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Abstract

CharmMe is a social discovery application to help people connect with others of sim-
ilar interests at a company, organization, or conference. Unlike traditional social
networking or matching algorithms, CharmMe discovers connections automatically
without the need for new profiles or tagging. By using natural language processing,
we create a model of an organization by "reading" existing information related to
the people being matched, such as their publications or social media accounts. Addi-
tionally, the application takes data provided by users Checking-in to conference talks
or Liking projects, which are actions made popular by the social networking sites
Facebook and Foursquare. To facilitate the actual introduction process, the applica-
tion makes available the location of all recommended people using RFID technology.
In addition, possible opening topics of conversation are suggested based on similar
interests shared by users. In this paper, we investigate how effective CharmMe is at
predicting new connections that are desirable and describe its deployment during a
conference event at the MIT Media Lab. Additionally, we evaluate the effectiveness
of the recommendations provided by the system and whether results improve with
incorporating user feedback. Ultimately, we think this application will help people
create better relationships by encouraging purposeful interactions, eliminating certain
social inefficiencies, as well as decrease the opportunity for a missed but potentially
meaningful connection.

Thesis Supervisor: Catherine Havasi
Title: Research Scientist
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Chapter 1

Introduction

Industry professionals often gather at large conferences to learn more about their

field. According to the Convention Industry Council, it is estimated that nearly 205

million people attend the 1.8 million conventions and conferences held in the U.S.

every year [5].

Implicit of attending these conferences, participants also have the intention of

meeting other like-minded individuals who share similar interests. While the CIC

reports that $106 billion is spent on hosting national conferences in the US [5], the

total contribution is much greater, albeit harder to measure, in the form of business

opportunities that arose as a result of people meeting at these conferences.

When conferences are attended by thousands of people (Apple's most recent

WWDC sold out it's 5,000 tickets [4]), it can be very difficult to know who exactly are

compatible participants to talk to. Because the chances of meeting the right person

at the right time are already probabilistically improbable, attendees are left to rely

on serendipitous encounters with strangers to forge meaningful connections. Rather

than leaving this up to chance and foregoing on missed connections and opportunities,

we can use technology to increase the likelihood of meaningful connections, thanks to

the emergence of popular social networking websites.

Making meaningful connections is often the primary goal of many attendees at

conferences, however, meaningful is defined differently from person to person. This is

because each attendee may have a different purpose for participating in the conference.
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These reasons may include recruiting candidates for a job opening, exploring business

collaboration opportunities, or meeting interesting people who have similar passions.

Finding another attendee who's intentions are compatible typically requires some

serendipity because a persons intentions are not apparent by physical appearances

alone. This often times leads to missed connections and other social inefficiencies.

CharmMe aims to correct these social inefficiencies by helping users facilitate

connections that otherwise are left up to chance. Using a combination of each person's

social network profile and their most recent activity around the conference, CharmMe

algorithmically suggests eligible users to meet who have displayed similar interests and

behavior patterns.
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Chapter 2

Background

2.1 Online Social Networks

Social networking sites like Facebook and Twitter have discarded anonymity and

made it possible for personal profiles and real identities to exist online. Facebook

boasts an impressive 900 million users [8]. According to a recent report by Nielson,

average user spends nearly seven hours per month on Facebook [14]. Much of their

activity includes filling out their profiles, sharing their experiences, and browsing

the content generated by their online connections. Back in October 2011, Twitter,

another popular social networking site, saw users generate an average of 250 million

"tweets" per day [19]. Tweets are short messages or status updates limited to 140

characters.

We can use tools from artificial intelligence to analyze the online data and predict

compatibility of users. CharmMe can discover common interests between people and

match users who have demonstrated similar online behavior patterns.

Here are some of the biggest existing social networks.

2.1.1 Facebook

Facebook is biggest social network, proudly boasting more than 900 million registered

users. Much of someone's online presence is recorded on the site, as users divulge
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numerous pieces of personal information including their date of birth, hometown,

school, etc. Facebook contains vital information about most users' real identities.

Facebook allows its users to share a wide range of digital content from pictures,

videos, and personal status updates. Users can also Like any material online to signal

their preference or affiliation for that medium [8].

