
Competitive Algorithms for Online Matching and

Vertex Cover Problems

by

Chiu Wai Wong

S.B., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

@ Chiu Wai Wong, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter created.

Author ...
Department of Electrical Engineering and Computer Science

August 23, 2013

Certified by.................
Michel X. Goemans

Professor
Thesis Supervisor

Accepted byMeye
Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Competitive Algorithms for Online Matching and

Vertex Cover Problems

by

Chiu Wai Wong

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2013, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The past decade has witnessed an explosion of research on the online bipartite matching
problem. Surprisingly, its dual problem, online bipartite vertex cover, has never been explic-
itly studied before. One of the motivation for studying this problem is that it significantly
generalizes the classical ski rental problem. An instance of such problems specifies a bipar-
tite graph G = (L, R, E) whose left vertices L are offline and right vertices arrive online one
at a time. An algorithm must maintain a valid vertex cover from which no vertex can ever
be removed. The objective is to minimize the size of the cover.

In this thesis, we introduce a charging-based algorithmic framework for this problem as
well as its generalizations. One immediate outcome is a simple analysis of an optimal 1-1/e
competitive algorithm for online bipartite vertex cover. By extending the charging-based
analysis in various nontrivial ways, we also obtain optimal l_1 e-competitive algorithms
for the edge-weighted and submodular versions of online bipartite vertex cover, which all
match the best performance of ski rental.

As an application, we show that by analyzing our algorithm in the primal-dual frame-
work, our result on submodular vertex cover implies an optimal (1 - 1/e)-competitive algo-
rithm for its dual, online bipartite submodular matching. This problem is a generalization
of online bipartite matching and may have applications in display ad allocation.

We consider also the more general scenario where all the vertices are online and the
graph is not necessarily bipartite, which is known as the online fractional vertex cover and
matching problems. Our contribution in this direction is a primal-dual 1.901-competitive

(or 1/1.901 ~ 0.526) algorithm for these problems. Previously, it was only known that they
admit a simple well-known 2-competitive (or 1/2) greedy algorithm. Our result is the first
successful attempt to beat the greedy algorithm for these two problems.

Moreover, our algorithm for the online matching problem significantly generalizes the
traditional online bipartite graph matching problem, where vertices from only one side of
the bipartite graph arrive online. In particular, our algorithm improves upon the result of
the fractional version of the online edge-selection problem in Blum et. al. (JACM '06).

Finally, on the hardness side, we show that no randomized online algorithm can achieve a

competitive ratio better than 1.753 and 0.625 for the online fractional vertex cover problem
and the online fractional matching problem respectively, even for bipartite graphs.

Thesis Supervisor: Michel X. Goemans

Title: Professor

3

4

Acknowledgments

First and foremost, I am hugely indebted to my mentor Yajun Wang with whom I spent two

wonderful summers at Microsoft Research. He was instrumental in shaping my approach

to research, from formulating problems and laying out a research agenda to attacking an

otherwise impossible problem and writing up the papers. His relentless passion for research

has always been contagious and an important drive for me.

I also thank Yajun for exposing me to the fascinating area of online bipartite matching

back in 2011. From there we started looking at the problem in different dimensions and much

of the materials in this thesis originated from the many energizing, albeit sometimes long

and late night, meetings we had. I remember vividly that I often returned to brainstorming

with numerous fresh ideas after meeting with him.

The most important lesson I learned from Yajun is probably the power of simplicity.

Most of our results had a much more convoluted and tedious proof at the very beginning,

which would likely stay the same way without his constant push for simplicity. In retrospect,

coming up with a simpler and more elegant proof enabled us to discover more general

structural properties and generalize our results.

My gratitude goes to my supervisor Michel Goemans as well. He has been both an

inspiring teacher and research advisor. I was first attracted to the fascinating area of

combinatorial optimization thanks to his undergraduate class on the field. He had laid out

the basics of combinatorial optimization in a mathematically elegant manner. The interplay

between polygons and combinatorial objects was nothing but magical. Part of this thesis,

especially chapter 3, would not have been here had I not taken the class with Michel. He

has been influential in shaping my own research interest.

In terms of research, Michel is known for his elegant approach to combinatorial opti-

mization, which I greatly benefited from. The result in chapter 4 was initially established

only for a much more restricted setting. It was partly due to his suggestion that we discov-

ered a more elegant and unified approach to the problem. I was particularly impressed by

his unique perspective at problems which would often open up an entirely new approach.

Before MIT, I have had a fabulous secondary school life at SJC, which provided me the

unparalleled flexibility to develop my interest in mathematics. I was especially fortunate

to have Mr. Patrick Ching (or Ching sir) as my informal mentor over the years. From

5

my very first month at SJC onwards, he had been very encouraging and offered me much

mentoring in my math learning. My growth had been tremendously accelerated thanks to

the opportunities he had given to this young boy. Thank you for always believing in me.

Mr. W.Y. Yip and Y.K. Ng, who were also math teachers at SJC, had also provided me

with much mentoring and guidance.

Outside of school, I received a great deal of advice from Dr. Kin Li of HKUST. He not

only introduced me to higher math, but also convinced me of the possibility of a math-

oriented career. Back then I would sometimes just drop by his office and enjoy hours-long

discussion with him, academic or not. My deepest appreciation for his constant support

and generosity.

Finally, I am extremely fortunate and grateful that my parents have been supportive

of my academic pursuit. Unlike most Hong Kong parents, they have always granted me

the absolute freedom to fully engage in my true passion. Their nurturing and unwavering

support have been the single most important factor in my achievement and success. This

thesis is dedicated to them.

6

Contents

1 Introduction

1.1 Prior work in online matching

1.2 Our contribution

1.3 Preliminaries

1.3.1 Notation

1.3.2 Vertex cover and matching

1.3.3 Competitive analysis

1.3.4 Adversary Models .

1.3.5 Primal-dual method

1.4 Organisation

2 Online Bipartite Vertex Cover

2.1 Related work

2.2 Problem statement

2.3 Our result and technique

2.3.1 Rounding scheme

2.4 The waterfilling algorithm and the charging-based

2.4.1 Extension to vertex-weighted setting . . .

2.5 The edge-weighted setting

2.5.1 Integral weighted case

2.5.2 The general case we e R>

method

3 Online Bipartite Submodular Vertex Cover and Matching

3.1 Submodular matching and vertex cover

3.2 Problem statement .

7

11

. 12

12

13

13

14

14

14

15

15

17

19

19

20

20

21

23

25

25

26

29

30

31

3.3 Our result and technique .

3.4 Prelim inaries .

3.4.1 Lovasz extension of submodular functions

3.4.2 Convex program for bipartite submodular matching and vert

3.4.3 Rounding scheme for online bipartite vertex cover

3.4.4 a and two integrals .

3.5 The generalised waterfilling algorithm

3.5.1 The algorithm .

3.5.2 Charging-based analysis .

3.5.3 Primal-dual analysis .

. . . . 32

. . . . 33

. . . . 33

c cover 34

. . . . 36

. . . . 36

. . . . 37

. . . . 38

. . . . 40

. . . . 43

4 Online Vertex Cover and Matching:

when all Vertices are Online

4.1 Related work .

4.2 Problem statement .

4.3 Our result and technique

4.4 Online fractional vertex cover in general graphs

4.4.1 Computing the optimal allocation function

4.5 Online fractional matching in general graphs

4.6 Hardness results .

4.6.1 Lower bounds for the online vertex cover problem

4.6.2 Upper bounds for the online matching problem . .

5 Conclusion

5.1 Future work

49

. 5 1

. 5 1

. 52

. 54

. 57

. 60

. 63

. 6 3

. 66

69

. 70

71A Multislope Ski Rental

8

e

List of Figures

3-1 Bar chart representation of Lovasz extension 35

3-2 Bar chart being split at a . 40

9

10

Chapter 1

Introduction

In classical optimisation, the entire input is often given to the algorithm before it starts ex-

ecuting. This setting is realistic in most settings where full information about the scenario

is known well in advance (e.g. shortest path, Steiner tree). Nevertheless, in more specific

application domains, the input may be generated incrementally and some irrevocable deci-

sion may have to be made along the way. For example, a trading algorithm must decide

whether to buy or sell a stock before the next-step price fluctuation is revealed. Problems

of this nature are called online optimisation problems, where the input is given in the online

fashion and, typically certain properties or invariants must be maintained and hence force

the algorithm to act before the full input is known.

The subject of this thesis is the problems of online matching and vertex cover in various

settings. The online bipartite matching problem, which was first studied in 1990, has enjoyed

a tremendous amount of attention from the theoretical computer science community in the

past decade. The revival of the interest in the problem is indebted to the discovery of its

connection with online advertising, which was established in [28]. Since then, the online

bipartite matching problem has been generalised in different directions and investigated in

less stringent models.

An instance of this problem specifies a bipartite graph G = (L, R, E) with edges E C

L x R between left (also called offline) vertices L and right (also called online) vertices R.

An algorithm for online bipartite matching maintains a matching and strives to make it as

large as possible. Initially all the left vertices are offline and hence known to the algorithm.

In the online phase, at each step a vertex v E R arrives along with its incident edges and the

11

algorithm must then irrevocably decide to which unmatched neighbor u E N(v) (if any) v

is matched. It is known that the optimal competitive ratio is 2 for deterministic algorithms

and 1 - 1/e [6, 22] for randomised algorithms.

We initiate the study of the dual of this problem, called online bipartite vertex cover,

in various settings. An algorithm for this problem maintains a vertex cover instead of a

matching with the requirement that no vertex can leave the cover once entered. The goal

is to minimise the size of the final vertex cover.

The motivation for studying this problem is two-fold. Firstly, it is of interest in its own

right since it generalises the well-known classical ski rental problem considerably (see chapter

2). Secondly, as we shall see in chapters 3 and 4, algorithms for online bipartite vertex

cover often inspire corresponding competitive algorithms for online bipartite matching via

the primal-dual framework. In fact, one of our main results is an optimal algorithm for a

new generalisation of online bipartite matching which is obtained using this recipe.

1.1 Prior work in online matching

The online bipartite matching problem was first studied in the seminal paper by Karp et

al. [22]. They gave an optimal 1 - 1/e-competitive algorithm. Subsequent works studied its

variants such as b-matching [17], vertex weighted version [1, 11], adwords [6, 12, 28, 11, 10,

16, 1] and online market clearing [4].

Another line of research studies the problem under more relaxed adversarial models by

assuming certain inherent randomness in the inputs [13, 27, 26, 18]. Online matching for

general graphs have been studied under similar stochastic models [3].

1.2 Our contribution

Our major contribution is a new charging-based algorithmic framework for online vertex

cover problems. By leveraging this approach, we have successfully obtained optimal algo-

rithms for online bipartite vertex cover in the basic, edge-weighted and submodular settings,

as well as the first nontrivial competitive algorithms for online vertex cover on both bipartite

and general graphs in which all vertices are online.

Another theme of this thesis is the emphasis on reverse-engineering the charging-based

analysis to achieve a primal-dual analysis. This is more than just yet another analysis as

12

it implies the dual result on online matching. In retrospect, it seems much easier to design

algorithms via the charging framework as the starting point, after which one can try to

apply the primal-dual method to obtain the corresponding result on matching. A more

elaborate explanation of this approach can be found in chapters 3 and 4.

We summarise the main results presented in this thesis below.

" An optimal _1 -competitive algorithm for online (vertex-weighted) bipartite vertex

cover (chapter 2).

" An optimal -competitive algorithm for online edge-weighted bipartite vertex

cover (chapter 2).

" An optimal primal-dual optimal l e-competitive algorithm for online submodular

bipartite vertex cover and matching (chapter 3).

" A primal-dual 1.901-competitive algorithm for online (fractional) vertex cover and

matching in general graphs (chapter 4).

We remark that the first three results on vertex cover above generalise the well-known

ski rental problem, whereas the third result on matching generalises the classical online

bipartite matching problem.

Moreover, we offer information-theoretical hardness results for online vertex cover and

matching in general graphs.

1.3 Preliminaries

In this section we introduce the concepts and tools used frequently throughout the thesis.

The more specific tools needed are explained in the respective chapters'. We assume basic

familiarity with algorithms.

1.3.1 Notation

An (undirected) graph G consists of a (finite) set of vertices V and a set of edges M C

{ (u, v) : u, v E V}, where (u, v) is an unordered tuple. Given v E V, the neighbours of v,

denoted by N(v), are the vertices adjacent to v, i.e. u E N(v) if (u, v) E E.

13

1.3.2 Vertex cover and matching

Given G = (V, E), a vertex cover of G is a subset of vertices C C V such that for each edge

(u, v) E E, C n {u, v} 74 0. A matching of G is a subset of edges M C E such that each

vertex v E V is incident to at most one edge in M.

y E [0, 11V is a fractional vertex cover if for any edge (u, v) E E, yu + yv 1. We

call yv the potential of v. x E [0, 1]E is a fractional matching if for each vertex u E V,

EvEN(u) Xuv 1. It is well-known that vertex cover and matching are dual of each other.

A standard fact in combinatorial optimisation states that for bipartite graphs, the min-

imum vertex cover and the maximum matching problems are solvable in polynomial time

(offline). In contrast, one can find a maximum matching efficiently in general graphs but

the minimum veretx cover problem is NP-hard.

1.3.3 Competitive analysis

Competitive analysis, first introduced in [30], is the predominant framework for evaluating

the performance of algorithms for online optimisation problem. The idea is to compare the

size of the solution maintained by the online algorithm against the offline optimal solution.

