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ABSTRACT

Full automation of repetitive and/or specialized tasks has become a preferred means to meet the
needs of manufacturing industries. However, some tasks cannot be fully automated due to their
complexity or the nature of the work environment. In such cases, semi-automation through
human-robot collaboration is a strong alternative that still maintains a high level of efficiency in
task execution. This thesis focused on the control and coordination issues of the Supernumerary
Robotic Limbs (SRL); a pair of wearable robotic limbs that are a potential solution to these
issues. The first purpose of this study was to adequately model the collaborative aspect of a task
that is conventionally performed by two coworkers. This was achieved through the Coloured
Petri Nets (CPN) tool, which was able to model the collaboration between two coworkers by
using the SRL and its operator instead. The second purpose of this work was to evaluate how to
implement a sensor suit to establish reliable communication between the SRL and its operator.
Using data-driven methods for detection, we were able to monitor the operator's current state. By
combining this data with the CPN task model we were able to relay the operator's intentions to
the SRL. This enabled the SRL to follow the CPN process model in a timely and coordinated
manner together with its operator. The third and final section of this thesis focused on
considering the interchangeability of roles between the SRL and its operator. We used a data-
driven approach to model a task where the SRL and its operator had to perform a simultaneous
dynamic task. This was performed by using teach by demonstration techniques on process data
from two workers. A control algorithm was then extracted from the actions of the supporting
worker. Both the process model and the sensor suit, together with the detection algorithms, were
implemented and validated using the first prototype of the SRL. Results show that the SRL was
successful in autonomously coordinating with its operator and completing an intercostal
assembly task.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation for New Assistive Technologies in the Aircraft
Assembly Industry

The aircraft assembly industry has been experiencing an increase in demand over the past couple

of years, prompting the partial or full automation of assembly processes. Full automation has

become a preference due to the repetitive and/or specialized nature of most assembly tasks.

However, there are particular tasks that cannot be fully automated because they are too complex

or operate in a constrained environment, or due to a combination of both of these limitations.

Such tasks usually force the human workers to labor in un-ergonomic positions, perform highly

physically demanding jobs which can lead to fatigue or injury, be exposed to dangerous

environments, and team up to execute certain task stages. These limitations lead to an overall

decrease in productivity and safety. One example of such tasks is the installment of intercostal

beams in the aircraft fuselage. This task requires the worker to operate in a workspace that

covers both low and high grounds. This forces the human to kneel, crouch, or work in the

overhead workspace depending on the current stage of the task. In addition, the human worker

has to place and hold the intercostal while a second worker clamps it in place before it can be

secured to the fuselage. This means that at some stages of the task, a second worker is needed in

order for the task to proceed. In order to meet the increase in aircraft demand, a new automation
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alternative is needed, one that can improve the human's working conditions without the need to

alter the aircraft assembly environment. Human - robot collaboration allows the worker to deal

with these problems through semi-automation while maintaining a high level of efficiency.

When considering robot - human collaborative systems there are two main approaches that can

be taken. The first is the use of remote robots, which allows the worker to remain in the control

loop. These robots can be either directly controlled by the human or work autonomously in a

group that consists of robots and humans. The second option is the use of wearable robots, where

the robot's main function is to enhance the human worker's physical attributes or skills.

Traditional systems of wearable robots consist of either prostheses or exoskeletons. The first type

aids the human by replacing a lost extremity with a robotic counterpart, while the second

enhances his or her physical attributes, such as strength and stamina. These alternatives aid the

human in very specific tasks. However, they would not help an aircraft assembly worker perform

his or her predetermined tasks more efficiently. The prostheses are not suited to this environment

because they are not able to match a human's natural limbs in performance, speed, and

coordination with the human's thoughts and intentions. The exoskeleton would reduce the

wearer's skills, speed, and available workspace. In addition, using this type of robot would

increase the difficulty of traversing the aircraft assembly environment. We propose an alternative

to the existing methods of semi-automation that addresses the abovementioned manual labor

issues. This method, called Supernumerary Robotic Limbs (SRL), is explained in detail in the

following section.

14



1.2 Supernumerary Robotic Limbs

The d'Arbeloff lab has developed a new type of wearable robot called Supernumerary Robotic

Limbs (SRL). This semi-automation alternative addresses the manual labor problems described

in the previous section while exploiting the repeatability and precision that robots offer.

1.2.1 Concept

The Supernumerary Robotic Limbs (SRL) is a wearable robot consisting of limbs that coordinate

with the wearer to complete a desired task in a timely and efficient manner. We classify the

potential tasks of interest in two main categories: physically demanding, which require the

worker to bear high loads for extended periods of time, and non-physically demanding. This

thesis focuses on the non-physically demanding tasks using a prototype of the SRL, called SRLm

(Figure 1-1).

These robotic limbs will be used to aid the worker in the completion of a specific task by

assuming the role of an additional worker, bearing workpiece loads, and/or performing sub tasks

depending on the task's nature. The limbs are attached to the human worker at the iliac crest.

This enables the SRL to operate within and beyond the user's workspace as well as transfer the

load from the user's upper-body to the legs, just like a hiking backpack. The goal of the SRL is

to be perceived as an extension of the human worker. Thus, a high coordination level between

the SRL and the human is required. This tool will ultimately increase a worker's productivity and

available skillset, both for the purpose of completing manufacturing tasks and increasing the

human's safety.
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Figure 1-1: Side view of the SRLm prototype, a version of the SRL used for non-physically

demanding tasks.

1.2.2 Uses and Benefits

As mentioned in the previous sections, one particular field that can greatly benefit from the SRL

is the aircraft assembly industry. This industry is characterized by having a constrained

environment (plane fuselage) and a series of specialized tasks that have to be executed

repetitively in different places across the fuselage. These tasks cannot be fully automated and

some of them even require more than one worker to be successfully completed. Examples of

such tasks include:

e Holding a workpiece while a coworker secures it to the airplane's fuselage: The SRL can

steadily hold the workpiece while the human uses his or her free hands to secure the piece

into the fuselage. These roles can be reversed depending on the human's preferred role

and the availability of workspace.

16



e Wiring of a control box: A person can easily manage the wires while the SRL prepares

the environment. The task could be the removal of obstacles or the preparation of the

required tools to affix the wires in their respective terminals.

e Having to operate in low or overhead workspaces: The SRL can use a bracing strategy in

order to further stabilize the human's posture or it can help with holding the target

workpiece in the appropriate position and orientation while the human operates on it.

" Vacuuming carbon composite (highly toxic) drilling residue of a fuselage while a

coworker performs the drilling: The SRL can take care of the drilling while the human

worker vacuums the drilling residue. The roles can easily be reversed depending on the

human's preferred role and the availability of workspace.

e Proactive assistance for tasks that require the use of various different tools: The SRL can

be used to manage the tools by handling them to the human in a timely manner. In

addition, it could simultaneously perform some of the subtasks by incorporating different

end-effectors, which are devices connected to the end of the limbs.

Although this thesis focuses on aircraft assembly tasks, the SRL's concept can be useful to other

fields. The SRL's ability to coordinate with the human and the use of different end-effectors can

help improve the efficiency in performing tasks related to health care (operation, elderly care,

etc.), household (cleaning, organizing, equipment installment, etc.), and space exploration.

Using the SRL to help the human perform a task can greatly benefit the worker. Some of

these benefits include an increase in productivity, skills, abilities, and available workspace. By

using the SRL to bear loads at the hip we can decrease the worker's fatigue and improve posture,

safety, and load bearing capabilities. The SRL, with the proper instrumentation, can also allow
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monitoring the human worker's actions. This can help record data for error detection correction,

determine when a human is exerting a force that could potentially harm him or her, and to

continually adapt the SRL to the human worker thus increasing their coordination rate. The later

would greatly contribute to the worker's productivity and our goal of making the SRL feel as an

extension of the human body.

1.3 Thesis Layout

This work focused specifically on the following aspects of the SRL:

1. Task modeling as a control scheme.

2. Monitoring the human worker's actions in order to coordinate task execution.

The first aspect consisted of creating a model of the task of interest to use it as a plan for the

control scheme necessary for the successful completion of the task. This model was focused on

the human - robot collaboration aspect of the task. The second point consisted of two main parts.

The first was determining what type of data to use to coordinate the SRL and human actions and

how to obtain such data. The second part consisted of using teach by demonstration techniques to

control the dynamic actions taken by the SRL during the task execution.

The rest of this thesis is divided in the following chapters:

* Chapter 2: Explores previous work in the task modeling, human-robot coordination,

and pattern recognition fields.

* Chapter 3: Briefly introduces the design and implementation of the SRLm.

* Chapter 4: Describes the decision-making algorithm used to model the human-robot

coordination in the assembly process of interest.
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- Chapter 5: Describes how communication between the SRL and its operator is

achieved in order to carry out the task plan successfully.

* Chapter 6: Concludes this manuscript and highlights potential future work.

19



Chapter 2

Prior Work Relating to Wearable and
Collaborative Robots and the Objectives of the
SRL

2.1 Assistive Wearable Robots

When considering the potential benefits that the SRL contribute to a human-robot

collaborative system, we must also consider other wearable robots that are used to aid its

operator in completing a particular set of tasks. Over the past 50 years, there has been great

progress in the development and implementation of wearable robots. These traditional assistive

wearable robot systems are mainly classified as either exoskeletons [1] or active prostheses and

orthoses [2,3].

2.1.1 Exoskeletons

An exoskeleton aids the human by enhancing his or her physical attributes, such as strength and

stamina [4,5]. These tools are extremely useful when helping the human exert large forces for

extended periods of time while keeping fatigue at minimum. Although they enhance the user's

physical capabilities, they also have their drawbacks. For example, exoskeletons do not help in

coworker coordination. This is due to the fact that exoskeletons merely mimic the actions of its

operator, thus leaving all the coordination to the human and the need of an additional coworker

20



for those sets of tasks that require more than one pair of hands. In addition to that, exoskeletons

are heavy and not very transportable [6]. This automatically discards this approach when

considering tasks that need to be executed in constrained environments and that require the

human worker to easily traverse through the assembly facility.

