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Abstract
There is urgent need to develop treatments for inducing regeneration in injured organs. Porous
collagen-based scaffolds have been utilized clinically to induce regeneration in skin and
peripheral nerves, however still there is no complete explanation about the underlying
mechanism. This thesis utilizes advanced microscopy to study the expression of contractile cell
phenotypes during wound healing, a phenotype believed to affect significantly the final outcome.

The first part develops an efficient pipeline for processing challenging spectral fluorescence
microscopy images. Images are segmented into regions of objects by refining the outcome of a
pixel-wide model selection classifier by an efficient Markov Random Field model. The methods
of this part are utilized by the following parts.

The second part extends the image informatics methodology in studying signal transduction
networks in cells interacting with 3D matrices. The methodology is applied in a pilot study of
TGFP signal transduction by the SMAD pathway in fibroblasts seeded in porous collagen
scaffolds. Preliminary analysis suggests that the differential effect of TGFP1 and TGFP3 to cells
could be attributed to the "non-canonical" SMADI and SMAD5.

The third part is an ex vivo imaging study of peripheral nerve regeneration, which focuses on
the formation of a capsule of contractile cells around transected rat sciatic nerves grafted with
collagen scaffolds, 1 or 2 weeks post-injury. It follows a recent study that highlights an inverse
relationship between the quality of the newly formed nerve tissue and the size of the contractile
cell capsule 9 weeks post-injury. Results suggest that "active" biomaterials result in significantly
thinner capsule already 1 week post-injury.

The fourth part describes a novel method for quantifying the surface chemistry of 3D matrices.
The method is an in situ binding assay that utilizes fluorescently labeled recombinant proteins
that emulate the receptor of interst, and is applied to quantify the density of ligands for integrins
a113, a2p1 on the surface of porous collagen scaffolds. Results provide estimates for the
density of ligands on "active" and "inactive" scaffolds and demonstrate that chemical cross-
linking can affect the surface chemistry of biomaterials, therefore can affect the way cells sense
and respond to the material.

Thesis Co-Supervisor: loannis V. Yannas
Title: Professor of Polymer Science and Engineering
Thesis Co-Supervisor: Peter TC So
Title: Professor of Mechanical and Biological Engineering
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Chapter 1: Introduction

This Chapter provides a brief introduction to the motivation, challenges, and key contributions of
this thesis. Each Chapter is organized so that it can be read independently of the rest.

1.1 The Clinical Need for Induced Regeneration
Regenerative medicine is a branch of science and engineering that leads to development of
treatments to restore the structure and function in damaged organs or tissues. Organ damage,
due to either acute (e.g. accidents, blasts) or chronic injuries due to disease, is a common
problem faced by millions of humans. In mammals (including humans) severe organ injury
initiates a complex cascade of biological events (wound healing) that does not result in the
restoration of the initial structure and function of the organ. Instead, wound healing in adult
mammals leads to an organ that is usually severely compromised in terms of function and
structure. This can result in significant human morbidity and can compromise quality of life.

Several animals are known to be able to regenerate spontaneously severely injured organs. For
example, certain amphibians can regenerate large parts of their limbs [Brockes and Kumar
2008; Kragi et al. 2009] through their ability to de-differentiate cells in the proximity of the injury,
eventually leading to re-differentiation to the appropriate cell types required for forming a new
limb [Gurtner et al. 2008; Poss 2010]. Recently a strain of mouse was reported able to
regenerate spontaneously large skin wounds, possibly the result of an evolutionary modification
for escaping predators [Seifert et al. 2012]. It is known that mammals can regenerate injured
organs during the early phase of gestation [Gurtner et al. 2008]. These observations suggest
that adult mammals may conceivably possess the appropriate regenerative capacity in latent
form, which under suitable conditions could lead to organ regeneration.

Organ regeneration has been a dream of humans since ancient times (Prometheus has claimed
the very first patent in liver regeneration). However, treatments that provide clinically significant
regeneration in adults have been developed only over the past thirty years [Yannas et al. 1982].
Such treatments include the use of porous collagen-based biomaterial grafts to induce
regeneration in injured skin [Yannas et al. 1989] and peripheral nerves [Chamberlain et
al.1998b]. Despite the success of these materials, there is a pressing need to develop new
treatments that could induce regeneration in other organs. To address this need, a great deal of
research effort is underway towards various directions: biomaterial development, decellularized
xenografts, stem cells, and chemical strategies. Nevertheless, the field of regenerative medicine
can still benefit very much by improvement in understanding of just how existing successful
treatments manage to change the wound healing outcome in ways that favor regeneration.

1.2 Challenges in Biomaterial Design
Over the past twenty years a lot of research has been devoted to the development of new
materials that could induce regeneration in a wide range of injured organs [Ratner and Bryant
2004]. Several companies have developed collagen-based materials similar to the ones
described in [Yannas et al. 1982]. A large number of research efforts have led to development
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of new bio-mimetic materials, which have similar structure (at the micron level) and/or chemical
composition as the extracellular matrix (ECM) of the organ of interest [Ratner and Bryant 2004].
Such approaches include the application of novel 3D printing methods [Derby 2012]. Other
research efforts focus on designing artificial materials that can guide the differentiation of stem
cells into organ-specific cell types [Lutolf and Hubbell 2005; Sands and Mooney 2007]. Such
approaches consider regeneration as a synthetic event that emulates the formation of the organ
during development. However, the process of regeneration is probably more complicated. The
wound healing process is a complex cascade of many processes that affect the synthesis of
new organ tissue. Therefore, the rational design of biomaterials would benefit from
consideration of all aspects of wound healing, and not just the synthesis of new organ tissue.
One example of a wound healing process that has been largely neglected in the literature is
closure of a wound by contraction [Yannas 2001]. Wound contraction refers to the organized
expression of contractile phenotypes in the wound leading to differentiated cells that induce
wound closure primarily by pulling together the wound edges toward the center of the wound.
Another factor that prevents principle-based design of biomaterials, is the lack of knowledge of
the effects induced in cells by their interaction with insoluble 3D microenvironments, such as
those presented by biomaterials. Even though the elementary molecular components that
mediate cell-matrix adhesion are known, there is still a lot to learn about how adhesion of
different cell types to a variety of 3D matrices by specific receptors regulates cell phenotypes
related to wound healing. Investigators of the required cell-matrix interaction studies that could
provide this information face several challenges. One of them is the difficulty in quantifying the
microenvironment that cells sense inside the matrix. At the moment there are very few methods
for quantifying in situ several key properties of a 3D matrix that are detected by cells, including
its surface chemistry and its strain state. Another factor that makes cell-matrix studies hard is
the difficulty in quantifying the cell response inside highly porous 3D matrices used as
biomaterials (scaffolds) in situ. Finally, due to the complex nature of the wound healing process,
these studies need to be done in vivo using animal models. Quantifying cell-biomaterial
interactions and their resulting effects on the synthesis of new organ tissue in vivo is labor
intensive, and expensive.

1.3 Using 3D Optics to Study Cell-Matrix Interactions
3D imaging methods are imaging modalities that have optical sectioning capability and therefore
can provide sharp images of the focal plane located inside a 3D sample with minimal
interference from out-of focus signals. 3D imaging methods, such as confocal microscopy
[Pawley 2006] and multi-photon microscopy [Denk et al. 1990], can provide a 3D image of a
thick specimen without the need to cut the sample into thin sections.
3D optics and in particular multi-photon microscopy is a very promising methodology for
studying 3D matrices, for several reasons. They enable high-resolution imaging of cells and
biomaterials in situ without the need to stain or cut the cell-matrix system. Combined with the
toolbox of fluorescent markers and modern gene manipulation methods, they can provide
molecular level information for a large variety of processes. Multi-photon microscopy can be
implemented either with in vitro experimental systems, or with in vivo animal models. Several
components of the ECM (frequently used in biomaterial fabrication) have intrinsic optical
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spectroscopic signatures. Finally, advanced imaging methods enable multiplexing several
optical signals in order to acquire information-rich data with small effort.

1.4 Organization of this Thesis
In this thesis we have exploited the capabilities of multi-photon imaging in order to conduct three
studies related to peripheral nerve regeneration. The three studies are designed to acquire
information that describes quantitatively cell-matrix interactions and can be put to use in
principle-based biomaterial design. Of particular interest is the study of phenomena related to
wound contraction.

This thesis is organized in the following manner:

- Chapter 2 addresses the application of spectral multi-photon microscopy in the
acquisition of large information-rich data sets. It describes an image processing pipeline
that processes raw spectral microscopy data and outlines physical objects that can be
further described quantitatively in an application-dependent way. It provides analytical
information that can be used to determine the accuracy and the precision of the
calculations as well as guidelines for the design of accurate high-content imaging. This
chapter provides a toolbox that is used by the following three chapters, all of which
utilize spectral multi-photon microscopy.

- Chapter 3 describes an imaging-based approach for studying signal transduction
pathways in cells that interact with 3D matrices. The methodology developed is applied
to a pilot study of TGFP signaling via the SMAD pathway in primary cells seeded inside
collagen scaffolds, an environment similar to that applied clinically for skin regeneration.
The TGFP pathway was chosen because it is known to regulate wound contraction, a
critical cell phenotype for wound healing. The method can be utilized to study how cell-
matrix adhesion controls cell phenotypes by modulating particular signal transduction
pathways.

- Chapter 4 describes an ex vivo imaging study of induced regeneration in peripheral
nerves. This study follows recent findings of a strong inverse relationship between the
quality of nerve regeneration and wound contraction 9 weeks post-injury in experimental
animals. It utilizes the imaging tools described in Chapter 2 to provide high-resolution
high-content images of the contractile cell capsule that forms around the newly-formed
nerve tissue during the early phases of wound healing. The study provides results for
wounds grafted with two collagen conduits known to possess significantly different ability
to induce peripheral nerve regeneration (one is "active", the other is "inactive"), in order
to collect additional evidence supporting the hypothesis that nerve regeneration conduits
induce regeneration by blocking wound contraction.

- Chapter 5 describes a novel methodology for quantifying the surface chemistry of 3D
matrices in situ. The method utilizes soluble fluorescent markers that emulate the
binding behavior of the adhesion receptor of interest. This Chapter provides extensive
biochemical characterization of the markers. The density of adhesion ligands is
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quantified via an in situ binding assay based on the multi-photon imaging tools described
in Chapter 2 and appropriate binding analysis. The methodology developed is applied to
the quantification of ligand density for integrins al1 and a2p1 for the two collagen
scaffolds used in the animal study described in Chapter 4. This methodology can be
used to characterize different kinds of biomaterials by quantifying the insoluble
microenvironment felt by cells inside them.

Biomaterial development
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Chapter 2: Probabilistic Data Processing
for Spectral Fluorescence Microscopy

2.1 Chapter Overview
This chapter describes a methodology for processing data acquired by single photon-counting
spectral multi-photon microscopy. The methodology consists of a general purpose image
processing pipeline (a series of image processing tasks) that converts raw spectral imaging data
into information that can be further utilized for application-dependent quantitative analysis.
Specifically, the pipeline provides two outputs: i) a segmentation of the 3D image into regions of
particular physical meaning ("classes") described by the presence of particular emission
sources, ii) an estimation of the emission rate of the emission sources present in each pixel.
The methodology described in this chapter has been developed for processing low-signal
images of complex samples (samples that contain multiple kinds of "classes" and multiple
emission sources), and can be applied to process images of a large variety of biological
samples. The remaining chapters of this thesis describe imaging-based studies related to cell-
matrix interactions, all of which rely in the methodology described in this chapter.

2.1.1 Motivation
Fluorescence microscopy is one of the most widely applied tools in biological research and
medicine, and is applied in increasingly more complex biological systems. This trend has been
triggered by the development of novel imaging modalities (such as multi-photon microscopy
[Denk et al. 1990] and super-resolution imaging [Hell and Wichman 1994; Betzig et al. 2006;
Rust et al. 2006; Bates et al. 2007; Hell 2007]), by the development of fluorescent protein
technology [Zhang et al. 2002; Giepmans et al. 2006; Lippincott-Schwartz and Patterson 2009;
Lippincott-Schwartz 2011; Crivat and Taraska 2012], and by the development of molecular
biology methods that enable fluorescent tagging in cells or organ-specific expression of
fluorescent markers animals (for example the "rainbow moue" [Livet et al. 2007]). These
technological advances led to novel imaging-based methodologies such as large-scale in vitro
imaging-based screening [Carpenter and Sabatini 2004; Pepperkok and Ellenberg 2006;
Carpenter 2007; Kitami et al 2012], image informatics [Orvedahl et al. 2011], and in vivo
imaging of disease models in small animals [Kerschensteiner et al. 2005]. Fluorescence
imaging based methods can provide unique information of high temporal and spatial resolution
that would be otherwise hard or impossible to acquire using the traditional tools of biological
sciences (genetics, biochemistry, and molecular biology).

The most common fluorescence-based imaging modality is wide-field microscopy, a
straightforward technique that acquires 2D images and requires cheap instruments found in
almost all biological research labs. Usually samples contain more than one fluorescence
emission sources, and each fluorophore is imaged sequentially using appropriate filter sets
(emission/excitation filters and dichroic filter). A similar sequential approach for imaging multiple
sources is utilized in confocal fluorescence microscopy, the most widely-used 3D imaging
modality [Pawley 2006]. However the finite size of fluorophore emission spectra limits the
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number of fluorophores that can be imaged using this standard approach to 3 or 4, and the
sequential acquisition of an image for each source reduces throughput.

Figure 2.1.1: Applications of multi-photon imaging. a: imaging inhibitory synapses and dendritic spines in L2/3
pyramidal neurons of mice brain in vivo [Chen et al. 2012]. b: spectral multi-photon imaging of transected rat sciatic
nerves treated with collagen biomaterials ex vivo (Chapter 4). c: image informatics study of TGFP signaling in
fibroblast interacting with porous collagen scaffolds in vitro (Chapter 3). d: in situ quantification of surface chemistry
on porous collagen biomaterials by multi-photon microscopy (Chapter 5).

The application of imaging-based methods in increasingly complex problems leads to the need
for increasingly larger throughput (information acquired per time). Currently there are two
approaches to increase throughput in imaging experiments:
- Increase the imaging acquisition speed. Examples include the development of multi-focal

multi-photon microscopy (MMM) [Kim et al. 2007] and wide-field multi-photon microscopy
[So and Kim 2009; Kim and So 2010].

- Increase the information content of the acquired images by acquiring data that can provide

more information per experimental time. Examples include spectral microscopy,
fluorescence lifetime imaging (FLIM), and spectral-lifetime imaging [Bird et al. 2004].

This thesis focuses on the second approach for increasing the throughput of biological

fluorescence microscopy. Specifically, this chapter describes a novel image processing pipeline

for extracting high-content information from low-signal spectral multi-photon microscopy data.

The remaining chapters utilize this methodology to study several phenomena related to

peripheral nerve regeneration. The developed methodology is not limited to multi-photon

microscopy, and can be applied also in spectral confocal fluorescence microscopy.

2.1.2 Objectives
The objective is to develop an image processing pipeline that converts raw spectral microscopy

data into reliable information that can be used to study biological phenomena quantitatively,
such as the ones described in Chapters 3-5. The pipeline is developed with the following key

specifications in mind:
- Process large imaging datasets (106_107 pixels) with feasible computational cost.

- Process complex images that contain multiple kinds of objects, each containing multiple

distinct emission sources. Resolve both the spatial extent of the objects and their

composition (contribution of emission sources).
- Capable to process low signal images (less than 50 photon counts per pixel) to enable

studying difficult samples that contain multiple weak endogenous fluorophores.
- Applicable to various kinds of spectral microscopes, and not just to the particular spectral

multi-photon instrument (Section 2.3) used in this thesis.
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2.1.3 Image Processing Pipeline Overview

Overview of Image Processing Tasks
Chapter 2 describes a generic (application independent) image processing pipeline that can be
utilized as the first computation steps in a wide variety of imaging-based studies (for example
the three imaging applications described in Chapters 3-5) based on spectral 3D microscopy.
The pipeline is implemented in MATLAB (Appendix M) and consists of five major tasks:
- Image registration. Due to optical reasons the field of view (FoV) of microscopy images

(called frames) is limited. Imaging samples whose dimensions are larger than reasonable
FoV is implemented by sequentially first translating the sample in the X-Y plane (image
plane) using a stage and then acquiring frames. Each frame of a 3D microscope (e.g.
confocal, multi-photon) images a thin slice of the sample. 3D imaging is implemented by
translating the objective using a piezoelectric actuator and acquiring frames at different XY
planes inside the sample. Image registration is the task of calculating the optimal "stitching"
of the frames I at the same plane. The outcome of image registration is then utilized to
assemble the frames. Since the spectral signatures si may be position dependent (row-
column), it is advised to stitch the frames after local segmentation.

- Spectral unmixing: This is the key computation in processing spectral microscopy data, For
each pixel of an image, spectral unmixing processes the M-channel signal y in order to
estimate the emission rates of the N sources assumed to be present in the sample. The
accuracy and precision of spectral unmixing depends on several factors, including the
number, identity, and emission rates of the sources present in the sample modeling errors,
and the degree of accuracy in knowledge of source spectral signatures si (Section 2.4).

- Spectral calibration. Sometimes spectral signatures si can be measured experimentally.
Otherwise, spectral signatures need to be estimated based on the spectroscopic properties
of the source and the optical configuration of the instrument. The purpose of the spectral
calibration step is to estimate parameters of the image detection system that affect
estimation accuracy of the source spectral signatures si (Section 2.3.7).

- Local image segmentation: This step classifies each pixel into one of possible "classes". A
class is a region that corresponds to a specific physic entity. Each class contains a distinct
set of emission sources. For each pixel, pixel-wide segmentation consists of three steps:
spectral unmixing, class evidence calculation, and Bayesian classification (Section 2.5.2).

- Global image segmentation: This step refines the outcome of the pixel-wide segmentation in
order to improve segmentation accuracy. The need for global segmentation is due to the
fact that local segmentation is not accurate at low photon counts, does not incorporate
information about the optical physics of the system, and does not incorporate a-priori
knowledge on the "meaningful" spatial context in the image. Global segmentation partitions
each image into regions, defined as continuous clusters of pixels that belong to a class
(Section 2.5.3).

This generic image processing pipeline provides a segmentation of the assembled frames into
regions of particular classes, and estimates of the sources present at each pixel based on the
assigned class of this pixel. Imaging-based studies may require subsequent application-specific
image processing tasks that convert regions into objects (e.g. cells, fibers), quantify objects
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using a series of features, and finally use statistical analysis to process the features and provide

answers to biological questions:
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Figure 2.1.2: Schematic of the key steps of an imaging-based study, which converts spectral fluorescence

microscopy data into evidence/conclusions. i) a generic image processing pipeline that converts raw data into regions

and source emission rates, ii) an application specific pipeline that converts the outcome of the first part into objects

and quantifies them using a series of features, and iii) appropriate statistical analysis that integrates imaging results

with biological knowledge in order to provide evidence and conclusions. Chapter 2 describes a generic image

processing pipeline (first part).

Required Input from the User
The developed image processing pipeline requires the following input from the user:

1. Data acquisition details (e.g. number of frames, stage raster scanning pattern)

2. Number and identity of classes.
3. Number and identity of emission sources present at each class.
4. An approximate knowledge on the upper and lower limits on the emission rate of each

source of each class. If these limits are not known in advance they can be approximated

based on the outcome of a spectral unmixing step that includes all sources.

2.1.4 Chapter Description
Section 2.2 provides background on multi-photon microscopy, spectral microscopy, and the

state-of-the art on the computation tasks related processing spectral fluorescence microscopy

data. Section 2.3 describes in detail the instrument utilized in this thesis, and its calibration.