More formally, an algorithm, possibly randomised, is said to be c-competitive if there exists

a constant b such that for any instance, the size of the solution ALG found by the algorithm

and the size of the optimal solution OPT satisfy

E[ALG] -c -OPT < b or E[ALG] -c.OPT > b

depending on whether the optimisation is a minimisation or maximisation problem. The

constant c is called the competitive ratio.

1.3.4 Adversary Models

A few different adversarial models have been considered in the literature. In this thesis,

we focus on the oblivious adversarial model, in which the adversary must specify the input

once-and-for-all at the beginning and is not given access to the randomness used by the

algorithm. We remark that for deterministic algorithms, all of these adversarial models are

equivalent. Readers are referred to any standard online algorithm textbook (e.g. [5]) for

more details.

14

In the case of online bipartite matching and vertex cover, the oblivious adversary spec-

ifies the input graph and the vertex arrival order before the algorithm receives the input

and is denied access to the randomness used by the algorithm.

1.3.5 Primal-dual method

The primal-dual method has its origin in approximation algorithms and has recently been

applied to online algorithms [8]. Informally, given a pair of primal and dual linear programs

(LP), the primal-dual method ensures that the primal and dual objective values are within

some constant factor of each other. The benefit of maintaining this invariant is that we

can argue that such an algorithm is competitive for both the primal and dual problems via

weak duality.

We summarise the discussion in the lemma below.

Lemma 1.3.1. Given a primal LP max cx s.t. Ax < b, x > 0 and dual LP min by s.t. ATy

c, y 0, let x and y be feasible solutions. If an online algorithm maintains x and y in such

a way that they always remain feasible and cx > ^ - by, then the algorithm is y-competitive

for the primal problem and 1/y-competitive for the dual problem.

Proof. Let x* and y* be the optimal solutions. By LP weak duality, we have cx > - - by

- - by* > y - cx* and y - by < cx < cx* < by*, as desired.

The primal-dual method is indispensable in extending the results on vertex cover (dual)

to matching (primal) in chapters 3 and 4.

1.4 Organisation

This thesis is organised as follows. In chapter 2, we study the basic and edge-weighted

versions of online bipartite vertex cover and, in particular, present the optimal algorithms

for them. Chapter 3 extends the results to the submodular setting with an application to

online matching. In chapter 4, we study the general version of online matching and vertex

cover in which all vertices are online and give the first nontrivial algorithms which break the

barrier of 2 implied by the greedy algorithm. We conclude in chapter 5 with some future

research directions.

15

16

Chapter 2

Online Bipartite Vertex Cover

In this chapter, we study the online bipartite vertex cover problem (OBVC) in the basic,

vertex-weighted and edge-weighted settings, the latter two of which generalise the first.

The basic OBVC is defined as follows. For a bipartite graph G = (L, R, E) with edges

E C L x R between left (also called offline) vertices L and right (also called online) vertices

R, all the left vertices are offline, i.e. they are known to us in advance. In the online

phase, at each step a vertex v E R arrives along with its incident edges. We are required to

maintain a vertex cover C at all time by only inserting additional vertices into C, i.e. no

vertex removal is allowed. Our objective is to minimise the size of the vertex cover at the

end. The vertex-weighted setting is identical except that each vertex v has a weight wv > 0

and the objective is to minimise the total weight of the vertices in the cover.

The edge-weighted setting, on the other hand, differs more substantially from the basic

one. In this setting, each edge e carries a weight we 0 and the algorithm is required to

maintain vertex potentials y E [0, 00), z E [0, oo)R such that yu + zv wuv for any edge

(u,v) E E.

In addition to its relationship with online bipartite matching, OBVC is of interest be-

cause it generalises the ski rental problem, which is a classical topic in online algorithms.

Thus there is a connection between ski rental and online bipartite matching via OBVC.

Online bipartite vertex cover as combinatorial ski rental. The ski rental problem

is perhaps one of the most studied online problems. Recall that in this problem, a skier

goes on a ski trip for N days but has no information about N. On each day, he has the

choice of renting the ski equipment for 1 dollar or buying it for B > 1 dollars. His goal is

17

to minimise the amount of money spent.

Ski rental can be reduced to online bipartite vertex cover via a complete bipartite graph

with B left vertices and N right vertices. One may view this problem as ski rental with

a combinatorial structure imposed. We show that the optimal competitive ratio of online

bipartite vertex cover is 1_1/. In other words, we still have the same performance guarantee

even though the online bipartite vertex cover problem is considerably more general than

the ski rental problem.

Extending ski rental to the online vertex cover problem also has practical implications.

Consider a factory owner receiving incoming orders which he has to process one by one1 .

Each order specifies a product v, the set of machineries N(v) required to produce v and the

cost w(v) that the customer is willing to pay for producing v. Each machinery u E N(v)

requires a capital investment of w(u). The owner can accept or reject the order. In the

former case, he needs to purchase N(v) which may incur a huge capital investment. If he

chooses to reject, he instead suffers a loss of w(v), the revenue he would otherwise receive.

The owner's objective is to maximize the profit, or equivalently, to minimize the sum of the

total investment cost and total loss. The dilemma here is that while the cost of buying N(v)

may be enormous compared with w(v), it could be amortized over many future incoming

orders, some of which may require similar machineries to produce. This problem can be

modeled as an instance of online bipartite vertex cover with weights w(.) on the vertices,

i.e. the objective is to minimise the total weight of a vertex cover.

The connection. Recall that bipartite matching and vertex cover are dual of each other

in the offline setting. It turns out that the analysis of an algorithm for online bipartite

fractional matching in [6] implies an optimal algorithm for online bipartite vertex cover.

On the other hand, online bipartite vertex cover generalises ski rental. This connection is

especially interesting because online bipartite matching does not generalise ski rental but

is the dual of its generalisation 2

'This is modeled by the weighted version of our problem.
2 Coincidentally, the first papers on online bipartite matching and ski rental were both published in 1990

but to our knowledge, their connection was not realized, or at least explicitly stated.

18

2.1 Related work

The ski rental problem was first studied in [21]. Karlin et al. gave an optimal -

competitive algorithm in the oblivious adversarial model [20]. There are many general-

izations of ski rental. Of particular relevance are multislope ski rental [24] and TCP ac-

knowledgment [19], where the competitive ratio 1/e is still achievable. The online vertex-

weighted bipartite vertex cover problem presented in this chapter is also of this nature and,

in fact, further generalizes multislope ski rental, as shown in the appendix.

Another line of related research deals with online integral and fractional covering pro-

grams of the form min{cx I Ax > 1, 0 < x < u}, where A > 0, u > 0, and the constraints

Ax> 1 arrive one after another [7]. Our online vertex cover problem also falls under this

category. The key difference is that the online covering problems are so general that the

optimal competitive ratios are usually not constant but logarithmic in some parameters of

the input.

Finally, online vertex cover for general graphs was studied by Demange et al. [9] in a

model substantially different from ours. Their competitive ratios are characterized by the

maximum degree of the graph.

2.2 Problem statement

We formally state the problems tackled in this chapter below.

OBVC The left vertices L are offline and the right vertices in R arrive online one at a

time. When a vertex v E R arrives, all of its incident edges are revealed. The algorithm

must maintain at all time a valid monotone vertex cover C, i.e. no vertex can ever be

removed from C once it is put into C. Thus the algorithm essentially decides whether to

assign v or N(v) to C upon the arrival of an online vertex v. The objective is to minimise

the size of C at the end.

Vertex-weighted OBVC This differs from OBVC only in that each vertex v has a

nonnegative weight w, and the objective is to minimise w(C) EveC wV.

Edge-weighted OBVC Each edge e carries a weight we 0. The algorithm must

maintain at all time a valid monotone fractional vertex cover (y, z), i.e. yu, zv never decrease

19

for any u C L, v E R. Thus when an online vertex v arrives, the algorithm essentially

initializes z, and possibly increases some yu's so that yu + zv ;> wuv for u E N(v).

The objective is to minimise the size of (y, z), i.e. _UEL YU + EZER ZV.

2.3 Our result and technique

We present optimal 1_1 l -competitive algorithms for all of the problems considered in this

chapter. The hardness side of our results simply follows from the fact that the optimal

competitive ratio of ski rental, which is a special case of OBVC, is precisely 1 + a := 1/_

We remark that a similar algorithm for the basic version of OBVC is implied by the primal-

dual analysis of a waterfilling algorithm for online bipartite fractional matching in [6].

Lemma 2.3.1. Online bipartite vertex cover generalizes ski rental. In particular, no algo-

rithm for online bipartite vertex cover achieves a competitive ratio better than 1+a: 1

which is the optimal ratio for ski rental [20].

Proof. See appendix A for a reduction from an even more general version of ski rental to

online bipartite vertex cover. 0

We first present an optimal algorithm for online bipartite vertex cover (in its most basic

form). The analysis of this algorithm is based on an elegant charging scheme which turns

out to be quite powerful for tackling the other variants. By extending it in various nontrivial

ways, we obtain charging schemes capable of tackling the more general vertex-weighted and

edge-weighted versions of online bipartite vertex cover.

The first step of our approach is to show that a well-known generic rounding scheme for

bipartite vertex cover also works in the online setting. Thus by leveraging this scheme, one

can without loss of generality focus exclusively on the fractional version of the problem.

As will be clear in the next section, our algorithms for OBVC are waterfilling in nature.

Waterfilling algorithms have been previously used for a few variants of the online bipartite

matching problem (e.g. [17, 6]).

2.3.1 Rounding scheme

We present a generic rounding scheme that converts any given algorithm for online fractional

vertex cover to an algorithm for online integral vertex cover in bipartite graphs. This allows

20

us to obtain the integral version of our results on fractional vertex cover for bipartite graphs.

Let (y, z) be the fractional vertex cover maintained by the algorithm, where y and z

are indexed by L and R respectively. Sample t E [0, 1] uniformly at random before the

first online vertex arrives. Throughout the execution of the algorithm, assign u E L to the

cover if yu > t and v E R to the cover if z, > 1 - t, where L and R are the left and right

vertices of the graph G respectively. As yu and z, never decrease in the online algorithm,

our rounding procedure guarantees that once a vertex enters the cover, it will always stay

there.

We next claim that this scheme gives a valid cover. Since (y, z) is always feasible, we

have yu + z, > lV(u, v) E E and hence at least one of yu t and z, 1 - t must hold. In

other words, one of u and v must be in the cover. Therefore the cover obtained by applying

this scheme is indeed valid and monotone, as required.

Finally, for each vertex v with final potential yv (or z,), the probability that v is in the

cover given by the rounding is exactly y, (or zv). Therefore, by linearity of expectation, the

expected size of the integral vertex cover after the rounding is exactly E L yu + E R zC .

Hence, this rounding scheme does not incur a loss.

We remark that a more general rounding scheme is given in the next chapter for the

submodular version of OBVC.

2.4 The waterfilling algorithm and the charging-based method

In this section, we present the algorithm GreedyAlloction for OBVC as well its charging-

based analysis.

Algorithm 1: GreedyAllocation
Input: L
Initialize for each u E L, Yu = 0;
for each online vertex v do

max a < 1 s.t. (1 - a) + EUEN() maxja - y, 0 1 + a;

Let X = {u E N(v)Iyu < a};
For each u E X, yu +- a;
zv <- 1- a;

end

When an online vertex v arrives, we can choose to place v in the cover which has a cost of

21

1. Alternately, we can put all the vertices from N(v) into the cover. In GreedyAllocation,

we attempt to put as much N(v) into the cover with a resource constraint of 1 + a.

GreedyAllocation is greedy in the sense that we try to make a, i.e. the potential on

N(v), as large as possible.

Now we present the charging-based analysis of GreedyAllocation. Let C* be a minimum

vertex cover of G. We will charge the potential increment to vertices of C* so that each

vertex of C* is charged at most 1 + a.

Given an online vertex v, we consider the following two cases.

(1) v E C*. In this case, we charge the potential increments in both N(v) and v in the

algorithm to v. In particular, v will be charged at most 1 + a.

(2) v 0 C* which implies N(v) C C*. In this case, N(v) should take care the potential

increment on themselves and well as z, = 1 - a used by v. We describe how to charge 1 - a

to N(v).

Intuitively, if EUEN(v)(a - y,) = a + a, we should charge ' (a - yu) to u e X since

the fair "unit charge" is '. Because ' is decreasing in a, ' (a - yu) can be upper

bounded by

1 1> tdt.
YU f M)

The next lemma indicates that the total charge is sufficient.

Lemma 2.4.1. Let F(x) = fx t47cdt. If EuCX(a - yu) = a+a for some set X and a > y,

for u E X, then

1 - a <E (F(a) - F(yu)).
uEX

Proof. We have the following

(F(a) - F(y)) 1 t dt

a+a

where the inequality above holds as " is decreasing.

We are ready to evaluate the performance of GreedyAllocation.

22

Theorem 2.4.2. GreedyAllocation is 1 + a-competitive and hence optimal for the online

bipartite (fractional) vertex cover problem.

Proof. As discussed earlier, we charge the potentials used to the vertices of the minimum

cover C*. We focus on the case v 0 C*, which implies N(v) C C*.

The potential spent on u E N(v) 9 C* is charged to u itself. The potential spent on v

is zv = 1 - a, where a is the final water level after processing v. Let X C N(v) be the set of

vertices whose potentials increased when processing v. The case a = 1 (1 - a = 0) is trivial.

When a < 1, we must have exhausted our resources 1+a (otherwise one can further increase

a) and thus Esx(a - yu) = a + a, where yu is the potential of u before processing v. We

charge each vertex u E X by F(a) - F(yu). By Lemma 2.4.1, 1 - a < EUEX(F(a) - F(yu)),

i.e. the total charges are sufficient.

