:

Figure 7: Data flowchart of Version 2.

23

I

The overall goal of this version was to achieve a level of accuracy needed to be a

useful tool. If we could prove this was possible, then we could take even further

steps in making a more standalone version.

5.2 Sensors

Light Sensor:

The light sensors used are the TEMT600 as shown in Figure 8 below:

Resolution: 0.25 lux

Range: 0.25-250 lux

Sampling rate: 10-50 Hz

Cost:$4.95/unit

Figure 8: TEMT6000 (source: https://www.sparkfun.com/products/8688)

The TEMT6000 light sensor was selected on account of its relatively inexpensive

cost and high resolution. In earlier versions of this project, light sensors with a

resolution of 2 lux were used and were not accurate enough for the type of

24

information the project required. Moving to a light sensor with a better resolution,

as well as a high sampling rate better fit the requirements of our project.

16 TEMT6000s are assembled on a Plexiglas board in a 2 by 8 sensor array (see

Figure 9).

Figure 9: The linght sensor array of Version 2.

This setup allows for spatial resolution for cross-street analysis, as each light sensor

measures vertical illumination at car-top level.

Data is collected through an Arduino Mega. Each of the 16 light sensors is connected

to the Arduino Mega through analog input ports on the microcontroller. The

Arduino Mega simply reads each analog input port and relays a batched message

consisting of all sensor readings through an open serial port. A Java program

running on a laptop connected to the Arduino Mega listens for communication over

the specified serial port, timestamps the data collected, parses the relayed data, and

the finally stores the data in a .csv file.

25

The time delay between analog input readings on the Arduino Mega is a matter of a

few milliseconds; therefore the timestamp given by the Java program at the time of

reception can be used for all 16 data points. This is an acceptable delay in this

application because a few milliseconds between the first data point and last data

point still yields accurate data analysis in our system. Using the PC time as the

timestamp allows all sensors relaying information to the PC to be synchronized

through a common time.

GPS:

The GPS unit used is the BT-Q818XT as seen in Figure 10 below:

Accuracy: 3-15 meters

Sampling rate: 10 Hz

Cost: $73.95/unit

Figure 10: QStarz BT-Q818XT (source: http://www.qstarz.com/Products/GPS%20Products/BT-

Q818XT-F.htm)

The BT-Q818XT GPS unit was again selected based on cost and accuracy. Data is

collected either through USB or Bluetooth. The GPS relays data through a known

communication port on the PC it is connected to. A Java program listens on the

26

specified communication port and, whenever data is relayed, processes the GPS

data. The Java program timestamps the data using its current PC time, parses the

GPS data, and stores the data in a CSV file.

IMU:

The IMU unit used for this project is the CHR-UM6 as seen in Figure 11:

Range: Accelerometer: +/- 2g

Gyroscope: +/- 2000 */s

Compass: ~5* accuracy

Sampling rate: 20 Hz

Cost:$199.00/unit

Figure 11: CHR-UM6 (source: http://www.pololu.com/catalog/product/1255).

The CHR-UM6 IMU unit was selected over 2 other tested IMUs based on its accuracy

and low noise level. Through multiple experiments run on 3 different IMUs, the

CHR-UM6 displayed excellent accuracy in accelerometer, gyroscope, and

magnetometer data. It is reasonably priced and has a very high sampling rate.

Data is collected through a USB connection to a communication port on the PC. A

Java program runs and listens to the open port, parsing and time-stamping incoming

data as it is broadcasted to the PC. The data is then stored in a csv file.

OBD-II:

27

The OBD-II reader selected is the OBDLink SX as seen in Figure 12:

Supported Protocols: All legislated OBD

protocols

Data Available: Speed, RPM, MPG, etc...

Cost: $50.00/unit

Figure 12: OBDLink SX (source: http://www.scantool.net/obdink-sx.html)

The OBDLink SX was selected because of its price and ability to communicate

through all legislated OBD protocols. It connects to the PC through a USB

connection, and comes with proprietary software that saves OBD data in an excel

file.