Section 2.4 describes in detail the spectral unmixing task, the backbone of pipeline. It discusses

the underlying mixing models, numerical implementation of ML estimation, theoretic estimations

on the estimation accuracy and precision in the presence and absence of modeling error, and

provides simulation results. Section 2.5 describes the local and global image segmentation

tasks. Section 2.6 provides examples of the application of the developed image processing

pipeline in the processing of several biological samples imaged by spectral multi-photon

microscopy.
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2.2 Background: Processing Spectral Multi-photon Microscopy Data

2.2.1 Multi-photon Microscopy
In fluorescence imaging contrast is generated by fluorophores, molecules that emit light upon
light excitation. Due to energy losses, the energy of each emitted photon is slightly less
compared to the energy of the incident photon that excited the fluorophore, causing the
wavelength of emission light to be longer than the wavelength of excitation light (Stokes shift)
[Lakowicz 2006]. Fluorescent microscopes utilize this shift to generate low background images
by blocking the emission light without affecting the emission. Multi-photon microscopes refers to
a special class of instruments where fluorophores are excited by the near simultaneous
absorption of two low-energy photons, instead of one high energy photon [Goeppert-Mayer
1931; Denk et al. 1990].
In multi-photon microscopy (MPM), the emission light signal is generated by particular
molecules in the sample (denoted as "sources") that are excited by incident light through two
mechanisms that depend non-linearly on the intensity of the excitation light [Zipfel et al. 2003]: i)
multi-photon excitation fluorescence, where fluorophores are excited by the near-simultaneous
absorption of two or more photons [Goeppert-Mayer 1931; Denk et al. 1990], and ii) higher
harmonic generation, where illumination light is coherently scattered into light of integer-
multitude frequency [Gannaway and Sheppard 1978; Campagnola and Loew 2003; Chen,
Nadiarynkh et al. 2012]. The emissions detected in this thesis are originated by the two most
common nonlinear optical mechanisms: two-photon excitation fluorescence (TPEF), and second
harmonic (SH) emission. Although usually the same instrument can excite and detect both
TPEF and SH, [Zipfel et al. 2003], for simplicity only the term MPM is used.
The non-linear dependence of the signal on excitation light intensity, and the very small cross-
sections of nonlinear optical phenomena (TPEF, SH) create the need for extremely large
excitation light intensities for efficient source excitation. At the same time, the incident light
should not damage the samples. Both contradicting requirements can be satisfied when a
femtosecond pulsed laser is focused inside a sample by a high NA objective. A critical feature of
MPM is that the vast majority of emission originates within a small region surrounding the
excitation laser focus' (Figure 2.2.1). This provides the optical sectioning capability that is
necessary for 3D imaging, without the need for a spatial filter (pinhole) that is used in confocal
imaging [Denk et al. 1990].
The two major advantages of multi-photon imaging compared to comparable 3D imaging
methods (confocal imaging) are: i) the ability to image deeper inside biological samples due to
the IR excitation wavelength used (less prone to scattering) and due to the little amount of out-
of-focus light generated by the incident excitation light [Denk et al. 1990; Helmchen and Denk
2005], ii) the reduced photo-toxicity caused to the biological samples, again due to the use of IR
excitation light. Therefore, most applications of MPM lie in the area of in vivo imaging in animal
models [So et al. 2000]. However, this thesis takes advantage of another feature of two-photon
excitation that is very useful for spectral microscopy: multi-photon excitation has broader cross-

1 An interesting exception of the multiphoton signal localization takes place in very deep-tissue imaging in
scattering samples [Helmchen and Denk 2005], a case that is not considered in this study but is
discussed in Sections 2.4.5 and 2.4.7.
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section peaks compared to single-photon excitation, making possible to simultaneously excite
more fluorophores of different emission color (Figure 2.2.2).
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Figure 2.2.1: Principles of two-photon excitation microscopy. Left: Basic schematic of a two-photon microscope. A
beam of IR femtosecond laser (red lines) is focused inside a sample by a high NA objective lens. Emission (green
lines) is collected by the same objective, separated in a dichroic mirror and detected in a sensor. 3D imaging is
acquired by controlling the position of excitation light focus using x-y galvanometric mirrors and a piezoelectric
objective actuator [So 2002]. Right: Two-photon excitation is localized around the focus (top) resulting in intrinsic
optical sectioning. In contrast, in single-photon excitation there is significant out-of focus light, that needs to be
removed by optical filtering [Belfied research group, University of central Florida, http://chemistry.cos.ucf.edu/belfield]
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Figure 2.2.2: A major advantage of multi-photon microscopy of particular interest to spectral imaging, is the broader
peaks of two-photon excitation. Left: Optimal two-photon excitation wavelengths for several fluorescent dyes
[Olympus Corporation, http://www.olympusmicro.com/]. Top Right: Two-photon excitation spectra (in GM) of several
fluorescent dyes as a function of excitation wavelength. BM: p-bis(omethylstyryl)benzene, CB: Cascade Blue, LY:
Lucifer yellow; BD: Bodipy, DP: DAPI not bound to DNA, DN: (dansyl), PY: 1,2-bis-(1-pyrene decanoyl)-sn-glycero-3-
phosphocholine, CM: coumarin 307. [Xu et al. 1996]. Bottom Right: Two-photon excitation spectra (in GM) of
several fluorescent protein estimated by Fourier-transform spectroscopy [Hashimoto et al. 2010].
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2.2.2 Spectral Microscopy Instrumentation
The standard practice in multi-label fluorescence imaging is to acquire several exposures for
each image sequentially. At each exposure, an appropriate choice of excitation light wavelength
and emission filters ensures that only one fluorophore contributes to the detected signal. Such
sequential approach limits acquisition speed and can cause photo-bleaching. Furthermore, due
to the large width of fluorophore emission spectra peaks, the number of fluorophores that can
be imaged with minimum cross-talk is limited [Zimmerman 2005]. Spectral imaging bypasses
many of these problems by acquiring a single exposure for each image, using a multiple-
channel detector. Every channel of the detector detects signal within a particular region of the
EM spectrum. Subsequent processing of the acquired data aimS to resolve the emission of the
sources that contribute to this signal based on the different emission spectra of each source.
Spectral imaging can work even in the case of multiple sources of overlapping emission spectra,
albeit with decreasing accuracy as this overlap increases.

Spectral fluorescence microscopy can be implemented through several different configurations
[Hiraoka et al. 2002; Berg 2004; Garini et al. 2006; Rietdorf and Stelzer 2006; Burton et al.
2009]. The key difference of each configuration is the way the emission optics resolve the
emission light by its wavelength. Wavelength-scanning configurations use a fixed or tunable
optical filter (circular-variable, liquid crystal, acousto-optical) to allow a particular wavelength
region reach the optical detector [Wachman et al. 1997, Lansdford et al. 2001]. In this case, the
same detector acquires all channels sequentially. Spatial-scanning configurations resolve
spectral components using a prism or a diffraction grating into a multi-channel optical detector,
which acquires all channels in parallel [Haraguchi et al 2002; Berg 2002]. Temporal-scanning
configurations extract the emission spectrum of the detected signal by post-imaging Fourier
spectroscopy [Chamberlain 1978; Malik et al. 1996; Tsurui et al. 2000; Hashimoto et al. 2010].
Published configurations of spectral fluorescence microscopes include single-photon excitation
microscopes (in confocal detection mode [Haraguchi et al. 2002; Sinclair et al. 2006] or wide-
field detection mode [Tsurui et al. 2000]) and multi-photon microscopes (MPM) [Landsford et al.
2001; Buehler et al. 2005; Im et al. 2010]. Compared to single-photon excitation wide-field
detection systems, confocal and MPM offer the ability of 3D spatial resolution. Specifically for
spectral imaging applications, MPM offer several advantages compared to single-photon
confocal microscopes: i) two-photon excitation has broader cross-section peaks compared to
single-photon, making possible to simultaneously excite more fluorophores of different emission
color, therefore increasing instrument throughput (for example CFP, GFP and YFP can be
simultaneously excited by 880nm light, although not equally efficiently), Figure 2.2.2 [Xu and
Webb 1996; Xu et al. 1996; Bestvater et al. 2002], ii) two-photon excitation microscopy utilizes a
dichroic filter of a single cut-off frequency. Confocal microscopes that utilize multiple laser lines
to excite multiple fluorophores need dichroic mirrors of complex transmission curve that can
complicate the accurate estimation of the spectral signatures of the sources [Berg 2004].
There are several commercially available spectral microscopes with 3D resolution. All of them
are available in both single-photon confocal and MP excitation versions. The Radiance Rainbow
system (Biorad, Hercules, CA) utilizes dichroic and acousto-optical filters similar to the
instrument described in [Davis and Shen 2007]. The TCS SP system (Leica Microsystems,
Wetzlar, Germany) utilizes a dispersion grating and reflecting mirrors. The META system (Carl
Zeiss, Oberkochen, Germany) utilizes a spectrograph and a multi-anode PMT [Haraguchi et al.
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2002; Berg 2004], similar to the system used in this thesis (Section 2.3). Sandia National Labs
commercialize a spectral microscope of high spectral resolution and dynamic range that utilizes
EMCCD progressive scanning [Sinclair et at. 2006]. Although the original design was developed
for confocal imaging, the same configuration has been applied in multi-photon imaging [Im et al.
2010]. Fourier spectroscopy can also be applied in widefield fluorescence microscopy
microscopes using commercially available interferometric imaging spectrometers and CCDs
[Tsurui et al. 2000].

Spectral microscopes use either CCDs or PMTs to detect light emission. CCD provide analogue
output readings. PMT output can be either in analog format or in photon counting mode
[Hakamata et. al. 2006], the later providing the best possible SNR and therefore is the most
appropriate configuration for imaging very weak signals.

2.2.3 Spectral Unmixing of Fluorescent Spectral Microscopy Images

Models and Algorithms
Spectral unmixing is a key computation step for spectral microscopy images. Spectral unmixing
provides the emission contribution of the individual sources present in the image. Almost all
publications that analyze fluorescent spectral microscopy data, describe the detected emission
y as a linear combination of the spectral signatures of the sources, described by the spectral
matrix S [Tsurui et al. 2000; Landsford et al. 2001]:

S -A = y [2.2-1]
This system of equations is related (but not identical) to the ML solution of the Gaussian
common noise mixing model (Section 2.4.4), which assumes equal noise in all channels [Tsurui
et al. 2000]. Since usually the number or detector channels M is larger than the number of
emission sources N, Eq. 2.2-1 is usually solved as a least-squares (LS) problem, using the left
pseudo-inverse of the spectral matrix S calculated by SVD [Tsurui et al. 2000]. Many references
refer to this solution of Eq. 2.2-1 as "linear unmixing. This left pseudo-inverse solution does not
impose non-negativity constraints, however it seems that in most applications this is not a
problem, probably due to high signal level and good knowledge of the sources' spectral
signature. Few studies utilize the non-negative least-squares (NNLS) method, which
incorporates non-negativity constraints, to solve the linear unmixing problem [Lawson and
Hanson 1974; Radosevich et al. 2008].
Few studies have utilized the Poisson observation model that incorporates the nature of photon
arrival in optical detections (Section 2.4.3), and therefore is expected to be more accurate for
low signal level images. The main reason is that the ML estimate from the Poisson mixing
model cannot be derived analytically, and can only be solved numerically using an iterative
numerical algorithm. [Davis and Shen 2007] claim to solve the nonlinear mixing models using a
proprietary non-iterative algorithm that is more accurate in low signal levels (less than 100
photons per pixel) compared to Eq. 2.2-1, but provide no information about the algorithm. The
same paper comments that the full additivity constraint may induce errors in the low photon-
count regime but this is not the case because the EM solution to the Poisson mixing model
satisfies the full additivity constraint automatically [Shepp and Vardi 1982]. The ML estimate of
related Poisson mixing models in PET and SPECT imaging has been calculated using
variations of the established expectation-maximization algorithm [Dempster et al. 1977; Bilmes
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1998]. [Shepp and Vardi 1982] proposed an iterative EM-like algorithm that automatically
satisfies the positivity constraints, and provide a proof for the convexity of the likelihood function.
[Tsui et al. 1991] compared the performance of the EM-like algorithm with the performance of
the WLS linear model solved using a conjugate gradient technique. [Kaufman 1993]
demonstrated that this EM-like algorithm is a scaled steepest ascent algorithm and equivalent to
a continuously re-weighted WLS, and proposed a preconditioned conjugate-gradient algorithm
to solve the WLS problem that satisfies non-negativity. Although the EM-like algorithm of [Shepp
and Vardi 1982] can be applied in the nonlinear fluorescent mixing model, fluorescent imaging
data are different than PET or SPECT data, which affect the choice of the appropriate numerical
implementation (Section 2.4.3).

A large part of the literature on spectral unmixing comes from the field of remote sensing (RS),
where multi-channel satellite images (spanning the visible and infrared EM regions) are used to
study the surface of earth [Varshney and Arora 2004; Richards and Jia 2006]. [Keshava, 2003]
provides an extensive overview of spectral unmixing algorithms for RS. Spectral unmixing for
RS consists of three steps: i) dimension reduction, ii) end-member estimation, iii) inversion.
Dimension reduction methods (principal component analysis (PCA), maximum noise fraction)
are critical for RS applications because of the large number of channels (bands) M that makes
computation expensive. End-member determination methods (minimum volume transforms,
fuzzy K-means clustering, non-linear least-squares, independent component analysis (ICA))
identify the spectra of the sources that contribute in the image. Inversion methods (least
squares (LS) with or without additivity constraints, non-negative least squares (NNLS), nonlinear
least-squares, and maximum a posteriori (MAP) estimators) identify the contribution of each
component based on the detected signal and the source emission spectra.
Although some of the methods developed for RS applications can be used to process spectral
fluorescence microscopy data, there are several important differences that affect the
implementation of spectral unmixing. Specifically, in spectral fluorescence microscopy

i) the number of channels M is larger than the number of sources N, but not large enough to
make dimension reduction necessary.

ii) there is much less uncertainty about the number and emission spectra of the "sources" that
contribute to the signal. therefore the end-member determination step is usually also omitted

iii) the signal level per channel can be quite low, sometimes approaching the photon-counting
regime. This affects the precision and accuracy of spectral estimation and affects the choice
of the appropriate algorithm for ML estimation.

Performance of Spectral Unmixing Algorithms
Several authors have attempted to describe how various factors affect the validity of spectral
unmixing calculations. Neher and Neher 2004] proposed to describe the performance of
spectral unmixing using a Figure of Merit (FoM), defined as the square of the ratio of SNR in the
presence of spectral mixing divided by the SNR in the absence of spectral mixing. Several
papers describe qualitatively that the accuracy of spectral unmixing calculations depends on the
degree of similarity between the emission spectra of sources [Lansdford et al. 2001], and
accurate knowledge of the spectral signatures of the sources present in the sample (Section
2.4.5). The accuracy of spectral unmixing estimation is correlated to the determinant of the
matrix of the Fisher Info matrix of the system, which depends on the spectral signature of the
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sources [Neher and Neher 2004]. Although the emission spectra of many chemical elements
are known, spectral unmixing requires the spectral signature of sources, which are either
measured experimentally or estimated them based on the properties of detection optics and
detectors (Section 2.3.7) [Tsurui et al. 2000; Berg 2004].

The number of stains used to treat a sample is not necessary equal to the number of sources
that can simultaneously contribute to the signal detected in a pixel. In many cases fluorophores
are localized in different compartments of the sample. In this case including all sources present
in the sample in the spectral unmixing calculations of each pixel induces significant estimation
errors that have not been addressed in the literature. [Zimmermann 2005] provides simulations
that evaluate the effect of uncertainty in the number of sources present in the sample. It
suggests that including additional sources does not induce significant estimation error because
spectral unmixing will assign to the extra sources a negligible contribution. Based on the
discussion of Sections 2.4.5-7 this seems reasonable only when the signal level is large. On the
other hand, omitting sources from the spectral unmixing calculation can cause serious
estimation errors. [Keshava 2000] suggests that an estimation of the number of components
can be derived based on the number of eigenvalues of the data matrix that are significantly
different than zero.

Several publications suggest optimum detector characteristics (number of channels, channel
spectral width) for particular spectral imaging application. Utilizing detectors of very large
channel number and small spectral detection width per channel is not advantageous, since the
photon count per channel decreases [Neher and Neher 2004; Zimmerman 2005]. The optimal
spectral detection windows for optimal spectral unmixing estimation accuracy depends on the
magnitude of background noise, the magnitude and ratio of fluorescent emissions, and the
shape of emission spectra [Neher and Neher 2004].
Most studies that have utilized spectral microscopy studied bright samples, as evident by the
published sharp images that lack the characteristic noise pattern of Poisson noise. Even papers
that suggest that the accuracy of the spectral unmixing calculation depends on the fluorescent
signal level [Lansdford et al. 2001] do not address the case of low signal level, where Poisson
noise makes spectral unmixing and classification less precise and accurate. [Davis and Shen
2007] apply spectral unmixing in relatively dim samples to resolve the emission of three dyes
whose emission peaks lie within 20nm (Texas red, alexa fluor 610, alexa fluor 633). Results
suggest estimation error is significant when the total photon count is N=50 photons/pixel but
much smaller for N=300 photons/pixel. However, the results of such studies cannot be
generalized to other systems. Instead, an analytic approach is necessary to derive performance
estimations for any set of sources of interest.

Challenging Applications of Spectral Imaging
Several applications of spectral microscopy are reviewed in [Zimmerman et al. 2005; Garini et
al. 2006]. Spectral microscopy has been applied to quantify FRET in live cells [Hiraoka et al.
2002, Haraguchi et al. 2002, Zimmermann 2005]. Published challenging applications include
seven-color immunofluorescent imaging of tissue sections [Tsurui et al. 2000], separation of
quantum dot signal from tissue autofluorescence in in vivo mouse imaging [Gao et al. 2004],
eight-color multiple-filter leucocyte cytometry [Mittag et al. 2005], spectral karyotyping [Garini et
al. 1996], spectral unmixing of four components (CFP, GFP, YFP, Dil) or the two very similar
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dyes GFP & fluorescein [Landsford et al. 2001]. Multiple exposures were often required for
imaging those samples than contain many sources. On the other hand, reducing the number of
exposures is crucial for minimizing photo-bleaching and photo-damage [Zimmermann 2005].
One way to reduce exposes is by using elaborate dichroic mirrors: [Haraguchi et al. 2002] use
one exposure to excite four dyes whose peaks lie in the [515, 645 nm] region. Multi-photon
excitation can also excite more stains simultaneously due to the broader two-photon cross
section peaks of fluorophores. [Sinclair et al. 2006] imaged simultaneously five dyes whose
spectra lie mostly in the 500-800 nm range excited by a single 488nm laser line and detected by
a novel EMCCD-based confocal microscope. However, three of the dyes were excited indirectly
through FRET. [Vermaas et al. 2008] imaged cyanobacteria cells via spectral confocal
microscopy and resolved the presence and localization of six fluorescence components within
the [500, 800] nm range. All fluorophores were excited by a single 488nm laser. The emission
spectra of four fluorophores lie within 50nm of the EM spectrum.

Blind Signal Separation
In contrast to spectral unmixing methods that estimate the emission contributions of all sources
assuming that the spectral signatures of all sources are known, blind signal separation (BSS)
methods attempt to estimate simultaneously the detected emission spectra of the sources and
their contributions. BSS methods include independent component analysis (ICA) [Hyvarinen et
al. 2001], non-negative matrix factorization (NMF) [Lee and Seung 1999, Berrya et al. 2007],
alternative least squares (ALS) [Keenan et al. 2002; van Benthem et al. 2002; Berrya et al.
2007], and expectation maximization (EM) [Fish et al. 1995]. BSS methods require multiple
measurements (or global analysis of images), and rely on assumptions regarding the nature of
the spectral matrix S and the emission rate vector I BSS algorithms are more complex and
sensitive to noise compared to spectral unmixing, however they can be useful in analyzing
samples that contain unknown sources, or samples where the emission spectrum of sources
can vary (e.g. due to interactions with other molecules, differences in the pH of the surrounding
environment or due to scattering in deep tissues that could affect the detected emission
spectra).

2.2.4 Local Image Segmentation
Image segmentation is the computation task that partitions a digitized image into discrete
regions. When regions have a particular physical meaning, they can be classified into one of a
set of possible region types (e.g. cells, fibers) referred to as "classes".
Image segmentation is a critical task for automated high-throughput imaging-based studies of
cells and tissues that rely on quantifying accurately the shape of features (e.g. cytoplasm,
axons), such as image informatics (Chapter 3), and connectomics [Glory and Murphy 2007; Jain
et al. 2010; Hangwood et el 2012]. The outcome of these methodologies depends critically on
the ability to accurately identify cells, estimate their boundaries, and then quantify various
spatial metrics of their morphology and emission (see Chapter 3). Image segmentation can be
challenging due to several reasons, including intensity variations, sample variations, presence
of noise, and complex morphology.
Image segmentation methods can be classified as "local" (pixel-wide) and "global" (region-wide).
Local segmentation methods assign each pixel to a class based only on information (intensity,
gradient, detected spectrum) from this pixel. Global segmentation methods process regions of
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pixel and fuse local pixel information with contextual spatial information, which suggests that
neighboring pixels are most likely to be of the same type (class). Section 2.2.4 provides
background on local segmentation methods. Section 2.2.5 provides background on Markov
Random Fields, a class of mathematical models that are utilized in this thesis for global image
segmentation.

Algorithms for Segmentation of Single-Channel Images
A large number of algorithms have been developed for segmenting single-channel (intensity)
images into distinct regions. These algorithms segment images based on particular features
(intensity, intensity gradient, and object shape) and can be classified into two families:
The first family of algorithms segment images into regions based on the assumption that
different regions have distinct and relatively homogenous intensity signals.
" Intensity thresholding, the simplest approach, classifies the pixels of an image based on the

pixel intensity and (one or many) threshold values. There are several approaches to choose
the threshold value, including Otsu's method (minimize in-class variance, maximize inter-
class variance) [Otsu 1979], and the related watershed transformation of the histogram
[Soille 2003]. Thresholding can be implemented globally (a single threshold for the whole
image) or locally (a distinct threshold for every image region). When thresholding works it is
fast and robust. However, thresholding could fail due to artifacts in the image or region
signal variations, and does not consider any information regarding the morphology of the
regions.

" Re-qion growing alqorithms grow homogenous regions based on similarity metrics between
neighboring pixels until all pixels are assigned to a region. A very popular algorithm is the
watershed algorithm. Watersheding is used to segment a region into contacting regions
based on particular geodesic distances defined in the region [Soille 2003]. Watersheding
can be applied either to an intensity image, or to the gradient of an image, or to the distance
transform of a binary mask. It is critical to make a correct initial estimate of region seeds in
order to avoid over-segmentation or under-segmentation.