2.1.2 Orthoses and Prostheses

Orthoses are typically used for people with leg problems [4]. These tools focus on increasing the

strength capabilities of a damaged leg but not beyond the parameters of a normal human.

Therefore they are not relevant to the SRL. Prostheses are used to help people who are missing

parts of their limbs. These are designed to physically replace the missing appendix by imitating

the human's desired action [2, 3]. Although these represent the concept of having robotic limbs

help its wearer, their focus is restoring a human's motor capabilities. The SRL's goal is to

increase a human's motor capabilities and skills beyond that of a normal human. Because of this,

orthoses and prostheses are an excellent example of hardware implementation of robotic limbs.

These can provide design guidance for the SRL. However, their control approach has to be

changed accordingly to include a fully functional human worker.

2.2 Robot - Human Collaboration

Human - robot collaboration is another field that has been widely explored as an alternative for

semi-automating a particular process. However, all studies in this field prior to the development

of the SRL have focused on the use of human - robot teams [7, 8, 9], where the robots are

completely independent from the human. These robots are either mounted on a firm base or are

able to move throughout the environment without having to rely on the human worker. By
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sharing a well-defined task model with the main worker, this robot is capable of replacing the

human coworker when the main worker is performing a task. However, for this to be true we

have to assume that the robot is able to accompany the worker throughout the working

environment [8, 9]. This automatically discards robots that are mounted on a firm base. In the

case of an aircraft assembly facility, robots that use wheels are also limited due to the complex

nature of the workplace. For example, using stairs to traverse through the different levels at a

speed that is comparable to the human's would not be possible for this type of robot. Since this

robot is independent of the human, it would also decrease the available workspace. In addition,

the robot would have to be able to position itself in a way that allows it to perform his helping

role. This can easily force the human worker to presume an uncomfortable position in order to

accommodate the robot. These problems are easily addressed by the SRL, which is worn at all

times by the human worker.

2.3 Task Planning

Numerous approaches have been used to model a task procedure, for example, fuzzy logic [10], a

hierarchical architecture [11], hidden Markov models [12], and Petri Nets [13]. All of these

methods divide the task in a series of states and transitions. Then, depending on the user's

technique of choice, conditions and laws are established to dictate the behavior of the model. The

main difference between these techniques lies in how easily we can change one part of our model

without affecting the rest. Most of these techniques, although very precise and efficient, cannot

easily modify sub-sections of their model in order to accommodate additional states or changes

in the definition of the dynamic processes that occur throughout the task's execution. For this

reason, we approached our task-planning problem by using a type of Petri Nets called Coloured
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Petri Nets [14]. By separating static states from dynamic transitions and linking them using

environment conditions or transition outcomes we are able to model the tasks of interest and

capture the collaboration between the coworkers while maintaining the dynamic control laws of

the system independent from the model. This gives us the ability to modify the control laws of

each corresponding transition in order to adapt to variations in the behavior of the SRL's

operator.

2.4 Pattern Recognition

Pattern recognition is a field that has been immensely explored. Numerous algorithms, such as

Bayesian classifiers and networks, Support Vector Machines, Neural Networks, and Decision

Trees have been thoroughly documented [15] and applied to an extremely wide spectrum of

applications. Two examples of applications include speech recognition [16] and rehabilitation

[17,18]. In this study, we used pattern recognition techniques to successfully classify the actions

of the SRL's operator. This enabled us to establish efficient coordination between the SRL and

its operator. After recording the data from various experiments, we determined which pattern

recognition technique was most efficient when detecting the operator's intent. The complexity of

our algorithm depended on the simplicity of the gestures and postures used to determine intent.

2.5 Teach by Demonstration and Task Execution

The last part of this study used teach by demonstration techniques to extract control algorithms

from experimental data. Using this data-driven approach to modeling, we were able to increase

the simplicity in the control algorithms that are used by the SRL to perform a specific task. The
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use of motion detection sensors [19, 20] to transfer the skills of a human to a robot have been

explored and implemented to the execution of repetitive tasks [21]. Virtual environments have

also been used in order to transfer the human's skills and validate the resulting taught behavior

[22].
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Chapter 3

Brief Design Introduction

Although the design of the SRL is not the focus of this particular thesis, it is important to briefly

explain the SRLm, which is the SRL prototype used for non-physically demanding tasks. The

design and development of the SRL that is used for the physically demanding tasks is the work

of Ph.D. student Federico Parietti and the undergraduate student Kameron Chan at the d'Arbeloff

lab.

3.1 Design Concept

As explained in the introduction, the SRL consists of a pair of wearable robotic limbs that are

attached to the human and assists the wearer in the completion of particular assembly tasks. The

SRL is attached to the wearer at the iliac crest (worn as a hiking backpack). This gives the SRL

the capability to operate in the same workspace as the wearer and transfer the weight of held

loads from the human's upper-body to the legs.
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3.2 Functional Requirements

The SRLm was designed to mimic a human arm considering that:

1. to achieve the goal of perceiving the SRL as an extension of the human body, the

SRLm's appearance and dynamic behavior must resemble that of human arms.

2. to collaborate seamlessly with the wearer, the joint torques, velocities, and bandwidth of

the SRLm must be adequate to perform the desired task in a manner that resembles the

human's arms.

3. since the aircraft assembly tasks and workplaces are well designed for human workers,

the SRLm must be highly similar to a human arm to be easily integrated into these

facilities.

We also considered the fact that this prototype would have to be worn at all times during the

working period of an aircraft assembly employee. This means that the prototype has to be

lightweight in order for the human to be able to wear it for extended periods of time. The robot

has to be able to collaborate with the human without interfering with the human's actions, that is,

the location of the SRLm cannot interfere with the workspace of the wearer's limbs. In addition

to that, the motions and forces exerted by the robot have to be kept at a safe level in order to

protect the wearer in cases of malfunction.

3.3 Prototype Implementation

The SRLm consists of two robot arms with three degrees of freedom that are attached to a belt

worn at the base of the hip. Each arm has two rotational joints at the base, mimicking the

human's shoulders, and one at the middle of each arm, mimicking the human elbow. These arms
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are actuated with Dynamixel's MX- 106R DC motors that are able to exert a maximum of 10

Nm. Position is measured using a contactless absolute encoder that is built into these motors. The

arms are attached to the front of the operator and torque control is performed through current

sensing. By keeping track of the applied torque we are able to have an emergency stop upon

detecting contact with the human or after trying to overcome a safe force limit on the

environment. In order to keep the SRLm as lightweight as possible we used carbon fiber for the

arms and ABS (3D printer) for small custom parts. By directing this load directly on the wearer's

iliac crest (base of the hip) the weight is distributed to the legs, further decreasing the amount of

force the operator has to exert to wear this. The arms come out from the frontal area of the belt,

which keeps in minimal interference with the operator's workspace. Figure 3-1 shows the SRLm.

Figure 3-2 shows the SRLm equipped while being worn. We observe that the SRLm can easily

access its operator's workspace without interfering with his or her arms.
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Figure 3-1: SRLm prototype with the vacuum and passive gripper end-effector.
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Figure 3-2: SRLm as worn by a human worker.
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Chapter 4

Collaboration Modeling for Task Execution

4.1 Human - SRL Coordination

One of the key features that must be present in the SRL is the ability to collaborate efficiently

with the human during the execution of a task. In order for this to happen the SRL must be able

to identify the task and the time to execute it. If the SRL is not capable of identifying these two

aspects on its own, it loses all functionality. This topic has been widely researched in robotics

and artificial intelligence. However, just modeling the static states and dynamic transitions that

occur during the execution of a task is not enough to capture the collaborative nature that the

SRL must exhibit. A bigger structure must be used to model how these states and transitions are

connected to each other, define the course of action given certain conditions, and monitor the

resources being used during each stage of the task. This allows the SRL to identify what it is

supposed to do and when, but also make sure that there is no conflict when deciding which task

to perform. This conflict can be represented as an overuse of a system's resources or reaching a

point where the robot cannot choose an action to take and arrives at an unintentional dead end in

the task model.

Another important property that our model must be able to capture is the concurrent

nature of the system we are considering. One of the key advantages of the SRL when compared
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to other wearable robots is the ability to act independently of the wearer. This allows the SRL to

assign different simultaneous tasks to its arms in order to speed up or facilitate the task that the

human is performing. In order to model this property, we need a model that can represent static

and dynamic actions and also have the ability to include multiple independent actions that need

to happen at any given time. This leads to another requirement for our modeling technique: just

knowing the order of the tasks that must be executed is not enough; timing is key. In order for

the SRL to know when each transition is triggered it must be able to properly assess the

operator's current state. By knowing if the operator has successfully completed the task, is in the

correct track to completion, or has failed, the robot can reevaluate its course of action to be of

optimal use to the human. This means that the modeling technique to be used must be capable of

taking into account the current state of each of the resources being used. A flow diagram would

be able to model the static stages and dynamic transitions. However, a much stronger technique

is required for representing each stage's current state, concurrent event and properly allocating

the system's resources

4.2 Task Description

This thesis focuses specifically on one exemplary task: fixing an intercostal on the fuselage. This

task was chosen because it exploits all of the advantages of the SRL. During the execution of this

task the SRL bears a load in place of the operator and performs a job that would normally be

done by an additional worker as the operator performs the main task. We considered the

environment of a Boeing assembly facility and focused mainly on the Boeing 787, which has a

carbon fuselage. Figure 4-1 shows the environment in which this task is executed.
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Figure 4-1: The blue arrow points at the intercostals that need to be fixed and drilled into the
airplane's fuselage.

