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Abstract

For this Master's thesis, I designed and implemented a combined laser and controller
system that can receive and convert commands from a computer into useful laser
projections.

In the last 10 years, on average, one police officer, who is conducting a vehicle

stop or directing traffic, is struck and killed by an oncoming vehicle per month in the
United States. Most of these instances occur at night. Current literature proposes
that for some drivers, especially those who are fatigued, the combination of bright,
rapidly flashing emergency lighting causes them to drive closer to a emergency vehicle
rather than away from it. An effective solution to this problem is to extend the visual
range of warning lights.

Existing methods of lane diversion are time consuming, bulky and/or dangerous to
deploy. The project is a system that allows the officer to quickly delineate a series of
laser points to simulate a line of road-side flares. This will result in a commonly-used,
perceptually salient visual signal that will induce traffic away from the cruiser.

The controller interfaces with the police officer's computer over a USB 2.0 inter-
face. Internal EEPROM allows the system to store up to 100 unique coordinates and
intensities. The communication protocol is handled with the SerialPy library. Testing
and calibration of the laser projector is integrated with a simple UI and rear-facing
cameras. The UI also allows the user to select arbitrary points for the laser spots to
be projected on to, creating a series of virtual flares.

Using a cylindrical lens to expand the laser beam and reduce divergence, we were
able to focus the laser spot accurately to 50m, increasing optical power density and
increasing visual recognition at a distance. The laser output power can be configured
from 0.2mW to 1W using a PWM driver.

Thesis Supervisor: Seth Teller
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Incidence of Roadside Accidents

Despite the use of vehicle-mounted emergency lighting (VMEL) systems to alert

drivers, police cruisers parked along the roadside are still frequently struck by drivers,

leading to injuries or fatalities. In the years 2000-2009 inclusive, 120 officers were

killed by being struck by a vehicle, an average of one fatality per month. 47 of these

deaths occurred while the officer was conducting a "Traffic stop, roadblock, etc.",

and the other 73 occurred while the officer was "Directing traffic, assisting motorist,

etc" [U.S. Department of Justice, Federal Bureau of Investigation, Criminal Justice

Information Services Divison, 2009]. The majority of these fatalities happened when

the police cruiser was stationary.

A large proportion of traffic accidents with stopped police vehicles happened be-

tween midnight and 6 AM; major factors were determined to be drunken driving and

fatigue [Agent and Pigman, 1990]. Other researchers have found that most road-

side accidents with police vehicles occur along straight, dry roads in clear weather

[Solomon and Ellis, 1999]. Inclement weather is not the key or even leading cause of

the accidents. There must be a failure, end-to-end between the police vehicle current

diverting scheme, and the ability of drivers to comprehend and maneuver around it.

12



1.1.1 Human Visual Response

Much resarch has been done on the human visual system and its response to lumi-

nous cues. Mortimer [1969] proved that spatially extended light sources are more

conspicuous than point sources. Croft [1971] noted that moving light sources are

more conspicuous than static ones. Bullough et al. [2002] stated "[A]n array of small

point sources can be more effective than an equivalent diffuse source at eliciting rapid

visual responses." Bullough et al. [2001b] evaluated "sweeping" rear brake lights vs.

instant-on LED sources, and found that LEDs yielded faster response times. The

combination of these factors lends themselves to a large, modulating, and optically

'moving' light source, such as the VMEL system.

Olson [1993] describes a condition called "night myopia", when the eye focuses

closer than infinity when dark-adapted, making objects at visual infinity (usually

20 feet or more away) out of focus. It becomes more difficult for night drivers to

accurately assess the location and distance of the police officer at night.

Smith et al. [2001] states that the apparent expansion rate of an object is the

main factor of a driver's response to it. The faster the object expands in one's field of

view, the more attention it will receive. Chemical flares are invaluable in this regard.

When drivers pass near the flares, the spatial movement alerts the driver on how fast

he is moving at some distance away from the police officer. The driver now has time

to react before passing the cruiser itself.

The Moth Effect

The "moth effect" is when a driver inadvertently steers a vehicle towards a bright light

in their field of vision. Clark et al. [1953] noted that pilots experienced a narrowed

field of attention which excluded perception of visual stimuli when faced with a bright

light source.

Helander [1978] found a 1-degree change in steering angle toward oncoming traf-

fic, for several seconds before the passing event, after initially steering away. He

attributed the effect to a perceptual-motor phenomenon. Readinger et al. [2002]

13



reported seeing a steering bias in the direction of the driver's view.

Charles et al. [1990] suggests that highly visible lighting "decreases the ability of

oncoming traffic to recognize and respond to other information salient to safe driving".

Kitamura et al. [1994] concurs with this assessment, and demonstrated that noticing

a flashing light on a parked car actually caused the driver to steer closer to the car,

more so than if the driver did not notice the light. The "moth effect" suggests that

the VMEL system on cruisers may have the opposite effect on certain drivers, causing

them to drive closer instead of being diverted away. The reduced distance between

the oncoming vehicle and police cruiser will result in a higher accident rate.

Olson [1993] rejects the existence of the moth effect, countering that the failure

to accurately estimate differences in speed is the cause of many highway collisions

with stopped vehicles. Olson also notes that a tall light source, or light sources

spaced closely together, will make the stopped behicle appear farther away than it

actually is. He attributes this effect to driver expectation in lighting placement on

cars. VEMLs are currently used and mounted on the roof of the car; using Olson

[1993], as a guide, this would make the police vehicle subjectively appear twice as far

as it actually is, giving oncoming drivers false information on where the cruiser is and

how much buffer space they have.

Design of Emergency Lighting Systems

Berkhout [1979] studied lighting configurations and color compinations, and had sub-

jects gauge speed and directions under a variety of experimental conditions. The

expected advantege of traditional blue emergency lighting at night was not observed,

as blue light was not thought to 'ruin' night vision like green light does. The best

light configuration depended on relative motion between the light source and driver.

Some light schemes unfortunately produced the illusion of receding motion when the

source was at rest, again confusing the driver on the relative velocity between his/her

vehicle and the cruiser.

Bullough et al. [2001a] identified factors that determined visibility of an emergency

vehicle to other drivers: mounting location; temporal light characteristics; spatial

14



light characteristics; spectral characteristics and luminous intensity. He noted that

people reacted much faster to changes in vehicle speed when the vehicle employed a

steadily changing light, rather than a quickly flashing light. Common VMEL patterns

utilize quickly strobed lights, potentially reducing the signals efficacy.

Sensor Technology Integrated into Police Vehicles

Police cruisers are currently installed with sensing equipment to aid law enforcement,

such as radar and lidar systems to gauge the relative speed of other vehicles from the

cruiser [Kustom Signals, 2011]. The feedback is an audible tone that changes pitch

and volume based on the relative velocity of traffic. The police officer can estimate

the passing traffic speed based on the relative tone of the radar speakers.

1.2 Current Light Solutions

1.2.1 Pyrotechnic Flare

Figure 1-1: Pyrotechnic Roadside Flare; source: Wikipedia

Pyrotechnic flares, or fusee, use intense exothermic combustion to generate a red-

yellow light. Current flares are ignited by striking the phosphor tip against the road

and can last for 10-60 minutes, depending on the exact model. Fusees are common in

emergency kits and are the de facto deployed signals. The intense heat generated can

cause severe burns and leave behind residue and metal when complete. Interviews

with Massachusetts State Police [MSP] indicate their reluctance to use pyrotechnic

flares due to their long set-up time and physical danger involved in deployment on

the roadway.

15



1.2.2 Chemical Flare

Figure 1-2: SnapLightTM Flare; source: disclose.tv

The SnapLight TMflare uses chemiluminescence to generate light. Like the py-

rotechnic flare it is a one-time signalling device. It has the advantage of generating

a low amount of heat, making it safe to handle and use. The Snaplight still requires

considerable transport space, and requires time to deploy and clean-up.

1.2.3 LED/Strobe Flare

An LED Flare (Figure 1-3) uses a high-intensity LED to emit light. The electronic

flare is reuasable, rechargable, lightweight and can modulate different patterns. How-

ever, they are more expensive than single-use flares, and require time to set up and

retrieve.

1.2.4 Evaluation of Current Solutions

The main method of traffic diversion for a police vehicle is the roof-mounted light bar

component of the VMEL. The light bar, although highly visible to normal drivers,

also impairs night-vision and spatial resolution. The light bar is effective in signalling

the presence of a police cruiser, but does not effectively indicate the position of the

vehicle with respect to traffic lanes.
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Figure 1-3: PowerFlare TM ; source: powerflare.com

In addition to the strobing effects of the light bar, officers often place traffic cones

and flares if a stronger visual cue is required. However, traffic cones are bulky and

take up vital carrying capacity in the police vehicle. Pyrotechnic flares are dangerous

to operate, requiring constant attention lest the officer injure themselves or others.

Pyrotechnic flares have a relatively short duration, and clean up of debris is time-

consuming and difficult. The varying conditions of a traffic stop will absorb significant

time and manpower if the officer chooses physical traffic diverting means. The average

traffic stop takes less than 20 minutes, of which the officer pays most of their attention

to the target driver. [MSP interview, March 2012]

A diverting system that can be quickly established while the officer maintains

control of the traffic stop would be optimal.

1.3 Proposed Solution

The overall objective of the project is to reduce the occurence of roadside casualties

caused by collisons between a moving and a stationary vehicle; primarily when the
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police vehicle is the stationary one.

The project is a subset of a research effort for the National Institute of Justice

(NIJ). The goal is to create a vehicle-mounted module that will divert oncoming

traffic efficiently, reducing the rate of collisions; and alert police officers of imminent

threats, so they can take appropriate measures to prevent becoming casualties.

The proposed solution detailed in this thesis is the preliminary design and con-

struction of a vehicle-mounted laser projector to divert oncoming traffic away from a

stationary police vehicle. The following goals serve as a guide and target to facilitate

acceptance within the law-enforcement community.

" The device should be compatible with existing cruiser hardware and officer

training.

" The device creates images on the road pavement that are visually similar to

current roadside flares.

The visual familiarity helps in communicating the intent to oncoming vehi-

cles, reducing time and cost in educating the public in proper driving procedure.

" The device should have optical presence beyond 30m [100ft], which is an average

distance for roadside flares to be deployed from the cruiser.

" During normal operation, the device should be eye-safe for both oncoming traffic

and police officers using the device.

" The device should work in darkness, when the incidence of road-side collision

is highest.

1.4 Outline

Chapter 2 describes the background information for the technology used in the device,

as well as design contraints and safety concerns. Chapter 3 describes a specific imple-

mentation that meets the goals proposed. Chapter 4 describes the tests and results

gathered. Chapter 5 describes future improvements on the path to public usage.
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Chapter 2

Technical Background

2.1 Optics

2.1.1 Divergence

Any light that exits an aperture of finite size will have some divergence associated

with it (see Figure 2-1). The divergence is defined as the angular spread of the light

source. The choice to use lasers as the light source is due to the laser's extremely low

divergence factor, which will be a factor in the upcoming subsection. The narrowest

portion of the laser beam, Wo, is the 'beam-waist'.

b

2W W

Figure 2-1: Laser Beam with divergence Source: Wikipedia
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Figure 2-2: Specular and Lambertian Diffuse reflection; source: Wikipedia

2.1.2 Reflectivity of Pavement

The laser projection system discussed in this thesis is intended for projecting onto

road-grade asphalt. The asphalt is made of small gravel less than 0.25 inches wide

bound by bituminous tar. Asphalt has a total reflectivity of 0.05 to 0.1, while con-

crete's reflectivity is 0.5 to 0.2. The age, dirt, and composition of the road surface

significantly affects the road reflectance. The reflectivity at low incident angles is

less than 10% at normal (perpendicular) incidence. The rough texture of the asphalt

results in a mostly diffuse reflection of the primary beam, with decreased reflectance

at low angles due to the self-shadowing effect and multiple scattering surfaces [Adrian

and Jobanputra, 2005]. Figure 2-2 illustrates the difference between the specular re-

flection and the diffuse reflection. A powerful laser is needed to overcome the luminous

absorption properties of asphalt.

The reflectance of the asphalt may also change depending on local thermal prop-

erties and time elapsed. At low incidence angles, the reflectance of the asphalt may

change as much as ±3% [Jiang et al., 2012].

The divergence of the specular reflection is higher than the incident beam due

to the irregularites in the road surface. This reduces the irradiance, making it safer

to observe the reflections at closer distances. However, debris on the road can be
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Figure 2-3: Foreshortening and Reverse Foreshortening Effects

hazardous, as glass, chrome and steel have high specular reflectivity. At low angles of

incidence, glass approaches 100% reflectivity while only increasing beam divergence

by lmrad [Marshall, 1995]. The reflection caused by the debris results in a higher

radiant intensity, potentially injuring nearby observers. The reflected beam may also

violate FAA radiation limits (FAA Advisory Circular 70-1).

2.1.3 Foreshortening Effect

(See Figure 2-3) For a large projection distance D, cruiser height H, and divergence

angle E, The foreshortening effect can be approximated as S ~ wl9kD. This means

that as the distance increases from the projector to the projection point, the laser

creates an increasingly large spot size onto the pavement. The foreshortening effect

is dominated by the divergence of the beam rather than the beam diameter. A larger

spot size results in lower optical power per unit area, resulting in a dimmer projected

flare. The higher the projector is mounted on the vehicle, the further the projector

can illuminate the road surface while still maintaining luminous intensity.

2.1.4 Reverse Foreshortening Effect

Since the target observer is part of the oncoming traffic, this puts constraints on the

distance and viewing angle of the reflected beam. This projection onto the observer

counteracts the forshortening effect as such:
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Therefore, an observer at a distance from the projected point would see a small

spot again. The result is a lower laser power necessary for visual recognition, but

also lowers the maximum safe laser power if the specular reflection of the pavement

is high.