5.3 Implementation

The data collection implementation of Version 2 is again fairly straightforward. Each

device had a dedicated communication port on the PC and a separate collection

application. Each device had its own collection software running. The OBD-II reader

and the IMU sensor data collection software was run on third party software, but

the GPS and light sensors were run on data collection software developed as part of

this project. The OBD-II and IMU were new to this system and the devices we used

only allowed for third party software to be used to collect data.

28

All data was collected through a central PC so time synchronization was similar to

Version 1. All data coming through the PC was tagged with a timestamp and stored

in a local .csv file. We designed Version 2 to be centered on a PC again because were

still trying to achieve a higher level of accuracy. It was in the trajectory of the project

to go forth with a standalone solution once it was clear a feasible solution was

achievable.

The main data collection issue we dealt with was addressing the latency between

the time data is collected from the sensor, and the time that data is time-stamped.

This latency was most studied with the light data once the 16 sensors were all being

collected concurrently. Our studies showed that within the microcontroller, there

were only a few microseconds between when the first light sensor was collected and

the last, and just a few microseconds between when the data was collected by the PC

program and time-stamped. Although some latency does exist, the time actually

measured was not significant enough to really concern us.

5.4 Outcome and Findings

Version 2 was successful. We were able to achieve a higher level of accuracy with

our data, and the methods used to collect and manage data were effective in being a

real solution for monitoring streetlight levels in cities. Sumeet Kumar was able to

use the extra IMU and OBD-II data to correct location inaccuracies in the GPS data,

and the 16 light sensor array gave us a lot more usable information than the Sun

Spots achieved in Version 1.

29

The biggest issue with Version 2 was that it was too user dependent. Ideally, we

wanted to achieve a standalone system which we could mount on a car, plug in, and

drive around a city. That was not the case with Version 2. Version 2 was very setup

intensive. It would take some time to make sure all the sensors were working

properly and logging properly. And the whole system had to be monitored using a

PC inside the vehicle. There is too much user interaction to really have anybody but

researchers use this version. We were able to take another trip to Spain to test the

new version.

On our trip to Spain we were able to collect a lot of usable and accurate data. Again,

too much time was needed to set up the system as well as run it. However, the

experiments were executed properly. Along with running experiments, we met with

city officials from Malaga and Santander, and even met the mayor of both cities. City

officials were very excited about the system we were developing and showed

extreme interest in using it in their cities. Santander had a high number light

sensors placed below lampposts along parts of the city. This was the first time I

actually saw a distributed network of light sensors and I noticed a few things about

the way they set up the system that surprised me. Firstly the sensors were placed a

few meters below the lights on the actual lamppost This is fine for making sure the

light is on and functional, but gives no information on what the lighting level is at

street level. Secondly, there were far too many lampposts in Santander for this to be

an effective deployment. The number of sensors they would need to cover the entire

city would be a large investment in time and resources. Lastly, the operators really

30

had no idea what to do with the information. It was all new to them as they were

asked to install the light sensors as a trial. Their knowledge of how to use the

information was limited. There seemed to be an opening for a mobile solution tied

with automated analyses, so that city workers and officials could actually use the

data collected by their light sensing system.

Figure 13: Myself with Version 2 mounted in Spain.

On our return we further developed the visualization application. The application

now produced a higher-level luminosity map in a Google Earth format Below is an

example taken from Torrejon Spain:

31

Figure 14: Version 2 luminosity map.

32

Chapter 6

Version 3: A Standalone System

6.1 Design

Version 3's main goal was to make a standalone data collection system. We wanted

to design a collection system that, after initial setup, needed no human monitoring; a

system that could be setup on top of a car, initialized, and sent for data collection. To

do this, the major design change was exchanging a PC for a microcontroller. The

microcontroller used in this system was the Arduino Mega 2560. The

microcontroller had to be programmed to collect data from a GPS, OBD-II reader,

IMU, and analog light sensors and store the collected data in some manner.

