A Ballistic Transport Model for HEMTs and III-V MOSFETs

by

Shireen M. Warnock

B.S. Electrical Engineering
Massachusetts Institute of Technology, 2011

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2013

© 2013 Shireen M. Warnock. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of author: ________________________________

Department of Electrical Engineering and Computer Science
February 1, 2013

Certified by: ______________________________________

Jesús A. del Alamo
Professor of Electrical Engineering
Thesis Supervisor

Accepted by: ______________________________________

Dennis M. Freeman
Professor of Electrical Engineering
Chairman, Masters of Engineering Thesis Committee
A Ballistic Transport Model for HEMTs and III-V MOSFETs

by

Shireen M. Warnock

Submitted to the Department of Electrical Engineering and Computer Science
February 1, 2013
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering

ABSTRACT

As silicon MOSFETs keep scaling down in size, the continued improvement on their logic performance is threatened by their fundamental physical limits. With silicon approaching these limits, MOSFETs designed with III-V semiconductors have emerged as promising candidates to replace them. The low-effective mass of various III-V materials such as InGaAs and InAs allow both faster and more power efficient performance.

One of the key challenges, particularly as devices continue to shrink, is to understand the important of non-idealities in FET structures. High-electron mobility transistors, or HEMTs, are III-V Quantum-Well FETs that we can use to explore many issues of relevance to future III-V MOSFETs. HEMTs are worthwhile transistors in their own right, but are also simpler than III-V MOSFETs and therefore allow a more thorough exploration into the basic transport physics of a quantum-well III-V device.

We know from HEMT experimental data that electrons travel ballistically at gate lengths of 30-40 nm, suggesting that a ballistic transport model will only become more accurate as channel lengths are scaled down to 10 nm. We would like to investigate to what extent this is true in III-V MOSFETs, and also to study the impact of short channel effects and other parasitics inherent to a III-V design.

To accomplish these goals, we have developed a flexible transistor model in MATLAB based on a ballistic theory of transport. We will first verify the model with HEMT experimental data coming from devices fabricated at MIT, and then focus our attention on peculiarities specific to III-V MOSFETs, namely a buried-channel design and the presence of traps at the oxide-semiconductor interface. We will use the model to extract the trap density as a function of energy, and then make measurements independent of interface trap effects to extract the 2D sheet carrier concentration and mobility, two figures of merit important in characterizing FET devices. The ability to correctly model and predict device behavior will help identify the problems ahead that need improvement in the iterations of future device fabrication.

Thesis supervisor: Jesús A. del Alamo
Title: Professor of Electrical Engineering
Acknowledgements

I would first of all like to thank my research supervisor Jesús A. del Alamo for giving me the opportunity to work on such an exciting research topic and to be involved in such an interesting field of study. His guidance and depth of knowledge have really allowed me to grow as a researcher, and I could not have asked for a better advisor.

Many thanks also go to Jianqing Lin, Dr. Tae-Woo Kim, and Ling Xia for the devices they were so kind to share with me for my experimental work and for their helpful discussions in getting me started and making sure I was always on the right track. I would similarly like to express thanks to Winston Chern for his many helpful conversations and the valuable samples he gave me as well.

I would also like to extend thanks to members of the Francis Bitter Magnet Laboratory, particularly Jagadeesh Moodera, Peng Wei, and Marius Eich. They always took time to teach and help in any way they could, making themselves available and making me feel like I was a part of the Magnet Lab family.

I am very appreciative of the other members of the del Alamo research group—Donghyun Jin, Luke Guo, and Xin Zhao, who have provided me with valuable insight not only into research but have given me advice on gradual school and life in general. I look forward to continuing my work with them and all the new members of the group.

I would like to thank my closest friends for their never-ending support: Naomi Jiang, Clark Davenport, Clara Bennett, Alex Guo, and Chase Anderson.

Lastly, I would like to thank my family, without whose love and help none of this would have been possible.

This work was sponsored by the FCRP-MSD Center.
Contents

LIST OF FIGURES ... 9

CHAPTER 1. INTRODUCTION .. 11

1.1 Introduction to HEMTs and III-V CMOS ... 11
1.2 Motivation—A Compact Model For Device Studies ... 14
1.3 Thesis Outline .. 15

CHAPTER 2. CURRENT-VOLTAGE THEORETICAL MODEL ... 17

2.1 Introduction ... 17
2.2 Previous Work .. 17
2.2.1 Current in a Ballistic Quantum-Well FET ... 17
2.2.2 Gate Capacitance .. 21
2.3 I-V Model for HEMT ... 22
2.3.1 Simulation Process Flow .. 23
2.3.2 Impact of the Drain on n_i and V_{inj} ... 24
2.3.3 Parasitic Resistances: Source, Drain, and Access .. 25
2.3.4 Non-parabolic Band Structure ... 27
2.3.5 Drain-Induced Barrier Lowering .. 28
2.3.6 Self-heating .. 29
2.3.7 Ballisticity Factor .. 30
2.4 III-V MOSFET: Additions to the HEMT Model ... 32
2.4.1 Interface State Traps .. 33
2.4.2 Surface-Channel MOSFET .. 34
2.4.3 Buried-Channel MOSFET .. 35
2.5 Summary ... 36

CHAPTER 3. SIMULATION RESULTS & EXPERIMENTAL WORK ... 39

3.1 Introduction ... 39
3.2 Device Under Study ... 39
3.3 Simulation Study of Parameters .. 40
3.3.1 Significance of m[*] ... 40
3.3.2 Impact of Nonparabolicity .. 43
3.3.3 Effect of R_{CS}, R_{CD}, and R_{access} ... 44
3.4 Comparison with Experimental Data ... 45
3.4.1 Transfer Characteristics .. 45
3.4.2 Output Characteristics .. 50
3.5 Summary ... 51

CHAPTER 4. C-V CHARACTERISTICS & D_n: III-V MOSFET ... 53

4.1 Introduction ... 53
4.2 Quantum Capacitance Model ... 53
4.3 Device Under Study ... 55
4.4 Effect of D_n on Subthreshold Swing .. 56
4.5 Comparison with Experimental Data ... 58
4.5.1 C-V Characteristics at Low Temperature .. 59
4.5.2 D_n Extraction .. 61
4.6 Hall Effect Measurements ... 67
 4.6.1 Theory for the Hall Effect .. 67
 4.6.2 μ and n_e for the III-V Quantum-Well MOSFET .. 69

4.7 Summary .. 72

CHAPTER 5. CONCLUSIONS AND SUGGESTIONS ... 75

5.1 Conclusions ... 75
5.2 Suggestions for Future Work .. 76
List of Figures

Figure 1-1. Schematic of a HEMT structure, reproduced from D. Jin et al. [5]. The red dotted line in the schematic indicates the location of the δ doping layer, and the channel consists of either InGaAs or InAs...12

Figure 1-2. Schematic of a MOSFET structure, reproduced from J. Lin et al. [6]. The black layer represents a thin high-k dielectric, and the δ doping layer is located underneath the channel..13

Figure 2-1 Energy band diagram for a QW-FET. The first sub-band is depicted as E_1, and the Fermi level in the material as E_F. The surface potential is shown as ϕ_s. ..18

Figure 2-2 Conduction band along the length of the channel, for high drain bias, reproduced from [10]. Electrons injected from source and drain are labeled by arrows......................19

Figure 2-3 Model of the different factors that contribute to gate capacitance...............................21

Figure 2-4 I-V characteristics of a 30 nm InAs HEMT compared with the HEMT theoretical model, reproduced from [11]...22

Figure 2-5 Conduction band simulation of a HEMT in nextnano under flatband conditions, with V_{GS}=0. The conduction band (black) as well as the quantum sub-bands E_1 and E_2 (blue and green) is plotted with respect to the Fermi level (red)..23

Figure 2-6 Cross-section of a simplified HEMT device. R_S and R_D are defined between the source and drain, and R_{access} is symmetric on both sides of the intrinsic region........26

Figure 2-7 Variation of peak temperature as a function of V_{DS} and V_{GS}, reproduced from [17]..29

Figure 2-8 Potential profile from source to drain for large V_{DS}. The potential drop of (kT/q) is labeled in red with the corresponding kT-layer ℓ in orange...31

Figure 2-9 Dit across the energy gap, shown in blue. The filled states are those below the Fermi level...33

Figure 2-10 Gate capacitance model for surface-channel MOSFET. C_S, C_D, and C_{it} are as previously defined, and C_{ox} is the oxide capacitance..34

Figure 2-11 Gate capacitance model for buried-channel MOSFET. Capacitances are as previously defined, and $C_{barrier}$ is due to the barrier layer between the channel and oxide.35

Figure 3-1 Schematic of a HEMT structure, reproduced from D. Jin et al. [5].................................39

Figure 3-2 Effect of m^* on n_s (left) and v_{inj} (right). Arrows indicate direction of increasing m^* 41

Figure 3-3 Effect of m^* on I_D (top left), g_m (top right), and gate capacitance C_G (bottom). Arrows indicate direction of increasing m^* ...42

Figure 3-4 Effect of α on n_s, v_{inj}, and I_D. Arrows indicate the direction of increasing α43

Figure 3-5 I_D and g_m vs. V_{GS} for $R_{CS} \neq 0$ (top), $R_{CD} \neq 0$ (middle), and $R_{access} \neq 0$ (bottom)46

Figure 3-6 g_m for several values of m^*, plotted against experimental g_m.................................47

Figure 3-7 Subthreshold simulated vs. experimental data..48

Figure 3-8 Transfer characteristics of simulation vs. experiment: I-V characteristics (left), and transconductance (right)...49
Figure 3-9 Output characteristics of simulation vs. experiment, for extrinsic device parameters extracted from transfer characteristics...50
Figure 3-10 Output characteristics of simulation vs. experiment, for extrinsic parameters to match output conductance..51
Figure 4-1 Equivalent circuit diagram for quantum capacitance modeled, from D. Jin et al. [5] 54
Figure 4-2. Schematic of a MOSFET structure, reproduced from J. Lin et al. [6] 55
Figure 4-3 Qualitative graph of the different Dit distributions explored in this study............. 56
Figure 4-4 I_D vs. V_{GS} in the subthreshold regime (logarithmic scale). Ideal case of perfect subthreshold swing is shown in blue.. 57
Figure 4-5 I_D vs. V_{GS} in the saturation regime. Ideal case of perfect subthreshold swing is shown in blue.. 58
Figure 4-6 C-V characteristics of simulation (smooth lines) plotted against experiment (marked lines) for Al$_2$O$_3$ oxide, -65°C. The simulated C_G is in blue, the quantum capacitance C_Q of the first sub-band in green, the inversion capacitance of the first sub-band in aqua, and the second inversion capacitance in purple. The value of the Al$_2$O$_3$ capacitance C_{ins} is plotted as the black dashed line for reference... 59
Figure 4-7 C-V characteristics of simulation plotted against experiment for HfO$_2$ oxide, -65°C..61
Figure 4-8 C-V characteristics of simulation with Dit = 0 against experiment for Al$_2$O$_3$ oxide, room temperature.. 62
Figure 4-9 C-V characteristics of simulation & experiment for Al$_2$O$_3$ with Dit fit. 63
Figure 4-10 Dit distribution for Al$_2$O$_3$ in the InP band gap, extracted from C-V. 64
Figure 4-11 Dit distribution in the InP band gap, reproduced from [23] 65
Figure 4-12 Room temperature C-V for simulation vs. experiment for HfO$_2$ (top left), C-V for simulation fitted with Dit (top right), Dit distribution in InP bandgap (bottom). 66
Figure 4-13 Schematic of a simple Hall bar.. 67
Figure 4-14 Sheet resistance (top right), sheet carrier concentration (middle right), and mobility (bottom right) for Al$_2$O$_3$ device. ... 70
Figure 4-15 Sheet resistance (top right), sheet carrier concentration (middle right), and mobility (bottom right) for HfO$_2$ device. ... 71
Figure 4-16 μ vs. n_s for Al$_2$O$_3$ (left) and HfO$_2$ (right).. 72
CHAPTER 1. INTRODUCTION

Moore’s law demands that logic devices must continue to shrink, but silicon-based MOSFETs are fast approaching their fundamental limits and may not be a viable option for gate lengths below 10 nm [1]. MOSFETs designed with III-V semiconductors, however, have become promising candidates to replace them. Their improved transport properties and efficiency stem from the low-effective mass of typical III-V materials such as InAs or InGaAs. In this study, we will explore not only the III-V MOSFET but also the III-V high electron mobility transistor, or HEMT. The HEMT will give us insight into the fundamental transport properties common to all quantum-well FETs, and from there we can address the unique characteristics that arise from the presence of an oxide layer in the III-V MOSFET.