Now each online vertex of C* is responsible for 1 + a potential used in processing itself.

For each left vertex u E C*, it takes care of its own potential (which contributes at most

1 to C) as well as the incoming charges from N(u). The sum of these charges cannot

exceed F(1) - F(0). Therefore a left vertex takes care an amount of resources at most

1 + F(1) - F(O) = 1 + f 1jtdt = 1+ a, where the equality holds because a = _ This

gives our desired result. El

As mentioned in section 2.3.1, it is possible to round any fractional vertex cover algo-

rithms so the same performance is achievable in the integral vertex cover setting in expec-

tation.

2.4.1 Extension to vertex-weighted setting

We first note that it is straightforward to show that the rounding scheme in section 2.3.1 is

still applicable to the vertex-weighted setting.

To extend our approach to vertex weighted OBVC, we modify GreedyAllocation as

follows by including the vertex weights in the constraint (1 - a) + EuEN(v) maxia - yu, 0}

1 + a. The underlying philosophy of this is the same as before, namely that we try to

cover N(v) as much as possible while not using too much resources. Thus wv(1 - a) +

EZEN(v) wu max{a - yu, 0}, which is exactly the increment in the value of our objective

function, should be used in the new constraint.

The analysis of the algorithm requires a modified charging lemma.

23

Algorithm 2: GreedyAllocation
Input: L
Initialize for each u E L, Yu = 0;
for each online vertex v do

max a < 1 s.t. wv(1 - a) + EuEN(v) WU maxja - yu, 0} w,(1 + a);

Let X = {u E N(v)lyu < a};
For each u E X, yu <- a;
zo +- 1 - a;

end

Lemma 2.4.3. Let F(x) = x 'dt. If Euex wu(a - yu) = wv(a + a) for some set X and

a;> yforu EX, then

WV(1 - a) < wu (F(a) - F(yu)) .
uEX

Proof. Almost the same as Lemma 2.4.1.

By using this modified charging lemma, our result follows from a very similar charging

scheme.

Theorem 2.4.4. GreedyAllocation is 1 + a-competitive and hence optimal for vertex-

weighted OBVC.

Proof. We charge the potentials used to the vertices of the minimum cover C*. As before,

the case v e C* is trivial. We focus on the case v C*, which implies N(v) C C*.

The potential spent on u E N(v) 9 C* is charged to u itself. The resources spent on v

is wVzV = wV(1 - a), where a is the final water level after processing v. Let X C N(v) be

the set of vertices whose potentials increased when processing v. The case a = 1 (1 - a = 0)

is trivial. When a < 1, we must have exhausted our resources wV(1 + a) (otherwise one can

further increase a) and thus ZuEX wu(a - yu) = wv(a + a), where yu is the potential of u

before processing v. We charge each vertex u E X by wu(F(a) - F(yu)). By Lemma 2.4.3,

wV(1 - a) EuEX wu(F(a) - F(yu)), i.e. the total charges are sufficient.

The rest of the proof is the same as Theorem 2.4.2.

24

2.5 The edge-weighted setting

Edge-weighted OBVC requires a more intricate idea than the simple vertex-weighted gen-

eralisation above. This problem is more than just yet another generalization of OBVC and

in turn ski rental. One of the incentives for studying this problem is that its dual is online

bipartite weighted matching, which is an important open problem that generalizes online

bipartite matching [14]. Our result shows that at least for the dual of this problem, one can

still achieve the competitive ratio 1 + a.

2.5.1 Integral weighted case

We first handle the special case we E N since it already illustrates all the necessary ingre-

dients for the general case. Moreover, this special case deserves separate attention as it

generalizes integral OBVC rather than just fractional OBVC.

Reduction to the unweighted case. The new idea needed for the integer edge-weighted

version of OBVC is a reduction to the unweighted case. We split each vertex u into distinct

vertices {u(t)} for t E N. For each online vertex v E R and its neighbor vertex u E L, v(t) is

connected to u(wUV - t + 1) for 1 < t < wuv. We can conceptually treat the vertices {v(t)}

as if they are arriving one by one.

Clearly, for a vertex cover C in the new unweighted graph, we can construct a vertex

cover in the original graph by setting yu = j{t I u(t) E C} and zV = I{t I v(t) E C} for

u E L and v E R. This is because there are wuL edges between the sets of vertices {u(t)}

and {v(t)} in the new graph.

On the other hand, given a cover C' = {y', z'} for the original weighted graph, we can

construct a vertex cover C = {yu(t)}u,t in the unweighted graph as follows. Given vertex

u, if t < y', yu(t) = 1 and yu(Ly'j + 1) = y' - [y'j. All other yu(t)'s are 0. z,(t)'s are set

analogously.

We claim that this is a valid cover. Consider an edge e between v(t) and u(wuv -t+1). We

have several cases. (1) t < z' or wuv -t+1 y', e is covered. (2) z' < t and y' < wUV -t+1,

then y' ;> wuv - z' > wU1 - t and hence wuv - t < y' < wuv - t + 1. A similar argument

gives t - 1 < ' <t. Therefore, by our construction, we have yu(Wuv - t + 1) = y' - wuv + t

and zv(t) = z' - t + 1, which implies that e is indeed covered.

25

Therefore, we can simply reuse our algorithm for the online bipartite vertex cover to

solve the integer weighted case. Furthermore, the rounding scheme in Section 2.3.1 is still

applicable to obtain an integral vertex cover.

Theorem 2.5.1. Our algorithm is 1+ a-competitive for online bipartite edge-weighted (in-

tegral) vertex cover and hence optimal.

Proof. Simply apply the rounding scheme in Section 2.3.1 to y.(t) and z,(t). More con-

cretely, we sample y E [0, 1] uniformly at random. Now yu(t) contributes 1 to yu iff y"(t) > y.

Similarly, z,(t) contributes 1 to zv iff zv(t) 2 1 - -y. This is a valid VC as we always have

yu(wuv - t + 1) + zv(t) > 1 for any edge uv and hence at least one of yu(wuv - t + 1) and

zv(t) contribute 1.

Furthermore, this scheme is still lossless as the expected contribution of u(t) (or v(t)) is

exactly yu(t) (or zv(t)). E

2.5.2 The general case we E R>0

This case is in fact a mathematical treatment of the previous reduction in the limit. Instead

of yu(t) and zv(t) for t = 1, 2, ..., yu, zV : R;>0 - [0, 1] are piecewise constant functions on

the nonnegative reals. We set3

Yu =j y(t)dt, z, = j zv(t)dt.

We modify our algorithm as follows:

Lemma 2.5.2. (y, z) as maintained by the algorithm is a valid fractional vertex cover.

Proof. For any edge uv, from the description of the algorithm we know that for any t E

[0, wU,],

yu(wuv - t) + zv(t) a(t) + (1 - a(t)) = 1.

Thus,

yu + z, = j yu(t)dt + j zv (t) dt > (yu(wuv - t) + zv(t))dt > wuv,

as desired.
3Here we abuse notations by using yu, z, for both the cover variables maintained by the algorithm as well

as functions on [0, oo).

26

Algorithm 3: GreedyAllocation
Input: L
Initialize for each u E L, yu(t) = 0 for t > 0;
for each online vertex v do

for t E [0, maxUEN(v) wuv] do
max a(t) < 1 s.t.

(1 - a(t)) + max{a(t) - yu(wuv - t), 0} < 1+
uEN(v):wu>t

Let X,(t) = {u E N(v) I yu(wuv - t) < a};
For each u E Xv(t), yu(wuv - t) - (t);
z (t) +- 1 - a(t);

end
end

Theorem 2.5.3. Our algorithm is 1+a -competitive for online bipartite edge-weighted vertex

cover and hence optimal.

Proof. Let (y*, z*) be an optimal solution. Consider an iteration of the algorithm.

For t E [0, z*], we charge the resource density (1 + a) used to zv(t).

For t > 4, we can charge the resource density 1 - a(t) used by v to yu(wuv - t) for

u E Xv(t) since their potential increased. Notice that y* wa - z* > w,, - t. The exact

density to be charged to each yu(Wuv - t) is analogous to before. We charge a - y'(wuv - t)

to Yu(wuv - t) itself. For zv(t) = 1 - a(t), we distribute the amount by charging

1 dx

X + a~

to each u E Xv(t). Proceeding in the same way as the proof of Theorem 2.4.2, their total

charge density is indeed at least 1 - a(t).

Now each v E R, zv(t) is charged at most (1+ a) - Z*.

For u E L and t < y*, yu(t) receives a self-charge of at most 1 and incoming charge from

N(u) which amounts to at most

1 _- dx = oz.
0 x ia

For t > y*, the resource is taken care of by the neighbors of u. Therefore yu(t) is charged

at most 1 + a for t < y* and as a result, u is charged at most y* - (1 + a).

27

Therefore our algorithm is 1 + a-competitive. El

Finally, we note that it is possible to put together both the vertex-weighted and edge-

weighted settings. However, we have chosen not to do so as it involves no new ideas.

28

Chapter 3

Online Bipartite Submodular

Vertex Cover and Matching

In this chapter, we study the submodular version of online bipartite vertex cover. We are

able to obtain a tight 1/-competitive algorithm for it, thus matching the optimal result

in the last chapter. Our algorithm is still greedy in nature and the analysis depend on a

significant extension of the previous elegant charging scheme.

In addition to the charging-based analysis mentioned above, we also successfully an-

alyzed our algorithm in the primal-dual framework. This implies an optimal 1 - 1/e-

competitive algorithm for online bipartite submodular matching, which generalizes online

bipartite matching and has the potential to be applicable in practice, especially in online

advertising.

The Adwords problem [28] generalizes online bipartite matching and has had enormous

applications in online advertising [29]. In Adwords, each left vertex typically represents an

advertisement (ad) to be displayed (matched) to incoming impressions, which are modeled

by the online vertices on the right. Each ad u E L is associated with some budget B, which

is the maximum amount that the advertiser is willing to spend on the ad u. When an

impression arrives, we have to decide immediately which ad to be displayed. The optimal

ratio for this problem is also 1 - 1/e [28, 6].

Nevertheless, this abstraction has the shortcoming that the budget for each ad is spec-

ified independently. Indeed, it is possible that an advertiser is hosting a few different ads.

Adwords would require him to specify his budget for each ad. This could potentially be

29

wasteful since in reality, he may be willing to spend more on an ad if his budget for another

ad is not exhausted. For instance, suppose that a soft drink distributor is advertising for

both coke and sprite. He is willing to spend $5 on coke, $4 on sprite but only $8 on both.

From the perspective of the search engine, imposing such constraints also makes sense

since it may not want to serve too many ads on, say, soft drinks alone. Serving a particular

category of ads too often would deprive the opportunity that the ads in other categories are

displayed. It is probably in the long-term interest of the search engine company to satisfy

the demand from most of its customers rather than a small subset of them.

We address this limitation by allowing an advertiser to specify the amount he is willing

to spend on each subset of his ads. More generally, in online bipartite submodular matching,

any subset S C L can be matched at most f(S) times, where f is a monotone submodular

function on L. For this problem we are able to obtain an optimal 1 - 1/e-competitive

algorithm. Given the practicality of the previous algorithms for online matching and Ad-

words [29], we are hopeful that some of the ideas introduced by our algorithm will be

applicable.

Finally, we argue that the assumption on f is only mild. Monotonicity is clearly reason-

able. Submodularity also makes sense as one should expect to observe diminishing marginal

returns for such a function f specified by an advertiser. Returning to our example on coke

and sprite, if $5 is already spent on coke, our advertiser may think that the soft drink

market is more saturated than before and hence spend less on sprite ($3) than he otherwise

would ($4).

3.1 Submodular matching and vertex cover

A set function f : 2 L -+ R is said to be submodular if for all A, B C L,

f(A)+f(B) ;>f(AUB)+f(AnB).

One often finds the following equivalent definition useful: for every A, B C L with A C B

and every e E L,

f(A U {e}) - f(A) ;: f(B U {e}) - f(B).

Loosely speaking, this says that the marginal return of adding an element e to a larger set

30

is smaller. This property makes submodular functions appealing beyond its mathematical

beauty as this phenomenon is observed in many real-life scenarios, especially those which

arise from economic settings.

In addition, a submodular function f is monotone if f(B) ;> f(A) for every A, B C L

with A C B.

Given a nonnegative1 monotone submodular function f(.), x e [0, 1]E is a submodular

matching defined by f if for all v e R,

uEN(v)

and for all S C L,

uES uESvEN(u)

It is easy to see that this is indeed a generalization of the usual (fractional) matching

which corresponds to f(S) = ISI.

3.2 Problem statement

We formally define the online bipartite submodular vertex cover and matching problems

here.

Online bipartite submodular vertex cover (OBSVC) The setting is exactly identical

to OBVC except that the objective function is f(C n L) + IC n RI instead of ICI. Here

f (-) is a nonnegative monotone submodular function. OBVC is a special case of OBSVC in

which f is simply the cardinality function f(S) = ISI.

Online bipartite submodular matching (OBSM) The setting of OBSM is similar

to OBVC. Here we have a nonnegative monotone submodular function f(-) on the left

vertices and the algorithm maintains a submodular matching x instead of a vertex cover.

When an online vertex v arrives, the algorithm must initialize all x., for u E N(v) so that

x is still a valid submodular matching. The objective is to maximize the size of x, i.e.

ZeGE Xe UEL Z veR XV-

'Our results actually still hold even if f(S) < 0 for some S C L, in which case we can just remove S as
its vertices can never be matched.

31

Although not directly related to our results, the offline version of both problems can be

solved by polymatroid intersection in polynomial time.