This version was a big step for the project because it was the first real prototype we

designed for a potential standalone system. The biggest challenge, next to

integrating the sensors with the microcontroller, was achieving the same level of

accuracy and data quality achieved in Version 2. This was always a theme in the

design choices we made for data collection, as much of the processing and parsing of

data we could do on a PC would greatly reduce the speed at which the

microcontroller could collect data. These choices, along with the extensive research

done in choosing appropriate sensors, were the bulk of what drove the overall

design of the new system. Below in Figure 15 is a diagram of the Version 3's

dataflow:

33

Figure 15: Version 3 data flowchart.

It can be seen that all the devices, except for the light sensors, are connected via

Serial ports to the microcontroller. The microcontroller collects all the data, and

stores it on a microSD card. There was discussion about transmitting the data via

cellular data to a central server, however the time constraint proved storing data on

a microSD card to be the more workable option (this is discussed in chapter 7). The

camera system remains as a standalone system as it was in Version 2. Data

synchronization is achieved by initializing both the microcontroller and DVR to be

synched with a common timestamp served by a PC. This choice will be discussed in

the implementation section of this chapter.

34

6.2 Sensors

Light Sensor:

The light sensors used are the TEMT6000 as seen in Figure 16 below:

Resolution: 0.25 lux

Range: 0.25-250 lux

Sampling rate: 10-50 Hz

. QCost: $4.95/unit1N111111111 v.
Figure 16: TEMT6000 (source: https://www.sparkfun.com/products/8688)

The same light sensors are used in Version 3 as were used in Version 2. They are

also assembled in the same array system.

GPS:

The GPS used is the u-blox LEA-6R as seen in Figure 17:

Accuracy: 2 meters

Sampling Rate: 1-4 Hz

Price: $200.00

Figure 17: u-blox LEA-6R (source: http://www.u-blox.com/en/gps-modules/u-blox-6-dead-reckoning-
module/lea-6r.html)

35

The LEA-6R was chosen for a number of reasons. Firstly, it has a higher accuracy

range than the QStarz GPS used in previous versions. This would obviously lead to

more accurate data. Secondly, it has UART capabilities, meaning it could be

integrated through the microcontroller serial port. Integration was a main concern

when choosing sensors, the more complex an integration system had to be, the

slower data collection would be. Lastly, it achieved the sampling rate needed for our

system. Using a 10 Hz GPS last version proved to be overkill, and our analysis only

required 1-4Hz depending on the speed at which the vehicle was moving.

For the LEA-6R, data is collected through the Rx/Tx ports on the GPS. It is connected

to a serial port on the microcontroller, and data is relayed. The GPS runs on a "push"

system, where the microcontroller cannot simply request data when needed, the

GPS pushes data whenever an interval has been reached. This was not ideal for our

system as a polling system would be easier to manage. A polling system would run

by our system polling data from the sensor when needed, and the sensor relaying

that information back to our system; a call and response protocol. However the need

for a polling system was realized after the choice had been made so the system had

to adjust to get successful data collection without slowing down the entire system.

In future versions, a GPS that allows interrupts should be used. The difference in

implementation of a push versus polling system is shown below in pseudo-code:

PUSH:

While(data is available)
{

collect the data;
}

36

timestamp the data;
store the data is a .csv file;

POLL:
Request data from sensor;
Timestamp collected data;
Store the data in a .csv file;

As can bee seen above, the push solution must wait for data to be sent. This may

cause a lot of wasted time if the data collection methods are not scheduled properly.

However, the polling solution only has to wait for the data when it is requesting it.

Along with the data collection complications, setup and initialization would need to

be done through the microcontroller. Luckily an existing library was available for

the LEA-6R and a full solution was successfully implemented.

IMU:

The IMU used was CHR Robotics UM6-LT Orientation Sensor as seen in Figure 18:

Range: Accelerometer: +/- 2g

Gyroscope: -2000 */s

Compass: ~5* accuracy

Sampling rate: 20 Hz

Cost: $149.00/unit

Figure 18: CHR UM6-LT (source: http://www.pololu.com/catalog/product/1256)

37

The UM6-LT IMU is essentially the same IMU used in Version 2, it isjust more

programmable. The UM6-LT allows for easy integration and has a standard serial

output that could be connected to one of the microcontroller serial ports. During

implementation, a library had to be developed to decode packets sent by the UM6-

LT, which took time and testing, but in the end, data collection was achieved and

proved to be very fast and accurate. The library consisted of decoding methods that

would wait for header bits that designated the type of information in the packet, and

then step through each bit and convert it to a decimal value to be stored. It was

thought of to just store the raw binary information to save on processing time.

