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ABSTRACT

Characterizing the functions of sequences in the human genome is crucial for the

study and treatment of human disease. Though it is known that approximately 5%

of the human genome is conserved, about 40% of these sequences have yet to be

characterized, many of which may be important players in human disease

pathways (1). Experimental and computational techniques have been developed

which use histone modifications to segment the human genome into 25 different

chromatin states, including states corresponding to various functional sequences

like promoters and enhancers (4). However, the availability of this data is very

limited, as these assays have been performed on a limited number of cell types,

and the distribution of chromatin states varies across different cell types. We

therefore took a computational rather than experimental approach to discovering

regulatory regions. We characterized the nucleotide contents, regulatory motif

contents, conservation, gene distance, and human variation patterns of a subset of
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these regulatory sequences. By training a generalized linear classifier on this data,

we created a predictor for enhancer sequences that achieved 70% accuracy.
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1. INTRODUCTION

A fundamental challenge when looking at the human genome is trying to tease out

the important sequences from the meaningless ones. A very useful technique that

points us to functional genome regions is the study of conservation patterns over

different species; if a particular sequence in the genome is conserved over many

organisms it is likely to have functional importance.

Comparison of the human genome with mouse, rat, and dog genomes has

demonstrated that approximately 5% of all nucleotides in the genome are

conserved (1). However, only 1.5% of the sequences are actually known to code

for functional proteins (1). This leaves 3.5% consisting of non-coding sequences,

whose functions are likely to be regulatory in nature. To fully understand the

workings of the human genome and all of its disease-causing elements, it is

necessary to identify the functions of the non-coding sequences as well as the

coding ones.

These non-coding sequences frequently serve as transcription factor bindings

sites, whose roles are to regulate the expression of downstream genes.

Experimental and computational techniques have been developed which use

histone modifications to segment the human genome into 25 different chromatin

states, including states corresponding to various types of promoters, strong and

weak enhancers, insulators, transcribed regions, and repressed or inactive regions

(4).
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Chromatin state data has been collected for the human genome across

approximately 90 different cell types. However, regulatory processes change

across different cell types and there are over 200 cell types in the human body, as

well as a wealth of derived experimental cell lines. Thus, a thorough analysis of

histone modifications and chromatin state annotations would include assays on all

cell types. Unfortunately, performing all these assays would be a very difficult and

costly task. In light of this obstacle, we sought to characterize DNA sequence

patterns in different chromatin states using a computational rather than

experimental approach, using classification methods.

A classifier that could predict the functionality of a DNA sequence would have very

interesting applications. For example, one common method for understanding the

genetic contributions to complex diseases is to study single nucleotide

polymorphisms (SNPs), often associated with specific types of cancer. To

understand whether a given SNP is functionally associated with a disease, it would

be very helpful to assess whether or not it lies in a functional regulatory region. A

classifier could potentially provide a score for the likelihood that any given SNP is

worth pursuing as a potential contributor to disease.

To train such a classifier, the pattems we looked for included sequence-based

metrics such as k-mer frequencies, regulatory motif instances, as well as

mammalian conservation and distance to the nearest gene. In order to supplement

the data on mammalian conservation, we also incorporated data on human
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variation, including features for SNP density and allele frequencies. These features

can, to a certain extent, indicate regions of human constraint - sequences that

have evolved human-specific functions, but are not conserved across mammals. In

fact, studies have shown that an additional 4% of the human genome is subject to

lineage-specific constraint and therefore possibly functional only in humans (3).

Here we examine the signatures of enhancers with respect to each of these

sequence- and population-based metrics. We then ultimately assess the aggregate

performance of these features in predicting the enhancer chromatin states for 90

cell types that have already been profiled.
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2. METHODS

2.1. Datasets

We obtained the hgl 9 chromosome 1 sequence as well as the gene annotations

from ENCODE on the UCSC genome browser. A list of conserved elements in the

human genome and previously identified regulatory motif data can be found in (1).

Chromatin state data was obtained for a total of 90 human cell types. Data on

human constraint was obtained from (3).

2.2. Positive and Negative Data for Classification

Each cell type's DNA sequence was bucketed into 200 base pair fragments, which

corresponded to the bucketing in the chromatin state annotations. A fragment was

considered an enhancer if it was annotated as any of the seven enhancer states

(two states each representing enhancer-like genic regions, weak enhancers, and

active enhancers, as well as one poised enhancer state). In addition, non-

intergenic elements including repeats, transposons, coding regions, and 3'UTR

sites were eventually filtered from the data-set in order to avoid training on already-

annotated regions or regions unlikely to have regulatory importance, as described

below in Results.