1.1 Introduction to III-V HEMTs and MOSFETs

Whereas many traditional semiconductor devices use p-n homojunctions, high electron mobility transistors exploit the characteristics of a heterojunction. The use of a large-bandgap, highly doped material next to an undoped, narrow-bandgap material creates sheet of electrons within which the electrons can move with far less scattering and a higher velocity. This concept of modulation doping, where there is a spatial separation between the dopants and the electrons, results in the formation of a two-dimensional electron gas (2DEG) at the interface between the different bandgap materials [2]. The electrons in the quantum well have a high mobility and can move quickly without colliding with any impurities, due to the fact that the channel is made out of an undoped material.

Commonly used material combinations for HEMTs include AlGaAs/GaAs, AlGaN/GaN, and InAlAs/InGaAs. These pairs are chosen by the need to have a close lattice match but also large conduction band discontinuity between the two materials, and the specific pair is determined by the desired device application be it high power or high frequency performance. In this work, we
will study InAlAs/InGaAs HEMTs. Figure 1-1 shows the schematic for a typical HEMT structure. An InAlAs buffer layer is grown on top of an InP substrate, and the channel is either InAs or InGaAs with a high-indium content, surrounded by InGaAs cladding layers. The choice of an InAs or In$_{0.7}$Ga$_{0.3}$As channel is because both materials have been shown to exhibit high injection velocities and relatively low effective mass [3]. Above the channel is an InAlAs barrier layer with a δ doping layer of Si that provides carriers to the channel. The highly doped InGaAs capping layer improves the contact resistance of the HEMT.

There are various aspects of the HEMT to consider when characterizing its operation. A few key parameters of the device include L_g, the gate length, L_{side}, the distance between the edge of the gate and the edge of the cap as depicted in Figure 1-1, and both the channel and barrier thicknesses. These parameters greatly impact many figures of merit important to HEMTs, including the transconductance g_m that is a measure of how steeply the current rises above threshold, and the subthreshold swing, which is the rate of the current drop-off below the threshold voltage V_T. The drain-induced barrier lowering (DIBL) which is the dependence of the threshold voltage on the drain-to-source voltage V_{DS} is another parameter of interest. Parasitic resistances and capacitances inherent to the structure of the material also play a role in determining the operational behavior of the HEMTs [3],[4].

Figure 1-1. Schematic of a HEMT structure, reproduced from D. Jin et al. [5]. The red dotted line in the schematic indicates the location of the δ doping layer, and the channel consists of either InGaAs or InAs.
Until now, HEMTs have been used in high speed and high frequency applications, but not for logic applications. They cannot present a viable alternative to silicon-based logic devices because of their high gate leakage current. III-V quantum-well MOSFETs address this problem by inserting an oxide layer between the gate and the barrier layer, as shown in Figure 1-2. In fact, III-V MOSFETs employing high-k dielectrics are already in development and have been demonstrated with excellent performance [5, p. 2], making them promising candidates for future generations of CMOS technology. However, the presence of the oxide layer introduces a density of interface state traps, D_{it}, that can degrade the subthreshold swing and yield a poorer I_{ON}/I_{OFF} ratio [7].

It is important, then, to consider not only the device characterization of HEMTs, but also the unique issues that arise in the transition from III-V HEMTs to MOSFETs. These two objectives will be the focus of this study.

Figure 1-2. Schematic of a MOSFET structure, reproduced from J. Lin et al. [6]. The black layer represents a thin high-κ dielectric, and the δ doping layer is located underneath the channel.
1.2 Motivation – A Compact Model for Device Studies

As discussed above, there are many characteristics of a transistor, both intrinsic and extrinsic, that will have an effect on device performance. This leads to the desire for a flexible, compact model based on the ballistic transport of electrons as a 2DEG, which at 30 nm gate lengths, should be an accurate representation of the current in a FET and which will only become more accurate as channel lengths are scaled down to 10 nm. Experimental verification of this assumption comes from devices fabricated at MIT, where the source injection velocity of electrons at gate lengths of 30-40 nm is seen to approach saturation [3]. The saturation of the injection velocity suggests that the HEMT devices are close to operating in a purely ballistic regime.

One goal of this project is to develop a hybrid approach where the quantum-mechanical portion of the simulation, through means of Poisson-Schrödinger simulations, is accurate but the device transport is simplified and short-channel effects are neglected so as to focus on the role of various parasitics, such as DIBL, subthreshold swing, etc., in limiting device performance.

A need also exists to explore the non-idealities of III-V quantum-well MOSFET structures; in particular, the presence of charge interface states and their impact on the I-V characteristics is a phenomenon that has not been fully studied. We can use C-V measurements to characterize the device and extract the sheet carrier concentration and mobility, n_s and μ respectively. However, because D_It has an impact on the C-V characteristics as well, it is important to be able to obtain n_s and μ over a range of gate voltages through techniques independent of D_It, and to juxtapose them with the measured C-V characteristics. In this way, a D_It profile could be extracted and compared with other methodologies of finding interface trap densities [8].

A common way to extract the concentration of mobile charge in a 2D structure is to perform Hall measurements. Using a Hall bar, we can measure the differential voltage, or Hall voltage, in the presence of a magnetic field when current is injected down the length of the bar. This voltage, V_{Hall}, as well a determination of the sheet resistance, will yield the values of mobile charge and mobility independently. With a gated Hall bar, n_s and μ can be found across all regimes of
operation and compared with experimental C-V to yield a complete picture of D_{it}. The second goal of this study, therefore, will be to construct a complete capacitance-voltage model that accurately incorporates the role of D_{it} and to compare this against measurements on actual structures.

1.3 Thesis Outline

In this project, we develop a compact transistor model in MATLAB. This HEMT current-voltage model is based on ballistic transport and incorporates many parasitic elements such as DIBL and source and drain resistances with the intent of exploring the impact of these parasitics on device behavior.

We also build upon an existing quantum capacitance model for HEMTs [5] to incorporate D_{it} effects, and compare experimental C-V characteristics with simulated ones. As an integral piece of the C-V work, gated Hall measurements were carried out that resulted in extracted mobilities significantly higher than those measured by split C-V techniques [6].

This thesis is organized in the following way. Chapter 2 is a detailed theoretical discussion of both the ballistic current model and the gate capacitance model. The central physics of ballistic transport are outlined and a simulation process flow is introduced that allows the incorporation of non-idealities, each of which are also discussed in detail. The gate capacitance model is also described for both HEMTs and III-V MOSFETs. This theory results in a comprehensive framework against which experimental data can be compared.

In Chapter 3 we present the results of the theoretical model as they relate to the HEMT. We first discuss several important non-idealities, such as the effect of non-parabolic bands on the output and transfer characteristics. Then, we compare the simulated data against experimental data for HEMT devices.

Chapter 4 investigates the characteristics of the MOSFET, focusing first briefly on the effect of D_{it} on the I-V characteristics and in particular, the subthreshold swing. The primary focus of
Chapter 4, however, is to compare the C-V data for III-V MOSFETs against the quantum capacitance model, and to use this to extract D_{it}. To complement these results and demonstrate how large of an effect D_{it} can have on device figures of merit, conventional gated Hall measurements were performed and values of 2DEG sheet carrier concentration and channel mobility were obtained.

To conclude in Chapter 5, we summarize the results of this work on a ballistic compact model, and provide suggestions for future work in the field of III-V FET characterization.
CHAPTER 2. I-V THEORETICAL MODEL

2.1 Introduction

In this chapter, we use Poisson-Schrödinger simulations to construct the current-voltage characteristics of both HEMTs and III-V MOSFETs. For this, we have developed a ballistic transport model. The peculiarities associated with MOSFETs are discussed separately as additions to the model for the HEMT.

2.2 Previous Work

2.2.1 Current in a Ballistic Quantum-Well FET

In a HEMT, electrons move in the undoped, narrow-bandgap channel material with minimal scattering. This is due to their spatial separation with the δ doping layer in the barrier that provides the free carriers (see Figure 1-1: the δ doping layer is located in the barrier, and carrier transport occurs inside the channel). For short enough gate lengths, the electrons actually travel at a ballistic velocity, where they do not scatter at all as they move through the channel. A detailed calculation of the current in a QW-FET is covered by [9], and summarized below.

For a QW-FET, the electrons are confined in one direction (normal to the wafer surface) and therefore create a two-dimensional electron gas. To simplify the analysis, we assume that only a single sub-band in the channel is occupied, as shown in Figure 2-1. This is actually the case in deeply scaled HEMTs and MOSFETs operating close to the peak transconductance point. The level labeled E_1 is the bottom of the first 2D energy band that arises as a result of the quantum well structure of the channel. E_F is the location of the Fermi level in the material, whose level is extended beyond the channel for reference. The discontinuity in the barrier arises from the δ doping layer, and we define the surface potential ϕ_s as the distance between the Fermi level and the conduction band edge at the interface between the channel and the barrier.
The 2D density of states in the sub-band is known to be:

$$g_{2D}(E) = \frac{m^*}{\pi \hbar^2}$$ \hspace{1cm} (1)

m^* is the effective mass of the electrons in the channel material, and \hbar is the reduced Planck's constant. The sheet carrier concentration, n_s, which is needed in order to find the current in the FET, can be found by integrating the product of g_{2D} and the Fermi function $f(E)$:

$$n_s = \int_{E_1}^{\infty} g_{2D}(E) f(E) dE = \frac{m^*}{\pi \hbar^2} \int_{E_1}^{\infty} \frac{dE}{1 + e^{\frac{E-E_F}{kT}}}$$ \hspace{1cm} (2)

k is Boltzmann's constant, and T is the temperature of the material. Solving this integral yields the following simple expression:

$$n_s = N_{2D} \Im_0 \left(\frac{E_F - E_1}{kT} \right)$$ \hspace{1cm} (3)

where N_{2D} is the 2D effective density of states,

$$N_{2D} = \frac{m^* kT}{\pi \hbar^2}$$ \hspace{1cm} (4)

and \Im_0 is the Fermi-Dirac integral of order 0.
\[\Im_0(x) = \ln(1 + e^x) \] \hfill (5)

Figure 2-2 illustrates the concept of the virtual source model, where the current is limited by the injection of electrons over the barrier at the source [10]. For a high enough drain voltage, we assume there will be no back flow of electrons from the channel or the drain past the injection point.