2.2 Lasers

Lasers have been used to display images for the last 40 years. Lasers use a resonant

cavity in a heterojunction semiconductor diode to emit coherent light in the visible re-

gion [400-700nm]. The number of emitted photons is linearly dependent on the diode

current above a certain threshold [Ganguly, 2007]. The laser then is exponentially

dependent on the voltage applied to it, making current control a preferred option for

power modulation.

2.2.1 Hazards

Lasers are intense sources of coherent light. If carelessly implemented, can cause

permanent harm to the user and/or oncoming traffic.

The human eye (see Figure 2-4) uses the cornea and lens to focus incoming light

onto the retina in the back of the eye. The retina is composed of light-detecting cells,

blood vessels, and supporting vascular tissue. The lens can focus a collimated light

beam 10,000X its incoming diameter, thus a laser beam 1mm wide is focused onto

a point on the retina 10ptm wide [Barat, 2006]. In this project, the lasers used emit

light in the visible spectrum [400-700nm], so the retina is the easist body part to be

injured (ANSI Z136.1).
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Class Power Range Protection Notes
1 < 0.1mW None Safe for all conditions of

normal use, even when un-
der magnification

1M < 0.1mW No Magnifica- Safe for normal use, large
tion diameter beams, do not

view under magnification
2 < 1mW Blink Reflex Safe under normal blink re-

flex
2M < 1mW Blink Reflex and Safe under normal blink re-

no Optics flex, do not view under mag-
nification

3R < 5mW Limiting View- Safe as long as eye does not
ing angles enter direct beam path

3B 5mW-500mW Optical Filter Diffuse Reflections from
matte surfaces are con-
sidered safe. Interlock
required

4 +500mW Optical Filter Skin damage can result
and Protective from direct contact of beam.
clothing Eye damage can result from

diffuse reflections.

Table 2.1: Laser Classes for Continuous Visible Light (400nm-700nm) (FDA)
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2.2.2 Safety Standards

Lasers in class 3B operation are required to have a key switch and interlock. The

interlock will power down the laser beam if the device is 'open'. The keyswitch is

to prevent accidental activation of the laser source (ANSI Z136.1). Due to constant

modifications to the laser beam optics and alignment, the laser beam was driven at

class 3R power during scanning modes when not on protected laser ranges.

ANSI

American National Standards Institute (ANSI) is a 3rd-party research institution,

and is influential in determining safe expsoure levels for viewing lasers and acceptable

operating procedures. Many of the following government agencies refer to the ANSI

guidelines for issuing legal compliance. The ANSI Z136.1 and ANSI Z136.6 guidelines

are of particular importance to this project. ANSI Z136.1 defines the Maximum Per-

mitted Exposure (MPE), Nominal Ocular Hazard Zone (NOHZ), and diffuse hazard

zones.

ANSI Z136.6 defines the operation guidelines for using a laser outdoors. It also

details the maximum light permitted for critical visual tasks, such as driving. The

institute recommends establishing a buffer around the laser projection zone, as seen

in Figure C-7.

FDA

All commerical laser devices used in the US must be vetted by the Food and Drug

Administration (FDA) by way of Center for Devices and Radiological Health (CDRH),

specifically under the Federal Laser Product Performance Standard (FLPPS) covered

under 21 CFR 1040.10. The operator must get approval from the FDA before using

a Class 3b or 4 laser outdoors (Figure C-9).
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FAA

For outdoor lasers that intersect with US airspace and exceed Class 3R power rating,

the Federal Aviation Administration (FAA) must be notified of its operation. An

application must be filed with the FAA before the laser can be actived (Figures C-

11 and C-12). The operator must detail the laser's location, heading, intensity, and

safety precautions during its planned operation. The FAA may respond requesting

procedure changes or additional safeguards be installed. For the outdoor laser oper-

ation to continue, the operator must obtain a letter of no-objection from the FAA

(Figure C-13).

OSHA

The Occupational Safety and Health Administration (OSHA) requires the laser op-

erator must have sufficient training and control of the laser while it is operational.

OSHA also mandates sufficient safety margins, warning signs, and restricted access

to the primary beam while the laser is in operation [Occupational Safety and Health

Administration, 1993].

IEC

The International Electrotechnical Commision (IEC) is a global 3rd-party organiza-

tion that prepares international standards for all electronic technologies. The relavent

laser safety and operation standards are located in IEC 60825-1. IEC laser safety is

based on AEL derived from the ANSI, as it incorporates how the laser is viewed.

Massachusetts State Law

Massachusetts state law 105 CMR 121 prevents the general use of class 3B and 4

lasers outdoors near an audience without sufficient margins of error. The law also

requires that the laser operator can only be exposed to at most Class 2 radiation.

Following ANSI Z136.1 guidelines is required for compliance with this law. A copy

of the FDA approval for outdoor laser use must also be filed with the Massachusetts

25



Radiation Control program [Massachusetts Department of Public Health, 1997].

Safety Analysis

The lasers used in the project are rated as class 3B. The guidelines detailed above

make outdoor high-intensity laser tests difficult to complete. A class 3B laser cannot

be used outdoors without sufficient notification of relevent authorities (FAA & Mas-

sachusetts). The officer's conduct (Appendix D) during a traffic stop violates safety

margins detailed in ANSI Z136.6. There is insufficient warning and zone restriction

for oncoming traffic concerning the NOHZ. Therefore, all testing with the scanning

laser will be done in limited access areas or with a class 3R laser.

The laser beam is intended to reflect off of the road surface, and intended targets

observe the diffuse, or scattered reflection from the pavement. The specular magni-

tude, or collimated reflection, of the laser beam is small, due to the rough texture,

low reflectance, and self-shadowing effect of the asphalt. For compliance with estabil-

ished safety calculations, we assume that the laser source and observer are stationary.

Since the intensity of the laser is very high, and the divergence is low, the blink re-

flex is insufficient in protecting a person from harm. Direct exposure of the primary

beam to the eye will cause thermal damage to the retina, resulting in injury and/or

permanent vision loss. Sufficient distance margins and appropriate safety equipment

will be required for high-power laser tests.

2.3 Galvanometers

The laser beam is projected onto the desired points on the pavement with precision

galvanometers with mounted mirrors. A galvanometer is an electro-mechanical device

that given an input electrical signal, turns a mirror at a specific angular position. The

galvanometer system used consists of an mirror that deflects the incoming laser beam

in the X axis, and another mirror that deflects the laser beam in the Y axis (Figure 2-

5). Since the mirrors are orthogonally mounted and close together, we simplify the

optical transform as two orthogonal and independent angular deflections.
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Figure 2-5: Layout of 2-axis Galvanometer; Source: Thorlabs
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Figure 2-6: Galvanometer; source: Thorlabs
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Chapter 3

Design and Components

3.1 Structure

The projector is composed of the physical hardware, and a driver program that op-

erates on the local computer.

The Local Computer has a Publisher routine that exports data structures detailing

where, when and how intense the laser should be.

The Listener routine receives the message data and parses it into appropriate

byte-sized packets. The packets travel over the USB line to an FTD1232 converter,

which converts the data into a serial signal.

The Controller communicates with the FTD1232, processes input data, and stores

the current state. The outputs of the Controller are the X and Y deflection data that

are processed by the Digital-to-Analog Converter (DAC) and the Single-to-Differential

converters. The X' and Y' output voltages that are fed into the Galvanometer result

in an angular deflection of its X axis and Y axis mirrors respectively.

The Pulse-Width Modulator (PWM) generator sets the intensity of the laser beam

from the Laser Source.

The laser beam goes through a Beam Expander, making it larger and reducing its

divergence, and is then deflected by the galvanometer and intersects the pavement.
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Figure 3-1: Top Level Component Layout
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The Safety Relays are a power interruptor for the Laser Source, if the Ultrasonic

detector, Acceleration Detector, or the Laser Reflection Detector peceive an emer-

gency situation.

3.2 LCM

The Lightweight Communications and Marshalling (LCM) protocol is used to send

and handle messages over the network between different processes. A publisher pro-

cess generates the desired locations for the projected laser, and the listener process

converts the LCM packets into appropriate commands for the FTDI chip.

The LCM also integrates well with a GUI that allows the user to place flare points

corresponding to locations that a rear-view camera is displaying.

The Listener program was written in Python and executed in Ubuntu Linux.

First it locates the port with the FTDI attached. It then sends a test command to

make sure the Controller is active and functional, then defaults into a 'standby' state.

The packages the Listener recieves is an array, with each point corresponding to a

flare angular position, laser intensity, and time duration. The Listener then sends

the commands to the Controller to recieve position, intensity and duration data as

sequences of bytes.

3.3 Data Protocol

Commands are sent over the serial port in byte packages. The serial port is a virtual

port over a USB connection; and is set at 9600 BAUD, 1 stop-bit, 0 parity bits, most

significant bit first (Figure 3-2).

To load in N number of coordinates in an internal array, the computer would send

a command to load data, then the target array, then the data array, split into upper

and lower bytes (Figure 3-3).

The controller would return a sequence of acknowledgement bytes to the computer,

keeping everything in sync (Figure 3-4).
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7 6 5 4 3 2 1 0

Verify

Command

DATA

DATA

Figure 3-2: Example of a command to the Controller

7 6 5 4 3 2 1 0

Verify

Load Data

Array

Word 0

Word 1

Word N

Figure 3-3: Example of loading a word array of size N to the controller
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'U,

'L'

'U,

'U,

'L'

End

Figure 3-4: Acknowledgement sequence returned to the Computer

The validation byte is always the first byte in the message. It guards the controller

against random serial noise and buffer overflows. The controller currently uses a

message-based handshaking protocol. For every byte that is sent from the computer

to the controller, the controller board must reply with a byte message before the

computer can send another byte. This allows the computer to check the alignment of

input data, as well as remove the potential for buffer overflows.

If the reset command is sent, the controller sends an acknowledgement message,

and then activates the internal watchdog timer to reset the internal laser variables.

3.3.1 FTD1232

The Massachusetts State Police and the Cambridge Police Department use Windows

XP as the operating system on their local computers, so compatibility and driver foot-

print were a concern. Communication between the controller board and the computer

is handled over a USB port in low-speed mode.

The communucations co-processor is an FTDI232RL chip set to emulate a virtual

serial port. The chip can be interfaced with a small [1.3MB] driver provided from
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the manufacturer. The communication board is powered by the host computer. The

schematic is located in Appendix A, Figure A-8. The CTS pin is set low, so that

messages from the computer are not held in a buffer and are immediately delivered

to the controller.

3.4 Controller

Figure 3-5: Controller Board

The controller board takes in serial input for driving the galvanometer position

and laser power. It is the heart of controlling where, when, and how powerful the laser

projection is. The microcontroller handles the state of the laser system, galvanometer

positions, timing and intensity.

The controller board is an ATMEGA324P microcontroller. The AVR-8 chipset

was chosen due to its extensive support, low development costs, and flexibility. The

microcontroller code was written in C using AtmelStudio 6, and uploaded via the SPI

port using the AVRISP mk.II programming peripheral. Firmwarre code was compiled

in debug mode with AVR-GCC with target chip as ATMEGA324PA. JTAG interface

and debugging was not used due to the need for Port C for controlling peripheral

chips.

The ATMEGA324P communicates to peripheral chips using the SPI interface on

Port B and enable lines on Ports A and C.
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The microcontroller is clocked at 20MHz, which is generated by an external crystal

for stability.

3.4.1 State and Memory

The internal state of the microcontroller is stored in RAM. In the event of a power-

interrupt or reset, the system would reset to a safe bootloaded state.

The default state is STANDBY, in which the galvanometers are idle and the laser

is disabled. Different states include projecting a single point (SINGLESHOT) and

projecting multiple points (SEQPOINTS). Appropriate commands from the serial

port set the running state of the controller. Code for SEQPOINTS execution can be

found in Section F.4 on page 106.

Galvanometer position, laser intensity and duration data is stored in EEPROM

due to its longevity and durability. The EEPROM is rated at 100,000 writes; at 30

rewrites/day, it would take on average of 9 years before the EEPROM would suffer

from write failures. The longevity is far superior than higher-density FLASH [10,000

writes before failure], and can store data in the event of a power failure [unlike SRAM].

The EEPROM in the present microcontroller can store up to 1024 bytes or 512 words

of data. Current utilization of EEPROM is 90%.

3.4.2 Digital to Analog Converter (DAC)

Due the high precision required for the galvanometer voltage input there must be

a high-precision voltage source. The DAC8554 was chosen as the DAC due to its

low integrated noise level, high precision (16-bits), and multiple independent buffered

outputs. The DAC has an output voltage range of OV-5V. The DAC supports power

down mode and simultaneous updates using internal registers. The chip communi-

cates to the controller over the SPI port.
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3.4.3 Single-to-Differential converter

The DAC has insufficient voltage range [OV-5V] to drive the input of the galvanometer

[±1OV]. The project uses two single-ended to differential converters to expand the

voltage output ranges of the X and Y signals so that the full range of the galvanometer

can be utilized. The output voltage V0,t = -4V + 2 x 5V. An LM336-5V shunt

diode is used as a precision 5V reference source. High precision [.1%] resistors are

used to improve linearity. LT1679 Operational Amplifiers were used for their high

gain-bandwidth product [100MHz], and low noise pickup from the power lines.

3.5 Galvanometer

Figure 3-6: Galvanometer System

The galvanometer selected for the project is a Thorlabs GSV012. The galvanome-

ter uses voltage-controlled mirrors that can deflect the laser beam in the X and Y

axes independently. The mirrors are able to reflect an input beam of up to 10mm in

diameter.

