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ABSTRACT

An inertial navigation system leveraging Kalman estimation techniques and quaternion dynamics is devel-
oped for deployment to a micro-scale unmanned aerial vehicle (UAV). The capabilities, limitations, and
requirements of existing navigation solutions motivate the need for an integrated solution that can be read-
ily applied to small embedded systems and still provide reasonably accurate results. Methods to calibrate
and compensate systemic inaccuracies in microelectromechanical systems (MEMS) sensors, commonly used
in micro-scale UAV applications, are also developed.

The problems associated with attitude determination and system localization are analyzed in isolation with
incremental simulation and field testing. Performance is evaluated against commercially available inertial
navigation system solutions. The result is a capable navigation system that, by its structure, trades a small
measure of accuracy in order to be easily adapted to the embedded computing constraints of unmanned
vehicles in the micro-scale.
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Chapter 1

Introduction

1.1 Motivation

In the past two decades, unmanned aerial vehicles, more generally known as Unmanned Aircraft Systems

(UAS), have experienced nearly exponential growth as they continue to become a more important tool for

private, commercial, and military users. According to a 2012 forecast by defense market analysis firm Teal

Group Co., the global market for UAS research and applications will nearly double from current procurement

expenditures of about $6.6 billion annually to $11.4 billion annually, making UAS an $89 billion market over

the next ten years [13]. The Unites States alone has invested over $11.8 billion over the life of one of its

most successful UAS platforms, the General Atomics MQ-9 Reaper 18]. It is commonly understood that

UAS are ideal for missions that are too dull, dirty, or dangerous for a human pilot. Unsurprisingly, the

most common application of modern UAS is in military surveillance and reconnaissance where they provide

an unparalleled ability to ingress into a hostile environment without risk to a human operator. Common

non-military applications include border patrol, aerial photography, geographic survey, search and rescue,

industrial inspection, and agriculture.

The U.S. Air Force, Army, and Navy have fleets of UAS ranging in scale from the commercial-airliner

sized Northrop Grumman RQ-4B Global Hawk down to the backpack sized Aerovironment Wasp. The

Lockheed Martin Desert Hawk, Aerovironment RQ-11 Raven, and the Naval Research Laboratories RQ-14

Dragon Eye are examples of a few small scale UAS platforms in production today which have successfully

11



packed all the necessary hardware of a UAS into a small platform. Miniaturizing flight system components

presents a particularly steep set of challenges and, perhaps as a direct result, the system and application

spaces around that scale remain considerably unexplored. The smaller micro-scale class of UAS, designated

MUAS or pUAS, has garnered significant attention within the aerospace community due to the potential for

novel application and the interesting challenges encountered in designing pUAS. Notably, there are a number

of inherent challenges to miniaturizing such a complicated electro-mechanical system while maintaining the

crucial elements that make larger UAS valuable. For example, all UAS require some form of effective

navigation system, to enable the aircraft to determine its precise location and orientation with respect

to the Earth. In large-scale vehicles these systems are reasonably well understood, if generally expensive,

voluminous, and massive. As the vehicle scale decreases the challenges and costs of implementing an effective

navigation system increase quickly and large scale solutions become wholly inappropriate. Compound that

challenge with the necessity to perform additional in-flight tasks like communications, stabilization and

control, and mission planning, and the need for efficient algorithms which optimize processor utilization

becomes apparent. Fortunately, trends in embedded sensing and computing, driven in no small part by

the consumer electronics industry continuing the Moore's-Law-like progress seen in computing, have brought

compelling embedded processing and sensing capabilities into reach for much smaller platforms. Nonetheless,

the realization of useful systems on that micro-scale requires a particularly effective application of avionics

design and navigation system development. Specifically, trying to solve and invert the large systems of

equations necessary to compute a general navigation solution on an embedded platform with limited memory,

slow single-threaded execution(as is common in most mainstream micro-controllers), and limited access to

support libraries is challenging. The goal of this work was to construct a highly configurable navigation

system meant to be leveraged by a size, weight, and power constrained pUAS, but which could also be

extended to larger more capable platforms.

1.2 Novel Micro-UAS Platform

In late 2010 engineering students at MIT were tasked, as part of a senior capstone design course, to develop

a small foldable pUAS platform for distributed sensing. The challenging design goals called for a vehicle

that could be deployed from an airborne platform via a common flare dispenser round (48mm x 62mm x

180mm) to achieve persistent high-altitude (30,000ft) atmospheric sampling . The capstone course yielded

12



a proof-of-concept design that was subsequently refined by an MIT masters student who guided a small

student team to build a light-weight flying prototype in early 2012. The resulting design, called the Locust,

was a small tandem-wing aircraft with a pusher-style propeller (Fig. 1.1). [35]

Figure 1.1: Locust pUAS and flare canister housing

The vehicle has only two control surfaces, one to either side of centerline, on the trailing edge of the rear

wing in an elevon control scheme. Elevon control describes a mechanism of blending conventional aircraft

wing and tail control surface effects into a smaller number of control surfaces, typically near the aft of an

aircraft. Despite a reduction in the degrees of control freedom, the blended control surfaces can typically

yield sufficient control of both aileron/roll control (traditionally implemented on the main lifting surface)

and elevator/pitch control (traditionally implemented on the rear lifting surface) through a combination of

symmetric and differential articulation. This blending offers reduced mechanical complexity but typically

comes at the cost of decreased control authority. The elevons are controlled by a combination spring/servo

mechanism that uses a spring loaded hinge to automatically deflect the surfaces upwards. Miniature servos

actuate the elevons through rotating pusher-arms that press down on the control surfaces. A brushless

motor provides thrust out of the rear of the pUAS from a pusher-style propeller. The aircraft was designed

to collapse to the form-factor of an air-launch flare canister with wings that rotate laterally on vertical hinges

to align with the fuselage. Figure 1.1 depicts the airframe in both its flight and "stowed" configurations to

accommodate the confines of the flare canister. The original design of the pUAS in its flight configuration is

shown in Figure 1.2, whose constructed specifications are detailed in Table 1.1.

13
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Figure 1.2: Locust pUAS Dimensions

Table 1.1: Locust pUAS Specifications

Wingspan (mm) 301
Length (mm) 158
Width (mm) 55
Height (mm) 40
Weight (g) 250

The project culminated in a favorable evaluation of basic flightworthiness through piloted testing but

indicated a clear requirement for on-board stabilization and guidance.

1.3 Problem Statement and Research Objectives

To accomplish missions, most UAS require some degree of autonomous flight control. This is done either in

the most basic form, as stabilization aiding for a remote-pilot, or in the more complex case, completely pilot-

less autonomous operation. The challenges of autonomous flight can be thought of as being comprised of three

major components: Guidance, Navigation, and Control (GNC) (Fig. 1.3). Guidance and control systems are

14



responsible for a wide range of activities including planning a UAS flight path in space and determining the

appropriate control signals to drive the UAS towards the intended path. The guidance system determines a

desired vehicle state, indicated by signal r in Figure 1.3. The navigation block, as previously described, is

concerned with determining the state of the vehicle (position, velocity, and attitude). The navigation system

produces an estimate, , of the current vehicle state. The difference between the guidance system's desired

state, and the navigation system's reported state is called the state error signal, e. The control system

determines how to drive the error signal to zero, effectively forcing the pUAS toward the desired state r.

The pUAS dynamics determine how the controller's output, u, affects the system output state, z. The output

z is measured through sensors which feed in the new state to the navigation system, which closes the GNC

loop. Note that noise in the system, indicated by the signals w, v, and v, can enter in at several locations,

making the job of closing the GNC loop harder. The construction of a noise-rejecting and self-correcting

navigation system, the effective foundation of autonomous GNC loop, is the goal of this research.

w

Guidance + e Control pUAV 1 z

Navigation E Sensing v

V

Figure 1.3: Closed-Loop pUAS GNC System

An Inertial Navigation System (INS) uses measured inertial phenomena, like accelerations and rotation

rates, along with external navigation measurements, like the Global Positioning System (GPS), in order

to keep track of an aircraft's motion and attitude. Ultimately, the INS will be constructed as part of a

larger software system commonly know as a Flight Management System (FMS). The FMS encapsulates all

of the major interface, monitoring, and management functionality required of an autonomous UAS including,

but not limited to, communication management, high-level mission guidance, low-level trajectory guidance,

vehicle navigation, flight control and stabilization, and sub-system failure monitoring and recovery. The INS

is critical for the vast majority of these tasks, as the FMS requires a timely and accurate estimate of the

vehicle's dynamic state to enact guidance and control tasks.
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At a minimum the INS must fuse data streams from a wide range of sensor systems to develop an accurate

estimate of the vehicle state. Position and orientation are commonly expressed in latitude, longitude, and

altitude and vehicle roll, pitch, and yaw, respectively. Small commercial INS solutions which provide these

data products are offered from vendors like SBG-Systems and VectorNav. Both companies offer solutions,

shown in Figure 1.4, which can provide state information, with varying levels of accuracy, in a footprint

approaching the size of a U.S. postage stamp. However, these devices offer little in terms of access or

customization of the the internal algorithms which produce the needed data products. Furthermore, although

these commercial INS may be small compared to most avionics components in full size UAS, neither are

small enough to fit inside the confines of the Locust pUAS without displacing the motor, batteries, servos,

or any potential payloads.

Figure 1.4: SBG-500N (L) and VectorNav VN-200 OEM(R)

The lack of a sufficiently flexible/extensible, and form-factor compliant, commercial option leads to the

conclusion that a custom INS was needed in order to offer both the required level of customization and system

miniaturization necessary to incorporate the INS components into the UAS avionics hardware. Typically

an INS uses a sensor package called an Inertial Measurement Unit (IMU), comprised of accelerometers

and gyroscopes, in order to directly sense dynamic changes in the an aircraft's state. Specifically, the INS

integrates the rotations and acceleration reported by the IMU to track changes in position, velocity, and

orientation. The problem with using an IMU in such a direct manner is that the accuracy of the INS

result depends heavily on the quality of the sensors in the IMU. Large UAS platforms can employ tactical

grade senors which produce accurate measurements that degrade slowly over time. Most pUAS platforms,

however, make use of less stable MEMS sensors. Problems like signal drift, noise, and nonlinear responses

make the challenge of producing an accurate state prediction through direct integration of a MEMS based

IMU extremely difficult, if not impossible over long time scales without some form of correction or aiding.

Consequently in order to produce stable and accurate results, most INS, especially those with a MEMS IMU,
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utilize some form of state estimation algorithm to incorporate aiding measurements and to mitigate the non-

ideal effects of sensors. This thesis explores building and testing a MEMS-based INS solution designed for

an embedded environment.

1.4 Outline

Section 2 is a description of the avionics hardware used in the Locust pUAS, along with the MEMS sensors

which comprise the IMU. An analysis of typical MEMS error dynamics is given as well as a method to

compensate for them in the INS in Section 2.3. A theoretical overview of some of the key topics in inertial

navigation is given along with a derivation of Kalman filter state estimator in Section 3. The building blocks

of an INS are discussed and incrementally developed in Section 4, culminating in the final test and analysis

of the resulting INS produced for the Locust pUAS in Section 5.
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Chapter 2

Avionics Systems

The term avionics is generally used to describe flight-related electronics and software systems inside of

an aircraft. An avionics suite typically includes the following key elements: central processing system,

peripheral processing systems, sensor systems, power systems, and communications systems. A unified

avionics board was developed for the Locust pUAS at the outset of the navigation system development

effort. A significant effort followed to develop the software interfaces necessary to realize functionality

with the avionics hardware. Developing a complete custom avionics package requires the programming of

device-level drivers and the development of interface and device management software for all of the avionics

board subsystems. This involves communicating with, configuring, and managing data from a variety of

disparate electrical subsystems via a range of communication and signaling standards including UART, 12C,

SPI, PWM, PPM, as well as general-purpose digital and analog signals. This effort required almost half of

development and debugging time for the project since stable, reliable, and efficient low-level functionality is

critical to the operation of higher-level algorithms. What follows is a description of the important avionics

hardware systems and required software development.

2.1 Primary Avionics

A detailed view of the internals of the flight vehicle and the custom avionics board are shown in Figure 2.1.

The avionics board hosts an NXP LPC2148/ARM7TDMI-S based 32-bit RISC processor. The ARM7 chip

contains 32kB of RAM, 512kB on-chip Flash ROM, a vectored interrupt controller, 2x10-bit ADCs, 2xUARTs,
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2xI2C buses, 2xSPI buses, 2x32-bit timers, PLL, RTC, and more than 45 GPIO pins. The core is programmed

using a GNU C Compiler (GCC) based Eclipse Integrated Development Environment (IDE). The avionics

board also houses a GPS chipset, a 900MHz wireless transceiver, a Radio-Frequency Identification Device

(RFID) programming interface with data storage, power regulation, a 3-axis magnetometer, and an IMU

which is discussed in greater detail in Section 2.2 below. Non-volatile storage was added as part of this

development effort, through the addition of a custom external Micro-SD card interface. The vehicle is

capable of carrying an auxiliary sensor board for estimation error reduction using a comparable secondary

IMU and pressure-based airspeed and altimetry.

Saawm

flight

Figure 2.1: Locust avionics board and internals[35

The 900MHz link is used for IMU data and telemetry reporting. The datalink chipset, an Atmel

AT86RF212, handles most of the necessary wireless communications tasks of packetization, frame filter-

ing, modulation, and encryption. A Commercial-Off-The-Shelf (COTS) Remote Control (RC) receiver is

also carried on-board the aircraft and interfaces with the primary avionics, the micro-scale servos, and the

Electronic Speed Control (ESC) which drives the 4-pole brushless electric motor. This configuration allows

for RC piloted flight during testing and development stages. Switching DC-DC/buck converters regulate

the board's voltage to 5V and 3.3V from the pUAS battery pack voltage. The battery is a 11.1V Lithium-

Polymer (Li-Po) pack in a 3S1P, or a single three-cell series configuration. Status LEDs are used to report

system state and health and a set of micro DIP switches, the red square in Figure 2.1, is used for system

configuration after the board has been programmed.

Overall the final avionics software needs to poll approximately 40 measurements, manage multiple com-
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munications systems including one wireless datalink, interface with non-volatile storage media, and monitor

and issue vehicle control signals dozens of times every second to achieve basic system-wide functionality.

The software must also execute all of the previously discussed vehicle management processes including ve-

hicle state estimation and navigation, guidance and trajectory determination, flight control/stabilization,

and power and subsystem configuration management. To accomplish this, the software must be efficient

and employ careful design at every step in order to be able to conduct all of the required functions at a

frequency high enough to capture and manage the rapidly changing dynamics of a small UAS. Furthermore,

efficiency and extensibility are required for long-term development in a UAS program as the ability to quickly

add and/or modify high-level functionality is critical to respond to complicated and continuously evolving

missions.

2.2 Sensor Systems

The primary avionics sensor package includes a u-blox MAX-6Q GPS chipset capable of 5Hz satellite navi-

gation updates and a strapdown nine-degree-of-freedom inertial measurement unit comprised of three 3-axis

MEMS sensor packages of accelerometers, magnetometers, and gyroscopes. Magnetometers measure the

direction and strength of their local magnetic field, and the accelerometers and gyroscopes measure the

accelerations and rotational rates to which the sensor is subject, respectively. For reference, Titterton et

al. describes the merits of different IMU systems and configurations including gimballed systems, fiber-optic

laser gyroscopes, and MEMS systems, which are typically used for pUAS applications to meet Size, Weight,

and Power (SWaP) constraints [391.

At the most basic level and ignoring noise and bias errors, accelerometer signals can be integrated over

time to determine vehicle velocity and position from initial values. Gyroscopes can similarly be integrated to

determine changes in the pUAS orientation. Magnetometers are used to constrain and measure orientation

angles and are most effective for the determination of vehicle heading, as will be discussed later. Tables

2.1-2.3 contain IMU sensor specifications for the primary avionics board.
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Table 2.1: Analog Devices ADXL345 Accelerometer Specifications [7]
__ Min Typical Max

Measurement Range (g) ±2 ±16
Resolution (bits) 10 13

Sensitivity (LSB/g) 230 256 282
Bias Offset(x,y/z) (milli - g) -150/ - 250 150/250
Noise RMS(x,y/z) (milli - g) 2.92/4.29

Data Rate (Hz) 0.1 3200

The accelerometer is capable of limiting its output range, given its full resolution of 13-bits, in order to

alter the sensitivity. The sensor was used in full resolution mode/13-bit mode at ±16g, where 12 bits were

used for encoding magnitude and the Most Significant bit (MSb) was used to encode the sign of the signal.

The resulting sensitivity is equal to 169/212 = 3.90625 - 10-3 or equivalently 256 Lb' which means that

the smallest amount of change in acceleration that the sensor can discern is 3.90625 - 10- 3g. The bias offset

characteristic for the x-axis and y-axis are identical while the z-axis is prone to a larger bias. Similarly the

z-axis is prone to higher levels of noise, as shown in the table.