![Diagram of virtual source model](image)

For such high drain biases, all the electrons at the virtual source contribute to the current, making the expression for current in the FET simply:

\[I_D = qn_s v_{inj} \] \hfill (6)

where \(v_{inj} \), the injection velocity, is the average velocity of the electrons as they move towards the drain. \(v_{inj} \) can be found by computing \(v(E) \) for electrons in the channel, integrating over \(E \), and then dividing by the number of electrons. If we consider the channel to be oriented in the \(x \)-direction, then the velocity of electrons at a given energy \(E \) is given by [9]:

\[v_x(E) = \frac{2}{\pi} \sqrt{\frac{2(E - E_1)}{m^*}} \] \hfill (7)

To find the injection velocity, we must consider both the occupation and the density of states at every energy \(E \), and properly normalize:
\[v_{inj} = \frac{\int_{E_1}^{\infty} g_{2D}(E) v_x(E) f(E) dE}{\int_{E_1}^{\infty} g_{2D}(E) f(E) dE} \] (8)

This yields:

\[v_{inj} = v_T \frac{\mathcal{F}_{1/2} \left(\frac{E_F - E_1}{kT} \right)}{\mathcal{F}_0 \left(\frac{E_F - E_1}{kT} \right)} \] (9)

where we have simplified the expression using the following definitions:

\[v_T = \sqrt{\frac{2kT}{\pi m^*}} \] (10)

\[\mathcal{F}_{1/2}(x) = \frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{\sqrt{\varepsilon}}{1 + e^{\varepsilon - x}} d\varepsilon \] (11)

where \(v_T \) is the thermal velocity, \(\mathcal{F}_{1/2} \) is the Fermi-Dirac integral of order one-half, and:

\[\varepsilon = \frac{E - E_1}{kT} \] (12)

Combining Eqs. 3, 6 and 9 yields the final expression for the drain current:

\[I_D = qN_{2D} v_T \mathcal{F}_{1/2} \left(\frac{E_F - E_1}{kT} \right) \] (13)

The Fermi-Dirac integrals for both \(n_s \) and \(v_{inj} \) can be simplified in the non-degenerate limit where \(\frac{E_F - E_1}{kT} \ll 1 \) to give a much simpler expression for the drain current. However, the HEMT operates in degenerate conditions where the Fermi level is close to or above the first sub-band \(E_1 \), and therefore we cannot take the non-degenerate limit of these expressions.

Measurements or predictions of the drain current, \(I_D \), are important when studying both the output and transfer characteristics of a HEMT for logic purposes. Therefore, it is vital to have a
working model of \(I_D \) to provide a basis for understanding experimental data and for verifying that the theory adequately describes the observed behavior.

2.2.2 Gate Capacitance

In order to continue building our theoretical model of the HEMT, we need to consider the effects of capacitance on our gate voltage. The effects of insulator capacitance, as well as inversion-layer and parasitic capacitances, are considered by del Alamo [9].

In Figure 2-3, \(C_{\text{ins}} \) is the capacitance arising from the HEMT insulator layer, \(C_D \) is a linear capacitance to account for short channel effects, \(\phi_s \) is the surface potential at the barrier-channel interface as defined in Figure 2-1, and \(C_S \) is a non-linear capacitance related to the inversion layer in the channel:

\[
C_S = q \frac{dn_s}{d\phi_s} \tag{14}
\]

Since the charge across \(C_{\text{ins}} \) is equal to the charge across \(C_S \) and \(C_D \) in parallel, we can write an expression for the charge on the gate, \(Q_G \):

\[
Q_G(\phi_s) = \int_0^{\phi_s} [C_S(\phi_s) + C_D] d\phi_s \tag{14}
\]

![Figure 2-3 Model of the different factors that contribute to gate capacitance.](image-url)
Then, the voltage applied to the gate, $V_{GS,i}$, can be written as:

$$V_{GS,i} = \phi_s + \frac{Q_G}{C_{ins}} = \phi_s \left(1 + \frac{C_D}{C_{ins}} \right) + \frac{1}{C_{ins}} \int_0^{\phi_s} C_s(\phi_s) d\phi_s$$ \hspace{1cm} (15)$$

With the theoretical models in Sections 2.2.1 and 2.2.2, we have a complete set from which to obtain current-voltage characteristics. These models have actually been validated by experiment [3]. In Figure 2-4, the I-V characteristics of a 30 nm InAs-channel HEMT are shown against the model developed above. Even though the models are a starting point for further development, we can already see that they match experimental data over several orders of magnitude.

![I-V Characteristics of a 30 nm InAs HEMT](image)

Figure 2-4 I-V characteristics of a 30 nm InAs HEMT compared with the HEMT theoretical model, reproduced from [11].

2.3 I-V Model for HEMT

As we have seen, we already have a foundation for a ballistic model that does quite well. However, there are many effects that have not been fully explored by this model. We have not yet considered the impact of the drain, which will be significant especially in the linear regime. There are additional effects, such as source and drain parasitics, heating in the device, the impact
of effective mass on device characteristics, and others, that we will consider here with the aim of building upon the previous work.

2.3.1 Simulation Process Flow

Before a detailed discussion on the work in this thesis can proceed, it is worthwhile to give brief mention to the simulation process flow that yields the results that will be compared with experimental data. Given knowledge of a HEMT heterostructure, we can model the device using a self-consistent Poisson-Schrödinger solver that we have chosen to be nextnano, which yields the charge-voltage characteristics of a one-dimensional structure. From the Poisson-Schrödinger simulator, we can extract information about the band structure of the device and pull such values as the surface potential and location of the quantized energy bands with respect to the Fermi level, as show in Figure 2-5. Extrinsic device parameters, such as parasitic source and drain resistances or DIBL, can be defined separately, and all components serve as input to the device model, constructed in MATLAB, that yields the sought-after transfer or output characteristics. We will now discuss the additions to the previous work, which covers both further intrinsic theory and the inclusion of extrinsic parameters.

Figure 2-5 Conduction band simulation of a HEMT in nextnano under flatband conditions, with V_{GS}=0. The conduction band (black) as well as the quantum sub-bands E_1 and E_2 (blue and green) is plotted with respect to the Fermi level (red).
2.3.2 Impact of the Drain on \(n_s \) and \(v_{\text{inj}} \)

For high values of the drain-to-source voltage \(V_{DS} \), we need not be concerned about any impact that the drain may have on the source injection velocity and sheet carrier concentration, \(v_{\text{inj}} \) and \(n_s \), respectively. However, in the linear regime when \(V_{DS} \) is relatively small, electrons injected from the drain that oppose the direction of current flow can have a significant impact on the current. One way to think of the current is to consider it as the difference between fluxes in opposite directions [12]. One flux originates at the source, and the other at the drain and in the ballistic case, there will be no reflection. The charge density \(n_s \) will be the sum of the charge densities at these two points, but the velocity at the drain will have the opposite sign because electrons injected from the drain will oppose the overall flow of current.

We have to first obtain an expression for the overall charge density \(n_s \) at the virtual source point. We have the original contribution from the source to the charge density as given in (3), but we now have to add the charge that the drain will contribute at the virtual source point. This has a similar form as (3) but the potential is modified by a term for the intrinsic drain voltage \(V_{DS,i} \). The sum of these two densities results in an overall expression for \(n_s \) given by:

\[
 n_s = N_{2D} \left\{ \mathcal{I}_0 \left(\frac{E_F - E_1}{kT} \right) + \mathcal{I}_0 \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right) \right\}
\]

We must now modify our expression for the injection velocity. Using (8) we can write the injection velocity of the source electrons as:

\[
v_{\text{inj,source}} = v_T \left\{ \frac{\mathcal{F}_{1/2} \left(\frac{E_F - E_1}{kT} \right)}{\mathcal{I}_0 \left(\frac{E_F - E_1}{kT} \right) + \mathcal{I}_0 \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)} \right\}
\]

As with \(n_s \), the injection velocity of electrons from the drain will contribute a term to the virtual source point, again with a term that accounts for \(V_{DS,i} \). However, the direction of these electrons will be opposite to that of those from the source:

\[
v_{\text{inj,drain}} = -v_T \left\{ \frac{\mathcal{F}_{1/2} \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)}{\mathcal{I}_0 \left(\frac{E_F - E_1}{kT} \right) + \mathcal{I}_0 \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)} \right\}
\]

giving a net injection velocity:
\[v_{\text{inj}} = v_T \left\{ \frac{\mathcal{F}_{1/2} \left(\frac{E_F - E_1}{kT} \right) - \mathcal{F}_{1/2} \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)}{\mathcal{Z}_0 \left(\frac{E_F - E_1}{kT} \right) + \mathcal{Z}_0 \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)} \right\} \]

We recognize that the denominator is simply the expression for \(n_s \) divided by the constant \(N_{2D} \), and so can write \(v_{\text{inj}} \) in the following way:

\[v_{\text{inj}} = N_{2D} v_T \left\{ \frac{\mathcal{Z}_{1/2} \left(\frac{E_F - E_1}{kT} \right) - \mathcal{Z}_{1/2} \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right)}{n_s} \right\} \] \hspace{1cm} (20)

Using this identity, therefore, the current through the channel will only be modified by the addition of the new term in the numerator of \(v_{\text{inj}} \):

\[I_D = qN_{2D} v_T \left\{ \mathcal{Z}_{1/2} \left(\frac{E_F - E_1}{kT} \right) - \mathcal{Z}_{1/2} \left(\frac{E_F - E_1 - qV_{DS,i}}{kT} \right) \right\} \] \hspace{1cm} (21)

2.3.3 Parasitic Resistances: Source, Drain, and Access

The value of the drain-to-source voltage used in the calculations for \(n_s \) and \(v_{\text{inj}} \) was the intrinsic drain-to-source voltage, \(V_{DS,i} \). Similarly, the gate-to-source voltage given by the gate capacitance model is also the intrinsic \(V_{GS,i} \) and therefore to compare against experimental data we need to be able to make the conversion to external \(V_{GS} \) and \(V_{DS} \), as those are the values applied across the entire device in experiment. The difference between the intrinsic and extrinsic voltages arises from the presence of parasitic source and drain resistances. We will break each of these down into two components: a constant term that does not change with channel current, and a variable resistance in the access region. Figure 2-6 shows a cross-section for the HEMT structure, where we have defined all four terms. \(R_{CS} \) and \(R_{CD} \) are the constant resistances associated with the source and drain respectively, and \(R_{\text{access}} \) is a symmetric resistance occurring on both sides of the channel in the access region. We can define overall source and drain resistances as:

\[R_S = R_{CS} + R_{\text{access}} \] \hspace{1cm} (22)

\[R_D = R_{CD} + R_{\text{access}} \] \hspace{1cm} (23)
It is clear from Figure 2-6 that the access region is not modulated in any way by the gate. Therefore, we would expect that the location of the Fermi level with respect to the first quantum sub-band in the access region would not change, and we can find this value by completing Poisson-Schrödinger simulations for the access region. There is no Schottky barrier because there is no metal layer on top of the access region heterostructure, but Fermi level pinning at the heterostructure surface can be modeled as a Schottky barrier whose height is the location of the pinning in the semiconductor band gap relative to the conduction band edge. We will assume that the behavior of electrons in the access region is ballistic, just as in the channel, so therefore to find expressions for the current and the voltage drop in the access region we use the same approach as we do in the intrinsic region.

We can use Eq. (21), but instead of a drain-to-source voltage drop $V_{DS,i}$ we now just have the voltage drop across the access region, V_{access}:

$$I_{access} = qN_{2D}v_T \left\{ \Re_{1/2} \left(\frac{[E_F - E_1]_{access}}{kT} \right) - \Re_{1/2} \left(\frac{[E_F - E_1]_{access} - qV_{access}}{kT} \right) \right\}$$ \hspace{1cm} (24)$$

V_{access} is an unknown, but we use the fact that the current in the channel must be the same as the current in the access region, so for a given value of the current in the channel we can find V_{access}. It is trivial from here to find R_{access}.