When performing an aggregate analysis on the enhancers (that is, pooling

designated enhancer regions from all 90 cell types), we attempted to use several

different criteria for labeling a fragment as enhancer or not in a generic sense. In
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our first analysis, a fragment was considered an enhancer if it was labeled as such

in at least one of the cell types. However, in order to avoid training on false positive

data, we performed the same analysis but excluded enhancer signals that

appeared in only one of the cell types. In addition, we performed a third analysis

requiring that the enhancers appeared in at least half the cell types. In all cases, a

fragment was used as a negative sample only if it did not exist as an enhancer in

any of the 90 cell types.

Due to scarce computational resources, we analyzed only chromosome 1 of the

human genome in our analyses. For the purposes of classification specifically, we

looked at only 10% of chromosome 1. We chose training data by randomly picking

75% of the 200bp sequences in this -30 million base pair region. The remaining

25% of the sequences were set aside for testing the classifier after building the

model.

2.3. Feature Data

K-mer Counts

We characterized the DNA content of each 200bp sequence by enumerating its k-

mer counts. We specifically looked at 1-mers, 2-mers, and 3-mers. This produced

a total of 84 features, consisting of the counts of occurrences of every unique

nucleotide sub-sequence. In addition, we assembled a collection of the most

prevalent 6-mers in enhancers across all cell types collectively. We filtered for 6-
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mers that were also found to be prevalent in the background sequences, in order

to incude only features that are uniquely common in enhancers.

Omega and Pi Conservation

We characterized the extent of conservation of each 200bp sequence by looking at

its omega and pi conservation patterns. For each sequence, we recorded the

percent of its nucleotides that were reported as conserved, the maximum

conservation score that appeared in the segment, as well as the weighted average

of the scores over all nucleotides. This created a total of six features.

Regulatory Motif Instances

We also characterized each sequence by the number of regulatory motif instances

that overlapped with the region. We obtained regulatory motif data from the

Supplementary data-set information in (1). For each 200bp sequence in

chromosome 1, we simply counted the number of motif instances with which it

overlapped to any extent.

Distance to the Nearest Gene

We obtained gene locations from the refGene dataset in the UCSC genome

browser. Each 200bp segment's location was characterized by the location of its

midpoint. Distances were calculated from the midpoint of each 200bp sequence to

the location of the nearest gene transcription start or end site.
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SNP Density and Allele Frequency

Human variation data was obtained through (3). The SNP density feature was

established by counting the number of known SNPs that could be found within

each 200-bp region. On top of this measure, the average derived allele frequency

for the known SNPs in the bucket was taken.

2.4. Classification Techniques

For creating our classifier, we used R, a suite of tools for statistical computing. We

ended up using a total of 95 features, which are named in the above section;

notably, we used many k-mer counts (84 of the 95 features for 1-mers, 2-mers,

and 3-mers). From these features, we tried various classifier types from the R

class libraries, including SVM classification, decision-tree classification, and linear

models. From these attempts, we determined that the generalized linear model

was the best option for our particular enhancer dataset. We trained the generalized

linear model on 100,000 200-bp buckets from chromosome 1, using the features

detailed above.
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3. RESULTS

3.1. Analysis of Individual Features

K-mer Counts

To characterize the nucleotide content of the enhancer sequences, we considered

the prevalence of each unique 1 -mer, 2-mer, and 3-mer in our positive and

negative datasets. Most notably, these metrics were meant to account for the

elevated GC content of enhancers versus background. This can be represented

solely by the 1-mer counts. We included 2-mers and 3-mers in order to capture any

additional dependencies that may exist between nucleotide positions.

We found that, on average, enhancers were composed of 47% GC, compared to

41 % for background sequences. There was, as expected, very little variation in GC

content of background sequences between cell types. However, the GC contents

of enhancer sequences from different cell types varied quite a bit, ranging from

average GC contents of 43% to 55%, with a fairly even distribution within this

range.