Table 2.2: ST L3G4200D Gyroscope Specifications [33]
1_Min Typical Max

Measurement Range (2 2s) t:±250 ±2000
Resolution (bits) 16

Sensitivity 4 2 0 00dC s (dg) 70.- 10-3
Bias Offset -

Noise Rate Density (1 _/vH-_) 0.03
Data Rate (Hz) 100 800

The gyroscope is configured to operate at the 20 0 0 d'9 range at a full resolution of 16-bits. The resulting
S

sensitivity is then 2000/215 = 0.0610 dgs which is less than the specified sensitivity. Therefore the entireL~b

15-bit range is not addressable for the specified sensitivity of 0.070 degs. The bias offset, otherwise called the

digital zero-rate level, was quoted in the specifications as having a value of ±75 de9 which does not match
S

experimental laboratory testing results of a zero-rate level of ±I dlgs; this specification was therefore omitted

here as an assumed error in the documentation.
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Table 2.3: Honeywell HMC5883L Magnetometer Specifications [17]
Min Typical J Max

Measurement Range (gauss) ±1 ±8
Digital Resolution @12-bit ADC (milli-gauss) 0.73 4.35

Sensitivity ( bs) 230 1370
Bias Offset

Noise Floor (milli-gauss) 2
Data Rate (Hz) 0.75 160

The magnetometer measures the field strength up to ±8 gauss in any axis. The sensor can resolve changes

of magnetic field strength as small as 7.3 - 10-4 gauss and report single measurements at a rate of 160Hz.

Table 2.4: u-blox MAX-6Q Specifications [37]
I Min Typical Max

Position Accuracy (CEP m) 2.5
Velocity Accuracy (-") 0.1

Heading Accuracy (degs) 0.5
Start Time (s) 3 (aided start) 27 (cold start)

Tracking Sensitivity (dBm) -161
Noise(worst case) (LSB rms) 1.1

Data Rate (Hz) 5

The u-blox chipset provides a complete GPS solution for the Locust pUAS. It is capable of producing

many different data products as well as individual satellite and ephemeris data. A summary of its specifi-

cations is listed above in Table 2.4. The position accuracy is reported in a Circular Error Probable (CEP),

which is a circle large enough whose probability of encircling the GPS antenna's true position is 50%.

2.3 Calibration

In order to use most sensors effectively, they usually must be calibrated and compensated for, which is

particularly true for MEMS sensors. Most MEMS sensors suffer from at least basic biasing errors and

additive noise, as well as potential nonlinearities in their output response, all of which can cause divergence

in the INS solution. Below are some methods which can be used in order to mitigate these sources of error.
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2.3.1 Six-Point Accelerometer Calibration

MEMS accelerometers are prone to common performance errors that include slowly drifting biases and

response nonlinearities over their full output range. The bias signals, which are more thoroughly modeled

in Section 3.4 , are can be thought of as products the of a random walk process. The nonlinear effects of

MEMS accelerometers can be described by models discussed by Farrell [12, p410]. Figure 2.2 shows some of

the possible response curves that can be expected from a MEMS accelerometer.

T"u Acceleio (s)

Figure 2.2: MEMS Output Responses

The values shown in the figure are in units of g's. The blue curve depicts the ideal response with a

one-to-one input output relationship. The green curve is representative of a bias offset, in this case a bias

of -0.3g. The red curve represents what can happen if the sensor exhibits some scale factor error as well as

a bias. Finally, the purple curve shows an overall nonlinear output response. In this research, a linear scale

factor model is used. The output is modeled as follows:

ao =: main - b (2.1)

The response is modeled as a linear equation with some non-unity slope m, and some non-zero bias b.

Utilizing a piece-wise model, which breaks up the input-output space into several discrete steps, can be used

to produce a more accurate estimate of the response of the sensor. If an estimate for the accelerometer bias

and input-output slope is available, the MEMS data can be corrected using Equation 2.2.
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aout + best main - b + best .
aest - ain if best b and mest m (2.2)

mest mest

In order to obtain initial estimates for the bias and slope values, a six-point calibration is performed.

The calibration involves recording the IMU output during a sequence of sequential rotations where gravity

points along and opposite to each of the three principal axes, thus obtaining a six-point calibration. Each

orientation is held for a period of of at least 30s such that a sufficiently accurate central value and data

statistics can be determined. The accelerometer data from a six-point calibration is shown in Figure 2.3

2 - - - -- - - - - - - - - - - -- - - -- - I I ccI Ib n

01 50 2 2 30

05 505

Figure 2.3: Six-Point Calibration Data

The calibration depicts the IMU output of each axis alternating between positive and negative 1g. The

Locust INS board was kept as flat as possible during each rotation to improve the calibration results. The

bias estimates are produced by averaging the values of each channel during the periods of time for which the

gravity vector was perpendicular to measured axis. Equation 2.3 outlines the averaging process for period

of time when the magnitude of the accelerometer output is less than 0.2g, thus isolating instants in time

where the IMU was not being rotated and the axis in question was not aligned with gravity. The slope

was calculated by averaging the positive and negative 1g output values, called aout+ and a 0t- respectively.

These values are used in Equation 2.4 to find the MEMS calibration slope estimate, mest.

best = aout(t) U = {t s.t. I aout(t) j< .2g} (2.3)
Z tEoU
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Mest = Aaout _ aout+ - a0ot- (2.4)
Aai, 2

The results of the above six-point calibration for initial accelerometer biases and slope estimates are shown

in Table 2.5. The estimates are used like in Equation 2.2 to provide the INS with better accelerometer data.

Table 2.5: Six-Point Calibration Results
X Y Z

Bias (,) -0.0163 -0.0110 0.0617
Slope 1.0468 1.0554 1.0211

2.3.2 Gyroscope Rate Table Calibration

MEMS gyroscopes, like accelerometers, also usually suffer from a bias and noise problem. However, their

bias signals drift considerably faster than the bias signals of accelerometers and therefore obtaining static

values for gyroscope biases are not as valuable. A more important calibration for MEMS gyroscopes are full-

range scale-factor errors which manifest much like the response nonlinearities described above. In order to

measure the output response of the gyroscopes, a device called a rate table is used to spin the IMU at specific

angular velocities along each axis. For each selected angular rate, the sensor's output can be recorded. The

resulting data will yield an input-output relationship similar to the MEMS accelerometer response shown in

Figure 2.2. Depending on the complexity of the response curve either a single linear model, a higher-order

polynomial, or a piece-wise model can be fit to the curve for correction of the scale-factor behavior of the

sensor. Alternatively a look-up table can be used to speed up the correction process. Unfortunately, a rate

table was not available during the time of this research in order to calibrate the gyroscopes properly. A

factory calibration will be utilized and, wherever possible, partial corrections will be extrapolated from our

limited testing against similar sensors.

2.3.3 Hard Iron and Soft Iron Calibration

As previously discussed the INS uses the magnetometers for yaw/heading measurements. A properly cali-

brated magnetometer, in the presence of a uniform magnetic field, reports the magnetic field vector uniformly

over a 3D sphere centered about the sensor. The sensor will consistently report the direction and magnitude

of the magnetic field vector, regardless of orientation. As described in [16], there are two sources of corrup-
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tion in the magnetometer data, known as the hard-iron and soft-iron effects. The Hard-Iron (HI) effect is

a result of magnetic fields produced by permanently magnetized ferromagnetic materials in the vicinity of

the sensor. Metal cages, housings, wiring, and even the printed circuit board on which the magnetometer

is placed are able to produce their own magnetic fields and, therefore, cause a hard-iron disturbance in the

data. Such a disturbance manifests as an offset in the 3D measurement response sphere from the origin.

The Soft-Iron (SI) effect is a result of magnetic fields induced by the geomagnetic field of the Earth. Such

fields deform the measurement response sphere from a sphere to an ellipsoid. Please note that the following

discussion relies heavily on the use of rotation matrices and reference frames; refer to Section 3.1 and Section

3.2 for a discussion of reference frames, rotation matrices, and the uses thereof. Without the HI/SI effects,

the measurement of the local magnetic field are given by the relationship expressed in Equation 2.5. In the

northern hemisphere, the local magnetic field strength, B, is distributed along the northward and downward

directions in the navigation or Earth frame. The navigation frame is related to the measurement obtained

in the platform frame of the sensor by the rotational offset shown in Equation 2.5.

cos

Bp = RP B. = R,(0)Ry(0)R,(0)B 0 (2.5)

sin J

The angle of inclination, 6, determines what amount of the magnetic field is directed in the north or

down direction. The inclination angle varies from 6 = 0, at the equator to 6 = 90 at the North pole. The

angle of declination, the location dependent offset between magnetic north and true north, is ignored in

this derivation and we assume that it can be subtracted out by the INS. The platform frame magnetometer

reading Bp is the product of the local magnetic field vector with the rotation matrix from navigation frame

to the platform frame. The HI effect manifests as an offset in the platform frame magnetometer reading,

represented by the vector V in Equation 2.6. The SI effect is modeled as a 3x3 matrix W, which distorts

the measurement in the platform frame. The combined HI/SI measurement model is given by:

cos 6

Bp =W RPB, + V =W R, ()Ry(6)R,(0)B 0 + V (2.6)

sin 6

Given a body/platform frame magnetometer measurement, roll 4, pitch 6, and an estimate of the SI
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matrix West and the HI vector Vest , Equation 2.6 can be rearranged, as shown in Equation 2.7, to yield a

measurement of yaw represented by Equation 2.8.

BfXl cosb sin 0 0 cos6l

Bf B = -sin cos 0 0 B 0 =R (-0) R(-W,--,'(Bp - Vet) (2.7)

BfZ 0 0 1 sin J

b = arctan -v (2.8)
Bf x

An estimate of the SI matrix W and the HI vector V are needed in order to complete the calculations

above. The locus of all response vectors from a magnetometer subject to combined HI/SI effects is an

ellipsoid which is offset from the origin in the magnetometer measurement space. Ideally the response would

be a sphere (soft-iron corrected) centered at the origin (hard-iron corrected). For more explanation about

the nature of these effects see [15, 16]. The equation of an ellipsoid in quadratic form is shown in Equation

2.9.

(X - v)T A(x - v) 1 (2.9)

t t t T 0 0 t

A= PDP-1  evec1  evec2 evec3  0 0 evec1  evec2  evec3  (2.10)

& 4 4 0 0

The matrix A in Equation 2.9, is expanded in Equation 2.10. The A matrix determines the shape of the

ellipsoid. Specifically, the P matrix contains three eigenvectors which point in the directions of the three

principle axes of the ellipsoid. The D matrix contains the eigenvalues of the quadratic along its diagonal,

whose inverses are the squares of the radii, (a, b, c), of the ellipsoid. Therefore by altering the A matrix, we

can alter the size, shape, and direction the ellipsoid points in. Expressing Equation 2.6 in a similar quadratic

form yields:
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Cos Cos

(W'(BP - V))TW- (Bp - V) = (RPB 0 )T(RPB 0 ) B2  (2.11)

sin ] sin 6

(BP - V)T(W -1)TW-(Bp - V) = B 2  (2.12)

The B 2 term can be dropped from the analysis since information about the total strength of the magnetic

field is largely inconsequential, as it is the direction and not the magnitude of the field that is important for

navigation. By inspection we see that (W-
1

)TW-1 is equivalent to the A matrix of the quadratic Equation

2.9. For reasons discussed in [15, 16] we assume that the inverse SI matrix W 1 is symmetric, that is

(W-1)T = W-, such that we may solve for the the matrix given the quadratic shaping matrix A.

W 1 = (2.13)

In order to find the matrix which defines the ellipsoid's radii and direction, A, we must fit some ellipsoid

to a test data set of magnetometer readings. The center of the ellipsoid data will correspond to the HI offset

vector V. MATLAB was used to calculate the ellipsoid's radii and center locations. An accurate HI/SI

calibration will require that a test data set records the response of the magnetometer to the geomagnetic

field in a wide range orientations such that an imaginary vector pointing out of the IMU would trace out the

shape of the ellipsoid of interest. Figure 2.4 depicts one HI/SI calibration data set. The green data depicts

the raw magnetometer output. Notice the center offset and ovoid shape which matches the prediction of a

HI and a SI effect present in the measurement process. The red data set is corrected for the HI effect, and

therefore appears similar in shape to the raw measurements, but now centered about the origin. Finally

the blue data set represents the combined HI/SI calibrated measurements with unity magnitude. Notice the

ovoid features of the green and red data have been replaced by a spherical figure, and that the radii of the

HI/SI calibrated data sphere is approximately 1 in every direction.
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Figure 2.4: HI/SI Calibration Data

Figure 2.5 shows the same data as above, with the addition of spheroid fit which was calculated from

the HI/SI data. Since the magnetometer measurements can now be projected onto a unit-sphere, for which

accuracy will not vary with respect to orientation, they may be used to faithfully produce a yaw measurement.
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Figure 2.5: HI/SI with Spheroid Fit
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Chapter 3

Inertial Navigation

This chapter describes a mathematical derivation of the key techniques and concepts used in developing an

INS. A short review of reference frame definitions and rotational dynamics is given, followed by the derivation

of the discrete-time recursive Kalman filter. The Kalman filter is a state estimator which generates an optimal

estimate, in the minimum variance sense, of state variables when configured properly to account for system

noise characteristics, and is common in many INS architectures. As mentioned above, a state estimator is

useful to an INS because of its ability to mitigate the non-ideal characteristics present in some of the sensors

used. Without a state estimator, integrating raw rate sensor signals subject to biases and noise would yield

compounding errors in time and result in increasingly inaccurate state estimates and eventually a failure

to control the aircraft. Section 3.4.1 demonstrates what can happen to a simple system utilizing a MEMS

accelerometer without the use of a state estimator and aiding information. A more in depth discussion of

Kalman filters can be found in [25, 18, 21, 38]. Farrell 112] and Kuipers [20] both give summaries of the

important concepts of rotational dynamics and how they apply to navigation.

3.1 Coordinate Systems

In order to discuss the complexities of designing an INS, we must first define the reference frames and

kinematic conventions of vehicle dynamics. Stimac describes several options for defining an Earth relative

coordinate system, which are summarized below [34]. Different models are useful for different situations

and for specific requirements. The relationships between these frames are important to understanding the
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evolution of the vehicle's dynamics state. Specifically, it is important to be able to freely move from one

reference frame to another while preserving relative state information.

1. Earth Centered Inertial (ECEI): The origin is located at the center of the earth. The z-axis points
upwards through the North Pole, while the x-axis and y-axis lie perpendicular to each other on the
equatorial plane, forming a right-handed plane. The x-axis is defined along some predetermined longi-
tudinal axis during some instant in time. The rotation of the earth is neglected in this frame definition.

2. Earth Centered Fixed (ECEF): The axes are the same as ECEI, except the axes are fixed while the
earth rotates about them. This frame is useful for the consideration of motion relative to the surface
of the Earth.

3. Geodetic: Coordinates based on the ellipsoid shape of the Earth.

4. Geocentric: Coordinates based on a spherical approximation of the Earth.

5. North East Down (NED): A local Cartesian projection onto the Earth's surface where the x-axis points
north, the y-axis points east, and the z-axis points in decreasing altitude towards the center of the
Earth.

6. North East Up (ENU): A local Cartesian projection onto the Earth's surface where the x-axis points
east, the y-axis points north, and the z-axis points in increasing altitude away the center of the Earth.

Zect

North

/ UpEast

Figure 3.1: ECEF and local NEU frames[40]

Figure 3.1 depicts an ECEF frame and an ENU frame placed on the surface of the Earth. An ENU frame

maps the (E,N,U) directions to the (x,y,z) axes. An alternative, as mentioned above, is the NED frame which

instead has the z-axis directed downward towards the center of the Earth and maps the (N,E,D) direction to
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the (x,y,z) axes. An NED frame is used in this thesis and is defined locally on the surface of the Earth near

some predefined origin. This choice is convenient for analysis but will limit the accuracy of the navigation

filter as the vehicle moves further away from the NED frame origin. However, due to the expectation of

Locust's limited range and short operating times, these inaccuracies are anticipated to remain small.

It is also important to define a coordinate system for the aircraft. Typically, a right handed aircraft

coordinate system is defined to have an origin at the vehicle center of mass of the with the x-axis pointed

out the nose along the longitudinal axis of the aircraft, and the y-axis directed out the right wing along the

lateral axis of the airframe. The z-axis points downwards out the belly of the aircraft. Defining wind-relative

motion of the vehicle may also be useful and, therefore, we define a set of wind-axes that align with the

local direction of travel and are related to the vehicle axis by an y-axis rotation by the vehicle's Angle of

Attack (AOA) to the wind and a z-axis rotation by the vehicles angle of Side Slip (SS) to the local wind.

Positive rotations in roll, pitch, and yaw are then defined about the respective vehicle axes: x, y, z using the

right-handed convention. Subsequently from the vehicle-fixed perspective a right-handed roll, upward pitch,

and nose-right yaw are considered positive. Figure 3.2 shows an illustration of the aircraft coordinate system

used herein which is a common convention for aircraft rotation and translation. One quirk of this convention

is that positive vehicle-relative deflection of any control surface on the trailing edge of an aerodynamic body

(the most common configuration) actually yields negative rotation of the vehicle.

Pkch

Y

V

M

Figure 3.2: Aircraft Coordinate Frame [21
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3.2 Rotational Kinematics

One way to convert between a chosen navigation frame and the aircraft coordinate frame is through the use

of a rotation matrix. A rotation matrix maps a vector from one space to a vector in another space while

preserving certain aspects of the vector like magnitude and relative direction to other vectors in that space.