Two trained workers simultaneously carry out this task. The task process goes as follows:

1. The main worker picks up a beam (intercostal) and places it in the respective fuselage

place.

2. Once the intercostal is in place, a coworker comes to fix it using a specialized gripper.

3. After the intercostal is secured, the main worker readies the drill to permanently fix it to the

fuselage.

4. Once the drill is in place, the coworker then places a vacuum beneath it. This is done to

clean the carbon fiber composite that is expelled during the drilling process.

Once the task is completed, the workers recover all the used tools and return to a standby state.

Following this standby state, the worker can proceed to other cleanup and assembly tasks as
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needed. In this study, we focused specifically on the task process up to step 4. Our objective was

to equip the lead worker with the SRL, enabling him to complete the task without the need of a

coworker. This task, that seems trivial for two human workers, is challenging to model due to the

high coordination required between the SRL and the worker. This task's concurrent and non-

deterministic nature makes coordination more challenging, because the worker has to deal with

parallel tasks, resource allocation, and other task properties such as time delays and queues.

4.3 Petri Nets

In addition to addressing the requirements mentioned in the previous section, we intended to

model the task process and resource allocation as similar as possible to a human's. This would

allow the SRL to act as a part of the human body and make the worker feel more comfortable

when using the wearable robot. We followed the following procedure:

1. The worker identifies the task that needs to be completed.

2. The worker identifies all the tools that are necessary to complete the task.

3. The worker proceeds through the task model. To do this effectively the human must be

able to communicate successfully with any aiding workers while keeping track of the

environment.

Our approach for this task model was to use Petri Nets (PN). PNs are a graphical method used to

model tasks by decomposing them into a set of states called places that are connected through

transitions. Tokens are used to show the current state and the conditions needed to proceed

through a transition to a new state or place. That being said, it is very similar to the use of flow
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diagrams or state machines. One fundamental difference between these and PNs is that, by using

tokens, PN can activate simultaneous transitions thus enabling us to model tasks that are

concurrent in nature. Figure 4-2 shows a rudimentary PN.

a b
Figure 4-2. In case a. we have the initial conditions where there is one token in the first place.

Since the transition only requires one token we move to case b. Here, the tokens used to activate
the transition were removed from their original place and moved to the next place.

The circles represent the different places of our process while the box represents a transition. The

black circle in the upper place of Figure 4-2a is a token, which notifies us what the current place

is by being in the upper circle. In order to move to the bottom place in Figure 4-2a, the transition

that is represented by a box has to occur. The arrows that are connected to this transition specify

the conditions that must be met in order for this transition to occur. For a transition to occur,

there must be a token at each place that has an arrow pointing towards the transition. Given the

fact that there is one token at the upper place in figure 4-2a, the transition occurs. When this

happens, a token is removed from each of the places that were pointing at the transition and one

token is put in each place that is being pointed to by the transition, this is seen in Figure 4-2b.

This behavior alone enables us to trigger simultaneous places by having more than one arrow
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exit the transition, thus covering the concurrent nature of our task of interest. However, this alone

is not enough to address all the issues and requirements for our task model.

4.3.2 Coloured Petri Nets

In order for us to fully describe our collaborative task with our model, we turn to a special type

of PN called Colour Petri Nets (CPNs) [23]. CPNs take into account two main components:

graphics and mathematics. The graphical component of the CPNs is what allows us to separate

visually the states from transitions that occur during the execution of a task as done by the PNs.

This part also defines the direction followed by the resources/tools when moving through the

task process model. For this part, places (or states), transitions, arcs, and tokens (tools/resources)

are represented as circles, rectangles, arrows, and dots, respectively. The mathematical part

consists of basic primitives with the capabilities of a high level programming language.

Combining these two enables us to create a discrete-event model. These properties make CPN

ideal for modeling systems where concurrency and communication play a vital role in the task's

process. The mathematical properties of CPNs allow us to write statements that describe the

behavior of the model. This means that we are able to specify what conditions must be met for a

transition to occur, if the token needed for a transition must have a specific property, and how to

manage tokens depending on the result of the transition. This allows to keep track of the current

system performance and resource allocation based on current transitions through CPN [14].

To properly model the task, we must define a finite number of places P, transitions T,

guard functions G, directed arcs A, arc expression functions E, colour sets Z, coloured set

functions C, typed variables V, and an initialization function I. Colour sets and functions, arc

expressions, and guard functions will be directly responsible for managing how the resources and
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tools are used throughout the task process execution. We used the mathematical statements of the

CPNs to model our task of interest as follows. The basic CPN that will be used as an example is

shown below in Figure 4-3. First of all, we will give each token a colour to identify each

particular tool or resource. We assign each token both a number and a string. The number is used

in the mathematical expressions that determine which resource to use and the text is used to

visualize the location of the tools and resources. Colours are defined as:

colset No int;

colset Re string;

colset NoxRe = product No * Re;

This allows us to assign each token a number and a string element in that order. For

example, we can assign one token with No = 1 and Re = "Human Right Arm", where 1 becomes

the token's mathematical identification of the human's right arm. Considering that different tools

are used for specific tasks, the CPN must also be able to discern which tools are used for each

particular task. Now that we are able to identify the tokens, we proceed to establish the constraint

laws for the transitions. This is accomplished through the arc expressions and transition guards.

Arc expressions are written right besides an arc and they determine which characteristics of the

tokens in the place will be considered for the transition.
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I' (1,"Human Right Arm")++
1' (2,"Human Left Arm")++
V' (3,"Robot Right Arm")++
1' (4,"Robot Left Arm")

Standby

NoxRe

if success
(n,d) then empty

else 1' (n,d)

Pick up tool] [n= 1]

if success
then 1'(n,d)
else empty

Tool in hand

NoxRe

Figure 4-3: A simple example of high-level programming that is achievable through the use of
CPNs. The number four inside the green sphere indicates that there are a total of four tokens in
that place. These tokens are presented inside the green box to the upper right of the "Standby"

place.

These must also be defined as variables. For our example in Figure 4-3 we define these variables

as:

colset status = bool;

var n : No;

var d: Re;

var success : status;
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Transition guards establish certain criteria that must be true before the transition is able to take

place. These are written inside brackets next to the corresponding transition, as shown in Figure

4-3.

In Figure 4-3, the tokens corresponding to all four arms (robot's and human's) are in the

"Standby" place. In order to move on to the "Tool in hand" place, the tokens have to go through

the "Pick up tool" transition. In order to go through this transition all the conditions in the input

arcs must be fulfilled. This occurs when all the variables are bound (all necessary variables

specified in the arc expressions can be matched with a respective token from the input place). In

this particular case, we are specifying that only the human right hand must be used to pick up the

tool. This means that we constrain the variable n to 1, and therefore the only token that is able to

fire the "Pick up tool" is {n = 1, d = "Human Right Arm"}. Since we have at least one token that

follows the guard's constraint, we are able to fire the transition. Notice than after the transition is

made, output arcs determine the token distribution based on the "Success" variable.

The nonhierarchical CPN model has the following places and transitions:

P = {t_andr, b-in-p, fixedb, dinp, v_inp, taskend},

T = {p-b, fix-b, pd, p-v, drill},

where t stands for tools, r for resources, b for beam, p for place, d for drill and v for vacuum. We

define the set of colours:

I = {No, Re, NoxRe, status, Tools},
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where

colset No int;

colset Re string;

colset NoxRe product No * Re;

colset status bool;

colset Tools list NoxRe;

The Tools colour was chosen to be a list since it would simplify accessing a place's tokens in

situations where we would have more than one token. This is due to the fact that in order to

describe in detail each step of the task we need to keep track of what resources are at each state

and which are needed for each transitions. The initial conditions for the system are the tokens in

the "tandr" place and are given by:

1'(1, "HRA")++

1'(2, "HLA")++

1'(3, "RRA")++

1'(4, "RLA")++

1'(5, "Gripper End effector")++

1'(6, "Vacuum End effector")++

1'(7, "Drill")

where HRA, HLA, RRA, and RLA stand for human right and left arm and robot right and left

arm, respectively. The resulting structure for the CPN model is shown in Figure 4-4.
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if cue
then if success

then 1'(ab)++
1' (V,C)

else 1 (n,d)++

V (h,q)
else 1 (n,d)++

1' (h,q)

1'1HRA")++
1'(2,"HA")++
1'(3,"RRA")++
11 (4,"R(A") ++
1'(5,"Gripper Endeffector")++
1'(6,"Vacuum Endeffector")++

NoxRe t and r

if succsc1t(n,d)++ then empty
e (h,q) else 1's(n,d)++

1' (h,q)

[n=1,h-2, tJ3-[)]

1' (n d)++ if success
'( q) then (n,d)::(h,q)::[

q tl else tl

ns

TOOLS if success
then empty

1' (ndu+ ese1 (n,d)++

(ab:( ):]then if success 1 (a,b) 'ab
then empty
else (a,b):: (v,c)::[)

else (a,b)::(v,c)::[]

fsuccess .
then empty 1' (a,b)++ti

[cue,n-4,h-51 else 1" (a,b)++ 1, (V,C)

fix-b

if cue
then if success

then (n,d)::(h,q)::[]til else 1:1
else tli

fixed-bt12 p_d [ncit(tl2=[]),n-1,h=2]

TOOLS if success
7TOOti then tl ^^ [(n,d1),(h,q),(a,b)]

tl else tl

I-- p_vL d inp

[not(td3=[]) ncot(tl4=[])] -TOOLS

if successisuccmss t15 th e nt (,b)::(y,c):[

else (g,k)::(h,q).:[]

v in_p
TOOLS

if success
(ne):(~ p::] then,[] . . . _else (n,e)::(m,p)::[]

if success
then []

dilelse (a,b)::(v,d)::(zf)::[]

( k):h,q)::[ (a,b):: (v,d):: (z,f)::[

if success
then (g,k)::(h,q)::(a,b)::(v,d)::(n,e):!(m,p)::(z,f)::[]
else empty

task-end

4 INoxlke

Figure 4-4: CPN model for the intercostal assembly task.
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4.3.2 State Space Analysis and Resource Allocation

In order to examine this model we used the state space method. This method consists of

exploring all possible transitions and resource allocation that can occur from each place in the

CPN. This is done by representing each marking (reachable state by the whole CPN) as a node

and then mapping its transition to previous and successive nodes (consecutive reachable states).