2.1.2 Twitter

Twitter is a social network that emphasizes more on helping users share content

and distribute information. Unlike Facebook which requires friends to be mutually

approved, Twitter allows for asymmetric relationships, under the pretense of following

another user. By following another person, users receive text updates directly from

that account in real-time [20].

2.1.3 LinkedIn

LinkedIn is a social network but only for business professionals. It solves the problem

of trying to stay in touch with a user's professional relationships. Also, by making the

site strictly for professionals, privacy issues are also mitigated compared to Facebook

[13].

2.1.4 Foursquare

Foursquare is a location-based social network. It gives users the ability to Check-in

to a location, thereby announcing users' physical presence to their online friends. Be-

cause this check-in information is given up voluntarily, privacy concerns are less of an

issue on this service [9].

All of these sites have a public API that enables developers to build third-party

applications that can leverage the social information contained in these social net-

works. Facebook has an API that gives developers access to the Social Graph, which
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is information about the connections or friendships that exist between users on the

site.

2.2 Mobile Technology

With the rise of social media websites like Facebook and Twitter, more and more

information about users' preferences and behaviors are being made publicly avail-

able online. However, with this explosion of user information comes the problem of

deciding which pieces of information are relevant and which pieces are not. Recom-

mendation engines can help users filter through this noise by providing personalized

content based on the users' listed preferences, online and off-line actions, and as well

as social interactions.

According to another Nielson study, smartphone proliferation has risen to approx-

imately 50% of the U.S. population [15]. This has enabled users to maintain mobility

while still being connected online. Users who are on-the-go experience environments

that are constantly varying, marked by the changing peers they are immediately

surrounded by. This concept of dynamic social networks is being increasingly in-

vestigated [18]. One such example is the formation of ad-hoc social networks which

do not require Internet access, allowing for much heavier dependency on immediate

location. Lee shows how to use mobile behavior in conjunction with information on

social media profiles to effectively form these ad-hoc networks [12].

As the consumer products converge with social, mobile, and location technologies,

speculation has begun to envision how such applications will impact our daily lives.

In 2008, Michael Arrington predicted that mobile social networking was going to be

the next big thing [3]. He. imagined a world where all the relevant online information

about the people around him would be made available upon walking into a room

full of strangers. Depending on the setting and privacy settings of others, someone's

resume or listed interests online would be easily accessible just at the fingertips, all

in hopes of making the process of meeting new people easier and more efficient. Fast

forward to the conference SXSW 2012, people discovery mobile applications have
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erupted into the technology scene [21].

2.3 Related Work by Startups

2.3.1 South By Southwest

South by Southwest (SXSW) is a popular conference where technologists and startup

companies attend to publicly introduce their product to the rest of the world. At

SXSW 2012, there was an explosion of so-called people discovery applications, whose

goal was to help attendees meet other attendees by recommending nearby and rele-

vant participants to talk to based on common interest, affiliation, or friend. A number

of startup companies currently are competing in the background location people dis-

covery space. Such companies include Sonar, Gauss, INTRO, Highlight, and Glancee.

2.3.2 Sonar

Sonar is an iPhone application that uses Facebook, Twitter, and Foursquare to de-

termine interesting people to talk to nearby. When a user comes within 500 meters of

a relevant person, Sonar will push notify the user of interesting people. Sonar shows

which Facebook and Twitter friends they have in common and also allows users to

directly contact that person using a direct message via Twitter. Sonar believes that

users are much more inclined to meet new people when they share a mutual friend [16].
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2.3.3 Gauss

What separates Gauss from other applications is its feature to allow users to di-

rectly affect match results. Users can receive recommendations about surrounding

people who also share their specific interests and hobbies based on which interest

topic, or "magnet", they have turned on or off. Gauss also leverages information

from Facebook, Twitter, and Foursquare to focus on meeting new strangers in a new

environment [10].

13



Loretti Tonig
)wards the caffeine"

1aw e C
II

i-Adair Wilfiamn RoscoeV

Teg Cobo

Ig no Frank Kempe
n tMOdeM A

Rose Chan

th-Adair Bac Katie Smith-Adair

dair a1 212 11:3AM

Hey! What are you doing
in my neighborhood?

finiling up.