3.3 Our result and technique

By extending our previous charging scheme in a nontrivial manner, we are able to tackle

the more general submodular version of online bipartite vertex cover and hence obtain an

optimal _1 e-competitive algorithm for online bipartite submodular vertex cover (OBSVC).

Our algorithm is still greedy in nature.

Furthermore, unlike the last chapter, we also give an alternate primal-dual analysis of

our algorithm for OBSVC. As a by-product, we have the following result on online bipartite

submodular matching.

* An optimal (1 - 1/e)-competitive algorithm for online bipartite submodular matching

(OBSM).

Our charging scheme for OBSVC is a significant extension of the one developed in the last

chapter. To tackle submodularity, we invoke the notion of Lovasz extension and introduce

a bar chart representation for it. Not only is this helpful for intuition, the representation

also enables us to explain our analysis more succiently. Our new scheme is based on a

two-dimensional charging function of the bar chart diagram. The analysis is therefore much

more involved than the original scheme.

Our primal-dual analysis of OBSM and OBSVC generalises the previous scheme for

online bipartite matching given in [6]. We have overcome several technical hurdles along

the way. First of all, convex programming duality is needed to address submodularity. The

resultant program, however, involves exponentially many constraints and we must carefully

update our primal variables in order to satisfy all of them.

Lastly, the previous primal-dual method is stated from the perspective of matching

rather than vertex cover. For our problems, it turns out that the right approach is to start

from vertex cover, which in turn brings us through a journey involving the Lovasz extension

and submodular polytope.

We remark that our results on vertex cover hold even in the vertex-weighted setting. In

other words, given nonnegative weight w on the vertices, our algorithms can be modified to

32

handle objective functions of the forms EuccnL WU + EVEcnR WV, f(C n L) + EvEcnR Wv

and E>UEL WUYU + EVER WVZV.

In the case of submodular matching, the constraint x, < 1 (where v E R) can be replaced

by the more general xv < wv. Nevertheless, these extensions are not discussed here as they

tend to add unnecessary complexity to the description and obscure the main theme.

3.4 Preliminaries

We need a few new notions and tools from combinatorial optimisation in order to address

submodularity.

3.4.1 Lovasz extension of submodular functions

Given a submodular function f : 2L -+ R, the Lovasz extension I : [0, 1 1L -+ R is a

continuous convex relaxation of f and is defined by

f(y) = Et[f(L(t))],

where L(t) = {u E L : yu > t} and the expectation is taken over t chosen uniformly at

random from [0, 1]. It is easy to check one does have f(S) = f(Is). Here Is is the indicator

variable for S C L.

While this is the standard definition of Lovasz extension, we make heavy use of an

equivalent definition in this chapter. Given y E [0, 11 L, order the vertices of L = {1, 2, ... , n}

in such a way that 0 = yo 5 y1 ! y 2 < ... 5 yn. Let Yi = {i, i + 1,...,n} and Yn+1 =.

Then

1(y) = (yi - yi_)f (Y).
i=1

An immediate implication of this formulation is that by restricting y E [0, 1]L to some

fixed ordering a : {1, 2, ... , LJ} -+ L, f(y) is a linear function. This property will be used

in various places.

Finally, note that for monotone submodular function f, its Lovasz extension f(y) is

monotonically increasing (in each coordinate).

33

Bar-chart representation

We introduce a bar chat interpretation of the Lovasz function. This representation plays

an extremely important role in analyzing OBSVC and OBSM.

Given y E [0, 1]L, the bar chart representation of f(y) is the set

U {t} x [0,f(L(t))].
tE[O,1]

Notice that the bars are decreasing in height as t increases because f is monotone. If we

order L = {1, 2, ... , n} in such a way that yi Y2 5 ... 5 Yn. Using the notation in the last

section, the bar chart representation consists of the bars

[0, y1] x [0, f (YO)], [Y1, Y2] X [0, f (Y2)], ... , [yn-1, yn] X [0, f (Yn)], [yn, 1] X [0, f (Yn+1)]-

This is often a useful way to visualize the Lovasz extension f(y) = J 1(yj - yi1)f(Y) as

each term in the summand corresponds to precisely a bar in the bar-chart representation.

In particular, f(y) is the area of the bar chart.

Strictly speaking, a bar can be empty (e.g. when yj = yi+i) but we shall implicitly

disregard them hereafter as it does not affect our proofs in any way and would only make

the notations more cumbersome.

Readers may find that it is sometimes more intuitive to view the bar chart as the function

t i-f(L(t)) for t E [0, 1].

Figure 3-1 below gives an example of a bar chart representation with 5 bars, of which

the last one corresponds to the empty set and has height f(0) = 0.

3.4.2 Convex program for bipartite submodular matching and vertex

cover

Recall the notations x, := EuEN(v) Xuv and xS := EuES Xu := EuES EvEN(u) Xuv. The pri-

mal and dual convex programs below are used in the primal-dual analysis of our algorithms

for OBSM and OBSVC.

34

o 1

Figure 3-1: Bar chart representation of Lovasz extension

Primal: Dual:

max eEC-E Xe min f(y) + ZvE R Zv

s.t. x, 1, Vv E R s.t. yU + z, v 1, V(u, v) E E

xs f(S),VS C L yz > 0

x > 0

Readers who are familiar with polymatroid intersection should recognize that the primal

is actually the polytope associated with the intersection of a partition matroid on R and a

polymatroid on L defined by the submodular function f.
As in the usual primal-dual method, weak duality 2 is required in order to bound the

size of the primal and dual solutions.

Lemma 3.4.1. (weak duality) For any feasible solutions x and (y, z) to the primal and

dual programs above, we have

Sxe f(y) +EZv.
eEE vER

Proof. Let L(t) = {u E L : yu > t} and define R(1 - t) analogously. For every t E [0, 1], we

claim that

C(t) := L(t) U R(1 - t)

2 In fact, even strong duality holds but this is not needed for our analysis.

35

is a vertex cover of G. Consider any edge (u, v) E E. If y, > t then (u, v) is certainly

covered. Otherwise, we have zv 1 - yu > 1 - t in which case v E R(1 - t).

We are now ready to prove the lemma. For every vertex cover C(t), since there are no

edges between L\L(t) and R\R(l - t), we have

ZXe XL(t) + E XV f(L(t)) +IR(1 - t)I.
eEE vER(1-t)

Our result then follows by noting that f(y) = Et[f(L(t))] and EvERZ Z = Et[IR(1 - t)],

where the latter equality holds because each v E R is chosen to be in R(1 -t) with probability

zV,. E-

3.4.3 Rounding scheme for online bipartite vertex cover

For a fractional vertex cover (y, z) maintained by an online algorithm for OBSVCr, we can

always round it to an integral solution by extending the rounding scheme in the last chapter.

We first sample -y uniformly at random from [0,11. Afterwards, for any vertex u E L, we

place u in the cover as long as y, -y. On the other hand, for any vertex v E R, we place

v in the cover when zv > 1 - y. It is not hard to verify that this rounding scheme indeed

maintains a monotone vertex cover.

Now consider an algorithm for the online submodular bipartite vertex cover problem,

with fractional solution (y, z). Let C(-y) be the vertices in the integral cover given by the

rounding with ^/. The performance of our algorithm with this rounding scheme is

E-[f(C(y) n L)] + Ey[IC(y) n RI] f(y) + zv.
vER

Therefore, this rounding scheme does not incur a loss for OSBVC.

3.4.4 a and two integrals

Recall that we denote the optimal competitive ratio as

1
1+ a :=

1 - l/e

36

throughout this thesis. In our analyses, the following two definite integrals will often be

useful.

dt=a7 dt=
Jt+ ' 0 t+a

3.5 The generalised waterfilling algorithm

As in OBVC, we first consider the fractional version of OBSVC. Our objective is then to

minimize f(y)+ EvER z, I which is a convex relaxation of f(Cn L) + ICn RI. Our algorithm

for fractional OBSVC can be converted to one for integral OBSVC by the rounding scheme

in section 3.4.3.

Our algorithm for OBSVC is still greedy. The analysis, however, relies on a "two-

dimensional" charging scheme in which the new additional regions of the bar chart repre-

sentation (introduced in Section 3.4.1) are charged. We will see that the previous charging

scheme for OBVC is a simplistic version of this more sophisticated scheme.

We also give an alternate primal-dual analysis of our algorithm which will imply a

corresponding result for online bipartite submodular matching as a by-product. Our method

builds on the previous scheme [6] for online bipartite matching (and effectively OBVC).

Nevertheless, unlike OBVC, the bar chart representation is crucial in getting a primal-

dual analysis of the algorithm. In OBVC, one can carry out the primal-dual analysis from

the perspective of either matching or vertex cover. Our primal-dual analysis of OBSVC and

its dual OBSM instead relies inherently on vertex cover. There seems no natural variant

of the algorithm which can be stated solely in terms of OBSM and makes no use of the

structure of dual solution for OBSVC as guidance for updating the primal variables.

To the best of our knowledge, this is the first time that the primal-dual analysis is

applied to an online problem which involves submodularity. The only closest example that

we are aware of is [10], which involves continuous concave functions rather than discrete

submodular functions. We hope that the primal-dual analysis method will emerge as a

powerful tool for tackling submodular-flavored online problems.

Since the primal-dual analysis implies both the results on OBSM and OBSVC, it is

tempting to question the value of the charging analysis. We stress that both the charging-

based and primal-dual analyses are of interest. Our charging-based analysis is very clean.

37

It was precisely for this reason that we were able to establish the result on OBSVC first and

"reverse-engineer" a primal-dual analysis which is, in contrast, somewhat complicated. In

retrospect, without the charging analysis, we probably would not be able to come up with

the primal-dual analysis or even to realize that these problems admit 1+ a-approximation.

Nonetheless, the primal-dual analysis is still important since it implies an interesting result

on OBSM.

3.5.1 The algorithm

The design of our algorithm for OBSVC is in the same spirit as OBVC. In fact, the major

modification needed is to replace ZuEN(v) max{a-yu, 0} by f(y')-f(y) as now the objective

function on L is f(y) rather than E L y.

Algorithm 4: GreedyAllocationSubmodular
Input: L
Initialize for each u E L, Yu = 0;
for each online vertex v do

max a < 1 s.t. (1 - a) + f(y') - f(y) 1+ a, where y' = max{y, a} for
u E N(v) and y' = yu for other u;
Let X = {u C N(v) I yu < a};
For each u C X, yu +- a;
zv <- 1 - a;

end

The analysis of GreedyAllocationSubmodular makes extensive use of the bar chart

representation introduced in Section 3.4.1. It is thus helpful to interpret our algorithm in

terms of the bar chart. This will hopefully also make the change in the Lovasz extension

f(y') - f(y) more intuitive and easier to visualize.

Bar chart interpretation of the algorithm

We take a closer look at how the bar chart changes after processing an online vertex. Recall

that

L(t) = {u E Lly ;> t}

and f(L(t)) is the height of the bar chart at t. First of all, observe that for the bars at

t < a, the height changes from f(L(t)) to f(L(t) U X) since the potential of the vertices

38

from X increased to a and no other vertex increased in potential. As a result, the bar at

t > a remains at the same height.

With this observation in mind, we see that a new rectangular region (possibly empty)

of height f(L(t) U X) - f(L(t)) is added to the top of the bar at t < a. Moreover, the bar

at t = a is effectively split into two3 : the right one has the same height f(L(a)) whereas

the left one has a larger height f(L(a) U X) ;> f(L(a)).

Our charging scheme in the next section makes critical use of the following two proper-

ties:

" All the new rectangular regions are added to the bars at t < a.

" The total area of the new rectangular regions is f(y') - f(y).

The mechanism by which 1 - a is charged to u E X lies in the heart of the previous

charging scheme for OBVC. This idea does not quite work anymore as our objective function

is submodular rather than modular. The key insight in our new analysis is to charge 1 - a

to the new rectangular regions of the bar chart. This is in contrast to the previous scheme

which charges to individual u E X.

Our analysis in a nutshell is a careful study of figure 3-2. The red regions are the new

rectangles added to the bar chart. Note that the first three bars increased in height with

the third one being split into two at a. All of the new regions are found at t < a. It is

no coincidence that the height of the red rectangles decreases along the horizontal axis.

Although not needed for the proof, it is instructive to check that this phenomenon is an

artifact of submodularity and monotonicity.

In the next section, we propose a charging scheme in which the red new regions are

charged to compensate for z, = 1 - a.

Finally, we remark that the bar chart is just a pictorial representation of the Lovasz

extension. We could have carried out the analysis without it at the expense of added

notational complexity. It is for the same reason that various degenerate cases are deempha-

sized (e.g. we speak of the bar at t but t can happen to be at the boundary between two

consecutive bars).

3
1t is possible to have the degenerate case where a coincides with the boundary of a bar.

39

Figure 3-2: Bar chart being split at a

3.5.2 Charging-based analysis

When an online vertex not in the optimal cover is processed, we will charge all the potential

used on this vertex to its neighbors, which must in the optimal cover. More concretely, we

charge the cost to the bar chart representing f(-). For each point (x, y) of the bar chart, the

charging density is ". We first show that such a charging density is sufficient to account

for the potential of the online vertex.

Lemma 3.5.1. Let B and B' be the bar charts before and after processing online vertex v.

Let a be the final water-level on the neighboring vertices of v after processing v. We have

J X dA > 1 - a.
fBf\B x + a-

Proof. The main idea is to charge 1 - a to the new region of the bar chart. From the

discussion in the last section, all the new regions have x-coordinates at most a. Therefore,

we have

f -x 1a f-a/ dA > dA = - (f(y') - f(y)) = 1 - a, (3.1)
JBI\B x + a a+ JB'\B a + a

where the last equality obviously holds if a = 1. If a < 1, then we must have not

exhausted all of our resources 1 + a (otherwise a would be larger) and hence we have

f(y') - f(y) = a + a.