Each of the arrows that leave a node represents a binding variable that is used to reach that

marking. This allows us to check the system for token duplication, misplacement, starvation, and

all the possible ending states for our CPN. Using the simulation software CPN tools we are able

to map out the state space for our task process model (Figure 4-5).

6

5 7
kh2:2 :0

Figure 4-5: This diagram shows that with our task specifications we are able to model the entire
task with 7 reachable CPN states and only one final state.

Each node represents a possible state of the entire Coloured Petri Net. The number on the top

of each node in Figure 4-5 is the number of the state. The numbers on the bottom of each state

represent the previous and successive states from left to right respectively. Node #1, for example,

gives the following information: this is the first system overall state of the task model; it can only

be predeceased by one state and has two possible outcome states. In this case, the possible
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previous state is itself and the possible outcomes of this state are to either remain in the same

state or proceed to the next state. The later would happen after firing the first transition. This

analysis applies to the other nodes as well. Each node's properties and transition's possible

outcomes are thoroughly explained in Figures 4-6 - 4-16.

1:
DrillingTask't_andr 1: 1' (1,"HRA")++
1' (2,"HLA")++
1' (3,"RRA")++
11 (4,"IRLA")++
1' (5,"Gripper Endeffector")++
1' (6,'Vacuum Endeffector")++
1'(7,"Drill")
DrillingTask'b_inp 1: 1' []
Drilling...Task'fixed_b 1: 1' []
DrillingTask'd_in_p 1: 1' []
DrilingTask'taskend 1: empty
DrillingTask'v_inp 1: 1' []

Figure 4-6: Node boxes follow the following format: each line begins with the name of task
being modeled by the CPN. Following this name, after the apostrophe, are each of the places in

the CPN followed by the tokens that are at each respective place. The number at the top left
represents the number of the node. Node # 1 represents the initial state of the CPN. All the

tokens are located in the t and-r place. This node represents the initial standby phase before the
task execution begins. Note that the other time when we are at this node is when the pb

transition is attempted but not successful.
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12:1->1 rillingTas p b 1: t3=[],n=1,h=2,d="HRA",q="HLA",tl=[],success=fase}

Figure 4-7: In the first box area (red), the first number represents our current place. The
second number shows we are transitioning to. The second box (green) shows the name of the

task being modeled by the CPN. The third box (blue) indicates the name of the transition we are
considering. The fourth and final box (maroon) shows the tokens used and variable values that
trigger the transition represented in the first box (red). First transition is "p b" has two possible

outcomes. These are when the "success" variable are true and false. The first one enables the
CPN to proceed to node # 2 while the later forces the CPN to remain in node # 1. This behavior

models how the human worker will continue to position the intercostal until he is successful.

2:
Drilling_Task't_and_r 1: 1' (3,"RRA")++
1' (4,"RLA")++
1q (5,"Gripper Endeffector")++
1' (6,"Vacuum Endeffector")++
1' (7,"Drill")
Drilling_Task'b_in_p 1: 1' [(1,"HRA"),(2,"HLA")]
Driling_Task'fixedb 1: 1' []
Drilling_Task'd_inp 1: 1' [0
DrillingTask'taskend 1: empty
Drilling_Task'v_in_p 1: ' []

Figure 4-8: Node two represents the state following the pb transition if p_b is successful.
Here both human hands are being used to keep the intercostal in place while the rest of the

resources remain at standby. Same as the in previous node, the CPN remains at this node if the
following transition is attempted but unsuccessful.
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3:2->3 DrillingTask'fixb 1: {n=4,h=5,d="RLA",q="Gripper Endeffector" ...

rtl1=[],c="HLA"'b="HRA",a= 1,v =2,cue=true success=true }

4:2->2 DrillingTask'fix b 1: n =4,h=5d=1RLA ',q="Gripper Endeffector"

tl1=[],c="HLA",b="HRA",a=1,v=2,cue=truesuccess=false }|

Figure 4-9: Second possible transition is fixing the intercostal to the fuselage. This is
achieved using the SRL with a gripping end-effector. This leads to freeing the human hands.

This transition can only be triggered once the cue has been given to the robot and the output of
the transition arcs depends on the result of the task (successful or not).

3:
Drilling_Task'tandr 1: 1' (1,"HRA")++
1' (2,"HLA")++
1' (3,"RRA")++
1' (6,'Vacuum Endeffector")++
1' (7,"Drill")
DrillingTask'b_in_p 1: 1' []
Drilling.Task'fixedb 1: 1' [(4,"RLA"),(5,''Gripper Endeffector")]
DriIling_Task'd_in_p 1: 1' []
Drilling_Task'taskend 1: empty
DrillingTask'v_in_p 1: 1' []

Figure 4-10: Node three represents the state where the SRL has replaced the human and has
fixed the intercostal to the fuselage. When this is done, the operator's hands are relieved from
duty and resume their standby state. This allows the human worker to start the next transition:
positioning the drill.
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5:3->4 DrilingjTask'p~j 1: f{n=1i,h=2,d="HRA,b="DriI",a=7,q="HLA"

,tl=[],tl2=[(4,"RLA")(5,"Gripper Endeffector")],success=true}

6:3->3 Drilling_Taskp d 1: {n=1,h=2,d="HRA",b="Drill",a=7,q="HLA" ...

,tl=[],tl2=[(4,"RLA"),(5,"Gripper Endeffector")]success=false }

Figure 4-11: The third transition consists of the SRL operator placing the drill in the correct
position. In order to do this, the intercostal must be secured to the airplane fuselage. To ensure
this, the transition will not be triggered unless the "RLA" and "Gripper Endeffector" tokens are
present in the place that corresponds to the intercostal being secured.

4:
Drilling_Task'tandr 1: 1' (3,"RRA")++
1' (6,'Vacuum Endeffector")
Drilling_Task'b_in_p 1: 1' []
Drilling_Task'fixedb 1: 1' [(4,"RLA"),(5,"Gripper Endeffector")]
Drilling_Task'd_inp 1: ' [(1,"HRA"),(2,"HLA"),(7,"Drill")]
Drilling_Task'taskend 1: empty
Drilling_Task'v_in_p 1: 1' []

Figure 4-12: Node four represents the state when the operator has positioned the drill in place
and is waiting before the SRL starts to position the vacuum. The only free resources are the

SRL's right hand and the vacuum end-effector. Previous states leading to this node include node
#3 and the other two each represents a failed attempt at reaching node # 5 or 6. Notice that nodes
5 and 6 are in parallel, meaning that only one of them can occur during the execution of the task.
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8:4->4 Drilling _Task'p v 1: {t15=[],tl3=[(4,"RLA")(5,"Gripper Endeffector"]

,t4=[(1,"HRA"),(2"HL-A"),(7,"Drill")],c="RRA", ...

.b='Vacuum Endeffector",a=6,v=3,success=false }

9: 4->6 Drilin gTask'p_v 1: {tl5=[],t3=[(41"RLA5) 5 Gripper Endeffector")] .

,t14=[( 1,"HRA"),(2"HLA"),(7,"Drill")],c='Vacuum Endeffector",

. b="RRA",a=3,v=6,success=true}

1O:4->4 DrillingTask'p-v 1: {tl5=[],tl3=[(4,"RLA"),(5,"Gripper Endeffector")] -..

,tl4=[(1,"HRA ),2," HLA) (7, 'Drill") ],c=Vacuum Endeffector"--

b="RRA"a=3,v=6,success=false }

7:4->5 DrillingT skp:= 1 {tl5=[],tl3=[(4,"RLA")(5," Gripper Endeffector")] ...

-.. ,t14=[(1,"HRA")(2,"HLA"),(7,"Drill")],c="RRA", .

b="Vacuum Endeffector',a=6,v=3,success=true }

Figure 4-13: The fourth transition represents when the SRL positions the vacuum and readies for
the drilling task to be carried out. In order for the SRL to undertake this task, the intercostal has

to be secured to the fuselage and the drill has to be properly positioned, otherwise it is impossible
for this transition to be triggered.
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5:
Drilling_Task'tandr 1: empty
Drilling_Task'b_in_p 1: 1' []
Drilling_Task'fixedb 1: 1' [(4,"RLA"),(5,"Gripper Endeffector")]
Drilling_Task'd_in_p 1: 1' [(1,"HRA"),(2,"HLA"),(7,"DriIl")]
Drilling_Task'taskend 1: empty
Drilling_Task'v_in_p 1: 1' [(6,'Vacuum Endeffector"),(3,"RRA")]

6:
Drilling_Task'tandr 1: empty
Drilling_Task'b_in_p 1: 1' []
Drilling_Task'fixedb 1: 1' [(4,"RLA"),(5,"Gripper Endeffector")]
Drilling_Task'd_inp 1: 1' [1,"HRA",(2,"HLA"),(7,"Drill")]
Drilling_Task'taskend 1: empty
DrillingTask'v_inp 1: ' [(3,"RRA"),(6,'Vacuum Endeffector")]

Figure 4-14 shows node # 5 (top) and # 6 (bottom). Only one of these two nodes can occur
during the execution of the CPN. This will be determined by the arc expressions that follow the

p_v transition. Notice how the only difference between these two states is the order of the tokens
in the "v_inp" place. This means that the same resources are being used to perform the same

task. This results in these two nodes being the same (for any practical means). The fact that they
are represented in different nodes means that I could have been more detailed in the arc

expressions following the previous transition.
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11:5->7 DrillingTask'drill 1: {n=6,m=3,e='Vacuum Endeffector",p="RRA"--

=.k="RLA",h=5,g=4,q="Gripper Endeffector",f="Drill", ..

d="HLA",b="HRA",a= 1,z=7,v=2,success=true }

12:5->5 DrillingTask'driI 1: {n=6,m=3,e='Vacuum Endeffector",p="RRA ..