The galvanometers are supplied with motor drivers that map a voltage input to an

angular deflection. The controllers are PID compensated at a 300Hz bandwidth for

large signals, and at 1KHz for small signals. The galvanometer is also very reliable,

repeating the same voltage in will result in a drift less than 15prad. For maximum

range, the galvanometers are set in the 2 degree configuration, therefore a IV input
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results in a 20 angular deflection.

The galvanometer drivers have numerous test points including angular deflection,

angular speed, angular error, drive current and stall detection.

3.5.1 PWM Generator

A PCA9685 chip is used as the PWM driver interface between the controller and the

laser source. The chip can drive 16 independent PWM channels at 12-bit accuracy.

In the current configuration, an Arduino Uno is used to initialize and communicate

with the chip using a third-party library. The output PWM is then controlled by a

designated laser operator.

Figure 3-7: Driver for PWM Laser

The PWM generator is also connected to the Laser Source logic supply by a diode

(1N418). This ensures that whenever the laser source is enabled, the PWM Generator

is also active as well. The output power of the laser is thereby controlled.

3.6 Laser Source

The Pulse-Width Modulated (PWM) laser (Figure 3-9) uses a injection layer diode

(ILD) with a coupled linear power supply. This off-the-shelf device comes with an

AC-DC power converter with integrated cooling heatsinks and fans. The device was
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Figure 3-8: Pulse Width Modulation and Average Power; source: embedded-labs.com

measured to have a low beam divergence, simple start-up operation, and low unit

cost.

However, the device is difficult to align the laser output with the main optical

path, has no easily available test points for measurment, lacks appropriate interlocks,

and has a low modulating frequency.

Figure 3-9: PWM Laser

The laser supply takes in a TTL PWM signal up to 2KHz as the control for the

power source (Figure 3-7). The laser rapidly turns on and off at 1W intensity to

create an average power profile (Figure 3-8). It takes the diode laser 16.8pseconds for

the laser to reach full intensity.

The PWM frequency can be increased to 60KHz-100KHz to induce the laser to

enter an analog regime. The output power is then continuous and exponentially
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Figure 3-10: Optical Properties of PWM Laser

dependent on the PWM duty cycle, see Graph A-3.

3.7 Optical Assembly

The current optical assembly is to correct for the foreshortening effect by expanding

the laser beam in the Y-Axis. The optical assembly is constructed on an 1/4"-20

optical breadboard, mounted on 1/2" optical posts. The lenses and galvanometer are

aligned using a 30mm cage-rail system, which allows lateral adjustment for focusing

the laser beam.

Figure 3-11: Cylindrical Lenses in Galilean Beam Expander

The foreshortening effect causes the vertical component of the laser to spread out

over a large area (Appendix E). Using cylindrical lenses we can reduce the divergence
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along the Y axis. With appropriate focusing, the beam waist is now focused up

to 50m. Since the divergence is the critical component of the foreshortening effect,

reducing it by a factor of 10 reduces the effective spot size by 10 as well.

Figure 3-12: Complete Setup

The galvanometer and lens assembly are aligned and held in place using the 30mm

cage system. A folded sheet of anodized aluminum is used to optically block stray

laser beam refactions from leaving the optical path.

3.8 Safety Circuit

The proposed safety circuit is to enforce safe operation of the laser, and to disable the

laser power if unsafe conditions occur. The user should be able the reset the safeties

iff the failure conditions are cleared. The safety circuit is intended to interrupt power

to the laser diode itself, which is quicker than using a mechanical shutter.

3.8.1 Acceleration Detector

In the current iteration, an accelerometer can used to detect sudden shifts in move-

ment of the vehicle. Such instances include when the vehicle is struck, or when the

police cruiser is accelerating into motion. Since this causes the laser beam to move
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toward an unknown location, the laser beam should be turned off instead of risking

the beam entering restricted areas. The accelerometer chosen is a 3-axis, analog out-

put, with ±3g range. An arduino microcontroller detects when acceleration along

an axis exceeds i11g, and triggers an output pin to alert the emergency condition

(Figure A-9).

3.8.2 Ultrasonic Detectors

SPower
Laser Scan Area

VO Proximity
Deoectors

Ultrasonic
Emissions EchiesC

Figure 3-13: Ultrasonic Detector Layout

The goal of the ultrasonic detectors is to detect whenever the police officer and/or

oncoming vehicles enter the laser scan area.

The RangeMax ultrasonic detectors return an analog voltage corresponding to the

distance to the nearest solid object inside the field of view. The emergency condition

occurs if the distance measured is below an acceptable minimum. The ultrasonic

detectors use a narrow beam path, and can detect human-sized objects up to 15

meters away. The ultrasonic detectors currently suffer from a slow refresh rate [10 Hz],

and must be triggered individually, lest they interfere with each other. The ultrasonic

detectors have an overall refresh rate of 5Hz, and are susceptible to interference. An

Arduino microcontroller is used to enable and measure the distances to obstructions,

and triggers an output pin to alert the emergency condition (Figure A-12).

40



Power- Prmary Lasr Beam

Laser t

SOLaser Dtector

Diffusc Reflections

Figure 3-14: Light Magnitude Detector Layout

3.8.3 Laser Reflection Detector

The Laser Reflection Detector returns an emergency signal if the laser beam is re-

flected back into the projector. The worst case is the laser beam is reflected back

due to a person or vehicle entering the primary beam path. The detector is com-

posed of a sensitive photodiode [PDB-C154M] protected with a narrow bandwidth

light filter [A = 650nm]. The photodiode current is converted into a voltage output

with a AD818 Amplifier in a transconductance configuration. An MAX232 chip is

used as a charge-pump voltage source to generate the +12V and -12V used in the

magnitude detector (Figure A-11). The -12V source is used to bias the photodiode

to reduce its small-signal capacitance, thereby increasing signal speed. The output

of the Light detector is a voltage signal that is linearlly dependent on the intensity

of the incoming light with A = 650nm (Equation A.1). The circuit has a small signal

bandwidth of 10KHz.

The output of the light magnitude detector can be connected to a comparator or

microcontroller with an ADC to trigger the failure condition when the reflected light

intensity is above acceptable levels.

3.8.4 Key Switch

For Class 3B and 4 lasers, an key switch is required to prevent the laser from activating

unless the switch is activated (ANSI Z136.1-2000). The switches used in this project

are normal-open key-switches and are soldered into the mains power of the laser

source.
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Figure 3-15: Key switch

3.8.5 Relay Driver

The relay driver converts the logical state of the emergency conditions and the user

reset path and activates the relay coils when appropriate. The Relay Driver can

handle up to 4 different emergency conditions. For each detector, the emergency

output is high when there is nothing wrong, and goes low when the corresponding

emergency trigger is activated. i.e. The Ultrasonic emitter goes output goes low

when there is an obstruction close by, or the Laser Reflection Detector output goes

low when there is a high reflection of laser light.

Each logic cell uses a S/R latch to latch whenever the emergency trigger is acti-

vated. Combinational logic prevents the reset signal from clearing the latch until the

emergency trigger is resolved. The latch output is buffered by an L298 current buffer

that powers the corresponding relay coil. Each logic cell is independent from each

other. The last input is the start input, which only activates the relay controlling the

laser power if power is applied to it. All relay switches must be closed in order for

the laser module to receive power.

Currently, the Relay Driver is not integrated with the projector due to difficulty

in determining efficacy in the detector circuits.

The relays chosen are SCHRACK, 24V, 6A, DPDT safety relays. They are DIN-

rail mountable, a standard in safety circuit integration.
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3.9 Safety Observations

As high power lasers are involved, it is required to have appropriate safeguards in

place to prevent accidents and injuries. In order to reach compliance with ANSI,

FDA, FAA and OSHA requirements, all laser operators have received laser opera-

tion training with the MIT Environmental Health and Safety Office (EHS). Output

power of all lasers used was set at or below Class 3B requirements. Appropriate eye

protection (OD4) was used by all nearby personnel when the laser was in Class 3B

operation. Laser power was measured with a Thorlabs PM100D integrating optical

power detector. The location and relative intensity of the laser was determined using

CCD digital cameras. Alignment of laser optics was conducted while laser power was

at Class 2 or Class 3R.

When testing indoors, and scanning different positions, the laser power was kept at

Class 3R. A laser safety room was designated on campus, and room warning symbols,

door interlock, and outlet controller were installed. The lasers was kept inside the

laser safety room for Class 3B intensity testing. During Class 3B operation, the

galvanometer scanning feature was disabled and a matte aluminum backplate was

deployed as a backstop.

Outdoor projection tests with the laser at class 3B were conducted at the BAE

laser range in Merrimack, NH. The outdoor scanning test was supervised by Dan

Creeden, the range laser safety officer. A covered 2.5m high fence was used as a

backstop. The test pavement was clear of debris.

3.9.1 Hazard Zones

We used the ANSI Z136.1-2000 and Z136.6-2000 for determining the range of safe

operating distances and hazard zones for the laser (Appendix E).

The Nominal Ocular Hazard Zone (NOHZ) is the distance in which the radiance

can cause damage to the eye. Using Equations E.3.4, E.3.4, and E.6, and character-

istics of the laser (Figure 3-10) we can the MPE. Select intensities and the ranges are

given below (Table 3.1).
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Sensitive and critical visual interference zones are calculated in the same manner

as the NOHZ, but using the interference thresholds divided by the optical efficiency

given the wavelength. Since the eye is not as sensitive to 655nm light we find that

the sensitive visual interference range is comparable to the NOHZ range.

The critical interference distance is the minimum distance that traffic should be

from the projector laser source if they interset the primary beam. This is quite telling,

as oncoming traffic is only safe when intersecting a 5mW beam up at 35m or further.

Running the laser at a more intense 100mW means that the safes distance a vehicle

can intersect the beam is over 300m away!

The laser free range of the beam is the distance at which the laser does not interfere

with vision at all. It is also the distance the projector must be from the Airport's

laser-free are if the projected beam enters airspace.

Interestingly, increasing the laser power to a higher intensity [x20] and pulsed

signal dramatically increased the interference distances by 940%, rather than the

450% [v2-0] as expected from the NOHZ equation. This is due to the multiple pulse

response of the eye reducing the MPE in the PWM case.

Laser Source
100mW, 1.6KHz 1WCniu s

Region of Visual Inter- 5mW Continuous PWM 10%Dut 1W Continuous
ference
NOHZ 5.4 m 53m 79m
Sensitive Interference 8 m 73 m 108 m
Critical Interference 35 m 324 m 484 m
Laser-Free Interfer- 342 m 3.24 Km 4.84 Km
ence

Table 3.1: Hazard Distances for the PWM primary laser beam

The reflections of the laser beam off of asphalt do not pose a threat to the operator

or motorists outside of 1 m from the road surface. The visual interference distances

of the diffuse reflection are much smaller than the NOHZ of the primary beam thus

the main threat is the primary laser beam path. The diffuse reflections are also at

laser-free intensities at short distances (Table 3.2).
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Table 3.2: Hazard Distances for the PWM diffuse reflection
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Laser Source
100mW, 1.6KHz1WCnius

Region of Visual Inter- 5mW Continuous PWM 10%Dut 1W Continuous
ference
NOHZ 2.5 mm 2.5 cm 3.5 cm
Sensitive Interference 1.5 cm 12 cm 18 cm
Critical Interference 6 cm 53 cm 80 cm
Laser-Free Interfer- 56 cm 5.34 m 8 m
ence



Chapter 4

Tests and Results

4.1 Optics

The reverse foreshortening effect causes the projected laser spot to appear small to

oncoming traffic, increasing its visual intensity once again. Careful alignment of the

cylindrial lenses can set the focal point between im to 30m away. Additional tests

with the PWM laser show that the reverse foreshortening effect creating a small

optical point (Figure 4-4). Even when running at 5mW, the laser is visible under

indoor-lighting conditions.

From the projector's perspective, the diffuse reflection is dim. Therefore cali-

bration of the laser scanner is more difficult if the road surface exhibits specular

reflection. The laser scanner also demonstrates reduced visibility when under bright

light sources.

4.2 Electronics

4.2.1 Power Consumption

The system is currently powered by a standard 110VAC outlet. Data was collected

using an inline power meter. As Table 4.1 shows, the system uses less than 350W

of power at peak usage, and can thus be powered by attaching the system to the
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Figure 4-1: Laser Projection, with Observer 30m away

cruiser's 12V alternator power supply.

4.3 Laser Projection

4.3.1 Calibration

Since the laser system does not collect visual data, calibration of the projector is

necessary to derive the transform between desired projection points, and actual points

driven. The Alert aspect of the NIJ project provides the user with rear-mounted

cameras. The cameras provide a convenient and consistent medium for indicating
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Figure 4-2: Foreshortened PWM Laser spot on Asphalt Sample

Device Idle Power Average Power Peak Power
Galvanometer 100W 180W 250W
Laser 4W loW 50W
Controller 1W 2W 3W
Safety Board 1W 2W 2W

Total 106W 193W 305W

Table 4.1: Power Consumption of Device Elements

where the laser projection points should be.

The calibration scheme used in this project requires that the camera and gal-

vanometer output be located close together, and pointing in parallel. The user has

an input screen for pointing out 4 calibration points (Figure 4-5). The listener con-

verts the coordinates into binary data and instructs the controller to project a pattern

(Figure 4-6). The user then marks out where the projection points actually are, and

then the computer calculates the transform between camera data and galvanometer

data (Figure 4-7). Finally the user can mark the pattern they desire onto the pave-

ment (Figure 4-8), and the projector displays it as soon as they are done (Figure 4-9).

For commercial usage, the calibration needs only happen once when the device is

built, as the distance/angle/placement between the camera and galvanomter will be

48



Figure 4-3: View of Laser Spot from Projector

fixed. The calibration scheme helps compensate for galvanometer bias, static vehicle

tilt, and pavement grade.