For example, given axes x 1 , yi, and zi, a vector X1 in that space, and a set of desired axes x 2 , Y2, and z 2, it

is possible to transform X1 to a vector X 2 in the new set of axes. Equation 3.1 shows how to mathematically

take a vector from one set of axes into another through multiplication of the rotation matrix, R2. Two

common approaches to define rotation matrices are Euler angles and unit quaternions. Euler angles are

more intuitive to understand since they correspond to an aircraft's roll, pitch, and yaw. Quaternions are

four-dimensional complex quantities which, while being numerically more complicated, have more desirable

characteristics for the purposes consistent attitude determination. What follows ins a short summary of the

concepts and equations relevant to Euler angles and quaternion based methods of constructing the rotation

matrix.

r 11  r 12  r 13

2 RX 1  r 2 1 r 2 2  r 2 3  (1

r 31 r 32  r 33

3.2.1 Euler Angles

The Euler angle method of coordinate transformation uses three consecutive rotations about the three

principle axes to produce the rotation matrix. The first rotation is about the z 1 -axis by an angle of ik which

produces a set of intermediate axes denoted as x', y', z'. The second rotation is about the y'i-axis by

an angle of 0 which results in a new set of intermediate axes defined by x , y', z . The final rotation is

about the x -axis by an angle of 0 resulting in x ', y ', z 'which, if the three angles 9 p are correct,

are identical to the desired axes x 2 , Y2, z 2 . The three rotations are consecutive and, just like in matrix

multiplication, order is extremely important. The rotation matrix R1, shown in Equation 3.3, is the product

of the three consecutively multiplied rotation matrices, R2 = R,(0)Ry(0)R2(0) multiplied in that order,

generally called the aerospace sequence of the Direction Cosine Matrix (DCM).
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1 0 0 cos0 0 -sin0 cos@ sin@ 0

Rx(#) 0 cos sin Ry(O) 0 1 0 Rz(b) -sin 0 cosV 0 (3.2)

0 -sin$ cosj sinG 0 cos0 0 0 1

cos 0 cos V cos 0 sin V) - sin 0

R = sin sinq#coso - sin'cos# sino sin sin5 + coso cos 0 sin OcosG (3.3)

sin 0 cos 0 cos 0 + sin 0 sin4 sin 0 sin 0 cosO - cos 4 sin 0 cos # cos 0

arctan r 23  (3.4)
r 3 3

0 - arcsin r13 (3.5)

= arctan r 12  (3.6)
r11

The rotation matrix above will transform a vector, such as a force or acceleration, from one frame (e.g. the

platform frame) into another frame (e.g. the navigation frame). This is useful for integration through time

by the INS. By inspection, the matrix can be used to extract the individual Euler angles which constitute the

matrix, shown in Equations 3.4-3.6. The matrix itself can also be integrated through time in order to keep

an accurate time-evolving representation of the relationship between the two reference frames. The matrix

which transforms body/platform frame quantities to navigation frame quantities, R', cannot be propagated

in time by simply integrating the body frame angular rates to produce the resulting angles in the navigation

frame, which is what the Euler angles represent. This is a direct result of the fact that rotations in R3,

which form a mathematical set called the special orthogonal group or SO(3), are order dependent. For

example imagine an aircraft performing a series of maneuvers in a body frame sense: first the aircraft rolls

+900 , followed by a pitch of +90', and then a roll of -90'. If order did not matter, and therefore rotations

commuted under multiplication, then the two rolls would cancel each other out and there would only be

a net pitch change. However, from the point of view of an observer in the navigation frame, the aircraft

yawed +90' to the right. This inconsistency is a result of the cross-coupling of rotations that happens as

the orientation changes. Under a roll of +90', pitch action in the body frame no longer results in pitch
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action in the navigation frame, but instead is directly coupled into yaw. Equation 3.7 below describes this

mapping from body frame angular rates to navigation frame Euler rates. The resultant Euler rates can then

be integrated forward in time using Equation 3.8, where the indices k describe instants in time and ting

represents a small window in time where the body angular rates are assumed to be constant.

# 1 sin tan0 cos tan0 wo,

0 Cos# -sin# wY (3.7)

0 sin see 0cos bsec0 wz

kk = Ok-1 + tinti k-1 
0

k = Ok-1 + tintk-1 'k = k-1 + tintk-1 (3-8)

Generally, the range in which the Euler angles can be represented needs to be constrained in order

to eliminate multiple solutions for a given rotation matrix. For example, adding 27r/360' to any of the

Euler angles will result in the same rotation matrix. Therefore, the common constraints used are that

-1800 < 0 < 1800, -9 0 < 0 < 900 and finally -180 0 < 0 < 1800 120]. Euler angles further suffer from

a phenomenon called gimbal lock, which is a loss of a degree of rotation under certain circumstances. This

problem is most easily explained by way of an example aircraft's rotation in space. Imagine an aircraft

which is originally oriented so that all three Euler angles are zero. The aircraft then pitches to 0 = +90' - E,

where E is some infinitesimally small angle measure. As the aircraft pitches farther past +90' something

must happen to account for the increased pitch, while still keeping 0 < 900. Therefore, in order to track the

angle change, the common solution is to add +1800 to both the roll and yaw angles, which subsequently get

re-normalized into their allowable ranges [20]. This problem is called a singularity and is a problem inherent

in any Euler angle representation. The singularity can also be seen in Equation 3.3 where the secant terms

could lead to instabilities around angles of ±900 . Quaternions, while conceptually more complicated, are a

suitable alternative which eliminate the problem of singularities.

3.2.2 Quaternions

The discussion of quaternions given in this section is meant as a summary for the reader. Please refer to

[20, 12] for a more thorough derivation of quaternions. Henceforth a quaternion will be defined by the symbol
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q. A quaternion is a four-dimensional vector which extends the complex numbers. It contains a scalar qO E R

and vector component q E R3 as shown in Equation 3.9.

qO

q = qo + q= o + iq + j2 + kq3 = (3.9)
q2

q3_

Addition of two quaternions p = po+f and q = q+ q works as expected where p + q = (po+ qO) + ( q-.

Notice how the scalar adds with the scalar and the vector adds with the vector. The vector addition works

as normal vector addition in R3 where addition is applied to individual components, i, j, k, individually.

The quaternion dot/scalar product of the vector component works like normal vectors where each of the

components in the vector multiply their respective counterparts, shown in Equation 3.10. The vector cross

product is shown in Equation 3.11.

p - q= piq1 + p2q2 + P3q3 (3.10)

P2 P3 P3 P1 P1 P2
p x q= i + +k (3.11)

q2 q3 q3 q, qi q2

Quaternion multiplication is more complicated, and the interested reader should again refer to [20, 12] for

a more in depth analysis of quaternion operations. As defined by William Rowan Hamilton, multiplication of

the vector components follows i 2  2 = k2 = if k = -1. From this relationship, quaternion multiplication,

denoted by 0, can be derived as follows in Equation 3.12.

PO -P1 -P2 -P3 qO

p 0 q = poqo - p- -+ oq+ qo-+p-x q= P1 P0 -P3 P2 q1 (3.12)
P2 P3 PO -P1 q2

_P3 -P2 P1 Po _ q3_

The complex conjugate of a quaternion is defined as q* = q0 -q where the imaginary part of the quaternion

has been negated. The quaternion norm defined in Equation 3.13.
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N(q) = Vq-*0@gq = qO2 + q + 3q 3

The inverse of a quaternion is given in Equation 3.14. In the special case where the norm of the quaternion

is unity, the inverse is also the conjugate, a property which will be important for rotation matrices.

q-1 - 2 for N(q) = 1, q-1 - q* (3.14)

q

Unit quaternions are useful building blocks for describing rotations in R 3 . Geometrically, the quaternion

represents the rotation of a reference frame about a fixed axis defined by the vector 7. After tedious

derivations and algebraic simplifications we can arrive at the equation which defines a rotation matrix

equivalent to Equation 3.3, but derived instead from a quaternion. Whether or not the the matrix below

or the matrix's transpose is the intended rotation matrix depends on which frame we want to rotate from,

defined by how the initial quaternion was formed.

q0 + q- - q3  2(qlq 2 + qoq 3) 2(qlq 3 - qoq2)

2 (qlq2 - qoq3) qO - q1 + q2 - q3 2(q2q 3 + qoqi) (3.15)

2(qlq3 + qoq2) 2(q2q 3 - qoq1) qO - q - q2 + q2

The quaternion can also be derived from the rotation matrix, just as in Euler angles, though the sign

of the solution is not unique [341. Below are the relevant equations used to take the elements of a rotation

matrix and form a unit quaternion which represents the same rotation.

4q= 1 + r11 + r22 + r33  (3.16)

4q = 1 + r11 - r 2 2 - r33  (3.17)

4q = 1 - r11 + r22 - r33  (3.18)

4q = 1 - r11 - r22 + r33  (3.19)

The sign of the extracted quaternion elements can be determined from the following equations [34].

38

(3.13)



4qoqi = r 2 3 - r32

4qoq2 = r31 - r13

4qoq3 = r12 - r2l

4qiq2 = r12 - r21

4q2q3 = r2 3 - r 3 2

4qiq3 = r 1 3 - r31

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

To go directly from Euler angles to quaternions, Equations 3.26-3.29 are used. Note that the first sign

must be chosen for all of the quaternion components, reflecting the sign ambiguity referred to above.

0 0 ' 0 ' V
qo = ±(cos - cos - cos - + sin sin - sin -)2 2 2 2 2 2

(3.26)

q = ±(sin cos - cos -
2 2 2

q2= ±(cos - sin - cos -

2 2 2

q3 =± (COS - Cos - sin -

2 2 2

- cos sin -sin -)

2 2 2

+ sin - cos 0 sin )2 2 2

- sin sin cos

The quaternion derivative is the quaternion product of the current quaternion with another quaternion

formed by the three angular rates Wbq = 0 y WI . The resulting quaternion derivative is shown

in Equation 3.30. The quaternion integration process is shown in Equation 3.31.

qo

.5= .q Wb = .5 q
q2

q3

-q1

q3q

-q2

-q2

-q3

qO

q1

qk qk-1 + tintqk_1

-q3 0

q2 Wx

-q_ WY

qO Wz

(3.30)

(3.31)
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Equation 3.30 can be found in alternate forms [20, 34, 39], specifically the order of the quaternion

multiplication. The work described below assumes that the quaternion is initially formed from initial Euler

angles (roll,pitch,yaw) information. Those same angles, if used to form a rotation matrix, would form

the DCM from the navigation to the platform frame, RP. Similarly, the initial quaternion would perform

the same rotation as Rn, shown in Equation 3.32 transforming a vector in the navigation frame, v, to

the platform frame, UP. Therefore, the quaternion multiplication order of the conjugate followed by the

quaternion will bring any vector from the navigation to the platform frame. Reversing the order would also

reverse the direction of the transform, just like taking the transpose of the rotation matrix, R" = (Rp)T,

shown in Equation 3.33.

0 0

T = q* T q (3.32)

0 0

T q& q* (3.33)
Vn V

3.3 The Discrete Kalman Filter

As described by Austin [3], Kriehn et al. [41] and Tischler [36] the Kalman filter and its derivatives are some

of the most powerful tools for state estimation in the presence of uncertainty and they are especially useful for

UAS. The Kalman filter is used in UAS for navigation, targeting, dynamic state estimation, and parameter

identification. The general form of the Kalman filter process, as described by Stimac, Zacharn, and Welch et

al., is a system of simultaneous equations that evolves from time step to time step in an update-prediction

cycle.[34, 25, 38] The filter produces an optimal estimate in the presence of system and measurement noise,

which is useful for guidance and system identification. The following is a derivation of the discrete time

Kalman filter for time-steps indexed by the value k, adapted from How [18]. Assume there exists a state

vector, Ak, which evolves from time-step k - 1 to k through multiplication of a state transition matrix Ad(the
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d subscript denotes the discrete time state transition matrix). The system described by Ad may be controlled

through some deterministic input signal Ik and also affected by some white Gaussian process noise -k. The

driving signal Ik affects the system state through the matrix Bad. Equation 3.34 describes how the state

evolves from one time step to another subject to the system dynamics, control signals, and corrupting noise.

Xk A _-1 + Buxdk1 - Wk_1 (3.34)

Yk = Cd k + DdiUk + Vk (3.35)

Equation 3.35 describes the measurement of the state vector - through a measurement matrix Cd. The

Dd matrix, often called the feed-through matrix, reflects the potential for a deterministic driving signal to

manifest directly in the measurement and is often taken to be identically zero. This derivation ignores the

deterministic driving signal Ikwhich affects the system state through the Bud and Dd matrices, because

their inclusion does not change the estimation process and only adds unnecessary complexity. Corrupting

the measurement process is a Gaussian white noise represented by -l. An important assumption in the

development of Kalman filter is that the process and measurement noises are taken to be white, normal, and

uncorrelated. As this is a discrete time derivation of the Kalman filter, the noise signals denoted by 'l and

ik are representative of the instantaneous noise signal values of the discrete equivalent noises constrained by

the following equations.

E[lkII =f] WkA(k - j) (3.36)

E[-l -f]] = Rk A(k - j) (3.37)

E[Wk] =E[ik] =E[ik I] = 0 Vk, j (3.38)

Please note that the measurement noise covariance matrix, Rk, has been stylized in order to prevent

confusion with the symbol for a rotation matrix, R'. An important note to understand is that Wk and Rk

are covariance matrices and not spectral densities, which are their continuous time analogs. Furthermore,

Equation 3.38 stipulates that for all time-steps k and j the two noise signals have no correlation and that

each process is zero-mean. This requirement makes the derivation of the problem much more straightforward
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and simplifies calculations during filter operation. The system matrices Ad and Cd may both vary with time

but, for simplicity, remain constant in this derivation.

update update update

propagat -propagate- -
klk-1 klk k k+ lk+ k+21k+1 k+21k+2

tk tk+1 tk+2

Figure 3.3: Kalman filter operation time-line[18]

Figure 3.3 depicts how the filter will work. At each time instant, tktk+1, and tk+1, the Kalman filter

incorporates a new measurement, taken at that instant, with the prior information available at that time-

step. In this fashion, an a priori estimate XkIk_1 is combined with new measurement data ?jk to produce an

optimal estimate, called the a posteriori estimate AIk. The^ symbol denotes the Kalman filter's estimate

of the state. The Kalman filter does this blending to produce an optimal estimate in the minimum mean

square error sense. At each time step we will then have an a priori estimation error Xklk-1, with a related

error covariance matrix QkIk_1, and the a posteriori equivalents given by -kIk and Qkik,respectively. The

equations which define these quantities are given by:

Ik-l Xk - Xklk-1 (3-39)

Qklk-1 = E[ik_14 k1k_1] (3.40)

kk = Xk - Xkjk (3.41)

Qkjk =E[4k k4k] (3.42)

This process happens recursively so that at each update, only the previous time step's data is needed.

This recursive property makes the filter beneficial for use in systems with limited memory and computing

resources. In order to complete the Kalman filter let us first assume that the blending step is a linear

combination of the previous estimate and the new measurement, as shown below in Equation 3.43. The two
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blending coefficients are Lk and L'. Let us also assume that the first a priori estimation error is unbiased,

such that E[ikIk_] = 0. We also assume that we are given an initial estimate of our state vector, Xkik_1, and

some sense of the quality of our initial estimate given by QkIk_1. The initial value of both of these quantities

will not affect the stability of the filter, only the rate at which it will converge to an optimal solution. In

order to recursively operate the Kalman filter, let us constrain the a posteriori estimation error to also be

unbiased, E[iVkk] = 0. Remember that E[Vk] = 0, and that E[z.ik- 1]= 0.