In addition, we assembled a collection of the most prevalent 6-mers in enhancers

across all cell types collectively. These 6-mers were intended to capture longer

sequence motifs that may exist among enhancers. We filtered for 6-mers that were

also found to be prevalent in the background sequences, in order to include only

features that are uniquely common in enhancers. We found that approximately half
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of the top 100 6-mers were also common in background sites. After filtering for

these, we produced a list of 50 prevalent, enhancer-specific 6-mers. We found that

the most common sequences were found in approximately 17% of enhancers, and

most of the top 50 sequences could be found in close to 14% of enhancers. Below

is a ranked graph depicting the prevalence of these 6-mers among the enhancer

sites across all 90 cell types.

Prevalence of Most Common 6-mers in Enhancers

0.18

C 0.16

-c
0.14LU

et0.12
Ln

U 0.10

L- 0.08
:3
U

o 0.024-
-0

E02

0.000 10 20 30 40 5
Most Common 6-mers

Figure 1: Prevalence of common 6-mers across all cell types. Each bar indicates

the fraction of enhancers in which a particular 6-mer was found - in other words,

the average number of occurrences per enhancer.
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As there were no 6-mers with particularly outstanding frequencies in enhancers,

we simply decided to include the top 50 sequences as features in our classifier.

Omega and Pi Conservation

Each 200bp sequence was characterized by its omega and pi conservation

patterns. These included the percent of its nucleotides that were reported as

conserved, the maximum conservation score that appeared in the segment, as well

as the weighted average of the conservation scores over all nucleotides.

As expected, we found that enhancer sequences were significantly more

conserved across mammals than background sequences, across all metrics.

Below is a comparative summary of these statistics for each conservation measure

we used:

Mammalian Conservation for Enhancers vs. Background

Omega Pi
Weighted Fraction Max Weighted Fraction Max

Enhancers 0.85 0.11 2.73 1.27 0.19 3.52
Background 0.44 0.06 1.49 0.69 0.11 1.91

Table 1: Average conservation patterns across all 90 cell types, recorded for both

the omega and pi metrics. The weighted column indicates the fraction of

nucleotides reported as conserved, weighted by the conservation score reported at

each nucleotide. The fraction column indicates the simple fraction of nucleotides

that were reported as conserved, to any extent. The max column indicates the
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maximum conservation score reported in the 200bp sequence. All values have

been averaged over all enhancer sites, in all 90 cell types.

The statistics reported across all measures are very similar, on average indicating

that enhancers show evidence of being approximately twice as conserved as

background sites, according to these metrics.

We included all six of these conservation features in our original classifier.

However, they were eventually combined into a single binary identifier for

conservation, which we reported as positive if 5% or more of the nucleotides in the

200bp sequence were reported as conserved by either the omega or pi

conservation metrics. These two methods proved to have comparable performance

in the classification stages.

Regulatory Motif Instances

We report similar findings for the prevalence of regulatory motifs in enhancer

sequences. We found that enhancers included around twice as many regulatory

motifs as did background sequences. On average, these motifs could be found in

approximately 60% of enhancer bins, while only 30% of background sequences

contained a regulatory motif.
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Distance to the Nearest Gene

Enhancers were, as expected, much closer to genes than background sequences.

On average, enhancers were located approximately 20,000 nucleotides from the

nearest gene. Background sequences, on the other hand, were on average located

1 million nucleotides away from the nearest gene. However, as averages in this

case are not the most useful metric in understanding this distribution, we produced

a histogram of enhancer distances from genes, as shown below in Figure 2. The

equivalent distribution for background sequences is fairly uniform.

0.10
Distribution of Enhancer Distances from Gene

0.08
L,
L-
ai
U

- 0.06

LU

0

C 0.04
0.

U

0.02

0.000
2 4 6 8

Distance from Gene (in thousands)
10

Figure 2: Histogram of enhancer distances from genes across all cell types. Each

bar indicates the fraction of enhancers that were located at each distance. Most

enhancers occur very close to genes - within several thousand nucleotides.
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SNP Density and Allele Frequency

SNP density was slightly higher, by approximately 25%, in enhancer sequences

than in background sequences. On average, enhancers had 2.5 SNPs per bucket,

while background fragments contained around 2 SNPs. The difference in average

allele frequency was not significant.