4.3.2 End to end testing

The project has completed end-to-end testing. The user can define the calibration

points, and then send in a sequence of desired points. The listener breaks the sequence

into appropriate commands for the controller. The controller enters the scanning state

and repeatedly displays an arbitrary set of flare points. A virtual flare line can be

created quickly, such as the one displayed in Figure 4-11

Power is modulated by the PWM generator under control of the laser operator.

The visible spots between the designated flare points were kept in to illustrate the dy-

namic motion of the galvanometers while they are moving. The laser spots generated

are repeatable to 0.04 mrad.

The controller, once set, does not need additional commands from the host com-

puter, as demonstrated when the host computer crashed repeatedly, and the projector

continued to operate as normal.
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Figure 4-4: View of Laser Spot 15m away

Figure 4-5: Defining Calibration Points
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Figure 4-6: Calibration Rectangle

Figure 4-7: Mapping input and output points
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Figure 4-8: Selecting Flare Positions

Figure 4-9: Generation of Flares
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Figure 4-10: Star (5 Points)
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Figure 4-11: Series of Flares (8 Points)
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Chapter 5

Future Developments

As this project examines the feasiblity of using lasers to create visual cues, many

topics arose that can be explored further to improve the system's efficacy.

5.1 Optics

5.1.1 Multiple Laser Sources Integration

A red laser beam was chosen due to its visual similarity to a flare, as well as its

correlation with warning signs. However the human eye is much more sensitive to

green laser light [American National Standards Institution, 2000a]. Combining lasers

allows for experimenting with differing intensities to determine correlation between

familiarity of intent, and visibility.

Figure 5-1 from Adrian and Jobanputra [2005] shows that on asphalt, the total

reflectance of Green [532nm] light is 5x better than Red [652nm], increasing visual

awareness for the same amount of luminous power. The current PWM implemen-

tation can support the modulation of power for additional laser sources. Another

EEPROM lookup table must be created in the controller for each laser source, as well

as accounting for the different laser intensities when plotting out the projection.

The implementation proposed in Chapter 3 can support the addition of another

laser beam. The two beams can be combined using a cage-mounted dichoric beam
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A Comparison of Total Reflectance between
Asphalt and Concrete

0-20 --- - --0.18
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Figure 5-1: Comparison of Total Reflectance of Roadside surfaces

splitter. The dichoric mirror permits the red laser beam to transmit through, while

reflecting the green laser beam. Proper alignment will result in a combined beam

that appears to be yellow. The lenses in figure 5-2 are configured as galilean beam

expanders; increasing the size of the beam and decreasing divergence.

67.9mm

25mm

Dichoric Filter

652nm Laser ~

f=-7.7mm

f=-7.7mm

25mm
f=75.6mm

535nm Laser

Figure 5-2: Beam Mixer with Beam Expander
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5.1.2 Optical Alignment

The current optical path does not account for the slight tilt to the x-axis mirror in the

galvanometer. The resultant tilt affects the vertical foreshortening effect, increasing

the projected spot size and lowering illuminance.

The optics are mounted and aligned using the Thorlabs 30mm cage system. De-

velopment of an axially-rotated system can be used to counteract the rotational dis-

tortion caused by the galvanometer.

5.1.3 Wide Angle Projection Accuracy

-Scanner 2

02

Scannerl

Beam In

Fig. C. Field Distortion In a Two-way Mirror Deflection System

Figure 5-3: Large Angle Distortion of Galvanometer Projection

In the current implementation that the galvanometer projection axes were or-

thogonal, which is accurate for small angle deviations. However, for large angles, the

optical path of the galvanometer becomes apparent (Figure 5-3). Therefore at large

angles, the error between input and actual projection increases, and is highest at the

edges. Fortunately the error is less than 1 degree.
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Figure 5-4: Large Angle Distortion of Projection

5.2 Electronics

5.2.1 DC Power conversion

The current laser projector setup draws power from a standard 110VAC outlet and

has demonstrated satisfactory results with a 2KW portable gasoline generator. In

order for the electronics to work efficiently with a vehicle it must be able to draw

power from the vehicle's 12V power supply generated from the alternator. Current

police cruisers use the 12V line for powering the light bar, sound system and radar

detectors. The critical factor for the DC-DC converters is temperature tolerance, as

the projector unit will be under a wide variety of weather conditions.

5.2.2 Inertial Feedback

The proposed device currently assumes that the vehicle is fixed to the road surface.

The calibration scheme currently corrects for static misalignment of the vehicle with

respect to the road surface. However, the vehicle is a 2nd-order damped system, as

any motion of weight on/in the vehicle will cause oscillations in pitch and yaw. An

Inertial Measuring Unit (IMU) with a compass can be used to determine the vehicles

current pitch and yaw and its effect on the projection.
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5.2.3 Improved Galvanometer Feedback

As discussed in Chapter 2, we assumed the axes in the projection are orthogonal and

independent. However, at high angles the orthogonality condition no longer holds

due to the large deflection angles present. Improved characterization of the laser

projection at large distances can be used for a more robust calibration scheme.

Also assumed is the time needed for the galvanometer to reach the target flare

position. High-speed ADCs can be used to check when the galvanometer has reached

an appropriate location and enable then laser when it does so.
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Chapter 6

Conclusion

A police officer conducting a roadside stop works very close to passing traffic. Some-

times, an oncoming vehicle fails to grant enough clearance, risking a collision. In the

past decade, on average, one police officer per month has been killed by an inattentive

driver. There exists a failure of sufficiently warning drivers about the police cruiser's

spatial location and the means of travelling around it. The project initiative is to

reduce the rate of fatilities caused by roadside collisions.

Currently, vehicle-mounted emergency lights indicate the presence of the police

cruiser, but impair night vision and distract drivers. A product to expand the optical

range around the police cruiser would decrease the rate of collisions. Current solutions

for diverting traffic by luminous markers are bulky, dangerous, expensive, and/or

time-consuming to deploy.

This thesis detailed the design and implementation of a laser projector for use

in diverting traffic. The projector uses a galvanometer-steered high-power laser to

illuminate spots on the pavement, simulating the appearance of road flares. The user

can calibrate the projector with a rear-mounted camera, and marks the position on

where the flares should be located.

The computer interface used is geared towards fast and intuitive use, and the

laser projector continuously displays flare lines without need of constant input. The

projector uses accurate steering the generate consistent patterns at 30m away.

Topics concerning improving the efficiency and safety of the laser projector were
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explored. A galilean beam expander is used in the optical path to reduce the fore-

shortening effect and improve laser visibility. The safety circuit tested could shut

off the laser power if unsafe operating conditions exist. A reactive safety system to

prevent people from entering the primary laser beam shows great promise and may

be necessary for implementing the projector for commercial production.

The laser-based diverting projector can be used in various road-marking applica-

tions, such as road crews and tow-trucks. The further vehicles are diverted away from

the cruiser, the safer everyone is.
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Appendix A

Schematics and Board Layouts

Schematics were generated in CadSoft EAGLE(C) Schematic Editor. Corresponding

Board layouts were generated in CadSoft EAGLE(C) Board Layout Editor. Boards

were fabricated on a 1 oz. / side, 2 layer, silk-screened manufacturing house.

A.1 Galvanometer Controller

The Galvanometer Controller, or Controller, takes in serial commands from the com-

puter and acts on them (Figures A-land A-2). The Controller can output 4 different

analog channels. Channels A and B are differential and range from -10V to +10V.

Channels C and D are single-ended and can output voltages from OV-5V.

A.2 PWM Driver

A.3 Safety Relay Driver

The Safety Relay Driver circuit takes in TTL inputs regarding the safety conditions

of different parts of the device. The safety interrupt also takes in a RESET signal

driven from the switch board. If conditions are unsafe, the SRD will open the power

connection to the laser driver, thus unpowering the laser source.

In Figure A-7, Channel 1 [Yellow] is the emergency state input, Channel 2 [Blue] is
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the Reset signal, Channel 3 [Purple] is the Relay output. When the emergency input

goes LOW, the output goes LOW. When the emergency state goes HIGH again, the

output remains low until the reset signal is triggered HIGH. Notice at T=30ms, the

output does not go HIGH when the RESET is HIGH and the emergency state is

LOW.

A.4 Communication Board

The board was purchased from SparkFun Electronics. The chip was preconfigured at

9600 Baud, 1 stop bit, no parity bits, Most Significant Bit first. The CTS pin was

pulled low for zero propogation delay.

A.5 Accelerometer

Figure A-9 is the schematic connection for the Acceleration Detector. The detector

uses the internal ADC in a microcontroller to evaluate acceleration in the X, Y and

Z axis, and triggers an output pin (D10) when an acceleration value exceeds safe

margins.

A.6 Laser Reflection Detector

The Laser Reflection Detector (Figure A-11) uses a photodiode with a transconduc-

tance amplifier. An bandpass optical filter f(A) is used to act as a delta function,

allowing only light corresponding to the laser emission to enter the photodetector.

Therefore the voltage output of the Laser Reflection Detector is linearly dependent

on the reflection of the laser (Equation A.1). The bypass capacitor C is to limit the

high-frequency noise inherent in the photodiode.
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Voltage Current Voltage Ripple Component Function
+15V 6A 1% Galvanometer + Power Supply
-15V 6A 1% Galvanometer - Power Supply

+15V O.5A 1% Controller + Voltage Supply
-15V O.5A 1% Controller - Voltage Supply
+5V 6A 5% Laser Driver Power Supply

+24V IA 5% Safety Driver Supply Voltage

Table A.1: Voltage Sources for the Projector

Vout id R| |)

id = F - S(A)I(A)f(A)dA

f (A) ~ 1 A = 650 ± 10nm, 0 otherwise (A.1)

id oc F - S(650nm)I(A = 650nm)

V 0nt c F' - I(A = 650nm) R
RCs+1

A.7 Ultrasonic Detector

The Ultrasonic Detector (Figure A-12) uses 2 MB7060 ultrasonic emitters to deter-

mine the distance an sound-reflection obstruction is. The output of the emitters are

analog voltages, which are then fed into the Arduino's internal ADC. The value can

then be compared to an acceptable minimum, and the output (D1O) is triggered low if

the data returned is below a threshold value. The emitters operate in an alternating

manner, so that the sound emissions of one detector does not trigger a false positive

in the other.

A.8 Power Conversion

The goal of the power convertors is to transform the 11OVAC outlet power into the

various voltages needed for the sub circuits (Table A.1).
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Figure A-1: Controller Board Schematic
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Figure A-2: Controller Board Layout

PWM Laser Diode Response to 60KHz input
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Figure A-3: PWM Laser Response to High Frequency PWM
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Figure A-6: Safety Relay Driver Board

Figure A-7: Relay Logic Test
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Figure A-8: FTD1232 Board; source: SparkFun
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Appendix B

States and Instruction Protocol

Table B. 1 is the list of serial commands that can be issued to the controller board

and the controller's responses. Command is the command byte sent to the controller.

The Direction refers to the information flow with respect to the controller. The Data

Format is how the information after the command byte is formatted.

Table B.2 describes the different operation states that the controller can be en-

gaged in. The controller can only be in one state at a time.

Table B.3 is the logic states for each relay. Each emergency detector drives a

corresponding relay. That relay is controlled by a logic cells that latches the relay

OFF if the emergency detector senses an unsafe event, and resets ON if the RESET

signal is sent while the emergency detector does not sense an unsafe event.

Table B.4 illustrates the logic output of the entire safety circuit. The laser should

not be powered unless all of the other Relays R, and START are ON.
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Command Direction Data Format Description
[OxOO] Input None Disable the DAC, galvanometers

return to inital positions
[Ox01] Input None Enable the DAC, galvanometers

can move
[0x02] Input None Set internal state to STANDBY
[0x03] Input None Set internal state to

SEQPOINTSFIXEDT
[0x04] Input None Set internal state to

SEQ-POINTSNVART
[0x05] Input None Set internal state to LINESEG
[OxOB] Input None Set internal state to LINESEG
[0x0C] Input None Enable Laser output, the laser

can be driven by a PWM signal
[OxOD] Input None Disable Laser output, the laser is

off, regardless of PWM signal
[OxOF] Input None Set internal state to SHUT-

DOWN

[Ox10] Input [OxZZ] Set the length of the scan se-
quence to [OxZZ] long. Maximum
length is 100.

[Oxi1] Input [OxTT] Set the [OxTT] table variables, re-
OxZZ*([UPPER] quires table length * 2 additional
[LOWER]) bytes to fill table

[0x12] Input [XWORD] Send in 8 bytes corresponding
[YWORD] to a single position, set internal
[IWORD] state to SINGLESHOT
[TWORD]

[0x13] Input None Set table length to 0
[0x14] Input None Clear all data from internal EEP-

ROM Tables

[0x30] Output None Returns the internal state value
[0x31] Output None Returns the length of the EEP-

ROM table [0xZZ]
[0x31] Output [0xTT] Returns 2*[OxZZ] bytes that cor-

respond to the data stored in ta-
ble OxTT

[0x40] Output [CHAR] Echoes [CHAR] back through the
serial port

Table B.1: Controller Instruction Set
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State Name EEPROM Laser Cycle Description
Used Active? Length

STANDBY None No 100ps Laser is inactive, and
waiting for further in-
structions

SINGLE -SHOT XSingle, Yes TSingle Laser will fire at
YSingle, *10Ops single spot for a
ISingle, limited amount of
TSingle time. Transistions

into STANDBY after
TSingle*100ps.

SEQPOINTS XY Yes 4ms Laser will scan points
_FIXED-T at Xj, Y at low power

continuously, used as
a debug command.

SEQPOINTS X,Y,I,T Yes T* loops Laser will scan points
_VART at Xj, Y at -1 for

T * loops in sequence.
Default user opera-
tion.