Oh, nce, I was just about
I to grab some coffee.

Want to meet me?

UYou got it See you in 5.

Figure 2-1: Screenshots of Sonar

14



Figure 2-2: Screenshots of Gauss

2.3.4 INTRO

INTRO aims to be the LinkedIn of this space by placing its emphasis only business

contacts. Users must sign in using their LinkedIn account and then tell the service

what type of professional he is currently seeking. INTRO then searches the user's

LinkedIn connections to see if any such person in the user's indirect network is cur-

rently located within the user's immediate physical location. INTRO also has a nifty

feature, called teleport, which allows users to perform searches in remote locations

and reach out to relevant new contacts without being physically present [11].
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2.3.5 Highlight and Glancee

Highlight and Glancee were two emerging applications that received a lot of press

attention at SXSW 2012. Highlight specifically gave iPhone users the ability to

bookmark specific people of interest. A common use case for this was that users could

bookmark celebrities in order to receive alerts from Highlight when that celebrity was

in proximity. Highlight would then bring up a map to show users how to navigate

towards their target contact [2].

Glancee had similar features but was for the Android platform. But instead

of showing a map, Glancee tells users the approximate distance of separation to

another recommended person. It also makes its recommendations from analyzing the

Facebook Likes of each user to find similar categories of interest using Wikipedia. By

using encompassing categories in the matching algorithm, the intersecting space of

the potential matches is expanded, which may lead to an increased number of actual

matches [7].
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Figure 2-5: Screenshots of Glancee

CharmMe aims to apply artificial intelligence and machine learning techniques

to make process of meeting new people at social entities or events easier and more

relevant. In this this paper, we report the deployment and effectiveness of CharmMe

at Sponsor Week at the MIT Media Lab. We also explore how accurate recommen-

dations are using the support vector machine (SVM) methodology. Our approach is

specifically for the Media Lab building, allowing for much more tailored experience.
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Chapter 3

Theory

We briefly explain the machine learning techniques used, singular value decomposition

(SVD) and support vector machine (SVM), as well as the underlying math behind

these methods.

3.1 Unsupervised Learning and Singular Value De-

composition

Unsupervised learning techniques are used to find patterns or characteristics of un-

labeled data. Using unlabeled data is the primary difference between supervised and

unsupervised learning algorithms. Solutions find clusters that may exist in the data.

Singular value decomposition is used in linear algebra to factor matrices into

component matrices with specific properties. It is given by this formula:

A=UEVT (3.1)

where:

" A is the matrix to be factored

" U is an orthonormal matrix

" E is a diagonal matrix containing the eigenvalues

20



* VT is the transpose of another orthonormal matrix

To calculate U, multiply A by AT, or A transpose, and solve for its eigenvectors

and eigenvalues. The eigenvalues matrix contains the squared diagonal values of E

and the eigenvector matrix is U. To calculate V, repeat using the product matrix of

A and AT.

3.2 Supervised Learning

The SVD method is one type of unsupervised learning in machine learning. Unsuper-

vised learning is used to determine clusters in data that share common traits. When

active feedback is present, supervised learning algorithms can be used improve predic-

tions. Supervised learning requires training data that is labeled. Thus, the support

vector machine, a supervised learning algorithm, was explored to test the accuracy

of predictions if the user was able to provide the system with training labels. This

provides users with a much more tailored and active approach to meeting people they

explicitly say they want to meet. This transforms the space from people discovery to

people search.

An example use case is when a recruiter is seeking professionals with a certain skill,

for example "programming". By specifying these initial criteria into the application,

those with a noted background in programming is deemed a positive example in the

training set. As the recruiter meets more people and inputs into the system whether

the previous person was actually a good match, the algorithm will modify the positive

training set accordingly and retrain itself. Eventually, the algorithm will learn the

recruiter's preferences over time and be able to more give more accurate predictions.

The support vector machine algorithm is implemented and its results are compared

to how the original SVD algorithm works. We also investigate how the parameters of

the Gaussian SVM can be tweaked to change results.