40

Now we show that the total charges to the left vertices by online vertices not in the

optimal cover C* are at most a - f(L n C*).

Lemma 3.5.2. The total charges received from online vertices R \ C* are at most a -f(L n

C*).

Proof. Let B* be the union of the new regions in the bar chart generated by processing

online vertices R \ C*. Therefore, the total charges are

I I-X dA.

For t E [0, 1], let B*(t) be the intersection of B* with the line x = t. We have

JydA J= lydx J sup f dy = a - sup dy.

B* X + 0 B*(x) X a +a tE [0,1 J B*(t) tE[0,1] JB*(t)

It is then sufficient to show that for t E [0, 1],

JB*(t) f(Ln C*).

Notice that fB* t dy is the total heights of regions added to the bar chart at x = t when

processing online vertices in R \ C*.

Although the argument below looks somewhat technical, the key idea is simple. Suppose

that all of the vertices in L\C* are removed, i.e. L C C*. Now the height of the bar chart

is at most f(L) = f(C* n L) so our claim is clear. If we add back L\C*, recall that we

care only about the rectangles added for v V C*. The height of the additional rectangle

is just the marginal difference, which cannot be worse than before because of diminishing

marginal return. We formalize this below.

Let Li(t) be the set L(t) = {u E L j yu ;> t} after processing the i-th online vertex vi.

Since yu can never decrease for all u E L, we have

Lo(t) 9 Li(t) C .. . C LiRI(t).

Furthermore, Li(t)\Li 1 (t) C N(vi) since only yu for u E N(vi) can increase when

processing vi. In particular, for vi V C* we have that Li(t) \ Li- 1 (t) C C* as vi V C*

41

implies N(vi) 9 C*. Submodularity and Li(t) \ Li_1(t) C C* for vi C* give

f(Li(t)) - f(Li- 1 (t)) < f(Li(t) n C*) - f(Li-1 (t) n C*). (3.2)

Finally, when processing vi, the height of the new rectangular region 4 at t is precisely

f(Li(t)) - f(Li 1 (t)). Now the sum of the height of the rectangular regions at t added when

processing vi V C* is

/ dy = E f(Lj(t)) -f(Lj(t))
B* Wt Vi ER\C*

< S f(Lj(t) n C*) - f(Lji(t) n C*)
viER\C*

|RI

<5 f(Li(t) n C*) - f(Li-1 (t) n C*)

f(LIRi(t) n C*) - f(LO(t) n C*) f(L n C*).

(submodularity)

(monotonicity)

Here the last inequality follows from monotonicity and non-negativeness of f.

Lemma 3.5.3. The total resources used in processing online vertices R \ C* are at most

(1+ a) -f(L n C*).

Proof. For the i-th online vertex vi e R, we define yj to be the vector of potentials on L

after processing vi. Then, by our algorithm and the last lemma, the total resources used in

processing R \ C* are at most

a - f(L n C*) + S f(yi) - f(yi-1).
viER\C*

Since for vi E R \ C*, Li(t) \ Li- 1 (t) C C* for any t E [0,1], where Li(t) is defined as

40f course, it is possible that no region is added in which case this is still okay as f(Li(t)) = f(Li- 1 (t)).

42

before. By Eqn.(3.2) and the definition of f(.), we have

Sf(Yi) - j(Yi-1) < E f(YiLnc* - f(Yi-1 ILnc*)
viER\C* viER\C*

S f(Yi ILnc*) - fi(Yi-1 Lnc*-)
vi ER

= (yRI ILnC*) - f(o LnC*) 5 f (L n C*),

where y ILnc* restricts the vector yi to the vertices L n C* by setting the other entries to

0. This concludes the proof.

Therefore, our algorithm uses resources at most (1 + a) - f(L n C*) when processing

vertices in R\C*. On the other hand, it uses resources at most (1 + a) -IR n C*I for other

online vertices as processing each of them increased the total potentials by at most 1 + a.

Our algorithm is thus 1+ a-competitive for the fractional online bipartite submodular vertex

cover problem. Since we can always round a fractional solution to a randomized integral

solution (section 3.4.3), we have the following theorem.

Theorem 3.5.4. There exists an optimal 1 + a-competitive algorithm for the online sub-

modular bipartite integral vertex cover problem.

3.5.3 Primal-dual analysis

We first review the key ingredients used in the original primal-dual analysis of online bipar-

tite matching in [6], which largely consists of two steps:

" Employs such constraints as xu = g(yu) (or xu 5 g(yu)) for some suitable

increasing function g. The motivation for doing this is to enforce some correlation

between the primal and dual variables so that, for instance, when xu is small, Yu is

not too big which allows room to pay for the future increase in xu.

" Relates the size of the primal and dual solutions by E(g(a) - g(yu)) ~ c(1 -

a + E(a - yu)) for some constant c. As in the usual primal-dual method, this is

essential for bounding the size of the solution via weak duality.

This scheme depends crucially on the fact that the cost function is modular. For submod-

ular cost functions, one may try to imitate that by using constraints like xs f (S)g(h(yjS))

43

(yjS is the vector restricted to S), where g is the same as before and h : [0, 1]S -- [0, 1] is

some suitable function.

Considering the Lovasz extension, the most natural choice is probably h(yIS) = minuES YU-

But this is fundamentally flawed as one may have a very small yu with other y,, = 1. It turns

out that, perhaps somewhat counter-intuitively, the correct function is h(y IS) = maxUES Yu.

Even more surprisingly, the constraint xs 5 f(S)g(h(yiS)) alone is not enough to relate

the cost of the primal and dual solutions. Recall that f(y) = E f(Yi)(yj - yi-1) for a

fixed ordering of y. Thus one might hope to consider S = Y1, Y2,... in order to relate the

increment in the size of the primal and dual solutions. Unfortunately, this does not work

as the ordering of y typically changes over the execution of the algorithm.

To rescue this, we turn to the bar chart representation again. Instead of one global

ordering, a local ordering is imposed on each bar of the bar chart. More precisely, for a

bar at t, we maintain an ordering ut of its existing vertices L(t). When L(t) increases,

we extend the current ordering by arbitrarily appending the new vertices to its end. We

formalize our ideas in the rest of this section.

To simplify our notation, we view x, as a function on [0, 1] and the value of x,5 is

1

XU = j xU(t)dt.

This perspective will be useful when we analyze our algorithm using the bar chart represen-

tation (which can be seen as a function on [0, 1]). The xu produced by the algorithm will

be a piecewise constant function. Conceptually, f xL(t)dt aggregates over the contribution

of each bar to xu.

At the first glance, our primal update seems somewhat convoluted. The underlying

philosophy is nevertheless much simpler. Before proceeding to the analysis, we first unpack

the details of the algorithm along with some simple observations.

First of all, in our algorithm we focus on xu(t) rather than x?,. This is more convenient

in the analysis since what matters is the extent to which u is matched (recall: xS f(S))

but not which edge is assigned to u. Thus in the algorithm, we determine only how much

xu increases and retroactively what xu, is.

5Here we abuse notations by using x, for both the primal variable maintained by the algorithm as well
as a function on [0, 11.

44

Algorithm 5: GreedyAllocationSubmodularPD
Input: L
Initialize for each u E L, Yu = 0, XU(t) = OVt E [0, 1];
for each online vertex v do

Dual:;

max a < 1 s.t. (1 - a) + f(y') - f(y) 1 + a, where y' = max{y, a} for
u E N(v) and y' = yu for other u;
Let X = {u E N(v) I yu < a};
For each u E X, yu +- a;
zv +- 1- a;
Primal:;
for each bar of the bar chart at [p, q] E t with a new rectangular region
[p, q] x [f(L(t)), f(L(t) U X)] do

Extend the current ordering at of L(t) to L(t) U X by appending X\L(t)
arbitrarily to the end at(IL(t)I + 1), ..., o-t(IL(t) U XI);
For t E (p, q) and IL(t)I + 1 < k < IL(t) U Xj, set

xU.,(k)(t) = f (t(i) -f (t(i) aXati= (k=U a + a

end

For each u E N(v), set xuv to be the increment of x, = fo xu(t)dt in this
iteration;

end

Moreover, note that since each vertex can be added at most once to L(t), xu(t) can in-

crease at most once and this increment will be from xu(t) = 0 to xu(t) = (f (Uk 1 Oat(i)) - f (Uk-i at(i))) -

where u = at(k).

Lastly, we emphasize the role of the ordering -t. This is the key ingredient that makes

the analysis possible. See Proposition 3.5.5 and Lemma 3.5.6 for more details.

We are now ready to analyze the algorithm. There are three major components:

" (feasibility) xS f(S) for all S C L.

" (feasibility) x, 5 1, i.e. the total increment of all xu in each iteration is at most 1.

" (competitiveness) AD = (1 + a)AP, where AD and AP are the increments in the

size of the dual and primal solutions respectively.

Once the above have been established, we can conclude that our algorithm is correct

and achieves a competitive ratio of 1 + a via weak duality.

The following well-known property of the sumbodular polytope will be used in the proof:

45

Proposition 3.5.5. Let f : Q -- R>0 be a nonnegative monotone submodular function

and fix an ordering o- : {1, 2,..., JQ} -- Q. Then the solution

Xa(k) = f (U(i)) -f (0,j(i)

satisfies the inequalities xs f(S)VS C Q.

Proof. Let T = Uj o-(i). Then X,(k) = f(T) - f(Tkl1). LetS = {si, S2, - ,sf}. We have

XS = xSi = f(T,-(Si)) - f(T,-1(s)-1)
=1 i=1

S f(T,-1(8i n S) - f (T,-I(si)-1 n s)
i=1

5 f(Ti n - f(Ti_1 nS) = f(S) - f(0) f(s),

where the first and second inequalities follow from submodularity and monotonicity. U

Lemma 3.5.6. In GreedyAllocationSubmodularPD, we have xs f(S) for all S C L.

Proof. We first show that

for each t.

xs(t) , f(S)
-L I .

Consider any -t(k) E S for which Xt(k)(t) > 0. Then we must have set

Xatk)(t) - (f
i=1

where the inequality follows from the fact that only the bars on the left of a increase in

height and hence t < a.

Now by Proposition 3.5.5, we have xs(t) < {9. Our desired result thus follows:

xs = xs(t)dt < J f(Sd = f(S).0 o

El

46

O't(i))
i=1 a

< f (

i=1
U- f O-t(i) a
i=1)

Lemma 3.5.7. For each iteration of the algorithm, the increases in the size of the primal

and dual solutions satisfy

AD = (1+ a)AP.

Proof. Recall that AD = f(y') - f(y) + 1 - a and f(y') - f(y) is the total area of the new

rectangular regions needed to the bar chart.

On the other hand, AP is the sum of the increments of all x,. We restrict our attention

to each bar via the following:

11 (t)dt 1 IL(t)UXI

Ax' =Ed Xot(k)(t)dt
UEX 0 uEX\L~t) 0k=|L~t)\+l

J1 L~)UI f (-0t(i) - -1 at(i) a dt
k=IL(t)l+1 i=1 i=1

fl

(f(L(t) U X) - f(L(t))) dt0 a + a

S(y') - f(y)
a + a'

where the last equality holds as f (L(t)UX) -f(L(t)) is the height of the new rectangular

region at t.

In other words,

(y') - Ay)

a + a

The rest of the proof is now easy. The case a = 1 is trivial as AD = f(y') - f(y).

If a < 1, then we must have exhausted all of our resources 1 + a. Hence we have

AD = 1+ a and f(y') - f(y) = a + a. This gives AP = 1. E

Corollary 3.5.8. x, < 1, i.e. the total increment of all xu in each iteration is at most 1.

Proof. The dual solution can increase by at most 1 + a and hence AP, which is just x,, is

at most 1 by Lemma 3.5.7. E

Combining all the pieces, we obtain our main theorem.

Theorem 3.5.9. Our algorithm is 1 - 1/e-competitive for online bipartite submodular

matching and 1 + a-competitive for online bipartite submodular vertex cover.

47

Proof. By Lemma 3.5.7, we always have D = (1+oz) -P. By weak duality (see Lemma 3.4.1),

we can bound P and D against the optimal solutions D* and P* as follows,

P* < D = (1 + o) - P < (1+ a) - D*.

This shows that P > (1 - 1/e)P* and D < (1 + a)D*, as desired. 0

Maeas yu+fe 1-tdt
Finally, we remark that we do have xS f (S) s + +Q (i.e. xs < f(S)g(maxuEs yu))

as mentioned earlier. Although not needed for the proof, it has served as a useful inspiration

when we were developing this primal-dual analysis.

48

Chapter 4

Online Vertex Cover and

Matching:

when all Vertices are Online

In this chapter, we study the online vertex cover problem in bipartite and general graphs

where all vertices are online. In this new setting, upon the arrival of an online vertex v,

only the edges incident to the previously arrived vertices are revealed. The algorithm is

still required to maintain a (fractional or integral) monotone vertex cover for the revealed

subgraph at all time. In particular, no vertices can be removed from the cover once added.

The objective is to minimize the size of the final vertex cover.

Our main result is a 1.901-competitive algorithm for this problem. This employs yet

another generalisation of the charging scheme presented in chapter 2. In the case of bipartite

graphs, the rounding scheme in section 2.3.1 is still applicable.

Moreover, as in the last chapter, we give an alternate primal-dual analysis for our algo-

rithm, which in turns implies a 1/1.901 ~ 0.526-competitive algorithm for online fractional

matching. In particular, our algorithm improves upon the result of the fractional version of

the online edge-selection problem in Blum et. al. [4]. This addresses a limitation inherent

to online bipartite matching and almost all of its variants studied in the literature, which

share the common feature that vertices of only one side of the bipartite graph arrive online.