XkIk - Lk~klk-1 - Lkgk (3.43)

E[ikIk] E[- $Ik] E[i4 - /L ~kIk_1 + LkYjk)] = 0 (3.44)

=E[- - LkI1 - Lk(Cd + vk) = E[(I - LkCd)XF - L'gkgk_] ± E[LkA] (3.45)

E[(I - L- Ik -L'sk k1] E[(I -- Lk - L IC)&k] + LkE[i44_1] (3.46)

E[4kIk] = (I - L' - LkCd)E[-k] 0 . (3.47)

Lk+LkCd I (3.48)

XkIk = (I - LkCd)iXk1 + LkYk = XkIk_1 + Lk(Yjk - CdXklk1) (3.49)

Using the result from Equation 3.48 we rewrite Equation 3.43 to produce Equation 3.49. This form of

the measurement update equation shows that in going from an a priori to an a posteriori estimate, we add a

correction term to the a priori estimate. This correction term is the product of a coefficient Lk, and what is

called the innovation. The innovation is the difference between the the measurement - at time-step k, and

the predicted value of the measurement, CdXklk_1. Assuming that all plant dynamics are modeled accurately
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and that there is no measurement noise, the innovation for any time step would always be zero. In reality

modeling errors and external noise will appear in the innovation. The gain Lk attenuates the innovation

before being incorporated into the estimate. Intuitively, in order to produce reasonable estimates, the filter

gain Lk should weight highly accurate measurements (i.e. if the determinant of the measurement noise

covariance matrix Rk is small) more than noisy measurements. The way in which we choose this weighting

matrix Lk, is therefore crucial to the proper operation of this estimator. When the gain Lk is chosen in order

to minimize the error variance in a least-squares sense, it is called the Kalman gain. We, therefore, need a

way to choose the Kalman gain dynamically at each time-step. Minimizing the error covariance matrix is

equivalent to minimizing the sum of the squares of the estimation error vector. We define a cost function

Jk whose minimization will result in the Kalman gain. Note that the inner product of a vector with itself is

equal to the trace of the outer/tensor product of the same vector with itself, shown in Equation 3.50.

xTx = trace[xxT  (3.50)

Qk~k =E [J k] Jk E[z _kkk] trace[Qkk ] (3.51)

Lk = argmin Jk (3.52)

Ikk = k Xk~k =Xk - (I - LkCd) ki_1 - Lk(Cda4 + -k) (I -- LkCd)zkIk_ - LkY (3.53)

Qk~k = E[zkik] =E[((I - LkCd) 5 k-_1 - Lkvk)((I - LkCd)4kI_1 - LkVk)T] (3.54)

Qkjk = (I - LkCd)Qklk_1(I - LkCd)T + LkRkLj (3.55)

Equation 3.53 describes how to determine the new estimation error from the previous estimation error

for any gain Lk. This equation makes intuitive sense because the only change in the estimation error is
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from either the measured state LkCd or the measurement noise LkV'k. Using this equation we produce the

equation for the a posteriori error covariance matrix (Eqn. 3.54). Multiplication of the cross terms zkIk_1

and LkV'k inside the expectation results in the cancellation since the prior estimation error is uncorrelated

with the measurement noise at this new time step. All that remains are the squared terms which are shown

in Equation 3.55. Taking the derivative of cost function Jk with respect to the gain Lk and setting the result

equal to zero produces in the following expression for the Kalman gain (Eqn. 3.57)

o9J _ trace[Qk k]
Lk0 (356)

Lk - Qkk 1Cd [CdQkIkC" + IRk] (3.57)

Qkjk = (I - LkCd)Qklk_1 (3.58)

Plugging Equation 3.57 back into Equation 3.55 results in a simplified error covariance (Eqn. 3.58),

though this form is less stable numerically than Equation 3.55, which is written in what is known as Joseph's

form. Equation 3.55 should be used for error covariance propagation in order to avoid Qk becoming non-

symmetric (which would cause divergence in the filter) as a result of numerical precision/round off errors in

calculation.

Applying the matrix inversion lemma yields the following alternate forms of the Kalman filter equations.

These alternate equations can be used on measurement updates to first calculate the new error covariance

matrix and then the Kalman gain. Conversely Equation 3.55 requires that the Kalman gain is calculated

first using Equation 3.57.

QkIk -Q _1 + CIR-Cd)- 1  (3.59)

L= C -1 (3.60)
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Measurement - Correction

Compute Kalman gain:

Lk = QkIk_1C T[CdQkIklCT + ]

Update estimate with measurement

Xk~k = Xklk-1 + Lk(gk - CdXk1k-1)

Update a posteriori error covarience:

Qk k = (I - LkCd)QkIk l(I - LkCd)T + LkRI Lj

Prediction - Time Update

Predict state update forward

Xk+1|k = d kk + Budidk

Predict error covariance

k+11k AdQk 1kAj + Wd

Initial Values

Xk
Qk~

Figure 3.4: Prediction-Correction Cycle of the Kalman Filter

Figure 3.4 depicts the Kalman filter cycle starting from some initial state and then oscillating between a

prediction and a correction state. Some intuition for the operation of the Kalman filter can be established

by way of an analogy. Imagine the Kalman filter is tracking the velocity state of a car traveling down the

road. The dynamics matrix Ad encodes the necessary information to achieve the new velocity of the car

given the old one (i.e. Newton's first law, ignoring friction and other dynamics). The driving function IUk

could be the accelerator pedal. Measurements -kwould reflect the speedometer output with some corrupting

noise -l added. Since the car is physically traveling down a road subject to real world phenomena, we can

imagine that car's process noise -i4 results from gusts of wind or speed bumps in the roads. Propagation of

our system's dynamics forward in time, between the speedometer measurements, is directly dependent on

the accuracy of our system matrix Ad. If we know that our model is not very accurate we can increase the

processes noise covariance matrix Wk in order to make the filter aware of the inaccuracies in our model. This

will cause the filter to weight the measurements more heavily than the previous state during a measurement

update step and increase the error covariance matrix to account for the uncertainty during propagation steps.

Conversely, if the speedometer is particularly noisy and unreliable, the Kalman gain values the previous state

more than the incoming information from the measurement Yk.

The following list is a summary of the common assumptions used in the preceding derivation of the

Kalman filter:
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1. The measurement update step is linear

2. The process noise -k and the measurement noise -k are both Gaussian, white, and uncorrelated

3. The initial estimate is unbiased, E[1k-l1] = 0

4. Initial state kIk-1 and error covariance Qkik-1 are known

3.4 The Indirect State Feedback Kalman Filter

3.4.1 One Dimensional Unaided Inertial Navigation System

In order to motivate the need for a state estimation algorithm when using MEMS sensors, a simple example

is given below [12]. Consider a One-Dimensional (1-D) dynamic system wherein an object is only free to

move linearly on a rigid frictionless track subject to external forces in the direction of the track. In the body

of the object is a single-axis accelerometer that measures acceleration, a(t), in the axis of travel. First it will

be shown that the accelerometer alone is not sufficient to uniquely identify position p(t) and velocity v(t).

Subsequently the concept of position aiding will be introduced. Finally a MEMS accelerometer model will

be given for which position aiding can yield a converging state estimator. The equations of motion of the

1-D constrained system are as follows:

A(t) = v(t)

i(t) = a(t)

(3.61)

(3.62)

The resulting unforced linear state space representation of this

[pp, p] T = [p(t), v(t), a(t)] , is given by:

0

-(t) = Af(t) + BWW(t) 0

0

1

0

0

system, if given for the state vector Y(t) =

0

1 5(t) + BWW(t)

0

E[-(t)] = 0 E[t_(t)VT (r)] = Wc6(t - r)

(3.63)

(3.64)
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In this derivation it is assumed that there is no corrupting process noise in the system such that W, = 0.

Assume that perfect acceleration measurements are available such that the system output relationship is

given by Equation 3.65 for the measurement matrix C = [0 0 1]:

y(t) = Cz(t) = a(t) (3.65)

Given the discrete nature of accelerometer measurements we will transform our system into a discrete time

equivalent in which the continuous time values are sampled at regular intervals kT, with sampling period

T,. The discrete state space representation of the time evolution of Xk is given below in Equation 3.72.

Below are the necessary equations to transform a system from continuous time to discrete. Please refer to

118, 12, 19] for other examples of this discretization. The discrete time state transition matrix is given by

Equation 3.66.

Ad = eAT, (3.66)

T.

Wd] AdBwWCB TA T d (3.67)

If there were process noise in this problem, Equation 3.67 could return the discrete time equivalent noise

covariance matrix. Alternatively, the discrete equivalent state space propagation matrix Ad and noise co-

variance matrix Wd can be derived using the following equations [18, p7-18].

S -A BwWeB (3.68)
0 AT

C eST C11 C 12  (3.69)
0  C22

Ad = C22 (3.70)

W 22C12 = AdC12 (3.71)
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The matrix A is the 3x3 matrix governing the continuous time derivatives in Equation 3.63. The mea-

surement equation of the discrete system is identical to that of the continuous time system such that

Cd=C= [001].

1 T, T.

Xk+1 = AdFk = 0 1 T, k (3.72)

0 0 1

We now have a foundation on which to build an estimator for the position, velocity, and acceleration

of a 1-D object given, temporarily, perfect acceleration measurements. It should be immediately evident

that there is a issue with using accelerometer data to determine position and velocity. Directly integrating

acceleration to determine velocity yields one constant of integration to account for the initial velocity of the

system. A second integration to determine system position requires knowledge of both the previous constant

and yields yet another constant of integration for the initial position. This thought experiment illustrates

the point that acceleration alone is insufficient to uniquely determine, or observe, the absolute state of the

system. Construction of the so-called observability matrix allows for the diagnosis of such observability

problems in state space systems even when they are not evident by inspection. The observability matrix for

this system is shown in Equation 3.73.

Cd 0 0 1

0- CdAd 0 0 1 (3.73)

CQA2 0 0 1

The rank of the observability matrix is, effectively, a measure of the number of states that can be uniquely

observed given the state and output matrices of the system. The observability matrix in this case is rank

one, which is consistent with the intuitive explanation of limited observability given above. Ultimately,

the position and velocity cannot be determined form acceleration without perfect initial conditions and

measurements. If instead position measurements are available the output matrix becomes C = [1 00] which

results in an observability matrix of full rank as shown in Equation 3.74. All three states of the system are

observable from position measurements, though it can be shown that at least two position measurements

will be needed to determine velocity and three will be needed to determine acceleration.
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Cd 1 0 0

0 CdA = 1 T, (3.74)

CCdAd 1 2T, 2T 2

The value of using position measurements to determine system state is clear. However, a basic principle

of sampling theory tells us that in order to capture and control the higher-frequency dynamics of an aircraft

the system must sample and respond to the vehicle state at a rate that is twice the primary frequency of the

critical aircraft dynamics [32]. For even a very stable and docile aircraft the lower bound on the sampling and

control frequency can be in the tens of Hertz. For high rate dynamics, such as those of a pUAV, the rate at

which position measurements would need to be taken, as determined by the sampling period T,, will generally

need to be in the hundreds of Hertz. The most common, convenient, and widespread means of position

measurement for an aircraft is GPS for which most commercial solutions can only update at a rate of 1-

10Hz, which is far below the sampling requirement of the system. Conversely, modern MEMS accelerometers

can operate as speeds upwards of 1000Hz. Therefore an effective inertial navigation system will be required

to leverage the benefits of both fast and noisy MEMS sensors and the slower and more accurate sensors such

as GPS. Such a system is sometimes referred to as a complimentary filter. Madgwick, Euston, and Farrell

all give examples of similar systems which leverage complimentary Kalman filters [23, 11, 12]. Madgwick

develops a similar INS to the one presented here, specialized for purposes of tracking human motion. Section

3.4.2 builds such a system where the benefits of both measurement systems are combined to produce a robust

estimator which accounts for real world phenomena in sensor measurements and can handle dynamic system

environments.

3.4.2 Indirect Filter Derivation

The benefits of implementing a Kalman filter as described in Section 3.3 rely heavily on the accuracy of the

system matrices Ad,B,,d,Cd, and Dd. Unlike the majority of the aerospace industry, wherein significant time

and effort is expended to develop increasingly accurate system models, accurate matrices to describe the

dynamics of new UAS prototypes are not often available. By using the Kalman filter as described above, in

its direct state form, the matrices needed to compute new estimates at each time step can become quite large.

For example, at a minimum, an aircraft needs to track six degrees of freedom, three in attitude (roll, pitch, and
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yaw) and another three in translation in the three spatial dimensions. From first principles, if no constraints

are placed on motion, every degree of freedom adds the equivalent of a second-order differential equation of

motion to the system dynamics and requires two first-order states in the state space representation. As such,

the approximate lower bound on the number of states required to represent an aircraft is twelve. Moreover,

even if motion constraints allow for a reduction in the number of required dynamic states, additional states

will be required to track the offset biases in the sensors. Inverting a 12x12 matrix (as would be required

to calculate the error covariance matrix) is a very processor intensive task. Finally, an assumption made in

the mathematics of the discrete-time Kalman filter is that all of the measurements are available at the same

time. The resulting filter operates at a fixed period defined by T, and it is therefore difficult to incorporate

measurements from sensors which operate at different rates without recalculating the discrete equivalent

noise and propagation matrices at each time step.

An alternative to using the full-state approach described above is the indirect/complimentary form of the

Kalman filter. An indirect architecture involves the filter tracking error states as opposed to the true states

of the system. For example, instead of tracking position p, an indirect filter would instead track 6p = p - P

where p is the true position and P is the estimate of position. The complicated dynamic of an aircraft get

replaced by the error state dynamics which are governed by physical laws (i.e. v = 2, a = ). This
dt' dt'

concept of dynamics model replacement resembles the system described in Equation 3.63. However, had

the car analogy contained real phenomenon like friction, coupling of systems, aerodynamic effects, engine

dynamics, etc., the state dynamics matrix A would have been much more complicated. It was simplified for

the sake of the reader, but its resemblance to the idea discussed here should not be confused as anything

more than a coincidence. The construction of an indirect/complimentary filter is only concerned with the

error state dynamics, which will take the form of general derivatives. The difference should be made clear

in the following section. An example of indirect feedback structure filter is shown in Figure 3.5.
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1.c crretinsKalman Filter 4E

External Sensor

Figure 3.5: Indirect Feedback Architecture[18]

An inertial system continuously integrates high-rate sensors, like MEMS accelerometers, during tk_1 <

t < tk to produce values for position and velocity. It keeps track of the each state's initial conditions after each

integration step. At a slower periodic rate, when t = tk an external sensor provides an accurate measurement

k of one of the lower order states, like position. At the slower measurement rate, the difference between

the inertial system estimate and the external sensor measurement is presented to the Indirect Kalman Filter

(IKF). The output of the IKF is finally fed into the inertial system as an initial conditions correction. This

structure lends itself well to the complimentary nature of the accelerometer/GPS systems alluded to in the

earlier example system. Furthermore, should the external sensor experience periods of faulty operation, the

inertial system will still provide viable, if slowly drifting, dynamic estimates of the state. An alternative

form is the feed-forward architecture, where the corrections to the inertial system are added to the output

of the inertial system to produce the corrected result. A feed-forward IKF would produce similar results to

the feed-back IKF. However, by feeding the corrections back into the inertial system the error states of the

IKF will be bounded, whereas a feed-forward IKF could have unbounded error states.

Continuing the 1-D example proposed in Section 3.4.1, a model which accounts for the real world output

characteristics of a MEMS sensor is incorporated into the example framework below. Equation 3.75 shows

how the MEMS accelerometer measurement am (t) of the true acceleration a(t) is corrupted by some random

bias signal b(t) and some Gaussian white noise Va(t). The measurement noise Va has a variance of o. The

bias signal is taken to be the result of a random walk process where b wb(t) and where Wb is also a Gaussian

white noise with its own variance of o,.

am(t) = a(t) - b(t) - Va(t) (3.75)

In order to make use of the accelerometer measurements am (t) an estimate of the bias must be calculated
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in order to attempt to cancel the offset before it is integrated into the state estimate. Therefore, the state

vector given in Section 3.4.1 will be altered to track this time-varying bias signal. In the new state vector '=

[p, v, b]T the bias state replaces the acceleration state. The construction in Section 3.4.1 derived the equations

necessary to describe an accelerating object, where the position, velocity, and acceleration were useful. Now

that we want to develop a state estimator for that system, we must realize that keeping acceleration in

the state vector doesn't make intuitive sense. There is no way for the system to predict/estimate what the

acceleration will be since it is arbitrarily driven by some external force. The complimentary structure instead

feeds acceleration measurement/state information to a bank of pure integrators. Given a bias estimate b(t),

the best estimate of the true acceleration is given by &(t) = am(t) + b(t). The resulting dynamics can be

written as shown below [12]. Note that the derivative of the bias estimate is zero since it is driven by

Gaussian white noise, whose expectation is zero, E[Wb] = 0.

P(t) = (t) (3.76)

&(t) = h(t) = am(t) + b(t) (3.77)

b(t) = 0 (3.78)

The error states are defined as: 6p = p - P,6v = v - O,6b = b - 6. The resulting full state space realization

is shown below in Equation 3.79. In this system we are only using the accelerometer measurements to track

position, velocity, and accelerometer bias. In order to simplify the analysis, we will again discretize the

continuous system to form equivalent discrete system matrices. The discrete state transition matrix Ad is

formed as shown previously in Equation 3.66. Note B, is the continuous process noise matrix which maps

the Gaussian noise vector w-(t) into the state equations.

0 1 0 6p 00 [
6( = = A64(t) + BW -(t) 0 0 1 6V + 1 0 a() (3.79)

6b 0 00 6b 0 1 -Wb(t)
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T 2p

Ad 0 1 T, for 6 Xk = Vk (3.80)

0 0 1 6bk

Given some initial error covariances (Qpo, Quo, Qbo) the discrete error covariance of this system is defined

by Equation 3.81. This equation relates the initial state uncertainty to future state uncertainty subject to

noise. In a normal system the AdQkA T term is a contractionary term which decreases the error covariance

between time-steps, assuming Ad is stable. The second integral term is an expansionary term which accounts

for the noise and uncertainty introduced into the system at every time-step. Unfortunately, because of

the lack of any observation of the system state, the error covariance grows with time 112, p158]. The

resulting covariance matrix for any arbitrary time after initialization is shown in Equation 3.81. The error

covariance of all three states grows unbounded in time since the state dynamics are not stable and the

process noise continuously adds uncertainty. The initial error covariance matrix is a diagonal 3x3 matrix

Qo diag(Qpo, Quo, Qbo). The growth of each of these components is shown in Equations 3.82-3.84.

[So2 01
Qk+1= AdQkAjT + W = AdQk AT + (TAB. V" B T A T dT (3.81)

Q,(t) = (QPo + Q'ot 2 + Q t O) + ( + )t (3.82)

Q (t) = (Q1ot + Qbot 2 ) + (a + (3.83)

Qb(t) = Qbo + 0 2t (3.84)

Equation 3.73 demonstrated that when tracking [p, v, a] with acceleration measurements the system is not

fully observable without perfect prior information and perfect measurement data. Even with initial condition

information and initial uncertainty, the presence of non-ideal measurements in the form of bias and white

noise causes the system to diverge in all three states. In order to ensure the error covariance remains

bounded, some observation of the system state must be made, like a position measurement for example.