Figure 2-6 Cross-section of a simplified HEMT device. R_S and R_D are defined between the source and drain, and R_{access} is symmetric on both sides of the intrinsic region.
Having found an expression for R_{access}, we can now define the extrinsic gate- and drain-to-source voltages. R_{CS} and R_{CD} will be values that can be set by the user. The current running through these resistances contributes extra voltage terms and therefore, the values of V_{DS} and V_{GS} are simply given by:

$$V_{GS} = V_{GS,t} + I_D R_S \tag{25}$$

$$V_{DS} = V_{DS,t} + I_D (R_S + R_D) \tag{26}$$

2.3.4 Non-parabolic Band Structure

In the previous equations for sheet carrier concentration and injection velocity, we have assumed that the conduction bands in the materials were completely parabolic—that is to say, that the effective mass is constant as a function of energy. It is known, however, that the effective mass of electrons in the conduction band of III-Vs is not perfectly parabolic [13]. In order to account for this change in effective mass as the energy of the electron moves up farther into the conduction band, therefore, the effective mass can be modeled as:

$$m^* = m_0^* (1 + 2\alpha E) \tag{27}$$

where m_0^* is the electron effective mass at the bottom of the conduction band, E is the difference in energy between the electron and the bottom of the conduction band, and α is a non-parabolicity factor that signifies the departure from ideal behavior. It is easy to see that now, the term for effective mass further complicates the integrals for n_s and v_{inj}. Instead, the expression for n_s from the source must become:

$$n_{s,\text{source}} = \int_{E_1}^{\infty} g_{2D}(E)f(E)dE = \frac{m_0^*}{\pi \hbar^2} \int_{E_1}^{\infty} \frac{(1 + 2\alpha E)dE}{1 + e^\frac{E-E_F}{kT}} \tag{28}$$

which simplifies to:
\[n_{s,\text{source}} = N_{2D} \left(1 + 2\alpha E_1 \right) \mathcal{Z}_0 \left(\frac{E_F - E_1}{kT} \right) + 2\alpha kTN_{2D} \mathcal{Z}_1 \left(\frac{E_F - E_1}{kT} \right) \]

(29)

This leads to a similar expression for \(n_s \) from the drain:

\[n_{s,\text{drain}} = N_{2D} \left(1 + 2\alpha E_1 \right) \mathcal{Z}_0 \left(\frac{E_F - E_1 - qV_{DS}}{kT} \right) + 2\alpha kTN_{2D} \mathcal{Z}_1 \left(\frac{E_F - E_1 - qV_{DS}}{kT} \right) \]

(30)

The total sheet carrier concentration is again just the sum of \(n_{s,\text{source}} \) and \(n_{s,\text{drain}} \). Now we can see that there is no simple analytical solution for even the sheet carrier concentration, and the expression must be evaluated numerically. The same approach to the injection velocity yields:

\[
\nu_{\text{inj}} = \frac{2}{\pi^2 h^2 n_s} \left\{ \int_{E_1}^{\infty} \sqrt{2m^*_0 (1 + 2\alpha E)} \left(E - E_1 \right) \, dE \right. \\
- \int_{E_1}^{\infty} \sqrt{2m^*_0 (1 + 2\alpha E)} \left(E - E_1 \right) \, dE \\
\left. \frac{1}{1 + e^{\frac{E - E_F}{kT}}} \right\}
\]

(31)

This finally gives the new drain current:

\[
I_D = \frac{2q}{\pi^2 h^2} \left\{ \int_{E_1}^{\infty} \sqrt{2m^*_0 (1 + 2\alpha E)} \left(E - E_1 \right) \, dE \right. \\
- \int_{E_1}^{\infty} \sqrt{2m^*_0 (1 + 2\alpha E)} \left(E - E_1 \right) \, dE \\
\left. \frac{1}{1 + e^{\frac{E - E_F + qV_{DS}}{kT}}} \right\}
\]

(32)

2.3.5 Drain-Induced Barrier Lowering

For short channel devices, it has been experimentally observed that as the value of the drain-to-source voltage, \(V_{DS} \), increases, the threshold voltage of the device decreases [14]. This behavior has the consequence of a non-zero output conductance in the saturation regime. One of the causes of this output conductance is a phenomenon known as drain-induced barrier lowering (DIBL), where the barrier that electrons see at the source end of the channel is reduced as \(V_{DS} \) increases, thus allowing a larger number of electrons to be injected into the channel [15].
Though DIBL is not a linear phenomenon and there are more complex expressions to capture its behavior [16], we will model the effect of DIBL as a linear shift of the threshold voltage with increasing V_{DS}. This can be achieved by incrementally changing the surface potential:

$$\phi_s = \phi_{s,nextnano} - DIBL \cdot V_{DS,t}$$ \hspace{1cm} (33)

2.3.6 Self-heating

For a given value of current through the channel, we would expect a finite thermal resistance to demand an increase in temperature from that of the device in the off state. Through the use of Monte Carlo simulations for other HEMT structures [17], a varying a temperature profile is demonstrated and can be seen in Figure 2-7. We must therefore consider the effects of heating in the device and its effect on the transfer and output characteristics.

![Figure 2-7 Variation of peak temperature as a function of V_{DS} and V_{GS}, reproduced from [17].](image)

There is no straightforward approach to addressing the issue of heating in the device, so what we implement instead is a series of Poisson-Schrödinger simulations at varying temperatures. With a user-defined thermal resistivity, we can iteratively find the right combination of current and given temperature by interpolating between the results of the different simulations.
2.3.7 Ballisticity Factor

Though for shorter gate lengths it has been shown that devices operate close to the ballistic limit [3], for wider applicability of the model for longer gate lengths, we consider the possibility that the HEMT may not be entirely ballistic. We can modify the current by means of a so-called ballisticity factor. The ballisticity factor B, introduced by Lundstrom [18], is the ratio of the actual current in the device divided by its ballistic current:

$$ B = \frac{I_D}{I_{D,ballistic}} $$

(34)

The ballisticity factor can be determined from the backscattering coefficient r:

$$ B = \frac{1 - r}{1 + r} $$

(35)

where r follows also a rather simple expression:

$$ r = \frac{\ell}{\ell + \lambda} $$

(36)

ℓ is denoted as a critical length for backscattering [19], whose value is given by the length it takes for the potential to drop by (kT/q) from the top of the barrier to the channel. λ is the carrier momentum relaxation length, which is valid even in high-bias conditions because the field at the source can be considered small and slowly varying. We concern ourselves primarily here with the ballistic current in the saturation regime.

We will first discuss the carrier momentum relaxation length λ. The expression for λ in non-degenerate conditions is a rather simple expression that depends on both the mobility and v_T, the thermal velocity (Eq. 10), but we must go further and consider the degenerate conditions under which a HEMT operates. In this scenario, we cannot simplify the Fermi-Dirac integrals to solely exponential expressions. With the electric field close to zero at the source end of the channel, the diffusive limit in combination with McKelvey’s flux method yields the degenerate momentum relaxation length [12]:

\[
\lambda = \left(\frac{2\mu kT}{v_T q} \right) \frac{\left\{ \mathfrak{S}_0 \left(\frac{E_F - E_1}{kT} \right) \right\}^2}{\mathfrak{S}_{-1} \left(\frac{E_F - E_1}{kT} \right) \mathfrak{S}_{1/2} \left(\frac{E_F - E_1}{kT} \right)}
\] (37)

Unfortunately, there is no simple analytical solution for the length of the \(kT \)-layer \(\ell \). We are left, then, to approximate this value using a simplified form of the potential in the channel from source to drain [16]:

\[
\eta(x) = \frac{\eta_S \sinh \left(\frac{L_G - x}{\lambda_{stl}} \right) + \eta_D \sinh \left(\frac{x}{\lambda_{stl}} \right)}{\sinh \left(\frac{L_G}{\lambda_{stl}} \right)}
\] (38)

where \(L_G \) is the gate length, \(\eta_S \) is the height of the potential barrier seen from the source to the channel, and:

\[
\eta_D = \eta_S + V_{DS}
\] (39)

\(\lambda_{stl} \) is the natural scale length of the potential and will be discussed momentarily. \(\eta, \eta_S, \) and \(\eta_D \) are not to be confused with the surface potential \(\phi_s \), but are in fact related to the surface potential in the following way:

\[
\eta_S = -\phi_{s\text{channel}} + \phi_{s\text{source}}
\] (40)

The potential profile looks parabolic, as is shown in Figure 2-8.

Figure 2-8 Potential profile from source to drain for large \(V_{DS} \). The potential drop of \((kT/q) \) is labeled in red with the corresponding \(kT \)-layer \(\ell \) in orange.
\(\lambda_{si} \), the natural scale length of the potential, is a characteristic length of the channel and is given by [20]:

\[
\lambda_{si} = \sqrt{\frac{\varepsilon_{\text{chan}}}{\varepsilon_{\text{ins}}}} t_{\text{chan}} t_{\text{ins}}
\]

Here, we have modified the more conventional expressions for silicon MOSFETs to be applicable to the HEMT. \(t_{\text{ins}} \) is the thickness of the barrier layer, and \(t_{\text{chan}} \) is the thickness of the entire channel. Because the channels in HEMTs are often a composite of a higher-mobility core surrounded by lower-mobility cladding for the purposes of lattice matching, we have weighted the dielectric constant of the channel by the proportions of the charge in the core and cladding layers:

\[
\varepsilon_{\text{chan}} = \frac{n_{\text{s,cladding}}}{n_{\text{s,cladding}} + n_{\text{s,core}}} \varepsilon_{\text{cladding}} + \frac{n_{\text{s,core}}}{n_{\text{s,cladding}} + n_{\text{s,core}}} \varepsilon_{\text{core}}
\]

It is clear that the expression for the channel potential will change as a function of drain bias, but it will also change as a function of gate bias because the barrier to the channel will be lowered as the gate voltage increases. From (38), we could analytically find an expression for the value of \(x \) for which the potential peaks and then find the length at which it drops by a factor of \((kT/q)\), but we have found it is much simpler to find this value numerically. Then we will have both components we need to calculate the backscattering coefficient \(r \) and the ballisticity factor \(B \).

2.4 III-V MOSFET: Additions to the HEMT Model

Having discussed the ballistic transport model in context of a HEMT, we will now turn our attention to the additions we must make for the III-V MOSFET. The MOSFET differs from the HEMT in that there is an oxide layer inserted between the metal and the semiconductor. There are two different types of MOSFETs: surface-channel MOSFETs, where the oxide is directly on top of the channel, and buried-channel MOSFETs, where an additional barrier layer is inserted between the channel and the oxide. The presence of an oxide in the heterostructure also introduces traps at the oxide interface that degrade device performance. In this section, we will
discuss the effects of these traps, and how the gate capacitance will change as a result. We will consider both the surface-channel and buried-channel designs.

2.4.1 Interface State Traps
A persistent problem in III-V MOSFETs is the presence of interface traps at the surface between the semiconductor and the oxide. Interface traps can play an important role in the subthreshold characteristics of an FET, as well as shift the threshold voltage.

To model the interface states, we can define our own distribution of trap states, D_{it}, as a function of energy, as shown in Figure 2-9. We can find the total charge accumulated in those traps by integrating across the distribution and accounting for occupation probabilities given by the Fermi-Dirac distribution function. Thus, the charge from interface states can be written as:

$$Q_{lt} = q \int_{-\infty}^{\infty} D_{lt}(E)f(E)dE$$ \hspace{1cm} (43)

![Figure 2-9: D_{it} across the energy gap, shown in blue. The filled states are those below the Fermi level.](image)

In actuality, there can be two types of interface states: donor states and acceptor states. Both states are filled as the Fermi level sweeps upwards towards the conduction band. However, acceptor states are neutral until they take an extra electron as they are filled, leaving the states negatively charged as the Fermi level passes through them. This will cause a positive V_T shift, relative to a case with no D_{it}. Conversely, donor states naturally give up an electron, making them positively charged until the Fermi level reaches them and they become neutral. Therefore,
donor states cause a negative V_T shift until the Fermi level sweeps through them and they become neutral.