- k="RLA,h=5,g=4,q="Gripper Endeffector",f="Drill",---

. d="HLA",b="HRA",a= 1,z=7,v=2,success=false }

13:6->7 DrillingTask'drill 1: {n=3,m=6,e="RRA",p='Vacuum Endeffector",-

- k="RLA",h=5,g=4,q="Gripper Endeffector"f=DriII,-

- d="HLA",b="HRA",a=l z=7,v=2,success=true I

14:6->6 DrillingTask'drill 1: { n=3,m=6,e="RRA",p='Vacuum Endeffector" -

- k="RLA",h=5,g=4,q="Gripper Endeffector",f="DriII"-.

d="HLA",b="HRA,a= 1,z=7,v=2,success=false }

Figure 4-15: The final transition in our CPN model consists of drilling. All conditions required
for this task have been fulfilled and now the only thing missing is for the actual drilling to occur.

7 :
DrillingTask'tandr 1: empty
DrillingTask'b_in_p 1: 1' []
DrillingTask'fixedb 1: 1' []
DrillingTask'd_inp 1: 1' []
DrillingTask'taskend 1: 1' (1,"HRA")++
1' (2,"HLA")++
1' (3,I"RRA")++
1' (4,"RLA")++
1' (5,"Gripper Endeffector")++
1' (6,'Vacuum Endeffector")++
1' (7,"Drill")
DrillingTask'v_inp 1: 1' []

Figure 4-16: Node 7 represents the final stage of the CPN model. Here, the task of interest has
been successfully completed.
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4.3 Discussion

After carefully checking each of the state space nodes we can conclude that the task is executed

without any token duplication, misplacement, or starvation and has only one possible ending

state. This CPN is implemented in the SRLm in order to determine which course of action must

be taken. Using this nonhierarchical CPN to model a particular task also helps us organize the

SRL's task database. By using this framework to model other tasks we are able to incorporate

our CPN models into a hierarchical CPN (HCPN). Each model can be portrayed as a module in a

HCPN that will be executed depending on the operator's intention. This HCPN would be the

SRL's decision - making algorithm. In this HCPN we can assign the tools' place as the starting

point. Ultimately the SRL can make the decision of which action to perform by taking into

account the indicators that it receives from the environment and the wearer.

Now that we covered how to use CPN's to fully model the collaborative aspects of our

task of interest we are able to move on to how to use these tokens, conditions, and general model

to achieve an efficient coordination between the human and the SRL.
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Chapter 5

Human -Robot Coordination

5.1 Leader/Follower Relationship

As described in Chapter 4, our task of interest requires the collaboration between two coworkers.

Coordination and shared knowledge about the task's goals and procedure is essential in order for

the SRL to serve its purpose. Using CPNs addresses the latter. It is easy for a human worker to

identify a task's current state, what needs to be done next, and which tools to use and how to use

it. The worker, when working in a team, is also able to assess the situation and decide together

with his partner if switching roles would prove more efficient. This leader/follower relationship

is also represented in our CPN model. Although this is trivial for two human workers, the same

cannot be said for the SRL. Nevertheless, here is where we exploit the advantages of using CPNs

as our decision-making algorithm. The CPN already depicts the flow of a task in a way that

closely resembles the human train of thought when executing a particular task. Now that we have

our task divided into static states and dynamic transitions, we can focus on the elements that

determine the flow of the task: the indicator variables. These indicators that are part of the arc

expressions and a transition's guard can be assigned to physical system events. For example, in

Chapter 4, when we went over the task's model, one of the guards for the "fix intercostal in

place" transition was named cue. If the SRL has the means to monitor it's operator's actions,

then it is also able to use pattern recognition techniques to determine whether the cue was given
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or not. Using this approach we can monitor the leading role that is being carried out by the

human and let the SRL perform the follower role.

5.2 Transition Coordination

As mentioned previously, coordination plays a vital role in the SRL's performance. When

considering our CPN model, we break down our task of interest into five dynamic transitions and

six static states. Each of these transitions has been given a respective guard and arc expressions

that describe the conditions that must be met in order for these transitions to occur. In other

words, the SRL's efficiency when recognizing if these conditions have been meet will determine

the level of coordination between the SRL and the operator.

An example of these conditions can be explained using our first transition: placing the

intercostal. Looking at the guard expression we see that this transition is only possible if the

operator's arms are not performing any other task and only if the intercostal has not been fixed.

The later condition, although it is a trivial observation for the human worker, needs to be an

explicit condition for the SRL. If not for this condition, the CPN would not be able to discern if

the human is using his free arms to place the drill or to place another intercostal. In this case we

would need additional indicators in our CPN model to be able to further identify the operator's

intention. We include this condition as a means to maintain the CPN with the minimum number

of indicators and variables. Since the human worker carries out this transition, the only variable

that we need to assign to the physical world is "success". It is important to make clear that the

variable success constantly appears throughout our CPN model. However, the definition, or

assignment, of this variable will be different for each transition. This variable needs to have a
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value of 1 for when the operator has successfully placed the intercostal and 0 for when he has

been unsuccessful. Having a value of 1 allows the tokens to move into the next place of our CPN

model, whereas a value of 0 will keep the tokens in their current place. This behavior represents

the fact that the human worker takes time to complete this task and will not stop until it has been

achieved. In order to determine if the operator has been successful or not we need an array of

sensors that monitor his actions as well as the environment.

5.3 Wearable Sensors

In order to be able to coordinate the SRL with its operator we need to be able to monitor the

operator's actions. It is important to take into consideration the nature of our system and its goal:

the SRL is a wearable robot that will be perceived as an extension of one's body. Since the SRL

will be worn at all times while the human worker performs various tasks through out the airplane

fuselage, we cannot rely on sensors that are fixed to the environment. Thus, we use a suit that is

worn together with the SRL at all times. We can attach a wide variety of sensors to this suit.

Going back to the analysis in the previous section, we can see that most of our transitions consist

of moving an object to a particular location and orientation. Because of this, for our first

prototype of the sensor suit, we considered the use of inertial measurements units (IMUs) as a

means to monitor the operator's actions. We start with 3 IMUs, each located in the operator's

wrists and the back of his or her head. Each IMU unit is equipped with an accelerometer,

gyroscope, and compass. Using the readings form these sensors we are also able to obtain each

IMUs' Euler angles for our training data sets. Our first prototype of this suit is shown in Figure

5-1.
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Figure 5-1: The sensor suit has inertial measurement units (IMUs) in the red locations: one on
the back of the head and one in each wrist.

(a red dot is used in the left picture to locate the IMUs).

5.3.1 Experimental Setup

In order for the SRL to determine if the task has been completed successfully, it needs to be able

to interpret the sensor suit's recovered data. There are two main approaches that can be taken for

this: model driven approach or a data driven approach. In order to determine which approach

would be more effective in our case, we considered the fact that our tasks involve a human

operator. This means that human uncertainty is involved in the dynamic process of executing the

task. A human can determine countless paths that lead to a successfully completed task.

Identifying which path is being used is a challenge in itself, and would require extensive

knowledge about the different models for the task. Obtaining and analyzing the equations of

54



motion for these possible paths and each sub task can be quite tedious and challenging. Because

of this, we discarded a model driven approach. Contrary to the model driven approach, the data

driven approach is when we use training data to identify when the task has been completed

successfully. This bypasses the necessity of fully understanding the physical laws that govern

each action taken by the human and focuses on the final outcome. Once an algorithm has been

trained, it can be easily used with real time data to determine whether the task has been

completed successfully or not. One of the disadvantages of using a data driven approach is that it

becomes difficult to make predictions and that initial conditions can affect the perfonnance of

our algorithm. By obtaining multiple training data sets from different trials and outcomes we

hope to obtain al algorithm that can effectively determine the state of success of each of the CPN

model's transition.

Figure 5-2: Fuselage mockup. The first transition of our CPN model is to place the
intercostal in place. The red arrow represents where the intercostal is picked up from and where

and how it has to be positioned.
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We replicated each of the steps of our CPN model in order for us to obtain our training

data sets. For this we prepared a small mockup of a Boeing 787 airplane fuselage, this is shown

in Figure 5-2. Using this mockup we performed each transition that is part of the CPN model

while taking data. Given that we know when the task is completed, we can look at the data's

behavior leading up to that point. Then we proceed to choose which classification technique is

more appropriate when determining if the task was successfully completed. The tasks to be

measured are:

1. When the intercostal is in place (placed and held by the human).

2. Target location for the SRLm in order to fix the intercostal.

3. When the drill is in place (placed and held by the human).

4. Target location for the SRLm's vacuum end-effector.

5. When the drilling task has been completed.

5.3.2 Success Variable

For the first success variable, we looked at the position and orientation of the intercostal when it

is in place. This task is also represented in Figure 5-2. To do this we created a LabView virtual

instrument (VI) that records all information from the sensor suit as a function of time while the

operator performs the task. In addition, the VI notified the SRLm's operator when he could start

the task. This enabled us to control the initial conditions of our experiment. Each experiment

lasted 30 seconds and gave each test subject the opportunity to repeat the action of placing the

intercostal 4 times. This experiment was repeated five times with five different subjects. It was

performed in the same way for when the SRLm's operator has to position the drill after the

SRLm has fixed the intercostal and for when the operator uses the drill to secure the intercostal
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to the fuselage. In the latter experiment, the human started with the drill already in position. This

was done to follow the CPN model. Experiments of the same nature were repeated for the

remaining tasks. For the second success indicator, which corresponds to the SRL being in the

correct position to use the gripper end-effector to fix the intercostal to the fuselage, we took

advantage of the SRLm's back-drivability. While the SRLm's operator held the intercostal in

place, a second worker would move the SRLm's corresponding hand into position. This was the

data used to determine the endpoint position that can be interpreted as the success variable for

this particular transition. Once again, this experiment was repeated five times with five different

test subjects. This was also the case for when the SRLm had to properly position the vacuum

after its operator had successfully positioned the drill.

