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Abstract

Writing programs that are capable of completing complex tasks on web pages is
difficult due to the inconsistent nature of the pages themselves. While there exist
best practices for developing naming schemes for page elements, these schemes are

not strictly enforced, making it difficult to develop a general-use automated system.
Many pages must be hand-labeled if they are to be incorporated into an automated
testing framework.

In this thesis, I build an application that assists human users in classifying and la-

beling web pages. This system uses a gradient boosting classifier from the scikit-learn
Python package to identify which of four tasks may be performed on a given web page.
It also attempts to automatically label the input fields and buttons on the web page
using a gradient boosting classifier. It outputs its results in a format that can be eas-
ily consumed by the LARIAT system at MIT Lincoln Laboratory, greatly reducing

the human labor required to incorporate new web pages into the system.
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Title: Research Scientist

Thesis Supervisor: Dr. Kevin C. Gold
Title: Technical Staff
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Chapter 1

Introduction

In this thesis, I will present a tool that I built to allow users to quickly classify the

types of HTML inputs on a given web page, identify which of four tasks can be

completed on that web page, and determine which button on the web page is used

to submit the information entered. The tool is backed by several machine learning

classifiers, whose design and performance I will also discuss. The structure of these

classifiers is inspired by the idea of affordances, which I will explain in this section.

1.1 Background

Consider that you are looking around a room that contains many surfaces, including

chairs. Your goal is to sit down. As a human, you know that you can sit on a chair -

but you also know that you can sit on the ground. In order to sit on a chair, you first

approach the chair, turn so that your back is facing it, and slowly lower yourself onto

the chair, pivoting at your knees. To sit on the ground, you may lower yourself until

you are touching the ground, and then you may fold your legs underneath yourself.

Both of these actions have the same endpoint - you are solidly seated - but they have

very different paths to this goal.

What if you only knew how to sit by using a chair? If there were no chairs

around, you could never sit down, and you would be forced to search endlessly until

you collapsed from exhaustion. Silly, but this is analogous to the approach that many
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automated systems take. Dealing with new situations can be very computationally

intensive (and difficult), and many existing systems can only perform well in highly

regulated environments.

Instead of learning how to complete a task in a particular way (find a chair to

sit in), we will try to learn to identify when a task can be completed, given a set

of resources (identify whether a surface can be sat upon). Put another way, we will

attempt to learn whether a set of objects "afford" us to complete our goal action.

1.2 The theory of affordances

This theory - looking at objects in terms of the actions that they afford a user - was

first mentioned by J. J. Gibson in 1977 [5]. According to Gibson, "the affordance of

anything is a specific combination of the properties of its substance and its surfaces

taken with reference to an animal" - so flat surfaces afford sitting upon, food items

afford eating, clothing and blankets afford making you warmer, etc. etc. Gibson

proposes that affordances are learned through experimentation - we can test whether

a surface is solid enough for walking-on by prodding it with our feet, or test whether an

object is edible by biting into it. On the surface, the theory of affordances seems ripe

for implementation in a machine learning context - it is learned by experimentation!

It only took four years for Gibson's affordances to be implemented in robotics by

Harri Jippinen [8]. He suggests using the idea of affordances in a supervised learning

context - robots can learn information about objects by attempting to use them to

carry out tasks. Then, to the robot, the objects in its environment are characterized

by the different tasks that they can be used to complete - the basic idea of affordances

in action. Jhppinen even goes a step further and suggests that affordances can be

used to determine the relationship between objects. He proposes creating a Logical

Taxonomy of Concepts in which objects are organized into a tree, with the actions

that they afford as their parents. Then, objects that are siblings may be similar.

Paul Fitzpatrick et al. [4] successfully implemented a system to allow a robot to

learn about the affordances of objects by poking them. This robot, Cog, sought to
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determine whether the objects afforded rolling or sliding. By repeatedly interacting

with the objects, the robot was able to build a model of the object's reaction to

poking - it learned the affordances by doing. Alexander Stoytchev extended this idea

of robots learning by doing to enable a robot to learn about the affordances provided

by various tools [17]. Stoytchev's work is particularly interesting, as it was one of the

first examples of robots learning new methods of interaction by experimenting (rather

than just learning about properties of an object). Stoytchev's robot was even able to

use its existing knowledge of tools to cope with failure (a broken tool) - showing just

how powerful an affordance-based, exploratory approach can be.

Luis Montesano et al. [91 hypothesized that learning all affordances entirely from

scratch, as somewhat suggested by Jippinen, may be too difficult, and they pro-

posed an alternate bootstrapping infrastructure that could be used for robots in-

stead. Their robot was given some basic actions and perceptions and learned a series

of increasingly-difficult tasks and affordances of objects. Like Cog, their robot learned

affordances by interacting with objects - but its preprogrammed head start allowed

it to learn more efficiently.

The concept of affordances was also highly influential in the field of design, espe-

cially graphical and industrial design. Donald Norman's 1988 book "The Psychology

of Everyday Things" [10] suggested exploiting affordances to make objects seem more

intuitive - putting handles on things that can be opened, for instance. Due to some

confusion in the community about what an affordance was, Norman clarified what he

meant in a 1999 article [11], proposing the idea of there being two different types of

affordances - physical affordances and perceived affordances - that must be taken into

account when designing for a virtual environment. Computers, for instance, have a

variety of different types of physical affordances - clicking, typing, buttons that can

be pressed - but not all of these physical affordances will produce a result in every

application. Attempting to type in text on a web page that has no affordance for

typing will result in nothing happening, and the user will become frustrated (and

maybe even give up). Therefore, it is important for designers to clue users in to the

actual affordances of an application, so that only the physical affordances that can

15



actually be used are perceived affordances.

Some argue that the concept of affordances may be overused - and that affordances

used in human-computer interactions may be more culture-specific and less universal

than Norman may have us believe [12]. Still, affordances are a pervasive design

inspiration in both interfaces and robotics, and they have been used to great effect

for a number of applications.

1.3 Modern Approaches to Automated Web Test-

ing

There are a variety of frameworks that allow web developers to automate testing of

their websites. Automated web testing is important for web applications because it

allows developers to ensure that their tests are fast, comprehensive, and repeatable,

but it often comes with very high overhead.