However it was realized that the processing did not take enough time to really be

concerned with.

OBD-I Reader:

The OBD-II reader used in this system is the OBD-II UART from Sparkfun seen in

Figure 19:

Supported Protocols: all legislated OBD II protocols

Data Available: Speed, RPM, MPG, etc...

Cost: $49.95/unit

Figure 19: OBD-II UART (source: https://www.sparkfun.com/products/9555)

38

This OBD-II reader has the same capabilities as the previous one used in Version 2.

However it is more easily integrated with a microcontroller. This reader has

standard Rx/Tx ports that connect to a microcontrollers serial port. A library had to

be developed to send requests and parse data. This library consisted of a send

method that would send the appropriate binary data to the reader, and a read

method that would wait for data to be sent, and then convert the binary information

into decimal data.

Microcontroller:

The microcontroller used was the Arduino Mega 2560 seen in Figure 20:

I/0: 54 digital,16 analog inputs,

4 UARTs (hardware serial ports)

Clock: 16 MHz crystal oscillator

Price: $58.95/unit

Figure 20: Arduino Mega 2560 (source: https://www.sparkfun.com/products/9949)

The Arduino Mega was chosen because of it's speed, I/O capabilities, and ease of

use. Arduinos are used for many applications and there exists an extensive open

source documentation and code base. We needed a microcontroller that could hold

16 analog inputs and at least 3 serial ports. The Arduino Mega was the obvious fit

for this system and proved to be a successful choice.

39

6.3 Implementation

Implementation of Version 2 proved to be the most challenging. In other versions,

each sensor had its own data collection program (either third party or developed in

lab). This allowed for very easy scheduling; every program's data collection method

was started and ended independent of each other. However, previous versions

relied so heavily on user interaction. Data collection programs needed to be started,

stopped, monitored, configured, and at times debugged. It would be impractical to

assume we could train operators to have this level of knowledge of the system. The

previous versions achieved accurate data collection, but as a product, they were

really only useful in a research laboratory and not in a real world application. The

goal of this version was to achieve a level of robustness within the system so that

virtually no user interaction was needed after initial setup.

To achieve this, the microcontroller had to be programmed to collect data from all

devices. First, independent initialization -methods were developed. The GPS, IMU,

and OBD-I reader were all programmable. And before data was collected,

initialization had to be done to ensure consistent output formats from these devices.

For example, the GPS was configured so the only GPGGA (Global Positioning System

Fix Data) was relayed from the GPS as to not flood the microcontroller with

numerous GPS data strings. Similar settings had to be configured on the IMU and

OBD-II reader as well.

40

Then independent data collection methods had to be developed for each device. The

microcontroller does not have a multithreaded processor, therefore the methods

had to be as simple as possible as only one could be run at a time (Kreuzinger et all

2003). The more the data is processed in the data collection method, the slower the

entire system would run, and the slower the data rate for each device would be.

These methods were developed and tweaked as the system was tested. There were

two types of methods developed for the sensors: a push method and a poll method.

The IMU and GPS ran on the push method as they were not able to accept data

requests. The light sensors and OBD-I reader ran on the poll method. These

methods are described above in the previous section.

After the collection methods were developed, the outputs from these methods had

to be stored in some way. The system uses a standard microSD shield mounted on

top of the microcontroller. The shield can be seen in Figure 21:

Figure 21: microSD Shield (source: https://www.sparkfun.com/products/9802?)

41

This microSD shield allowed us to save data directly from the microcontroller to

files on a microSD card. The shield was easily integrated with the microcontroller,

and each data collection method would save it's output to individual .csv files on a

microSD card.