21



3.2.1 Support Vector Machines

Support vector machines is a type of supervised learning algorithm in machine learn-

ing. What this means is that the SVM requires an initial training set of data in order

to make predictions. This data needs to contain positive and negative examples such

that the SVM can learn which characteristics belong to which group. This is useful

because it can answer questions that have binary answers. In this case, the question

is "should this user meet this other person?", and appropriately, the answer is either

yes or no

In mathematical terms, an SVM can be represented as a quadratic programming

problem.

maxc, rn - 1 2
i=1 i,j=1

SAt. ai > 0, i=,..,M (3.2)

aiy = 0
i=1

where:

" ai is the calculated weight of data point i

" y' is the label value of data point i

" x' is the vector of data point i

" m is the total number of data points

The solution is the linear separator that best divides the positive from the negative

data points. This is defined as finding the line that produces the largest margin

between the boundary of positive and negative points. Ultimately, all of the a values

will be equal to zero with the exception of the data points located on the boundary.

Those a values will be positive.

What makes the SVM method particularly powerful is how this linear separator

can be found even in cases where there does not appear to be a linear division using a
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kernel function. The kernel function, K(xz, xi), is any function that takes parameters

by pairwise replaces the dot product of xZ and xi in Equation 3.2.

By changing the kernel function, the data points can be moved to a higher dimen-

sional feature space where a linear separator does exist. This solution is then mapped

back into the original feature space.

The Gaussian kernel function is used to introduce a nearly infinite feature space

to the data set. It has the formula:

K(x1 , xi) = e (3.3)

The fit of the separator is dependent on the value of o, or sigma. In general, the higher

the sigma, the more likely the data will be overfit and not provide much predictive

power. On the contrary, the lower the sigma the less defined the boundary is, which

also gives poor predictions.

Later in the paper, we look at the effect of sigma on the predictive power of the

SVM.
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Chapter 4

Implementation

4.1 Sponsor Week at the MIT Media Lab

The MIT Media Lab Sponsor Week is a biannual conference held every semester where

nearly 500 company representatives tour the Media Lab in a one week period to learn

about all of the fascinating research being conducted. They are primarily interested

in fostering relationships with Media Lab researchers to explore possible opportunities

of collaboration. CharmMe aims to make establishing these relationships easier by

suggesting corporate members to meet relevant researchers based on the member's

activity around the Media Lab. Such activity include Checking-in to conference talks

or Liking projects by taking pictures of a talk's or project's corresponding QR code.

A QR code, short for Quick Response code, is a visual pattern encoded with

information not unlike the ubiquitous bar code. Taking a picture of the QR code

with a smartphone QR code Reader typically leads the user to a website address.

Each project in the Media Lab has a certain web address and is used to register as a

charm.

Upon registration, each member of the conference is given a name tag, embedded

with a small radio-frequency identification (RFID) metal strip. Each strip provides a

unique signal, which directly maps to a four character personal ID called the webcode,

also unique to each member. Members are identified by their individual webcodes

in the Media Lab's internal database and system infrastructure. As members walk
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around the lab, their signals can be tracked using RFID readers strategically placed at

various locations around the building. The reader itself is conveniently placed under

a Glass Infrastructure (GI), which we will cover next.

4.2 The Glass Infrastructure

The GI is an interactive touch screen used to navigate and discover projects around

the lab. From any GI screen, users can see a list of all the currently active groups

in the lab. Drilling into any specific group brings up a description of the group, all

affiliated researchers of the group, as well the projects being worked on by the group.

Because each RFID reader is uniquely matched to a specific GI at a known loca-

tion, members can log in at the screen they are currently standing in front of. As

members explore the content and research projects, they have the option of adding

any project to their own personal list of favorite projects. The Media Lab also calls

this "charming" a project, and each favorite project is now termed a "charm". This

is analogous to Liking something in the physical real world.

Navigating on the GI screen is quite the pleasant experience as objects smoothly

and elegantly move around to reposition themselves on the display in response to the

user's touch. This rearrangement animation occurs when users tap on a button that

drills down into a group's page or a project's page.