Consider a discrete position measurement pm (kT) = p(kT,) + vp(kT,), where vp is a Gaussian noise process
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with variance Rp. As mentioned earlier the inertial system will continuously integrate accelerometer data at

a high rate, called fi, while the IKF will operate at a rate equal to that of the external sensor measurement,

called f, = 1-. Equation 3.85 details how the aiding measurement is formulated for the IKF. The current

estimate of the position is subtracted from the new measurement to form an error measurement. The

measurement matrix is given by Cd = 11 0 0-

6 Yk = Pm - Pk = p(kT ) +vp(kT ) - Pk = 6 Pk + vp(kT,) = Cd6 Xk +vp(kT) (3.85)

At the time of filter initialization SF= E[-(0)] therefore the initial error state is also zero, 6- 10 = 0.

The initial error covariance Qoio = var(Xojoi) = var(z(0)). The first aiding measurement occurs at k = 1,

so the error covariance and error state will need to be propagated in time as described in Figure 3.4.

6X11o = Ad6ozol = 0 (3.86)

Q11o = AdQoJoAj Wd (3.87)

The measurement update process incorporates the new measurement 6 y, into the existing state estimate.

Since the prior estimate of the state error 6- 010 = 0, the equation simplifies as follows in Equation 3.88.

Equation 3.89 describes the update of the true state x with the new correction provided by HF. The

new updated state is equal to the expected value of the state, -1p = E[s(t1 )], after incorporating the

measurement information at step k = 1. Therefore, after the update step, the new estimate of the state

error is zero 6-11 = 0, such that the propagation of the error state will be zero again, 6 2211 = Ad6- 1 11 = 0.

6X1 o = F01o + Lk( 6 yk - CdbXo0o) = LkOyA (3.88)

o111 = ±i10 + R110 = 110 + LOAyk (3.89)

The remainder of the Kalman filter equations concerning the error covariance update and propagation,

as previously derived, still apply. The critical differences between the general Kalman filter and the IKF,

outside of structure, are that the state propagation step becomes trivial and the measurement update step is

55



simplified by allowing the filter to ignore the previous error state estimate since that information has already

been incorporated.

3.4.3 Simulation

Several 1-D simulations were preformed with accelerometer and gyroscope models to validate and assess the

performance of the IKF. For the simulation, the rate of the IMU accelerometer was set to fi00t = 120Hz

while the position/velocity aiding sensor reported data at f, = 5Hz. The simulated aiding measurements

are modeled on the expectation of a GPS-like update in the form of a position corrupted by white noise with

2 = 3m, and velocity corrupted by a white noise with o -0.0400M 1291. The incorporation of the velocity

1 0 0
measurements changes the measurement matrix to Cd [ The accelerometer model is based off

0 1 0

of Equation 3.75 where a = 2.5 -104 and awb 1.0 1063 . The true bias offset of the accelerometer

is set to 0.05 ". The simulation tracks a particle moving, subject to sinusoidal acceleration, for 100 seconds

(Fig. 3.6).
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Figure 3.6: Sinusoidal Simulation Results
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The corruption of the position and velocity aiding measurements can be seen in the scatter of blue and

green markers, respectively, around the true signals, which are indicated by matching solid-colored lines.

The accelerometer signal, plotted in cyan, can be seen to track the red acceleration data. Note that the

accelerometer signal is always below the true acceleration due to the bias offset. Below are the plots of the

resulting filtered data.
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Figure 3.8: Bias Results

Figure 3.9 depicts the state errors and related one-standard deviation bounds on the the error uncertainty

for each state. Both reach steady-state values after 10s. Given the performance characteristics of the

simulated sensors, the IKF is able to attain sub-half meter accuracy in position and sub-quarter meter-per-

second accuracy in velocity. The bias estimation also produces an estimate with a steady state standard

deviation of less than 0.025'.
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Figure 3.9: Estimate Errors and 1-- Bounds on Error Covariance

Figure 3.10 depicts the auto-correlation plots of the position and velocity innovation processes, showing

that they are both uncorrelated. This means that the filter is extracting all relevant information from each

sample. This result is equivalent to having the only remaining data in the innovation be the white noise

corrupting the measurement signals (note that the auto-correlation of white noise is an impulse at t = 0).

Figure 3.10: Auto-correlation of Position and Velocity Innovation Processes

A plot of the Kalman gains is shown below in Figure 3.11. The Kalman gain matrix, a 3x2 matrix, is

calculated on every cycle of the IKF. Note, however, that the components of the gain matrix reach their

steady state value within about six seconds of filter operation. Computational burden can be mitigated on

the target platform by using a pre-computed steady state Kalman gain instead of inverting the necessary
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matrices on each time step. Doing so results in a loss of accuracy and a slower transient response from poor

initial conditions, but may be beneficial when considering the computational load on a system.

02 2 K,2 008

Figue 3.1: 1D KamanKain

Table 3.1: 1-D Indirect Kalman Filter RMS Errors
State RMS Error

Position (m) 0.251
Velocity (T) 0.049

Accelerometer Bias (g) 0.0021

The simulation was run 100 times to produce averages of the RMS errors on all three state which are

shown in Table 3.1. The results reflect the average RMS errors of the IKF after the 15 second start-up

transient when the initial bias estimate was produced. Given the realistic values for the noises used in the

simulation, the IKF performs well given a dynamic tracking environment. This IKF forms the building block

of the navigation filter inside the INS designed for the pUAS.

60



Chapter 4

Navigation Development and Testing

To operate autonomously a UAS needs to be able to discern its instantaneous position and orientation

relative to some fixed reference frame. An important concern which drives the design of the INS in this

case is the need for the INS algorithm to eventually be implemented on a processing-constrained micro-

controller. Architectures explored by [34, 31, 19, 6] highlight the importance of designing the INS with

this implementation detail in mind. For this reason we consider not just the effectiveness of a particular

architecture but also the required computational burden. There are, of course, many different approaches to

solving this navigation problem.

To start, we first make a distinction between the problems of solving for the aircraft's orientation and

determining the aircraft's position and velocity in some frame. We refer to any system which handles

the attitude estimation as an Attitude and Heading Reference System (AHRS) and to any system which

determines the location and velocity of the UAS in the navigation coordinate system as a Navigation Filter

(NF). Some INS solutions combine the NF and AHRS together into one computational block while others

separate them. Korka [19] describes the implementation of a combined complimentary architecture where

the AHRS and NF exist together as one filter. The filter still implements a complimentary architecture,

however, wherein the inertial integration is still separate from state estimation. Stimac [34] presents a more

complete architecture which models rigid-body dynamics and employs a single large estimation structure

which incorporates the AHRS and NF along with the inertial integrators. The drawback of such a system is

the computational burden of inverting the large matrices needed to propagate the system state. Furthermore,

61



the tracking of rigid-body dynamics is only practically useful in exo-atmospheric situations where external

force and torque disturbances are kept to a minimum [34, p151]. Roumeliotis et al. [31, 4] and Cutler [6]

both describe the implementation of INS which split the operation of the a complimentary AHRS and a

complimentary NF for robustness and speed. Specifically, by keeping the integrated inertial systems isolated

from the correction systems, the integrated systems are capable of operating even in the event of measurement

loss, like short-term GPS blackout or magnetic field disturbances. Increased robustness and computational

simplicity comes at a cost, however, to optimality and accuracy. Because the AHRS and NF are separated,

and therefore share no internal information, they cannot offer aiding information to one an other, which in a

combined architecture would happen naturally and generally reduce estimation errors. Another concept of

INS operation, called a tightly coupled solution, exists where GPS measurements are incorporated into the

state estimator [34]. A tightly-coupled solution uses the GPS raw pseudo-range measurements and constructs

its own estimate of position and velocity while incorporating other sensor data. A loosely-coupled solution,

which is what is presented here, takes GPS measurements only as final/whole data products.

In this section we will provide an overview of the implemented INS architecture along with discussion and

testing of the separate AHRS and NF components. All of the simulations and INS results were carried out in

MATLAB to minimize the development time of INS algorithms. Special attention was paid to minimizing the

use of MATLAB-specific functionality and algorithms which might be difficult to port to a micro-controller.

Several tools from the Aerospace toolbox, like functions to transform between the ECEF, NED, and LLA

frames were used to speed up development. These algorithms are well documented and available for custom

implementation in C. However, the micro-controller still needed to be configured and programmed to perform

the necessary data collection and recording processes for testing.

4.1 Architecture

The architecture settled upon for the Locust INS was inspired by Farrell and by the work of the MIT

Aerospace Controls Lab [6, 12, p.19]. In the interest of designing the INS with portability to a micro-

controller, the INS was first split into separate AHRS and the NF sections. This splitting produces sub-

optimal results compared to a single larger filter, as discussed previously, but is much easier to compute

numerically due to the reduced state vector sizes. Furthermore, both the AHRS and NF were built as

complimentary filters in order to take advantage of high rate MEMS sensors (>100Hz) and slower GPS and

62



heading aiding measurements (< 5Hz) . The problem of solving the NF can be further simplified with the

understanding that motion in all three axes are independent from one another in this framework. Therefore,

the NF is further subdivided into three separate IKFs tracking motion in each of the three navigation frame

axes. The AHRS cannot be subdivided in the same manner due to the inherent interdependence of rotations

in R3 , as previously discussed. This problem was briefly described in Section 3.2.1 and is the subject of

much research. The reader should consult [20] for a thorough exploration into the topic of rotation on the

SO(3). A brief explanation of the figure below will be given, followed by discussions of the NF and AHRS

in isolation.

RPa

fp V

lp
R

P KPS

AMRS

Figure 4.1: INS Block Diagram

In the above figure inertial data is represented by blue lines, rotation matrices by gray lines, aiding data

by green lines, and result data by purple lines. In an effort to minimize complexity and computational

load, the INS is split up into two separate segments, the Attitude and Heading Reference System (AHRS)

and the Navigation Filter (NF). The NF is a type of complimentary filter which work in conjunction with

inertial integrators, shown in blue, and three IKF state estimators, shown in red, and GPS to produce

estimates of position and velocity. The AHRS is a simpler complimentary design which instead uses a static

filter to estimate signal bias and correct the INS attitude estimates of roll, pitch, and yaw. Following the

notation of Farrell, the inputs to the INS, fia, and w?,, appear on the left side of Figure 4.1 [12]. The
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MEMS accelerometer output f9, represents the platform acceleration relative to an inertial frame, resolved

in the accelerometer frame. Similarly, the gyroscopes measure w?, the platform rotation rate relative to

an inertial frame, resolved in the gyroscope frame. The two most important frames-of-reference used in

most INS are the platform frame (which is defined according to the body axes of the aircraft) and the

navigation frame (which is defined by some convenient local inertial frame). The rotation matrices RP and

Rg rotate the inertial measurements from their respective sensor frames into the platform frame, accounting

for installation misalignment between the IMU and the frame of the aircraft. The platform frame gyroscope

readings wP are passed into the AHRS which performs the necessary integration and correction steps on the

three Euler angles/unit quaternion to produce an accurate estimate of the rotation matrix R', which relates

the platform frame to the navigation frame. The AHRS system uses accelerometer data, magnetometer data,

GPS, and previous estimator outputs to correct the rate-integrated vehicle attitude estimate. Navigation

frame acceleration P' are formed by multiplying platform frame accelerations fP by the R' rotation matrix

from the AHRS. The result is passed into the NF to produce estimates of the vehicle's position and velocity

in the navigation frame. Current position and velocity data along with GPS are used to correct the NF

estimates. The INS outputs the combined results of the NF and the AHRS, which describe the aircraft's

Euler-angle attitude and the current navigation-frame position and velocity of the vehicle. Armed with a

high-confidence state estimate from the INS, the FMS can make use of flight stabilization techniques to

control the aircraft.

An important note about the INS inputs is that they are assumed to be pre-compensated for scale

factor/linearity errors. Typically, MEMS sensors suffer from scale factor errors, which manifest as non-

unity slopes in their input/output relationship and nonlinearities over the range of sensor operation. The

INS presented here is only capable of tracking the bias signals for the MEMS inertial sensors and assumes

that any scale factor correction/linearization has already happened. Farrell describes how to design a more

complex INS which is capable of tracking these additional corrupting effects, though there will necessarily be

more equations to solve as well as a concern about observability[12]. Section 2.3.1 outlines the method used

to correct for scale factor errors and predict initial bias estimates in the MEMS accelerometers. Section 2.3.2

describes how to correct for scale factor errors and in the MEMS gyroscopes. The magnetometer sensors

require their own special compensation due to the fact that their behavior is a function of their proximity to

other metallic, and therefore potentially magnetized materials. Section 2.3.3 describes how to handle these

effects, called Hard and Soft Iron effects. Another assumption made is that all measurement corrupting noise
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is uncorrelated or white.

4.2 Navigation Filter

The navigation filter is comprised of three parallel IKFs running on each channel/axis of the navigation

frame. The filters, like the ones described in Section 3.4.2, each track their channel's error in position,

velocity, and a navigation frame accelerometer bias. This bias error estimate is the projection of the body

frame biases into the navigation frame, so in order to use the estimates they must be rotated back from

navigation frame to the platform platform. The simplicity of the architecture, due to the fact that motion

in one of the axes is independent to motion in another perpendicular axis, lends itself to the implementation

on a pUAS.

RP

R"n G

Figure 4.2: Navigation Filter Block Diagram

Using the notation provided in Section 3.4.2, the equations which govern the NF are summarized below,

where the first subscript refers to the navigation frame axis/channel and the second refers to the time step.

Equation 4.1 shows the process model for the North-axis, which is identical to the East and Down axes which

are, therefore, not repeated.

JPN,k 8 2s JPN,k-1

3 XN,k [ 6 VN,k AdEXN,k-1 + Wd 0 1 T, 8  VN,k-I +Wd (4.1)

[bN,k 0 0 1 JbN,k-1

EYN,k = Cd EiN,k + vp (kT.) (4.2)

The familiar IKF measurement process for the North channel is shown in Equation 4.2, again which is
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identical to the other two channels. The correction-update step of the IKFs follow the methods described in

Section 3.4.2 and are not repeated here. The bias error states are calculated in the navigation frame, but

they are only recorded and useful in the platform frame. Therefore, during each correction step, the last

estimate of the platform frame biases must be transformed into navigation frame biases. Once the correction

step has occurred the new estimates for errors in the navigation frame biases needs to be converted back

into the platform frame for use on the next inertial integration step, shown in Equation 4.3. The rotation

matrices in Equation 4.3 are also time-varying but their time indices are not included below for clarity in

the subscript notation. Note that for the bias vector estimates, 6" and 6P, the p and n superscripts denote

the platform and navigation frame values. When the vector is decomposed, the superscripts are dropped in

favor of the subscript notation for the N,E,D/x,y,z indices.

bN,k-1 bx,k-1

bk-1 bE,k-1 R = Rp b IKF Correction b= RP by (4.3)

jD,k-1 bz,k-1

The inertial system integrates navigation frame accelerations in order to produce velocity and position

estimates. The velocity integration step is shown below in Equation 4.4. Remember, the rotation matrices

are also time-varying and in fact estimates themselves, but time index k and estimate hat symbols are

omitted for clarity in understanding the frames subscripts.

g 0 VN,k-1 0

Vk = Vk-1 + (f! + 0 )dT = VE,k-1 + t { p k1) + (4.

9 VD,k-1 9

0 PN,k-10

Pk Pk-1 + tint Vk-1+ T(fn + 0 } dT =PEk-1 ±tintok1 R"(f;+b$_1)+ ti }(4.5)

9 PD,k-1 19

The position integration step is shown in Equation 4.2. The incorporation of acceleration in the position

equation could be neglected if the integration period, tint, is small since the square of a small quantity will

be negligible.
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4.2.1 Simulation Results

In order to begin the development of the 3-DOF navigation filter, an incremental test simulation was built

in MATLAB to track the dynamics of a point mass. This simulation ignores body rotations to eliminate the

need for an AHRS to track them. The simulation assumes that the MEMS accelerometers are co-aligned

with the platform frame so that, RP = I. Since there are no body rotations, the rotation matrix from the

body/platform to navigation frame is the identity matrix, RP = I as well. Since all three degrees of freedom

are perpendicular to one another, responses per axis are independent of each other. Therefore three IKF, one

for each axis, and an inertial integration block comprise this prototype navigation filter. The hypothetical

point mass is given an initial position above the Massachusetts Avenue bridge near MIT in Cambridge,

Massachusetts. The object is subjected to step changes in accelerations, shown in Figure 4.3. Similar to

in the 1-D IKF, the simulated on-board MEMS accelerometers were modeled with a = 2.5- 10-3 M2 and

a2 = 1.0 - 10-6M.

o.. 454&A A5erdo
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Figure 4.3: 3-DOF Simulated Acceleration Inputs (Non-Inertial)

A simulated GPS was used as a source for aiding measurements with additive white Gaussian noises

of variance a' = 3m in position and a2 = .2 in velocity. The accelerations are applied to the the test

mass in the co-aligned body-navigation frame. The NED navigation frame was used as described in Section
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m
3.1. In the NED frame, gravity manifests as a constant -9.8- offset in the z/Down-axis acceleration. The2

contribution from gravity is removed by adding the Earth's gravitational constant to the z/Down-axis in

order to obtain the inertial accelerations. For this simulation, adding +g to the z/Down-axis yields a small

negative acceleration during the first second of the simulation. Given the frame conventions, a negative

acceleration in the down axis will result in increasing altitude. Similarly the particle will accelerate along

the x/North-axis and y/East-axis during the first 15 seconds, resulting in a northeast climbing flight path.