3.2. Overall Classification Performance

All sequences were characterized according to all the above metrics: k-mer counts,

extent of conservation, occurrence of regulatory motif instances, distance to the

nearest gene, SNP density and allele frequency. We performed several analyses

with this data in addition to assessing the performance of the overall classifier. As

detailed below, we compare the classifier's performance when varying the

stringency of our criteria for choosing enhancers (based upon the number of cell

types in which the fragment was labeled as an enhancer). We found that requiring

an enhancer to be present across more cell types drastically improves

classification accuracy. We also compare the classification power of each feature

category individually, in order to gain an understanding of their relative usefulness

in enhancer classification. We report that basic k-mer counts were the most useful

feature in distinguishing enhancers from background sequences, with distance

from the nearest gene and conservation also exhibiting a decent amount of

prediction power. The regulatory motif and human variation features were less

useful. Finally, we assess the performance of our classifier in being able to

distinguish between general and cell-type specific enhancers, where our positive
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and negative data correspond to common and rare enhancers, rather than

enhancers versus background.

Initial Classifier Performance

The original classifier managed to correctly identify 70.43% of the testing data,

leaving 29.57% of instances incorrectly classified. In this iteration, a fragment was

considered an enhancer (and therefore labeled positive) if it was designated a2s

such in at least one of the 90 cell types. Negative sequences consisted of any

fragment that was not labeled an enhancer in any of the cell types. Below is the

ROC for this first iteration of the classifier.

ROC for Overall Classifier (AUC: 70.43%)

q _

a)
a)

a)

0
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False positive rate

. 1
0.8 1.0

Figure 4: The ROC

be 0.70.

curve for our classifier. The area under the curve came out to
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Reducing Dimensionality of the Feature Data

In order to improve our classifier's performance, we decided to reduce the

dimensionality of the feature set by performing a principal component analysis on

the k-mer count data. There are naturally many redundancies in the 1-mer, 2-mer,

and 3-mer counts we initially provided (see Figure 3), so many of the features were

correlated and could be captured more succinctly.

K-mer Count Correlations

Figure 5: Correlations between the 84 1-mer, 2-mer, and 3-mer counts. Many of

the pairs are highly correlated.
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We performed principal component analysis on the k-mer matrix and produced the

following correlations.

Princi al Component Vector Correlations

URI

UU

Figure 6: Correlations between the 84 principal components. Most of the

correlations have been eliminated.

We chose the top five orthogonal principal components and created a classifier

that took five new features - the dot products of the normalized k-mer counts with

the principal component weightings. These five features replaced the 84 k-mer

counts, greatly reducing the dimensionality of the feature set. However, the

performance of the resulting classifier did not significantly improve.
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Comparing Classification Power with Different Enhancer Criteria

Here we compare the classifier's performance when varying the stringency of our

criteria for choosing enhancers. This stringency was based upon the number of cell

types in which the fragment was labeled as an enhancer. In our first analysis, a

fragment was considered an enhancer if it was labeled as such in at least one of

the cell types. However, in order to avoid training on false positive data, we

performed the same analysis but excluded enhancer signals that appeared in only

one of the cell types. In addition, we performed a third analysis requiring that the

enhancers appeared in at least half the cell types. The figures below depict the

resulting performances of the classifier.

Two or More Cell Types (AUC 72.55%) At Least Half of the Cell Types (AUC 86.65%)

q- q ,

IR I
2 42

O C!

0.0 0.2 0A 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

False posve rate False posve rate

Figure 7: Comparison of classification power of when criterion for identifying a

segment as an enhancer becomes more stringent. As the figures show, requiring

an enhancer to be present across more cell types drastically improves

classification accuracy.
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As shown in the figure above, the accuracy of the classifier improves dramatically

when requiring enhancers to be present in more and more cell types. The original

classifier required enhancers to be present in only one cell type and achieved 70%

accuracy. However, requiring enhancers to be present in at least half of the cell

types resulted in an impressive classification accuracy of 87%. This indicates that

the enhancer signatures across the feature set strengthen greatly for enhancers

that are more common across cell types.