The second family of algorithms segment images into regions by detecting region boundaries.
These algorithms assume that large intensity variations take place at region edges.
* Edqe detection alqorithms calculate the gradient of the image intensity, and then identify

boundaries based on the magnitude of the gradient. Examples include Canny's algorithm
[Canny 1986]. Edge detection algorithms methods are sensitive to noise, and sometimes
provide edges that are not connected.

* Active contour methods (also called "snakes") are methods that identify the outline of
objects in noisy images. A snake is an energy-minimizing spline guided by external
constraint forces and image-based potentials that pull it towards particular features such as
edges [Kass et al. 1988]. Over the past fifteen years several implementations (gradient
vector flow active contours [Xu and Prince 1997], diffusion snakes [Cremers et al. 2002],
and geometric active contours [Caselles et al. 1997]) have been applied in segmenting
several kinds of grayscale images.

A distinct set of algorithms utilized for image segmentation are clustering algorithms (e.g. k-
means clustering [Ng et al. 2006]), which group pixels into sets of similar intensity properties.
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Clustering algorithms belong to the field of unsupervised learning, and are preferred in
applications of limited a-priori information on the properties of the classes.

Algorithms for Segmentation of Spectral Fluorescence Images
Different kinds of objects present in samples usually contain distinct sets of sources of distinct
spectral signatures. Therefore different image classes (each corresponding to a corresponding
to different kind of object) usually have distinct spectroscopic properties. This additional
information provided by the detected spectrum y at each pixel can be used to enhance
segmentation performance.

Most local segmentation approaches utilize supervised classification algorithms, very similar to
the ones developed for processing multi-spectral Remote Sensing (RS) hyper2-spectral data
such as Bayesian classification, minimum-distance classification, and Mahalanobis classification
[Jackson and Landgrebe 2002; Varshney and Arora 2004; Richards and Jia 2006]. For example
[Landsford et al. 2001] utilized the Mahalanobis classifier of the commercial software ENVI
developed for RS applications. Brute force application of methods developed for RS to process
fluorescent images may not be optimal. RS images of earth derived by satellites contain a wide
range of vegetation, soil types, and human-made features, whose spectroscopic properties are
hard to model and may depend on ambient light. Therefore, in RS applications the spectral
properties of each class need to be estimated based on a training sample [Richards and Jia
2006; Bai et al. 2013]. On the other hand, in fluorescence imaging usually there is more
concrete information about the sources present in the samples and their spectroscopic
properties, enabling a more parametric application of Bayesian classification (Section 2.5.2).
Several related methods classify each pixel based on the "similarity" of its signal y with
"reference" spectra, each corresponding to a particular class. Spectral similarity is evaluated
using the Eucledian distance, the spectral angle measure (SAM) [Landsford et al. 2001, Garini
et al. 2006], or an entropy-based criterion (SPD) [Chang 2000].

Validation of Image Segmentation Algorithms
The performance of image segmentation algorithms is evaluated either by simulations, or by
comparing the outcome of the segmentation algorithm with a "ground truth" segmentation,
obtained usually by manual segmentation [Hangwood et el 2012]. There are two approaches for
quantifying the performance of image segmentation [Jain et al. 2010]:
- quantify the ability of a segmentation algorithm to assign each pixel the correct class

corresponding to the kind of object imaged in that pixel. This approach treats image
segmentation as a labeling problem, and quantifies the performance using several metrics
such as the percentage of pixels assigned to the correct class [Hangwood et el 2012], the
Rand index [Rand 1971; Coelho et al. 2009], the Jaccard similarity index [Dima et al. 2011],
the bivariate similarity index [Dima et al. 2011], and the error matrix [Varshney and Arora
2004]. This approach seems appropriate for evaluating the performance of local image
segmentation algorithms.

- quantify the ability of a segmentation algorithm to partition the image correctly into regions
that make physical sense without topological errors. This approach incorporates spatial

2 In remote sensing the term "hyper-spectral" is used instead of the term "spectral" to denote that the
imaging bands consist of both visible and infrared wavelengths
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context and gives emphasis on i) identifying correctly the bulk presence of objects, ii)
identifying correctly the borders between regions, iii) preventing invalid neighboring object
encounters, and iv) avoiding topologic mistakes. Sample metrics include the "warping error"
and the "rand" error described in [Jain et al. 2010]. This approach seems appropriate for
evaluating the performance of global image segmentation algorithms that incorporate spatial
context information, see also [Kerfoot and Bresler 1999].

Published studies suggest that there is no algorithm that outperforms other in all applications.
Segmentation accuracy depends on several factors including signal level, texture, noise, and
shape of objects [Hangwood et el 2012]. At the moment there is no study that evaluates the
performance of image segmentation algorithms for spectral fluorescence images, particularly in
the case of low signal level such as the one encountered in this thesis.

2.2.5 Global Image Segmentation by Markov Random Fields
A Markov Random Field (MRF) is a set of random variables F = [F1, F2, ..., Fm] defined on an
undirected graph g (a set of sites S with respect to a neighborhood system N) that satisfy the
positivity and Markov property [Li 2009; Koller and Friedman 2009]. Each Fi corresponds to a
particular site (node) of the undirected graph. The value fi of each random variable Fi can take
values from a label set L. A particular configuration F = {f} of the MRF corresponds to the joint
event that variables [F1, F2,...,Fm] take values {f} = [ff2, ... ,fm].

The purpose of MRF is to model spatial context and spatial interaction between the random
variables Fi located at neighboring sites of the graph g. Image segmentation is a straightforward
application of MRF because usually the context of neighboring pixels is correlated. The site set
S corresponds to image pixels, the discrete-value label set L = {1,2,..., D} corresponds to the D
classes present in the sample, and the neighborhood system N is chosen based on modeling
and computational factors. The joint probability P({f}I{yi}) of a configuration {f} given an image
{yi} (i = 1,2,...,m correspond to the m pixels of the image) is calculated via the Hammersley-
Clifford theorem as [Hammersley and Clifford 1971; Li 2009]:

1
P({f}I{yi}) = -exp(-U({f}{yi}))

U({f}{yij) = U(tyi}|tfl) + U({f})
Where U(tf}|tyi}) is the posterior energy, which equals the sum of the prior energy U(tf}) and
the likelihood energy U({yiJItf}). Prior energy U({f}) models spatial context information.
Likelihood energy U(tyi}itf}) incorporates the information available from the measurements
{yi} (the image itself). The solution of a MRF model usually involves finding the maximum a
posteriori (MAP) configuration {f}MAP that maximizes P({f}ltyi}) or equivalently minimizing the
posterior energy U({f}f{yi). Different MRF models different in the choice of the graph g, and
the expression of the prior U({f}) and likelihood U({yi}Itf}) as a function of configuration tf}.

Modeling
Image segmentation is one kind of "pixel labeling" problems that can be modeled and solved
using Markov Random Fields (MRF) [Strauss 1977]. Models usually describe MRF energy using
a auto-binomial model [Li 2009], use 4-neighbor systems, and model data uncertainty using
Gaussian uncorrelated noise [Elliott et al. 1984; Dubes et al. 1990]. When there are only two
labels, the corresponding labeling problem (an Ising model) can be solved exactly using graph
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cuts. However, when there are more than 2 labels, the problem is NP-hard (non-deterministic
polynomial-time hard), making the vast majority of MRF-based energy function intractable
[Szeliski et al. 2008].
The parameters of a MRF model can be estimated by maximum-likelihood via the coding
method [Besag 1974; Dubes et al. 1990]. More advanced algorithms attempt to estimate
simultaneously the parameters of the MRF model and solve the MRF-based imaging problem
[Li 2009]. Such methods include the double MRF model of [Marroquin et al. 2003].
More complex modeling approaches for segmenting grayscale images include double
hierarchical MRF [Cohen and Cooper 1987], where a Gaussian MRF is used to model texture
within image regions, and an auto-binary MRF is used to describe a-priori information about
region location and geometry.

Algorithms
Solving a MRF for image segmentation based on the MAP framework is equivalent to the
nonlinear integer optimization problem of finding the configuration {f} that maximizes the
posterior P({f}I{yi}). When there are more than D > 2 labels, this is an NP-hard problem, a
hard computation task even in the case of modest number of nodes due to the non-convexity of
the cost function and the presence of multiple local minima. The initial algorithms utilized for
solving MRF are Simulated Annealing (SA) [Geman and Geman 1984], maximizer of posterior
marginal [Marroquin et al. 1987], and Iterated Conditional Modes (ICM) [Besag 1986]. SA
utilizes a thermodynamics-based approach to "cool" progressively a temperature parameter T in
the MRF energy field and avoid local minima. SA is proven to be able to find the global optimum
of MRF energy fields, however it is very computationally intense and therefore not applicable to
process large imaging data files quickly. ICM, one of the earliest and simplest methods, starts
from an initial estimate of pixel labeling and updates each pixel label sequentially. Although ICM
is not very computationally expensive, it suffers from ineffectiveness and its results are very
sensitive on the initial pixel labeling.

During the past fifteen years several new methods have been developed to solve MRF
problems more efficiently. These methods include Belief Propagation (BP), Graph Cuts (GC),
and Tree-Reweighted Message Passing (TRWP). The performance of these methods compared
to ICM is compared in [Szeliski et al. 2008]. At the moment, most state-of-the art applications of
MRF utilize GC or BP. Graph cuts algorithms (such as "swap-move", "expansion move", "max-
flow") are describes as "very large neighborhood search techniques" that iteratively compute the
global minimum of elementary binary problems [Boykov et al. 2001]. Both GC and TRWP
algorithms share several features with BP, the method utilized in this thesis. TRWP algorithms
also use half the memory required by BP and provide lower bounds of energy that can be used
to assess the quality of a MAP solution [Wainright et al. 2003, Kolmogorov 2006; Szeliski et al.
2008].
Belief propagation (BP) methods [Pearl 1988, Yedidia et al. 2000] include the sum-product and
max-product algorithms (or equivalently sum-sum and max-sum when energy is expressed
using the enrgy function U({flItyij)). The sum-product algorithm calculates the marginal
probability at each node, while the max-product algorithm calculates the MAP probability of the
whole graph. BP methods are based on passing "believes" between nodes. Believes are vectors
that contain information about the optimal configuration. In graphs that do not contain loops,
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believes can be calculated either analytically (following the graph structure) or iteratively. In
loopy graphs, it is not possible to calculate believes analytically, so an iterative scheme is the
only way to estimate them [MacKay 2003]. BP was initially developed for graphs without loops
[Pearl 1988], where the iterative calculation of believes converges to the optimal result within N
iterations. In loopy graphs BP provides an approximate solution for the most likely graph
labeling [Weiss and Freeman 2001, MacKay 2003; Li 2009]. Even though there is no analytic
proof that in loopy graphs BP converges to the MAP solution of the MRF, BP methods
empirically are considered to provide good approximate solutions, apart from rare cases where
the algorithm does not converge and gets trapped into an infinite loop [Koller and Friedman
2009]. The iterative calculation of believes is the most expensive step of BP methods. Several
themes of belief propagation have been developed in order to accelerate believes calculation.
Instead of the synchronous calculation of believes in the whole graph utilized in normal BP,
accelerated belief calculation schemes iterate along rows and then along columns [Tappen and
Freeman 2003]. More tricks that accelerate BP methods (better initialization of believes via a
pyramid-like scheme) can be found in [Felzenszwalb and Huttenlocher 2006, Szeliski et al.
2008].

Performance
The performance of an algorithm that solves a MRF is evaluated based on its computation cost
and the ability to find the optimal or a near-optimal solution in a simulated problem of known
global solution. Several papers that compare the performance of MRF algorithms in real images
compare the final estimated potential U (the energy that corresponds to the solution), implying
that lower energy corresponds to better solutions. [Dubes et al. 1990] suggests that this is not a
reliable indicator of accuracy, because errors in the MRF modeling procedure can result in final
estimated potential U that is lower than the energy U of the ground truth. A better indicator of
image segmentation performance is the percentage of pixels that have been miss-classified.
Several papers evaluate the performance of MRF algorithms in the segmentation of binary
[Elliott 1984], or grayscale images [Dubes et al. 1990; Kolmogorov and Rother 2006; Szeliski et
al. 2008]. Most papers assume known MRF parameters and process pictures at most 800x600
pixels in size, which are much smaller compared to the datasets obtained by high-throughput
imaging. [Dubes et al. 1990] compared the performance of earlier methods (SA, ICM) in the
segmentation of 64x64 binary images corrupted with either gaussian noise, or correlated noise
or texture. ICM was the method that provided the most robust performance in segmenting either
noisy (SNR=1) simulated images (unimodal histogram), or real images (bimodal histogram).
Several papers compared the performance of newer and more efficient algorithms (GC, BP and
TRWP). GC, BP and TRWP converge much faster and much closer to the global minimum
compared to ICM [Szeliski et al. 2008]. [Kolmogorov and Rother 2006] found out that graph cuts
(GC) outperform BP and TRW in highly-connected graphs, however such difference was not
observed in low-connectivity (4-connected) graphs [Szeliski et al. 2008] where methods
performed similarly.

Applications of MRF in Segmentation of Spectral Images
Image segmentation is one of the major applications of MRF models [Li 2009]. A big fraction of
the papers that discuss the development of an MRF algorithm utilize a benchmark that is based
segmenting a set of reference pictures [Szeliski et al. 2008]. A large number of papers propose
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MRF implementations for the segmentation of grayscale images based on different assumptions
of image properties [Elliott et al. 1984; Dubes et al. 1990; Marroquin et al. 2003]. The number of
papers that discuss the practical application of MRF in real-world imaging applications is far
less. Among them, there are several papers and books that discuss the application of MRF in
segmenting hyper-spectral images in remote sensing (RS) [Jackson and Landgrebe 2002;
Varshney and Arora 2004; Richards and Jia 2006]. Kerfoot and Bresler 1999] provides an
interesting analysis of segmentation error for a particular case of segmentation of RS images.
Brute-force application of MRF to unmix and segment hyperspectral RS images has been
applied but it is extremely computational intense [Eches et al. 2010]. [Bai et al. 2013] provide a
practical application of MRF for hyper-spectral RS data, which follows the approach followed in
this study: an MRF field solved by graph cuts is used to refine an initial segmentation by a local
segmentation algorithm (support vector machines classification). This approach is proposed to
be more robust and require training samples of smaller size compared to a brute-force
application of MRF.

Applications of MRF in 3D fluorescence imaging
In contrast to the remote sensing field, at the moment, the practical application of MRF in the
segmentation of 3D spectral fluorescence images is at its infancy. MRF have been applied for
image reconstruction in single-channel 3D confocal and multiphoton fluorescence images
[Mondal et al. 2007, 2008]. The image reconstruction problem does not attempt to label the
image pixels, but instead attempts to correct image degradation induced by the finite size of
optics PSF, and detector noise (sensor noise, Poisson noise). This study therefore provides one
of the first practical applications of MRF for the segmentation of large volume high-throughput
high-content 3D fluorescence data.

2.3 Instrumentation

2.3.1 Instrument description
All imaging data in this thesis have been acquired using a custom-made multi-photon
microscope located in the So lab (Department of Biological Engineering, MIT). The instrument
was originally designed and built by Dr. K.H. Kim and Dr. Christof Buehler around 2003 [Kim
2005; Buehler et al. 2005]. The major contribution of the original design was the development of
a 16-channel single-photon counting card, which enabled high-sensitivity spectral imaging
based on a MA-PMT. During 2010 several optical (lenses, filters, dichroic mirror, MA-PMT) and
mechanical components (tube lens-scan lens housing) of the instrument were modified in order
to improve its performance and ease of use. A schematic of the post-2010 instrument (used to
acquire the data shown in this thesis) is shown in Figure 2.3.1. The microscope is excited by a
Tsunami 3960 mode-locked titanium-sapphire laser (Spectra Physics, Santa Clara, CA) that
provides femtosecond laser pulses of 2W power (at 775 nm) of tunable wavelength in the [720,
900] nm range. The laser beam power provided to the sample is precisely manually controlled
by a half-wave plate (HI) and analyzer (Al) system. The beam is deflected by a pair of
computer-controlled galvo mirrors (SM) and further expanded 5x (by the theta scan lens (SL)
and tube lens (TL) in order to overfill the back focal plane of the objective lens (OL). The C-
apochromat 40x 1.2NA, 0.28mm WD, water immersion objective lens (441757-9970-000, Carl
Zeiss Microscopy, Thornwood, NY) focuses the laser beam inside the sample and collects a
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fraction of the emission in epi-fluorescence configuration. Imaging a plane is implemented by
raster-scanning the position of the laser focus using the scanning mirrors. 3D imaging is
implemented by using a piezoelectric actuator (PI) to translocate the objective and image
multiple planes inside the sample.
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Figure 2.3.1: Schematic of the custom-made multi-photon microscope utilized for spectral multi-photon imaging.
The particular instrument contains three imaging sensors, where each one can be used for
specific applications. All spectral imaging data shown in this thesis were acquired using a 16-
channel multi-anode photomultiplier tube (MA-PMT) (R5900P-00-L16, Hamamatsu,
Bridgewater, NJ). Spectral imaging data are acquired in a de-scanned configuration: the
emission is separated from the excitation laser by a dichroic filter (T700DCSPXRUV, Chroma
Technology Corporation, Bellows Falls, VT), filtered to remove residual infrared emission by a
bandpass filter (ET680SP-2p8, Chroma Technology Corporation), resolved in a diffraction
grating spectrograph (MS125, Oriel instruments, Stratford, CT), and detected in the MA-PMT
operated in single-photon counting mode [Hakamata et. al. 2006]. The 16-channels of the MA-
PMT are conditioned and detected in a custom-made 16-channel photon counting card [Buehler
et al. 2005], and the resulting photon count signal per pixel is transmitted to the control PC.
The instrument is also equipped with a high-efficiency photon counting head (H7421,
Hamamatsu) used for intensity imaging and fluorescence correlation spectroscopy (FCS) in
scanned configuration, and a fast PMT (R7400P, Hamamatsu) used for intensity imaging and
for fluorescence lifetime imaging (FLIM) in de-scanned configuration

2.3.2 Spatial Resolution and Pixel Size
The spatial characteristics of the MPM microscope described in Section 2.3.1 are described by
its spatial resolution and its pixel size.

The spatial resolution of a MPM describes the ability to focus the excitation laser within a
volume as small as possible (and therefore cause emission by molecules located within a
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volume as small as possible). The spatial resolution depends on the excitation light wavelength
and the excitation optics (particularly the numerical aperture of the objective lens, the degree of
overfilling of the objective back focal aperture by the excitation beam, the width of the
femtosecond pulses and any aberrations present in the optics of the excitation light path [Born
and Wolf 1999; Gu 2000]). The optics of the emission path do not have a major impact on the
instrument PSF, however they affect the amount of emitted light that is collected and transmitted
from the sample to the MA-PMT.

The spatial resolution of a MPM is described by its excitation point spread function (PSF), which
can be approximated using the equation that describes the square of intensity of a Gaussian
beam [Saleh and Teich 2007].

12 (r, z) = (1 + (Z)2 -exp(- ) [2.3.1](r, z) 0 - e w 2 (z)

where r and z are the radial and axial position from the light focus respectively, ZR = ww2/2 is

the Rayleigh range, and w(z) = wo 1+ is the waist radius. The single parameter of the

Gaussian beam is the waist radius wo. The value of w0 for the Gaussian beam that
approximates the PSF of a MPM is estimated using z-stack of images of 0.1 pm fluorescent
beads immobilized inside a 2% agarose marix, acquired using low excitation intensity to avoid
saturation of excited molecules [Juskaitis 2006].
The pixel size 5 of each image acquired by the microscope depends on the excitation optics, is
analogous to the objective magnification, is analogous to the range of motion of the scanning
mirrors, and depends on the pixel number per image row/column. Given microscope
configuration, the pixel size can be calculated by imaging a Ronchi ruler of known spacing and
identifying the peak of the first harmonic in its 2D FFT spectrum [Oppenheim et al. 1996]. The
field of view of each image equals 5 times the number of pixels.
For the microscope shown in Section 2.3.2 the estimated beam waist radius is approximated as
wo = 0.405 pm (equivalently ZR = 0.667 pm), and the pixel size is 0.432 pm (for a 256x256
image this corresponds to a 110.6x 110.6 pm field of view).