5.3.3 Data Acquisition and Processing

All the recorded data was obtained through the use of National Instrument@ LabView@. The

sensor suit's IMUs are Pololu© 's MinilMU - 9 v2, which contains a gyro, accelerometer, and

compass (L3GD20 and LSM303DLHC carrier) and is interfaced through the Arduino Pro Mini

to the computer via USB. The sampling rate for the VI used is 0.03s. The front panel for the

LabView VI used to record the data from our experiments is shown in Figure 5-3. We define a

vector X that contains all the recorded data points such that

X= xi x 2 - ' i

where xi are the data vectors obtained from each IMU. Our success variables that are read from

the human for his or her first two transitions depend on orientation and velocity. For this we

focus only on the acceleration and velocity readings. The observed trend for both tasks resembles

the reaction shown in Figure 5-3. By using the orientation of the arms when they are stabilized
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and a relatively small velocity we can infer that the intercostal is in place. Using our training data

we determined an orientation and maximum velocity threshold that would be used to determine

whether the SRLm's operator is successfully holding the intercostal in place. Needles to say,

these conditions cannot be evaluated in a single point in time, otherwise our success detection

rate would not be accurate. For this we have to consider these conditions throughout a specified

period of time to verify if they hold true. Using the training data from each of the test subjects,

we observed that the time required for moving the intercostal and carefully orienting it properly

is an average of 2.4 ± 0.3s. Evaluating our orientation conditions for only that time window

Figure 5-3: Front panel of the VI for acquiring data from the SRLm's Operator while executing
the first transition. The images to the left are the raw data obtained form the IMUs. The circle

labeled "place" to the left of the stop button turns on yellow when indicating the operator that he
can start performing this sub task. The blue square shows the IMU signals of the right hand
during the period in which the SRLM's operator proceeded to properly place the intercostal.
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depending on the velocity variation can be easily implemented with LabView using case

structures, comparison blocks, and elapsed time counters. This same procedure was used for the

positioning of the drill. For this second experiment the SRLm had already fixed the intercostal to

the fuselage. For this one the average time obtained from the training data was 2.6 ± 0.4s. Using

this information obtained from the training data we developed the posture detection VI shown in

Figure 5-4.

Figure 5-4: Posture detection VI. Using velocities that are within the minimum and the
determined orientations we can identify which kind of posture is being assumed by the SRLm's
operator. The task starts from rest with the spike in velocity (top graph) and is detected to be in
the right position when the orientation (lower graph) matches the expected one.

In Figure 5-4 we can see that although the operator is assuming the posture that

corresponds to holding the intercostal in place, it still cannot be classified as success because this
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posture has only been held for 2.1ls and there was a small spike in velocity during the still

period. This was repeated for the placing of the drill task. Using this VI we are able to identify

when a task has been successfully 87% of the time. This VI discerns between the two postures

99% of the time. Some of the reasons why the posture was not properly classified as successfully

completed are:

* After placing the intercostal, the operator would brace to the fuselage while holding the

intercostal. This would still keep the intercostal properly fixed to the fuselage but would

affect the operators pose.

* After placing the intercostal, the operator would release one hand and increase the

gripping force on the hand that would remain holding the intercostal.

- Human induced disturbances: human beings cannot remain perfectly still, this could

result in a small sway, having to remove the intercostal due to some instant discomfort

and then resume position, having to stop due to a momentary itch, etc.

This same procedure was repeated for the transition where the SRLm's operator uses the drill to

secure the intercostal to the fuselage. Here, the time it took to complete the task varied greatly

between test subjects and even within trials of a same test subjects. However, one thing that

remained the same for all trials and test subjects is the fact that only after they had finished

securing the intercostal they exhibited a high acceleration of the hands towards the lower part of

the body. This was easily perceived after the relative still state where they operated the drill.

This was the criterion used to identify when the drilling task was successfully completed.

Now we turn to determining the endpoint position that corresponds to a successfully

positioned SRLm end-effector. This is done in a similar way as the procedure explained
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previously. Using the SRLm's back-drivability, the second worker places the end-effector in the

correct position and orientation. This information is recorded using the contactless absolute

encoders that are built in the motor and LabView as the interface. Similarly to the previous case,

an average of the trajectories traveled and final endpoint position were calculated. The results

present one of the greatest advantages of the SRLm: the fact that its operator is wearing it at all

times makes the SRLm's home position to be in the same relative position to the task. When a

human is performing a task, he or she will always assume the position that makes it most

comfortable for him to execute such task. For our tasks of interest, the operator is already facing

forward and at a particular distance from the task's workspace. This automatically gives the

SRLm the same initial position and orientation and the human, and since the operator will remain

in the same position and orientation while performing his sub tasks, so will the SRLm.

This is seen in the SRLm's recorded data as all the trajectories and endpoint positions

were nearly identical. Since the gripping end-effector for the SRLm is passive and the

vacuuming end-effector is not in direct contact with the environment, sliding control [24] was

used for the SRLm endpoint position control. Another advantage of the SRLm being worn is that

in the case that there is a small error in the end-effector position for a particular trial the human

can compensate for the error by moving as needed. Since the focus of this thesis is the

coordination of the SRLm and its operator when executing a set of tasks we will not address the

challenges brought to the control of the SRL due to being mounted on to a dynamic base.

5.3.4 Gesture Recognition

Using the success variable to determine the movement of tokens through the model is good

enough for transitions that require the SRL and the operator to perform independent tasks on
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different objects. However, this is different for when they work on the same object. Let us

consider our second transition: fixing the intercostal to the fuselage. For this transition we also

have to consider its leading place and what is happening in the physical world. The SRLm's

operator just finished positioning the intercostal in the fuselage and we are ready to have the

SRLm come in to use the gripper end-effector on the intercostal. Before the SRLm comes in we

must make sure that the conditions are right for it to approach the workspace. An additional

indicator is needed because, although we can now determine when the intercostal is in place,

there may be several facts that can compromise the completion of the task. The operator might

also resort to the behavior explained in the previous section, causing the SRLm to revert its

decision to that of "the operator has not been successful yet". For example, after positioning the

intercostal the human might switch to a posture that is more comfortable for when the SRLm

takes action. The SRLm would immediately recognize this and it will not attempt to execute the

next transition. This is why the "cue" variable was included in the guard expression return to the

previous place in the CPN model. This variable will determine if the necessary environment

conditions are met in order for the SRLm to fix the intercostal. Monitoring the entire

environment as well as unintentional human induced disturbances is impossible for the SRLm.

Just the fact that the SRLm would have to be constantly trying to predict if there will be a human

disturbance is not possible with only these 3 sensors.

However, as expressed previously, some tasks that are inherently difficult for the robot

can be trivial for the human operator. This is one such case. The human worker can easily

determine if all the conditions have been met for the SRLm to initiate his transition. Now that the

"cue" variable is based on human decision we can have the same approach as we did for the

"success" variables that were dealt with in the previous subsection. Given that an aircraft
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assembly facility is a noisy environment we discard using verbal communication with the SRLm.

This is also due to one of the SRL's main goals: feeling as an extension to the body. Although

using explicit gestures to communicate with the SRL is not as natural as moving one's limbs, it is

nowhere near as unnatural as talking to your limbs in order for them to act. We consider that the

workers prefer to use their heads to communicate with others when both their hands are busy and

they are operating within a noisy environment. Also, subconsciously nodding when something

has been achieved or when a task has been completed successfully was a trait that was noticed

frequently when we performed the tests in the Success Variable subsection of this chapter. For

these reasons we decided to use gesture recognition, more specifically a nod, to have the human

worker indicate when the SRLm can trigger the transition to fix the intercostal.

5.3.5 Data Acquisition and Processing

We used the same approach to determine which signals were most important when detecting a

nod. We proceeded to gather some experimental data before deciding what kind of algorithm

should be used for the gesture detection. This was done in this manner because if the nod can be

easily determined from just looking at the recorded signals we can chose a simple detection

algorithm instead of resorting to a complex one such as Support Vector Machines or Neural

Networks. The experiments for this section were similar to the ones in the previous sections of

this chapter. We prepared a LabView VI that would give a signal to the operator. The signal

consisted of turning on a light on the front panel. Once the light turned on the human would

proceed to position the intercostal. Once the intercostal was properly placed and the human was

ready to proceed to the next transition he would nod. Each test would last 30 seconds and would

give the SRLm's operator 5 indicators to commence his task. These were generated randomly
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and would be 4 seconds apart at minimum, thus giving the operator enough time to complete the

task and nod. This test was performed 5 times with 5 different test subjects. Figure 5-5 shows the

front panel of the LabView VI, as well as a usual nod after the indicator turned on.

Figure 5-5: LabView VI for obtaining the training data for nod detection. The sensor shown here
is the one attached to the back of the head. We can see that the nod is easily detectable, as the

head tends to remain in a static position throughout the execution of the test.

As expected, it was clearly visible from the measured signals when the nodding occurred,

therefore a simple threshold relationship would be enough to detect the nod. The signals used to

determine the threshold values for the nod detection are the Z and Y velocity readings. These

were chosen so that we could detect the nodding action regardless of the posture of the wearer.