Lastly, the data collection methods had to be scheduled in such a way that the

optimal amount of data could be collected at any given point. For example, there

would be no point in waiting for GPS data to be relayed if there was IMU data

available. The methods had to be interleaved in such a way that no time was left

vacant within a scheduling cycle (Siegel 2011). Also, it would not be ideal to collect

IMU data when GPS was available because then you would only collect partial GPS

data. This took a lot of experimentation and understanding of how each device

relayed information. The GPS was the slowest device in terms of sampling rate.

Therefore, we designed the system to get as much done as possible in between GPS

data samples. While the solution is not perfect, it does achieve a high enough data

rate for our application. The scheduling system is as follows in pseudo-code:

While(GPS available)
{

collect GPS data;
}
collect IMU;
collect light;
collect OBD-ll; /repeat IMU, light, and OBD-11 until GPS is available.
repeat process;

The scheduling must be timed so that the system is waiting for GPS data just as GPS

data is being relayed so that no time is wasted waiting. If this is not done correctly,

42

then either the GPS is scheduled too early and time is wasted waiting, or the GPS is

scheduled too late and only partial GPS data is collected.

Once the data initialization and collection was implemented, the system had to be

able to synchronize all the data. The microcontroller does have an internal clock.

However it is restarted every time the microcontroller is restarted, and there exists

no frame of reference outside the microcontroller itself. This proved to be a large

issue because we needed the data to be analyzed with the video collected through

the DVR. The DVR was time synched with a PC, so we went the same route when

time synching the microcontroller. On start up, the microcontroller waits for a time

synch request An application on the PC sends a current timestamp to the

microcontroller over USB, and then the data collection starts. All data is time-

stamped with the synchronized PC time just as the video on the DVR. This solution

worked well for our application, however it required the user to manually

synchronize both the microcontroller and DVR. This is an area that will be

optimized in future versions.

6.4 Outcome and Findings

Data collection with this system is vastly more manageable for the user. After

initialization, the user just has to ensure cables and wires do not disconnect. We felt

we achieved a very accurate standalone system with Version 3, although not perfect

by any means.

43

We analyzed the data latency between data points on a single sensor system (i.e.

GPS, IMU, light sensor, and OBD-II) for Version 3. Below is a histogram of the latency

between light sensor data collection:

Sampling Rate of Light Sensors (s)
3500

3000

2500

2000

1500 N Sampling Rate of Light

1000 Sensors(s)
1000

500

0 1114 N

Figure 22: Histogram showing the sampling rate of light sensors in Version 3

As seen here the latency between data points of the light sensors appears to be

bimodal between 0.3 seconds and 0.4 seconds. This can be explained by the

scheduling the system used. The scheduling cycle was centered on the GPS data rate:

1Hz as seen in the histogram below:

44

Sampling Rate of GPS(s)
3000

2500

2000 -

1500 - N Sampling Rate of GPS(s)

1000 -

500 -

0 -
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Figure 23: Histogram showing the sampling rate of the GPS in Version 3

In between GPS data points, the maximum possible amount of data collection for

IMU, OBD-II, and light sensors was scheduled while still allowing some time buffer

so the GPS 1Hz cycle was not missed. This in turn allowed for IMU, OBD-II, and light

data to be collected every 0.3 seconds in between GPS data collection, with an

average delay of 0.1 seconds delay while waiting for the scheduled GPS data point to

be collected; for a total of 0.4 seconds every fourth data collection period that

included the GPS collection. Figure 24 describes the process more clearly:

1X at
0.4a

3X at
0.3s

Figure 24: A flowchart demonstrating the scheduling in Version 3

45

This data shows that our scheduling was not perfect. There was still enough leftover

time to possibly schedule more IMU, OBD-II, and light data to be collected, and could

have produced a more consistent latency in between data points for these sensors.

However, data loss was extremely rare and for light sensors was at a rate of

0.001805 loss per data point. Similar results for latency and data loss can be found

for the IMU and OBD-I data collection in this version.