2.3.3 Generation of the Wavelength-Resolved Spectral Signal
Figure 2.3.2a shows the propagation of signal in a spectral MPM operating in single-photon
counting mode such as the instrument described in Section 2.3.1. A photon emitted in the
sample is collected by the microscope objective lens, propagates through the microscope
intermediate optics, its trajectory is spectrally-resolved in the spectrograph, and finally arrives in
the PMT. In the cathode of the 16-channel MA-PMT the photon is converted into electrons. The
resulting electrical signal is amplified in the PMT dynodes and reaches one of the 16 dynodes of
the MA-PMT, generating an electric pulse of mV amplitude and O(nsec) duration [Hakamata et.
al. 2006]. A pulse originating from the j-th PMT channel propagates through a dedicated coaxial
500 cable and reaches the j-th discriminator of the 16-channel card that converts pulses of
significant amplitude into a TTL pulse that is counted in a counter [Buehler et al. 2005]. The
resulting photon counts for the 16 channels of each pixel are transmitted to the control PC,
which acquires data for all pixels and forms the image.
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The key component of a spectral microscope compared to a normal microscope, is the optical
system that resolves the detected emission based on its wavelength. In an ordinary MPM each
image pixel provides a scalar measurement y, the detected emission intensity [Hakamata et. al.
2006]. In a spectral MPM, each image pixel provides a vector measurement y, where each y
element detects the emission within a particular region of the EM spectrum. In the instrument
shown in Figure 2.3.1, emission is resolved by a reflectance diffraction grating (77414, Newport
Optics, Irvine, CA) inside a spectrograph (MS125, Oriel instruments, Stratford, CT). The
operating principle of the spectrograph is depicted in Figure 2.3.2b. An incident light beam of
wavelength A is reflected by the grating into multiple orders [Palmer and Loewen 2005; James
2007]. The reflection angle Om of the m-th order depends on the incident angle q' and the
grating frequency G:

sin(0m) = mGA - sin(p)

In a spectrograph, the mode of interest is the first mode (m=1). Since 1 depends on A, photons
of different wavelength arrive at different positions x(A) of the MA-PMT, and are detected by a
different detector channel. The range of the EM spectrum AA that is simultaneously detected by
the MA-PMT corresponds to wavelengths A such that x(A) lie within the MA-PMT aperture. AA
depends on the sensor area width W and the spectrograph optics focal length f. Similarly, the
range of wavelength 6A (channel detection range) that is detected by each channel depends on
light dispersion by the grating and the width of the channel w.
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Figure 2.3.2: Signal propagation in a spectral multi-photon microscope. a) Propagation of signal through the optical
and electronic parts. b) Schematic of the spectrograph-MAPMT system used to resolve and detect emission photons
based on their wavelength, c) Schematic of the effective amplification in the photon detection and counting process.

The emission optics of the instrument presented in Figure 2.3.1 are designed to transmit light in
the region [380, 620] nm. In Figure 2.3.2b the nominal design wavelength 40 = 500 nm is
highlighted green, while the minimum and maximum design wavelengths (Amin = 380nm,
Amax = 620 nm) are highlighted blue and red respectively. Spectrograph properties are A =
400 nm (brazing wavelength), G = 600 lines/mm, f =120 mm, and maximum efficiency r7max =
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85%. Combined with the W=16mm width of the MA-PMT (R5900P-00-L16), geometric optics
suggest that the MA-PMT can simultaneously detected light within a AA = 210 nm region
(Appendix C). The channel detection range 6Aj of the j-th sensor channel varies; channels that

detect blue illumination detect a slightly wider region of the spectrum: 6A, = 13.2 nm (blue-most
channel), 6A8 = 13 nm (intermediate wavelength channel), " 16=12.6 nm (red-most channel).
Analytical estimations agree well with spectral calibration results based on fluorescent dye
standard images. Spectral calibration is the process of estimating the wavelength region [Amin,],
/Imax,i ] (j=1, 2, ... , M) that is detected by each channel of the MA-PMT (Appendix C).

2.3.4 Spectral Response
The spectral response function hVj) of a spectral microscope is described by the probability
that an emitted photon of wavelength A that reaches the MA-PMT is detected at its i-th channel.
In this paragraph j = 0 denotes the sensor channel where the emission should be detected
based on geometric optics. Ideally, all photons of the same wavelength A should be detected in
this channel hs(j) = 6(j). In practice, due the finite resolution of the emission path optics, optical
alignment errors, and the probabilistic nature of electron amplification and propagation in PMT
dynodes [Hakamata et. al. 2006], emission photons of the same wavelength can be detected in
several channels centered around j=0, i.e. h,(j) # 0 for more than one channels. The spectral
response function hs(j) of a spectral microscope broadens the detected spectrum si of each
source, which deteriorates the precision to resolve the emission of multiple sources (Section
2.4.5).

2.3.5 Channel Gain
The response of different channels of a MA-PMT is not identical due to two major reasons: i)
incident photons are amplified differently by different MA-PMT channels, and ii) PMT output
pulses are amplified differently by different discriminator card channels. These two steps are
described in Figure 2.3.2c by two different probabilities: pp,j is the probability that an photon

arriving in the j-th PMT channel will generate a voltage pulse, and PD,J is the probability that a

voltage pulse generated by the j-th PMT channel will pass through the discriminator and
generate a photon count [Hakamata et. al. 2006]. The product pc,j = Pp,j PDJ is the probability

that a photon arriving at the j-th MA-PMT channel will produce a photon count by the
corresponding photon counting channel circuitry. Pc,j is also the total gain for channel j. The

differential gain of a MA-PMT is described by a diagonal gain matrix AG= diag(pcj), which is

estimated during instrument characterization (Appendix B).

2.3.6 Spectral Signatures
Each emission source has a unique emission spectrum Pem(A), which can be described as the
PDF that a photon emitted by the source will have energy equal to E = h -c/A (h is Plank's
constant and c is the speed of light). The emission spectrum Pem(A) of pure fluorophores is a
molecular property, which does not depend on the excitation wavelength (although in some
cases it depends on its environment, e.g. for NADH) [Lakowicz 2006]. The emission spectrum of
molecules that contain multiple fluorescent entities (e.g. collagen) varies with excitation
wavelength. The emission spectra of pure chemical components after two-photon excitation are
theoretically identical to the emission spectra after single-photon excitation [Lakowicz 2006].
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This has been experimentally verified for several fluorophores by [Xu and Webb 1996; Bestvater
et al. 2002]. However, there are cases of fluorophores whose emission spectrum after two-
photon excitation is significantly different (small differences are attributed to calibration errors)
compared to single-photon emission [Bestvater et al. 2002]. The emission spectrum of second
harmonic scattering is concentrated at half the excitation wavelength item/2 [Campagnola and
Loew 2003].

While the emission spectrum pim(A) of source i is a continuous function of wavelength A
characteristic of the source, the spectral signature si detected by a M-channel spectral
microscope is a M-element vector. si can be thought of as a probability mass function whose j-
th element describes the probability that a photon emitted by source i and detected by the PMT
will be detected at j-th channel (j=1, 2,..., M). The spectral signature si depends on the emission
spectrum Pim(A), the emission path optics, the spectral response of the microscope and the
differential gains in the MA-PMT & photon counting card channels.

2.3.7 Estimation of Spectral Signatures
Accurate spectral unmixing requires accurate knowledge of the spectral signature si for each
source in the image, see Sections 2.4.5 and 2.4.7. si can be either measured experimentally (by
imaging solutions of pure sources) or can be estimated based on the known emission spectrum
Pem(A) of the source, the measured spectral response of the instrument hs(j), the optical
efficiency of the emission light path 7pt(l), and the geometry of the detection system. Accurate
computation of si from pim(A) is hard due to the complex nature of photon conversion and
amplification in a MA-PMT. In this thesis si is approximated in three steps:
1) Calculate the relative emission that arrives at the j-th MA-PMT channel as:

ri(j) = f a t Pm(/) - pt(1) - d1 = -k, ...,1,2,...,M, ..., k + 1

where [Aminj , Amax,I] is the wavelength range detected by channel j based on geometric
optics. 71opt(A) describes the transmissivity of detection optics and the quantum efficiency of
the MA-PMT. This calculation is done for the M channels of the MA-PMT (j=1, 2, ..., M) as
well as for k dummy channels that correspond to locations next to the PMT sensor aperture.

2) The emission ri(j) that arrives in the PMT is convolved with the spectral response of the
microscope hs(j) and amplified by the total gain Pc,j of channel j.

sji= Pc,j - (rij) * hs(j))

where * is the convolution operator.
3) Finally, the spectral signature si is calculated by normalizing the outcome so that the sum of

its elements equals 1:

s= [S 11  ... sMi]T

S isj i =

The spectral signature si is instrument-dependent and depends on the properties of the optical
components (dichroic filters, MA-PMTs, diffraction gratings) and the spectral calibration of the
instrument [Tsurui et al. 2000; Berg 2004]. Also, when imaging deep inside scattering samples,
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spectral signature si is expected to progressively broaden due to the effect of the scattering,
which deviating photons from their ballistic trajectories and therefore randomizes the trajectories
of photons collected by the objective lens [Helmchen and Denk 2005].

2.4 Spectral Unmixing

2.4.1 Definition and Nomenclature
Spectral unmixing is the mathematical process that estimates the contribution of each source in
the emission detected by a M-channel detector, based on the distinct emission spectra si of the
sources [Keshava 2003].
The measured signal y in every pixel of a spectral image is a Mxl vector, whose j-th element
contains the emission detected in the j-th channel of the detector. The detected light was
originally emitted by N sources in the sample. The light emitted by each source propagates
through the microscope emission optics and reaches the sensor (Figure 2.4.1). It is assumed
that a single measurement of the vector y is acquired per image (the usual practice). Let Ai
denote the emission rate of light arriving at the detector originally emitted by the i-th source (i=1,
2, 3..., N) that arrive in all M detector channels. The Nx1 detected source emission rate vector

S= [A, ... AN ]T

contains the emission rates of all sources that eventually arrive in the detector.

The spectral signature of each source is described by the Mx1 vector:

Si = [Sli ... SMi]T

where sji refers to the probability that a detected photon will be detected in channel j provided
that the photon is emitted by source i (Section 2.3.6). By definition sft > 0 and Efj= = 1 (the
elements are non-negative and their sum equals 1). The spectral properties of a particular set of
sources are described by the MxN spectral matrix:

S = [s1 ... SN] =[t --- tN]T

The i-th column contains the spectral signature si of the i-th source. The j-th row tj provides the
contribution the source emissions A to the emission detected at channel j.

Mixing models, observation models, and estimators
The objective of spectral unmixing is to estimate the detected emission rates A of the sources
given a measurement y and the spectral matrix S. Spectral unmixing utilizes a mixing model that
describes how the fluorescent emission of the N sources generates the photon counts detected
in the M-channel detector. The detected signal depends on the properties of the fluorescent
emission of the sources, the properties of the intermediate optics, and the properties of the
sensor, all of which are incorporates in the A and S (Section 2.3.3). A mixing model is described
mathematically by the observation model PyvA(yIA) (or equivalently the log-likelihood L(Aly) =

log(pypA(yIA))), which is the PDF for detecting a measurement y in the M-channel detector
when the detected emission rates of the N sources are A.

Bayes law provides the a-posteriori PDF for A given a measurement y:

PAIY(A|y) = PA(A)
py
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Bayesian law fuses the information incorporated in the measured data vector y with the a-priori
knowledge about A described by the a-priori PDF PA( 4 ). The posterior PAIY(lIy) can be used to
infer A.[MacKay 2003; Sivia and Skilling 2006]. One possible point estimator A of A is the
maximum a-posteriori estimator (MAP) IMAP, which is the value of A that maximizes pAIy(aly):

AMAP = argmaxA PAIY(IIY)

When there is no a-priori information about A (a usual assumption done in image processing),
PA() is chosen as a non-informative constant, and AMAP is identical to the maximum likelihood
(ML) estimator !ML, which is the value of A that maximizes the likelihood PYvA(yIA) or
equivalently the log-likelihood L(Aly) = log(py1A(yA)):

AML = argmaxA L(Aly)

Two mixing models (Poisson model, Gaussian model) are described in Sections 2.4.3 and
2.4.4. The performance of the models is discussed in Sections 2.4.5.

Sources - Classes - Compartments
A source is defined as a chemical entity that emits light, which is detected by the spectral
microscope. Sources considered in multi-photon microscopes include fluorophores as well as
crystalline structures of biopolymers that emit second harmonic scattering.
A class is defined as a physical entity that can contain a particular set of sources. For example,
in the fluorescent imaging of cells inside collagen scaffolds (Chapter 3), the class "nucleus"
contains the sources "Hoechst33342" (a fluorescent nucleic acid stain) and CMTMR (a
fluorescent cell tracker), the class "cytoplasm" contains the sources CMTMR and Alexa Fluor
488 (the fluorescence dye conjugates to the secondary antibody that binds to a particular
protein located in cell cytoplasm), the class "matrix" contains the autofluorescence and the
second harmonic emission of the collagen located in the scaffold's struts, and the class "void"
does not contain any source (any signal is attributed to detector noise) and corresponds to the
medium volume between cells and the scaffold.
A compartment is defined as a region that can contain a particular set of classes. For example,
in the fluorescent imaging of ex vivo transected rat peripheral nerve treated with collagen
scaffolds (Chapter 4), the compartment "nerve tissue" can contain the classes "myofibroblast
cytoplasm", "nucleus", "Schwann cell cytoplasm", "axon", "blood vessel", "stroma" and "void".
In this thesis, it is assumed that
- The number of compartments, classes and sources per class are known
- The set of classes for each compartment, and the set of sources for each class are known
- There is some limited a-priori knowledge about the range of the detected emission rate Ai

for each source of each class, expressed as a uniform PDF between a lower and an upper
bound.

Result interpretation
The interpretation of the emission rate vector A depends on the application. Usually the entity of
interest is the density pi (i=1, 2, 3..., N) of the sources in the sample. In the absence of energy
transfer mechanisms (e.g. quenching, FRET), photobleaching, and depletion due to high
excitation light intensity [Lakowitz 2006], pi is approximately analogous to the rate of light 4i
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emitted originally by the i-th source [Xu and Webb 1996]. It should be noted that Ai is less than
A9 because only a fraction of the light emitted by each source is collected by the microscope
objective, propagates through the detection optics and reaches the detector.

2.4.2 The Multiple-Source Multiple-Detector Inverse Problem
Spectral unmixing is a special case of a more general "multiple source multiple-detector" inverse
problem, found in many signal processing problems. The objective of this inverse problem is to
estimate the signal emitted by N sources based on measurements from M detectors, Figure
2.4.1. The signal at each detector is the outcome a mixing process that linearly combines the
signals emitted by the sources, described by mixing parameters pij . When the emission signal
is continuous, Ai is the emission magnitude of the i-th source, and pij correspond to the fraction
of Ai that reaches detector j. When the emission signal is discrete, Ai is the Poisson rate for the
emission of the i-th source, and pij is probability that an emission event from source i will be
detected by detector j. In both cases lg pij = 1 , V i = 1,2, ... N.

Sources Mixing Detectors

2

0))) 4

Figure 2.4.1: Schematic of the multiple source - multiple detector problem. The emission of N sources is mixed and
detected by an array of M detectors. The objective of the multiple source - multiple detector problem is to estimate
the emission rates of the N sources based on the measured signal in the M detectors.

This chapter addresses the problem of spectral unmixing in spectral microscopy data. For every
pixel in the spectral image, the objective is to estimate the emission rates Ai of the N emission
sources based on the detected signal y in the M channels of the sensor. Usually N is known (in
the order of 2-5), M is in the order of 4 to 32, and the emission spectra of the sources
(correspond to the mixing parameters pij) are known quite well. As long as sources have
distinct emission spectra the problem is well-posed. The accuracy of the unique solution
depends on the accuracy of our knowledge for pij and on the noise that corrupts the detected
signal. The inverse problem needs to be solved for each pixel in the image. The appropriate
unmixing implementation must consider the large number of pixels found in modern 3D images
of biological samples (106 - 107) , and that for each pixel there is usually a single measurement.

Various forms of the multiple-source multiple-detector inverse problem appear in different
engineering problems. These forms differ in the magnitudes of N and M, whether the problem is
mathematically well-posed (well-posed problems have unique solutions), on the accuracy of the
knowledge of the parameters pij , on whether pij are known or also need to be estimated, on
the fraction of the M detectors that are measured, and on the nature of the noise present.
Examples include various kinds of tomographic imaging (Position Emission Tomography (PET),
single-photon emission computed tomography (SPECT)), and image reconstruction (e.g. image
deconvolution, photon re-assignment). Even though the conceptual solution to the multiple-
source multiple-detector inverse problem is common, the unique features of each case (Table
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2.4-1) affect critically the numerical implementation (EM algorithms in PET imaging [Dempster
et al. 1977; Shepp and Vardi 1982], Richardson-Lucy algorithm for image deconvolution
[Richardson 1972; Lucy 1974]).

Appicatlon Sources i -b4e"ie j I usa
Spectral Fluorophores PMT channels Emission spectra 10 5 - 10
unmixing 2<N<8 2<M<32 Relatively well known

Usually N known M known
PET, Emission at body Signal at channel Geometry factor 1
SPECT position i (105 <N< pairs j (10 2 <M<10 3) Estimated, maybe poor

107) M known estimates
N depends on grid

Image Real Intensity at pixel Detected Intensity at PSF, may be position- 1
restoration I (103 <N< 106) pixel I (103 <M< 106) dependent
Table 2.4-1: Properties of different multiple-source multiple-detector problems.

In some cases the mixing process is unknown (pij are unknown). Blind signal separation (BSS)
methods attempt to solve the ill-posed inverse problem of simultaneously estimating pi] and Ai,
see Section 2.2.3. In fluorescence spectral imaging applications, BSS methods attempt to
estimate both the emission spectra of the sources as well as the source signal contributions.

2.4.3 Poison Mixing Model
The Poisson mixing model describes the nature of photon arrivals at each detector channel as
the origin of stochastic nature of the detected signal y. There is no analytic solution for the ML
estimator AML , which instead is calculated numerically by iterative optimization (EM algorithm).

Poison observation model
Due to the nature of photon arrival at each detector channel, the photon count at each channel
follows Poisson distribution. Photon arrivals at channel j equals the sum of the contributions of
photons emitted by each source. Since each one of these contributions is a Poisson process of
rate Aipij, the photon count at channel j also follows a Poisson distribution y-P(yj; tTA) with

rate d. = tTA.. The rate of photon arrivals at each channel equals:

d = S -A [2.4-1]

so that dj is the j-th element of d. Since the photon count of each channel is an independent
random variable, the probability of observing the measurement y (observation model) is:

eY - j. 1jjI d2"I

PYA(y =1 e j=1 [2.4-2]ii PYy1 tJa)= !

The log-likelihood of the emission model is:

L(Aly) = log (py (A)) = -|1I + z {- log(dj) - log(yj!)} [2.4-3]

Maximum likelihood estimation
The gradient and Hessian matrix H(A) of the log-likelihood function L(Aly) with respect to A are:

aL(AIy) ST. diag(dT. -. y
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H(L) = a2 L(Ay) =_S - diagYJ )-Sa~aAT  da(72 '

where dj = tT - A . The Hessian has been shown to be negatively defined ( cT - H - c < 0 V

Nx1 vector c) [Shepp and Vardi 1982]. It follows that L(Aly) is a concave function that

possesses a global maximum. The convexity of L(Aly) is critical for efficient computational
spectral unmixing (Section 2.4) and pixel-wide image segmentation (Section 2.5.2) [Boyd and
Vandenberghe 2004; Nocedal and Wright 2006]. A choice of the prior PA(A) other than the non-
informative constant prior could result in a non-concave posterior PAIY(ly). In this case the

computation of the MAP estimator AMAP wound be much more computationally expensive

The ML estimator )ML(Y) is the non-negative vector A that maximizes L(Aly). Based on the

Karush-Kuhn-Tucker (KTT) conditions, when all elements of AML are larger than zero (the

peak of L(Aly) lies within the region Ai > 0), then the gradient of L(ly) at AML equals zero
[Boyd and Vandenberghe 2004], or equivalently:

ST - diag(tT - AML) Y= 1 N

where 1N is a Nx1 vector that contains unity elements. Because there is no analytical solution to
this system of nonlinear equations and its solution is not guaranteed to be non-negative, the

most efficient way to calculate AML is by numerically maximization of L(Aly) [Nocedal and
Wright 2006; Press et al. 2007].

Numerical Implementation

Calculating AML requires finding the value of A that maximizes L(Aly) numerically. A valid

numerical solution should satisfy the non-negativity constraints tj ;> 0 (valid emission rates take
non-negative values). Such constraints can be explicitly applied using a general-purpose
constrained nonlinear optimization algorithm [Press et al. 2007], however this is not advisable
due to the complex nature of constrained optimization algorithms and the need to run a different

optimization run for each pixel. An alternative is to calculate AML by applying the expectation-
maximization (EM) algorithm [Dempster et al. 1977], developed for numerical optimization of
likelihood functions. The EM algorithm applied here was developed for calculating the ML
estimate of a related multiple-source multiple-detector inverse problem in PET imaging [Shepp
and Vardi 1982]. The algorithm has the desirable feature that it provides non-negative results
using a modified unconstrained optimization algorithm. Since L(Aly) is concave (see previous
paragraph) the algorithm is guaranteed to find the global maximum of L(Aly).

The application of the EM method in finding the ML estimate in the Poisson mixing model is
described in Appendix D, and is based on [Candy 2009]. The EM algorithm is an iterative
algorithm that updates the current estimate of the ML solution until the solution converges. At
the k+1 iteration, the new estimate of the emission rate of the i-th source is updated based on

the previous estimate 1 (k) as follows:

A(k+l) = -iI 1 {s j } [2.4-4]

d(k) E.N S. . -~)=tT.Ak [2.4-5]-j 1=1 J1 I() t. k
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This implementation of the EM algorithm assures that the results will satisfy non-negativity (if
A(O) > 0 for the initial guess, then j k)> 0 , vk > 0) and additivity ( A1 , 4k) = yj vk> 1).