LINESEG X,Y,I,T Yes T * loops Laser will scan line
segments between (Xi,
Y) and (Xi+1 , Yi+1) at
i for T * loops in se-
quence. Experimental
operation.

SHUTDOWN None No 15ms Laser is shut off,
galvos are deac-
tivated, internal
watchdog timer is set
to reset controller.

Table B.2: Controller States

Emergency State Reset Relay
L L OFF
L H OFF
H L Previous State
H H ON

Table B.3: Logic States of Relay Driver

L: Logic Low; H: Logic High
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RI R2 R3 R4 Start Laser
X X X X OFF OFF
X X X OFF X OFF
X X OFF X X OFF
X OFF X X X OFF

OFF X X X X OFF
ON ON ON ON ON ON

Table B.4: Overall Relay Driver Logic

X: Don't care
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Appendix C

Safety Regulations

In this Appendix tare datasheets from relevent agencies, as well as notes that are of

interest to the project.

C.1 ANSI

Equations for calculating MPE, NHZ, NOHZ and Visual Interference are in Appendix

E.

C.1.1 ANSI Z136.6-2000

Notes come from the American National Standards Institution [2000a] Laser Safety

manual and American National Standards Institution [2000b] Outdoor Laser Safety

manual. Figures C-1 to C-8 are from the ANSI manuals and are useful in deriving

safe exposure levels.

" (1.1.2) Variance from the Federal Laser Standard is required for all Class 3b
and Class 4 outdoor lasers display products

" (1.1.3) If used in airspace, shall receive a variance from FDA/CDRH, and per-
mission from the FAA

" (1.1.4) If laser beams cross property lines, property owner should be informed
if personal exposure exceeds MPE
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" (1.1.5) If laser beams cross military borders, should coordinate with local au-
thorities to ensure use will not interfere with military or DoE ops, regardless if
MPE is exceeded

" (1.3) Class 3b and Class 4 lasers need have a Laser Safety officer, evaluate
hazards, determine procedures, and enforce safe operation

" (3.2) Classification of the laser source is determined at the most hazardous
position along the beam path

" (3.3.1) Hazards from Class 2 and 3a should be considered during night time use

" (3.3.5)For specular reflection, worst case assumption is made: Polarization,
distance between laser and reflector, size of reflector, composition of reflector
material, flatness of reflector, incident angle

" (3.3.6) Buffer angle is usually set at 5X pointing inaccuracy

" (3.3.7) Diffuse and Specular reflections during inclement weather are hazardous
within one meter of the laser beam path. Water on surfaces are considered to
be reflective specular objects.

" (3.4): Visual interferenece: dazzle, glare, startle, flashblindness, temporary vi-
sual impairment, most severe at night. Standards outlined are during reduced
ambient lighting

" (4.2.3) For a laser device to have remote operation, should be class 1, reliable
shutdown mechanism should be employed to prevent exposure above level 1.
Otherwise remote operation is acceptable only if laser area is accessible by
personnel trained in laser safety only.

" (4.2.6) 3b and 4 lasers can be used outside laser controlled areas if NOHD
is greather than 100m. The Operator must be laser safety trained, must be
able to cease laser operation before potentially hazardous situations arise, and
takes full responsibility of the safety of personnel who enters the laser beam.
Lasers with NOHD less than 100m should only be used with specific controls
and safeguards in place, and should have a separate safety observer. If safety
observer is deployed, laser controlled area can be extended to 700m.

" (4.3.2) Lasers need to be labeled

* (4.3.2.3) Class 2-4 Device must include LASER APERATURE warning.

* (4.3.3.2) Laser interlock needs to have visual feedback on powered state.

" (4.3.3.3) System cannot reactivate without an intentional reset.

* (4.3.3.4) Emission Indicator must be lit when laser is prepared to fire, and must
be visible through protective eyewear.
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" (4.3.3.8) Scanning laser products shall include a feature that prevents laser
emission exceeding the AEL of the Class of the product upon failure of any
component.

* (4.5.4.5) If specular surfaces cannot be removed from the laser area, the high-
power laser emissions can only be done in designated laser safety areas and safe
airspace

" (8.3.1) For determining visual interference levels, no correction is made for ex-
tended sources. The levels are Sensitive, Critical, Laser Free. Use Effective
radiant exposure for exposures less than 0.25 Seconds, and irrandiance for ex-
posures greater than 0.25s when doing calculations.

" (8.4) Visible Light pulsed at 8-16fps should be avoided to prevent interference
with brain alpha rhythms.

C.2 FDA

Figures C-9 and C-10 are procedures and images that help compliance with FDA stan-

dards [Food and Drug Administration Center for Devices and Radiological Health,

2012].

C.3 FAA

Figures C-11,C-12 and C-13 are examples of application and variance letters for public

tests [U.S. Department of Transportation Federal Avaiation Administration, 2012a],

[U.S. Department of Transportation Federal Avaiation Administration, 2012b].
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Table 10

Control Measures for the Four Laser Classes

Control Measures Classification

Engineering Controls 1 2 3a 3b 4
Protective Housing (4.3.1) X X X X X
Without Protective Housing (4.3.1.1) LSO shall establish Alternative Controls
Interlocks on Protective Housing (4.3.2) V V V X X
Service Access Panel (4.3.3) V V V X X
Key Control (4.3.4) - X
Viewing Portals (4.3.5.1) - MPE MPE MPE MPE
Collecting Optics (4.3.5.2) MPE MPE MPE MPE MPE
Totally Open Beam Path (4.3.6.1) - - - X X

NHZ NHZ
Limited Open Beam Path (4.3.6.2) - - _-- X X

NHZ NHZ
Enclosed Beam Path (4.3.6.3) None is required if 4.3.1 and 4.3.2 fulfilled
Remote Interlock Connector (4.3.7) - -- - X
Beam Stop or Attenuator (4.3.8) - - - X
Activation Warning Systems (4.3.9.4) - - - X
Emission Delay (4.3.9. 1) - - - X
Indoor Laser Controlled Area (4.3.10) - - - X X

NHZ NHZ
Class 3b Indoor Laser Controlled Area (4.3.10.1) - - - X -
Class 4 Laser Controlled Area (4.3.10.2) - - - - X
Laser Outdoor Controls (4.3.11) - - - X X

NHZ NHZ
Laser in Navigable Airspace (4.3.11.2) - -

Temporary Laser Controlled Area (4.3.12) V V V -
MPE MPE MPE

Remote Firing and Monitoring (4.3.13) - .

Labels (4.3.14 and 4.7) X X X X X
Area Posting (4.3.9) - - X X

NHZ NHZ

LEGEND X - Shall

* - Should

- - No requirement
V - Shall if enclosed Class 3b or Class 4

MPE - Shall if MPE is exceeded
NHZ - Nominal Hazard Zone analysis required

51

Figure C-1: Required Control Measures, Page 1
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AMERICAN NATIONAL STANDARD Z136.1-2000

Table 10 (cont.)

Control Measures for the Four Laser Classes

LEGEND X - Shall
- Should

- - No requirement
v - Shall if enclosed Class 3b or Class 4
MPE - Shall if MPE is exceeded
NHZ - Nominal Hazard Zone analysis required

- Applicable only to UV and IR Lasers (4.5.1.2)

52

Figure C-2: Required Control Measures, Page 2
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Control Measures Classification

Administrative and Procedural Controls 1 2 3a 3b 4Standard Operating Procedures (4.4.1) - - - . X
Output Emission Limitations (4.4.2) - LSO Determination
Education and Training (4.4.3) - X X
Authorized Personnel (4.4.4) - - -- X XAlignment Procedures (4.4.5) - X X X XProtective Equipment (4.6) - - -X
Spectator (4.4.6) 

X
Service Personnel (4.4.7) V V v X X

MPE MPE WPE
Demonstration with General Public (4.5.1) MPET X X X XLaser Optical Fiber Systems (4.5.2) MPE MPE MPE X XLaser Robotic Installations (4.5.3) - - - X X

NHZ NHZEye Protection (4.6.2) - - - X
MPE MPEProtective Windows (4.6.3) - - - X X
NHZ NHZProtective Barriers and Curtains (4.6.4) - - - .

Skin Protection (4.6.6) - - - X X
IMPE MPEOther Protective Equipment (4.6.7) Use ma y be requifred

Warning Signs and Labels (4.7)- X |X(Design Requirements) 1 NHZ NHZService and Repairs (4.4.7) LSO Determination
Modifications and Laser Systems (4.1.2) LSO Determination
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Table 6
Parameters and Correction Factors

Parameters/Correction Factors Wavelength Figure

(m)

T,10 102s0 -4s -0) 0.450 to 0.500 9a

T2 = 10 x I0(a - -5Y98.5 .** 0.400 to 1.400 9b

C, = 1.0 0.400 to 0.450 8c

C. = I04 0450) 0.450 to 0.600 8c

C, = 1.0 0.400 to 0.700 8a

C' = 102u-0.700) 0.700 to 1.050 8a

CA = 5.0 1.050 to 1.400 8a

Cp = n-0 O2
.180 to 1000 13

CE 1 -0 a<a,m 0.400 to 1.400 -

CE = X / emi am,,., a sact,. 0.400 to 1.400 -

Cs = CE2 / (a a x>) a > 0.400 to 1.400 -

Cc = 1.0 1,050 to l.150 8b

CC = 1018X1.150) 1.150 to 1.200 8b

cc = 8 1.200 to 1.400 8b

See figures for graphic representation.

T = 10 s for k = 0.450 pm, and T= 10 0 s for X = 0.500 pm.
T2 = 10 s for a < 1.5 mrad, and T2= 100 s for a > 100 mrad.
See Section 8.2.3 for discussion of C, and Section 8.2.3.2 for discussion of pulse
repetition frequencies below 55 kliz (0.4 to 1.05 psm) and below 20 kHz
(1.05 to 1.4 pm).

Notes:
1. For wavelengths between 0.400 and 1.400 n:

a_ = 1.5 mrad a.= 100 mrad

2. Wavelengths must be expressed in micrometers and
angles in milliradians for calculations.

The wavelength region X, to X2 means X, ' X < X2,

e.g., 0.550 to 0.700 pm means 0.550 s A < 0.700 pm.

47

Figure C-3: Optical Parameters
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APPENDIX
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(See Section B6.4.2 and Example 39)
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Figure C-4: Range Nonogram Calculator
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AMERICAN NATIONAL STANDARD Z136.6-2000

Table 5. Visual Interference Levels.*

Visual Interference Levels
Flight Zone or
Region of Visual Effective Radiant Exposure Effective Irradiance Illuminance
Interference (J-cm

2
)t (W-cm-

2
)l (lm-cn

2)
T 0.25 s T, > 0.25 s T, > 0.25 s

Normal 1.8xl0O-xT._" 2.5x10- 1.7 (for 0.55 lpn only):
Sensitive 25x10O 100x10- 6.8xlO-

Critical 1.25xl06 5.Ox10
4  

3.4xl04
Laser-Free 12.5x 10-9 50x10

5
- 3.4x10'

*Interim levels are listed from visible lasers used at dusk or night. The values in this table are based on preliminary perceptions
and accepted practice at the time that this document was published. Future research on visual interference effects may result in a
modification of these levels.

tMeasured (or calculated) irradiance levels must be multiplied by the photopic luminance efficiency coefficient obtained from
Table 1 in order to correct for visual sensitivity of the human eye. The irradiance levels for the normal region are not corrected
for visual effect using V(X) since these levels correspond to the MPE. The formula provides MPE values for exposure durations
from 18 pss to 0.25 s. Whenever the irradiance exceeds the MPE, the MPE takes precedence even if the visual interference level
is higher.

IThe normal region is limited by the MPE, which is not wavelength dependent in the visible spectrum. The MPE expressed as
actual irradiance or radiant exposure is applicable for this region. The listed value for illuminance is only for a laser with a
wavelength of 0.55 gm. The visual interference level for other wavelengths may be calculated by multiplying the provided
value by V(X) from Table 1.

Table 6. Skin MPEs.*

Wavelength Exposure Duration MPE

(gm) (s) Pulsed CW
(J-cm

2
) (W-cmf)

0.180 to 0.314 109 to 3x10' Same as Table 2 Same as Table 2
0.315 to 0.400 109 to 10 0.56xt"'a 0.56xT-aG-"
0.400 to 1.400 109 to 10-1 0.2xCAxlO' l.lxCAxT,,,"

10-7 to 10 l.lxCxt
25  

0.2xCA
1.400 to I.Ox10' 10 2

.OxC, See Table 2
109 to Io See Table 2

* Values are for selected wavelengths for exposure durations less than 10 s (except for UV).

35

Figure C-5: Visual Interference Levels
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Table 8. Diffuse Reflection Hazard from Pulsed Lasers in Retinal Hazard Region.

Beam Viewing Distance
Diameter

(mm) 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80cm 90cm 1 m
Beam Energy (J)

1 2 3 4 5 6 8 10 13 16
2 4 6 8 11 13 15 17 19 21
3 6 10 13 16 19 22 25 28 31
4 9 13 17 21 25 29 34 38 42
5 11 16 21 26 32 37 42 47 53
6 13 19 25 32 38 44 51 57 63
7 15 22 30 37 44 52 59 66 74
8 17 26 34 43 51 59 68 76 84
9 20 29 39 48 57 67 76 86 95

10 22 32 43 53 64 74 85 95 106
20 46 67 88 109 130 151 172 193 214
30 109 104 135 167 198 229 261 292 323
40 203 191 185 226 268 310 352 394 436
50 331 307 295 288 341 393 445 498 550
60 498 456 435 423 415 478 541 604 666
70 708 640 607 587 574 565 639 712 785
80 965 860 811 781 762 749 739 822 906
90 1272 1121 1049 1007 980 960 946 935 1029

100 1635 1425 1325 1266 1228 1202 1182 1166 1154

*Energy values listed in the table in mJ are those that will barely produce a diffuse hazard for Q-switched lasers at various
viewing distances. Values listed are based on various beam diameters, at the point of impact on a white matte target, for
wavelengths in retinal hazard region.