Notably, the Selenium framework [14] allows for the development of a variety of

different tests, from automated browser actuation to recording and playing back tests.

It is open source and extensively used both by hobbyists and professional developers in

industry. One failing of automated web testing is stated directly in the introduction

to the Selenium documentation - "It is not always advantageous to automate test

cases. There are times when manual testing may be more appropriate. For instance,

if the applications user interface will change considerably in the near future, then any

automation might need to be rewritten anyway."

The reason for this is the way that Selenium (and many other automated testing

frameworks) are developed - they tie directly into the source code of the web page, and

if this code changes substantially, the tests will no longer work. While automated

testing frameworks are very useful in a variety of cases, they require substantial

developer effort to integrate into new versions of sites.

It is possible that automated web testing could be easier if the different compo-

nents on web pages could be automatically labeled instead of needing to be hand-
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labeled. Chusho et al. attempted to automatically fill out web forms using simple

matching expressions, with some success [2]. However, this approach does not gener-

alize well to new examples (and isn't a great predictive model). HeB and Kushmerick

developed machine learning models to semantically label the fields on web pages and

the tasks that those web pages could be used to complete. However, their classification

model required an extremely large data set, which can be infeasible. Automatically

labeling web pages remains a different challenge that has yet to be solved.

1.4 Motivations for an affordance-based approach

Web pages are almost tailor-made for an affordance-based approach. Different web-

sites may have different requirements for carrying out different tasks - one website

may require just an e-mail address to sign up for an e-mail news letter, but another

may require a name, e-mail address, birth date, or various other pieces of informa-

tion. While both websites afford the same basic action - signing up for an e-mailed

newsletter - if you are just looking for a form that requires you to enter an e-mail

address, you would miss the second page entirely.

Using affordances provides a new strategy for determining the field type of an

HTML input. There exist various ways to enter a birth date, for instance - you can

use one date field or multiple date fields. Naming conventions are also not consistent

- figure 1-1 shows several examples of search boxes paired with the HTML that

specifies each one. An affordance-based approach allows us to look past simple issues

of whether an HTML element is named something that resembles "search box" and

instead looks for objects that will allow us to enter in phrases and click a button to

hopefully get a result.

In fact, applying the theory of affordances to web navigation is not a new concept.

Hochmair and Frank [7] proposed using an affordance-based approach to organize a

corpus of web pages for browsing tasks. They propose that any user-intended action

(not just browsing) can be expressed as an affordance on a web page, an idea which

I will explore in this thesis.
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<input id="gbqfq" class="gbqfif" name="q" type="text"

autocomplete="off" value="" style="border: none;

padding: Opx; margin: -0.0625em Opx Opx; height: 1.25em;

width: 100%; background-image: url(data:image/gif ;base64,

RO1GODlhAQABAID/AMDAwAAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAwX3D3D);
background-color: transparent; position: absolute;

z-index: 6; left: Opx; outline: none;

background-position: initial initial;

background-repeat: initial initial;"

x-webkit-speech="" x-webkit-grammar="builtin:search"

lang="en" dir="ltr" spellcheck="false">

(a) A search box from Google.

<input class="swqbox" id="sbformq" maxlength="1000"

name="q" title="Enter your search term" type="text"

value="" autocomplete="off" style="color: rgb(0, 0, 0);

background-color: rgb(255, 255, 255);">

(b) A search box from Bing.

Web

<input style="" id="p_13838465-p"

class="input-query input-long med-large

compact-input-enabled" name="p" type="text"

title="Search" value="" autocomplete="off" autofocus="">

(c) A search box from Yahoo.

Figure 1-1: Search boxes and their HTML.
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There are non-affordance based approaches to web navigation as well. One such

model is ShopBot, developed by Doorenbos et al. [3]. ShopBot attempts to assist

users with comparison shopping by learning about different vendors and then search-

ing for a product description and price on each vendor's page. ShopBot learns which

forms on a web page are search forms by using domain-specific heuristics and by using

regular expressions to determine the information that should be entered in each field.

It then gauges its success or failure by looking at the resulting page. ShopBot then

uses this information about the vendor pages when comparison shopping. However,

the ShopBot model is very specific to the particular task that it is trying to complete,

and its architecture does not seen adaptable to other web tasks. While these sorts

of approaches can be successful in certain cases, I think that an affordance-approach

will be easier to generalize, which is necessary given the evolving nature of the web.
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Chapter 2

Technical Background

2.1 Introduction

This section contains an overview of three important technical components related

to my thesis project. I will describe two key projects at MIT Lincoln Laboratory,

LARIAT and GOSMR, that will benefit from the work done in my thesis. I will also

give background on Selenium, the package that GOSMR uses to interact with web

pages, in order to motivate the design of the output of the classification tool presented

in Chapter 5.

2.2 LARIAT

The Lincoln Adaptable Real-time Information Assurance Testbed (LARIAT) is a

state-of-the-art virtual testbed developed by MIT's Lincoln Laboratory [16]. It allows

users to spin up virtual machines and run network-wide simulations using real-world

software. The ability to interact with actual software is extremely valuable - not only

does it make the the simulations more realistic, it allows real-world threats to be

discovered. LARIAT additionally enables users to run real, repeatable experiments

on simulated networks, enabling a more scientific approach to automated testing [18].

Currently, incorporating new applications into LARIAT requires substantial devel-

oper effort. Each new application must be individually incorporated into the frame-
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work, including new application versions. LARIAT simulations can only use an offline

snapshot of the web, as even small changes in web pages can completely break the

existing implementations of LARIAT functionalities.

The current LARIAT user models also lack realism. They are implemented as

Markov chains, developed from real user data. While these user models can generate

realistic traffic, they tend to have overly simplistic behavior. The models don't plan

out their events, and so they can't develop alternate plans to accomplish their goals.

All actions must also be scripted out in chunks, and there is no notion of achieving

goals - users only have behaviors (like checking e-mail, browsing the web, typing

documents, etc. etc.). All of these considerations have caused the LARIAT team to

seek out a better user model.