Accelerometer and Euler Angle readings were discarded as they vary with the head's orientation.
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In our case we consider any point within the 20% of our maximum velocities for each nodding

action in the training set. This constraint prevents us from giving false positives when the worker

performs an unsecure or slow nod, thus taking into account human induced disturbances that

could easily affect the SRLm's decision algorithm. The nodding detection results are shown in

Figure 5-6. We can successfully detect 90% nods, and ignore feints as long as they don't

approach 80% of our maximum velocities from the training data sets. Although these techniques

work for the scope of this thesis, we are not able to detect more complex posture - gesture

combinations. The complexity gestures and posture relationships used for the transitions

increases with the complexity of the task of interest. Therefore, when extending the SRL's

database on task models we might need to resort to more powerful pattern recognition

techniques, such as Support Vector Machines (SVM) classifiers [15], as mentioned previously.

This technique has been widely studied for pattern recognition of one or multiple categories [25,

26] and for time-series data [27].
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5.3.6 Implementation

Both the results of the previous sections in posture and gesture recognition as well as the CPN

decision algorithm were implemented in a LabView VI and tested on the SRLm. The Front Panel

of this VI is shown in Figure 5-7. Some initial experiments were carried out with a modified

version of the SRLm. For this full-scale implementation, the SRLm was modified to have 2

degrees of freedom in each arm. Although this limits the SRLm to operate in the horizontal

plane, wearing the SRLm in the chest area, as opposed to the hip, can compensate for this. The

only change made to the CPN algorithm was due to the fact that the gripper end-effector is

passive. For our implementation purposes, the SRLm's operator actuates the gripper. The only

time when a human gives an explicit command to the VI is after the grip has been tightened and

the intercostal is secured to the fuselage. For the posture and gesture recognition implementation

Figure 5-7: Front Panel of CPN model and hardware implementation. On the top left part of the
panel we can see the CPN model. The places light up when there are tokens present.
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we focused on using the IMUs located in the right hand and the back of the head. This was done

because the test subjects were right handed and using the right hand sensor was enough to detect

the postures for holding the drill and the intercostal.

Right after the operator has successfully positioned the intercostal and given the cue, the

SRLm went directly into the "fix the intercostal" transition. When this decision has been made

by the CPN, the control laws for moving to the desired position are assigned to the SRLm. Even

though its operator removes the right hand in order to assist the SRLm with the gripping task, the

SRLm continues to execute his subtask. This shows that the nod was successfully detected and

that all conditions needed for the SRLm to act were matched. This is shown in Figure 5-8.

Figure 5-8: Once the operator has positioned the intercostal and given the cue, the SRLm
automatically moves in to place the gripper end-effector in its assigned position.
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After the SRLm confirms that the intercostal has been fixed to the fuselage, the tokens in the

CPN model are transferred to their next places. This means that the CPN is aware that the

human's arms are free and that the gripper end-effector and the SRLm's right hand are in the

"fixed intercostal" place. This automatically assigns the static conditions that the SRLm's right

hand will maintain while on this CPN place. These are to maintain the current position and to

keep exerting the force required to hold the intercostal. The later is meant for when the gripping

end-effector is automated. This is shown in Figure 5-9.

Figure 5-9: SRLm keeps the intercostal fixed to the fuselage after the "fix intercostal" transition
occurs. After the intercostal is confirmed to be fixed in place the operator can proceed to pick up
and place the drill.

69



Once the operator places the drill in place, the SRLm automatically proceeds to his transition

corresponding to positioning the vacuum. Once again, by triggering this transition, the CPN

executes the control laws that move the SRLm's left arm into position. This is shown in Figure

5-10. After the operator is finished securing the intercostal to the fuselage and releasing the

gripper end-effector then both the operator and the SRLm resume to their standby position.

Figure 5-10: SRLm automatically approaches the position of the drill once its operator has
finished successfully positioning the drill.
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5.3.7 Results and Discussion

Two test subjects executed the complete assembly task repeatedly; each repeated the whole task

10 times. When executing the complete assembly task, both test subjects succeeded 90% of the

time. Once an operator was aware of the indicators used by the SRLm, he was more aware of the

actions that he had to take and through practice in each of the trials he was able to increase his

efficiency while performing the task together with the SRLm. The failed tests were usually

during the first trial. By failure we mean that the operator was stuck at a single transition of the

CPN model for more than one minute, excluding the final drilling part. Reasons for failure are

mainly due to the SRLm not picking up the correct indicators in order to trigger a transition.

Assigning the output of our posture/gesture recognition algorithms we are able to

integrate our sensor suit directly with the CPN conditions and guards; which is then used to relay

the human worker's intention to the robot. The CPN can then assign the corresponding task

dynamic model to the SRLm depending on the places and transitions that the CPN's tokens are

currently activating. Our posture/gesture algorithm works for simple gestures that can be easily

classified. By focusing on the nodding action we are able to simulate coordination similar to that

of working together with another human. To accomplish our goal of making the SRL feel like an

extension of the human body we need to make this communication process more intuitive. For

this we need to identify other signals and rely more on the wearer's natural gestures while

executing the task. A possible approach is to add force sensors in the safety gloves to monitor the

worker's grip pattern. Another approach may be the use of gaze tracking to give the SRL a

means to share the same eyes as the human. In this scenario, a simple threshold technique to

identify these complex indicators would not suffice. A stronger classifier, such as the Support

Vector Machines, could be used address this issue.
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5.4 TEACH BY DEMONSTRATION

As explicitly expressed in the previous sections of this chapter, when a transition is triggered by

the CPN model, a control law is assigned to the SRLm. This control law ensures that the SRLm

performed the required action, which could be getting its end-effector to a particular point in

space, following a particular trajectory, or exerting a force on a certain point. This was mainly

covered in the section 5.3.2 of this chapter. By using the SRLm's back-drivability, we are able to

record the joint's trajectories that make the end-effector get to their desired location. When the

relationship is simple and the action is independent of the operator's current actions, we use the

approach presented in section 5.3.2.

However, this is not the case for situations where the SRLm and the operator have to perform

dynamic actions simultaneously or when the task itself cannot be expressed with a simple

modeling technique. For this case we consider a situation that is not represented in the current

CPN model. Although it is not present in our current model, it is possible to easily incorporate it

although it increases the complexity of our decision-making algorithm by adding additional node

ruptures (nodes that are parallel in the state space analysis) before the final state. This situation

goes as follows:

1. The SRLm has successfully completed fixing the intercostal with the end-effector.

2. The operator's next task is to pick up the drill and get ready to secure the intercostal to

the fuselage, but after a long day of work he prefers to presume the role of the SRLm,

which is only to vacuum.

3. The SRLm detects the operator's intention and using a drill end-effector positions itself.

After doing so, he waits until the operator has successfully positioned the vacuum in

place before he stars securing the intercostal.
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Another variation of this scenario is that the operator prefers to completely reverse roles with the

SRL. This way the SRL could use one limb to brace to the environment and increase its stiffness

and then use the other ann to perform the drilling. In fact, there are multiple variations of this

scenario where the SRLm then must have available a model for a dynamically complex task such

as drilling and be able to coordinate his actions with the operator's simultaneous actions. Once

again, due to the complex nature of the task in question we will utilize a data-driven approach.

To explore dynamically performing collaborative tasks, such as the ones described above, we

will consider another aircraft assembly task that requires two workers.

The majority of aircraft assembly operations are joining operations; workers mate

workpieces and fasten them with a tool, or make holes, dispense sealant, place screws, and

tighten them. The procedure of each step of operation is well documented in a manual. Joining

two workpieces entails two operations; one is to place the parts at a specified location, and the

other is to fasten them. Typically a single worker performs the operation in two steps. First, the

worker places the workpieces and secures them with a jig and a fixture. Second, the worker holds

a tool and joins the parts together. This two-step operation can be streamlined if an assistant can

hold the workpieces while the worker fastens them. Figure 5-11 shows a simple example of this

kind of manufacturing operation: joining a workpiece to a structure. A drill is used to make a

hole in the metal plate. In typical aircraft manufacturing, the tool used is too heavy to carry with

a single hand. Both hands must be used to hold the tool while drilling the workpiece. The two

most important parts of this task are the beginning of drilling and when the drill goes through the

workpiece. The first part is when the most erratic movement is felt. During the second, the force

felt on the plate decreases but then increases again when the lead worker attempts to remove the

drill from the plate.
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Figure 5-11: Demonstration data acquisition of two workers' cooperative operations: lead worker
holds a hand drill while the follower holds a workpiece that needs to be fixed to the plane.

This causes the part to be suddenly pulled towards the drill, causing a jerky motion. To avoid

this, the feed rate and the cutting force must be controlled properly and the workpieces must be

held firmly to bear the sudden change in the reaction force. Concerted operations are required

among the four hands of both workers.

We aim to perform this collaborative task with the SRL. The worker's role is to regulate

the drilling operation, while the robotic system bears the weight of the part. This needs a high

level of coordination between the human and the SRL. Also, the robot must adapt itself to the

state of the human and of the task process. We now consider teaching-by-showing as an intuitive

method for transferring intended motion, skills, and strategies from the human to target robots.

This section briefly describes a data-driven, intuitive approach to teaching the SRL concerted

operations with the human. Once the demonstration data have been collected, the challenge is to

extract estimation algorithms for controlling the SRL while it performs the task together with the
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single lead worker. Our goal is to replace two hands among the four with two robotic limbs. Let

us first assume that the lead worker's dominant hand, say, the right hand, takes over the control

of the task process. In the drilling example, the right hand of the lead worker determines the feed

rate and drill pressure, which are the key variables for executing the task. The behaviors of the

follower hands are therefore reactive; they watch the leader hands and decide what to do. This

implies that there is a causal relationship between the dominant hand and the other hands. As

shown in Figure 5-12, the behaviors of the follower hands may be described as causal dynamic

processes receiving signals mostly from the dominant leader hand and reacting to the received

signals. The questions are then which specific signals the follower hands use, what model

structure is efficient for predicting the behaviors of the follower hands, and how the model can

be tuned. We treat this problem as a system identification problem.
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Figure 5-12: Dynamic model of the follower's role.
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5.4.1 Experimental Setup

Figure 5-13 shows a scheme of the experimental setup, including thin film force sensors (SI and

S2), a camera (S3), and the aluminum plate. The output signals were chosen such that they could

be easily monitored through the use of wearable sensors on the worker's personal protection

equipment (such as their helmets and gloves) and mounted sensors on the SRL (such as cameras

and proximity sensors). The force sensors used were manufactured by FlexiForce@ (model

A20 I). The camera measured the distance from the drill to the plate x, while the first and second

group of sensors measured the leading (cutting) forcef and the following (holding) force y

respectively. The plates used for the test had a thickness of 3/8 inches and their center was at a

height of 4 feet 8 inches from the ground.