3.3. Classification Power of Individual Features

In order to gain an understanding of their relative usefulness in enhancer

classification, we also compare the classification power of each feature category

individually. We found that k-mers had the most significant predicting power (64%

accuracy), followed by distance from the nearest gene (61.93%), mammalian

conservation (58.58%), regulatory motifs (54.55%), prevalence of top fifty 6-mers

(51.87%), and human variation data on SNP density and allele frequency

(50.91 %). ROC plots are shown below.
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3.4. Classification of Common vs. Cell Type Specific Enhancers

In order to understand whether common enhancers have a distinctly different

signature from cell-type specific enhancers, we tested our feature set on its ability

to distinguish between the two. In this framework, our positive sequences included

all enhancers that could be found in at least 80 of the 90 cell types. The negative

sequences consisted of enhancers that occurred in 1-10 cell types. The classifier

achieved 77% accuracy, as shown below

Common vs. Cell Type Specific Enhancers (AUC: 77.63%)

II I I

0.0 0.2 0.4 0.6

False positive rate

0.8 1.0

Figure 9: Classification of common versus cell-type specific enhancers. Common

enhancers occurred in 80-90 of the cell types, while the enhancers that occurred in

1-10 cell types were designated as cell-type specific.
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The classifier did fairly well at distinguishing between the two categories of

enhancers. However, this may not be due to cell-type specific enhancers having

their own unique signature - rather, it could simply be because common

enhancers have a much stronger signal of the same nature. In other words, cell-

type specific enhancers may, to the classifier, look very much like background

sequences in this context.

25



4. DISCUSSION

The features that turned out to be most informative for enhancer classification were

k-mer counts, distance to the nearest gene, and mammalian conservation. We

hoped that the SNP density and allele frequency features would contribute

additionally to the classifier's accuracy, as they are meant to capture evidence of

human constraint. However, despite the correlation of SNP density and allele

frequency measures with enhancer positions, these features alone may not

produce a strong enough signal, within each individual 200-bp fragment, to be

useful for a classifier. Better data on human constraint may still be very helpful, as

it should capture signatures that indicate functional importance outside the scope

of mammalian conservation. Additionally, it is possible that a classifier

incorporating other features, like substitution frequencies, periodicity, proximity to

other identified regulatory regions, or just more k-mer counts would be able to

better capture some of the patterns to be discovered in enhancers.

The accuracy of the classifier did increase by an impressive amount (70% to 87%)

once we considered only those enhancers that appeared in a large number of cell

types. In general, there may be an issue with training on more cell-type specific

enhancers. In this framework, we are essentially asking the classifier to group

together sequences that may function as enhancers in one cell type, but not at all

in another cell type. This may have contributed to our classifier finding it very

difficult to form a comprehensive idea of what cell-type specific enhancers look

like. This is intuitive, as perhaps the notion of a cell-type specific enhancer implies
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that there are distinguishing processes going on in different cell types that may not

be captured by sequence data alone.

Another way to improve upon our work would be to attempt to classify into more

categories. Our current classifier tries only to separate instances into enhancer and

not enhancer. It would be interesting to see whether a classifier could distinguish

between three categories: common enhancer, cell-type specific enhancer, and

background site. This could give an idea of whether the signatures for common

versus cell-type specific enhancers are actually different, or if cell-type specific

enhancers just exhibit a weaker version of the same signature.
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5. CONCLUSIONS

We establish here that enhancers can be predicted with up to 70% accuracy using

classification techniques and a basic set of sequence-based features. Though this

is a modest result, it should be expected that classification based on sequence

alone is unlikely to achieve very high levels of accuracy, given the variation of

enhancer distributions between cell types. Instead, perhaps with improvements in

accuracy, these techniques can be used to create predictions for whether a given

fragment of DNA is likely to have functional importance. If, for example, we wish to

understand whether a given SNP is functionally associated with a disease, a

classifier could provide a score for the likelihood that this SNP is worth pursuing as

a potential contributor to disease.

Moreover, we show that enhancers that are common across all cell types can be

predicted with up to 87% accuracy. The prediction of common enhancers may

seem like an unhelpful concept, as presumably these enhancers have already

been discovered in the cell types that have been assayed for chromatin

modifications. However, it is possible that a classifier trained on strong enhancer

data (enhancers identified to be present across many cell types) may even pick up

enhancer signals that have not been received through analysis of histone

modifications.

As discussed previously, improvements to enhancer classification have yet to be

made. Future directions in this topic might explore additional features useful for
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enhancer classification and the differing signatures between common and cell-type

specific enhancers. In addition, once more accurate ways of detecting human

constraint are developed, these may prove to be incredibly useful as additional

features for classification, as there are likely many human-specific enhancers

whose conservation signatures cannot be detected through comparison across

mammals alone.
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