The main disadvantages of this EM algorithm are:
- it was shown to be a scaled steepest ascent algorithm [Kaufman 1993].

A(k+1) _ (~k) + '(k) aLGAy)
i I i A I A = A k )

therefore its convergence rate can be poor, especially when L(Aly) contains "valleys" (when
the eigenvalues of the Hessian H(A) are very different) [Boyd and Vandenberghe 2004;
Press et al. 2007]. The convergence becomes slow also when the values of , 'k) approach
zero, because the effective "step" of each iteration becomes very small.

- It is not possible to implement the algorithm batch-wise to simultaneously unmix groups of
pixels. A distinct run of the EM algorithm is required for each measurement y (each pixel).

- The algorithm cannot be implemented in a "pyramid configuration", where groups of pixels
are unmixed simultaneously so that the ML AML of the pixels are constrained based on the
ML of the binned pixels (see Section 2.4.4).

In order to avoid the slow convergence problem of steepest ascent algorithms, several
modifications of the standard EM algorithm have been proposed [Kaufman 1987, 1993; Tsuiet
al. 1991]. The standard EM algorithm updates A( k1) along the direction defined by the gradient
aL(AIy) using the step A(k) aL(A y) (. The "line search" modification suggests toaA j ~~k) step aA 1A_

update the ML estimates as

A~~)= A~)+ a . d) (lQy)
i i aA A=IML

This approach keeps the same update direction as the standard EM algorithm but modifies the
step size. The value of a is chosen by a line search method (e.g. the backtracking method
[Nocedal and Wright 2006; Press et al. 2007]) to maximize L(Aly) while ,jk+1) > 0. The
preconditioned conjugate gradient (PCG) modification [Kaufman 1987] picks the update
direction using a conjugate gradient method for nonlinear systems, such as the Fletcher-Reeves
algorithm [Shewchuk 1994; Press et al. 2007], and then runs a line search method to find the
optimal step that maximizes L(Aly) while Afk+i) > 0. Both modified EM algorithms provide
results that satisfy the non-negativity (as long as the initial guess is non-negative) and additivity
(as long as Z=l (O = Z=1yj) constraints [Shepp and Vardi 1982]. For all three EM algorithms

it is important to make sure that none of the initial guess elements are zero (0 # 0 otherwise
the algorithms will "stuck" and may not reach the ML solution.
Even though the standard EM algorithm suffers from slow convergence, the computation cost at
each iteration step is not significant. On the other hand, the two modified EM algorithms require
significantly more computation per iteration. It is not sure that the added computation will result
in sufficiently less iteration steps so that overall they require less computation per pixel. These
two modified EM algorithms were extremely effective in accelerating the processing of PET and
SPECT imaging, where a multiple source-multiple detector problem of large dimensions (05 <N<
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107, 10 2 <M<10 3) needs to be solved once for each imaging session [Kaufman 1987]. In the case
of spectral unmixing, processing each image requires solving million distinct small scale (usually
2<N<6, 8<M<32) multiple source-multiple detector problems.

Including Detector Noise
For low-signal level data, it is necessary to include detector noise in the observation model,
because significant noise can corrupt unmixing results. The detector noise is described by the
spectrum vector SN and the noise rate AN. The rate of photon arrivals at each channel becomes:

d = S - A + sN -AN [2.4-6]

In this case, noise rate AN should be treated as known. Including noise as an unknown quantity
will deteriorate significantly the estimation of source emission rates A in low-signal levels. The
reason is that because the emission vector sN is usually approximately constant over all M
channels, including SN in the spectral matrix and treating AN as unknown will deteriorate
significantly unmixing precision (by reducing the and the Gi metrics of all sources, see
Sections 2.4.5 and 2.4.6). When AN is treated as a known quantity, the derivation of the EM
algorithm provides a result identical to Eq. 2.4-4, however in this case instead of Eq. 2.4-5, the
term adk) should include the effect of noise:

d (k) E N S.. (k) tT . (k)
I - =1 s 1 I + SNJ 'AN = + SNJ 'AN [2.4-7]

In this case the EM algorithm still satisfies non-negativity for A k)

Poisson mixing model summary

Observation model: L(Aly) = -All 1 + Z_=={yj - log(dj) - log(yj!)}

ML estimation: 'Ik+l) _ -=={sji }

d(k) T .1(k) +SNjAN

2.4.4 Gaussian Mixing Model
The Gaussian model is an approximation to the Poisson mixing model. It exploits the fact that
under appropriate conditions the Poisson probability mass function (PMF) can be approximated
by a Gaussian probability density function (PDF).

The Gaussian mixing model describes the origin of stochastic nature of the detected signal y as
a Gaussian zero-mean added noise. Several Gaussian mixing models exist that differ on the
assumed properties of the Gaussian noise. The main advantage of Gaussian mixing models is
that they provide linear equations for ML estimation, which can be solved very efficiently and be
orders of magnitude faster than unmixing calculations based on the Poisson mixing model.

Gaussian approximations to Poisson distribution
The Gaussian model can be derived from the Poisson model, by approximating the Poisson
probability distribution that describes the probability of detecting yj photons in each channel.
The cumulative distribution function (CDF) of the Poisson distribution 'pp(y;A) of rate A is
approximated via the CDF 0(w) of a standard normal distribution:
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PP (y; A) = ZY P P(x; A) ~ f' e dw =yw;, A)

X. 1 fr_.e 2- dw ct(w(y, A))
where P(x; A) is the PMF of a Poisson distribution of rate A. The approximation of the Poisson
PMF is found by Taylor expanding the CDF pp (y - 1; A) around y and keeping the first terms:

P(y; A) = PP(y; A) - PP(y- 1; A) ~ (w(y, A)) - ((y - 1, A)) =>

P(y; A) d aw = p(w(y, A))
dw ay ay

where Wp(w) = (2w)- 0-5 exp(_0.5w 2) is the PDF of the standard normal distribution. Several
approximations of the Poisson vary in the way that they define w(y, A) as a function of y and A
(summarized in [Rich 2009]). In this thesis, there is emphasis in computationally-efficient
approximations of the Poisson PMF at low (A<50) and moderate (A<200) photon counts. Since
the approximations will be used for ML inference in millions of pixels, it is preferred to use
approximations that result in closed-form solutions of ML estimates in order to avoid iterative

numerical methods. Such approximations are the ones where the derivative ais not a function
ay

of the parameter A. One such approximation is w(y, A) = . Applying this approximation for
the emission detected at each channel provides the Gaussian observation model.

Gaussian observation model
According to the Gaussian observation model, the detected signal yj at channel j is the sum of a
deterministic part that depends on the source emission rates dj = tA, and a stochastic part
described as zero-mean Gaussian noise of standard deviation o;. The measured signal
yj-N(yj; dj, aj) at channel j follows normal distribution with mean dj and standard deviation u1,
and the resulting observation model is:

PYp!(y(l) = fM 1 eXp(- [2.4-8]
PYIAYIA. = yj 2 -__ ____

The log-likelihood is:

L (AIy) = log (PYIA(ylA)) = - log(2w) - 2 C{ + log(a-)} [2.4-9]

Maximum likelihood solution
The ML estimator AML for the Gaussian mixing model is the value of A that maximizes log-
likelihood L(Aly), or equivalently minimizes the corresponding chi-square metric [Sivia and
Skilling 2006]:

X 2 (A) = - dj2 j

1=1 1

Setting the gradient of X2(A) equal to zero, provides the following set of N equations for AML:
VX2(A) = 0 -> ST -A-2 .S. SML=ST.AU2.y [2.4.10]

where A. = diag(o-) . The intuitive approximation for the noise variance oj =P leads to the
Gaussian variable noise (GVN) ML unmixing equations:

ST-A- S-ZML =STAd' -y [2.4.11]
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where Ad = diag(dj). The Hessian matrix H(A) of the log-likelihood function L(Aly):

H(A) = ST -diag(df) -S

is positive definite because dj > 0, therefore X2 (A) is a convex function with a global minimum.

The assumption that noise variance is common in all channels (oj = o-), leads to the Gaussian

common noise (GCN) ML unmixing equations:

ST - S'-ML = ST. y [2.4.12]

Numerical Implementation - Solving Systems of Linear Equations

The inference of AML via the Gaussian mixing model requires the solution of a system of linear

equations of the form AAML = b (eq. 2.4.11 or 2.4.12). When the NxN coefficient matrix A of

this linear system is full-rank (see discussion in next section) a unique solution exists. When the

non-negativity constraints on the elements of vector AML are ignored, the ML estimate can be

calculated either by Gauss elimination AML = A\b , or by matrix inversion LML = A-'b, where

A- 1 is calculated using matrix computation schemes such as singular value decomposition
(SVD).

When non-negativity constraints for the elements of AML are considered in the ML solution, the
ML estimate can be calculated using the method of non-negative least squares (NNLS). NNLS

is an iterative algorithm that finds the vector AML that minimizes the cost J = IIAAML - bil subject

to the constraints AMLI 0. NNLS is an active-passive set method: at each iteration a set of

AML,i is set to 0 (active set), and the remaining L,i (passive set) are calculated via the left

pseudo-inverse A+ of the matrix Ap (the matrix made of the columns of A that correspond to

the passive set). NNLS iterations search for the passive set that minimizes the cost function J
while satisfying the non-negativity constraints. NNLS finds the optimal solution within no more
iterations than the number of A rows [Lawson & Hanson 1974].

The standard NNLS algorithm needs to be implemented once per pixel. Lately, a modification of
the standard NNLS algorithm enables the simultaneous solution of the NNLS problem (minimize

J = I|AMLs - bl subject to AMLi 0) for a large number of vectors b as long as the coefficient

matrix A is common [Bro and de Jong 1997; van Benthem and Keenan 2004, 2008]. Fast
implementations of NNLS (fNNLS) take into advantage that i) the major computation cost of
NNLS is the calculation of the pseudo-inverse A+ for all the possible passive sets, and that ii)

the optimal solution for many b vectors corresponds to the same passive set therefore it is not
necessary to calculate A+ more than once for each passive set.

Numerical Implementation - Common channel noise

In the case of common noise variance (aj = a) the set of ML estimation equations (Eq. 2.4.12)

has a coefficient matrix A = STS that is constant and independent of data y. This results in very

efficient computations for both cases of ignoring or including non-negativity constraints for AML.

When non-negativity constraints for AML are ignored, eq. 2.4.12 can be solved by inverting the
coefficient matrix:

LML = (ST. S-. -ST. y = S+. y [2.4.13]
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S+= (ST . Syl . ST is the left pseudo-inverse of the MxN spectral matrix S, which can be
calculated via singular value decomposition [Strang 1988; Press et al. 2007]:

S = U- E VT E = [diag(q;) O(M-N)XNT

S+ = V. g+- UT , + = [diag(;j') ONX(M-N)] [2.4.14]

Where Oixj is an ixj matrix of zero elements, U and V are MxM and NxN orthogonal matrices
respectively, and g (j = 1, 2,..., N) are the singular values of S. When M>N (number of detectors
is larger than number of sources) and rank(S) = N (the columns of S are independent;
equivalently the emission spectra of the sources are distinct and not linearly-dependent), there
exist N non-zero singular values qj for S, the left inverse S+ is full rank, and AML is unique. Since
the coefficient matrix A = STS is data-independent, S+ needs to be computed only once for all
image pixels that have common spectral matrix S. Once the pseudo-inverse S+ is calculated,
spectral unmixing for each pixel involves a single matrix multiplication (Eq. 2.4.13) and can be
implemented in batch (unmixing large numbers of pixels using a single matrix multiplication),
resulting in very low computational cost.

When the non-negativity constraints for AML are considered, Eq. 2.4.12 can be solved iteratively
using the NNLS algorithm. Since the coefficient matrix ST . S is common to all measurements, it
is possible to apply the fast NNLS (fNNLS) implementations to solve Eq. 2.4.12 for thousands of
pixels simultaneously as long as all pixels share a common spectral matrix S. It turns out that
such batch processing can provide non-negative spectral unmixing in a very cost-effective way,
especially if implemented in GPU-based parallel computer architectures [Luo and Duraiswami
2011].
As a final note for the Gaussian common-noise mixing model, many papers in the literature
describe linear unmixing as the solution to the least-squares problem

S - ML ~ y [2.4.15]

The solution of this system of M equations for N unknowns is not necessary identical to the
solution of Eq. 2.4.12 (N equations for N unknowns). The solutions of Eq. 2.4.12 and 2.4.15 are
identical when their unconstrained solutions contain no negative element; in this case Eq. 2.4.12
corresponds to the canonical equations of least squares problems. The solutions of Eq. 2.4.12
and 2.4.15 differ when the non-negativity constrains are imposed, which is usually the case at
low signal levels. This can be proven by the Karush-Kuhn-Tucker (KKT) conditions when the
active constraint set in non-empty (i.e. the non-negativity constraint is imposed for some
element of the AML vector).

Numerical Implementation - Variable channel noise

In the case of channel-dependent noise variance (oj = f17) the coefficient matrix A = STDd'S of
the ML estimation equation (Eq. 2.4.11) depends on the channel emission rate dj. Since dj are
not known a-priori, they can be estimated as either dj = yj or =tfA( 0) + SN,] %, where ,(0)

is an easy to compute estimate of AML (for example the solution of the common noise Gaussian
mixing model of Eq. 2.4.12).

ST -Al(y)'S'AML=ST.Al(y) - y [2.4.16]
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where Ad = diag(dj(y)). Eq. 2.4.11 can be solved by either Gauss elimination (when non-
negativity constraints for AML are not considered) or by NNLS (when non-negativity constraints
for AML are considered). Since the coefficient matrix ST -Ad(y) -S is data-dependent, it is not
possible to process pixels in batch (either by Gauss elimination, or by fNNLS). However, Eq.
2.4.16 can be re-written as:

ST. S AML =T.. 0(y) [2.4.17]
where

(y) = (ST - Ajl(y) -S)-1 .ST -Al(y) -y

The solution of Eq. 2.4.17is implemented in two steps. First, VP(y) is calculated pixel-wise by
Gauss elimination

0y) = (ST -Ad (y) . S)\ST -Adl(y) -y [2.4.18]

The coefficient matrix ST S in Eq. 2.4.17is identical to Eq. 2.4.12 and data-independent,
therefore Eq. 2.4.17can be solved in batch mode either by SVD decomposition or by fNNLS.
KKT conditions prove that Eq. 2.4.11 and 2.4.17 provide identical solutions AML when A 1(y) is
full-rank (dj # 0) and all elements AML, > 0 are non-negative. However, when in the solution
there exists at least one i so that AMLJ, = 0 , then the solutions of Eq. 2.4.11 and 2.4.17are
different.

Including Detector Noise
As it was discussed in Section 2.4.3, when the signal level is close to the level of background
detector noise, then it is necessary to include the detector noise signal in the observation model,
because otherwise noise can corrupt unmixing results. Incorporating the signal properties (SN,

AN) in the observation model results in the identical ML estimator equations (Eq 2.4.10, 2.4.12,
2.4.13 and 2.4.17) where dj() is calculated via Eq. 2.4-7 instead of Eq. 2.4-5, and y is
substituted by y*:

y* = Y - SN'AN

Incorporating noise does not affect the discussion on the application of appropriate numerical
solution algorithms.

Gaussian mixing model

Observation model: L(Aly) = log (PriA(yIA)) = - log(2wr) - ____ + lj;)
I OJ2+ log(o9}j

ML estimation (general case): ST -Aa 2 *S'- = ST -A2. y*

Y* Y - SN 'AN

Common noise (a; = a): ST -S -ML =T. y*

SVD solution: AML = S+.Y*
S+ = V. Z+. UT

fNNLS solution: ST -S -L = ST y* , AMLJ, > 0

Variable noise (aj = T): T -diag-1(a(y))- S -ML = ST .
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Ad = diag(d(y)) , d = S -A(O)(y) + SN 'AN

SVD solution: AML = O(y)

0(y) = (S T -A 1 (y). S)\(S T ' 1(y) y*)

Approx. fNNLS solution: ST . S '-ML = ST. S 0p(y) , AML> 0

2.4.5 Theoretic Analysis of Spectral Unmixing Performance

Data-generating model
The measurement y at each pixel is generated by the data-generating model:

LO(Aly) = log (p0IA(yIA)) = -(IIA0|1 + AN) + jitfY- log (t T + SNJ ' AN) - log(yj!))

which corresponds to a Poisson mixing model Section 2.4.3. L is the pixel-dependent actual
source emission rate at the detector to be estimated, and tjo is the j-th row of the real spectral
matrix So. The data-generating model incorporates detector noise described by the emission
spectrum SN, and the noise rate AN-

Estimation Error Definition
The performance of a spectral unmixing algorithm is evaluated based on two kinds of metrics:

- Estimation error: describes the statistical properties of estimation error A(y) = AML(Y) - A.

Any ML estimate AML of AO is a random variable since it is a function of measurement y
which is a random variable. The properties of A(y) that quantify estimation error are:
o accuracy (trueness), quantified by the estimation bias

b = E[A(y)]

o precision (reproducibility), quantified by the estimation covariance matrix

CA = E [ML 'MLI -

- Computation cost: the CPU time that is required to unmix each pixel of a spectral image.

Sources of Estimation Error
ML estimation provides an estimate 4ML(Y) of A0 based on a measurement y. The resulting
estimation error 1(y) = AML(y) - A0 arises due to three reasons:

- Poisson noise: Due to the stochastic nature of the photon detection process, each
measurement y is a random vector whose elements depend on A% and So. Since LML(Y) is
a function of y, AML(Y) is also a random vector. This randomness induced by the random
nature of photon arrival causes estimation error.

- Spectral mixing: When photons emitted by N sources of overlapping emission spectra are
detected by the same M-channel detector, the mixing process deteriorates the estimation
performance compared to the case where each source could be detected separately.

- Model uncertainty: modeling errors (such as imperfect knowledge of the source number N or
detected spectral matrix SO) and detector noise increase estimation error.

These three origins of estimation error 1(y) affect both the bias b = E[1(y)] and covariance
matrix CA = E[IML -aML] of the estimator in different ways analyzed below.
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Poisson Noise Imposes a Performance Bound on Spectral Unmixing

Given the source emission vector AO at the detector, any estimator for AO based on a
measurement y would be limited by the Poisson nature of photon arrival. An "ideal" estimation
implemented by an "ideal" (non-existing) detector that could somehow distinguish and detect the
photons of each source in a separate channel would estimate A0,j with variance equal to A0,j.

Poisson noise does not induce estimation bias, however imposes a lower bound on the

covariance matrix Cpoisson = diag(Ao) that depends only on the signal level Y = ZjAoj. It is not
A

possible to design a spectral unmixing algorithm that estimates the rate / 0j with variance less
than A0,j.

Analyzing the Effects of Mixing and Model Uncertainty

In addition to the limitation imposed by Poisson noise, the performance of any estimator 1 is
deteriorated further due to source signal mixing and model uncertainty. The effect of the last two
factors on the ML estimation error 1(y) = AML(Y) - AO can be studied analytically by expanding
the derivative of the log-likelihood around the actual emission rate vector A0.

aL(Aly) aL(Aly) + 2 L(Aly) ) 2 )

,)A aA IA=A 0 +-oA A=A 0 A-A)+ (A-A

At the maximum likelihood solution AML(Y) the gradient of the log-likelihood is zero, therefore
after neglecting the O((A - AO) 2 ) terms, this provides a linear equation of the form

F -A = g [2.4.19]

F = - aL(Ay) [2.4.20]aAaAT AA

g = aL(Aly) [2.4.21]

The following two sub-sections derive expressions for the estimation bias b = E[A(y)] and
covariance CA = E[AL -ML] based on the exact form of F and g, which depend on the mixing
model utilized for ML estimation.

Estimation Error Analysis - Poisson mixing model
When ML estimation is based on the Poisson mixing model (Eq. 2.4-3), F and g become:

F(y) = - L(Ay) = ST -A -Aj -2 .SOAaAT IA=A0

OL (,ly)
g(y y)-1Nx1+T AdydA A=A 0

Where lixj is a ixj matrix of unitary elements, Ad = diag(d), d = SAO, and Ay = diag(y).

When modeling errors are small and source rates A0 are large enough so that yj tf AO, then
the F matrix becomes data-independent:

F ~ ST -A' -S [2.4.22]
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In this case the elements of the channel rate vector d are large enough so that the PDF of
measurement yj at each channel can be approximated by a normal distribution of mean and
variance equal to tfAO, and g becomes a vector of Gaussian random variables, therefore:

E[g] = pg= -1NX1 + ST . A-' - E[y] = -ST - e [2.4.23]

E[ggT] =ST -A-' - CY- A-. S + ST -e -eT -S [2.4.24]

where C, = diag (So -AO) is the covariance matrix of y. The modeling error vector e describes
modeling errors due to imperfect knowledge of the spectral matrix SO:

e = lMx1 -Ad' -So -AO [2.4.25]

where the j-th element ej = 1 - tyTAo/tfA'O describes the imperfect knowledge of source
emission spectra at channel j. I is the Fisher information matrix of the Poisson model.

Combining Eq. 2.4.19-24, since g is a Gaussian random vector, then estimation error A
becomes a Gaussian random vector of mean F""p9 and covariance (F (j - jg - pTg) - F)-1:

A-N (F-11g, (F- (j - lyg - - F)-

where the Fisher information matrix can be written as:

j = ST - ((I - diag(e)) - A-' +e -eT).- S

In this case, the estimator bias equals b = E[A] = F-1pg.