S1

S3
S2

Figure 5-13: Scheme of the experimental setup. SI is the group of force sensors measuring the
leading forcef, S2 is the group of force sensors measuring the following force y, and S3 is a

camera that records the position x of the drill with respect to the aluminum plate (light grey and
yellow).
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The test subjects were instructed to keep drilling without stopping (leading worker) and to hold

the plate in place with enough force to prevent rattling and erratic motions (assistant worker).

5.4.2 Data Acquisition and Processing

All experimental data was recorded using National Instrument's LabView. For the experiment

presented in the previous section three pairs of volunteers participated in the experiment and a

total of 26 datasets was collected. The datasets were divided in two groups: 20 were used to

determine the parameters and the remaining 6 were used for validation. The sampling rate for the

VI was 0.0 17s. The general trend present throughout all 26 datasets is shown in Figure 5-14. The

following hand keeps applying a stable force to the workpiece as the drill comes closer to

breaking through the plate. When the drill breaks through the workpiece, the plate holding force

increases in order to compensate erratic movements. In this instant, the leading (cutting) force

stops increasing and after a small time interval decreases abruptly in order to minimize the

vibrations of the plate as it goes through it.

Given this data set of demonstrations, we proceed to identify the dynamic model relating

the follower motion to a time sequence of the dominant hand motion and other measurements.

LetJ(t) and y(t) be leading hands and the follower hands applied force at time t, respectively. The

position of the drill is denoted by x(t). The change in x(t) represents the distance the drill has

traveled into the aluminum plate. One time sequence of demonstration data is represented as a

data set:

S1 = {x'(t),y'(t),f'(t)I t = 1,- -,N

where the same demonstration task is repeated m times: 1 <j < m.
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Figure 5-14. General trend for all datasets. The red line indicates the time for which the drill
breaks through the workpiece, while the purple dashed line indicates the time when the lead

worker starts to remove the drill from the part.

We proceed to identify a dynamic model of the follower hand that can predict its applied

force in relation to the dominant hand motion and the drills relative position:

f(t) = f(f(t), x(t); t). For the purpose of notational simplicity, we deal with scalar quantities

for f(t), y(t) and x(t). Let us begin with considering an ARMAX (Auto Regressive Moving

Average with eXogenous input) model for the dynamics of the follower hand:

y(t) = - Z aiy(t - i) + Znb bif (t - i) + Efl cix(t - i) + z(t) + v(t) (1)
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where aj, bi, ci are parameters to identify, v(t) is a zero mean, random variable representing un-

modeled dynamics. E[v(t)] = 0, and z(t) represents the follower hand motion that is not correlated

with other tenns:

f (0, ... , f(t - nb; x(O',..., x(t - nc); y(t - 1), ... , y(t - na)

The problem is to find parameter values involved in eq.(l) as well as the time function z(t)

representing the motion that cannot be predicted from other measurements. Let yp(t) and 0, the

regressor and parameter vector associated with eq.(1), be defined as

p(t = (-y(t - 1), ... , -y(t - na), f (t - 1), .. ,f (t - nb), x(t - ,..,x(t - nc))

0 = (a1 , ... , ana, bo, ... , bnb, CO, ... CncT

Using estimated parameter values & and estimated uncorrelated function Z(t), the follower hand

motion is predicted as

9(t) = S T qV(t) + 2(t) (2)

The parameter vector 0 and the uncorrelated function 2(t), t = 1, ..., N are obtained from the

demonstration data sets Si,j = 1, ... , m based on least mean square estimate:

em N

min yI(t) - 'i (t; z(t)) (3)

z(1),...,z(N) J=1 t=1
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where the second term in the parenthesis is the prediction of the follower hand motion for the j-th

demonstration data: 91j (t; 6, z(t)) =T pj(t) + 2(t) where Z(t) is given by:

m

2(t)M= (y(t) -0Tt))

j=1

where 0 is an optimal solution to (3). The predicted holding force of the follower, given by (2),

provides us with an algorithm determining the gripping force that the SRLm has to exert on the

plate in order to prevent it from coming loose. The second tenn on the right hand side, 2(t), can

be viewed as a feedforward term, while the first term is a type of feedback that modifies the

feedforward term based on the measurement of f(t- 1), y(t- 1), x(t- 1) and their preceding values.

Each of the time delays for the p(t) terms was set to 340ms.

5.4.3 Results and Discussion

In order to obtain the coefficients for our model we evaluated two cases. For the first one we

used a model that only takes into consideration the autoregressive terms of the holding force and

the force exerted by the leading hand with the drill (c terms in 0 are 0). For the second model we

considered the autoregressive terms and the position of the drill (b terms in 0 are 0). This way,

by comparing the resulting models we can determine which signal is more heavily weighted by

the follower when he determines how much force he has to use to hold the plate in place. Table

10-1 shows the values obtained for 0-'s coefficients for both models. We proceeded to test the

performance of our models by predicting the holding force on one of the data sets reserved for

validation. The results are shown in Figure 5-15.
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Input data: cutting Input data: drill
force f position x

a, 2.2933 -0.505

a2  0.7811 1.4889

b1 -2.3519 0

b2 -2.3325 0

ci 0 -7.1790

C2 0 7.4747

Table 5-1: The task dynamic model has been identified using as input data the cutting forcefor
the drill position x.

Figure 5-15 shows that both of our predictive models are below the required force for

holding the plate while the leading hand is still drilling. However, although this could

theoretically lead to the task's failure we take into consideration one of the key facts expressed in

the beginning of section 5.4: the points of interest are when the drilling starts and when the drill

breaks through the plate. Our force prediction between these two points are not crucial because it

is during that period that the cutting force is still being applied to the plate and the drill motion

has been stabilized. These two facts add an additional holding force that is not perceived by the

following hand's force sensors but by the plate in itself. However, this advantage does not exist

at the point when the drill breaks through the plate. Thus, the effectiveness of our predictice

models can be evaluated by taking into account their performance in this instant. Using this
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criterion, we observe that the prediction of the model based on the cutting force is either closer or

predicts a higher force than the actual force produced by the coworker during these tests. On the

other hand, the model based on the plate's position although its shape closely resembles the

actual holding force, we can observe that its magnitude is not as accurate.

Drilling task real output and model

13

0

12

11

10

0 0.5 1
Time [t]

1.5 2

Figure 5-15: We can see how our models are able to predict the holding force that has to be
applied by the SRLm. The blue graph represents the actual holding force of our validating data

set. The green graph represents our prediction using the autoregressive terms and the cutting
force of the drill as inputs to our model. The red graph represents our prediction using the

autoregressive terms and the position of the drill as inputs to our model.
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Using this analysis we can conclude that although the force based model is not very

accurate, it would provide a prediction that is highly likely to succeed in holding the plate in

place throughout the drilling process. Another approach that might result in a better prediction is

using an average of both model's predictions. This might have the effect of balancing the

disproportionate predictions of the force based model with the form accuracy of the position

based model This can be used to also conclude that the coworkes uses the perceived cutting force

as an indicator to control his applied force (magnitude) and uses the drill's relative position to

adjust the pattern used to apply the force.

83



84



Chapter 6

Conclusion and Future Works

In this thesis we study various control and coordination aspects of the Supernumerary Robotic

Limbs (SRL), a wearable robot whose main goal is to augment the capabilities of the user while

being perceived as part of his or her body. We have shown how Coloured Petri Nets (CPNs) can

be used to effectively model specialized aircraft assembly tasks for a worker using the SRL. By

thoroughly specifying all the conditions that must be met for each transition of the CPN model

we obtained a decision-making algorithm that can successfully coordinate the SRL with its

operator throughout the execution of the intercostal assembly process. Using the State Space

method we were able to analyze the CPN model's resource and tool allocation management,

reachable states and end states. After analyzing our results, we conclude that through rigorous

definition of each state and transition of the CPN we are able to obtain a model with minimal

system states, perfect resource management and only one system end state, which corresponds to

a successfully completed task. This CPN model can be used as a module in an overall

hierarchical CPN (HCPN). This HCPN, containing multiple CPN modules for several assembly

processes, would be in charge of the SRL's decision - making process.

Combining our task model with the sensor suit allows us to use predetermined gestures

and detected postures to relay the human's intention to the SRL. These are incorporated into the

CPN model, which is in charge of leading the SRL into the system dynamics relevant to the

determined next task. This coordination between the SRL and the human worker resembles the
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coordination between two workers. In order to move towards perceiving the SRL as part of the

human body we have to further explore human behavior during aircraft assembly tasks. Future

work in this area includes increasing the number and variety of sensors that monitor human

behavior. For these complex sensor networks the use of Support Vector Machines could help

detect more complicated gesture - posture combinations present in other, more complex,

assembly processes. This method can be used to include more intuitive but harder to identify

gestures as indicators in our CPN model. Further work in the use of CPN models as a decision-

making algorithm includes taking human induced uncertainties into account. These may

compromise the task's successful completion or change the CPN model itself.

Finally, a coordination-based control algorithm for collaborative drilling tasks can be

implemented based on the system model that has been derived from demonstration data. Further

work in this area includes the expansion of sensor variety when determining these control

algorithms. Also, these control algorithms should be implemented and tested on the SRLm to

evaluate their real-time performance.
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