2.3 GOSMR

The purpose of the Goal Oriented Scenario Modeling Robot (GOSMR) project was

to develop more sophisticated user models ('agents') to interact with the LARIAT

framework. GOSMR includes a planner, which allows the agents to take actions in

order to accomplish goals. This means that GOSMR models should ideally be able

to interact with new applications that they haven't seen before and to determine

whether these applications can be used to carry out different tasks.

The GOSMR architecture is driven by the idea of affordances. Agent actions

are broad categories that describe behavior (like LoginAction), and the agents are

given a high-level goal to work towards and use experimentation to determine how

to accomplish that goal. For instance, telling an agent to send a message to another

agent may require that agent to navigate to a new page and log in before it can send a

message - but the agent learns these requirements rather than having them specified.

One goal for GOSMR agents is to be able to interact with new web pages and

determine what tasks can be completed. Unlike LARIAT models, GOSMR models

should not need pages to be labeled in order to determine whether tasks can be com-

pleted and carry them out. This will make GOSMR models more resilient to change
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and will greatly reduce the necessary developer effort to integrate new applications.

Eventually, GOSMR agents should be able to interact with a live version of the web

- a totally unachievable goal for the existing LARIAT model architecture.

2.4 Web Page Actuation

GOSMR uses Selenium [14] to actuate web pages. It interacts with the Google

Chrome web browser through Selenium's ChromeDriver.

Selenium is particularly useful because it allows easy retrieval of HTML tags via

By statements. These statements allow for searching by tag ids, names, classes, partial

link text, and more. Selenium also allows for text entry, clicking buttons, and clicking

links, fully allowing GOSMR agents to browse and interact with web pages.

Each GOSMR agent stores specific knowledge about itself and about web pages

that it has visited. For instance, each GOSMR agent can be programmed with

its own name, e-mail address, etc. It can also store different username / password

combinations for web pages.

The actions of GOSMR agents are completely abstracted away from the identities

of the web pages themselves. A GOSMR agent can be directed to log on to a web

page, for example, and it will use site-specific knowledge to determine where to enter

its username and password and to determine which username and password to enter.

So, given something as simple as the id of an HTML input and the type of text to

enter, a GOSMR agent can enter the text specific to that site using Selenium - a fact

that I will take advantage of in Chapter 5.
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Chapter 3

Experimental Overview

3.1 Introduction

Knowing whether something can be done is often different from knowing how to do

it, and this is definitely the case in web navigation. When web pages contain multiple

inputs and buttons, figuring out which inputs to fill out and which buttons to click

can be far more difficult than determining whether a given task can be completed.

This problem gets even more difficult if the buttons and inputs are poorly labeled.

For each web page, I sought to solve two problems - determining whether the page

can be used to carry out a task, and then determining where to enter information,

what information should be entered, and what button needs to be clicked in order

to actually complete that task. Inspired by the theory of affordances, I classified the

training set of web pages by first looking at what actions they afforded and then by

using those actions as signals to see what larger goals might be accomplished.

This section will outline the various classification tasks in detail and will present

the overall architecture of the labeling tool that will be presented in section 5. It

will also detail some statistics on the training data set and give an overview of the

classification algorithm used.
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3.2 Experimental Approach

3.2.1 Classification Tasks

To correspond to the existing GOSMR architecture, I split my machine learning

models into two categories - those that dealt with learning whether tasks could be

completed, and those that identified fields.

Tasks

Tasks are high-level descriptors of general actions that a GOSMR agent can carry out

- the goal actions in the affordance model. Sending a message would be an example

of a task, but typing a name into a text box would not be.

I developed models to determine whether four tasks could be completed on a given

web page:

1. search - whether this page allowed an agent to enter in a search query and

receive information related to that query in response

2. login - whether this page allowed an agent to authenticate by providing some

information (typically a username and password)

3. digest - whether this page allowed an agent to sign up an address for an e-

mailed digest or newsletter

4. rewards - whether this page allowed an agent to sign up for a rewards program,

either for the site itself or for the site's parent company

As the tasks are high-level descriptors of an action to be carried out, there is no

guarantee that two pages that afford completion of the same task look the same. For

instance, one digest page may ask for just an e-mail address, while another may also

require a name, phone number, and birth date. Additionally, the naming scheme

between the task pages themselves is not consistent - pages contained many different

keywords that were not necessarily shared between pages that afforded completion of
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the same task. This diversity made it difficult for models to learn to classify pages

by task

Fields

Fields are specific areas where information can be entered by a GOSMR agent. There

were 23 different types of fields present in my dataset, which are enumerated in

Appendix A. Fields were used as intermediate signals to the task classifiers, as fields

that required the same type of information did tend to be very similar. Fields were

very good clues about the type of tasks that could be completed on each page -

pages that contained search boxes, for instance, always afforded searching. Statistics

specific to the classification of fields can be found in section 4.4.1.

Buttons

A button is the particular part of the web page that must be actuated in order to

submit the information that was entered in they fields. Classifying buttons ended up

being very similar to classifying fields - the buttons that were used to complete each

task tended to be similar to one another.

3.2.2 Classifier Architecture

Separate classifiers were trained to identify HTML inputs as being examples of each

field type. These classifiers were used as intermediate features and were input into a

classifer that attempted to detect whether a given task could be completed on each

page. Then, the button classifier for that particular task was run on the HTML

buttons on the page to determine which one would submit the field information

entered. A diagram of this architecture can be found in figure 3-1.
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Task classifer

(0, 1, 0,10) -> 1 (0.0, ,1->2 (0,0, .0} > 0 (1, 00, 0 -> 1
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Figure 3-1: The basic architecture of the page classifier.

search 91
login 53
digest 48

rewards 44

Table 3.1: The number of labeled training examples of each task.

3.3 Overview of data set

3.3.1 Pages

My data set consists of 157 web pages, each which could be used to complete one or

more of the four tasks. Each of the web pages was hand-labeled with the tasks that

could be completed on that page. The number of examples of each task can be found

in table 3.1.

3.3.2 Buttons

Each web page that could be used to complete a task contained a variety of input fields

where users could enter relevant information for that task and a button that users
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search 95
login 54
digest 51

rewards 45

Table 3.2: The number of labeled training examples of each type of button.

needed to click in order to submit that information. Since each button corresponded

to the submission of information related to a given task, the buttons were also labeled

with the task names. The number of training examples of each type of button can

be found in table 3.2.