Data collection methods are not consistent in this system. The different devices all

relay information to the microcontroller in different ways; some push data and

some can be polled for data. Ideally, all devices would allow data polling, which

would make scheduling a lot simpler. If the microcontroller could request data when

needed, it would never have to wait for data to be available on the serial port. This

would allow us to schedule the data collection methods in any manner we wished.

For this to be achieved more research would have to be done on devices and ways of

communicating with devices.

46

Chapter 7

Further Work

7.1 Data Collection Upgrades

There are a number of data collection upgrades possible with this system.

7.1.1 Polling vs. Pushing

With limited resources on the microcontroller, it is not optimal for the system to

have to wait for data to be pushed from a sensor device. Waiting for data wastes

valuable time and resources. Instead, the microcontroller should be able to poll the

device for data and receive the data with limited delay. This may be difficult

however, as the delay for polling data may be as long, if not longer, than the delay in

waiting for data to be pushed from a device. However, there two ways I believe will

solve this. Both need to be verified.

First, one could just buy better sensors which are quicker to respond to requests.

This could solve the problem if all the sensors were able to be polled as described

above. Unfortunately, this may not be possible with the budget of the entire system.

Sometimes one will have to work with lower quality sensors that are not capable

data polling.

47

The second solution would be to tie each device to its own microcontroller that acts

as a data manager. That soulution would take care of waiting for data to come in,

buffer the most recent data, and when interrupted by the main microcontroller,

send the most recent data (Brinkschulte et al 1999). This could be a possible

solution and would lower the strain on the main microcontroller as all it would need

to do is poll other microcontrollers for data and then store the data.

There definitely exists an opening for further research and testing on how to create

a poll-only system. In theory it should be a better system for collection and

management of data across many sensors.

7.1.2 Latency Issues and Testing

With the focus of this project on successful and accurate collection of data in a

mobile sensor system, not enough research was done in understanding the latency

issues with the data collection. Like any sensor system, latency exists, however

there needs to be research done on the threshold for acceptable latency in this

system (Kaempchen et al 2003). If the delay between data collection and timestamp

is too great, there may be inconsistencies in the analyzed data. This needs to be

addressed and analyzed in future work.

7.1.3 Error Checking and Handling

Errors are inevitable in many systems, like the one described, and error checking

and handling must be accounted for. Using LEDs, a future version of this system

48

should be able to notify the operator if errors are occurring. Currently the only way

of knowing is looking at the data stream to ensure all devices are working properly.

There is a need for a more user-friendly notification system for error handling.

7.1.4 Graphic User Interface for Commercial Usage

Before non-researchers use this system, a Graphic User Interface (GUI) must be

developed for the configuration of the system. Currently the only way to change

configuration settings is by changing variables in the microcontroller code. This is

not optimal for somebody who doesn't have a high understanding of the actual code.

A GUI for setup would be integral in deploying a successful system to be used

outside of a research lab.

7.2 Data Management Upgrades

7.2.1 Sending Data of a Cellular Network to a Remote Server

Currently this system stores data on a microSD card mounted on the

microcontroller. In future systems it would be more beneficial to send data over a

cellular network to a central server to be stored in near real-time (Siegel 2011). This

would allow for more applications for real-time monitoring of the fleet collecting

data. If a user had access to real-time data, they would know where every car in the

fleet was located as well as the light levels they have already observed. It would also

lead to faster notification of unsafe light levels in a city. A user could implement a

flag system, where at certain light levels, notification is sent to the driver to further

49

inspect an area. This would lead to even more accurate observations as the human

and monitoring systems would combine their observations for a better analysis.

7.2.2 Database Storage

Rather than storing all the data in csv files, it would be a better practice to store all

data in a database. This would allow easier post-processing integration with the

data, as well as the capabilities to develop more applications for the data. This is a

more feasible solution to data storage once data is being transmitted to a remote

server over a cellular network as discussed in the previous section. If a database

was available with all the streetlight level data of a city, outsiders could use the data

to create display applications and analysis to further understand the data. It could

also be paired with other studies to extrapolate on streetlight levels and their

implications on other issues (pedestrian safety, accident occurrence, etc...).