CharmMe can also be launched in the GI and viewed. The UI automatically

adjusts its screen size to fit the dimensions of the display. Accordingly, the font,

buttons and graphics are appropriately enlarged such that no manual zooming of the

page is necessary for convenient viewing.

4.3 Backend of CharmMe

In total, there are 330 Media Lab researchers captured in this dataset. The original

dataset was simply a list of text documents, each containing the description of one

project. Each document also identified the associated list of collaborators by their
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user names and associated research group for that project. A separate list of users

and their corresponding list of charmed projects were also included.

From the original dataset, each user is made into a vector who's component values

were term frequency-inverse document frequency (TFIDF) weights. Each weight de-

picts how important a particular word associates with that user based on the dataset's

listed text documents.

Similarity between vectors is determined by calculating the dot product between

vector pairs. Because the dimensionality of the feature space is so high, this can be

difficult to work with and computationally intensive [17]. When all the user vectors

are combined to form a sparse matrix, singular value decomposition is used to reduce

the dimension of the feature space. SVD calculates the principal components of the

sparse matrix which can be used to represent each user vector in a reduced feature

space. Calculating the dot product in this reduced space is simpler and serves as

an appropriate approximation to the dot product in the original feature space. The

users are then ranked in order of similarity and returned back to the frontend.

4.3.1 User Interface of CharmMe

CharmMe originally had a predecessor project called ConnectMe. CharmMe uses the

same underlying SVD algorithm to recommend Media Lab researchers of other lab

members to meet. With the ubiquity of smartphones usage for corporate members,

CharmMe was born to be a mobile friendly version of ConnectMe that also included

recommendations to sponsors, or corporate members in attendance. Having a mobile

application was more appropriate for the on-the-go behavior displayed by attendees at

the Media Lab Sponsor Week. A web application implementation was chosen because

both Android and iPhone users could have access to the service.

Upon arriving to the site, users are prompted to input their unique webcode,

found on their Media Lab member badge. If the webcode is valid, users will enter their

personal profile page where their basic information is displayed along with the picture

taken when they first arrived at the lab. Users are also given the option of logging

into their LinkedIn accounts to facilitate following up with connections after the first

26



Figure 4-1: Screenshots of the CharmMe user interface

introduction. In yellow is the user's last seen location in the lab, or more precisely,

the last GI and corresponding RFID reader that detected the user. Scrolling down on

the page reveals the top three most relevant other members they should connect with,

sorted by strength of match and location distance. These member recommendations

are categorized into Sponsors and Researchers. Pressing the We've met button on a

person will cause that person to disappear from the view. Scrolling to the end of the

page displays the charms the user most recently input into the system.
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Chapter 5

Deployment

In this section, we discuss the design considerations and unexpected problems that

arose centered around deployment during the Fall 2011 and Spring 2012 MIT Media

Lab Sponsor Weeks.

5.1 Design Considerations

5.1.1 Speed Optimizations

When running the SVD algorithm on a person, it takes approximately 10 seconds to

return the top ranking recommended matches. From a user experience perspective, 10

seconds is much too long, especially since the application is being viewed on a hand-

held device. To fix this issue, a caching system was implemented. While first time

users require the SVD algorithm to finish, it is redundant to run the SVD algorithm

again for returning users. Therefore, upon first login, the user's results are stored into

a SQL database. When returning users load their profile, the load time is reduced

dramatically, typically to load times of under a second, because the information can

just be retrieved from the database. To maintain freshness of results, should a user

log in after a certain expiration time, the SVD algorithm will run again to update

the recommendations for the user.
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5.1.2 Mobile-Friendly View

With the prevalence of smartphones in today's corporate world, the UI was optimized

for a mobile experience. CSS3 provides certain powerful commands that can allow

automatic readjustment of front-end components, depending on the actual dimensions

of the physical display. Buttons, images, and text font-sizes are all resized to fit nicely

within the device display. The window itself is also readjusted for vertical scrolling

only, while extra screen space in the horizontal direction is eliminated.