The presence of charge from interface states can be described as a parasitic capacitance that will affect the gate capacitance of the system. The differential capacitance arising from D_{it} can be written as:

\[C_{it} = \frac{dQ_{it}}{d\phi_{it}} \]

(44)

Q_{it} is the value obtained in (41), and ϕ_{it} is the potential at the location of the interface traps. As we will see shortly, ϕ_{it} is identical to ϕ_s in a surface-channel MOSFET, where the edge of the channel is the semiconductor-oxide interface where the traps occur. With a buried-channel MOSFET, the two potentials are not the same, and we will discuss this in further detail in Section 2.4.3.

2.4.2 Surface-Channel MOSFET

The addition of C_{it} will change the gate capacitance model by adding another capacitance in parallel with the existing C_S and C_D, as shown in Figure 2-10. The traps are located at the interface between the channel and the gate oxide.

![Figure 2-10 Gate capacitance model for surface-channel MOSFET. C_S, C_D, and C_{it} are as previously defined, and C_{ins} is the oxide capacitance.](image-url)

34
As mentioned earlier, with a surface-channel MOSFET the channel interfaces directly with the oxide. Therefore, it is clear that ϕ_n should be the same as ϕ_s. We can write a new expression for the charge on the gate that incorporates the effects of C_{it}:

$$Q_G(\phi_s) = \int_0^{\phi_s} [C_S(\phi_s) + C_{it}(\phi_s) + C_D] d\phi_s$$

(45)

This yields a total voltage on the gate of:

$$V_{GS, i} = \phi_s + \phi_s \frac{C_D}{C_{ins}} + \frac{1}{C_{ins}} \int_0^{\phi_s} [C_S(\phi_s) + C_{it}(\phi_s)] d\phi_s$$

$$= \phi_s + \frac{1}{C_{ins}} (q n_s + \phi_s C_D + Q_{it})$$

(46)

2.4.3 Buried-Channel MOSFET

The presence of a barrier layer between the oxide and the channel can offer various advantages to the performance of a III-V MOSFET, and it is for that reason that MOSFETs are often designed with a buried-channel structure such as that in [6]. This separates the interface states from the channel, and helps to reduce scattering. The buried-channel design leads to a gate capacitance model like the one shown in Figure 2-11.

![Figure 2-11: Gate capacitance model for buried-channel MOSFET. Capacitances are as previously defined, and $C_{barrier}$ is due to the barrier layer between the channel and oxide.](image)
The interface traps manifest in a different location in the buried-channel MOSFET because they always occur at the semiconductor-oxide interface. With the surface-channel MOSFET this happened to be at the surface of the channel, but with the buried-channel design it is at the edge of the barrier and so ϕ_{it} is no longer the same as ϕ_s. Therefore, the derivation of the gate voltage $V_{GS,i}$ becomes more complicated. The charge across the barrier layer is equal to the sum, in parallel, of the charge across C_S and C_D, and can be found as:

$$Q_{\text{barrier}}(\phi_s) = \int_0^{\phi_s} [C_S(\phi_s) + C_D] d\phi_s$$ \hspace{1cm} (47)

If we remember that the charge accumulated in the interface traps is Q_{it}, then the total charge on the gate becomes:

$$Q_G(\phi_s, \phi_{it}) = Q_{it}(\phi_{it}) + Q_{\text{barrier}}(\phi_s)$$ \hspace{1cm} (48)

And thus, $V_{GS,i}$ can be written as:

$$V_{GS,i} = \phi_S + \frac{Q_{\text{barrier}}}{C_{\text{barrier}}} + \frac{Q_G}{C_{\text{ins}}}$$ \hspace{1cm} (49)

which yields:

$$V_{GS,i} = \phi_S + \frac{1}{C_{\text{barrier}}} (q n_s + \phi_s C_D) + \frac{1}{C_{\text{ins}}} (Q_{it} + q n_s + \phi_s C_D)$$ \hspace{1cm} (50)

We have now developed a methodology for finding the charge from interface states, and accounting for their behavior in both surface-channel and buried-channel MOSFET designs. This, then, completes our considerations for the additions that need to be made to the model in order to accurately describe III-V MOSFET behavior.

2.5 Summary

In this chapter, we have introduced the ballistic transport model for quantum-well FETs that is the basis for a study of experimental data of MOSFETs and HEMTS. We have then extended this model to various first-order effects that will have a significant impact upon the I-V characteristics of this model. We have also discussed theory specific to HEMTs and III-V
MOSFETs in turn. In the following chapters, we will discuss the results of our ballistic transport modeling, and in comparing them against the experimental work, gain insight into the behavior of these FETs and the areas in which we should extend our model further.
CHAPTER 3. SIMULATION RESULTS & EXPERIMENTAL WORK: HEMT

3.1 Introduction

In this chapter, we use the results of the theory in Chapter 2 to examine the output and transfer characteristics of an experimental HEMT device. We explore first the impact of several key parameters on device characteristics using the simulation environment of Ch. 2. We then compare simulations and experimental data, and detail the process and selection of extrinsic device parameters to best fit the data.

3.2 Device Under Study

The structure of a HEMT was explained in Chapter 1, but we reintroduce the heterostructure in Figure 3-1 so as to specify the choices made by Kim et al. [21], whose experimental data will be the basis upon which we make our comparison. The channel is a 5 nm layer of InAs surrounded by 2 nm and 3 nm In$_{0.53}$Ga$_{0.47}$As cladding layers, and the barrier layer, which is In$_{0.52}$Al$_{0.48}$As, is estimated to be about 4 nm. The gate length is about 30 nm.

Figure 3-1 Schematic of a HEMT structure, reproduced from D. Jin et al. [5]
3.3 Simulation Study of Parameters

Before we do a detailed study of our simulation with respect to the experimental device characteristics, it is worthwhile first to take a look at the impact of various parameters on the simulated I-V characteristics. With this understanding, it will be easier for us to both fit the experimental data and to ultimately make meaningful conclusions about any discrepancies.

3.3.1 Significance of m^*

The main advantage that III-V materials possess over the more traditional silicon is their low-effective mass, leading to increased mobility and therefore the capacity to drive more current. Studies suggest, however, that the effective mass of electrons in the channel of HEMTs and other FETs is larger than that given by the bulk as a consequence of a combination of tensile strain and band non-parabolicity [5]. We must therefore consider the effective mass to be a parameter in the Poisson-Schrödinger simulations that can be increased to better fit the data and give us a sense for the real effective mass in the channel. The Poisson-Schrödinger simulations will allow us to account for any increase in the effective mass from the bulk resulting from strain, and we will treat non-parabolicity effects separately in the next section. Here, we explore the effect of varying the effective mass on the sheet carrier concentration, injection velocity, and lastly the transfer characteristics of the HEMT. We will also take a look at the impact of effective mass on the C-V characteristics, but will only consider this in the simulation regime, as experimental data are not available.

From the theory in Chapter 2, we can guess at the influence of effective mass on n_s and v_{inj}. We would expect, since n_s has a roughly linear dependence on m^*, that the sheet carrier concentration will increase as the effective mass increases. We would also expect the opposite effect on the injection velocity, but because v_{inj} varies as $1/\sqrt{m^*}$, an anticipated overall increase in current will result. Figure 3-2 shows the results of the simulation in the saturation regime for n_s and v_{inj} for four different effective masses. The InAs bulk value of 0.026 m_0 is compared to heavier values that are suspected to be closer to the actual experimental value of m^* in the channel [5].
We can see that n_s rises steadily as V_{GS} increases, with a kink at around $V_{GS} = 0.35$, and v_{inj} also rises steadily until this same point but then dramatically decreases. This is where the device begins to transition from the saturation to the linear regime for high values of V_{GS}, and is caused by nonzero source and drain resistances R_S and R_D. More on this behavior will be discussed in Section 3.3.3, where we investigate the impact of the parasitic resistances in detail.

![Figure 3-2 Effect of m^* on n_s (left) and v_{inj} (right). Arrows indicate direction of increasing m^*.](image)

While the general behavior is as predicted by theory—lower v_{inj} and higher n_s for larger m^*—the actual impact on transistor characteristics is somewhat more subtle. Figure 3-3 shows the I-V transfer characteristics and g_m versus V_{GS}, as well as the C-V characteristics. The value of the m^* changes the results of the Poisson-Schrődinger simulation, in part by affecting how quickly the Fermi level sweeps upwards through the conduction band and the first quantum sub-band, but also by determining in part the location of the sub-bands themselves. The different sheet carrier concentrations with m^* also affect the calculation of the gate capacitance as we have described it, which we can see most clearly in the C-V characteristics where the higher effective masses yield a higher capacitance. The sharp rise in the C-V characteristics at high V_{GS} indicate that the second quantum sub-band is beginning to be populated. The overall result, however, is that the total drain current I_D does not change much with effective mass. What is more important is the effect on the transconductance g_m. The general shape of g_m is peaked, where g_m increases as the
transistor is driven harder into saturation but drops when the device is pushed back into the linear regime; again, we will explain this phenomenon in more detail when we consider the extrinsic parasitic resistances. Figure 3-3 shows that the smaller values of m^* give a taller and narrower g_m peak than the larger values do. Because we do not have experimental C-V characteristics, g_m will actually be the most significant determinant in our selection of the effective mass, as it is a more accurate way of determining whether or not the simulation is faithful to the rise of current in experiment.

![Diagram](image-url)

Figure 3-3 Effect of m^* on I_D (top left), g_m (top right), and gate capacitance C_G (bottom). Arrows indicate direction of increasing m^*.

42
3.3.2 Impact of Nonparabolicity

It is well-known that the electron effective mass is expected to increase as the Fermi level penetrates farther into the conduction band, and to a first order we can approximate this as a linear increase in \(m^* \) for a given energy above the conduction band [22]. We introduce a number of different values for the nonparabolicity factor \(\alpha \), to see its effects on the transfer characteristics. In Figure 3-4, we look at \(n_s \), \(v_{\text{inj}} \), and \(I_D \) as a function of \(\alpha \). The behavior is essentially what we would expect: there is an increase in \(n_s \) and a decrease in \(v_{\text{inj}} \) for increasing values of the nonparabolicity factor, yielding an overall slight increase in the current. This is because the higher \(\alpha \) is, the larger the effective mass will be in the conduction band and therefore, the higher the current will be.

![Figure 3-4](image_url)

Figure 3-4 Effect of \(\alpha \) on \(n_s \), \(v_{\text{inj}} \), and \(I_D \). Arrows indicate the direction of increasing \(\alpha \).
3.3.3 Effect of R_{CS}, R_{CD}, and R_{access}

Now that we have taken a look at a few parameters that affect the intrinsic behavior of the simulated device, we will turn our attention to the extrinsic parasitic resistances that will influence the I-V characteristics. The presence of these parasitics will dampen the rise of current in both the linear and saturation regimes, and we will see this clearly in both I_D and the transconductance g_m.

We show the impact of these parasitics in Figure 3-5, where we explore the effects of each resistance on the transfer characteristics one by one. To begin, we look at the transfer characteristics for R_{CS} ranging from 100 to 300 Ω-μm, keeping R_{CD} and R_{access} at zero. We then look at R_{CD} for the same range for zero R_{CS} and R_{access}, and finally at R_{access} for zero R_{CS}, R_{CD}.

We see that R_{CS} and R_{CD} have substantially different effects in the saturation regime, but essentially the same effect in the linear regime. We consider the saturation regime first. The presence of a source resistance affects both the external V_{DS} and V_{GS}, but a parasitic drain resistance will affect only V_{DS}. Therefore for a given value of current, V_{GS} and V_{DS} are higher for higher R_{CS}, and this higher V_{GS} causes the I-V characteristics to stretch. Eventually, V_{DS} will become large enough to push the device out of the saturation regime and back into the linear regime, and this is what we see when the current begins to level off, and the transconductance peaks and starts to decrease. For the drain parasitic resistance R_{CD}, V_{GS} remains unchanged and we only see the effects of R_{CD} when V_{DS} becomes large enough to suddenly push the device back into the linear regime, giving a much sharper decline to the transconductance. The same principles for V_{DS} and V_{GS} apply in the linear regime where the transfer characteristics are very similar for both R_{CS} and R_{CD}, but what we see more pronounced than any effects on V_{GS} is the fact that for higher R_{CS} or R_{CD} and thus V_{DS}, the device is pushed quickly lower into the linear regime. This dominates the behavior in the linear regime.