7.2.3 Time Synchronization Improvements

Although the time synchronization solution in this system is functional and accurate,

it is not automatic. It still requires the user to manually synchronize the time of the

microcontroller and DVR. It would be a better solution to use the GPS timestamp to

automatically set the microcontroller time as well as the DVR. This has been done

with microcontrollers before, however it was not possible with our current DVR. A

future system should use a DVR where this is possible.

50

Chapter 8

Contributions

In this project, we developed three separate versions of a mobile sensor platform

system for collecting data on streetlight levels of a city.

The first version was a simple system consisting of a GPS, 3 lux meters, and a

camera system. Data was collected and stored on a PC using software developed in

the lab. Visualizations were developed to further understand the type of data we

were collecting and how useful it could be. This version was a success and proved

that this type of data collection could be done successfully.

The second version was a more complex system using a GPS, IMU, ODB-II reader, 16

lux meters, and a camera system. Data was collected and stored on a PC using third

party software and software developed in lab. Visualizations were improved to

better display the data. This version was a success and proved this type of data

collection could be done accurately.

The last version of the system consisted of a GPS, IMU, ODB-I reader, 16 lux meters,

a microcontroller, and a camera system. The system was able to collect, synchronize,

and store accurate location and light level data through a microcontroller. This

version was a success and proved this type of data collection could be done in a

standalone system.

51

Through this project we were able to prove that a mobile sensor system could be

used to monitor the street light levels of a city, and that it could be done cheaper, but

just as accurately as a static networked sensor system.

52

Literature Cited

Anguelov, Dragomir, et al. "Google street view: Capturing the world at street
level." Computer 43.6 (2010): 32-38.

Brinkschulte, U., Krakowski, C., Kreuzinger, J., & Ungerer, T. (1999). A multithreaded
Java microcontroller for thread-oriented real-time event-handling. In Parallel

Architectures and Compilation Techniques, 1999. Proceedings. 1999 International
Conference on (pp. 34-39). IEEE.

European Standard. (2003). Road lighting - Part 3: Calculation of performance (EN
13201-3:2003).

Gao, H., Barbier, G., & Goolsby, R. (2011). Harnessing the crowdsourcing power of
social media for disaster relief. Intelligent Systems, IEEE, 26(3), 10-14.

Hamsa, A. A. K., Miura, M., Sakurai, 0., & Seki, S. (2009). Analysis of Streetlight
Illuminance in Residential Areas in Kuala Lumpur. Journal of Asian Architecture and

Building Engineering, 8(2), 547-5 54.

Huang, X. M., Ma, J., & Leblanc, L. E. (2004, April). Wireless sensor network for

streetlight monitoring and control. In Proceedings ofSPIE (Vol. 5440, pp. 313-321).

Jing, C., Shu, D., & Gu, D. (2007, May). Design of streetlight monitoring and control
system based on wireless sensor networks. In Industrial Electronics and Applications,

2007. ICIEA 2007. 2nd IEEE Conference on (pp. 57-62). IEEE.

Kaempchen, N., & Dietmayer, K. (2003, October). Data synchronization strategies for
multi-sensor fusion. In Proceedings of the IEEE Conference on Intelligent

Transportation Systems (pp. 1-9).

Krakiwsky, E. J., Harris, C. B., & Wong, R. V. (1988, November). A Kalman filter for
integrating dead reckoning, map matching and GPS positioning. InPosition Location and

Navigation Symposium, 1988. Record. Navigation into the 21st Century. IEEE

PLANS'88., IEEE (pp. 39-46). IEEE.

Kreuzinger, J., Brinkschulte, U., Pfeffer, M., Uhrig, S., & Ungerer, T. (2003). Real-time
event-handling and scheduling on a multithreaded Java microcontroller. Microprocessors

and Microsystems, 27(1), 19-3 1.

Phan, L. N. (2012). Automated rapid thermal imaging systems technology(Doctoral

dissertation, Massachusetts Institute of Technology).

Siegel, J. E. (2011). Design, development, and validation of a remotely reconfigurable
vehicle telemetry system for consumer and government applications (Bachelor's thesis,
Massachusetts Institute of Technology).

53