While this property indeed holds in many applications, it does not necessarily reflect the

reality in general. We exemplify this by the following application:

49

Online market clearing In a commodity market, buyers and sellers are represented by

the left and right vertices. An edge between a buyer and seller indicates that the price that

the buyer is willing offer is higher than the price at which the seller is willing to take. The

objective is to maximize the number of trades, or the size of the matching. In this problem,

both the buyers and sellers arrive and leave online continuously.

The greedy algorithm There is a simple well-known greedy algorithm for online match-

ing and vertex cover in general graphs. As each vertex arrives, we match it to an arbitrary

unmatched neighbor (if any) and put both of them into the vertex cover. It is easy to show

that this algorithm is 1/2-competitive for online matching and 2-competitive for online

vertex cover.

The greedy algorithm for the vertex cover problem is optimal assuming the Unique

Game Conjecture even in the offline setting [231. Thus without disproving the conjecture,

there is no hope of doing better than 2 if we restrict ourselves to integral vertex covers in

general graphs. For the other problems studied in this chapter, e.g. matching and vertex

cover in bipartite graphs and matching in general graphs, no known algorithm beats the

greedy algorithm in the online setting.

We present the first successful attempt in breaking the barrier of 2 (or 1/2) achieved by

the greedy algorithm. In the fractional setting, our algorithm is 1.901-competitive (against

the minimum fractional cover) for online vertex cover and 1 ~ 0.526-competitive (against

the maximum fractional matching) for online matching in general graphs. It is possible to

convert the fractional algorithm to a randomized integral algorithm for online vertex cover

in bipartite graphs via the rounding scheme in section 2.3.1. On the other hand, it is not

clear whether it is possible to round our algorithm or its variants for online matching in

either bipartite graphs or general graphs.

We stress that the fractional setting is still of interest for two reasons:

* As well-articulated in [6], some commodities are divisible and hence should be mod-

eled as fractional matchings. In fact, for divisible commodities one would even prefer a

fractional matching assignment since the maximum fractional matching may be larger

than the maximum integral matching in general graphs. Thus a c-competitive algo-

rithm against fractional matching would be preferable to a c-competitive algorithm

against integral matching.

50

* Our 0.526-competitive algorithm for fractional matching suggests that it may be pos-

sible to beat the greedy algorithm for online integral matching in the oblivious adver-

sarial model.

4.1 Related work

Besides the work on ski rental and online matching mentioned in previous chapters, an-

alyzing greedy algorithms for maximum matching in the offline setting is another related

research area. Aronson et al. [2] showed that a randomized greedy algorithm is a . + 41O O-

approximation. The factor was recently improved to . + n [25]. A new greedy algorithm

with better ratio was presented in [15]. Our 0.526-competitive algorithm for online fractional

matching complements these results.

4.2 Problem statement

In the online setting, the vertices of G arrive one at a time in an order determined by

the adversary. When an online vertex v arrives, all of its edges incident to the previously

arrived vertices are revealed. We denote the set of arrived vertices by T c V and G(T) is

the subgraph of G induced by T.

An algorithm for online integral matching maintains a monotone matching M. As each

vertex v arrives, it must decide if (u, v) should be added to M for some previously unmatched

u E N(v) n T, where N(v) is neighbors of v in G. No edge can be removed from M. The

objective is to maximize the size of the final matching M. For online fractional matching,

a fractional matching x for G(T) is maintained and at each step, xu, must be initialized for

u E N(v) n T so that x remains a fractional matching. The objective is to maximize the

final EeC e.

An algorithm for online integral vertex cover maintains a monotone vertex cover C. As

each vertex v arrives, it must insert a subset of {v} U N(v)\C into C so that it remains a

vertex cover. No vertex can be removed from C. The objective is to minimize the size of

the final cover C. For online fractional vertex cover, a fractional vertex cover y for G(T) is

maintained and at each step, we must initialize yv and possibly increase some yu for u E T

so that y remains a fractional vertex cover. The objective is to minimize the final EvCV yv.

Weighted vertex cover and b-matching. Our results can be generalized to cases

51

of weighted vertex cover and b-matching. For vertex cover, the objective function becomes

ZvEC WV (integral) or E evyv (fractional), where wv 0 are weights on the vertices

that are revealed to the algorithm when v arrives.

For b-matching, the only difference is that each vertex can be matched up to w, E N

times instead of just 1 (integral) or the constraint x, := EuEN(v) Xuv < w,, where wv 0,

replaces xv 1 (fractional). See below the LP formulation of the two problems for the

fractional solution.

4.3 Our result and technique

Our main result is the first nontrivial algorithm for the online vertex cover problem in

general graphs.

* A 1.901-competitive algorithm for online fractional vertex cover in general graphs.

We stress that the fact that our result holds only for the fractional version of online

vertex cover in general graphs is reasonable. In fact, even in the offline setting, the best

known approximation algorithm for minimum vertex cover is just the simple 2-approximate

greedy algorithm. Getting anything better than 2 would disprove the Unique Game Con-

jecture even in the offline setting [23] and have profound implications to the theory of

approximability.

Our algorithms can also be analyzed in the prime-dual framework [6]. As by-products,

we obtain dual results on the maximum matching as follows:

* A 0.526-competitive algorithm for online fractional matching in general graphs. This

improves the result on the online edge-selection problem studied in [4].

All of these results also hold in the vertex-weighted setting (for vertex cover) and the

b-matching setting. Moreover, it is easy to verify that the same rounding scheme in sec-

tion 2.3.1 can still be used to convert essentially any algorithm for online fractional vertex

cover to an algorithm for online integral vertex cover in the case of bipartite graphs with

the same (expected) performance.

We note that our results can be combined with the techniques for handling edge-weighted

OBVC in chapter 2 to yield algorithms for the edge-weighted setting in general graphs.

52

On the hardness side, we establish the following lower bound (for vertex cover) and

upper bound (for matching) on the competitive ratios. Notice that these bounds also apply

to the more general integral version of the problems.

" A lower bound of 1 + j (1 + e) :: 1.753 for the online fractional vertex cover

problem in bipartite graphs.

* An upper bound of 0.625 for the online fractional matching problem in bipartite

graphs.

Main ingredients. Recall that in our previous charging scheme, for an online vertex in

the optimal cover, we charge all the water used in processing this vertex to itself. For an

online vertex not in the optimal cover, we charge the water spent on the online vertex to

its neighbors, which must be in the optimal cover. In particular, in the bipartite graph

case with one-sided online vertices, an online vertex in the optimal cover will take care of

the cost processing itself wherea an offline vertex in the optimal cover is responsible for the

charge from its online neighbors.

In generalizing the charging scheme to the two-sided online bipartite and the general

graph cases, a vertex must take care of both the cost in processing itself and the charges

received from future neighbors. In such generalizations, we cannot use a fixed amount of

water in processing each vertex. A key insight behind our algorithm is that the amount

of water used should be related to the actual final water level. In other words, for a final

water level y, the amount of water used should be f(y) for some allocation function f(.).
By extending our previous charging scheme, the competitive ratio of our new water-filling

algorithm for the online fractional vertex cover problem in general graphs can be written as

a function of f(.). We also derive the constraints which f(.) must satisfy in order to make

the analysis work.

As a result, we are left with a non-conventional minimax optimization problem. (See

Eqn.(4.1).) The most exciting part, however, is that we can actually solve this optimization

problem optimally.1 The optimal allocation function in Theorem 4.4.6 implies a competitive

ratio of 1.901 for the online fractional vertex cover problem in general graphs. Our primal-

dual analysis for the online fractional matching problem in general graphs is obtained by

'Our solution is optimal in our framework. It may not be optimal for the online fractional vertex cover
problem.

53

reverse-engineering the charging-based analysis.

LPs for fractional vertex cover and matching

Primal: Dual:

max EECE Xe min VEV Y

s.t. Xv := EUEN(v) Xuv < 1, VV F V s.t. yu + yv _> 1, V(u, v) E E

X>0 yO0

The matching and vertex cover LPs are called the primal and dual LPs, respectively.

By weak duality, we have

ZXe yV
eEE vEV

for any feasible fractional matching x and vertex cover y.

4.4 Online fractional vertex cover in general graphs

For each vertex v, we maintain a non-decreasing cover potential yv which is initialized to 0.

When an online vertex v arrives, the edges between v and N(v) n T are revealed. In order

to cover these new edges, we must increase the potential of v and its neighbors. Suppose

that we set yv = 1 - y after processing v. To maintain a feasible vertex cover, we must

increase any yu < y for u E N(v) to y. We call y the water level.

The trick here lies in how y is determined. We consider a simple scheme in which y is

related to the total potential increment of N(v). More precisely, we require that the total

potential increment EuEN(v):yu<y (y - yu) be at most f(y), where f is a positive continuous

function on [0, 1].

We begin with one important observation that this new algorithm reduces to the one

for OBVC in chapter 2 for the allocation function f(y) = y + a. In this section, we present

a generalised charging scheme for general graphs. Before getting into the details, we revisit

the analysis in chapter 2 to gain some insights which will be helpful to tackle the general

graph version of the problem. In our charging argument, each vertex in L n C* is responsible

for the charges from its neighbors. On the other hand, a vertex in R n C* is only responsible

for the potential increment when processing itself. However, if vertices in both L and R are

online, an online vertex v E C* should be responsible for the potential used to process it

when it arrives as well as the charges from its future neighbors.

54

Algorithm 6: GreedyAllocation with allocation function f(-)
Input: Online graph G = (V, E) with offline vertices U C V
Output: A fractional vertex cover of G
Initialize for each u E U, yu = 0;
Let T be the set of known vertices. Initialize T = U;
for each online vertex v do

Maximize y 5 1, s.t., EuEN(v)nT maxly - yu, 0} _ f(y);
For each u E N(v) n T, yu +- max{yu, y};
Yv +- 1 - y;
T<- TU{v};

end
Output {yv} for all v E V;

The following lemma adapts the previous charging method in chapter 2 to an arbitrary

allocation function.

Lemma 4.4.1. Let f: [0,1] -* R+ be continuous such that 1 is decreasing, and F(x) =

ff -dt. If Ex(y - yu) = f(y) for some set X and y yu for u E X, then

1 - y:5 1:(F(y) - F(yu)) .
UEX

Proof. We have the following

E (F(y) - F(y)) It dt
UEX uEX Yu f f(t)

_~ -l-y

uEX Y

where the inequality above holds as - is decreasing.

Let f(x) be a general allocation function such that 1 is decreasing. Informally, if thef W)

water level when processing v is y < 1, i.e. the initial potential of v is 1 -y, we use potential

f(y) on v's neighbors and 1 - y on v itself. Afterwards, v will take charges from its future

neighbors. Notice that v's potential will grow from 1 - y to at most 1. By Lemma 4.4.1, v

will take charges at most f1 (t }-dt. Putting the two pieces together, the total charges to

each v E C* and hence the competitive ratio are at most

#3(f) = max + f(1 - z) +f 1tdt.
zE[0,11 z f (t)

55

We will show how to compute the optimal allocation function f(-) in section 4.4.1. For

the rest of this section, we formally show that the performance of GreedyAllocation in

general graphs with allocation function f(-) is at most 3(f).

Lemma 4.4.2. Let f (-) be the allocation function. In processing vertex v in GreedyAllocation,

we must have either y = 1 or EuEN(v) maxly - yu, 0} = f(y).

Proof. Let H(t) = EuEN(v) maxjt - yu, 0} - f(t). Note that H is continuous and H(0) =

-f(0) < 0.

Assume y < 1. Notice that H(1) > 0. Otherwise, we can set y = 1. If H(y) < 0, then

by intermediate value theorem there is some t E (y, 1) for which H(t) = 0. This contradicts

the maximality of y. Hence H(y) = 0, as desired. 0

Our previous discussion implies that GreedyAllocation is competitive against the min-

imum integral vertex cover. In fact, our algorithm is also competitive against the minimum

fractional vertex cover in general graphs.

Theorem 4.4.3. Let f : [0,1] - R+ be a continuous allocation function such that 1f W)

is decreasing. Let 3 = maxzE[0,11 1 + f(1 - z) + fz dt and F(x) f dt. Then

GreedyAllocation(f) is /-competitive against the optimal fractional vertex cover in general

graphs.

Proof. Let y* be the minimum fractional vertex cover. Denote by v the current online

vertex. Consider the following charging scheme.

" Charge (f(y) + 1 - y) y* to v.

* Charge (y - yu + F(y) - F(yu)) y* to u E X, where X = {u E N(v) I yu < y}.

We claim that the total charges are sufficient to cover the potential increment 1 - y +

EUEX(Y - yu).

Observe that since y* + y* > 1 for all u E N(v) and f(y) EEX(Y - yu), we have

f(y)y* + (Y- yu)y* Z(Y- yu)(y*, +Y*)
UEX UEX

ZE(Y -YU).
UEX

56

Furthermore,

(1 - y)y,* + S (F(y) - F(yu)) y*
UEX

(1 - y)y* + E (F(y) - F(yu)) (1 - y*)
UEX

1 -y,

where the last inequality follows from Lemmas 4.4.2 and 4.4.1.

The above shows that the proposed charging scheme indeed accounts for the total po-

tential increment. Now we bound the total charges to a vertex v over the execution of the

algorithm.

When v arrives, yv is initialized as 1 - y and v is charged (f(y) + 1 - y) y*. After that,

when yv increases from a to b, v is charged (a - b+ F(a) - F(b)) y* . Note that the sum of

these terms telescopes and is at most

(1 - (1 - y) + F(1) - F(1 - y)) y* = (y + F(1) - F(1 - y)) y*.