Some of the pages contained multiple ways of completing each task with multiple

buttons (i.e. sign-up forms for different digests on the same page, all with different

buttons), which resulted in there being more buttons than examples of each task.

3.3.3 Fields

In addition, the input fields and buttons on each page were also hand-labeled with

one of 23 different field types. Field types that had fewer than 10 examples were

labeled as "other". Descriptions of the field types and the number of each can be

found in 3.3.

search box
secret question

city
account number

title
state
other

birth day

Table 3.3:

98 email 129 password
20 username 62 last name
46 company 11 gender
11 phone number 70 zip code
18 middle name 17 country
50 birth year 14 birth month
87 first name 68 secret answer
18 address 93

The number of training examples of each field type.
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3.4 Gradient boosting classification

Gradient boosting is a machine learning technique for regression that allows multiple

weak classifiers to be combined into one combined, stronger classifier. I transformed

my classification task into numerous binary classification tasks to allow the use of

this model.

My gradient boosting classifier was supported by decision trees with depth 5. As

Hastie et al. [6] note, the results of the classifier work generally well with depths

between 4 and 8 and are insensitive to changes within this range. I did validate this

assertion on my data set, the results of which can be found in appendix B, and chose

a depth of 5 to balance the runtime and performance of my system.

I chose the gradient boosting classifier because I suspected that many of my feature

classifiers would not have great performance, and boosting classifiers allow multiple

weak classifiers to be combined into one ensemble classifier that outperforms the

individual weak classifiers. I chose to use decision trees as my weak classifiers because

I wanted to allow the features to interact in the weak classifiers. This would allow for

more complex, conditional rules in my classifiers - maybe an e-mail address is only

an indication of a rewards sign-up page if it asks for additional information, like a

first and last name, and otherwise it is an indication of a digest sign-up page. Simple

binary classifiers, like 'does the page contain an e-mail field', would not be able to

express this rule.
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Chapter 4

Experiments and Results

4.1 Overview

In order to complete a task, GOSMR models need to know what information needs

to be entered in each HTML input field and what button to click to submit this

information - and so, it is important to be able to classify the types of each input

field and button. Additionally, I hypothesized that the types of the input fields

themselves may be good features to use in determining what tasks can be completed

on each page.

In this chapter, I will present statistics from the machine learning models that

make up the page labeling tool presented in chapter 5. I ran experiments to establish a

baseline and experiments to assess the performance of my machine learning classifiers.

I also will present several different full page classification experiments that will provide

justification for the selection of my overall classifier design presented in section 3.2.2.

4.2 Statistical Measures Used

I used four statistical measures to evaluate the performance of my classifiers.
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4.2.1 Accuracy

The accuracy of a system describes the closeness of the predicted value to the true

value. The formula for accuracy is:

accuracy =
true positive + true negative

total samples

Systems with high accuracy are very good at accurately predicting the value of a

sample.

4.2.2 Precision

The precision of a system describes its ability to accurately predict positive samples.

The formula for precision is:

true positive
precision =

true positive + false positive

A system with high precision means that samples that the system predicts to be

positive examples are very likely to be true positive examples, though it may miss

many true positive examples.

4.2.3 Recall

The recall of a given system measures how good it is at picking out relevant positive

examples. The formula for recall is:

recall =
true positive

true positive + false negative

A system with high recall is unlikely to miss a positive example, though it may

additionally return many false positive examples.
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4.2.4 F1

The F1 score is another measure of system accuracy that is often used to assess

information retrieval systems. The formula for the F1 score is:

2 -precision - recall
precision + recall

Systems with high F scores have both high precision and high recall, which

means that they are good at both correctly identifying positive examples and correctly

classifying all positive examples as positive.

Simply looking at the accuracy of my classifiers is misleading. The classifiers

tended to have low recall, as many classification tasks had a small number of positive

training examples. This led me to use the F1 score as my primary evaluation metric,

as it was more representative of the true performance of the classifiers. The accuracy

of each classifier is provided here for information purposes only.

4.3 Baseline

The baseline experiments were extremely simple - given some target phrase (either

the field name or the task name), the baseline classifier returned 1 if the target phrase

was present in the code sample and 0 if it was not.

4.3.1 Page Classification Baseline

For whole page task classification, the baseline classifier checked to see if the target

task name ("search", "login", "digest", or "rewards") was present in the HTML source

of the page. I ran this classifier on the labeled pages from the training corpus and

calculated the F1 score for the baseline classifier for each page type. Results from

running this experiment can be found in table 4.1.

The baseline classifiers did surprisingly well for each task. The high false positive

rate for the "login" task seems reasonable given that many pages advertised their

separate login page with a link labeled "login" in their standard page header. The
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Task True Positive False Positive False Negative True Negative Fl
search 90 27 1 39 0.8654
login 50 51 3 53 0.6496
digest 31 13 17 96 0.6739

rewards 41 10 3 103 0.8631

Table 4.1: Results from the baseline page classification experiment.

high false positive rate for the "search" task can be partially attributed to the many

hotel and flight pages, which allowed for searching for hotel rooms and flights but

which did not afford for the keyword search task that we defined "search" to mean.

4.3.2 Field Classification Baseline

For field classification, the baseline classifier checked to see whether the name of the

field was present in the HTML tag that defined the field. I ran this classifier on the

labeled fields from the training corpus and calculated the F1 score for the baseline

classifier for each field type. Results of this experiment can be found in table 4.2.

As expected, this baseline classifier had poor performance. While many of the

field names described the sort of information that was supposed to be entered into

the input field, they were often not present in the actual HTML source of the inputs.

For instance, while search boxes were likely to contain the keyword "search", none of

them contained the full phrase "search box". Other fields were likely to have different

names depending on the particular page that they were found on, like "company" or

"birth month". The exception to this trend was "password", as passwords were

unlikely to be referred to by any other keyword on these pages.