5.2 Unexpected Deployment Issues

During the initial deployment of CharmMe at the 2011 Fall Media Lab Sponsor Week,

members signing in to the service for the first time were greeted rather unpleasantly

with an error screen. This happened because many members did not have charms

registered in the system. As a result, the SVD algorithm was unable to create vectors

of the first time users and no recommendations could be made. Unfortunately, this

case was neglected to be accounted for during testing. Instead of routing users to a

custom application error page, the more generic Internal Server Error page abruptly

appeared. Many first time users were discouraged from using the site and thought

little of returning to using CharmMe.

When CharmMe was functional, many members had difficulties using the service.

The main reason was because to get started required a rather lengthy setup pro-

cess. As a web application, users needed to enter in a web URL. Because the string

charmme.media.mit.edu is tedious to type on a phone, a QR code pointing to the

CharmMe address was made available for faster access. However, this introduced an-

other unforeseen step into the process because many corporate members surprisingly

did not have a QR code reader application on their phones. Downloading a QR code

reader added more time to the already time-consuming start up process.

When landing on the login page, members had to input their personal webcode.

Many members did not know their webcode information, or even how to discover

their own webcode by looking on their name badge.
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The final step for the first time user was to charm projects and give the SVD

algorithm data about the member. We had to demonstrate to members how to

interact with the GI and charm projects for them in order to enter data into the

system. This further added to the difficulty of adapting the product.

Another minor problem that was overlooked during testing was how sponsors

can only see other sponsors who have already signed in to the CharmMe system.

While sponsors can view recommended researchers, the CharmMe algorithm only

uses sponsors who have previously logged in before in matches. Therefore, the first

sponsors who use the application see a limited to nonexistent number of sponsor

matches. This is a problem at the start of the conference when nobody knows of

CharmMe, but disappears as more people hear about and use the application.
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Chapter 6

Follow-Up Experiment

The support vector machine algorithm is implemented and its results are compared

to how the original SVD algorithm works. We also investigate how the parameters of

the Gaussian SVM can be tweaked to change results.

Two different ways of labeling the training data were explored, conveniently named

Experiment 1 and Experiment 2. Experiment 1 marked positive examples as all names

that shared a document with the current user. This means that all researchers that

collaborated with the current user on a project were marked as positive examples.

Experiment 2 marked positive examples as all names that shared a group with the

current user as described in the data documents.

6.1 Error Validation and Sigma

Predictions can be made once each SVM is properly trained. These predictions were

then validated by the actual researcher by having each of the four researchers confirm

whether they know or would like to know the predicted users. Validation simply

consisted of presenting 13 researchers with a list of 66 randomly generated user names

sampled from the entire set. The number of errors (or wrong predictions) is counted

from the predicted matches generated from the Gaussian SVM. An error is a positive

prediction that the actual researcher claims she does not know or a negative prediction

that the researcher claims to know or want to meet.
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Figure 6-1: Gaussian SVM overfitting

The best sigma is determined by minimizing the following formula:

minimize with variables e, d with objective function e + d where e = error, d = (total

recommended by SVM less total extrapolated positives from validation results)

This formula takes into account both the accuracy and predictive power of the

SVM. The error, e, is the number of wrong predictions made while d is how close the

is the number of SVM predictions made comes to the extrapolated number of positive

results from each researcher's validation results.

It surprised me when we first discovered how it was possible that a Gaussian

kernel could produce less recommendations than a linear kernel. However, this could

be a product of overfitting. If a Gaussian kernel's sigma is too small, the SVM loses

its predictive power simply because only the positive training examples will ever be

positively labeled. Figure 6-1 illustrates this point. When sigma becomes too large,

the Gaussian boundary becomes more flat in shape. This also causes the Gaussian

kernel to lose its predictive power since it will just end up including the entire data

set as positive examples.
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Figure 6-2: Error versus positive labels, by projects.

When a Gaussian kernel has more positive examples to train, the optimal sigma

may take on a lower value. This is because the Gaussian can form a more complex

separator to envelope other positive examples. Of course, one must worry about

overfitting. On the other hand, if there are not enough positive examples in the

training set, then the sigma must be big enough so that the separator can extrapolate

more on other data points.