Therefore the total charges to v are at most

(f (y) + 1-y) y* + (y + F(1) - F(1 - y)) y*
/1 1 - t

S 1f(1)+ f (dt) Y

This implies that the total potential is bounded by /3 EVEV y*, which shows that our algo-

rithm is B-competitive. L

4.4.1 Computing the optimal allocation function

The next step is then to find a good f(y) to get a small 3. In essence, the goal is to solve

the following optimization problem

inf max 1+f(1- z)+ tdt) (4.1)
fEY zE[O,1 Z f M

where F is the class of positive continuous functions on [0, 1] such that 1 is decreasing

57

for each f E F.

To the best of our knowledge, there is no systematic approach to tackle a minimax

optimization problem of this form. A natural way is to first express the optimal z in terms

of f, and then use techniques from calculus of variation to compute the best f. However,

a major difficulty is that there is no closed form expression for the optimal z.

To overcome this hurdle, we first disregard the requirement that 1- be decreasing.

(Though, our final optimal solution turns out to satisfy this condition.) We show that such

a relaxation of the optimization problem admits a very nice optimality condition, namely

that there exists some optimal f such that 1 + f(1 - z) + f1 }-dt is constant for all z. We

characterize this property in the following lemma.

Lemma 4.4.4. Let r : [0, 1] -* R+ be a continuous function such that for Vp E [0, 1],

r(p) + _ 1,dx < -y for some -y > 0. Then there exists a continuous function f

[0, 1] -+ R+ such that Vp E [0, 1], f(p) + f dx -y.

Proof. Let r1 = r and R 1 (p) = r 1 (p) + f _'- dx. Define two sequences of functions

{ri}, {JIi} recursively as follows:

ri+1 = ri + 7 - Ri, Ri+1(p) = ri+1(p) + X dx.
1i-p ri+1~x

Note that ri, R, are positive and continuous for every i. We first show RI -Y by

induction. The base case for i = 1 is trivial. Now we assume Ri y for some i. This

implies that ri 5 ri+1. We then have

R i+i(p) = ri+i(p) + f 1 (x dx < ri+1(p) + j Ij dx
1-P ri+i(x) 1-P ri X

= ri+1(p) + Ri(p) - ri(p) = -.

Therefore R, -y for all i and consequently ri 5 ri+1-

Observe that ri converges pointwise as ri is bounded by -y and monotonically increases.

Let r. = limig, ri.

58

Moreover, since ri+l = ri + y - Ri, R,, = limi-, 0 R, = -. On the other hand, we have

Ro, (p) = lim ri(p) + j d)

i +00 (1 - ri

= roo (P) + .lim 1xdx.00 1-P diX

By the dominated convergence theorem, limiso f1 _--dx = _,,- d since 1isx)

bounded by r .

By taking limit in the second recurrence, we get

roo(p) -- dx

which implies r. is continuous and hence satisfies our requirement.

Therefore, it is sufficient to consider functions f that satisfy this optimality condition.

A consequence is that such a function f(1 - z) = / - 1 - fz' f dt is actually differentiable.

Differentiating 1 + f(1 - z) + f1 1- dt yields -f'(1 - z) - '= 0, or equivalently,

f(z)f'(1 - z) = z - 1.

Although this differential equation is atypical as f(z) and f'(1 - z) are not taken at the

same point, surprisingly it has closed form solutions, as given below.

Lemma 4.4.5. Let r be a non-negative differentiable function on [0, 1] such that r(z)r'(1 -

z) =z-1. Then

k + k k -1 i

r(z) = -) 2k Z+ , 2

where k > 1. Moreover, L is decreasing for te [0,1].r(t)

Proof. We have

r(p)r'(1 - p) =p- 1.

Replacing p by 1 - p, we get

r(1 - p)r'(p) = -p. (4.2)

Hence,

(r(p)r(1 - p))' = 1 - 2p -- > r(p)r(1 - p) = p -p 2 + c (4.3)

59

for some c. Note that r(0)r(1) = c > 0. From Eqn (4.2) and (4.3), we get r'(p)/r(p) =

p/(p2 - p - c). Let k = v/1 +4c 1. By taking partial fraction and using (In r(p))' =

r'(p)/r(p),

r(p) 1 1++k 1-kk p - k I 2k

r =(p) = 1 p 1+k 1-k > r(p)= D -k
2~p 2k 2 1P - 1 _2k I 2k

for some constant D. It is easy to check that r(p)r(1 - p) = D 2 (p - p2 - c) ==> D = 1.

Since k > 1, we get the required r(p).

Now we show that 4 is decreasing for t E [0, 1]. Taking the derivative of 1, we have
rr (t

-1 - (1 - t)r'(t)/r(t) = -1 - (1 - t)t/(t2 - t - c) = c/(t 2 - t - c) 5 0, as desired. l

The final step is just to select the best f from the family of solutions. Since 1 + f(1 -

z) + f1 L- dt is constant, it suffices to find the smallest 1 + f(0), which corresponds to theLf (t)

case k - 1.1997.

1 +k kW
Theorem 4.4.6. Let f(z) = ('+k - z) 2k (z + k-1) , where k ~ 1.1997. GreedyAllocation(f)

is 1.901-competitive for the online fractional vertex cover problem in general graphs.

Finally, we remark that our algorithm can be viewed as a generalization of the well-

known greedy algorithm because the solution f(z) = 1 - z (with k = 1) is equivalent to a

variant of the greedy algorithm.

4.5 Online fractional matching in general graphs

We give a primal-dual analysis of the algorithm given in the last section. A by-product

of this primal-dual analysis is a 1 - 0.526-competitive algorithm for online fractional

matching in general graphs.

Let /3 1.901 be the competitive ratio established in the last section and f(z) be the

same as that of Theorem 4.4.6. Our primal-dual analysis shares some similarities with the

one for online bipartite fractional matching by Buchbinder et al. [6].

Our algorithm PrimalDual applies to both online fractional vertex cover and matching.

When restricted to the dual, it is identical to GreedyAllocation.

To analyze the performance, we claim that the following two invariants hold throughout

the execution of the algorithm.

60

Algorithm 7: PrimalDual

Input: Online graph G = (V, E)
Output: A fractional vertex cover {yv} of G and a fractional matching {x,}.
Let T be the set of known vertices. Initialize T = 0;
for each online vertex v do

Maximize y 5 1, s.t., EuEN(v)nT max{y - yu, 0} f(y);
Let X = {u E N(v) n T I yu < y};
for each u e X do

Yu +- Y;

end
For each u E (N(v) n T) \ X, xv +- 0;

Yv +- 1 - y;
T +- TU {v};

end
Output {yv} for all v C V;

Invariant 1:
yu + f (1 - zu) + fy" } dt

where zu is the potential of u set upon its arrival, yu is the current potential of u and

XU = EvEN(u) Xuv is the sum of the potentials on the edges incident to u. Note that the

LHS is at most 1 (see last section for details), which guarantees that the primal is feasible

as long as the invariant holds.

Invariant 2:

ZYu =3 S x
UET (u,v)EEnT

2

Invariant 2 guarantees that the primal and dual objective values are within a factor of

/3 from each other. By weak duality, this implies that the algorithm is /-competitive for

online fractional vertex cover and i-competitive for online fractional matching in general

graphs. Note that both invariants trivially hold at the beginning.

The idea behind Invariant 1 is to enforce some kind of correlation between yu and xu.

For instance, when yu is small, xu should not be excessively large because xu must be

increased to (partially) offset any future increase in yu in order to maintain Invariant 2.

We claim that both invariants are preserved.

Lemma 4.5.1 (Invariant 2). In each iteration of the algorithm, the increase in the dual

objective value is exactly 3 times that of the primal.

61

Proof. The dual increment is

1 y+ E (Y -Yu)
UEX

and the primal increment is

Yu(1 + Y)
uEX

Thus it suffices to show that 1-y = EZex(y-yu)). This just follows from Lemma 4.4.1,

which states that we have either y = 1 or EZEX(Y - Yu) = f(y).

Lemma 4.5.2 (Invariant 1). After processing online vertex v, we have xv : y'+f (1-y') and3

xU < zu fft) foruE X.

Proof. Note that xv = Euex xu is just the increase in the primal objective value. By

Invariant 2, x, = 1-Y+ (Y-YU). Our claim for x, follows since yv = 1 - y and EZEx(y -/3

Yu) 5 f(Y).

By Invariant 1, the previous xu satisfies

yu~f~-z\I'Yu 1-td

yXU+ f(1 - Zu) + fz" d(t)

This proof is finished by noticing that

XU =Y u (1+1 y :5 1 (y - yu +f dt),
8 f (y) 3 Y" f (t)

as 1 is a decreasing function. El

Finally, it is clear that the dual is always feasible. The primal is feasible because x > 0

and Invariant 1 guarantees that xv 1, as discussed earlier. Combining this and the two

lemmas, we have our main result.

Theorem 4.5.3. Our algorithm is/3 ; 1.901-competitive for online fractional vertex cover

and j 0.526-competitive for online fractional matching for general graphs.

It is possible to extend our algorithm to the vertex-weighted fractional vertex cover

problem and the fractional b-matching problem. As in the previous chapters, we have

chosen not to do so as this is relatively straightforward and involves little new ideas.

62

4.6 Hardness results

In this section, we present new hardness results for the problems considered in this chapter.

All of our hardness results are obtained by considering appropriate bipartite graphs. Let

G = (L, R, E) be a bipartite graph with left vertices L and right vertices R. We study

different variants of the online vertex cover and matching problems by imposing certain

constraints on the vertex arrival order.

* 1-alternation. The left vertices L are offline and the right vertices in R arrive online.

When a vertex v E R arrives, all its incident edges are revealed. This is simply the

most basic online bipartite matching and vertex cover.

" k-alternation: There are k phases and Lo C L is the set of offline vertices. In each

phase 1 < i < k, if i is odd (resp. even), vertices from a subset of R (resp. L) arrive

one by one. Note that the case k = oc effectively removes any constraint on the vertex

arrival order.

Our hardness results hold for the fractional version of the problems and hence the more

general integral version as well. This is because any randomized algorithm for the latter

can be converted into a deterministic algorithm for the fractional version simply by setting

all the variables equal to their expected values.

4.6.1 Lower bounds for the online vertex cover problem

We give lower bounds on the competitive ratios for online bipartite vertex cover with 2-

and 3-alternation, and an upper bound for online bipartite matching with 2-alternation.

These hardness results also apply to the more general problems of online vertex cover and

matching in general graphs.

Proposition 4.6.1. There is a lower bound of 1 + 1.707 for online bipartite vertex

cover with 2-alternation.

Proof. Suppose that an algorithm A is (1 + #)-competitive. Without loss of generality, we

may assume that A is deterministic. Our approach is to bound $ by considering a family of

complete bipartite graphs. Thus a new online vertex is always adjacent to all the vertices

on the other side.

63

Let ILoI = d and y be the fractional vertex cover maintained by A. We claim that after

processing the i-th vertex in R 1, we have

uELO

The reason is that the adversary can generate infinitely many left online vertices in phase

2 and hence yv, for any v e R 1, converges to 1 (otherwise, if yv, which monotonically

increases, converges to some 1 < 1, then yu > 1 - 1 for u E L 2 and the cost of the vertex

cover found is unbounded while the optimal solution is at most i).

Let v1 be the ith vertex in R 1 . Next we claim that

Y'(i) 1 i/3
vi d

Since ZuCL. YI ip after processing v,), by Pigeonhole Principle there must be some

yu i. To maintain a valid vertex cover, we need y > (1 1 -

Finally, we have

yv do. (4.4)
V ER1

Otherwise, the adversary can generate infinitely many online vertices to append R 1 in which

case yu will be increased to 1 eventually for all u E L0 , i.e., uELo Yu = d. This contradicts

the fact that A is (1 +3)-competitive.

Now by taking I1Ri= v 2d, we get

/- 1 5 yv d ,3 ,
i=1 VER1

from which our desired result follows by taking d -- + oo. L

Proposition 4.6.2. There is a lower bound of 1 + (1 + e) 1.753 for online bipartite

vertex cover with 3-alternation.

Proof. Again, let d = Loj. We extend the idea used in the proof of the bound 1+ - for 2-

alternation. Let xi be the amount of resources spent on LO by the i-th vertex of R 1 , i.e. the

increment in the potential of LO. Let yi be its own potential. Then yj 1- (Zi+- - -+ i)/d,

x1 + - - -+ xi 5 if3 and yi + - - - + yj 5 d3 by the argument used in the proof of Proposition

64

1.

The new idea is that in phase 2, assuming IR I = i, at most i3 resources can be spent

on LO and L 2. (This is because the adversary can append infinitely many vertices to

the current L 2 .) Now consider the j-th vertex uj in L 2 . Similar to Eqn.(4.4), we have

ZVERi Yv (d + j) -/3 after processing uj, since the adversary can append infinitely many

online vertices to R3 . Consequently, yu3 - 1 - min{yv I v E R,} 1 - (d + j) -#/3i by the

pigeonhole principle. Therefore,

X, + ~ ~ + Xi)# (

j=1

where f = IL2 1-

Let X(i) = X1 + X2 + - + Xi. If i < d,3, we have X(i) 5 i,3. When i > d,3, by setting

= - d, we have

X(i) = io - 1 .dO + -- e2 + O(1)i 2i

d+i3 - i d2 +0(1).
2/ 2i

Notice that our bound on X(i) holds for arbitrary i, since the adversary can arbitrarily

manipulate the future input graph to fool the deterministic algorithm.