Below is the result of the simulation depicted in Google Earth.

Figure 4.4: Google Earth Plot of 3-DOF Simulation

The simulation data in Figure 4.4 shows the flight path of the simulation subject to the constant ac-

celerations shown in Figure 4.3. The blue extruded curve is the true flight path of the particle subject to

perfect accelerations. The red curve is the path produced by 3-IKFs being fed noisy accelerometer and GPS

data. As expected the NF does a good job of tracking the particles position and velocity in time subject to

noisy position and accelerometer data. The close overlap of the two curves indicates good tracking of the
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navigation filter. The average error magnitude in all 3 dimensions was perr = 0.41m.

The performance and simplicity of this filter is greatly dependent on the assumption that the system

knows, with absolute certainty, the aircraft's orientation at all times. Given correct attitude information the

contribution of gravity is perfectly canceled, reducing the problem to three IKFs tracking their own dynamics

in time. Imagine, however, that the initial attitude were slightly corrupted by, for example, -2' in roll. Even

with zero body-frame accelerations and zero initial position and velocity, gravity would couple into both the

accelerometer measurements of the aircraft z/Down-axis and its y/East-axis. If the NF were unaware of this

attitude when it compensated for gravity by adding 9.8m to the z/down accelerometer reading, it would

compensate incorrectly, resulting in a positive downward acceleration of f, D = 9.81(1 - cos(-2)) =

.0060m. Furthermore, the positive y-axis coupling would cause the NF to believe that the particle were

being forced to the east with an acceleration of fn E - sin(-2)9.81 0.3424 . This thought experiment

illustrates that even a slight attitude error could be devastating for a NF that does not incorporate rotations.

As such, a capable AHRS will be required in order to constantly monitor and estimate the attitude of the

aircraft. This attitude sensitivity mostly impacts rotations in roll and pitch, since yaw action of the aircraft

will typically only change the heading of the aircraft, and not the manner in which gravity interacts with

MEMS sensors. Therefore, a yaw tracking AHRS could operate in parallel with a NF to do basic ground

based tracking assuming that the roll and pitch angles are kept relatively small. The next section will build

such a single-axis AHRS in conjunction with the NF filter described above.

4.2.2 Four Degree of Freedom Test Results

A Four Degree-of-Freedom (4-DoF) incremental development test involving the /iUAS avionics board and

several commercial IMU systems was performed in order to asses the viability of the prototype INS. The

four degrees of freedom in this case were the three navigation frame axes and the yaw rotation axis. The test

setup was comprised of a wheeled cart (hence only yaw rotations were possible with zero roll or pitch angles)

which carried a Novatel SPAN INS connected to a Novatel LN-200 IMU, an SBG Systems IG-500N INS, and

the MUAS avionics board as shown below (Fig. 4.5). The test was performed inside of a tented indoor tennis

facility which provided a climate-controlled and relatively flat and level testing environment which did not

interfere considerably with GPS reception. The LN200 is a tactical-grade IMU, containing fiber-optic ring

gyroscopes and highly sensitive solid-state silicon accelerometers. It has been in production for several years
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and continues to be used on many aircraft. The LN200 is connected to a SPAN INS module, which also

receives a GPS signal, to produce position, velocity, and the three Euler angles. The SBG Systems INS is a

commercially available compact INS which offers a full solution to customers in a 30mm x 30mm x 15mm

footprint, shown to the left of Figure 4.6. The UAS avionics board is shown to the right of Figure 4.6. The

performance results of the commercial INS solutions are shown below in Table 4.1.

Table 4.1: Commercial INS Performance
RMS Error SPAN/LN200 I SBG-500N

Horizontal Position (m) 1.2 <2
Vertical Position (m) 0.6 <2

Horizontal Velocity (M) 0.020 < 0.1
Vertical Velocity (M) 0.010 < 0.1
Roll Accuracy (degs) 0.011 1.0
Pitch Accuracy (degs) 0.011 1.0
Yaw Accuracy(degs) 0.022 1.0

The specifications listed above are for reference to qualitatively compare the performance of each system.

All three systems were stacked vertically so that their z-axes were as close to co-aligned as possible and their

x-y axes were parallel and co-aligned. A stackable plastic 3D-printed cage was produced to provide easy

alignment of the three devices.
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Figure 4.5: 4-DOF Test Cart

Figure 4.6: Close up of SBG Systems INS and pUAS Avionics housing

The INS shown in Figure 4.1 depicts accelerometer, magnetometer, and GPS data being fed into the

AHRS in order to help produce aiding corrections. In this test, GPS velocity was the only AHRS aiding

measurement available due to the preliminary nature of this test. For this purpose we assume that the heading

indicated by the GPS ground velocity vector is the same as the vehicle heading as shown in Equation 4.6. This

assumption, of course, does not necessarily hold in airborne platform for which aerodynamic phenomenon,
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such as side slip or wind correction angle, can cause the aircraft's heading and course (direction of travel)

to differ.

V elocit y in E ast
'0 - GPS = arctan Velocity in Nort (4-6)

Velocity in North

The path traveled by the cart inside the tennis bubble involved several overlapping square patterns along

with a few circles. The results of one of the square segments which lasted for approximately 65 seconds is

shown below in Figure 4.7. The test starts at the location (0, 0) and progresses south-west in a clockwise

manner, with right hand turns at each corner.

0[i LA 14 4575..0l 7 12T753@-01, I 87Me0.011J......

0I0o

Figure 4.7: 4-DOF Test with Yaw Aiding

The red curve above is the LN200 results and is taken to be the most accurate data set to compare

against. The purple curve is the SBG result which exhibits an offset in the north and east direction, which

is due to non-ideal initialization of the system as well as pre-programmed antenna offsets in the commercial

solutions. The blue circles are the periodic (1Hz for this test) GPS position measurements. Finally, the green

path is the result of the INS running three IKFs for the navigation filter, and one IKF for yaw correction.

The NF works as described in 3.4.2 and 4.2.1 where three IKFs are run in parallel to track motion. The

AHRS was a one-dimensional IKF tracking the yaw rotation of the cart. The AHRS IKF is identical to

the one described in Section 3.4.2 except that the state vector and measurement matrix have changed. The

gyroscope is modeled as having a white Gaussian noise signal vg with a variance of a2, and a random walk
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bias signal b(t) driven by white noise Gaussian noise such that b Wbg where Wbg is characterized by a

variance of o, 9b (Eqn. 4.7). The state vector now only tracks error in yaw and error in the bias of z-axis

gyroscope, as shown in Equation 4.8. The measurement matrix is altered to reflect the smaller state vector

and represents the measurement of the yaw angle error, which originates from the GPS yaw measurement,

shown in Equation 4.9.

Wm(t) = w(t) - b(t) - vg(t) (4.7)

Xk- = (4.8)

Cd =[1 01 (4.9 )

During this test the GPS yaw measurement would lag noticeably behind that actual physical rotations

because of the slow 1Hz update rate and the inability of the GPS chip to predict or track sharp turns along

the ground. This made clear the need for an algorithm to determine when it was appropriate to perform

attitude error corrections. In other words, the measurements available to either the AHRS may not always

be valuable or accurate. Incorporating erroneous information could cause the INS to diverge and report

incorrect results. Therefore, in an effort to improve INS performance the GPS yaw measurement was only

used during periods of time which satisfied the following requirements:

1. The GPS self reported accuracy is less than a factory defined constant.

2. The absolute value of the z-axis gyroscope was less than 15 dgsS

3. The INS estimated ground speed was greater than ImS

It was found that under these conditions the 1-D AHRS performed well and tracked the yaw of the cart

throughout the experiment. Figure 4.8 is a graph of the INS estimated ground speed, the z-axis gyroscope,

and the Boolean flag which represents when the above conditions were met.
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Figure 4.8: 4-DOF Boolean Flag

Figure 4.9 depicts the results of the AHRS throughout the experiment. Blue circles represent the the

GPS calculated yaw measurement. Notice the divergence of measurements during turns, which occur at

t =[12, 20, 23]s. The green curve represents the INS yaw solution and the red and purple curves represent

the LN200 and SBG reported yaws, respectively. The blue line represents the Boolean flag which determines

whether or not the AHRS corrections occurred during that time interval. A value of 25 represents AHRS

correction while a value of 0 represents no correction, just gyroscope integration.
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Figure 4.9: 4-DOF Yaw Results

The jump in yaw at 26s depicts the action of the AHRS, which brings the INS estimate of yaw closer to

the LN200 result. Notice, however, that the correction step can cause the AHRS to diverge from the LN200

result when the GPS is trusted during instances where its data is inaccurate, such as at t = [13, 42, 52]. These

errors can be mitigated by placing less weight on the GPS yaw measurement, in effect informing the IKF to

trust the measurement less. This causes correction steps to be smaller resulting in a smoother yaw graph. The

downside to this adjustment is a slower overall response to large errors in yaw. As previously mentioned, the

fairly uniform offset of the SBG result from the other systems is most likely due to a poor initial calibration.

The wrap around which occurs at 52s is an expected product of the yaw angle being restricted to the range

of ±180'. The most important lesson from this experiment was the need for a decision algorithm to activate

AHRS correction only when certain conditions were met. It should be noted that during each of the right

angle turns, uncorrected gyroscope integration routinely undershot the true rotations by 10*. This error is

attributed to scale-factor errors in the gyroscope calibration which were not compensated for during this test.

As previously discussed, the INS sensors models assume that this compensation has already been completed

accurately, so no attempt was made to track or alter the gyroscope reading to correct for this effect. The INS

is still capable of tracking the error produced by the gyroscope scale-factor using aiding measurements (i.e
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following a valid GPS measurement) but, left unchecked, this problem could significantly degrade dynamic

tracking performance on the target platform.

Table 4.2: 4-DOF Test Results
RMS Error SBG-LN200 GPS-LN200 Locust-LN200

Horizontal Position (m) 1.8 6.7 7.5
Horizontal Velocity (-M) 0.8 2.8 2.2

Yaw (degs) 5.4 14.7 10.4

Table 4.2 lists the approximate performance results for the 4-DOF test. The SBG INS, Locust GPS

sensor, and Locust INS are all compared against the LN200 INS which was considered the truth measurement.

Because the cart was traveling on a flat surface, the roll, pitch, and vertical velocity of all the INS were always

close to zero and therefore omitted from the table. The only relevant measurements were horizontal position

and velocity error as well as heading error. Note that the GPS and yaw offset in the SBG result has been

pre-compensated for in the results so that it does not artificially increase the RMS error. The Locust NF

shows considerable overshoot during turns which is likely attributed to slow response of the 1-D IKF to turn

events. The result of a slow to react attitude estimate is a misdirected velocity vector in the navigation frame,

producing overshoot until the system corrects itself a few seconds after the turn. Because of this overshoot,

the Locust INS does worse than the GPS in horizontal position. The Locust's ability to leverage high rate

sensors, however, allows it to perform slightly better in velocity than the GPS. Furthermore, it is clear that

for ground based tests where the GPS reported velocity vector is small, deriving a yaw measurement from

GPS produced slow and noisy results, as can be seen in Figure 4.9 and in the yaw RMS error value above.

Each of the performance metrics listed above is expected to improve when using a more mature NF/AHRS

and once the velocity of the IMU increases, as expected in flight.

4.3 Attitude and Heading Reference System

The AHRS is the combination an inertial integration system and a correcting filter, shown below in Figure

4.10. The complexity of handling rotations in SO(3) referenced in Section 3.2.1 will motivate the design

of the correcting filter. The AHRS uses on-board gyroscopes to measure body frame angular rates w.

However, the INS requires the navigation frame angles, also known as the Euler angles, to form a rotation

matrix. In truth the INS only needs a rotation matrix to transform body frame quantities to navigation
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frame quantities, so the source, whether it be three Euler angles or a quaternion, is inconsequential. The

body rates transform into navigation frame rates according to Equation 3.7. This relationship describes

the coupling that can occur between the three rotation axes under certain circumstances. Therefore, three

independent IKFs cannot be used to track rotations. Instead, the rotation sequence as a whole needs to be

tracked and corrected. This makes the process of estimating bias signals for the gyroscopes much harder to

follow as all three bias signals impact the rotation output simultaneously in a coupled fashion.

RW

(o f
ip

Figure 4.10: AHRS Block Diagram

Like the NF, the AHRS is split into an inertial system and a correction system. Unit quaternions are

used inside the AHRS to avoid the problem of singularities associated with Euler angle representations. The

inertial system integrates the attitude quaternion according to Equation 3.30 and Equation 3.31. Periodically,

the attitude will be corrected in order to account for drift and bias effects. Euler angles are easier to

conceptualize than quaternions, and will commonly be used by the guidance and control systems of an

aircraft. The following sections will use Euler angles to form aiding measurements which eventually get

converted into unit quaternions for incorporation into the correction filter. The Euler angles can be readily

recovered from either a rotation matrix or a quaternion as necessary for guidance or control. A method

of generating aiding measurements to correct the estimated attitude is presented in Section 4.3.1. Section

4.3.2 describes a filter which can correct the attitude estimate and provide an estimate of the gyroscope bias

signals. Finally Section 4.3.3 presents AHRS test results.

4.3.1 Aiding Measurements

The most convenient way to produce measurements for all three angles is to leverage the on-board accelerom-

eters and magnetometers. Accelerometers measure the effects of inertial accelerations as well as the reaction
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force generated if the sensor is not in free-fall inside of a gravitational field. The gravity component of the

measurement is useful in calculating orientation as it can constrain the roll and pitch angles of the aircraft.

Because the roll and pitch calculations use the accelerometer as a gravity sensor, it can only be used when

the aircraft is relatively stable and not accelerating, or a, ay a ~ 9.8. Given roll and pitch, head-

ing/yaw can be calculated using the magnetometer. GPS can also be used by the AHRS to produce lower

a quality measure of yaw, as shown in Section 4.2.2. The GPS sensor can produce a ground velocity vector

whose arc-tangent is equivalent to a heading measurement. However, making the gross assumption that the

aircraft is always pointed in the same direction of its travel can lead to divergence in flight. As was the case

in Section 4.2.2 with GPS yaw measurements, logic is needed to determine when the accelerometer data is

valid for use in the AHRS.

Accelerations in the platform frame can be thought of as representations of navigation frame accelerations

through the RP rotation matrix (Eqn. 4.10). The NED navigation frame acceleration is equal to =

0 0 g], where g = -9.8', only when there are no externally applied forces acting on the IMU. Platform

frame accelerations measured by the MEMS accelerometers are called f [apx apzl. Notice that

-fP is used in Equation 4.10 because gravity is taken to be negative due to the D axis pointing down in

the NED frame. Following the procedure in [15], the first step in deriving the roll and pitch equations is to

pre-multiply Equation 4.10 by the inverse roll and pitch rotation matrices, shown in Equation 4.11.

0

-f = R,(0)Rv(0)Rz ()fi = RP 0 (4.10)

9

-ax 0 cos sin ? 0 0 0

- Ry(-O)Rx(-O)ff= Ry(-O)Rx(-#) -apy R2(0) 0 sin cos V 0 0 =0 (4.11)

-apz 0 S 0 1 g

cos0 sin0sin# sin0cos 0 -apx 0

0 cos # - sin # -apy =0 (4.12)

-sin 0 cos 0 sinq# cos 0 cos 0 -apz 9

78



(4.13)

0 = atan(aPX, apy + a"z) (4.14)

Solving for row two in Equation 4.12 yields an equation for roll (Eqn. 4.13). Solving for the first row in

Equation 4.12 yields an equation for pitch (Eqn. 4.14). In practice the accelerometer values used in Equation

4.13 and Equation 4.14 are Low-Pass Filtered (LPF) versions fP because MEMS accelerometer data tends to

be noisy. Furthermore, if the input output relationship between acceleration and accelerometer is non-unity,

a unitizing calibration is needed. A calibration technique to meet this need is described in Section 2.3.1.

In order to determine yaw from the magnetometer, a Hard-Iron/Soft-Iron calibration must be performed

in order to remove the effects of on-board permanent and induced magnetic fields which distort the output

response. The details of the Hard-Iron and Soft-Iron calibration are offered in Section 2.3.3. The calibrated

magnetometer measurement is represented by mP' = MPY mpzl. In the northern hemisphere the

Earth magnetic field points mostly north with a slight downward component which increases with latitude.

This downward component is denoted by the angle of inclination, 6. Equation 4.15 describes the relationship

between the magnetic field in the navigation and platform frame. Using the measured roll and pitch angles

calculated from the above equations, the magnetic field measurement can be rotated to yield an intermediate

tangent frame where # = 0 = 0. From there, the projected magnetic field measurements form the Bf vector

which can then be used to find V.

cos(6) cos(6)

mP Rx(O)Ry(O)Rz(O)B 0 = RPB 0 (4.15)

sin(6) sin(6)

Bfx cos0 sin0sin# sin0cos mpx cos(6)

Bf Bf y Ry(-0)R(-)mp 0 cosk -sin m Rz(')B 0

Bfz -sin 0 cos0sin 0 cos0cos j mpz sin(6)

(4.16)
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Bf, M , Cos 0 + mY sin 0 sin 0 + mpz sin 0 cos Bcosocos4,

Bfy = mY cos 0 - mpz sin -Bcos sin4, (4.17)

Bf, Z mpJ sin 0 + mpy cos 0 sin 0 + mpz cos 0 cos Bsin6

4= arctan2(-Bf y, Bf ) (4.18)

Using the first two rows of the right hand side of Equation 4.17, the calculation for the 4 angle is derived,

shown in Equation 4.18. The left hand side of 4.17 defines how to generate the Bf, and Bfy coefficients

given the magnetometer measurements m p, roll, and pitch.