When AO are large and there are no modeling errors (S = SO), then e = 0, jg = 0, and I = F
[Konishi and Kitagawa 2008], and estimation error is a zero-mean Gaussian vector of
covariancef-1 = F-1:

1 -N(0,J-l)

Equivalently, the estimator bias equals zero (the estimator is unbiased) and the estimator
variance equals Cj = J-1. In summary, when the elements of AO are large enough and there is
perfect knowledge of the source emission spectra, the ML estimator based on Poisson mixing
model is unbiased and the error covariance equals the inverse of the Fisher information matrix
that is approximated asj = ST -A' -S.

When the elements of AO are not large enough, the above approximations are not valid.
Nevertheless, it is useful to know how "large" AO elements need to be or how small A elements
should be so that the above analytic relations provide reasonable approximations.

Estimation Error Analysis - Gaussian mixing model
When ML estimation is based on the Gaussian mixing model, F and g become:

F - 2L(A-y) - ST - A 2 - S

OL(A'Iy)
gXy) -R(Aly)ST A- 2 . (. _ AY)

a A=AO
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In this case, F is always data-independent. The noise approximation oj = TA0 provides the

identical F ~ ST -A' - S result as in the case of the Poisson mixing model.

When AO are large (see discussion on the Poison mixing model) the measurement Y] can be
approximated as a random variable that follows normal distribution of mean and variance equal
to tfAO. In this case g is a vector of Gaussian random variables where:

E[g] E g = ST -A2 . (S . _ -.O)

E[ggT] =ST -A 2. (C+A -e-eT -A -A 2 .S

These two equations become identical to Eq. 2.4.23, 2.4.24 when oj = tf A0 . The estimation

error A(y) is a Gaussian vector of mean F-'pg and covariance matrix F-1(J - ig . pT)F-1.

In the absence of modeling errors (e = 0), then pg = 0 (the ML estimator becomes unbiased)
and to very good approximation j = F (when A = AO the Gaussian mixing model PYIA(YIA) fits
the "real" distribution pYA(ylA) very well), and the covariance of the estimator error equals CA =

1-1 = (ST - Ad' -S)-1. These results suggest that when source rates AO are large and the
spectral matrix is known exactly, the Gaussian mixing model provides the same ML estimation
performance as the more complex and computationally expensive Poison mixing model.

Analysis of the Fisher information matrix
The previous sub-sections demonstrate that the effects of mixing and model uncertainty on
spectral unmixing performance depend strongly on the properties of the Fisher information

matrix I = E[ggT], where g = aL(Aly) and the expectation E[.] is calculated with respect to

data y. The Fisher information matrix is an important concept in statistics, involved in the
Cramer-Rao bound (CRB) on the covariance CA(A) of an unbiased estimator A(y) [Rao 2001]:

CA(A) -]-'(A) 0

where means that the matrix CA(A) -- '1 (A) is positive semi-definite [Strang 1988]. The
Fisher information matrix ](A) describes how the gradient magnitude of the log-likelihood of a
probabilistic model varies with respect to the model variables A that need to be inferred, and
therefore describes the ease of performing inference based on this model.

In the previous sub-sections, it was shown that when source rates AO are large enough and
there is no model uncertainty, then both mixing models (Poison, Gaussian) are efficient: they
provide unbiased estimation with covariance matrix that approaches the CRB CA = J-1 where
approximatelyJ ST - Ad' - S.

Eigenvalue analysis of the Fisher information matrix ] can provide further insight. j is a function
of the source emission rate vector AO through the matrix Ad = diag(tfAO), and also depends on

the emission spectra of the sources through matrices S and Ad. This suggests that the ability to
estimate AO precisely depends on both the source emission rates AO and the source emission
spectra si. The analysis of estimation variance for each Ai starts by considering the ellipsoid
Ej: (A - AO)T .j. (A - AO) = 0. The eigenvalues j and eigenvectors ip1 of j provide the
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magnitudes and directions of E, axes (eigenvectors are normalized so that pfpi = Sij, where
6ij is Kronecker's delta) [Strang 1988]. The magnitude of fi is inversely related to the magnitude
of the corresponding axis of the covariance matrix CA. Therefore, the larger the j coordinate
where the ellipsoid E, crosses axis j, the smaller the estimation variance for Ai. The volume of
ellipsoid Ej provides a metric that is inversely related to the overall covariance of AML. The
ellipsoid volume is analogous to the product of J(o) eigenvalues. The geometric mean of i
eiqenvalues

=N

is a metric analogous to the volume of the Ej ellipsoid (therefore inversely analogous to the
geometric mean of the variance of 4 ML,i), normalized over the number of sources N. The
geometric mean of the ellipsoid Epoisson that describes the inverse of the variance due to just

Poisson noise equals GPoisson = N The effect of the mixing process is to shrink the ellipsoid

Epoisson into the ellipsoid E (therefore increase the axes of the covariance matrix CA). A metric
that describes the effects of the mixing process on CA and excludes the effects of Poisson noise
is the ratio of Ej volume Epoisson volume which equals the emission-normalized geometric mean
of I eigenvalues:

= JNiffi -Aoi} [2.4.26]

where 0 5 1. When = 1 spectral mixing has no effect on the estimation of source rates A.
When = 0 mixing prevents the estimation of the source rates. Since the metric is normalized
with respect to the number of sources N, it is possible to use to compare the ease of spectral
unmixing in different models that contain different number of sources N.
The metric describes the overall effect of mixing on the estimation of all source rates A0. It is
possible though that estimating the rate of each source Ai is affected in a different way. The
effect of spectral mixing is to increase the estimator variance of source i emission AMLJ from 0L,i
(achieved using the "ideal" sensor described earlier in this section) to CAii. This deteriorating
effect of spectral mixing on the estimation variance AMLJ is described by the variance factor Gi:

Gi (A0) = [2.4.27]

In the literature it has been proposed to analytically approximate the estimator variance AMLI as

CAii = Jf , where Ji is the i-th diagonal element of J(A4) [Neher and Neher 2004]. The resulting
analytic expression for G1 is:

.-- 1
=iAo SIJ +N JL j [2.4.28]

=1 EA01 s 1jk
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Since A0,j 0, si1  0 and 11sj111 = _sj = 1, then 0 Gj(A 0) 1. The magnitude of Gi (and

the corresponding loss of estimation precision for AIMLJ) depends on the emission spectra S1 and

the relative magnitudes of the source rates A0,k/A0,. Eq. 2.4.28 suggests that:

- if there is a source whose emission rate is much larger compared to the rate of other
sources (A0 ,j >> A0, Vi # j) then Gi -+ 1 (the rate A0,j will be estimated with precision close to
the maximum possible) and Gj -+ 0 (the rates A0,j of the remaining sources will be estimated
with precision much worse compared to maximum possible). This suggests that spectral
unmixing is not precise when source rates differ significantly.

- each source affects the estimation variance for the rates of the remaining sources. The
effect of source k on the estimation of A0,j (i # k) depends on their relative emission rates

AO,k/Ao,i and on the emission spectra through sjk/sji at each detector channel j=1,2,...,M.
- For sources ij of similar emission spectra sjk/sji 1 which increases the variance of their

estimation.
- Variance factors Gj(A 0) and the metric ( do not depend on the absolute value of A0.
- When the emission spectra of sources i, j are "very different" it is still possible to get good

unmixing performance even when AOk/o, >> 1 .

- As the number of sources N increases, it is not possible to prevent spectrum cross-talk and
the estimation of all source rates will be deteriorated.

The approximation Cit ~ J-1 is accurate only when j is near-diagonal (when its eigenvalues lie

close to the unit axes). A more accurate calculation of AML,i should result from a more general

calculation of the diagonal elements of tJ-1 [Sivia and Skilling 2006]:

CAi ~ [2.4.29]

where 1-1 stands for the determinant of a matrix, and J(ii) is the matrix obtained from j by

removing its i-th row and column [Strang 1988]. The resulting analytic expression for Gi is:

Gj(A 0) ~ (j) [2.4.30]

Simulation results show that many of the conclusions obtained from the analytic expression of
Eq. 2.4.28 are true for the more general expression of Eq. 2.4.29 (see Section 2.4.6).

In summary, the performance of a spectral unmixing ML estimator is evaluated by quantifying its
variance using two metrics: describes the overall "ease of spectral unmixing" in a particular
system consisting of N sources. Gi describes the deterioration of estimation variance CAtj for

the i-th component of the system compared to the Poisson-noise limited case. Both metrics take
vales in the [0,1] region, where 1 stands for optimal and 0 for worse case.

Quantifying the Similarity of Sources' Emission Spectra
The previous sub-section suggests that ML spectral unmixing estimation variance depends on
the similarity of the emission spectra of the sources involved. In the literature, the similarity of
the emission spectra of two sources has been quantified through several metrics such as the
eucledian distance between normalized spectra, spectral correlation similarity, spectral angle

/ T

measure (SAM) metric SAM = acos S1.S2 ) /7T, and the spectral information divergence
[1 Si IIS2 n

[Chang 2000; Landlsford et al. 2001; Schwarz and Staenz 2001 ;Garini et al. 2006; Burton et al.
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2009]. However, these metrics suffer from several limitations: i) they cannot be used to estimate
the ML estimator variance, ii) they do not incorporate the effect of the relative source emission
rates o,k/Ao,i on ML estimation variance, and iii) they cannot quantify systems containing more
than N>2 sources.

Here, it is proposed to use the emission-normalized geometric mean of J eigenvalues provided
by Eq. 2.4.26 to describe the degree of similarity in a system consisting of an arbitrary number
N of sources. describes how the geometric mean of J eigenvalues are reduced due to the
mixing process excluding the effects of Poisson noise. When ( -> 1 the emission spectra of
sources are very "different" and the presence of each source does not affect the estimation of
the other sources' rates. When -* 0 some or all emission rates cannot be resolved accurately
either because the sources have similar emission spectra, or because their emission rates are
very different.

Figure 2.4.2 shows the emission spectra of 59 fluorophores whose emission peak maximum is
located within the [400, 630] nm range. The fluorophores consist of 22 fluorescent dyes
(cascade blue, alexa fluor 405, alexa fluor 350, Quinine sulfate, POPOP, FITC, BodipyFL, alexa
fluor 488, rhodamine green, oregongreen488, FlAsH, alexa fluor 514, alexa fluor 532, 5-CTMR,
Cy3, Dylight549, alexa fluor 555, TRITC, alexa fluor 546, alexa fluor 568, ReAsH, Texas red),
13 fluorescent proteins (BFP, AmCyan, CFP, GFP, sapphire, YFP, mhoneydew, mbanana,
morange, RFP, mstrawberry, mtangerine, mcherry), 6 cell tracker dyes (calcein blue,
CalceinAM, CMFDA, CMR, CMTMR, Calcein red), 5 phenazines (endogenous fluorophores in
Pseudomonas aeruginosa bacteria: PCN, PVD, 10HPhz, PYO, PCA), 4 fluorescent beads
(fluorospheres blue, yellow-green, orange, and red), 4 nucleic acid dyes (hoechst33342, DAPI,
sytol3, syto82), 2 endogenous fluorphores found in tissues (collagen, NADH), 2 cell component
dyes (Fluoromyelin, Cellmask orange), and 1 quantum dot (E560).
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Figure 2.4.2: Emission spectra of 59 fluorophores whose emission spectrum peak lies between 400 and 625nm. 1:
PCN, 2: fluorospheres blue, 3: cascade blue, 4: alexa fluor 405, 5: alexa fluor 350, 6: calcein blue, 7: collagen, 8:
hoechst3334, 9: Quinine sulfate, 10: PVD, 11: DAPI, 12: BFP, 13: NADH, 14: POPOP, 15: 1OHPhz, 16: AmCyan, 17:
CFP, 18: PYO, 19: GFP, 20: sapphire, 21: syto13, 22: FITC, 23: BodipyFL, 24: CalceinAM, 25: CMFDA, 26:
Fluoromyelin, 27: alexa fluor 488, 28: Fluospheres yellow-green, 29: rhodamine green, 30: oregongreen488, 31:
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PCA, 32: FlAsH, 33: YFP, 34: mhoneydew, 35: alexa fluor 514, 36: alexa fluor 532, 37: mbanana, 38: syto82, 39:
Fluospheres orange, 40: morange, 41: 5-CTMR, 42: Cy3, 43: E560, 44: Dylight549, 45: alexa fluor 555, 46: CMR, 47:
Cellmask orange, 48: CMTMR, 49: TRITC, 50: alexa fluor 546, 51: RFP, 52: mstrawberry, 53: mtangerine, 54: alexa
fluor 568, 55: mcherry, 56: ReAsH, 57: Calcein red, 58: Texas red, 59: Fluospheres red.

Figure 2.4.3 shows the detected emission spectra si of the 59 fluorophores shown in Figure
2.4.2. These particular spectra si are obtained for the 16-channel instrument utilized in this
thesis (Section 2.3.1) calibrated to detect emission in the [381,576] nm range (16 channels, 12.8
nm range per channel). While the emission spectra shown in Figure 2.4.2 are instrument-
independent (a chemical property of fluorophores), the emission spectra of Figure 2.4.3 depend
on both the instrument used and the instrument calibration.
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Figure 2.4.3: Emission spectra of the 59 fluorophores shown in Figure 2.4.2 as detected by the 16-channel spectral
microscope used in this thesis (Section 2.3). Each channel samples approximately a 12.8nm region of the EM
spectrum. Calculations are performed when the detector is calibrated so that, the 16 channels sample the [381, 586]
nm EM region. 1: PCN, 2: fluorospheres blue, 3: cascade blue, 4: alexa fluor 405, 5: alexa fluor 350, 6: calcein blue,
7: collagen, 8: hoechst3334, 9: Quinine sulfate, 10: PVD, 11: DAPI, 12: BFP, 13: NADH, 14: POPOP, 15: 1OHPhz,
16: AmCyan, 17: CFP, 18: PYO, 19: GFP, 20: sapphire, 21: syto13, 22: FITC, 23: BodipyFL, 24: CalceinAM, 25:
CMFDA, 26: Fluoromyelin, 27: alexa fluor 488, 28: Fluospheres yellow-green, 29: rhodamine green, 30:
oregongreen488, 31: PCA, 32: FlAsH, 33: YFP, 34: mhoneydew, 35: alexa fluor 514, 36: alexa fluor 532, 37:
mbanana, 38: syto82, 39: Fluospheres orange, 40: morange, 41: 5-CTMR, 42: Cy3, 43: E560, 44: Dylight549, 45:
alexa fluor 555, 46: CMR, 47: Cellmask orange, 48: CMTMR, 49: TRITC, 50: alexa fluor 546, 51: RFP, 52:
mstrawberry, 53: mtangerine, 54: alexa fluor 568, 55: mcherry, 56: ReAsH, 57: Calcein red, 58: Texas red, 59:
Fluospheres red.

Pair-wise spectral similarity in a system of N sources can be described using a distance matrix
whose (ij) element contains the metric of a N=2 system that consists of sources i and j

(which is denoted as f{i,j}). Since depends on the emission rate ratios AO, 1/t0,1 in the simplest
case it is assumed that 'Oj = AO,.

E(i,j) = {i,j}
Figure 2.4.4 displays the pairwise distance matrix H for the 59 fluorophores shown in Figure
2.4.3 when their emission rates are equal OI = AO. The distance matrix depends on the
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instrument and the instrument calibration. Instruments of different channel number M, channel
region width, and different emission optics would result in different fi,jj.
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the same cluster ( < 0.3), relatively similar to dyes of neighboring clusters (0.3 < < 0.6) and
different than dyes of other clusters ((> 0.6). Dye clustering can be utilized to design staining
protocols for high content imaging experiments (Section 2.4.8).

Figure 2.4.5 compares the metric and the published SAM metric applied in quantifying the
difference between the emission spectra of all possible combinations of the 59 fluorophores
shown in Figure 2.4.3. The i metric is calculated assuming that the emission rates of the two
fluorophores are equal. Results show that the SAM metric correlates very well to the metric for
two fluorophores of equal emission rates. Nevertheless, I is amore generic metric, as it can
describe cases where there is an arbitrary number N of sources of arbitrary emission rates.

y =101 x-7.89E-3 (R2 0 995)
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Figure 2.4.5: Relationship between the f metric and the spectral angle measure (SAM) metric for quantifying the
similarity of the emission spectra of two fluorophores. Metrics are calculated for all pairs between the 59 fluorophores
displayed in Figure 2.4.4. Both metrics are calculated based on the detected spectra in the 16-channel spectral multi-
photon microscope utilized in this thesis (Section 2.3). The metric is calculated assuming the two fluorophores have
equal emission rates.

2.4.6 Simulation Results: No Model Uncertainty
This section discusses the performance of the three ML spectral unmixing algorithms in the
case when there is no model uncertainty. It is assumed that noise characteristics and source
properties (number N, emission spectra vectors si) are known. This section presents simulation
results that describe how estimation variance, estimation bias, and computation cost depend on
experimental parameters (choice of sources, emission rates of sources, signal level), imaging
parameters (channel number), and spectral unmixing algorithm utilized.

Estimation Variance

As described in Section 2.4.5, under appropriate assumptions (large AO, no model uncertainty)
the ML estimation error 1(y) = AML(Y) -4O is a Gaussian vector 1 -N(,J- 1) of zero mean and
covariance matrix J-. Estimation variance is quantified using two metrics. First, the ease of
spectral unmixing of a signal generated by mixing N sources of overlapping spectra is described
by the emission-normalized geometric mean of j eigenvalues (Eq. 2.4.26). Second, the
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estimation variance CA for the estimate 4 ML,i of tO,i is quantified by the variance factor Gi(LO) =
AO,i/CA (Eq. 2.4.27), which describes how much estimation variance for component i increases
due to mixing, compared to the best-case scenario where variance is due to the Poisson-noise
(/Oj). The Fisher information matrix J = ST -Ad -S is key in calculating both and Gi.
The properties of the Fisher information matrix J depend on the sources (number N, emission
spectra si, emission rates AO) that contribute to the mixed signal. Given a set of sources (si) and
their emission rates (AO) Eq. 2.4.29provides a theoretic estimate of the estimator variance CA;;
for the i-th source, and Eq. 2.4.30describes estimator variance through Gi. Theoretic estimates
of I and Gi (Eq. 2.4.26, 2.4.30) depend indirectly on the instrument configuration and alignment
through the emission spectra vectors si, and do not depend on the signal level (Y = |1A0ii1 =
Z A0,i), just the emission rate ratios AOi/AO,.

Figure 2.4.6 compare the theoretic calculations of the variance factors Gi (Eq. 2.4.30) with
simulation results GIM = O,i/Tvar(AMLJ(y)). Each subplot shows results for 50 cases, where
each case corresponds to a mixture generated by randomly picking 25N56 sources from the 59
sources shown in Figure 2.4.3, where the randomly-generated emission vector has a specific
signal level Y (units: photons/pixel) and maximum emission rate ratio R = max(tOiA/lO). For
each mixing case (a particular set of sources S and emission rates AO), var(AMLJ(y)) is
calculated from the ML solutions AML,i of 64000 randomly simulated measurements y generated
for that particular case (S and AO). ML estimates are calculated using the EM algorithm
described in Section 2.4.3.

Figure 2.4.6 results suggest that theoretically predicted variance factors Gi become larger
(closer to 1) as the metric increases. For each one of the 50 cases (source sets) shown in
Figure 2.4.6 subplots, there are N points (Gi,GOm) that correspond to the theoretically predicted
and ML simulated variance factors of the N sources of that case. The N points of each case are
highlighted with a marker that corresponds to the theoretical for this case (Eq. 2.4.26).
Results suggest that the validity of theoretic Gi predictions (Eq. 2.4.30) depends strongly on the
Gi itself, the signal level Y, and the maximum emission rate ratio R. When signal level Y is large
and the max ratio R approaches 1, then there is very good agreement between Gi and GOIM
over a wider region of G, values. As the signal level Y decreases, Gi predicts G IM well over a
smaller range of R values away from 1 and over a smaller region of Gi away from 1. For
example, when Y = 250 photons/pixel, Gi approaches GI'm for values as small as Gi = 0.05.
When Y = 50 photons/pixel, GfIM deviates significantly from Gi when G < 0.3. Increasing R
makes the prediction less reliable. The deviation Gi-GIm becomes significant for sources of
small Gi value, where Gi under-estimates G Im (simulated estimation variance is much less than
the one predicted). Results also show that the validity of theoretic G predictions depends
weakly on , since deviation Gi-G IM becomes larger in cases of small I (denoted by the "x"
mark in Figure 2.4.6).
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Figure 2.4.6: Comparison of the theoretic variance factors G1 calculated by Eq. 2.4.30 with simulated GIlm for three
values of signal level Y = Z AOj (columns) and four values of maximum emission rate ratio R = max(AOj/LOj) (rows).
GIlm is calculated based on 64000 random samples per case. Each plot shows 50 cases generated by randomly
picking 2 N 6 sources from the 59 sources shown in Figure 2.4.3 and a random emission vector AO based on the
specific combination of signal level Y and max emission ratio R. For each case there are N points (G;, GI'm) that
correspond to the predicted and actual ML estimation variance of the N sources. The N points of each case are
highlighted with a different marker depending on the calculated f (Eq. 2.4.26): x (0 f 0. 25), o ( 0.25 0. 5),
+ (0. 5 ? 0. 75), and * (0.75 1). ML estimates are calculated using the EM algorithm.