Eight out of the 23 field classifiers had an F1 score of 0, and the remaining clas-

sifiers did not have excellent performance. In order to be useful in gradient boosting

classification, classifiers must be able to correctly classify some samples, and so it was

necessary to train classifiers specifically for the field classification task.
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Field Type True Positive False Positive False Negative True Negative F1
search box 0 0 106 1054 0.0000

secret question 0 0 20 1140 0.0000
city 28 4 19 1109 0.7089

account number 0 0 11 1149 0.0000
title 9 49 10 1092 0.2338
state 33 0 18 1109 0.7857
other 3 3 86 1068 0.0632

birth day 0 0 18 1142 0.0000
email 91 16 48 1005 0.7398

username 15 0 47 1098 0.3896
company 3 0 8 1149 0.4286

phone number 1 0 71 1088 0.0274
middle name 0 0 17 1143 0.0000

birth year 0 0 14 1146 0.0000
first name 1 1 70 1088 0.0274

address 44 26 49 1041 0.5399
password 121 5 3 1031 0.9680
last name 1 1 70 1088 0.2739
gender 6 0 4 1150 0.7500

zip code 1 0 58 1101 0.0333
country 20 0 6 1134 0.8696

birth month 0 0 19 1141 0.0000
secret answer 0 0 11 1149 0.0000

Table 4.2: Results from the baseline field classifier.
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Button Type True Positive False Positive False Negative True Negative F1
search 43 0 37 141 0.6525
login 17 0 33 171 0.4789
digest 1 1 47 172 0.0377

rewards 3 1 41 176 0.1224

Table 4.3: Results from the baseline button classification experiment.

4.3.3 Button Classification Baseline

For button classification, the baseline classifier checked to see whether the target

task was present in the HTML that defined each button. I looked at the hand-

labeled button examples and calculated the F1 score for each task. Results from this

experiment can be found in table 4.3.

The baseline classifier had very few false positive results for the various button

types, which was interesting. It appears that, while "digest" and "rewards" are

reasonable keywords for the baseline page classifier, they do not often appear in the

HTML defining buttons on pages. While the baseline button classifiers did correctly

identify at least one button in all four cases, it was still necessary to train machine

learning classifiers to classify the buttons given the high false negative rate.

4.4 Machine Learning Classifiers

Given the poor performance of the baseline button and field classifiers, it was neces-

sary to train machine learning classifiers in order to better classify new buttons and

inputs. While some field types still proved difficult to classify, the field classifiers

outperformed the baseline classifiers in most cases. The button classifiers were able

to achieve very good performance.

4.4.1 Field Classifiers

While gradient boosting does not require the weak classifiers to perform well, it does

require the weak classifiers to be able to correctly classify some of the examples. I
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search box 10 0.9702 0.9826 0.8400 0.8998
secret question 10 0.8667 0.3000 0.2000 0.2333

city 10 0.9397 1.0000 0.6350 0.7678
account number 5 0.8187 0.1667 0.1667 0.1600

title 9 0.8511 0.3611 0.2407 0.2741
state 10 0.9017 1.000 0.4133 0.5663
other 10 0.8614 0.7500 0.2153 0.3270

birth day 9 0.8333 0.000 0.000 0.000
email 10 0.9149 0.9023 0.5538 0.6831

username 10 0.8900 0.7700 0.4904 0.5911
company 5 0.8341 0.2000 0.1000 0.1333

phone number 10 0.8611 0.7475 0.3446 0.4447
middle name 8 0.8630 0.5625 0.4167 0.4375

birth year 7 0.7976 0.0000 0.0000 0.0000
first name 10 0.9179 0.9490 0.5500 0.6786

address 10 0.8816 0.8488 0.3856 0.5141
password 10 0.9946 0.9923 0.9756 0.9833
last name 10 0.9153 0.9417 0.5214 0.6536
gender 5 0.8333 0.2000 0.1000 0.1333

zip code 10 0.9209 0.8183 0.7133 0.7358
country 10 0.9296 0.9000 0.5667 0.6633

birth month 9 0.8504 0.2222 0.1111 0.1481
secret answer 5 0.8648 0.4000 0.2000 0.2667

Table 4.4: Results from the gradient boosting field classifiers.

evaluated each of my 23 field classifiers by k-fold cross-validation. For classifiers where

I had more than 20 positive examples, I ran 10-fold cross-validation. For examples

where I had fewer than 20 positive examples, I ran [ J-fold cross-validation. Both the

gradient boosting classifier implementation and the cross-validation implementation

were from the scikit-learn Python package [13].

For each classifier, I used 5 times the number of negative examples as positive

examples.

The results of this experiment can be found in 4.4.

The gradient boosting classifiers were also unable to correctly classify examples of

the "birth year" and "birth day" fields, although they were able to correctly classify

examples of the "birth month" fields. Generally, the gradient boosting classifiers
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were able to do relatively well, but there were some interesting exceptions to this

rule. A comparison of the gradient boosting classifiers and the baseline classifiers can

be found in 4-1.

The key difference between the baseline classifiers and gradient boosting classifiers

is highlighted in the cases where the baseline classifier outperforms the trained classi-

fier. The features of the input are the full values of the different HTML tag attributes

- so, a "country" field labeled id = home-country would be correctly labeled by the

baseline, but it may be missed by the trained classifier if no other "country" fields con-

tained the phrase "home-country". The baseline classifiers tended to outperform the

trained classifiers in the cases where the HTML inputs tended to contain the target

phrase in conjunction with other words that made that particular phrasing unique.

This occurred in the cases of the "address", "company", "country", "gender", and

"state" classifiers.

One potential way to boost the performance of these trained classifiers is to add

23 additional features, one for each target phrase, that are 1 if the input contain

the phrase and 0 if it does not - basically augmenting the trained classifiers with

the baseline classifiers. Given that these classifiers were designed for a system that

includes human verification of each classification, I thought that this was unnecessary.

In the future, if it is important to improve the performance of the field classifiers, this
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Field Accuracy Precision Recall F1
search 0.7713 0.8047 0.8022 0.8012
digest 0.8658 0.8439 0.7500 0.7514
login 0.9813 1.0000 0.9433 0.9659

rewards 0.8796 0.8157 0.8150 0.7842

Table 4.5: Results from the gradient boosting page classifiers, using the field classifiers
as features.

may be a good place to start.