Given favorable flight condition when a, ay a ~ 9.8M, and when the (A ) ~ 09, roll
Y S7 S

and pitch can be calculated using the accelerometers. Consequently yaw can be found given the two prior

angles and magnetometer information. In order to reduce attitude measurement noise, the accelerometer,

gyroscope, and magnetometer data are low-pass filtered by averaging their values over the window of ~

1s. During especially noisy conditions, this averaging window can be widened. Note, that the aiding

measurements will lag behind the true dynamics due to the averaging, though the effect is minimal compared

to the potential noise errors which are avoided. These three angles can then be converted into a quaternion

following Equations 4.19-4.22, repeated here for convenience.

_ # 0 4, .q50.4
qo = (cos - cos - cos - + sin - sin - sin-) (4.19)2 2 2 2 2 2

_ 0 .
q= (sin -c co s - cos - sin - sin -) (4.20)2 2 -2 2 2 2

q2 (cos sin - cos - + sin 0 cos - sin -) (4.21)2 2 2 2 2 2

q3 (cos cos sin - sin - sin - cos ) (4.22)
2 2 2 2 2 2

There is the matter of keeping track of the sign for consistency, since either the positive of negative quaternion

can be used to represent the same rotation. Code will check the new computed quaternion's sign with the

previous estimates and if the result is a mismatch in sign, the measured quaternion is negated. Furthermore,

in order to ensure stability in the quaternion calculation, the estimated quaternion was periodically re-

normalized onto the unit sphere so that the quaternion norm was unity.
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4.3.2 Quaternion Filter

IMU gyroscopes report wim, which is a measure of the true body frame angular rates, WT, corrupted by

the true bias signal bT and a white Gaussian noise Vg, shown in Equation 4.23. The noise in each axis is

characterized by a variance of oa . The noise signals, however, do not have an impact on the derivation of

the quaternion filter since the integration of the gyroscopes results in a time averaging of the signals. The

time average of the Gaussian white noise component in the gyroscope measurement is zero. The INS will

need to produce an estimate of this bias signal, best, in order to prevent potential drift errors in attitude.

Given an estimate of the bias, the estimated angular rates can be represented as shown in Equation 4.24.

Rearranging Equation 4.23 and adding a positive and negative best yields Equation 4.25.

Wx bTx Vgx

Wm = WT - bT-g - bry + Vgy (4.23)

WJ bTz Vgz

West wm + best (4.24)

WT = wm + bT + V ±best (wm + best) + (bT - best)±+V9 = West + bres +V9 (4.25)

Equation 4.25 informs us that the true body frame angular rates are the linear combination of our

best estimate of rotation West given our bias estimate, the error or residue of our bias estimate, bres, and

some Gaussian white noise. The gyroscope data is used to propagate the quaternion, which represents

the aircraft's attitude state, forward in time according to Equation 3.31. Numbered subscripts represent

consecutive instants in time of length ti%,t, over which angular rates are assumed to be constant. Ignoring

the measurement noise vg and given an accurate initial quaternion of qoT and the true rotation rates WT,

the quaternion is propagated as follows:

0

1 Wx 1
q1T = qOT + 1tint(qOT 0 ) = qr + 1tit (qOT 0 0 (4.26)

WY WT
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The second term in Equation 4.26 represents the quaternion derivative, defined in Equation 3.30. It is

assumed that the measured quaternion qm, formed from the methods discussed in Section 4.3.1, is approx-

imately equal to the true propagated quaternion since, aside from zero-mean noise corruption, these two

quaternions should be in agreement (Eqn. 4.27). The quaternion represented in Equation 4.26 represents

the optimal result of the INS, assuming that there were no bias signals which disturbed the measurement

process. The INS, however, has to deal with these problems, and instead be integrates its best estimate of

the angular rates, west. The INS quaternion propagation equation is shown in Equation 4.28. Note that both

the theoretically ideal propagation and the real world INS propagation start from the same initial attitude,

qOT

1 1

q1est = q0T + int (q0T (9qT + int(q0T 0 4.28)
)West 2WT 2bres

qe est = T - 1int (±-T 9 tt(qO0 (4.28)
2 WT 2 bres

1

q1est = q1T -- -- it(qOT ] (4.30)
2 bres

Equation 4.30 highlights an important aspect of the AHRS, which is that the estimate quaternion is the

combination of the true result and an error quaternion formed by the bias signal. Following the procedure

described by Cutler, we form the residue quaternion, Br, shown in Equation 4.31 [6, p60]. In the following

equations the -tint terms will be replaced with the symbol -y. Recall the quaternion product of a quaternion

with its conjugate is q* 0 q = 1 0 0 0] T

Br = q1*est 0 q1m - q*est 0 qiT (4.31)
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Br~~1TY(OT®[O~}*qlT::q* ([ O* q )}0qlT (4.32)

1

B, q1T - -(q10111 -'Y T

Br ~ -y 0 qOT q1T (4.33)
0 bres

0

The simplified form of Br appears in Equation 4.33. The goal in this AHRS process is to be able to

estimate what bre, is in order to correct the gyroscopes appropriately. Equation 4.33, however, requires

knowledge about the true propagated quaternion in order to solve for b,,.. Here, we make the small angle

assumption in order to claim that over the small windows of integration, determined by tifl, the change

in attitude will be small, and therefore the quaternions between two consecutive time steps will be similar.

In other words we assume that q1T - qoT. Therefore, the property of quaternion self-conjugation still

applies and results in qO*T 9 qil ~1 0 0 0]. Therefore the bias resides can be directly calculated from

the quaternion product of the estimated inertial quaternion and the measured AHRS quaternion, shown in

Equation 4.34, where the approximately equal signs have been dropped.

Bro 1 1

Brx 0 0 lbresx
Br qi~est (9 qim = + 7 = (4.34)

Bry 0 bres ybresy

Brz 0 ybresz_

bxk = bxk_1 + Brx (4.35)

The residues found through Equation 4.34 can be added to previous bias estimates in order to correct

bias states. Equation 4.35 outlines this correction step for the x-axis gyroscope. The integration constant, -y,

appears in the denominator of the Brx coefficient in order to cancel out the internal -y of the residue vector.

The bias gain Kb was experimentally tuned, and found to work well at a magnitude less than 0.01.

The only remaining issue to discuss is the correction of the actual quaternion which is tracking the INS

motion. The solution proposed here is a LPF for the INS quaternion with a constant gain. The simplicity of
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this design does not detract from its performance, although more optimal solutions do exist. Cutler uses a

similar architecture to correct for drift in the flight of quad-rotors [6]. Stimac describes an extended Kalman

filter to perform small Euler angle corrections [34]. Roumeliotis et al. implements an IKF structure which

tracks the small error quaternions in order to estimate the attitude of an object [31]. The AHRS may migrate

to the structure defined by Roumeliotis if it is found that the LPF does not suffice for stability. The LPF is

in practice identical to a Kalman filter which has reached steady state operation, that is the Kalman gains,

which are analogous to the LPF pole locations, are fixed. The LPF used is a simple discrete LPF defined by

a single gain, shown in Equation 4.36

gest = qest - Kg(et - qm) = (1 - Kq)qest + Kqqm (4.36)

The algorithm low-pass filters changes in the estimated quaternion, qest, that result from the incorporation

of data from the measured quaternion q.. This technique works well for small angle corrections in the

attitude. The LPF gain Kq ~ 0.07, is kept intentionally small in order to mitigate noise from the AHRS

aiding measurements. Section 4.3.3 presents test results of the AHRS measurement and correction algorithms

described above.

An important note about implementing a quaternion based attitude correction system is the possibility of

quaternion flipping. Specifically, the quaternion which represents a single rotation R', can be either q or -q.

The negation of the entire quaternion still contains the same rotation information, but when operating on the

quaternion as above, the sign can matter. Therefore, the AHRS software checks the sign of the measured and

estimated quaternion and negates appropriately, as shown in Equation 4.37. Note the dot product operation

between the two quaternions instead of the quaternion product. The dot product operates on quaternions

just like vectors so that each component in one quaternion multiplies its respective component in the other

quaternion.

if (q est o q, < 0) then q. = -qm (4.37)

4.3.3 AHRS Test Results

The AHRS measurements of Section 4.3.1 produce values for roll, pitch, and yaw measurements. A measure-

ment quaternion q. is formed from these measurements according to Equations 4.19-4.22. The measurement
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quaternion is used by Equations 4.36 and 4.34 to correct the quaternion estimate. A series of benchtop tests

were performed in order to assess the performance of the measurement and correction process. Because a

rate table was unavailable, the only calibration technique used was a six-point accelerometer calibration as

discussed in Section 2.3.1. The resulting inertial gyroscope integrations yield attitude angles that are close

but typically over/under-shoot their true values. The AHRS is able to correct the result by incorporating

aiding information

below, followed by

1. Initialize the
position.

2. Rotate +400

3. Rotate -40'

4. Rotate +45'

5. Rotate -45'

6. Rotate +90'

7. Rotate -90'

8.

9.

when appropriate. The inertial system operates at 120Hz. The rotation sequence is given

the AHRS attitude results in Figure 4.11.

Locust board with zero roll and pitch and a yaw of -110'. This is called the test's start

about the platform x-axis/roll axis.

about the platform x-axis/roll axis, returning to the start position.

about the platform y-axis/pitch axis.

about the platform y-axis/pitch axis, returning to the start position.

about the platform z-axis/yaw axis.

about the platform z-axis/yaw axis, returning to the start position.

Combine +45' about the x, and then the y axis, followed by +90' about the z-axis

Return to the start position.
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Figure 4.11: AHRS Test Rotation Results

The blue curves represent the combined state estimate of the three Euler angles. The green curves

represent the aiding measurements which are being continuously generated from the accelerometer and mag-

netometer data. The purple curve represents a Boolean flag which indicates when the aiding measurements

are used to correct the AHRS result. The flag is true when both the magnitude of the low-pass filtered

gyroscope readings are less than 4d9s, and when the magnitude of the low-pass filtered inertial accelerations

are less than 0.2.. The gyroscope constraint prevents the AHRS from attenuating the change in angle from

the integrated gyroscopes by incorporating LPF aiding information which is slow to respond to changes.

The accelerometer constraint prevents the AHRS from using the accelerometers to produce roll and pitch

estimates during times of inertial acceleration, which would corrupt the gravity estimate. The uncompen-

sated scale-factor errors of the gyroscopes manifest themselves as integration errors during rotations. For

example, the inertial integration system only captures ~ 340 out of the total 40 'which the INS experienced,

which can be seen at t = 50s. Similar integration errors can be seen during other rotations throughout the

test. However, the AHRS is able to correct these errors once the system detects that the IMU has stopped

rotating and has stabilized, which is represented by the purple curve rising to its high state.
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Figure 4.12: AHRS Boolean Flag

Figure 4.12 depicts the evolution of the Boolean flag in response to the rotations described above. Ro-

tations are indicated by large spikes in the LPF rotation magnitude, in green. The blue curve depicts

the inertial accelerations experienced by the INS. Inertial accelerations spike every time the Locust board

was moved during the bench-top tests. Figure 4.13 depicts the bias estimation process of the AHRS. The

results show good tracking of the bias signal which matches the initial bias estimate. Because the AHRS as-

sumes that the gyroscopes are compensated for any scale-factor errors, the bias estimates experience discrete

changes during rotations in order to compensate for mismatches in the angle estimate and the measurement.
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Figure 4.13: AHRS Bias Estimation

The above test exhibits good tracking performance of the AHRS under rotations in all three axes. Bias

estimates converge on nominal values and measurement logic is able to dynamically asses the validity of

measurements. The dynamic performance motivates the need for an accurate scale-factor calibration for all

three gyroscopes. However, even in the presence of such corrupting errors, the AHRS is able to faithfully

track the orientation of the avionics board. The measurement LPF window size should be sized appropriately

for application of the INS. For example, a slowly rotating system would benefit from a wide window in order

to effectively remove noise errors but a faster system would suffer with a wide window because of the lag in

the LPF data. Ultimately, If the window is too large, the measurement data would be too outdated to be

useful in correcting the attitude estimate.
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Chapter 5

INS Test Aircraft Results

An in situ test involving the JLUAV airframe was not possible during the time of the work presented here,

as a repeatable/reliable testbed was not yet available. Furthermore, the space and weight constraints of

the pUAS platform meant that it was impossible to include any sort of truth measurement system along

with the embedded avionics. Therefore, to test the viability of the INS architecture it was flown inside of

a Grumman Gulfstream II (GII) private aircraft, which was equipped with its own LN-200 INS, similar to

the one shown in Figure 4.5. Figure 5.1 depicts the INS flight results from shortly after takeoff to landing,

75 minutes later. The Locust INS result, shown in blue, tracks the flight path well throughout the data set.

The INS begins operation shortly after takeoff in order to avoid divergence problems experienced while on

the ground. Currently the NF filter weighs the value of each of its measurements statically during operation.

The GPS sensor is configured to track the dynamics representative of a flying vehicle, specifically speeds

greater than 10M. Therefore, the INS does a very poor job of estimating velocity and position of a slowly

moving/still object on the surface of the Earth because the GPS measurements are not optimal. Incorporating

poor measurements into an INS which relies heavily on their accuracy would result in divergence. This

problem could be circumvented by dynamically reprogramming the GPS for ground-based and then airborne

operation, and by integrating logic into the INS which could dynamically alter measurement noise covariances,

but these methods were not explored for this thesis.
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Figure 5.1: GII Test Results

The data set analyzed below, however, is a small segment of the total flight which was chosen for its

balance of analytical manageability and sufficient dynamic content. For the sake of INS convergence mid-

flight, the filter was initialized with the correct values for velocity in the North, East, and Down, directions as

well as initial attitude information. Furthermore, because the avionics board was placed within the airframe

of the GII aircraft, the magnetometer data was rendered unusable. It was infeasible to perform the required

rotations to attain a proper HI/SI calibration with the INS board mounted inside the aircraft. Instead

the GPS was used to produce a yaw measurement from the velocity vector, as described in Section 4.2.2.

Since the Locust is designed to be deployed from an airborne platform, the INS should only use information

available to it during initialization to start the INS solution, specifically initial 3D GPS position and velocity,

and attitude from the AHRS sensors. No other initialization is necessary to attain an INS which converged

on the correct solution.
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5.1 Flat and Level Flight Segment

In order to effectively analyze the INS performance during the GII flight, a relatively flat and stable flight

section was isolated. The latitude, longitude, altitude plot of this flight segment are shown below in Figure

5.2.
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3490

La664deLngud

Figure 5.2: Flat and Level Flight

This data set consists of the aircraft moving in a southeast direction with a heading of 1600 followed by

a turn to the east and then another turn to the northeast. The plot shows good tracking of the three NF

channels aside from an offset in vertical position. This offset it not a product of the INS solution, but rather

the GPS sensor used by the INS. Two factors can cause an offset in GPS position when comparing two sensors.

The first source of offset is the trigonometry of the antenna setup. Here, both the GII SPAN/LN200 INS

and the Locust INS shared the same GPS antenna signal so this phenomenon had no effect on the position

offset seen in graph above. Had the two platforms incorporated their own antenna's, there would have been

an additional noticeable offset corresponding to the physical separation of the two antenna systems. The

second source offset is any pre-programmed lever-arm compensation inside of the SPAN/LN200 INS. It was

verified that the SPAN/LN200 INS performs its own lever-arm compensation to mathematically translate

the effective GPS antenna position to the location of the LN200 IMU. This pre-programmed offset causes
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the 3m shift in reported altitude seen in Figure 5.2. The velocity estimates are shown below in Figure 5.3.
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Figure 5.3: Flat and Level Flight Velocity

Note that the North and East channels display good tracking of the velocity. The Down channel displays

a divergence in the GPS reported velocity with the GII result. This error is attributed to poor GPS

performance for vertical velocity estimation, which is not uncommon for GPS as the vertical axis is the least

informed in the implicit satellite-triangulation problem . The INS was informed of the poor GPS velocity

measurements by increasing the noise covariance for that signal. The result is that the INS eastimate, shown

in blue, generated its own estimate of the vertical velocity through GPS position measurements instead. The

mechanisms of the IKF are inherently capable of producing position, velocity, and bias error estimates with

only position aiding. Therefore, the removal of velocity information does not prevent the NF from converging

on a vertical velocity estimate. The attitude performance of the INS is depicted in Figure 5.4.
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Figure 5.4: Flat and Level Flight Attitude

The purple line represents a Boolean flag similar to the one described in 4.3.3, which is true when the

1. jw I < 0.8 d:s Magnitude of the instantaneous angular velocity vector must be below a certain

threshold. This disables aiding during fast turns and attitude changes.