We would expect that the effects of access resistance R_{access} would be a combination of R_{CS} and R_{CD}, because R_{access} occurs on both the source and drain sides of the device. Indeed, that is what we see when we compare the transfer characteristics for R_{access} against those for no parasitic
resistance at all, and in fact R_{access} looks as if it is increasing for higher currents, which is the nonlinear behavior we anticipated in Section 2.3.2. Because the value of R_{access} is determined by the location of the Fermi level with respect to the first quantum sub-band in the access region (which is a fixed value for a specific heterostructure), it is not a value we can set arbitrarily as we did with R_{CS} and R_{CD}. If R_{access} is zero, and R_{CS} and R_{CD} are also both set to zero, there are no parasitic resistances present and the device will never transition from the saturation to the linear regime because the internal $V_{DS,i}$ translates directly to the external V_{DS} and is not affected by the current running through the channel.

3.4 Comparison with Experimental Data

Having examined a few of the key parameters that enter as inputs to the ballistic model, we now present a detailed comparison against experimental data. We will be using the transfer and output characteristics of the HEMT detailed in Section 3.2. This section begins with an investigation of the transfer characteristics, and having fit our model to the experimental transfer characteristics we will then change our focus to the output characteristics.

3.4.1 Transfer Characteristics

To find a good set of extrinsic device parameters, we first make a selection of the effective mass to use in our simulation. With this, we will start with the characteristics in the subthreshold regime to fit the subthreshold swing SS and DIBL, and from there we will find the combination of R_{CS} and R_{CD} that gives the best overall fit to the current and transconductance.

Before we can find the extrinsic device parameters, we choose the effective mass that we will use for the rest of this comparison. This decision is easiest when looking at the transconductance in Figure 3-6, shown for several values of effective mass versus the experimental value. We will essentially have a tradeoff between a sharper, narrower peak and a lower, wider peak.
\[R_{CS} = 100 \text{ Ohm-um}, V_{DS} = 0.05V \]
\[R_{CS} = 200 \text{ Ohm-um}, V_{DS} = 0.05V \]
\[R_{CS} = 300 \text{ Ohm-um}, V_{DS} = 0.05V \]

\[R_{CD} = 0 \]
\[R_{\text{access}} = 0 \]

Figure 3-5 \(I_D \) and \(g_m \) vs. \(V_{GS} \) for \(R_{CS} \neq 0 \) (top), \(R_{CD} \neq 0 \) (middle), and \(R_{\text{access}} \neq 0 \) (bottom).
It becomes distinctly clear that the too-sharp characteristics from the bulk effective mass, $0.026m_0$, will not adequately describe the transconductance. However, for the heavier effective masses, we begin to move away from the steep rise of the experimental g_m, so it is best to choose an effective mass that can capture both the rise of g_m as well as its gentler decline. For this reason, we will select $m^* = 0.05m_0$ to be the effective mass we use in matching the rest of the characteristics, with the expectation that an m^* that is higher will cause too much degradation in the g_m behavior. This corresponds to the value suggested in [5], and had we had the C-V characteristics available for this device, we could have used them to confirm more accurately what effective mass would have been optimal for this study.

From here, we will begin with the subthreshold characteristics of the device. This will allow us to match the subthreshold swing SS and DIBL before finding appropriate values of R_{CS} and R_{CD}. Because there are no interface states in a HEMT, we use C_D, a fixed lump capacitance to represent short channel effects covered in Section 2.2.2, to match the experimental SS of 80 mV/dec. The drain-induced barrier lowering, DIBL, will determine the spacing between the subthreshold characteristics of the linear and saturation regimes as described in Section 2.3.5. We find that the values giving the best fit in the subthreshold regime are $C_D = 7.3$ fF/cm2, and
DIBL = 48 mV/V, as seen in Figure 3-7 which shows the subthreshold characteristics of the fitted simulation along with the experimental values.

![Figure 3-7 Subthreshold simulated vs. experimental data.](image)

To find the best values of R_{CS} and R_{CD}, we fit the characteristics in the saturation regime primarily with R_{CS} because as we saw in Section 3.3.3, R_{CD} will not affect the slope of I_D in saturation. We then select a value of R_{CD} that matches best the transconductance in the linear regime. This gives values of $R_{CS} = 60 \, \Omega \cdot \mu m$ and $R_{CD} = 260 \, \Omega \cdot \mu m$. Figure 3-8 shows both the I-V characteristics and g_m vs. V_{GS} for the total configuration of extrinsic device parameters. This includes the effect of R_{access}, whose value ranges from 0, to a maximum of around $60 \, \Omega \cdot \mu m$ in the saturation regime. As described in Section 2.3.3, R_{access} is determined dynamically and set by both the current in the access region and the location of the Fermi level with respect to the first sub-band in the access region.

Once again, we had to consider the tradeoffs of increasing and decreasing the value of parameters, in this case R_{CS} and R_{CD}. Larger values of R_{CS} will give a peak transconductance closer to the experimental value, but will also noticeably suppress the current and give a very poor match to the I-V characteristics. Similarly, we can increase the value of R_{CD} to lower g_m in the linear regime, but if R_{CD} increases too much, the latter half of g_m becomes a progressively worse fit. R_{access} acts much in the same way as R_{CS} and R_{CD}, suppressing I_D and lowering the
peak transconductance, but because it cannot be changed we must choose values of R_{CS} and R_{CD} that account for the role that the access region plays. While the I-V characteristics match quite well, even the best fit seems to severely overestimate the peak g_m in the saturation regime, in addition to placing that peak at a much higher V_{GS} than shown in experiment.

![Figure 3-8](image)

There are in fact several discrepancies between simulated and experimental values of extrinsic parameters. Aside from the differences we can observe on the graphs themselves, the experimental value for DIBL was obtained to be 80 mV/V, whereas the model has it to be 48. This is possibly from the oversimplified linear model we have chosen to represent DIBL; if we use a DIBL of 80 mV/V in our simulation, the separation of the saturation and linear currents in the subthreshold regime is too large. The most notable dissimilarity, however, is the imbalanced R_{CS} and R_{CD} we obtain from simulation but the balanced $R_S = R_D = 240 \, \Omega \cdot \mu m$ from experiment. This suggests a need to examine in more careful detail the source and drain resistances, especially how they may change as a function of bias.
3.4.2 Output Characteristics

Having fit to the best of our abilities the transfer characteristics, we now examine the output characteristics. Because it is important for the model to be able to accurately capture both the output and transfer characteristics at the same time, we will use the same extrinsic device parameters to yield the results in Figure 3-9. It is immediately clear that the output conductance, \(g_o \), of the model drastically underestimates that suggested by the experimental data. We also seem to be implementing values of \(R_{CS} \) and \(R_{CD} \) that are slightly too high, as evidenced by the slope in the linear regime that is lower than experimentally observed.

![Figure 3-9 Output characteristics of simulation vs. experiment, for extrinsic device parameters extracted from transfer characteristics.](image)

We can, in order to better understand the output characteristics, change the device parameters to achieve a better fit. This is achieved by marginally lowering the source and drain resistances, and increasing DIBL until the output conductance matches the experimental values. The results of this fitting can be seen in Figure 3-10, where we use a huge value of DIBL, 250 mV/V, to achieve the same \(g_o \) as in experiment. Unfortunately, the consequence of this measure leaves the simulated current overestimating the actual current but a large margin. The fact that DIBL needs
to be so large to come close to matching the output conductance suggests that there is some phenomenon at work that is not being accounted for in the saturation regime that has a considerable impact on the output characteristics. This will require further research.

Figure 3-10 Output characteristics of simulation vs. experiment, for extrinsic parameters to match output conductance.

3.5 Summary

Using our theoretical ballistic model, we were able to achieve quite a good fit to the transfer characteristics of a ballistic HEMT, using components accounting for drain-induced barrier lowering, parasitic capacitances to represent short-channel effects, and parasitic source and drain resistances. The most notable discrepancies were seen in the transconductance g_m and the output characteristics, where g_m in the saturation regime suggested a much higher value of DIBL than the value obtained from the subthreshold characteristics. In the next chapter, we will focus on the III-V MOSFET, turning our attention specifically to the C-V characteristics and the impact of D_{it}.

51
CHAPTER 4. C-V CHARACTERISTICS & D\textsubscript{it}: III-V MOSFET

4.1 Introduction

In this chapter, we continue the work from Chapter 2 to explore the effects of interface traps on the behavior of III-V quantum-well MOSFETs. We first take a look at the basic principles of the quantum capacitance model, from which we can better understand the breakdown of the C-V characteristics. Then, we look explicitly at the expected effects of D\textsubscript{it} on the subthreshold characteristics, as this is the final goal of using C-V to extract D\textsubscript{it}. Having done so, we can move on to compare experimental and simulated C-V to obtain the distribution of interface states. This chapter concludes with a look at the sheet carrier concentration and mobility obtained independently of D\textsubscript{it} using Hall effect measurements.

4.2 Quantum Capacitance Model

The quantum capacitance model, detailed in [5], is briefly introduced here to better understand the components contributing to the overall gate capacitance. In Figure 4-1, we can see the gate capacitance modeled as the series combination of the insulator capacitance C\textsubscript{ins} and the capacitance C\textsubscript{S} arising from the inversion layer. The inversion-layer capacitance itself can be thought of as having a quantum capacitance C\textsubscript{Q\ i} and a centroid capacitance C\textsubscript{cent\ i}, where the contributions from each quantum sub band \(i \) sum in parallel with each other. We can think of the quantum capacitance as arising from the penetration of the Fermi level into the finite 2D density of states in the quantum well. The centroid capacitance arises from the movement of the centroid of charge in the channel as the Fermi level moves through the conduction band.
The overall inversion capacitance, C_S, can be written as:

$$C_S = \frac{\partial (-Q_s)}{\partial \phi_s} = \frac{q\partial (-Q_s)}{\partial (E_F - E_C)}$$

(51)

where ϕ_s is the surface potential, and Q_s is the 2D sheet carrier concentration, which is the sum of the contributions Q_j from each sub band as found from (15) in Ch. 2. E_C is the location of the conduction band at the interface between the barrier and the channel. By breaking up the expression for the surface potential in the following way:

$$q \phi_s = \partial (E_F - E_C)$$

$$= \partial (E_F - E_j) + \partial (E_j - E_C)$$

(52)

we can then express the inversion capacitance from one sub band as:

$$\left(\frac{q\partial (-Q_j)}{\partial (E_F - E_C)} \right)^{-1} = \left(\frac{q\partial (-Q_j)}{\partial (E_F - E_j)} \right)^{-1} + \left(\frac{q\partial (-Q_j)}{\partial (E_j - E_C)} \right)^{-1}$$

(53)

This can be rewritten more simply as:

$$\frac{1}{C_{S,i}} = \frac{1}{C_{Q,i}} + \frac{1}{C_{cent,i}}$$

(54)

It is also simple to see that the centroid capacitance is related to the quantum capacitance in the following way:

$$C_{cent,i} = C_{Q,i} \frac{\partial (E_F - E_j)}{\partial (E_j - E_C)}$$

(55)
This circuit model, of course, is constructed without the presence of parasitics or interface traps, but those are easily incorporated as was shown in Ch. 2. When we investigate the C-V characteristics of a III-V MOSFET, it will be useful to break down the overall gate capacitance and see how the different components discussed here have an effect on the complete behavior. It is for this reason that this short overview of the quantum capacitance model will be valuable in our study.