The maximum emission rate ratio

R = max(O,1/A0 )

describes how uniform are the emission rates present in the pixel. It is affected by the nature of
the sample and the experimental staining protocol. The effect of R in estimation variance is
further demonstrated in Figure 2.4.7, which shows how the distance matrix E between the 59
fluorophores of Figure 2.4.3 varies as a function of the emission rate ratio 4 1/A2 (rows: source 1,
columns: source 2).

Figure 2.4.7 shows that the magnitude of . elements f{ij} depends on the emission rate ratio

/ 1//. 2 - While -(A/A2 = 1) is symmetric, E(Al/A 2 # 1) is not symmetric anymore: due to the
non-symmetric shape of fluorophore emission spectra (tail at large wavelengths), increasing the
emission rate Ai of source i affects fluorophores whose emission peaks are located at longer
wavelengths more compared to fluorophores whose emission peaks are located in shorter
wavelengths. Figure 2.4.7 also shows that S(A/A 2 = 5) is quite similar to S(Al/A 2 = 1) in the
sense that the pairwise metric {fij} between fluorophores that belong to neighboring dye
clusters is not reduced significantly ( {ij} is reduced by up to 0.25). However E( 1/A2 = 20) is
significantly different than H(A1 /4 2 = 1) in the sense that the metric f{i,j} between fluorophores
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that belong to neighboring dye clusters takes small values (less than 0.3). This figure suggests
that when A1/A2 # 1 the elements of the S matrix get smaller, therefore spectral unmixing
becomes harder. This does not mean that the estimation variance of all source rates increases.
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Figure 2.4.7: The effect of the emission rate ratio A1/A2 in the pairwise distance matrix shown in Figure 2.4.4. The
distance matrix is calculated based on the emission-normalized geometric mean of the eigenvalues f of the Fisher
Information matrix I (Eq. 2.4.26). Source I corresponds to rows, source 2 corresponds to columns. In each case, the
sensor is calibrated to detect emission in the [381, 586] nm EM region.

Figure 2.4.8 shows that in a mixture of N sources, as the rate Ai of one source i increases, then
the variance factor Gi of this element increases and the variance factors Gj (i # i) of the

remaining sources decrease. Overall for a given set of fluorophores, the i metric decreases as
the maximum emission rate ratio R deviates from 1,
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Figure 2.4.8: The spectral unmixing performance in the six fluorescent protein set (BFP, CFP, GFP, YFP, morange,
mcherry, see ) deteriorates as the maximum emission rate ratio R deviates away from 1. Left: Value of
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the i metric when the emission of one of the sources is R times the common emission rate of the five remaining
sources. Right: Variance factor GCFP for CFP when the emission rate of one of the sources is R times the common

emission rate of the five remaining sources.

Estimation Bias

Under the assumptions of large AO and no model uncertainty, theoretical results suggest that ML
spectral unmixing is unbiased, i.e. E[A(y)] = 0 (Section 2.4.5). However, simulation results
show that even in the absence of modeling errors (S = SO) estimation bias can be non-zero. In
this section, bias is described by the normalized bias factor, which is defined as:

[2.4.31]Bi = E[AML,-;Oh]
a0,i

and is the non-dimensional ratio of estimation bias E[1 MLI - Aoi] to the actual value Alj.

Figure 2.4.9 provides simulation results BIm (where the expectation E[PaMi - .ot] is calculated
based on ML estimates obtained by the EM algorithm) for the same cases (source sets, signal
level Y, maximum emission rate R) and data as the ones shown in Figure 2.4.6. For each one of
the N components of each case, its simulated Bm is plotted versus its theoretic factor Gi using
a marker that corresponds to the value of that case.
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Figure 2.4.9: Simulated normalized bias BfIm = E[A0 (y) - AO,]/OL for three values of signal level Y = Z AO,
(columns) and four values of maximum emission rate ratio R = max(Aoj/Ao;) (rows).These results are obtained from

identical simulations as the results for G, and GI'm shown in Figure 2.4.6, calculated based on 64000 random
samples per case. Each plot shows 50 cases generated by randomly picking 2 5 N 6 sources from the 59 sources
shown in Figure 2.4.3 and a random emission vector AO based on the specific combination of signal level Y and max
emission ratio R. For each case there are N points (Gi, Bfim) that correspond to the predicted and actual ML
estimation variance of the N sources. The N points of each case are highlighted with a different marker depending on
the calculated (Eq. 2.4.26): x (0 5 0.25), o (0.25 0.5), + (0. 5 S ?!5 0.75), and * (0.75 1). ML
estimates are calculated using the EM algorithm.
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Simulation results show that BfIM deviates from 0 as a function of signal level Y, maximum
emission ratio R, and the parameters Gi, and (describe the system to be unmixed). The
pattern of BIm(Y, R, G, 4) deviation from 0 shares common features with the way
GIIM(Y, R, Gi, ) deviates from Gi. BOm deviates significantly from 0 over a small region near
Gi = 0 when Y is large (Y = 250 photons/pixel, even Y = 50 photons/pixel when R is small) and
R -> 1. As signal level Y decreases, BIm deviates from 0 over a wider range of ratio R and over
a wider region of Gi around 0. BO"m deviates from 0 more for sources of small Gi, and this
sensitivity becomes more significant for systems of smaller .

Comparison of ML unmixing algorithms
The estimation variance and bias results shown in Figure 2.4.6 and Figure 2.4.9 have been
calculated using ML estimates obtained using the EM algorithm based on the Poisson mixing
model (Section 2.4.3). Figure 2.4.10 and Figure 2.4.11 show how results for GOIM(G1 ) and
Bjm(Gi) deviate when ML estimates Li are calculated using the Gaussian-common noise
(GCN) algorithm and the Gaussian-variable noise (GVN) unmixing algorithms (Section 2.4.4)
using data from the identical unmixing cases.

Figure 2.4.10 and Figure 2.4.11 show that the performance of the two Gaussian mixing-based
ML estimation algorithms (GCN, GVN) is not significantly worse than the performance of the EM
algorithm. The simplest algorithm (GCN) has slightly worse performance than the other two
more computationally-intensive algorithms. For sources of large Gi, GlM(GCN) is slightly less
than G, indicating that GCN results in 10-20% larger estimation variance compared to the
theoretic calculation.
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Figure 2.4.10: Comparison of the estimation variance G IMobtained by Gauss unmixing ML estimators versus GsIM
obtained by the EM unmixing ML estimator. Left: Difference Gslm(GCN) - Gslm(EM) between simulation results
calculated using Gaussian common-noise (GCN) or the EM algorithm. Right: Difference Gflm(GVN) - Gslm(EM)
between simulation results calculated using Gaussian variable-noise (GVN) or the EM algorithm. Simulations
correspond to identical cases as the ones shown in Figure 2.4.6. In all cases, results are highlighted with a different
marker depending on the ? of each case: x (0 s f S 0.25), o ( 0. 25 ! 5 5 0. 5), + (0.5 S f 5 0.75), and * (0. 75 5
4 1)
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Figure 2.4.11: Comparison of the estimation normalized bias B~I obtained by Gauss unmixing ML estimators
versus GyIMobtained by the EM unmixing ML estimator. Left: Difference B~IM(GCN) - B~IM (EM) between simulation
results calculated by Gaussian common-noise (GCN) or the EM algorithm. Right: Difference ByIM(GVN) - B~IM (EM)
between simulation results calculated by Gaussian variable-noise (GVN) or the EM algorithm. Simulations
correspond to identical cases as the ones shown in Figure 2.4.9. In all cases, results are highlighted with a different
marker depending on the i of each case: x (0 i 0. 25), o ( 0. 25 i 0. 5), + (0. 5 i 0. 75), and * (0. 75 <

S 1).

Unmixing algorithms need to be compared not just in terms of the estimation fidelity they
provide, but also in terms of the computational cost they require. Figure 2.4.12 shows the
required computation time T per pixel per source for each one of the ML unxming algorithms
(EM, GCN, GVN) considered in this thesis. Results show that the computation power required
by each algorithm is significantly different. GCN requires 1-2 orders of magnitude less
computation compared to the GVN algorithm, which requires at most 1 order of magnitude less
computation compared to the EM algorithm. The computation cost T of the EM and GCN
algorithms depends significantly on the ( of the system, while the computation time for GVN is
less sensitive on f. As ( -+ 1 the required computation cost of the EM algorithm is a bit less than
one order of magnitude smaller compared to the case ( -* 0, and displays less variance. The
required computation cost of GCN decreases as ( increases because fewer iterations are
required in NNLS. At (> 0.3 r(f) the computation cost of GCN shows a biphasic shape. The
lower branch corresponds to cases where unconstrained solution (SVD) is enough, while the
top branch corresponds to cases that require constrained solution (NNLS). Computations are
implemented in MATLAB R2012b (Mathworks; Natick MA) running in a quad-core CPU (Intel i7-
2600 3.4 GHz) with 8GB RAM under the Ubuntu 12.04 (kernel 3.2.0-43) operating system.

Comparing the estimation and computation performance of the three ML unmixing algorithms,
the previous figures show that the EM algorithm offers the best ML estimation performance
(lowest variance and bias) compared to the Gaussian-based ML unmixing algorithms (GCN,
GVN), however at significantly higher computation cost. The improvement in ML estimation
provided by the EM algorithm seems not significant enough to justify the increased computation
cost. In hard unmixing cases (( -> 0) EM is approximately 50 times shower than GCN and 5
times slower than GVN. In easy unmixing cases (( -> 1) EM is 20-200 times slower than GCN, 2
times slower than GVN without providing significantly improved estimation performance in terms
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of estimation variance and bias. None of the algorithms is able to improve the estimation
performance in hard unmixing cases.
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number from 8 to 16 results in slight increase in pairwise (, while further increase to 32
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channels results in negligible increase in pairwise . However, increasing the number of
channels from 4 to 32 has very limited effect on the ability to resolve pairs of components that
belong to the same cluster of the 16-channel distance matrix H.
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Figure 2.4.13: The effect of the channel number M in the pairwise distance matrix E shown in Figure 2.4.4. The
distance matrix is calculated based on the emission-normalized geometric mean of the eigenvalues f of the Fisher
Information matrix I when the two sources have equal emission A(Eq. 2.4.26). In each case, the sensor detects
emission in the (381,586) nm EM region.

Increasing channel number has a positive effect on accelerate unmixing calculations, as it
increases the emission-normalized geometric mean of f . On the other hand, increasing channel
number M deteriorates performance by decreasing the signal magnitude per channel, and by
increasing memory requirements and array sizes. It seems therefore meaningful to minimize the
number of channels utilized in unmixing calculations without reducing ( significantly.
It was shown that as the difference between the source emission rates increase, spectral
unmixing becomes harder (( and Gi decrease). It is of interest to evaluate if signal acquisition by
more channels could limit the deterioration of estimation performance that takes place as
emission rates differ.
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Three cases: easy, hard, challenging
The first case (easy) considers a set of N=3 components, consisting of a cell-tracker dye
(CMTMR) and two dyes (Alexa Fluor 350 and 488) used often as secondary antibody
conjugates. The spectral signatures of the three sources detected by the spectral microscope
described in Section 2.3 are very well separated (Figure 2.4.14b). The distance matrix F
components are {atexa350, alexa488} = 0.9, {alexa350, CMTMR} = 0.99, and

{atexa488, CMTMR} = 0.8, suggesting components are significantly distinct of each other
(Figure 2.4.14c). The = 0.84 metric of the whole system (common emission rate) suggests
that the three components could be estimated without mixing causing major loss of precision.
The variance factors are Galexa3sO = 0.9 , Galexa488 = 0.75, and GCMTMR = 0.84 (Figure 2.4.14d).
This means for example that the estimation variance of alexa488 emission rate will be 33%
(1/0.75=1.33) larger compared to the best possible case (Poisson noise-limited).
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Figure 2.4.14: Theoretic analysis of spectral unmixing estimation variance from data resulting from mixing N=3
fluorophores applied in cell imaging (Alexa Fluor 350, Alexa Fluor 488, and CMTMR). Sources have common
emission rates. The signal is acquired by the 16-channel spectral microscope described in Section 2.3. a: emission
spectra of the fluorophores. b: detected emission spectra si of the fluorophores by the 16-channel spectral
microscope. c: Pairwise distance matrix -- between the three components. d: Bar graph of the variance factors Gi(AO)
for each component. The normalized geometric mean 6f of the eigenvalues of I is superimposed.

It is interesting to note that the variance factors Gi of the three components can be estimated

based on the product of the non-diagonal elements of the pairwise distance matrix H. (i.e. for
alexa 350, this calculation suggests that GAiexa3so ;z: 0.90 - 0.99 = 0.89, GAiexa488 ~t 0.90 -0.86=
0.75, and GAlexa488 -_ 0.99 -0.86 = 0.85, values close to the ones obtained using Eq. 2.4.30).

Figure 2.4.15 presents simulation results for the variance factors Gi, estimation bias b, and

computation cost per pixel when ML spectral unmixing is implemented by the three unmixing

74



algorithms (EM, GCN, GVN) discussed in this thesis. Results are provided for various signal
levels (assuming common emission rates ij) and are compared with theoretical predictions for
Gi, and b. Simulated results for Gi and b agree with theoretical predictions very well over all
signal levels. The computation cost for EM and GVN is approximately independent of signal
level and approximately one order of magnitude larger than the cost of GCN (0.1 psec per pixel
for signal level larger than 60 photons per pixel).

Alexa350, Alexa488, CMTMR I max(X)/min(X,) = 1

- -- ----- - Alexa350
--------------------------------------------------- CMTMR

0 Alexa438
1

6)05-
0

E0
0

E 0

0

W
a)
E 5

emisin pr ompnet PC/ i so

35  Ga s a(3,o

2

CL

0

emission per component [PC/pixel]

Figure 2.4.15: Simulation results for the estimation variance factor GfIm (top), estimation bias (middle), and
computation cost (bottom) for ML spectral unmixing of signals generated by mixing emissions of Alexa350, Alexa488
and CMTMR. Results are presented as a function of the common emission rate per component ,4. Data are acquired
by the 16-channel spectral multi-photon microscope utilized in this thesis (Section 2.3). GfIM are superimposed with
theoretic estimations based on Eq. 18b. Results are provided for three ML spectral unmixing algorithms.

The second case (hard) considers a N=4 component system, consisting of four intrinsic
fluorophores (PVD, NADH, PYO and PCA) expressed in P. aeruginosa bacteria (Figure 2.4.16).
The emission spectra of the components have significant spectral overlap. The pairwise
distance matrix H components are very small. The small = 0.078 metric for the 4-source
system (common emission rates) suggests that it is hard to estimate precisely their emission
rates. The element that seems hardest to estimate is NADH because it is very similar to PVD
( {NADH, PVD} = 0.19) and PYO ( fNADH, PYO} = 0.3) Figure 2.4.16c. The small variance
factors GPVD = 0.003, GNADH = 0.002, Gpyo = 0.02 and GPCA = 0.24(Figure 2.4.16d) probably
overestimate estimation variance (see discussion of Figure 2.4.6).
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Figure 2.4.16: Theoretic analysis of spectral unmixing estimation variance from data resulting from mixing N=4
fluorophores found in bacteria (PVD, NADH, PYO and PCA). All sources have common emission rates. The signal is
acquired by the 16-channel spectral microscope described in Section 2.3. a: emission spectra of the fluorophores. b:
detected emission spectra si of the fluorophores by the 16-channel spectral microscope. c: Pairwise distance matrix
- between the four components. d: Bar graph of the variance factors Gj(AO) for each component. The normalized
geometric mean 6f of the eigenvalues of J is superimposed.

Figure 2.4.17 presents simulation results for the variance factors Gi, estimation bias b, and
computation cost per pixel when ML spectral unmixing is implemented by the unmixing
algorithms (EM, GCN, GVN) discussed in this thesis. Results are provided for various signal
levels (assuming common emission rates A4) and are compared with theoretical predictions for
Gi, and b. Simulated results for Gi and b agree with theoretical predictions reasonably only for
PCA and for signal levels larger than 40 photons/pixel. Theoretical estimations of Gi and b for
the remaining components (PVD, NADH and PYO) deviate significantly from simulation results.
As signal level decreases, simulation results for Gi increase. As signal level increases the
estimation bias of PVD, NADH and PYO deviates significantly from 0, however the simulated
bias factors Bi remain under 5%. The computation cost per pixel for solving this case is
approximately one order of magnitude larger than the computational cost of solving the easy
case shown in Figure 2.4.15. These results agree with the trends shown in Figure 2.4.6, and
Figure 2.4.9.
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Figure 2.4.17: Simulation results for the estimation variance factor GI'm (top), estimation bias (middle), and
computation cost (bottom) for ML spectral unmixing of signals generated by mixing emissions of PVD, NADH, PYO
and PCA. Results are presented as a function of the common emission rate per component ;i. Data are acquired by
the 16-channel spectral multi-photon microscope utilized in this thesis (Section 2.3). GfIM are superimposed with
theoretic estimations based on Eq. 2.4.30. Results are provided for three ML spectral unmixing algorithms.

The third case (challenging) considers a mixture of N=6 fluorescent proteins (BFP, CFP, GFP,
YFP, morange, and mcherry) used extensively in biological and medical research (Figure
2.4.18). This is an example of trying to exploit the capabilities of spectral imaging by careful
selection of fluorophores in order to be able to image as many sources as possible without
compromising unmixing precision significantly. While the second case of N=4 sources (Figure
2.4.16) is particularly hard to unmix ( = 0.078), the N=6 fluorescent protein case is easier to
unmix (4 = 0.33). The spectrum of each fluorophore as detected by the 16-ch sensor partially
ovarlaps (the values of the pairwise distance matrix H lie between 0.5 and 0.7) partially one or
two other spectra (Figure 2.4.18b,c). The resulting variance factors are GBFP = 0.336, GCFP
0.118, GGFP = 0.134, GYFP = 0.22, Gmorange = 0.311 and Gmcherry = 0.503 (Figure 2.4.18d).
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Figure 2.4.18: Theoretic analysis of spectral unmixing estimation variance from data resulting from mixing N=6
fluorescent proteins (BFP, CFP, GFP, YFP, morange, mcherry) used in biological research. All sources have
common emission rates. The signal is acquired by the 16-channel spectral microscope described in Section 2.3. a:
emission spectra of the fluorophores. b: detected emission spectra si of the fluorophores by the 16-channel spectral
microscope c: Pairwise distance matrix - between the six components. d: Bar graph of the variance factors Gj(A 0 ) for
each component. The normalized geometric mean 6f of the eigenvalues of I is superimposed.

Figure 2.4.19 presents simulation results for the variance factors Gi, estimation bias b, and
computation cost per pixel when ML spectral unmixing is implemented by the unmixing
algorithms (EM, GCN, GVN) discussed in this thesis. Results are provided for various signal
levels (assuming common emission rates A) and are compared with theoretical predictions for
Gi, and b. Simulated results for G1 and b agree very well with theoretical predictions for a wide
range of signal level. Only at small signal level (less than 60 photons per pixel) simulation
results for Gi deviate from theoretical predictions as described in Figure 2.4.6.
Overall simulation results suggest that it is possible to image simultaneously these six
fluorescent proteins via spectral imaging and estimate their emission rates without significant
bias but with 2 to 8 times worse precision compared to the case that each fluorescent protein
was imaged by itself. In practical applications the performance is estimated to be even worse
since the max emission rate ratio R is expected to be larger than 1 (sources have nonequal
emission rates). Nevertheless this case demonstrates that it is possible to achieve high
information content provided the emission sources of the system are chosen in a smart way.
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Figure 2.4.19: Simulation results for the estimation variance factor GaIM (top), estimation bias (middle), and

computation cost (bottom) for ML spectral unmixing of signals generated by mixing emissions of BFP, CFP, GFP,
YFP, morange, mcherry. Results are presented as a function of the common emission rate per component ),. Data

are acquired by the 16-channel spectral multi-photon microscope utilized in this thesis (Section 2.3). GIlm are
superimposed with theoretic estimations based on Eq. 2.4.26. Results are provided for three ML spectral unmixing
algorithms.

The results of the three cases suggest that estimation variance using the Gauss common-noise
(GCN)unmixing is always slightly larger compared to the other two algorithms (variance factors
Gi are up to 0.1 less). All algorithms also provide similar small bias. Therefore, since GCN is 1-2
order of magnitude faster than the other two algorithms, GCN should be the algorithm of choice
even in low level signals.

2.4.7 Simulation Results: The effect of Model Uncertainty

Section 2.4.6 considers the performance of ML spectral unmixing algorithms assuming no
model uncertainty, i.e. when the identity of the sources and the detected emission spectra si are
assumed known. This section considers the effects of model uncertainty in ML estimation.

There are several sources of model uncertainty in spectral microscopy, which can affect the
precision and accuracy of spectral unmixing estimates.