Since yj > 1 - X(i)/d and E 1 yj < d,3 for any k, we have

k

1 d) #

Let a = 1 By setting k = #cd and considering i < d/3, i > d3 separately, we get

d,3 A (i/3d i/3 Qif'
d# E 1-- + E+ - -+ 0(1/d)

i=1 i=d i+1

By taking d -+ oo and using E' 1 1/i ~ Inn, we have the desired result.

E

65

4.6.2 Upper bounds for the online matching problem

Before establishing our last result on the upper bound for online bipartite matching with

2-alternation, we review how the bound 1 - 1/e is proved for the original problem (i.e.

1-alternation) as the same technique is used in a more complicated way. The next proof is

a variant of that in [22].

Proposition 4.6.3. There is an upper bound of 1-1/e = 0.632 for online bipartite matching

(with 1-alternation).

Proof. Again, we can consider only the fractional version of the problem and determin-

istic algorithms. Suppose that an algorithm maintains a fractional matching x. Let

L = {ui, ... ,un} and R = {vi,..., vn}, with vi adjacent to ui,..., Un+1-i. The size of the

maximum matching is clearly n. Let vi, ... , v, be the order in which the online vertices

arrive.

Observe that when vi arrives, ul, ... , un+1-i are indistinguishable from each other. Thus

X:=uEN(v.) should be evenly distributed to u1 , ... , un+-i, i.e. xuin = -i. This

argument can be made formal by considering graphs isomorphic to G with the labels of

vertices in L being randomly permuted.

Thus, after processing Vk we have

n n+1-k

Moreover, the size of the matching found is xv, +-- + xvn and xv,--- , xo satisfy +
-+ T- < 1.

Viewing the above as a LP, it is easy to see that xv1 + ... + Xon is maximized when

XV, ... ,XV. = l, v+1, ---,n = 0 and + ... + n-N+~ 1 for some k. Now when n is large,

1+ ... + -1 _ I,- n.
n + n-±fk+l n-k~

Finally,

xvl + - -+ x, = k-=n(- 1/e) = (1 - 1/e) - OPT.

Proposition 4.6.4. There is an upper bound of 0.6252 for the online matching problem in

bipartite graphs with 2-alternation.

66

Proof. Again, we can consider only the fractional version of the problem and deterministic

algorithms. Suppose that an algorithm is -y-competitive and maintains a fractional matching

X.

Let ILo! = IL21 = n,IR1| = 2n. The first n vertices of R1 are adjacent to all vertices

in LO. The two subgraphs induced by LO & the last n vertices of R1 and L, & the first n

vertices of R 1 are isomorphic to the graph used in the proof of the last theorem. Note that

the size of maximum matching is 2n.

The most important observation here is that after processing the first n vertices of R 1,

the fractional matching found must have size at least ny as the current optimal solution

has size n. In other words, we have

U1 Un V1 -

after the first n vertices of R1 arrive.

Now the next n vertices of R 1, by the same reasoning in the last theorem, are matched

to the extent of k such that -y+ +...+ n1-k~ 1, from which we obtain k = n(1 -/el-7).

Similarly, L 2 is also matched to an extent of n(1 - 1/el-).

Putting all the pieces together, we have the inequality

ny + 2n(1 - 1/el-) > 1 1 7 >
2n el-y 2 ~

The function 1 - 1_ - - is decreasing and has root approximately at 0.6252. Le - y - '

67

68

Chapter 5

Conclusion

A recurring theme in this thesis is the application of the various extensions of an elegant

charging scheme to different variants of the online vertex cover problems. We have shown

how this yields competitive algorithms for the basic, edge-weighted and submodular versions

of online bipartite vertex cover as well as the online vertex cover problem in general graphs.

Another main feature permeative in our work is that by reverse-engineering the charging

analysis, one can often in hindsight design a primal-dual analysis for the problem considered.

As in chapters 3 and 4, a by-product of this recipe is a primal-dual algorithm for the

corresponding dual matching problem. This also suggests a potentially viable approach to

a prominent open problem in the area of online matching.

In [14], the online bipartite weighted matching problem was first studied and an optimal

1 - 1/e-competitive algorithm was given in a special case. The edge-weighted version of

OBVC is precisely the dual of this problem and our work suggests that by analyzing our

algorithm or some variant of it in the primal-dual framework, one may hope to obtain a

solution to the general case.

The fact that the charging and primal-dual analyses come hand-in-hand together is

perhaps reminiscent of an old tenet in mathematics. Even when a problem is solved, it is

often still useful to propose alternate solutions to it as they may shed light on the greater

picture of the story. Some arguments are simply more amenable to generalizations than

others. In our case, the charging scheme proves to be easier to intuit and extend than

the primal-dual method. We are eager to see yet more generalizations of online matching

inspired by extending our charging scheme.

69

Finally, we conclude the thesis with some possible future research directions.

5.1 Future work

Online bipartite weighted matching As mentioned earlier, our result on online bipar-

tite edge-weighted vertex cover may suggest a new direction for tackling this major open

problem related to online matching.

Charging scheme for dual Adwords The Adwords problem [28], which generalizes

online bipartite matching, is arguably the most important open problem in the area. While

our work shows that the dual of online bipartite matching seems easier to tackle, it is not

clear if this is also the case for Adwords. It would be interesting to obtain similar charging

schemes for the dual of the special cases of Adwords solved in the literature, and perhaps,

even the general case.

Submodular in other online problems In online algorithms, submodularity seems

to be considered less often than other themes in combinatorial optimization. We hope

that our work will stimulate the interest in combining submodularity with existing online

problems in the literature. To certain extent, our results on OBSM and OBSVC show that

various ingredients used in offline submodular optimization are still applicable online. We

are hopeful that some of the powerful machineries developed for handling submodularity

over the past few decades will find applications in various online settings.

Online integral matching One open problem left unanswered in chapter 4 is whether

the barrier of 1/2 can be overcome for online integral matching in general and bipartite

graphs. Our result on fractional matching suggests that it may be possible.

Online vertex cover in weaker adversary models The online bipartite matching

problem has been studied in many different models, some of which are weaker than the

oblivious adversary model. In particular, competitive ratios better than 1 - 1/e were ob-

tained in the stochastic [13, 27] and random arrival models [26, 18]. Can we beat _ in1-l/e

these models for online bipartite vertex cover?

70

Appendix A

Multislope Ski Rental

Reduction from Multislope Ski Rental to Online vertex-weighted Bipartite Ver-

tex Cover There is a total of n states [n] in the multislope ski rental problem. Each state

i associated with buying cost bi and rental cost ri. As argued in [.], we may assume that we

start in state 1 and have 0 = bi < b2 < ... bn,r1 > r2 > ... > rn > 0. The game starts

at time 0 and ends at some unknown time tend determined by the adversary.

At each time t E [0, tend], we can transition from the current state i to some state j > i.

Let state f be the final state at time tend. The total cost incurred is given by

I
bf +(xiri,

i=1

where xi is the amount of time spent in state i. The classical ski rental problem corresponds

to n = 2 and b, = 0,b 2 = B,r 1 = 1,r 2 = 0.

Consider now the discrete version of this problem. We discretize time into consecutive

intervals of length c for some small c > 0. At the beginning of each interval, we can stay

in the current state i or transition from i to some state j > i. Each of the two choices

correspond to a cost of ric or bj - bi + rjE.

We are ready to describe the reduction to online vertex-weighted bipartite vertex cover.

Let L = {1, 2,... , n} with weights wi = bi.1 - bi for i < n and Wn = cc. The (qn + r)-th

online vertex Vqn+k E R, where q is a nonnegative integer and 1 < k < n, has weight

(rk - rk+1)E (with rn+1 = 0) and is adjacent to the left vertices 1, ... , k.

Intuitively, the (q + 1)-th time interval is represented by the online vertices qn +

71

1,... ,qn + n. If we are in state i, (1) the left vertices 1,... ,i - 1 should be covered

and have total weight bi - bo = bi and, (2) the online vertices qn + i... qn + n should be

covered and have total weight rjE. Thus when we transition from state i to state j > i,

the vertices i,...,j - 1 should be added to the cover. Moreover, the left vertex n, which

has infinite weight, is used to ensure that the algorithm is forced to put the online vertex

qn + n, which has weight rn, into the cover.

Finally, we show that a c-competitive algorithm for online vertex-weighted bipartite

vertex cover gives a c-competitive algorithm for multislope ski rental under the above re-

duction. Consider the vertex cover maintained by the algorithm after processing online

vertices qn+ 1, ... , qn+n. Suppose that 1, ... , i - 1 are in the cover but i is not. Then the

online vertices qn + i .. .qn + n must also be in the cover. Thus we can simply stay in (or

transition to if the previous state is smaller) state i. It is clear that this strategy is valid by

the preceding discussion. Furthermore, the cost incurred by the algorithm for multislope

ski rental is no greater than the counterpart for vertex cover.

72

Bibliography

[1] G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite

matching and single-bid budgeted allocations. In Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1253-1264. SIAM, 2011.

[2] J. Aronson, M. Dyer, A. Frieze, and S. Suen. Randomized greedy matching. ii. Random

Structures & Algorithms, 6(1):55-73, 1995.

[3] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When lp is the cure

for your matching woes: improved bounds for stochastic matchings. Algorithms-ESA

2010, pages 218-229, 2010.

[4] A. Blum, T. Sandholm, and M. Zinkevich. Online algorithms for market clearing.

Journal of the ACM (JACM), 53(5):845-879, 2006.

[5] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis, vol-

ume 53. Cambridge University Press Cambridge, 1998.

[6] N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing

ad-auctions revenue. Algorithms-ESA 2007, pages 253-264, 2007.

[7] N. Buchbinder and J.S. Naor. Online primal-dual algorithms for covering and packing.

Mathematics of Operations Research, 34(2):270-286, 2009.

[8] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a

primal: Dual approach. Foundations and TRends@ in Theoretical Computer Science,

3(2):93-263, 2009.

[9] M. Demange and V.T. Paschos. On-line vertex-covering. Theoretical Computer Science,

332(1):83-108, 2005.

73

[10] N.R. Devanur and K. Jain. Online matching with concave returns. In Proceedings of

the 44th symposium on Theory of Computing, pages 137-144. ACM, 2012.

[11] N.R. Devanur, K. Jain, and R.D. Kleinberg. Randomized primal-dual analysis of

ranking for online bipartite matching. In SODA '13: Proceedings of the thirteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, 2013. to appear.

[12] Nikhil R. Devenur and Thomas P. Hayes. The adwords problem: online keyword

matching with budgeted bidders under random permutations. In EC '09: Proceedings

of the tenth ACM conference on Electronic commerce, pages 71-78, New York, NY,

USA, 2009. ACM.

[13] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan. Online stochastic matching:

Beating 1-1/e. In Foundations of Computer Science, 2009. FOCS'09. 50th Annual

IEEE Symposium on, pages 117-126. IEEE, 2009.

[14] Jon Feldman, Nitish Korula, Vahab Mirrokni, S Muthukrishnan, and Martin P6l. On-

line ad assignment with free disposal. In Internet and Network Economics, pages

374-385. Springer, 2009.

[15] Goel G. and Tripathi P. Matching with our eyes closed. In Foundations of Computer

Science, 2012. FOCS'12. 53rd Annual IEEE Symposium on. IEEE, 2012.

[16] G. Goel and A. Mehta. Online budgeted matching in random input models with

applications to adwords. In SODA, volume 8, pages 982-991, 2008.

[17] B. Kalyanasundaram and K.R. Pruhs. An optimal deterministic algorithm for online

b-matching. Theoretical Computer Science, 233(1):319-325, 2000.

[18] C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown dis-

tributions. In Proceedings of the 43rd annual ACM symposium on Theory of computing,

pages 587-596. ACM, 2011.

[19] A.R. Karlin, C. Kenyon, and D. Randall. Dynamic tcp acknowledgement and other

stories about e/(e-1). In Proceedings of the thirty-third annual ACM symposium on

Theory of computing, pages 502-509. ACM, 2001.

74

[20] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki. Competitive randomized

algorithms for nonuniform problems. Algorithmica, 11(6):542-571, 1994.

[21] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy caching.

Algorithmica, 3(1):79-119, 1988.

[22] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for on-line bipar-

tite matching. In Proceedings of the twenty-second annual ACM symposium on Theory

of computing, pages 352-358. ACM, 1990.

[23] S. Khot and 0. Regev. Vertex cover might be hard to approximate to within 2- [epsilon].

Journal of Computer and System Sciences, 74(3):335-349, 2008.

[24] Z. Lotker, B. Patt-Shamir, D. Rawitz, and S. Albers. Rent, lease or buy: Randomized

algorithms for multislope ski rental. In 25th International Symposium on Theoretical

Aspects of Computer Science (STACS 2008), volume 1, pages 503-514, 2008.

[25] Poloczek M. and Szegedy M. Randomized greedy algorithms for the maximum match-

ing problem with new analysis. In Foundations of Computer Science, 2012. FOCS'12.

53rd Annual IEEE Symposium on. IEEE, 2012.

[26] M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an ap-

proach based on strongly factor-revealing lps. In Proceedings of the 43rd annual A CM

symposium on Theory of computing, pages 597-606. ACM, 2011.

[27] V.H. Manshadi, S.O. Gharan, and A. Saberi. Online stochastic matching: Online

actions based on offline statistics. In Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1285-1294. SIAM, 2011.

[28] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online

matching. Journal of the ACM (JA CM), 54(5):22, 2007.

[29] Aranyak Mehta and Vahab Mirrokni. Online ad serving: Theory and practice, 2011.

[30] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28(2):202-208, 1985.

75