4.3 Device Under Study

The structure of the III-V MOSFET was described in Chapter 1, but as with the HEMT we reintroduce it in Figure 4-2 to discuss the design by Lin et al. [6], whose experimental work is the basis for our comparisons. The channel consists of 2 nm of InAs surrounded by 3 nm and 5 nm In$_{0.7}$Ga$_{0.3}$As cladding layers. This is a buried channel design, so there is a 1 nm barrier layer of InP between the channel and the oxide, which consists of 2 nm of either Al$_2$O$_3$ or HfO$_2$. In extracting D_{it}, we will consider these two oxide materials separately.

![Figure 4-2. Schematic of a MOSFET structure, reproduced from J. Lin et al. [6].](image-url)
4.4 Effect of D_{it} on Subthreshold Swing

Our ultimate goal is to be able to use our knowledge of the interface state trap density D_{it} to understand the non-ideal subthreshold swing, so it is from this perspective that we will first examine the effects of D_{it}. We consider several hypothetical distributions of trap states so as to see how the distribution can have a large impact on the subthreshold swing. Experimental long-channel devices are used to compare the subthreshold characteristics, so we do not have to concern ourselves with other parasitic capacitances.

We have chosen three different trap distributions to examine: a linear, Gaussian, and an exponential distribution. Though the shapes of these distributions are different, we make sure that the total charge from these states from the valence band edge to the conduction band edge integrates to the same value, which we have chosen arbitrarily to be $2 \times 10^{13} / \text{cm}^2$ just to illustrate our point. This value is within the correct order of magnitude of what we might see in a real device. A sketch of the distributions is shown in Figure 4-3, with the linear distribution beginning at the edge of the valence band and all distributions limited to the inside of the band gap.

![Figure 4-3 Qualitative graph of the different D_{it} distributions explored in this study.](image)

To achieve the same total charge in the three cases, we use the following distributions:

- Linear: 0 at valence band edge, $\sim 3 \times 10^{13} / \text{cm}^2$ at conduction band edge
- Exponential: peak value of $2.7 \times 10^{13} \text{ /cm}^2$ at conduction band edge with decay constant of 1 eV
- Gaussian: peak of $4 \times 10^{13} \text{ /cm}^2$, with $\sigma = 0.2 \text{ eV}$ located 0.7 eV below the conduction band edge

Having done this, we can see the results of these trap distributions on the subthreshold characteristics in Figure 4-4. We have used the structure of Figure 4-2 with Al$_2$O$_3$ as the oxide layer, and have chosen to model D_{it} with acceptor states. The acceptor states are filled when the Fermi level sweeps upward through the bandgap and they accept an electron, leaving them negatively charged. If part of the applied gate voltage is being used to fill the trap states, the I-V characteristics will stretch and shift to the right because interface traps do not supply mobile charge and it will take a larger V_{GS} to achieve the desired current levels. The ideal case with no D_{it} and perfect subthreshold swing is shown in Figure 4-4 as well, for comparison. Here we can see that the shape of the distribution can in fact make quite a large difference, where the Gaussian has the largest effect in all likelihood because of its tall and relatively concentrated peak.

![Figure 4-4](image)

Figure 4-4 I_D vs. V_{GS} in the subthreshold regime (logarithmic scale). Ideal case of perfect subthreshold swing is shown in blue.
An important point to note, however, is that eventually all the simulated currents for different D_{it} distributions do converge onto the same current value. This is because the Fermi level has swept beyond all the traps, and the total charge in the traps is no longer changing. However, because we have used acceptor states, we will have a fixed negative charge in the traps that causes a permanent threshold voltage shift relative to the case with no D_{it}. We can see this more clearly in Figure 4-5, where we show the transfer characteristics above threshold. Aside from the fixed voltage shift, all scenarios with D_{it} end up with the same current in strong saturation.

![Figure 4-5](image)

Figure 4-5 I_D vs. V_{GS} in the saturation regime. Ideal case of perfect subthreshold swing is shown in blue.

While the choice of D_{it} distribution has the potential to make a substantial difference, what this exercise also makes clear that it is not straightforward to extract the D_{it} distribution from the subthreshold characteristics, in part because the integrated D_{it} is what actually affects the I-V characteristics, but also because the mapping of current into charge is not clear-cut. This is now why we will turn to the C-V regime, where it is much easier to extract a D_{it} distribution that could then in turn explain the subthreshold behavior of the device.

4.5 Comparison with Experimental Data

We will now focus our attention on the C-V characteristics of the III-V MOSFET. In the first section, we use lower-temperature experimental measurements to best match our simulation to
the actual device, assuming that the lower temperature lessens the effects of D_{it} because the traps are frozen out and cannot necessarily respond to the frequency of the C-V sweep. The second section discusses the extraction of D_{it} at room temperature.

4.5.1 C-V Characteristics at Low Temperature

We will take a look at both the Al$_2$O$_3$ and HfO$_2$ designs, as we expect that the D_{it} from the two different interfaces will be different. We start with the Al$_2$O$_3$ III-V MOSFET. In reality, there is some uncertainty about the thickness of the oxide layer, so we have increased the oxide thickness to 2.5 nm in our simulations in order to better fit the experimental results. Figure 4-5 shows the C-V characteristics of both the experimental device and the simulation at -65°C. The simulation does not include any interface states—D_{it} will be found in the next section when we examine room temperature data.

![C-V characteristics of simulation (smooth lines) plotted against experiment (marked lines) for Al$_2$O$_3$ oxide, -65°C. The simulated C_Q is in blue, the quantum capacitance C_{Q1} of the first sub-band in green, the inversion capacitance of the first sub-band in aqua, and the second inversion capacitance in purple. The value of the Al$_2$O$_3$ capacitance C_{inv} is plotted as the black dashed line for reference.](image-url)

Figure 4-6 C-V characteristics of simulation (smooth lines) plotted against experiment (marked lines) for Al$_2$O$_3$ oxide, -65°C. The simulated C_Q is in blue, the quantum capacitance C_{Q1} of the first sub-band in green, the inversion capacitance of the first sub-band in aqua, and the second inversion capacitance in purple. The value of the Al$_2$O$_3$ capacitance C_{inv} is plotted as the black dashed line for reference.
We compare here the experimental data in the marked lines and the simulated gate C_G shown in dark blue. We can still see that D_{it} is present even at the lower temperature, and that there is an additional discrepancy above the threshold voltage whose origin is unknown. There is reasonable matching between experiment and simulation when the device is on, but the worse match and gentler experimental slope when the device is being turned off indicate the presence of traps. There is also very little frequency dispersion in the experimental data, all of which sit essentially on top of one another, which is consistent with low D_{it} responding at this temperature. We have also plotted the different components of the capacitance that we discussed in our gate capacitance model so that we can easily see what components contribute to the experimental data. The centroid capacitance (red) combined with the quantum capacitance (green) in parallel yields the inversion capacitance for the first sub band, shown in light blue. The behavior of the inversion layer is mirrored in the experimental data, just as we can see that the continued rise in capacitance for high values of V_{GS} most likely corresponds to the initial population of the second sub band.

For completeness, we show the C-V characteristics at -65°C for the HfO$_2$ device in Figure 4-6. As with the Al$_2$O$_3$, we have increased the simulation oxide thickness to 2.5 nm. C_{ins} is not plotted because the high dielectric constant of HfO$_2$ puts the value of C_{ins} at around 80 fF/um2, well off scale. The regions where there seem to be interface states have much the same behavior—a gentler rising slope at lower V_{GS}, and at higher V_{GS} around the second sub-band population, but there is some noticeable frequency dispersion for larger values of V_{GS}. This is most likely due to the fact that the dielectric constant for HfO$_2$ is more than twice as large as that of Al$_2$O$_3$, and thus we are penetrating farther into the conduction band for the same value of V_{GS} than we were for the Al$_2$O$_3$. This dispersion is most likely due to gate leakage effects instead of D_{it}, as we will see in the room temperature data.
4.5.2 D_{it} Extraction

Having matched to the best of our abilities the simulation at lower temperature to the experimental characteristics, we can now move on to extract the D_{it} in the device at room temperature. The same C-V characteristics for the Al$_2$O$_3$ oxide, now at room temperature, are shown in Figure 4-7.

It is clear right away that there is substantially more D_{it} present at room temperature than there was at -65°C. We can also see that there is some frequency dispersion for low and high values of V_{GS}, indicating that not all of the traps may be able to respond to the higher frequencies. It is for that reason that we choose the 50 kHz experimental C-V data from which to obtain our D_{it} distribution. To first find the capacitance C_{it} from the traps, we use our buried-channel capacitance model from Figure 2-8 setting C_D to zero. We can lump the capacitance from the InP barrier and the capacitance from the inversion layer into a single term, C_L:
Figure 4-8 C-V characteristics of simulation with $D_{it} = 0$ against experiment for Al_2O_3 oxide, room temperature.

\[
C_L = \frac{C_S \cdot C_{\text{barrier}}}{C_S + C_{\text{barrier}}}
\]

(56)

As in our simulations, an ideal capacitance model does not contain any D_{it} and we can solve for C_L in terms of the gate voltage C_G and the insulator capacitance C_{ins}:

\[
C_L = \frac{C_G, D_{it}=0 \cdot C_{ins}}{C_{ins} - C_G, D_{it}=0}
\]

(57)

Now that we have an expression for C_L, it is simple to use this in the complete gate capacitance model that includes D_{it}, and from there, extract an expression for C_{it}:

\[
C_{it} = \frac{C_{G, with D_{it}} (C_{ins} + C_L) - C_{ins} \cdot C_L}{C_{ins} - C_{G, with D_{it}}}
\]

(58)

Having solved for C_{it} we can obtain the charge from interface traps, Q_{it} by integration. Q_{it} is then related to D_{it} by (41) in Chapter 2 and so from here, we have decided to fit the charge Q_{it} by assuming a constant value of D_{it} over short intervals of 50 mV of the interface surface potential ϕ_{it}. This does not yield discontinuous steps in C_{it} because of the thermal smearing that occurs as
the Fermi level sweeps upwards in the conduction band. By tailoring D_{it} in this way, we obtain the results in Figure 4-8, where we have essentially a perfect match to the experimental data up to the region of high V_{GS}.

We can see the shape of C_{it} in the graph, with the peak values corresponding to areas where there is the largest gap between the simulated C-V characteristics and the experimental characteristics. The simulated C_G discontinuity and area around $V_{GS} = 0.4V$ is due to the discontinuity in the inversion capacitance of the second sub band. This, in turn is most likely an error arising from the fact that the voltage steps in the Poisson-Schrödinger simulations are too large, and can be solved by completing the simulations for a finer grid.

From the distribution of interface states, we can construct a plot of D_{it} in the InP band gap. This is seen in Figure 4-9. The distribution consists of two peaks: the larger peak is slightly above mid-gap at about 0.8 eV above the valence band edge with a maximum value of $4.4 \times 10^{12} /\text{eV-cm}^2$ and the second, smaller peak is closer to the conduction band at 1.15 eV above the valence band edge with a value of $3 \times 10^{12} /\text{eV-cm}^2$.

Figure 4-9 C-V characteristics of simulation & experiment for Al_2O_3 with D_{it} fit.
The second peak closer to the conduction band edge is most likely due to the discontinuity discussed earlier, so we predict that if it were eliminated, D_{it} would continue its trend of decreasing down towards the conduction band. Unfortunately, for the experimental data available, we cannot extract D_{it} into the conduction band both because the Fermi level does not penetrate far enough into the conduction band of the InP barrier, but also because at large V_{GS} gate leakage becomes a problem and the discrepancies in C-V data are not reliably due just to D_{it} effects.