Notes:

1. For wavelengths between 0.7 pm and 1.4 lm, the above power values should be multiplied by factors of CA and Cc as
appropriate.

2. For wavelengths between 1.05 pm and 1.4 gm, the above values are multiplied by and additional factor of 2.

3. For repetitive-pulse lasers, the repetitive-pulse correction factor C, should be applied.

37

Figure C-6: Diffuse Hazard intensity from a Pulsed Laser

84



AMERICAN NATIONAL STANDARD Z136.6-2000

VERTICAL BUFFER

.,0

HORIZONTAL-P\ \4- TARGET AREA HORIZONTAL
BUFFER BUFFER

|I
%I

LASER

Figure 3. Laser Controlled Area on a Laser Range. Horizontal and vertical buffer areas are
included. Natural terrain provides a backstop in the vertical buffer area.

40

Figure C-7: Example of Buffer Zone
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Table 1. Photopic Luminous Efficiency Function V(X).

Laser Wavelength V(X) Laser Wavelength V(X)(p-m) (pMn)
0.380 0.00004 0.585 0.8100.385 0.00007 0.590 0.7580.390 0.00012 0.595 0.7100.395 0.00018 0.600 0.6330.400 0.00040 0.605 0.5800.405 0.00058 0.610 0.5030.410 0.0012 0.615 0.4500.415 0.0020 0.620 0.3820.420 0.0040 0.625 0.3250.425 0.0065 0.630 0.2650.430 0.0116 0.635 0.2150.435 0.0170 0.640 0.1750.440 0.0230 0.645 0.1320.445 0.0300 0.650 0.1070.450 0.0380 0.655 0.07500.455 0.0500 0.660 0.06100.460 0.0599 0.665 0.04350.465 0.0720 0.670 0.03210.470 0.0909 0.675 0.02250.475 0.105 0.680 0.01700.480 0.139 0.685 0.01060.485 0.162 0.690 0.00820.490 0.208 0.695 0.00590.495 0.250 0.700 0.00410.500 0.323 0.705 0.00300.505 0.400 0.710 0.00210.510 0.503 0.715 0.00140.515 0.620 0.720 0.00100.520 0.709 0.725 0.000770.525 0.800 0.730 0.000520.530 0.862 0.735 0.000350.535 0.925 0.740 0.000250.540 0.954 0.745 0.000180.545 0.980 0.750 0.000120.550 0.990 0.755 0.0000850.555 1.000 0.760 0.0000600.560 0.990 0.765 0.0000420.565 0.970 0.770 0.0000300.570 0.952 0.775 0.0000200.575 0.910 0.780 0.0000150.580 0.870

*The listed CIE normalized photopic luminous efficiency function V(2) is photopic for a standard observer. The illuminance(lm-cm-) is the measured irradiance multiplied by V(X) and 683. The effective irradiance (W-cm') is the actual (measured)irradiance multiplied by V().

31

Figure C-8: Luminous Efficiency
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APPENDIX A

Sample Notification Letter to FDA/CDRH

(This letter is an example of a notification letter to the FDA/CDRH once a variance has been granted. All names and places are
intended to be fictitious, and any similarities are purely coincidental).

Date: 1/1/99

Office of Compliance (HFZ-342) Ref:FDA/CDRH Docket No. 000-0000
Center for Devices and Radiological Health Accession No. 0000000-0000
2098 Gaither Rd. Date: 1/1/99
Rockvlle, MD 20850

This is a notice of the following laser light show:

EVENT: Fourth of July Festivities

VENUE: Seattle Fairgrounds

TIME(S) AND DATE(S): 7/4/99 - 8:00 p.m. to 10:00 p.m.

EFFECT(S) UTILIZED: Beams into sky

DESCRIPTION OF SHOW: Beams in an outdoor environment

EQUIPMENT UTILIZED: Laser Model XXX 20 W System

LASER OPERATOR(S) IN
CHARGE OF SHOW: John Doe

AGENCIES NOTIFIED: FDA/CDRH and FAA

DESCRIPTION OF
SAFETY FACTORS: All pertinent safety factors will be adhered to: three-meter rule, barriers, beam
blocks, and use of certified laser projector.

MISCELLANEOUS COMMENTS:

If you have any further questions or comments, please don't hesitate to call me at (000) 555-0000.

Sincerely,

John Doe
Office Manager

57

Figure C-9: Letter of Notification to the FDA
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AMERICAN NATIONAL STANDARD Z136.6-2000

BLACK

RED

N

BLACK
LETTERS

RED BACKGROUND/WHITE LETTERS

WavOength
'Ave Dulput Power: ANSI Class Laser Product

*

Figure 7c. Example of an Alternate Danger Label. Starburst is red; letters are black.
Precautions including the NOHD would be placed above the tail of the starburst. The type of
laser, including output power or pulse characteristics, placed below the starburst. If the output of
the laser is invisible, the word "invisible" should be included below the tail of the starburst. The
ANSI classification is placed in the lower right hand corner.

*

46

Figure C-10: Example Warning Sign
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Failure To Provile All Requested hiformation May Delay Processing of Your Notice FOR FAA USE ONLY

US Depas-te ofraustoama NOTICE OF PROPOSED OUTDOOR LASER OPERATION(S)
Fe~kdea Aviatku Adan"Atratins

1. GENERAL INFORMATION
(a) To: (FAA Regional O9/ e) (b) From: (Proponent)

(c) Event or Facility (d) Report Date:

(e) Customer (f) Site address

2. DATE(S) AND TIME(S) OF LASER OPERATION
(a) Testing and alignment (b) Operation

3. BRIEF DESCRIPTION OF OPERATION

4. ON-SITE OPERATION INFORMATION
(a) Operator(s)

(b) On-site phone #1 (c) On-site phone #2

5. FDS CDRH LASER LIGHT SHOW VARIANCE (if applicable)
(a) Variance # (b) Accession # (c) Expiration date

6. BRIEF DESCRIPTION OF CONTROL MEASURES

7. ATTACHMENTS
(a) Number tfllaser configurations [fill out one copy of page 2 oftthis notice ("Laser Configurations

Worksheet') for each configuration]
(b) List Additional attachments (including nteps, diagrams, and details ofcontrol measures)

8. DESIGNATED CONTACT PERSON (iffurther information is needed)
(a) Name (b) Position

(c) Phone (d) Fax (c) E-mail

9. STATEMENT OF ACCURACY
To the best of my knowledge, the information provided in this Notice and attached worksheet(s) is accurate and correct.

(a) Name (ff~ferenlfrom conractpersoon) (b) Position

(c) Signature (d) Date

FAA Form 7140-1 (4-01) Local Reproduction Authorized 032500.1(1

Figure C-11: Application for Outdoor Laser Use, page 1
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Failure To Provide AFvl Requested onrormation May Delay ProcessingofYour Notice FO MR FAoA USE ONLY

M.de ofpet.,-onsnSN LASER CONFIGURATION WORKSHEET
FedratAviitio Admtdnaptrtclbin

1. CONFIGURATION INFORMATION (b) Name of event/facility (c) Report date:

(a) Configuration number of

(d) Brief Description of Configuration

2. GEOGRAPHIC LOCATION (d) Latitude (deg. (mitt.) "(sec.)

(a) Site Elevation (ft. above Mean Sea Level) (c) Longitude " (degJ.' (minJ." (Sec.)
(b) Laser Height Above Site Elevation (ft) (f) Determined by: 0 GPS [] Map (Qtud) 0 Other

(c) Overall Laser Elevation (a + b) (g) Horizontal Datum: [I NAD 27 0 NAD 88
(b) Vertical Datum: [] NGVD 29 [] NAVD 8

3. BEAM CHARACTERISTICS AND CALCUL ATIONS (check one Mode of Opetradon only. and ill in only that colkinn)

Mode of Operation C]SINGLE PULSE CONTINUOUS WAVE REPETIVELY PULSED

PLser WTdh (not applicable)

13'ats W) maimum power aterage power

Joiy J (not qppwiablao

Pulse Width
Seconidr (s) *fcbe nttpiak

Pulse Repetition Frequency

Beam Diameter @ I/e points
Centimeters (cm)
Beam Divergency Ile full
Angle Mifliradians (mrad)
Wavelength(s)
Nanometers (nm)
(a) MAXIMUM PERMISSIBLE EXPOSURE (MPE) CALCULATIONS (willbe usedto calculateNOHD)

MPE Wcue
t  

1nt qplicble)

MPE per pulse Ji/rt I (not appkbte)

(b) VISUAL EFFECT CALCULATIONS (ill be used only for visible lusers 149-799 nM to calculate SZED, CZED, and LFED)
Pre-Coeeected Power (PCP) Pa/se E-e,&jr4, tusnen Poer oboe PUbe J0. PRF (IL) OR Arae Pes
Watts (W)
Visual Correction Factor (VCF)
(Euter "I." or use Table 5)
Visually corrected Power
PCPx VCF
4. BEAM DIRECTION(S) Magnetic variation (degrees)

Maximum elevation angle (degrees) Azimuth 0 True 3 Magnelic

Minimum elevation angle (degrees. where horizontal 0') (degrees)

5. CALCULATED DISTANCES SLANT RANGE (ffJ HORIZONTAL DISTANCE (ft.) VERTICAL DISTANCE (ft.)
(flil in alt thre colutmns)

NORD (baed on MPE)
*SZED (for 100 p W/cm

2 
level)

*CZED (for 5 p W/cm level)
*LFED (for 50 n W/cm

t level)
*If the luser has no wavelengths in the visible range (400-700 in), enter "N/A (non-visible laserl" in all blocks.
For visible asems ift calculated SZED. CZED. and/or LFED is le tban the NOHD, enter les than NOtED." than "NOHD."

6. CALCULATION METHOD [ Commercial sofiware (print product name)
o Other [describe method (spreadsheet. calcsdator. etc.)]

FAA Form 7140-l (4-01) Local Reproduction Authorized 032500.111

Figure C-12: Application for Outdoor Laser Use, page 2
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APPENDIX A

Sample Letter from FAA
(This letter is an example. All names and places are intended to be fictitious, and any similarities are purely coincidental).

Mr. John Doe
Laser Coordinator
John Doe Laser Co.
0000 North St.
Seattle, WA 00000

Dear Mr. Doe:

This letter is in response to your proposals for a laser show schedules for July 4, 2000 at Seattle Fairgrounds, in
Seattle, WA. The proposed site would be close to the nearby Seattle Airport. Unterminated beams would enter the
"laser-free zone" described in FAA Order 7400.2D.

However, the FAA has no objection provided the laser beams are terminated on the grandstand building, as was
stated in your letter. The termination area at the site must be large enough to stop the beams and allow for all
pointing inaccuracies.

If you need further assistance, please contact me at (000) 555-0000.

Sincerely,

Tom Smith
Airspace and Procedures Manager

59

Figure C-13: Variance from the FAA
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Appendix D

Police Procedures

D.1 Before Traffic Stop

When the officer has a target vehicle that needs to be pulled over, he flashes the

police cruiser lights and siren. He follows the vehicle at close range until there is a

safe shoulder or stop point for the vehicle to pull over. The vehicle and cruiser come

to a complete stop before the officer exits the cruiser.

D.2 During Traffic Stop

The cruiser is cantered to the left between 10 and 45 degrees from the center of the

lane. This allows the officer some protection in the event of a hostile driver/passenger,

as the engine block can absorb incoming fire.

The officer shines a spot light directly into the rear window of the target vehicle,

illuminating the interior. This allows the officer to observe the driver at all times,

while preventing the driver from looking in the rear. The officer will either be at the

forward doors of the vehicle, or sitting in the cruiser front seats using the dashboard

computer for id checking, paperwork, and communication.

The officer will vary his approach to the car, either approaching the suspect on the
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driver or passenger side. The officer crosses the rear of the cruiser when approaching

on the passenger side or accessing equipment such as medical supplies, flares, and

emergency signallers. The rear-facing radar provides audible feedback in the event of

a speeding vehicle passing by.

D.3 Concerns

The officer crossing the rear of the cruiser is the largest safety hazard posed during

normal operation. The officer will enter the projection zone of the laser scanner and

the laser beam can be emitted at eye level. The primary beam is unattenuated by the

reflection off the ground and is much brighter and can quickly cause ocular damage.

An active laser is also inherently unsafe whenever the vehicle is in motion. Passing

traffic currently cannot be warned or restricted from entering the NOHZ. The primary

beam poses a large safety risk without additional active safeguards.

D.4 Images

Figure D-1: Rear of MSP Cruiser
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Figure D-2: Cruiser Interior Computer

Figure D-3: Cruiser in a rhaffic Stop
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Appendix E

Formulas

E.1 Optics

E.1.1 Beam Expansion

Spherical Beam Expansion

Given input beam width Wi, and desired output width Wo magnification m is:

(E.1)Wo f2

Wi fi

In the galilean beam expander, the length L of the beam expander is: Jf1 - f21.

E.1.2 Divergence

The divergence E of a gaussian beam limited by its aperture is: E= lambda/(pi*W).

The narrowest segment of the laser beam is called the beam waist, denoted by

width W.

Given input beam divergence Di and beam magnification m, the output divergence

Do is:
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1*
L = 67.9mm

................................... 
... ............................... > -

.................. 
A

................... .. ......................................................... .................................... ) 0 -

.................

F = -7.7mm 

........