6.2 Training Data and Average Gaussian SVM Er-

ror

Next, we investigate if the average error rate from the Gaussian SVM is dependent

on how many positive examples in the training data. Both methods are analyzed, by

groups and by projects.

While the method by projects had a lower number of positive examples in the

training set, the observations in error rate was very similar. Error rate was around

30 with no correlation to the number of positive examples in the training set.

6.3 Training Data and Total Predicted Matches

In both cases, there seems to be a slight positive correlation between number of posi-

tive labels and number of positive predictions when using the linear SVM. Both cases
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Average Error vs Positive Labels (by groups)
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Figure 6-3: Error versus positive labels, by groups.
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Figure 6-4: Positive labels versus number of predicted matches, by projects.
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Figure 6-5: Positive labels versus number of predicted matches, by groups.
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also show a significant difference in average number of predicted matches between

the linear SVM and Gaussian SVM techniques. By projects, however, shows a slight

negative relationship when using the Gaussian SVM, when compared to its linear

counterpart.

6.4 Discussion

The biggest challenge from a computation standpoint was solving the optimization

problem presented by an SVM. Using the python package CVXOPT, training each

SVM on 330 points took on average of about 10 seconds. To boost results, Leave-

One-Out Cross Validation (LOOCV) was implemented but never tested with because

running LOOCV would take about an hour to complete. When testing on my data,

running the entire script would take approximately 8 minutes.

Labeling the training data was also an interesting challenge to ponder. Without

the help of social networks, it is very hard to determine who knows who. An initial

starting point is having positive labels for those who work in the same research group.

However, this was problematic as certain research groups are very small, only con-

sisting of 4 total people. Upon reiteration, a good starting.point is indeed deeming

those who worked on the same project as connected. This is because there are more

projects per research group. This was Experiment 1.

Validating the results of the predictions also poses a challenge. The goal of this

project is to determine new people to meet based on the people already known.

However, the line between relevant people that one should meet versus people that one

wants to meet are different. For simplicity, we treated all positive predictions as people

whom should be met. But one could imagine how different positive training examples

would be needed to determine those that users would like to meet. One possible future

work could be to use the validation results as positive training examples. This method

might be a more suitable approach to recommend people by interest.

The last challenge is computing the error. Due to the validation process, it is

appropriate to extrapolate because the list of 66 users were generated at random.
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However 66 is only a fifth of the total sample size and it is possible that this is

too small to capture enough information. False negative errors could therefore be

unrepresentative because we don't know if the researcher actually doesn't know the

person in question or that person's name simply did not come up in the random

sampling.
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Chapter 7

Results

Predictions can be made once each SVM for each person is properly trained. These

predictions were then validated by the actual researcher by having each of the re-

searchers confirm whether they know or would like to know the predicted users.

Validation simply consisted of presenting the researchers with a list of 66 randomly

generated user names sampled from the entire set.

7.1 Comparing Error Rates by Algorithm

First, we compare the error rate across the three algorithms, SVM with Gaussian

kernel, SVM with linear kernel, and the SVD. An error is a positive prediction that

the actual researcher claims she does not know (false positive) or a negative prediction

that the researcher claims to know or want to meet (false negative).

We also vary the initial positive examples given in the training data using two

separate methods. Experiment 1 marked positive examples as all names that shared

a document with the current user. This means that all researchers that collaborated

with the current user on a project were marked as positive examples. Experiment 2

marked positive examples as all names that shared a group with the current user as

described in the data documents.

As you can see in Figure 7-1 and Figure 7-2, there is not much discrepancy between

the two experiments in terms of error rates. However, it is interesting to note that the
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Figure 7-1: Error across the three algorithms, by projects.

Figure 7-2: Error across the three algorithms, by groups.
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Gaussian SVM consistently had the highest error rate while the SVD consistently had

a lowest error rate. The SVD also in both methods had the highest standard deviation

which implies that it had the potential to be the most accurate of the algorithms.