The effects of interface traps have been studied before, and we can in fact compare our results for D_{it} with other experimental data. Figure 4-10 shows data from [23], where the D_{it} has been found in the upper half of the bandgap for the Al$_2$O$_3$/InP interface. If it were not for the discontinuities in the simulations, both sets show D_{it} decreasing towards the conduction band edge to quite low values. However, our distribution puts our peak D_{it} value at 0.8 eV above the valence band edge, with a maximum D_{it} value of $4.4 \times 10^{12} / \text{eV-cm}^2$ but Figure 4-10 shows D_{it} still on an upwards trend even at 0.7 eV above the valence band edge. The measured value of Dit is also roughly $10^{13} / \text{eV-cm}^2$. It is not clear from that data whether or not the peak of the D_{it} distribution would be at 0.7 eV or would be closer to the valence band edge, though our work shows a clear trend of decreasing D_{it} into the middle of the gap. The inherent uncertainties in our
approach do not allow for an exact answer, but do give an order of magnitude result that provides us with valuable qualitative insight.

![Diagram](image)

Figure 4-11 D_{it} distribution in the InP band gap, reproduced from [23].

We will now take a brief look at the HfO$_2$ device, using the same procedure as we did for the Al$_2$O$_3$ MOSFET. We showed the C-V characteristics for -65°C in Figure 4-6. Having found a fit at lower temperature, we look at the room temperature data again, and obtain an appropriate D_{it} distribution. Figure 4-11 shows the room temperature C-V characteristics with and without C_{it}, and then the corresponding D_{it} distribution as a function of energy. Gate leakage was judged to be a problem past about $V_{GS} = 0.3$V, so D_{it} was not fit any farther, however, it is mostly likely that the high peak towards the conduction band is really stemming from these same gate leakage problems.

We can conclude from this study that the HfO$_2$ and Al$_2$O$_3$ interfaces have roughly the same D_{it} distribution, and D_{it} levels extracted are consistent with what is observed from the subthreshold characteristics of [6]. Though it is not completely certain whether the D_{it} peak for the HfO$_2$ near the conduction band edge is due entirely to D_{it} or possibly to gate leakage effects, it seems that Al$_2$O$_3$ may give a slightly better interface.
It is worth mentioning again that the discussion above is approximate, not exact. Both the uncertainty in the oxide and barrier thickness, as well as the possibility of other effects, especially at high V_{GS}, are not factors that can be ignored. There is also uncertainty about the effective mass in the channel. Here, we have used the bulk value of 0.026m_0 for InAs but in all likelihood the effective mass will be higher, and has a non-negligible effect on the C-V.
characteristics. In order to do a more in-depth study, we would need to consider both the I-V and C-V characteristics at the same time.

4.6 Hall Effect Measurements

A study of \(D_{it} \) gives us valuable information that can help us understand the subthreshold behavior of a device, but it is also useful to know the 2D sheet carrier concentration and mobilities of these devices as a function of \(V_{GS} \), independent of \(D_{it} \) effects. For this, we turn to Hall effect measurements, which exploit the movement of electrons in a magnetic field to find these two figures of merit.

4.6.1 Theory for the Hall Effect

Before discussing the experimental results from this work, it is valuable to have some knowledge of how the Hall effect measurements are taken. An in-depth explanation of this theory is covered in [24], but we will briefly cover the most important pieces here. The Hall bar is drawn again for convenience in Figure 4-12. It has a width \(w \), and a length \(l \), and a current \(I \) runs down the length of the bar. The Hall voltage is measured across the width of the device, and the longitudinal voltage \(V_x \) is measured along the direction of current flow.

![Figure 4-13 Schematic of a simple Hall bar.](image)

To first find the sheet resistance of the Hall bar, we measure the longitudinal voltage \(V_x \) in the absence of a magnetic field:
\[V_x = \frac{\ell R_{Sh}}{w} l \] \hspace{1cm} (59)

where \(R_{Sh} \) is the sheet resistance of the bar. To obtain more accuracy than by using a single value of current and measuring \(V_x \), we can actually find \(R_{Sh} \) through the resistivity in the longitudinal direction:

\[R_{Sh} = \frac{w}{\ell} \frac{dV_x}{dl} \] \hspace{1cm} (60)

To find the sheet carrier concentration and mobility, we now consider the Hall bar in the presence of a magnetic field. As current flows down the Hall bar, the magnetic field diverts electrons to the sides. Eventually, an equilibrium state will develop where the force driving the electrons to the sides of the bar is balanced and opposed by the presence of an electric field arising from the higher concentration of electrons on one side of the bar. This equilibrium electric field is measured as the Hall voltage:

\[V_H = \frac{Bl}{qn_s} \] \hspace{1cm} (61)

where \(q \) is the unit of charge, \(n_s \) is the 2D sheet carrier concentration in the Hall bar, and \(B \) is the magnetic field. We can find \(n_s \) by a similar approach as (60), using the resistivity in the lateral direction:

\[n_s = \frac{B}{q} \left(\frac{1}{\frac{dV_H}{dl}} \right) \] \hspace{1cm} (62)

The sheet resistance \(R_{Sh} \), can be written in terms of the mobility \(\mu \) and \(n_s \):

\[R_{Sh} = \frac{1}{qn_s} \frac{1}{\mu} \] \hspace{1cm} (63)

As a result, \(\mu \) can be written in terms of the sheet carrier concentration and the sheet resistance:

\[\mu_H = \frac{1}{qn_s} \frac{1}{R_{Sh}} \] \hspace{1cm} (64)

This gives us complete expressions for obtaining \(R_{Sh} \), \(n_s \), and \(\mu \) using the Hall bar setup.
4.6.2 μ and n_s for the III-V Quantum-Well MOSFET

We will now show our experimental measurements for both Al$_2$O$_3$ and HfO$_2$ oxide devices. We can repeat the process described in the previous section and find the sheet carrier concentration and mobility for a variety of different gate voltages. We begin first with Al$_2$O$_3$ in Figure 4-13. The parameters of interest are shown on the right, and on the left we show either V_x or V_H as a function of current in the bar for qualitative understanding only. These qualitative graphs show the slopes from which we derive our values of R_{sh}, n_s, and μ. There are two graphs for the Hall voltage because we measure the Hall voltage using two different orientations of magnetic fields with north and south polarities, and average these results.

It is important to note that we cannot accept the values of n_s and μ for both very small and very large gate voltages. At very negative V_{GS}, V_H goes negative for zero current, which probably indicates the occurrence of gate leakage. At large V_{GS}, the gate leakage current is again so high that it overwhelms the current running down the Hall bar. We see this qualitatively from the fact that there are several lines for V_x and V_H that no longer intersect the origin. These correspond to large values of the gate voltage. We have not performed any sort of offset elimination procedures on these values, as in all likelihood the gate leakage at both extremes of V_{GS} is high enough to make even the compensated values questionable anyway. Therefore, we can accept as valid our results between the voltage range of about $V_{GS} = 0V$ to $V_{GS} = 0.25V$. Though this is not as wide of a span as we might desire, with better devices that have less gate leakage we have the potential to make valid measurements over a much larger span.

Regardless of these shortcomings, we can see that the mobility shown in these devices is noticeably better than as reported elsewhere [6], going well above 6000 cm2/V-s. We see similar results for the HfO$_2$ MOSFET, shown in Figure 4-14. The gate leakage problem does seem to be more severe with the HfO$_2$, but even so, the mobility goes to about 9000 cm2/V-s.
Figure 4-14 Sheet resistance (top right), sheet carrier concentration (middle right), and mobility (bottom right) for Al₂O₃ device.
Figure 4-15 Sheet resistance (top right), sheet carrier concentration (middle right), and mobility (bottom right) for HfO$_2$ device.
It is also often valuable to examine the mobility in the context of the sheet carrier concentration. For this reason, we have plotted μ versus n_s in Figure 4-15 for Al_2O_3 and HfO_2. Both curves show an increasing trend for increasing n_s, but look as if they are nearing saturation. In fact, [6] predicts that the mobility will peak at a certain n_s and then begin to decrease. In future work, for larger V_{GS} we would in all likelihood see this same behavior.

![Figure 4-16 μ vs. n_s for Al_2O_3 (left) and HfO_2 (right).](image)

As the mobility is a very important figure of merit, it is quite useful to have a fast way to find its value for a range of applied gate voltages and therefore sheet carrier concentrations. As this work is mostly limited by gate leakage, with more robust devices we would be able to expand to a wider range of gate voltages and sheet carrier concentrations, giving further insight into device behavior.

4.7 Summary

In a continuation of our work with the ballistic model, we were able to apply the model to the III-V quantum-well MOSFET, examining the effect of D_{it} on subthreshold characteristics and then going on to extract the actual D_{it} distribution using C-V characteristics for both Al_2O_3 and HfO_2. We found that there is some qualitative agreement between this work and other experimental work on D_{it}, but acknowledge that we are limited by various uncertainties that make the precise determination of D_{it} difficult. We concluded by examining two figures of merit in FET devices, the 2D sheet carrier concentration and the mobility, with techniques independent of D_{it}. In the
next chapter, we continue our discussion on the ballistic transport model, and provide suggestions for future study on both HEMTs and III-V MOSFETs.
CHAPTER 5. CONCLUSIONS & SUGGESTIONS

In this thesis, we have developed a flexible, compact model for III-V quantum-well FETs based on the ballistic theory of transport. We have compared our model with experimental data for the III-V HEMT, and have examined the III-V quantum-well MOSFET from the perspective of the C-V characteristics. We have also carried out Hall effect measurements to obtain two figures of merit, the 2D sheet carrier concentration and mobility, independently of any effects from trap states, which in turn indicates room for improvement if the effects of interface traps can be reduced. We will summarize in this chapter our key findings, and provide suggestions for future work.

5.1 Conclusions

We have built upon existing transport theory to incorporate many first-order and second-order effects into our ballistic model, and explored the impact of these effects on the output and transfer characteristics of a III-V device. We then validated this model against experimental data for a short-channel HEMT, extracting parameters of interest such as the source and drain parasitic resistances R_S and R_D, and the drain-induced barrier lowering DIBL. We found that while there is good agreement in the transfer characteristics, we still significantly overestimate the transconductance g_m. We also found that experimental output conductance indicates the need for a much higher value of DIBL than the one we use to match the subthreshold characteristics.

We then took the model further and looked at the unique characteristics associated with the III-V MOSFET. We examined the eventual impact of interface states on the subthreshold characteristics, and then using the C-V characteristics of the device we estimated the distribution of interface states D_{it}. The extracted values of D_{it} are of the same order of magnitude as other reports in the literature. The D_{it} distribution qualitatively follows the behavior we would expect,
despite being limited by our knowledge of uncertainties in effective mass, oxide thickness, gate leakage, and other potential parasitics.

To complete our study of the III-V MOSFET, we carried out experimental measurements of the sheet carrier concentration n_s and the mobility μ. We were able to measure mobilities of over 6000 cm2/V-s for the Al$_2$O$_3$ MOSFET, and over 9000 cm2/V-s for its HfO$_2$ counterpart. These measurements can be further validated once more robust devices with better gate leakage characteristics have been fabricated.

5.2 Suggestions for Future Work

There are a number of studies that could be carried out as valuable continuations to the research described in this work.

- Extend the ballistic model further to investigate the discrepancies between the transconductance g_m and the output conductance of the simulated work versus experimental results.

- Independently determine the real value of effective mass of electrons in the channel as a function of the applied gate voltage. As this is an important input to the model, a precise understanding of what the effective mass is and how it changes is crucial to the accuracy of future work. A possible methodology for achieving this would be to exploit the Shubnikov-de Haas Effect [22].

- Use I-V and C-V characteristics in tandem to better fit experimental work for both the III-V HEMT and the III-V MOSFET. In the case of the MOSFET, this will give us a more quantitative and exact view of the D_{it} distribution for the oxide/InP interface.

- Extend the Hall effect measurements to devices with less gate leakage to explore a wider range of n_s and mobility behavior. Combine with C-V and I-V measurements for a complete understanding of the electrostatics of the III-V MOS structure.
References