4.4.2 Page Classification

I hypothesized that using the presence of different input fields on a web page as

features in the overall page classifier would result in better performance than the

baseline classifier. I was additionally curious to see whether using the field types of

the input fields on each page would give better results than just using the HTML

of the input fields themselves. To test these hypotheses, I ran experiments on three

different classifiers to determine the tasks that could be completed on each page. All

of these experiments used 10-fold cross-validation to produce the statistics.

Simple Page Classification

I first attempted to classify the page based on the attributes of the input fields on

that page that were relevant to one of the four tasks. The binary representation of

each page was the number of times each text attribute was present in its inputs.

Since I didn't know the types of the inputs, it was impossible to filter the inputs

to those that were relevant to the classification task. I did know that each input was

relevant to some task, as I only used the inputs on each page that had been hand-

labeled with their field type and task type, but including unrelated inputs could have

only reduced the performance of the classifier, not improved it. Results from this

experiment can be found in table 4.5.

In the "digest" and "login" cases, the simple page classifier outperformed the base-

line, and in the "search" and "rewards" cases, the baseline marginally outperformed
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Field Accuracy Precision Recall F1
search 0.6000 1.0000 0.9556 0.9750
digest 0.2857 0.2000 0.0500 0.0800
login 0.3333 0.9000 0.7600 0.8099

rewards 0.2667 1.000 0.8000 0.8762

Table 4.6: Results from the gradient boosting page classifiers, using the field classifiers
as features.

the page classifier. We saw in the baseline case that the word "digest" was not a great

predictor of whether the digest task could be completed on the page, and it appears

that using the input fields instead gives a better result. We also saw the high false

positive rate in the baseline "login" case, which was much improved by only looking

at the input fields. It also appears that some of the words used in each field on the

login pages are relatively consistent - this is confirmed by the very high fl score for

the "password" classifier.

The underperformance of the classifier in the "search" and "rewards" cases does

not appear to be particularly interesting - we already knew that the keywords "search"

and "rewards" being present in a page's HTML were relatively good predictors for

whether that task could be completed on that page. The "search" and "rewards"

classifiers still show that the attributes of the HTML input fields can still serve as

decent classifier features in these cases.

Page Classification via Field Classifiers

I then sought to determine whether using the field types of the input fields on each

page as features for the overall page classifier would be more successful. The binary

representation of each page was a list containing the predicted number of each input

type on the page. The field classifiers were almost all able to correctly classify some of

the input fields, and it seems like the gradient boosting classifier that these features

fed into would be able to learn which results were more and less reliable and would

be able to improve on the performance of the field classifiers. Results from this

experiment can be found in table 4.6.
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Field Accuracy Precision Recall F1
search 0.9808 0.9900 0.9778 0.9830
digest 0.9367 0.9000 0.9100 0.8967
login 0.9621 0.9381 0.9633 0.9465

rewards 0.9108 0.8250 0.8900 0.8477

Table 4.7: Results from the gradient boosting page classifiers, using the field classifiers
as features.

In three cases, this was true - this is especially evident in the "search" case, whose

positive example pages all contained "search box" fields, which had a very reliable field

type classifier. The "login" classifier did slightly worse than the very reliable simple

"login" page classifier, which seemed reasonable, as the "username" field classifier

was not very reliable. The "rewards" classifier had surprisingly good performance -

given the diversity of the field types present on the "rewards" pages, I was surprised

that there was a consistent enough pattern to get good classifier performance.

The surprising result was that of the "digest" classifier, which had terrible perfor-

mance. I believe that this is due to the diversity of the different examples of "digest"

pages in addition to the unreliability of the field classifiers. We saw in the "login"

page case that the unreliability of the field type classifiers can affect the performance

of the overall page classifier, even when the contents of the page are very consistent

(all "login" pages contained a username field and a password field). In the "rewards"

case, I believe that this effect was mitigated by an overall consistent pattern between

the pages that was not present in the "digest" case.

Page Classification via True Fields

In order to eliminate the variable of the reliability of the field classifiers, I ran a new

experiment that used the true field types of each input field on the page. The binary

representation of the page was a list of the actual number of each type of field present

on that page. Results from this experiment can be found in table 4.7.

My hypothesis, that using the field types present on each page as features for the

overall page classifier would be successful, appears to be correct - the "digest" classifier
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Figure 4-2: A comparison of the fl scores of each of the four types of full page

classifier.

in this case was able to achieve far better performance than all the previous classifiers.

The "login" classifier was minimally outperformed by simple page classifier, and the

"rewards" classifier was minimally outperformed by the predicted input field type

classifier, but these performance deviations were not significant. In all cases, the true

input field type classifiers were able to outperform the baseline classifiers and achieve

good performance, showing that using the field types of the input fields as features is

actually a good approach.

A graphical comparison of the performance of these four classifiers can be found

in figure 4-2.

4.4.3 Button Classification

Unlike the trained field classifiers, the trained button classifiers outperformed the

baseline classifiers in all cases. Results from this experiment can be found in 4.8.

In fact, the gradient boosting classifiers were able to achieve excellent performance
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Table 4.8: Results

Accuracy

0.9603
0.9586
0.9922
0.9336

from the

Precision Recall F1
0.9708 0.5927 0.7310
0.9719 0.8532 0.9080
0.9900 0.9272 0.9567
0.9136 0.9775 0.9443

gradient boosting button classifiers.
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Figure 4-3: A comparison of the baseline and gradient boosting button classifiers.

on the buttons. The "search" button classifier had the worst performance, and its low

recall score implies that search buttons tend to use a more diverse set of tag values

than the other three button types, as there must be many false negative values. This

is unsurprising given the results from the baseline experiment - many "search" buttons

don't even use the word "search" at all!

A comparison between the gradient boosting classifiers and the baseline classifiers

can be found in figure 4-3.

4.5 Conclusions

In general, the gradient boosting classifiers were able to outperform the baseline

classifiers, as expected. In all cases, the button classifiers outperformed the baseline

button classifiers, but the field classifiers had some interesting exceptions where the

baseline classifiers outperformed. The field classifiers were able to correctly classify
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Figure 4-4: A comparison of the fl scores for the baseline and gradient boosting
button and field classifiers.

examples of all but two of the field types.