An important note about the SVD algorithm is requirement for a threshold value

to distinguish matches from non-matches. Because SVD is a clustering algorithm, it

produces a range of values that determine the strength of the match for each pair of

user. The threshold value for evaluating the strength of a match is set arbitrarily, in

this case to 0.75. Moving this number higher or lower would result in less or more

number of matches, respectively. As a future work, this value could be left up to the

user to input, depending on how many results the user wanted.
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Chapter 8

Discussion and Future Work

8.1 Interview with Reid Hoffman

Besides the technical difficulties of getting started to use CharmMe, there are various

social reasons why these background location applications for meeting new people

have not reached their pinnacle in popularity. Reid Hoffman, Founder of LinkedIn,

discusses in an informal conversation why this could be.

First, meeting new people simply isn't the most pressing problem on the top of

people's minds. In a world where so many different things compete for your atten-

tion, it is very easy to become distracted by answering emails or responding to the

connections users already have.

Even in settings where it is an explicit goal of the event to make new connections,

people naturally still gravitate towards those that they already know. This is because

it is inherently awkward to make a cold introduction to another person. It takes a

certain level of individual confidence and comfort to act with extroversion. Those

who have more introverted personalities often find meeting new people even more

daunting due to their inherent personality.

Furthermore, the avid "networker" is the exact person we try to avoid when at

any social gathering. These types of people appear "slimy" and "sleazy" - words that

carry rather negative connotations. Appearing disingenuous or insincere comes off as

self-serving and makes others feel manipulated and used.
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Perhaps a better route to take is to make meeting new people an implicit goal,

rather than an explicit goal. Many startups, including Meetup and UrbanOrca, do

this by helping users come together in person through organization of an activity,

event, or cause. While the explicit goal is to participate in the event itself, in this

process, members get to meet other like-minded people similar to themselves, which

allows them to form new connections. Meetup boasts over 11 million users in 105,000

different local groups from 45,000 cities worldwide [1].

8.2 Future Work

There are many directions with potential that builds on this project. Partnering com-

panies have particularly expressed interest in an application that helps the formation

of teams by suggesting compatible personnel with complementary skill sets and inter-

ests. The application would take in as input various specifications revolving around

the purpose of the team creation, involved tasks, and necessary skills required. The

application uses such criteria to search through people in the system to find the ideal

group of people suited for the specification description. Other elements into the al-

gorithm can also be introduced, such as previous work history and personality types,

to output a team that is optimized to collaborate the most efficiently and effectively.

This idea of discovering relevant people can be applied to other use cases as well.

A large company with thousands of employees has to cope with the natural friction

that arises when processes for collaboration scale. Often times, a rigid and hierarchi-

cal social structure is put into place, leading to a consequently slow deliberation of

decisions. Getting things done efficiently becomes dependent on who you know.

CharmMe can be used at large corporations to discover opportunities of synergy

between employees who may not have many chance encounters. This may be because

large companies tend to have big office buildings which inherently limit how much

interaction any single employee may have with other coworkers due to natural barriers

of proximity.

By suggesting other colleagues based on profile information, employees are em-
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powered to their job much more efficiently. This enables employees to leverage their

relationships within the company to increase productivity. Such mixing of business

backgrounds may also encourage creativity to perpetuate innovation [6]. This also

promotes a friendly and close-knit culture which may make a more enjoyable work

environment.

Another use case for a location-aware intra-network may be to improve promptness

when attending company meetings and events. While this may initially seem like

infringement on personal privacy, employers could claim to have the rights to know

where their employees are during work hours. Furthermore, this service may be useful

for times when a meeting adjudicator needs to know if it is worth delaying the start

of a meeting when attendees are running late. Usually, during business settings such

as at work or conferences, participants do not mind having their location publicly

known since they are in public location. They especially do not mind if having their

location broadcasted can result in more connections with meaningful people.
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Chapter 9

Conclusion

People have long attempted to use technology to help meet new friends. This goal

of making new meaningful connections is now more possible than ever thanks to

the emergence of popular social, mobile, and location-based Internet products. We

have explored the effectiveness of such an application at the MIT Media Lab, applying

Machine Learning techniques to the data at hand to recommend other relevant people

to users. While social convention is largely responsible for the current impediment

against the widespread adoption of this technology, this trend may be short-lived as

we rely more and more on our mobile devices to make connections with those around

us.
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