*1

F = 75.6mm

Figure E-1: Gaussian xlO Beam Expander

2 L W

Z R

Figure E-2: Laser beam with minimum width W, divergance 8; Source: Wikipedia
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Figure E-3: Foreshortening and Reverse Foreshortening Effects

m

Therefore a beam expander will reduce the divergance of the beam, while expand-

ing it's size.

E.2 Laser Projection

E.2.1 Foreshortening Effect

(See figure E-3)For a laser at height H, output width W, divergence angle 9 projecting

at point D distance away, the length of the spot on the pavement S is:

When H << 1 H > E) and E << 1, we can use the small angle approximation:

arctan (H) ~H-D D

W + E - D
S ~H e

D 2

E.2.2 Reverse Foreshortening Effect

For a given observer at height H' located a distance D' from the edge of the laser

spot, and distances D' >> H', D' >> S, we can use the small angle approximation

97
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sin (1) - 1. The apparent width of the spot W' is:

H'
W' Sx-

D'

W + - D
H 8
D 2

H'
x -

D'

(E.3)

For oncoming drivers with parameters H' _ H, D' _ D, and 2 << :

W' r-- W + E) -D

This is the spot size observed right at the projection, therefore the angular size is

approximately i. For a laser with parameters of W = 10mm, E = 0.5mrad; with a

projection at H = 1.5mrad, D loom; and observed at: H' = 1.2m, D'= loom:

10mm + 5 10- * loom

loom 2

S ~ 4.07m

1. 2m
W' 4.07m * 1.2m

W' 4.8cm

The spot appears to only be 5cm tall, and viewed loom away, has an angular size of

0.5 mrad.

E.3 Optical Safety

In the following examples we will also be deriving the safety qualities of an 'expected'

usage of the laser projector.

The laser in this example is:

" 1W Peak

* 1.6KHz PWM
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* 10% Duty

" 16ps to full power

" A= 655nm

" 0 = 5.6mrad

" O= 1.4mrad

" Worst case distance to laser is 0.5m

" W, = 4.3mm

* Wy = 1mm

The observer has:

o 7mm wide pupils

o 0.25s aversion response

Therefore in an exposure, we can expect 400 lasers pulses into the eye, each lasting

62.5pus. Since the time between pulses is greater than tmin(A) = 18ps, we count all

the pulses as distinct.

E.3.1 Classification

The laser mentioned above is considered a Class 3b pulsed laser, however, Class 3b

lasers cannot emit an average radiant power greater than 0.5W for more than 0.25s,

or cannot produce radiant energy more than 0.125J within 0.25s, and cannot emit

a radiant energy more than 0.03J per pulse. Therefore at 1.6KHz, the duty cycle

cannot exceed 50%, as that would violate the first and second conditions. If the duty

cycle exceed 50%, the laser is now a Class 4 Pulsed laser source.
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E.3.2 Effective Divergence

Given a circular laser spot with radii r, and ry, and respective divergences 0_ and 0Y,

the area of the spot at distance d is: 7r * (r+ d * 60) * (ry + d * Ov). If d * 0. > r. and

d * Q, > ry, we can aproximate the effective Divergence of the beam as A-7 - 4

The effective divergance in our example laser is x/5.6mrad - 1.4mrad = 2.8mrad

E.3.3 Maximum Permissible Exposure

The Maximum Permissible Exposure is the limit of energy or power density on the

eye before permanent damage can occur. Table 5a in (ANSI Z136.1-2000) gives us the

MPE for our exposure limit (0.25s) and wavelength (A = 655nm) at 1.8t 0 -75 x 10-3j.

cm-2. A pulsed correction factor C, is needed due to the multiple pulses entering the

eye before the observer can blink. Cp = n-

Therefore the Maximum Permissible Exposure is:

MPE = 1.8t0 75 x 10- 3J . cm-2 x n -0.25

MPE = 1.8(0.25)075 x 10-3J . cm- 2 x (400)-025

MPE = 0.636mJ -cm-2 x .223 (E.4)

MPE = 0.636mJ cm-2 x .223

MPE = 0.141mJ cm-2

E.3.4 Nominal Ocular Hazard Distance

Nominal ocular hazard distance rNOHz is the distance which the primary laser beam

exceeds the MPE. Derived from ANSI Z136.1-2000 standard.

I 1.27Q _A

NOHZPrimary VMPE A2

* q is the divergance of the primary beam

100



o Q is the Energy deposited in an exposure

" MPE is the maximum permissible exposure limit

" A is the beam diameter

With the example laser, < = 2.8mrad, Q = 0.025J, MPE = 0.141mJ x CM-2,

A 2 = 4.3mm 2. Therefore the NOHZ is 53.6m.

When the laser is intersecting the road surface, it creates a lambertian diffuse

reflection.

TNOHZDiffuse P E

Where 0 is the observation angle, and p is the relflectivity of the pavement.

Using the Example laser, and worst-case viewing angle, and an asphalt reflectivity

of 0.1 [Adrian and Jobanputra, 20051, and ignoring the large angular source factor:

0.1 x 0.025J 1/2
TNOHZDiffuse = (7 0.141mJ X Cm- 2 x n-0.2 5 / (E.5)

TNOHZDiffuse= 5cm

Diffuse reflections of asphalt have no significant NOHZ.

The Laser Range Nomogram (Figure C-4) can also be used to determine the

minimum range given Energy output, radiant exposure, and beam divergence.

E.3.5 Interference Distances

Calculating the interference distancefor the primary beam is similar to calculating

the NOHZ (Figure C-5).
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1 1.27Q
rNOHZPrimary EREL X A2-.25

V(A) /
(A o1/2 (E.6)

pQ COS 0
rNOHZDiffuse I EREL x n-0.25

V (A)

We replace the MPE with the effective radiant exposure limit (EREL) (ANSI

Z136.6-2000) divided by the photopic luminance efficiency coefficent, V(A). We still

include the effect of multiple pulses though.

In the example, V(A = 655nm) = 0.075.

For sensitive operations, the effective radiant exposure is 25 x 10-6. Using the

data in the example laser, sensitive operation range for the primary beam is 74 m.

The sensitive operation range for diffuse reflections is 3.2 cm. Since the sensitive

distance is less than the NOHZ, eye injury is more likely due to the lower sensitivity

of the eye to this particular wavelength.

For critical operations, such as driving, the effective radiant exposure is 1.25 x 10-6.

Using the data in the example laser, the critical interference range for the primary

beam is 325 m. The critical interference range for the diffuse reflection is 15 cm.

For laser-free operations, such as airport runways, the effective radiant exposure

is 12.5 x 10-9. Using the data in the example laser, the laser-free distance for the

primary beam is 3.4 Km. The laser-free distance for the diffuse reflection is 150 cm.

Thus the main hazard is the primary beam and not the diffuse reflection.
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Appendix F

Code Examples

ic = lcm.LCM(ttl=1)
subscription = Ic. subscribe ("GALVOCONTROLS",
persist = True
while persist

try:
valid-ports = checkPorts ()

GS = GalvoSerial(port=valid-ports [0] ,
baudrate=9600, bytesize=EIGHTBITS,
PARITYJNONE, s t o p b i t s-STOPBITSONE)

my-handler)

timeout =0.1,
parity=

#Establish
Communications with port

print (GS. enableGalvo ())
print (" Galvo-Enabled")

per si st=F alse
except KeyboardInterrupt:

print ( 'Cancelling -Port -detection -and-quitting ')
persist=False

except Exception as e:
print(" Error -%s -failure -to-open-stream ,-retrying"

e)

print ("LCM-started , -press _CTRL-C-to -terminate")

try:
while True:

Ic . handle ()
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- -

except KeyboardInterrupt :
print (" User -Keyboard-exit" )

def myhandler (channel, data):
intensity-factor = 0.01;
msg = galvo-controlst . decode (data)
print (" Received -message -on-channel -\"%s \"" % channel)
for i in range(msg. size):

print (" --- (time , -intensity ,-thetal , -theta2) ----- =-(%s

,.Ys,_%s,_5%s)" % (str(msg.angle-data[i][0]) ,str(
msg.angle-data[i][1]), str(msg.angle-data[i][2])
str (msg. angle-data [ i][3]))

#print ("Message Received")
time-delay msg.angle-data[i][0]
intensity msg. angle-data [i ][1] * intensity -factor
thetal = msg.angle-data[i][2]
theta2 = msg.angle-data[i][3]

if(msg. size 0):
return

elif (msg. size==1):
print (GS. singleShot (thetal , th

time-delay))
else:

# Tell the microcontroller how
GS. stopOutputSequence() ;
GS. setSequence Length (msg. size)
# Load X data
X = column(msg. angle-data , 2)
GS.loadData('X', X)
# Load Y data
Y = column (msg. angle-data , 3)
GS.loadData( 'Y', Y)
# Load I data
I = column (msg. angle data , 1)
GS.loadData( 'INT', I)
# Load T data
T = column (msg. angle-data , 0)

GS.loadData('T', T)
# Start
GS. start Output Sequence ()
GS. enableLaser ()

time. sleep (time-delay)

eta2 , intensity ,

large the data set is
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#define MAXIENGTH 100
#define MAXSPLCOMLENGTH 5
#define T-GRANULE 100 // each bit of T corresponds to a wait

time of 100 microseconds, max wait time of 6 seconds
#define LASER-LIMIT 28000 //The limit is defined as (

Maximum current/ [2.3 Ampere/Volt])/ Peak Voltage * 2^16

uint I6_t EEMEM X-Table [MAXLENGTH] , YTable [MAXLENGTH]
ITable [MAXLENGTH] , T Table [MAXLENGTH];

uint16_t EEVEM table-length = 0, XSingle = 0, YSingle = 0,
I-Single=0, TSingle=0; //internal memory

unsigned char debug = 1; // handshaking debugging allowed
volatile unsigned int eeprom-wl = 0, eeprom-w2 = 0, eeprom-w3

= 0, eeprom-w4 = 0;
volatile uint8_t run-state = 0, in-drawing-pattern = 0; //Run

State
volatile RUNSTATET run state-enum =ESTATESTANDBY;
volatile uint16_t table-index = 0;

int main(void)
{

DDRA = OxFF; //All pins are output by default
DDRC = OxFF ; //Enable !Sync line and !EN Line
PORTC = OxFF;
SET(PORTA, PORTA4); // debug
SET(PORTA, PORTA2); //debug
wdt-init () ; // Disable watchdog so it does not

down the board;
uart0-init () ; //start USART

USARTINTENABLE; //enable interrupt vector on

s

22

character
//SET(PCICR, PCIEO); //A change on the enabled pins

PCINT 0-7 will trigger an interrupt
//RTS means that the 232 is ready to receive signals

the controller
//CTSDISABLE; CTS is the controller able to accept

hut

ncoming

on

from

inputs

spiinit (); //Define SPLPIN Outputs &START SPI
sei () ; //enable interrupts
OEDISABLE; // Disable the OE line
LASERDISABLE;
//transmitByte ('0'); /Chip is alive and communicating
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while (1)
{

//Main Loop...

Listing F.4: Routine for Plotting a Point in a Series of Points

if (run-state-enum = ESTATESEQ-P-FIXT I run-state-enum
=E-STATESEQ-PVAR-T) /If Run is not in the Halt
State

{
USARTINTDISABLE; /Disable the interrupt

vector while loading the data
eeprom-wl = eeprom-read-word(&XTable [table-index

1) ;
eeprom-w2 = eeprom-read-word(&YTable [table-index

]) ;
eeprom-w3 = eeprom-read-word(&ITable [ table-index])
eeprom-w4 = eeprom-read-word(&T-Table[table-index])
USARTINT-ENABLE;

DAC-writeBuffer(dacOa, eeprom-wl);
_delayus (10);

DAC-writeBufferUpdateAll (dac0_b , eeprom-w2); /
write Y

_delay-us (10)

//write I and update
//not implemented in this test , parameters for I

keep changing

if (run-state-enum ESTATESEQ-PFIXT){
delay-ms (1) ;

SET (PORTA, PORTA7);
_delay-ms (1) ;

CLEAR(PORTA, PORTA7) ;
}
else if (run-state-enum = E-STATESEQPVART){

for(uint16_t i = 0; i < eeprom-w4; i++){
_delay-us (TGRANULE);

}
}

t ableindex++;
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if( table-index >= eeprom-read-word(&table-length)

)
{

table index =0;
}

ISR(USART0 RX-vect) * If we get a message*/

{
USARTINTDISABLE;

Vector
DIAGTOGGLE;
//RTSINTDISABLE;

interrupt vector*/
unsigned char verify = rece

character
unsigned char com-verify = 0;
//laser-enabled = false;

//disable USART INterrupt

/*Disable RTS external

iveByte () ; //get verification

//Command verify byte
// disable laser as default

//send command to dim laser
' *'I)(verify -

transmitfByte ( 'V') ; Respond that correct command is
received
// if it matches the special character [ascii value

of Ox2A], then do command split
unsigned char command = receiveByte ()

//unsigned char ci, c2;
switch (command)

{
case 0x00:
{

/D is able

transmitByte (command);
received

DAC-stop ()

Outputs on DACs

//send that command

com-verify = '0';
break;

}
case 0x0l:

{
//Enable

transmit Byte (command);
received

Outputs

//send

on DACs

that command has
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DAC-init (;

com-verify = '1';
break;

}
case 0x02: /Stop outputting data

{
transmit Byte (command); /send that command has been

received
run state-enum=ESTATESTANDBY;

com-verify = '2';
break;

}

case 0x03: /Start outputting data to DACs
sequentially , fixed time

I
transmitByte (command); /send that command has been

received
run-state enum=ESTATESEQPFIX-T

com-verify = '3
break;

}
case 0x04: //Start outputting data to DACs

sequentially , variable time, intensity

{
transmit Byte (command); /send that command has been

received
run-state-enum=ESTATESEQYPNVART;

com-verify = '4'
break;