2. LPF(w ,I) < 0 .5 4:8 Magnitude of the low-pass filtered angular velocity vector must be below a

SFR

certain threshold. This removes the effects of noise on the gyro measurements when the aircraft is

flying steady. Note, however, the LPF introduces a phase delay in the signal so using this metric alone

would cause sluggish response to dynamics. The LPF was a two second window average.

3. ILPF(If~ |) -- 9.819I < 0.4g: Magnitude of the low-pass filtered inertial acceleration vector must be

below a certain threshold. This disables the AHRS from correcting the attitude during periods of time

when the gravity estimate would be corrupted by inertial accelerations.

Like the 4-DOF test and A HRS test, the gyroscopes exhibit scale-factor errors during turns. Notice, however,

that unlike in the A HRS tests where aiding measurements were used after a rotation was performed to correct

for the under-integration, AHRS aiding was not used after initial attitude changes because the aircraft was
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experiencing inertial accelerations and rotations in all three axes. Furthermore, the roll and pitch channels,

also exhibited slight inconsistencies with the GII data during turns. The source of this problem comes from

the way in which the GII performed turns. Skilled pilots usually couple together roll, pitch, and yaw in order

to perform what is called a coordinated turn. The result is that to an observer in the aircraft, the gravity

vector feels as if it is pointed out the bottom of the aircraft, even though the aircraft is rolled and pitched.

The coordinated turns corrupt the AHRS aiding measurements (red curves) by keeping them at their static

level values, as seen at t = {490 - 520,680 - 740,1010 - 1090}s. By monitoring instantaneous gyroscope

values, which are not phase/time lagged, the INS is able to detect rotation and instead depend only on the

gyroscopes. If the gyroscopes were more accurately calibrated, the attitude error seen during these turns

would decrease. A second artifact, which bares closer inspection, is the increase in pitch that manifests

during turns in the pUAS INS but not in the GII INS. A first-principle evaluation of flight dynamics tells us

that in steady-level flight the lift produced by an aircraft must be equal to the weight of the aircraft. If an

aircraft in steady-level flight subsequently enters a banked-turn, we know that a portion of the lift will be

directed horizontally into the turn (proportional to the sine of the bank angle). The vehicle must compensate

for the reduced vertical component of lift either by accelerating or increasing the AOA by pitching up, or it

will begin to lose altitude. The GII flight data shown in Figure 5.5, indicates neither a marked decent nor

increase in airspeed, so the GII must have increased it's AOA by pitching up slightly during turns. Pilots

know this as "applying back-pressure" by the application of nose-up elevator pitch.

Figure 5.5: GII Reported Ground Speed(L) and Altitude(R)

From this we conclude that some increase in the apparent body-frame pitch angle is, in fact, reasonable

and expected. This leaves only the question of the appropriate magnitude of pitch change for which, it

is reasonable to conclude, the pUAS INS response is almost certainly too pronounced. It is believed that
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the inaccuracies in the factory calibration of the gyroscopes (particularly consistent undershoot in roll and

potential over-shoot in pitch) and any subsequent errors in AHRS estimation are exacerbated, in this case,

when the total angular velocity is integrated disproportionately to the pitch axis. Regarding the divergence

from the GII data, we believe that there is some inconsistency between the true and reported configuration

of the data products provided by the GII instrumentation. For example, that the pitch field might actually

express a pitch relationship in a rotated frame or some relation to the flight-path-angle (the instantaneous

angle between the path of flight and a locally-level flight path). Further investigation is being conducted but

initial feedback suggests that an increase in pitch is, in fact, expected by the operators despite the fact that

it does not manifest very clearly in the raw data.
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Figure 5.6: Flat and Level Flight Bias Estimation

The bias signals for the gyroscopes converge onto their nominal values with step variations during turns.

This step phenomenon was explored in the AHRS section and described as the errors which accumulated due

to the scale-factor errors present in the gyroscope measurements. The accelerometer bias signals experience

a spike during the first few seconds of INS operation due to the NF's Kalman gains not yet having reached
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steady state values. A close up of the initial moments of the accelerometer bias estimation process is shown

in Figure 5.7.
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Figure 5.7: Flat and Level Flight Accelerometer Bias Initialization

All three bias signals diverge from their initial estimates to values which persist for approximately 400

seconds, at which point they change at t = 490s and then again at t = 700s. In order to understand what

is happening to the bias signals it is important to understand how the accelerometer bias is coupled into

the INS. First, the bias compensated accelerometers are used by the AHRS to produce an estimate for the

roll and pitch of the aircraft. Each milli-g of accelerometer bias error results in 1mrad = 0.050 in attitude

error (12, p356]. Because the accelerometers are part of the measurement process and not part of the process

being tracked in the AHRS, namely the gyroscope processes, there is no direct feedback coupling from the

attitude to the accelerometer biases. Instead, there exists an indirect coupling in the NF. The attitude

produced by the AHRS produces a rotation matrix R', which rotates platform frame accelerations into the

navigation frame. Ideally, the navigation frame accelerations represent the true accelerations felt by the

IMU, directed about the North, East, and Down directions. Integration of the North and East accelerations

result in the corresponding North and East trajectories. The Down acceleration must be compensated for

gravity before integrating. The entire process works well, so long as the rotation matrix RP can faithfully
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rotate the IMU into the navigation frame. Errors in the rotation cause the kinds of problems discussed in

the end of Section 4.2.1, where the subtraction of the gravity vector along a misaligned Down axis results in

residual acceleration in potentially all three axes. These residual accelerations would be detected by the NF

because the integrated results would not match the GPS aiding information. The result is the NF attributing

the errors to a significant change in the bias of the accelerometers as opposed to an error in rotation. This

is one of the potential pitfalls of implementing an INS which separates the AHRS and NF components. A

more complex INS might be able to better discern between a change in accelerometer bias and an attitude

estimation error. One way to mitigate the effects of this coupling is to inform the NF that the white noise

driving the bias process is much smaller than it actually is. In effect, this causes the bias signal to react

much slower to correction steps of the NF.

Another problem associated with the accelerometer biases was the issue of generating initial estimates.

A ground-based six-point calibration was not performed before the avionics board mounted in the GII.

Therefore, initial bias estimates could only be generated by examining favorable portions of the flight.

Favorable, in this case, meant periods of time without drastic changes in velocity in any axis and little/no

rotation. The above INS performance assumed that the aircraft's pitch during cruise conditions was zero,

which was likely incorrect by at least some small factor. On closer inspection of the GII pitch results, the

aircraft cruises with relatively constant pitch of 2.25'. Similar analysis of GII roll data showed a cruising

roll of 0.80. The roll during cruise is most likely an offset error in the GII's INS. The pitch during cruise,

however, was more likely a real phenomenon of the flight. As mentioned above, the initial accelerometer bias

estimates were produced by averaging output data during these cruise windows. Ignoring the initial pitch

caused the initial bias estimates for the INS x and z axes to be corrupted since the gravity vector was being

distributed along two axes instead of one.

The auto-correlations of the NF innovation processes are shown below in Figure 5.8.
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Figure 5.8: NF Innovation Auto-correlation

The whiteness of the innovations are a measure of how well the NF is extracting information from the

measurement process. If the innovation is pure white noise, depicted by an impulse auto-correlation plot at

t=O, then all relevant information has been incorporated into the state estimate. The NF does a fair job

of extracting most of the information from each of the measurements, though because of the sub-optimality

inherent in a split AHRS/NF architecture, there is some periodicity to the innovations. Furthermore, a

sub-optimal calibration could result in non-whiteness in the innovations. The time evolution of the Kalman

gains is shown in Figure 5.9. The important features of this chart are not the values the signals take on,

but the time period during which they evolve. Notice that the time axis only extends to five seconds. This

shows that the NF Kalman filters reach their steady state of operation almost immediately. Because there is

no feedback into the process and measurement noise covariances, once the Kalman gains reach their steady

states they will stay there for the rest of the flight. Changing the noise covariances will change how long

they take to reach steady state, as well as their steady state value. This result suggests that it may be more

beneficial to run the NF with constant Kalman gains, pre-calculated offline in order to avoid inverting the

3x3 matrices inside each channel's Kalman filter during operation.
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Figure 5.9: Kalman Gains

5.2 GPS Blackout

As a test of the INS ability to operate on inertial sensing alone, an artificial GPS blackout was imposed on

the INS during the Flat and Level flight segment. GPS aiding was turned off, leaving the INS with only

AHRS aiding and inertial integration for state propagation. Two separate GPS blackouts were imposed,

each lasting 50s. The first was at t=200s at which time the IMU experienced no rotations and little inertial

accelerations. The second blackout was during the second turn at roughly t=680s. The results of the first

GPS blackout is shown below. The only considerable deviation was in the altitude estimate which deviated

approximately 2m during the 50s blackout. The attitude estimate was not affected by the blackout because

there was little rotation during the event.
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Figure 5.10: GPS Blackout t=200s LLA

The results of the GPS blackout at t=680 is shown below in Figure 5.11. The blackout resulted in an

altitude error of ~ 70m over the 50 second GPS blackout. The increased altitude error as compared to the

t-200s blackout is because of the rotations which occurred during the GPS blackout, making it harder for

the INS to determine the correct position, velocity, and altitude estimates.

100



Navigalon

-Locust
GP

- "GNi

-684
-66

422 -

41.8 -66
41.6 -69,2

41.4 -694

41.2 -696

Latitude Longitude

Figure 5.11: GPS Blackout t-680 3D Plot

j,~.

0,..

I,,.
.5.- __ _____

!v-. 7 -,

F1

'V I

Figure 5.12: Velocity Estimate(L) and LLA(R)

The rotations during the GPS blackout produced uncertainty in the gravity estimate, which in turn caused

the estimate of the rotation matrix from the platform to the navigation frame RP to become inaccurate. This

leads to velocity estimate errors of 18',10m, 5' in the N, E, and D channels, respectively. Therefore, the

position estimates necessarily diverged as well, as shown to the right of Figure 5.12. The poor performance

of the INS during GPS blackouts can be improved by performing a viable and accurate gyroscope and

accelerometer calibration which would enable to INS to track inertial phenomenon much better without

aiding information. Alternatively, performance can be improved by tuning the noise parameters to better
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suit the more uncertain situation.

5.3 Results

Ultimately, the INS was able to attain favorable performance in navigation and attitude determination (Tab.

5.1). Performance during the flat and level flight is described under two situations, nominal (<0.5g accel-

eration) and dynamic/maneuvering (>lg acceleration). For each of these scenarios the following statistical

metrics were calculated: root-mean-squared error, average absolute error, and standard deviation of error.

Table 5.1 lists the nominal performance results of the INS. Note that the 3m vertical offset between in the

Locust and GII GPS signals, inherent to the test configuration, was removed prior to computing the error

statistics.

Table 5.1: Nominal Locust INS Performance Statistics
Value/Metric RMS Error Avg. Error (Error Std. Dev.

Horizontal Position (m) 1.73205 1.374 1.630
Vertical Position (m) 0.55 0.49 0.363

Horizontal Velocity (g) 0.84 0.79 0.21

Vertical Velocity (g) 0.05 0.04 0.04
Roll (degs) 0.67 0.63 0.19

Pitch (degs) 0.67 0.64 0.19
Yaw (degs) 2.34 2.34 0.1352

The statistics for nominal attitude errors are generally very good, though the yaw result is clearly less

accurate overall. Closer inspection of the test data reveals that this discrepancy is at least partly due

to underlying flight test limitation. Because a full 3D magnetometer HI/SI calibration was impractical to

perform in a large aircraft, the magnetometer yaw aiding measurements were replaced with a GPS psuedo-yaw

measurement. Figure 5.13 illustrates the resulting source of yaw error in the INS. The GPS yaw measurement,

shown in red below, diverges from the GII reported yaw, especially during turns of the aircraft. The INS

uses the GPS yaw measurement under the assumption that the aircraft's heading and ground velocity vector

are co-aligned. Prevailing winds, side slip, turbulence, and other aircraft phenomena can invalidate this

assumption. The GPS yaw error changes on every turn, corresponding to a different environment for the

aircraft which affects the heading/ground speed vector relationship. Because the Locust INS uses the GPS

yaw measurement for AHRS aiding, it too diverges from the GII reported yaw, shown in the blue curve

below. The overshoots in yaw seen at t = {500, 700}s are most likely due to the aforementioned uncalibrated
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scale-factor error in the gyroscopes. The overshoot at t = 1000s is a combination of the scale-factor error

and the wrap around in angle which occurs at ±180'of yaw.
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Figure 5.13: Locust INS Yaw and GPS Yaw Errors

Table 5.2 depicts the dynamic performance statistics of the INS. There is a marked increase in horizontal

position and velocity errors, while the vertical errors remain relatively low. The errors in horizontal position

and velocity are results of coupled errors from the AHRS. Any delay or error in the estimated attitude of

the aircraft will result in inaccurate flight direction estimates, and accumulate position errors in the wrong

velocity vector direction. For the nominal flight case, the NF and AHRS were able to track the slowly

changing dynamics of the aircraft and maintain low error statistics. Because of the AHRS under-reporting

of changes in attitude during turns, the navigation filter's results suffer. Improving the dynamic performance

of the the AHRS will improve the dynamic performance of the overall INS system.

Table 5.2: Dynamic Locust INS Performance Statistics
Value/Metric RMS Error Avg. Error Error Std. Dev.

Horizontal Position (m) 9.05 7.69 7.65
Vertical Position (m) 0.488 0.416 0.465

Horizontal Velocity (M) 2.59 2.13 1.62
Vertical Velocity (g) 0.29 0.22 0.22

Roll (degs) 2.56 2.28 1.09
Pitch (degs) 1.84 1.59 1.20
Yaw (degs) 6.50 6.14 2.13
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The performance of the Locust INS, while favorable, can still be optimized by tuning the noise parameters

of the NF and the characteristics of the AHRS quaternion low-pass filter. A table which shows the values

used for the measurement and process noise covariances is shown below (Tab. 5.3). The North and East

position variance is artificially high in order to improve filter performance. The variables in Table 5.3 can

be altered to value one performance metric over another, depending on the application.

Measurement Noise

Rp(N/E)
Rp,D

Rv,(N/E)

Rv,D

Table 5.3: INS Test Noise Values
Variance Process Noise/LPF Gains

(3. 10i) 2  
_ _ 2

(3m) 2  
_ __

(15-)2 K_/__

(50a Kq
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Chapter 6

Conclusions and Future Work

This thesis presented the theoretical foundation, mathematical framework, simulated results, and airborne

test results for an inertial navigation system. Kalman state estimation and quaternion attitude dynamics

were leveraged to combine GPS and MEMS accelerometer, gyroscope, and magnetometer sensor data. A

theoretical derivation presented the details of implementing an indirect Kalman filter, whose main benefit

was the ability to replace an aircraft's complex dynamics with simpler error-state dynamics. This concept

of dynamic model replacement proved invaluable in developing an INS for a platform whose design was in

constant flux.

The INS developed for the Locust pUAS exhibits the basic navigation functionality needed in order to

allow a FMS to autonomously stabilize and control an aircraft. The design focused on building a system

which could be easily implemented and executed on a SWaP-constrained micro-controller. The decision to

separate the AHRS and NF proved to be successful, although the optimality of the total solution necessarily

suffered because of it. This is a tradeoff in performance which will be reexamined once the full INS and FMS

are ready to be implemented on the Locust pUAS for flight tests.

The error statistics seen in Table 5.1, specifically a nominal average position error of less than 1.5m and

an average attitude (roll and pitch) error of less than 10, indicates a viable foundation for a final solution.

However, these performance values are only indicative of a specific flight envelope and, therefore, are likely

to not be representative of the INS performance in every situation. Table 5.2 is proof of this distinction and

further proof that improvements need to be made in order to stabilize a real aircraft in flight. The most
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pressing concern for the successful implementation of the INS is the dynamic performance of the AHRS

during turns. Being able to accurately estimate the aircraft's attitude through changing orientations will be

crucial to the success of the INS, and therefore the FMS as a whole. To this end, a thorough calibration

will be performed for the gyroscopes which will solve the chronic problem of over/undershooting turns.

Furthermore, because the flight segment analyzed above varied with less than 10m in altitude, it is likely

that the dynamic vertical performance of the INS is artificially accurate.

Some of the above performance metrics reflect limitations of the separate AHRS/NF INS architecture.

Notably, the relationship between attitude and accelerometer bias errors seen in the above analysis may

motivate future development of a more complete architecture which could allow information to be shared by

the NF and AHRS. The decision to implement complementary filters greatly simplified the approach of the

NF, and can be further used to develop an IKF to track the attitude quaternion. A quaternion based IKF is

the most likely immediate extension to the INS, along with more detailed noise models of the MEMS sensors.

The complimentary filter architecture is a powerful tool for INS because it allows complex aircraft dynamics

to be replaced by simpler kinematic models based on error relationships. While the development of the

Locust airframe is ongoing, which therefore means that the target platform is unavailable for testing, other

solutions will be available in the near future to test the INS in a more representative fashion. For example,

captive carries of the Locust board on small RC piloted aircraft will produce dynamics more indicative of

the Locust airframe than that of a Gulfstream private jet.

This thesis stands as a foundation for the future development of the Locust pUAS flight management

system. Development of the larger flight management system will depend on the success and accuracy of

the INS to achieve autonomy. The results presented above indicate the successful implementation of the

necessary functionalities needed to provide a FMS with a faithful representation of the state of a micro-scale

unmanned aerial vehicle.
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