The baseline page classifiers were surprisingly effective, although they tended to-

wards false positives in the "login" case. It therefore still makes sense to use the

field classifiers as feature inputs to the overall page classifiers, as it is useless for our

purposes to believe that a task can be completed on a given page without knowing

how to complete it.

A graphical comparison of the performance between the baseline classifiers and

the trained gradient boosting classifiers can be found in figure 4-4.
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Chapter 5

The Affordance-Based Labeler

(ABL)

5.1 Technical Goals

While I was able to achieve relatively good performance with classification, the per-

formance of my classifiers was not good enough to trust them to identify fields and

tasks on their own. Additionally, given the diversity in the labeling of HTML inputs,

it would be unwise to assume that the classifiers would be able to correctly label all

new web pages. I therefore chose to incorporate the classifiers into an Affordance-

Based Labeler (ABL) so that they could help developers carry out the labeling tasks

that are necessary for automated web testing, reducing developer workload while still

maintaining accuracy.

The goal of the labeling tool (ABL) is not to accurately label every field on every

page. Rather, it identifies and exposes potentially relevant fields to the human users,

allowing them to more quickly label pages. It also learns from this human-generated

input by incorporating newly-labeled examples into its training corpus. Finally, it

outputs the classification results in a format that is easily parsed by GOSMR so that

it is easy to introduce new pages.

Without this tool, developers need to search through the HTML source of the

page, identify each relevant input field, and write out GOSMR affordances for each
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task that can be completed, which is a time-intensive (and dull) process. With this

tool, developers can rapidly and easily add new web pages to GOSMR.

5.2 Specifications

The tool uses the BeautifulSoup [15] and LXML [1] Python packages for parsing

HTML. It uses the native Python webbrowser package to display web pages.

The tool has several key methods:

5.2.1 label(url)

The label method takes a url as an argument. It displays the web page to the

user in a web browser and uses its trained classifiers to label all of the visible HTML

inputs - defined as inputs that are not HTML type "submit" and do not contain the

word "hidden". It then iterates through these inputs one by one and asks the user

to confirm (or correct) its labeling decisions or to provide a label if it was unable to

classify the input. It then uses the output of this user classification as input to the

page classifier and requests the user to confirm (or correct) its classifications. Finally,

it attempts to classify all buttons on the page, using the button classifiers from the

identified task, and it outputs information to be input into GOSMR in the following

format:

GOSMRAction

Selenium 'by'input text type GOSMR info

Selenium 'by'input text type GOSMR info

Selenium 'by'button text click

One output section is generated per labeled button on the page. The GOSMRAction

is the particular name for the action to be completed from GOSMR (LoginAction,

SearchAction etc.). The Selenium 'by' is a valid input to Selenium's By actioni -

1http://selenium.googlecode.com/git/docs/api/ava/org/openqa/selenium/By.html
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currently implemented as the input or button's Id if one is available, then Name, then

LinkText. The GOSMR inf o is the information that each GOSMR model should enter

in this field - f irst name, email, page-specific username etc. The keyword "text"

denotes that this information should be typed into the input field, and the keyword

"click" denotes that the button should be clicked.

One thing to note is that the labeling tool instructs the GOSMR agent to fill out

all of the input fields on a web page rather than only filling out the fields that apply

to the specific action that the agent is carrying out. Currently, the tool does not

attempt to determine whether filling out an input field is necessary to completing

a task, but this information exists in the labeled database of samples and could be

incorporated at a later date if desired.

5.2.2 retrain

Each page and its inputs that are labeled using the labeling tool are incorporated

into the database of training examples for the classifiers. Calling the retrain method

causes all of the field, page, and button classifiers to be refit to the data corpus.

retrain uses the existing database of text attributes to be used to convert the

samples to binary inputs. If a user wants to incorporate text attributes from new sam-

ples, he or she should call the relabel method before calling retrain. These methods

are provided separately because the relabel method gets substantially slower as the

size of the corpus increases, while the retrain method's runtime remains relatively

constant, and so users may want to retrain their models without waiting to relabel

each of the training examples.

5.2.3 relabel

Relabeling affects the way that each input example and button are converted to their

binary representations. A list of text attributes is saved and used to convert each

example. These text attributes are the values of the different HTML fields - an

example HTML snippet and its attributes can be found in figure 5-1. A list of all
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<input class="sw-qbox" sw-qbox
id="sbform-q" sbform-q
maxlength=" 1000" 1000
name="q" q
title="Enter your search term" enter your search term
type="text" text
value=""

autocomplete="of f"> off

(a) HTML that specifies a search box. (b) Text attributes of the search box.

Figure 5-1: HTML and text attributes of a search box.

of the text attributes in all of the samples is stored, and for each sample, the binary

representation of that sample is the list of text attributes, with each value set to "1"

if that value is present in the sample and "0" if it is not.

Relabeling the samples causes a new text attribute list to be generated and each

sample to be re-converted to its binary representation. Classifiers must be retrained

after samples are relabeled, so calling relabel also causes retrain to be called.

5.3 Performance

ABL has two components, a console component that takes in user input and a browser

component that displays the web page that is currently being classified. It highlights

the input or button that it is currently asking the user to classify.

Sample console output and web output can be seen in figure 5-2.

In this case, the ABL field classifiers were unable to classify the input, requiring

help from the user. In other cases, ABL provides its classification and asks the user

to confirm - this console output can be seen in figure 5-3.

Once the user has assisted ABL in classifying the fields on the page, ABL runs

through the output of the page classifiers and asks the user to confirm each one -

in the case of the two examples shown, ABL would ask " Can this page be used for

search?" Once the user has identified the tasks that can be completed on each page,

ABL asks the user about the buttons on the page that it has identified as being
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Go ugie
Goagie Search I'm Feeling Lucky

(a) ABL highlights inputs and asks the user to classify them

<input id="gbqfq" class="gbqf if" name="q"

type="text" autocomplete="off" value=""

style="border: none; padding: Opx; margin: Opx;

height: auto; width: 100%; background-image:

url(data:image/gif;base64,ROlGODlhAQABAID/AMDAw

AAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw%3DX3D);

background-color: transparent; position: absolute;

z-index: 6; left: Opx; outline: none;

background-position: initial initial;

background-repeat: initial initial;"

x-webkit-speech="" x-webkit-grammar="built in: search"

lang="en" dir="ltr" spellcheck="false">

What is this?