}
case 0x05: /Start outputting data to DACs

sequentially , line segements, variable time/intensity

{
transmitByte (command); /send that command has been

received
run-state-enum=ESTATESEQTRACE;

com-verify = '5'
break;

}
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//Set laser power source

transmit Byte (command)
received

//unimlemented
com-verify = 'S'
break;

}
case OxOC:
I

//flag allow

transmitByte (command)
received

//laser-enabled true;
LASERENABLE;
com-verify = 'L'
break;

//send

laser

//send

that command has been

that command has been

}

case OxOD:

{

}

//flag disable laser

transmit Byte (command)
received

//laser-enabled = false;

LASERDISABLE;
com-verify = 'O';
break ;

case OxOF:

//send

transmit Byte (command) ; send that command has been
received

run-state-enum = ESTATESHUTDOWN;
com-verify = 'R';

break;

}

//Block OxiX concerns setting internal data

case OxlO: //set Table Length

109

case OxOB:
{

that command has been
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{
transmitByte (command); //send that command has been

received
unsigned int length = (unsigned int) receiveByte

();
eeprom-update-word(&table-length , length);
com-verify = 'A';
break;

}

case Ox1:

{
//Load table variables X, Y, Z, T

transmitByte (command); //send that command has been
received

//transmitByte ('C');
uint16_t len eeprom-read-word(&table-length)

unsigned char table = receiveByte ;
transmitByte (table)

for (uint 16-t i = 0; i< len; i++)
{

eeprom-busy-wait ()
unsigned int temp = getlntFromSerial

switch(table){
case 0:

eeprom-update-word(&XTable [i],
break;

case 1:
eeprom-update-word(&YTable [i],
break;

case 2:
eeprom-update-word(& IT able [i]
break;

case 3:
eeprom-update-word(&TTable [i]
break;

_delayus (100)
}

}
table-index = 0;
in-drawing-pattern = 0;
com-verify = 'B'+table;

completed
break;

}

//return that

(debug);

temp) ;

temp) ;

temp) ;

temp);

the table is
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// Single Shot, X,Y, I, T

{
transmitByte (command) ; send that command has been

received
run-state-enum = E-STATESINGLEPYVART;
//transmitByte ( 'D ') ;
unsigned int temp= 0;

temp = getlntFromSerial(debug);
eeprom-update-word(&XSingle , temp) ;

temp = getlntFromSerial(debug);
eeprom-update-word(&Y-Single , temp) ;

temp = getlntFromSerial (debug);
eeprom-update-word(&ISingle , temp) ;

temp = getlntFromSerial(debug);
eeprom-update-word(& T Single , temp) ;

comrverify = 'T'
break;

}
case 0x13: //Clear table length

{
transmit Byte (command) ; send that command has been

received
eeprom-update-word(&table-length , 0);
run-state-enum = ESTATESTANDBY;
comverify = 'C'

}
case 0x14: //Clear all data from tables and single

shot register

{
transmitByte (command); /send that command has been

received
for(int i=0; i< MAXLENGTH; i++)
{

eeprom-update-word(&XTable [ i] 0);
eeprom-update-word(&Y-Table [ i] 0);
eeprom-update-word(&ITable [i] 0);
eeprom-update-word(&T _Table [ i] 0);

}
eeprom-update-word(&XSingle , 0);
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eeprom-updat e-word(& YSingle , 0) ;
eeprom-update-word(&ISingle , 0) ;
eeprom-update-word(& T-Single , 0) ;
run-state-enum=ESTATESTANDBY;
com-verify = 'C'
break;

}

//
// Block Ox3X concerns returning state data, the driver

will get the data on length and message

//

//send

long the

that command has been

data is

transmitByte (command);
received

transmitByte (1) ; // how
transmitByte (run-st ate)
transmitByte ('S ');
break;

case 0x31:
{

transmitByte (command); /send that command has been
received

transmitByte (1) ; 7/ how long the data is
uint16_t len = eeprom-read-word(&table-length);
transmitByte ((unsigned char) len&OxFF );
com-verify = 'L'
break;

}

case 0x32:

{
//read table data

transmit Byte (command); /send that command has been
received

unsigned char table = receiveByte ()
uint16_t len = eeprom-read-word(&table-length);
unsigned char ti = (unsigned char) len & OxFF;
t1 <<= 1; //multiply table by 2
transmitByte(ti); /We are ready to send packet size ti

, the computer should be robust enough to get all of

112

case 0x30: //return state

// Get table length



the data
uintl6_t temp= 0;
for(uint16_t i = 0; i< len; i++)
{

temp=0;

switch(table)

{
case OxOG: //xtable
temp = eeprom-read-word(&X

break;
Table [ii) ;

case OxOl:
temp = eeprom.
break;

case 0x02:
temp = eeprom.
break;

case 0x03:
temp = eeprom.
break;

}
transmitByte((

transmit Byte ((

//ytable
read-word (&Y

//Itable
read-word (&I_

//T table
read-word (&T

unsigned
unsigned

char)
char)

_Table [i]);

Table [i]);

_Table [i]);

(temp>>8))
(temp&OxFF));

}
comverify = 'D'
break;

}

Block Ox4X concerns diagnostics

case 0x40: Echo data back, this r

{
transmitByte (command); /send th

received
unsigned char temp = requestByte ();
com-verify = temp;
break;

}

eeds to work

at command has been
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// Un-allocate d commands are errors!

//

default :

f
transmit Byte (command);

received
comverify = ' ;
break;

}
}

transmitByte ( com-verify);
successful, final sync

}
else

{

}

//send that command has been

//FAILED C)A4MAND

//Reply that the command was
block

of

//RTSINTENABLE; //enable RTS interrupt vector

USARTNTLENABLE;//enable USART interrupt vector

}

Serial

Serial):

classdocs

channel-x = 0
channel-y = 1
channel-i = 2
channel-t = 3
verify = '*'
verify-response =

MAXLENGTH= 100
angular-scale =2.0
peak-voltage=5.0
bits=16
turn-on-current =1.9
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//if it fails , reply that the sending
transmit Byte ( 'Z') ; //FAILED CWIAM4ND

code failed

from serial import

import math

class GalvoSerial(
I, Y,



watts-amp = 0.81 #Laser Wattage

LASER FC COUPLED
amps-volt = 2.3 #Current to Las

voltage
watts-volt watts-amp * amps-volt
max-watt = 0.1 # Maximum power
REVERSEX = True;
REVERSEY= F als e ;

per amp of current RED

er based on input

allowed

def sendMessage( self , message, response=False , debug=
False , handshake=False):

buffer =[]
self . write( self . verify . encode (encoding=' utf_8
if self . read () - self . verify-response:

for word in message:
self. write(bytearray ([word]))
if debug:

print (word)
if handshake:

print( self. read())
if response:

try:
length = ord(self.read ())

length of the response
if debug:

print (length)
for i in range(length):

buffer. append(ord( self
except:

return buffer

buffer. append( self. read())

termination byte

return buffer

#read

def disableGalvo(self):
return s elf . sendMessage ([0 xOO 1)

def enableGalvo( self):
return s elf . sendMessage ([0 xOl])

def startOutputSequence ( self , var-time =
message = [0x03] if not var-time else
return s e lf . sendMessage (message)

def stopOutputSequence( self):

#get the
message

.read()))

the final

False):
[0x04]
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return s elf . sendMessage ([0 x02])

def setSequenceLength( self , length):
length = min(max(1, length) , self .MAXLENGTH)
return self. sendMessage ([0x10, (length >>8)&xFF,

length ])

def loadSequence (self , channel , sequence , d=False)
message = [Ox11 , channel]
for item in sequence:

message. append ((item>>8) & OxFF)
message.append(item & OxFF)

print ( str (message) )
return self . sendMessage (message , debug=d, handshake=

True)

def loadData ( self , channel, sequence , d=False)
if channel='x' or channel='X' or channel self .

channel-x:
i f s e 1 f .REVERSEX:

sequence = [-1.0*i for i in sequence]
self . loadSequence ( self . channel-x , [ self .

angle-to-binary(x) for x in sequence] , d)
elif channel='y' or channel = 'Y' or channel self.

channel-y :
i f s eIf .REVERSEY:

sequence = [-1.0*i for i in sequence]
self . loadSequence ( self . channel-y , [ self .

angle-to-binary(y) for y in sequence] , d)
elif channel='Z' or channel = 'I ' or channel='INT'

or channel='Intensity ' or channel=se lf .
channel-i :

self.loadSequence(self.channeli, [self.
intensity-to-binary (i) for i in sequence], d)

elif channel='T' or channel = 'Time':
self. loadSequence( self. channel-t , [self.

time-to-binary(t) for t in sequence], d)
else:

print ( 'Undefined -channel ! ')
return 0

return 1
def setCoordinates (self , xangle , yangle)

x-bin = int (2**( self. bits -1) * (x-angle/(2.0* self.
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angular-scale* self. peak-voltage) + 1))
x-bin = min(max(xibin , 0) , 2** self . bits -1)

y-bin = int(2**(self.bits -1) * (y-angle /(2.0* self.
angular-scale*self. peak-voltage) + 1))

y-bin = min(max(y-bin , 0) , 2** self. bits -1)
message= [0x12] + self . byte-chunk (x-bin self . bits ) +

self . byte-chunk (y-bin , self . bits )
return s e lf . sendMessage (message , handshake=True)

def setIntensity (self, intensity-watt ):
i-bin = int (2** self . bits * (min( intensity-watt , self .

max-watt)/ self . watts-amp + self . turn-on-current)/

( self . amps-volt* self . peak-voltage))
message = [0x13]
message = message + self . byte-chunk ( iLbin , self . bits)

return self . sendMessage (message , long _response=False

handshake=True)

def enableLaser(self):

return s e l f . sendMessage ([0 xOC])

def disableLaser(self):
return self . sendMessage ([OxOD])

def singleShot (self, x-angle , yangle , intensity-watt

duration) :
i f s e I f .REVERSEX:

x-angle = -1.0*x-angle

i f s e I f .REVERSEY:
y-angle = -1.0*y-angle

x-bin = int(2**(self.bits-1) * (x-angle/(2.0* self.
angular-scale* self. peak-voltage) + 1))

x-bin = min(max(x-bin , 0) , 2** self . bits -1)
print ("X- binary -=-%s " % x-bin)
y-bin = int(2**(self.bits-1) * (y-angle/(2.0* self.

angular-scale* self. peak-voltage) + 1))
y-bin = min(max(ybin , 0) , 2** self. bits -1)
print ("Y-binary -=-%s" % ybin)
i-bin = int (2** self . bits * (min( intensity-watt , self .

max-watt)/ self . watts-amp + self . turn-on-current )/
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(self. amps-volt* self . peak-voltage) )
print(" Intensity -binary -=-%s" % iLbin)
t-bin = min(max(int (duration * 2000) ,0) , 2** self. bi

-1) #500 useconds per digitial unit
print( 'Time- binary -=-%s ' % tbin)
message= [0x12] + self. byte-chunk(x-bin , self .bits)

self .byte-chunk(y-bin, self .bits) + self .
byte-chunk(iLbin , self. bits) + self. byte-chunk(
t-bin , self.bits)

return self . sendMessage (message , handshake=True)
pass

def getState(self):
return self .sendMessage([0x30

def getSequenceLength( self):
return s e l f . sendMessage ([0 x31]

def getSequence(self , channel):
return self . sendMessage ([0 x1O,

True)

def echo(self , letter):
return self . sendMessage ([0 x40

=False ) #the Verify
not considered a respons

internal state

def byte-chunk (self , num, length,
output = []
mask = 2**byte-length-1
chunks = int (math. ceil(length
for segment in range (chunks):

e

I, response=True)

r esponse=True)

channel] , response=

ord(letter)], response
byte is the letter sent
since it does not read

byte-length=8):

/ (byte-length * 1.0)))

shiftmask = mask<<(byte-length *(chunks-segment

-1))
data shift mask & num
data = data>>(byte-length *(chunks-segment -1))
output. append(data)

return output

def angle-to-binary (self, angle):
ang-bin = int (2**(self.bits -1) * (angle/(2.0* self.

angular-scale* self peak-voltage) + 1))
ang-bin = min(max(ang-bin , 0) , 2** self. bits -1)
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return ang-bin

def intensity-to-binary (self, intensity) #Assumes linear
mapping between intensity and binary code
i-bin = int (2** self . bits * (min( intensity , self.

max-watt)/ self. watts-amp + self . turn-on-current)/

( self . amps-volt* self . peakvoltage ) )
i-bin = min(max( ibin , 0) , 2** self . bits -1)
print(" Intensity -binary -=-%s" % iLbin)
return iLbin

def time _to-binary ( self , time):
tbin = min(max( int (time * 10000) ,0) , 2** self. bits -1)

#500 useconds per digitial unit
return tbin

def limit (self , num, lower=O, upper=2**bits -1):
return min(max(num, lower) , upper)

def purge(self):
return self.write(bytes([OxFF]))
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Set State =
SCANPOINTS

Figure F-1: Listener Program Flow
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Project Next Point
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Disable Interrupts
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Enable Interrupts
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Figure F-2: Scanning Sequential Points Program Flow

121



Execute Command

Yes

Set State? Write To RAM -
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Send Failure
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Figure F-3: Command Parser Flow
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Internal Operation
Boot

Sequence

Main Loop
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State = STANDBY

Send X, Y Galvos to 0,0
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Initialize Serial Port

Enable Serial Interrupt

Main Loop
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tate = STANDBY Wait 100 us

No

Yes
State = SEQPOINTS? Project Next Point

No

Stae UN-SG? Yes Project Next
State = LINE_SEG? s Line Segment

No

State = STANDBY Ret

Return

urn

Figure F-4: Controller Program Flow
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Figure F-5: Interrupt Routine Flow
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