(b) ABL displays input HTML to help the user classify the in-

puts

Figure 5-2: ABL helping a user classify google. com

<input class=" sw.qbox" id="sb_formq" maxlength="1000" name="q"

title="Enter your search term" type="text" value="" autocomplete="off">

Is this a search box?

Figure 5-3: ABL asks the user to confirm its classifications
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potentially useful.

Currently, in order to display the highlighting to the user, ABL writes the modified

HTML output to a separate file that the user must refresh each time ABL attempts

to classify a new input. This is suboptimal, and in the future, I hope to modify

ABL to be completely web-based for a better user experience. However, the current

implementation is very lightweight, and depending on the HTML text attributes of

the buttons and inputs, it is possible that the user will not need to look at the web

interface at all.
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Chapter 6

Conclusions

In this thesis, I have designed and implemented ABL, a tool to allow for better

classification of web pages. ABL enables users to quickly and easily classify the

different types of input fields that are present on a web page, the different tasks that

can be completed on that web page, and the buttons that must be clicked in order

to complete that task. It also outputs this information in a format that is easy to

import into GOSMR, which will allow developers to easily incorporate new web pages

into the existing GOSMR and LARIAT frameworks to use in large-scale tests.

ABL is enabled by several machine learning classifiers that determine the relevant

inputs on each page, attempt to classify them, and then use this information to classify

the type of page itself (and determine which button needs to be clicked). The design

of the two-tiered system of classifiers was inspired by Gibson's theory of affordances

[5] and justified by experimental results, which I also presented.

I generally found that simply using the trained classifiers to classify the input

fields and the page type was not enough. While some of the field type classifiers

were reliable, when used as features to the overall page classifier, their individual

errors tended to compound and detract from the overall performance of the classifier.

Instead, I found that it was more reliable to use human input to check the results

of the individual field classifiers and use these results as input to the page classifier.

It is possible that, with more data, the classifiers will become more reliable, but for

now, using human input not only allows for better performance, it makes it easy to
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incorporate new, reliable training examples into the corpus.

The output of the labeling tool can be easily fed into GOSMR, and it could

be modified to not require human input at all. Instead, the tool could output its

classifications of each input field and GOSMR models could use these classifications

to attempt to submit the form. Given the huge, parallel nature of the LARIAT

infrastructure, it would be easy to run many models at once, which would allow for

fast, automatic labeling of many web pages.

It is possible that I could have implemented this structure instead - many models,

all attempting to complete the same task in a different way - and brute-forced the

solutions to the labeling problem rather than attempting to devise a machine learning

approach. But, this would be slow and wasteful of resources, and if any web pages

changed, the solutions may no longer be applicable. Therefore, I believe that it is

still best to use a classification model and to update that model so that it can help

generalize to new web pages.

It would also be interesting to see how the existing field models can be used to learn

new tasks. It seems that, if these new tasks required much of the same information as

the four tasks that the model can currently identify, it would be easy to learn whether

new tasks can be completed on a given web page. This approach has great potential

to be generalized to a variety of different pages, and it would be exciting to do so.

Ultimately, it would be exciting to see if using the tool and adding a significant

amount of additional training data to the corpus would allow the model to operate

essentially autonomously - correctly filling in different fields, leaving out fields to see

whether they are required information to complete a task, and learning to use entirely

new websites simply because they are similar to websites that it has seen before. The

tool certainly makes it easy to incorporate new data into the training corpus, so this

goal may just be a matter of time. Creating a system that is able to learn from its

mistakes would go a long way towards autonomy - and towards eventually interacting

with the live web.

Just as many others have before me, I have found approaching a task through

the lens of affordances to be useful. The tool that I have created is a foundation for
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building a truly automated web page labeling system, and I hope to soon see GOSMR

models interacting with the live web!
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Appendix A

Field descriptions

My data set contained examples of the following 22 fields, plus an additional other

category for fields that had fewer than 5 examples.

e search box - an input where a set of keywords could be entered and information

relevant to that query would be returned.

. secret question - a field for entering a security question. Could be either

user-supplied text or selected from a drop-down menu.

" city - a field for entering the name of a city. Generally user-supplied text.

" account number - the user's existing account number, often for rewards sign-

ups.

* title - the formal title for the user (Mr., Mrs. etc.).

" state - the user's state, often a drop-down menu.

* birth day - the day of the user's birth, often a drop-down menu.

" email - the user's e-mail address, when not used as a username.

9 username - a unique identifier for the user on a particular site. Could be text

or an e-mail address.
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" company - the user's company.

" phone number - the user's phone number. Sometimes appeared more than once

on a page if split into multiple chunks of digits.

" middle name - the user's middle name or middle initial.

" birth year - the year of the user's birth.

" f irst name - the user's first name.

" address - the user's street address. Does not contain city, state, zip code etc.

" password - the user's site-specific password - always a text field.

" last name - the user's last name.

* gender - the user's gender. Typically a drop-down menu or radio button.

" zip code - the user's postal zip code.

" country - the user's country. Typically a drop-down menu.

" birth month - the user's birth month. Typically a drop-down menu containing

either month names or numbers.

" secret answer - an answer for the user's security question. Always a text field.
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Appendix B

Classifier performance vs. tree

depth

Hastie et al. comment that, for most data sets, gradient boosting classifiers typically

work poorly with a tree depth < 2 (tree stumps), that they work well with a tree

depth of 4 < d < 8, and that depths > 10 are typically unnecessary . I found that

this was true for my data set as well.

I ran the gradient boosting classifier with depths of 2 to 15 on the search box

examples. I used the 97 positive examples of search boxes and 485 negative examples

of search boxes. The results of varying the tree depth can be found in figure B-1.
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7 8 9 10

Figure B-1: The relationship between the depth of
gradient boosting classifiers and the F1 measure, run

the decision trees used in the
on the search box data set.
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