- Imperfect knowledge of the spectral matrix So due to:
o spectral position error
o incomplete knowledge of the spectral response function
o spatially variations in the spectral matrix

- incomplete knowledge of the number of sources N present in the system due to:
o incomplete knowledge of the sources present in the system
o neglecting to include components assuming their emission is negligible
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o including more components than necessary

Several of these reasons are described in more detail in the following sub-sections.

Theoretic Description of Estimation Errors due to Model Uncertainty

Based on Section 2.4.5, under appropriate assumptions (large AO) estimation error A is a

Gaussian vector QN F-- g, (F- ( - -. -F)), where jg = -ST -e , F ~ ST - A-' -S,

and = ST. ((I - diag(e)) - Ad + e - eT) -S.

Model uncertainty is described by the modeling error vector e = 1xx - A-' - So -AO, whose j-th
element describes the effect of imperfect knowledge of emission spectra at channel j.
When model uncertainty is nonzero e * 0, then estimator bias is also nonzero:

b = E[l] = F-yg [2.4.32]

and the covariance matrix of estimation error A equals CA = j*1, where

= F (- pg .I-) - F [2.4.33]

In the case of finite model uncertainty, J* plays the same role in the analysis of estimation
variance (the inverse of the estimation error covariance matrix) as the Fisher information matrix
J plays in the case of no model uncertainty (Section 2.4.5). In this case, the combined effect of
mixing and model uncertainty in the ability to estimate the emission rates of sources is
described by the emission-normalized geometric mean of J* eigenvalues { = eig(J*):

F= N 1 i- 4,} [2.4.34]

The estimation variance of the i-th source is predicted to be:

CAi ~ 1 1[2.4.35]

Therefore the discussion of Section 2.4.5 about predicting the estimation variance by analyzing
theJ matrix applies in this section to the matrix J*. The following sub-sections apply this analysis
to predict the effect of several forms of model uncertainty and compare theoretic predictions for
estimation bias b and estimation error covariance (expressed as variance factor Gi via Eq.
2.4.27).

Effect of Spectral Position Error
Spectral position error describes the situation where the spectral signatures si considered in
spectral unmixing calculations differ from the actual soi due to a shift in the position of the
emission on the detector surface (which is equivalent in a shift in the wavelength)h

si(x(A)) = so (x( - lE))

The effect of the spectral position error AE on si is to consider a wavelength range [Amin,i' Amax,jl
for the spectra signature calculations (Section 5.3.7) that differs from the actual one. Such error
can occur in spectral imaging due to two major reasons:

- optical aberrations can cause position-dependent shift in the position where the emission
signal is focused on the M-channel detector.
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- During spectral imaging in scanned configuration [Masters and So 2008] the position
x(A) where emission is focused on the multi-channel detector depends on the position
(row r, column c) of the pixel on the image. This makes the spectral signature si(r, c) of
each source to be position-variant, i.e. different at each row r and column c of the
image.

Figure 2.4.20a shows that the spectral position error AE induces deviation between the spectral
signature si used for spectral unmixing, and the actual spectral signature si,o. Positive spectral
difference A, causes a red-shift of si with respect to siO, while negative AE causes a blue-shift of
si with respect to sio. The results are calculated for the spectral microscope of Section 2.3.1
(6A ~ 13 nm) and show that a 1A.1 =10 nm error causes a shift of the signature by
approximately one channel. Figure 2.4.20b shows how the 2-norm of the modeling error vector
e (calculated by Eq. 2.4.25) varies as a function of spectral position error A. for 50 random sets
of fluorophores of 2 N 5 6 sources. Results show that the modeling error is much more
sensitive to positive spectral position error A. compared to negative AE.
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Figure 2.4.20: The effect of spectral position error A, in the 2-norm of the model error vector e. a: The effect of
spectral position error in the emission signatures si of six fluorescent proteins. Bold lines show the spectral
signatures assumed for spectral unmixing calculations . Light lines show the actual spectral signatures when the
spectral position error is -10nm (-- -- ), -5 nm (.-), 5 nm (..) and 10 nm (solid line plus circular marker). b: Box plot for
the 2-norm of the modelling error vector e for nine values of spectral position error A,. Data are obtained for fifty
randomly selected sets of fluorophores of 2 N 6 sources. The error vector is calculated via Eq. 2.4.25. Results
are presented for the spectral microscope described in Section 2.3.1.

Figure 2.4.21 and Figure 2.4.22 show how the analytic predictions of the variance factors Gi and
the normalized bias Bi respectively agree with simulation results G Im, B 'Min the presence of
spectral position error (-10nm to 10 nm). Results show that there is good agreement between
theoretic predictions and simulations, and that the level of agreement depends on the signal
level Y, the max emission rate ratio R and the value of theoretic variance Gi. The larger the
value of Gi, the better the agreement with simulation results G Im. In both figures, the agreement
between theoretic predictions and simulation results improves as R -> 1 and as Y increases.
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Figure 2.4.21: Comparison of the estimated variance factor G1 (based on Eq. 16, 19b, andl9d) with simulation
results GfIM in the presence of spectral position error (-10 up to 10 nm) for three cases of signal level Y and four
cases of maximum emission rate ratio R. Simulation results are calculated based on 64000 random samples per
case. Each plot shows 50 cases generated by randomly picking 2 5 N 6 sources from the 59 sources shown in
Figure 2.4.3 and a random emission vector A based on the specific combination of Y and R. For each case there are
N points (G1 , Girm) corresponding to the estimated and simulated values of the variance factors of the N sources. All
ML estimates are calculated by the EM algorithm.
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Figure 2.4.22: Comparison of the estimated normalized variance B1 (based on Eq. 2.4.6.1, 19A) with simulation
results B~Lm in the presence of spectral position error (-10 up to 10 nm) for three cases of signal level V and four
cases of maximum emission rate ratio R. Simulation results are calculated based on 64000 random samples per
case. Each plot shows 50 cases generated by randomly picking 2 N 6 sources from the 59 sources shown in
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Figure 2.4.3 and a random emission vector A0 based on the specific combination of Y and R. For each case there are
N points (Bi, Bim) corresponding to the estimated and simulated values of the variance factors of the N sources. All
ML estimates are calculated from the same simulations as the data of Fig. 2.4.19 by the EM algorithm.

The effect of the spectral position error on the precision and accuracy of the spectral unmixing
calculations is shown in Figure 2.4.23. Figure 2.4.23a shows that spectral position error has little
effect on estimation variance, since the presence of non-zero spectral position error does not
change the value of the variance factors significantly. Figure 2.4.23b,c show that spectral
position error induces estimation bias. In easy to estimate sources (G, > 0.25) the effect of
spectral position error is small. Spectral position error almost equal to the spectral width of each
detector channel leads to bias up to 30%. Hard to estimate sources (Gi < 0.1) are very sensitive
to spectral position. In this case, theory predicts that even small spectral position errors can
induce large bias.
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Figure 2.4.23: The effect of spectral position error on the accuracy and precision of spectral unmixing calculations. a:
Box plot of the deviation of predicted variance factors G1 compared to the error-free case as a function of the spectral
position error. b: Box plot of the deviation of the absolute value of the predicted normalized bias B compared to the
error-free case as a function of the spectral position error. This image shows results for sources whose estimated
error-free variance factor is G1 > 0. 25. c: Box plot of the deviation of the absolute value of the predicted normalized
bias Bi compared to the error-free case as a function of the spectral position error. This image shows results for
sources whose estimated error-free variance factor is G, < 0. 1 (difficult to estimate sources). These results are
based on the same random sets of sources as the ones shown in Figure 2.4.21 and Figure 2.4.22.

Effect of Incomplete Knowledge of the Spectral Response Function
The spectral response function hs(j) of a spectral microscope describes how the emission of a
particular wavelength is distributed among the detector channels (Section 2.3.4). Ideally,
emission of a particular wavelength should be detected in a single channel (h,(j) = 6(j)).
However, due to optical and instrumentation reasons hsO() is finite over more than one
channels. The spectral response hs5() affects the shape of the spectral signatures si (Section
2.3.6). Broader hs5() causes broadening of the si shape (spreading the probability to detect the
photons emitted by a source into more channels, see Figure 2.4.25), which deteriorates the
ability to conduct precise ML spectral unmixing (reduce metric) as discussed in Section 2.4.5.
Figure 2.4.24 shows a family of spectral response hsO() of progressively broader shape and
shorter peak. This family of spectral response could correspond to the response for imaging at
different planes inside a scattering sample.

Imperfect knowledge of hsg) can cause estimation error in ML spectral unmixing because the
assumed spectral signatures si are different than the actual signatures s0,j. In practice,
imperfect knowledge of hs(j) can happen because of aberated focusing of emission light on the
detector surface for several reasons such as:
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- scattering of emission photons in thick sample imaging causes deviation of emission
photons from their ideal ballistic trajectory

- optical aberrations or imperfect optical alignment.
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Figure 2.4.24: A family of spectral response hs profiles. These profiles are used in the simulations of Figure 2.4.25 to
Figure 2.4.28. This family could correspond either to different instruments, or could correspond to using the same
instrument to image different planes inside a scattering sample. The x axis shows the channel number. The y axis
shows the peak of h, (channel 0).

- BFP b12- -
0.7 - -CFP

rP 100.6 -- YFP -
morange

0.5- mcherry 8

-0.4 -

0.3 0

0 0 4
0.2- E

0
C 20.1

on -~0

0 2 4 0 0 U 2 1 4 10 91 84 77 71 65 61 56 52
channel h9 peak [%]

Figure 2.4.25: The effect of imperfect knowledge of spectral response in the 2-norm of the model error vector e. a:
The effect of imperfect knowledge of spectral response in the emission signatures si of six fluorescent proteins. Bold
lines show the spectral signatures assumed for spectral unmixing calculations (corresponds to the sharpest profile of
Figure 2.4.24) . Light lines show spectral signatures for the family of spectral responses shown in Figure 2.4.24. b:
Box plot for the 2-norm of the modelling error vector e for the spectral response family shown in Figure 2.4.24. Data
are obtained for fifty randomly selected sets of fluorophores of 2 < N < 6 sources. The error vector is calculated via
Eq. 2.4.25. Results are presented for the spectral microscope described in Section 2.3.1.

Figure 2.4.26 and Figure 2.4.27 show how the analytic predictions of the variance factors G and
the normalized bias Bi respectively agree with simulation results GIJm, B IMin the case of
uncertainty about the spectral response. The conclusions are similar to the ones derived from
Figure 2.4.21 and Figure 2.4.22. Results show that there is good agreement between theoretic
predictions and simulations, and that the level of agreement depends on the signal level Y, the
max emission rate ratio R and the value of theoretic variance Gi. The larger the value of Gi, the
better the agreement with simulation results G Im. The range of agreement increases as R --+ 1
and Y increases.
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Figure 2.4.26: Comparison of the estimated variance factor G1 (based on Eq. 16, 19b, andl9d) with simulation
results GIm in the case of spectral response uncertainty (for the family of spectral response described in Figure
2.4.24) for three cases of signal level Y and four cases of maximum emission rate ratio R. Simulation results are
calculated based on 64000 random samples per case. Each plot shows 50 cases generated by randomly picking
2 5 N 5 6 sources from the 59 sources shown in Figure 2.4.3 and a random emission vector AO based on the specific
combination of Y and R. For each case there are N points (Gi, GfLm) corresponding to the estimated and simulated
values of the variance factors of the N sources. All ML estimates are calculated using the EM algorithm.
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Figure 2.4.27: Comparison of the estimated normalized variance Bi (based on Eq. 2.4.6.1, 19A) with simulation
results Blim in the case of spectral response uncertainty (for the family of spectral response described in Figure
2.4.24) for three cases of signal level Y and four cases of maximum emission rate ratio R. Simulation results are
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calculated based on 64000 random samples per case. Each plot shows 50 cases generated by randomly picking

2 5 N 6 sources from the 59 sources shown in Figure 2.4.3 and a random emission vector AO based on the specific

combination of Y and R. For each case there are N points (Bj, B '") corresponding to the estimated and simulated

values of the variance factors of the N sources. All ML estimates are calculated from the same simulations as the

data of Figure 2.4.21 by the EM algorithm.

The effect of spectral response uncertainty on the precision and accuracy of the spectral

unmixing calculations is shown in Figure 2.4.28. Figure 2.4.28a shows that spectral response

uncertainty has little effect on estimation variance. Similar to Figure 2.4.23, Figure 2.4.28b,c

show that spectral response uncertainty induces little estimation bias in easy to estimate

sources (Gi > 0.25) and very significant bias in hard to estimate sources (G1 < 0.1).
a or b s- c
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Figure 2.4.28: The effect of uncertainty on spectral response knowledge on the accuracy and precision of spectral

unmixing calculations. All results are provided for the family of spectral responses shown in Figure 2.4.24. a: Box plot

of the deviation of predicted variance factors Gi compared to the error-free case as a function of the spectral position

error. b: Box plot of the deviation of the absolute value of the predicted normalized bias B1 compared to the error-free

case as a function of the peak value of the spectral response hs. This image shows results for sources whose

estimated error-free variance factor is G1 > 0.25. c: Box plot of the deviation of the absolute value of the predicted

normalized bias B1 compared to the error-free case as a function of the peak value of the spectral response h,. This

image shows results for sources whose estimated error-free variance factor is G, < 0. 1 (difficult to estimate

sources). All results are based on the same random sets of sources as the ones shown in Figure 2.4.21and Figure

2.4.22.

All-together, the previous Figures suggest that the predictions of estimation bias and variance

(Eq. 2.4.32,33) agree with simulation results. Figure 2.4.23 and Figure 2.4.28 suggest that these

two modeling error do not affect the precision of spectral unmixing, however they can induce

bias. The bias induced due to these two modeling errors are small for easy to unmix sources

(Gi > 0.25) but can be very significant errors in hard to unmix samples (Gi < 0.1) that yield

theoretical predictions useless.

Effect of Including the Wrong Set of Sources

Another source of model uncertainty is including the wrong number of sources N in the spectral

unmixing calculations. This can happen by either neglecting or including extra sources in the

unmixing calculations compared to the actual sources that contribute to the detected signal.

Neglecting to consider sources whose emission is significant, induces error in the estimates of

the remaining samples. This kind of model uncertainty could affect the validity of spectral

unmixing results particularly when the identity of sources present in the samples is unknown.

A more tricky and common source of model uncertainty is the case when spectral unmixing

calculations at some pixel considers more sources than the ones actually present at that pixel.

This kind of model uncertainty can take place in complex samples consisting of many classes

and compartments (see Section 2.4.1), resulting in the presence of different sets of sources at
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different parts of the sample. However, the exact location where each source is expressed is not

known a-priori. Including all sources present in the sample in the spectral unmixing calculations
of each pixel can induce significant estimation errors, especially when the sample contains
sources of similar spectral signatures. An example of the errors that can arise when processing
complex samples are shown in Figure 2.4.25. Such complex samples need to processed via the
approach described in Section 2.5, where each pixel is eventually assigned to a particular class
so that only the sources of this class are considered in the spectral unmixing calculation.

a C

b

Figure 2.4.29: Including extra sources in spectral unmixing can induce significant errors in source rate estimation. a:

RGB representation of the spectral unmixing outcome of a spectral image of a cell-seeded scaffold (Chapter 3)
stained with Hoechst33342 (shown in the blue channel. Linear range 1-30 photons/pixel) , CMTMR cell tracker
(shown in the green channel; linear range 1-10 photons/pixel) and alexa fluor 488-conjugated antibody (not shown
here). The sample in addition contains two intrinsic sources: collagen autofluorescecne (shown in the red channel;
linear range 1-5 photons/pixel) and second harmonic emission of collagen (not shown). Spectral unmixing was
performed by considering for all image pixels all five sources present in the image. b: Outcome of global image

segmentation. Blue corresponds to pixels classified as "cell nucleus" class, green to pixels classified as "collagen
scaffold' class, and red to pixels classified as "cell cytoplasm" class. A comparison of images a and b shows that due

to the low signal level and the similarity of the emission signatures of the compounds (Figure 2.4.3) CMTMR signal is
present in the scaffold struts and collagen emission is present in the cell cytoplasm. c: HSV representation of the

spectral unmixing outcome of a spectral image of an ex vivo nerve sample (Chapter 4) stained with DAPI (shown
blue), phalloidin-alexa fluor 532 (shown purple), alexa fluor 350-conjugated antibody (shown orange). The sample in

addition contains two intrinsic sources: collagen autofluorescecne (shown green) and second harmonic emission of

collagen (shown red). The image depicts actin-rich contractile cells. ). Spectral unmixing was performed by
considering for all image pixels all sources present in the image. The insert image zooms in a cell nucleus. It is

evident that due to the similarity of the emission signatures of alexa fluor 350, collagen autofluorescent and DAPI,
there is signal contribution from all three. A correct calculation would consider only DAPI for unmixing nucleus pixels.
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2.4.8 Limitations, Experimental Guidelines, and Extensions

Limitations: How many sources N can be detected in parallel

Based on the discussion of the previous sections, the number of fluorophores N that can be
simultaneously detected with adequate precision is limited by the spectral region AA detected by
the multi-channel sensor, the number of detector channels M, the emission signal level Y, the
max emission rate ratio R, and the uncertainty in the knowledge of the spectral matrix So.
The identity of the sources that compose the source set imposes an upper limit in the estimation
performance of the ML spectral unmixing algorithms. As ratio R deviates away from 1 and signal
level Y decreases, the performance deteriorates and is harder to predict.
Precise and accurate spectral unmixing of spectral imaging data requires careful choice of the
sources and the mission rates of all sources to be of comparable magnitude (R -> 1). However,
this may not be feasible for several reasons:
- Most commercially available fluorescent dyes are chemical derivatives of a few molecules,

therefore the emission spectra of many fluorophores are quite similar. This can be observed
by the clusters shown in Figure 2.4.4.

- It is not always possible for the experimenter to choose the identity and emission rates of
fluorescent sources. For example, many systems of biological interest contain several auto-
fluorescent molecules that have overlapping emission spectra and weak emission.

- When the detected signal is emitted by N sets, but the emission of one source is much
brighter, the emission of the remaining N-1 sources cannot be estimated with predicted
accuracy and precision.

The condition R -* 1 often cannot be satisfied in complex samples that contain many sources. In
such cases, the successful application of spectral microscopy requires careful design of the
staining protocols so that the sample is divided into classes, which of which contains a small (2-
3) set of fluorophores and can be estimated accurately over a wider range of R and Y values.

Experimental Design for High-Content Spectral Imaging

In challenging samples that contain multiple sources, careful experimental design can enhance
spectral unmixing performance and exploit the full potential of spectral microscopy. This can be
accomplished by: i) proper choice of sources, ii) keeping the ratio R close to 1 (the emission
rates of sources A are in the same order of magnitude), and iii) increasing the signal level Y as
much as possible.

Proper choice of sources requires knowledge of i) endogenous sources present in the sample,
ii) available choices of dyes/secondary antibodies/fluorescent protein, iii) localization of sources
in the sample, iv) spectral signatures si of candidate sources as detected by the particular
instrument that will be utilized (e.g. Figure 2.4.3). In order to be able to estimate the emission
rates of sources with adequate precision, it is necessary to pick co-localizing sources so that
they come from different clusters of the distance matrix E, ideally pick sources of as large
pairwise distance f{i,j} as possible. While the distance matrix E depends on the number of
detector channels M, results show that for sensors that detect a 210nm wide range of the EM
spectrum, increasing M from 8 to 32 does not offer significant advantages.

In challenging samples that contain multiple sources, it is very important to keep the maximum
emission rate ratio R close to 1 in order to achieve reasonable spectral unmixing performance. It
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is necessary to optimize the staining protocol because the emission rates of different sources
can be different due to several reasons:

* variations in the spatial distribution of sources inside the sample
* sources usually have different optical properties (cross-section, quantum yield)
* variations in biological expression of fluorescent proteins
* staining variations
* energy transfer phenomena (quenching, FRET),
* photo-bleaching.

The ratio R can be designed to be as close to 1 as possible in several ways:
" Careful design of staining protocols (immunofluorescence or fluorescent dyes) so that the

emission rates Ai due to specific staining are on the same order of magnitude. A staining
calibration step needs to proceed staining and imaging large batches of samples in order to
optimize staining as a whole.

* When multiple fluorescent proteins (FP) are expressed in cells or tissues, appropriate design
of expression vectors (plasmid copies, promoter strength, ribosome binding site (RBS)
choice) can tune the expression of fluorescent proteins in a way that counter-balances the
different brightness of each FP (due to different cross-section and quantum yield) and result
in emission rates on the same order of magnitude.

* Pick longer-wavelength sources to quantify entities that have more extensive spatial
variation. This is because the magnitude of longer-wavelength sources affect the estimation
of shorter-wavelength sources more compared to the contrary (Figure 2.4.7).

Large signal level Y enhances the performance of spectral unmixing. Larger Y can be achieved
by tuning the optical parameters or the sample preparation protocol. Signal level can be
increased by increasing the power of the excitation light or by increasing the pixel sampling
period. Both methods suffer from severe limitations. Both methods induce photobleaching and
photo-damage. Increasing excitation power also suffers from excitation saturation, while
increasing pixel sampling period reduces throughput. Larger signal level Y can be also achieved
by increasing the amount of sources in the sample. However, it may not be possible to increase
signal level Y arbitrarily by increasing the amount of source molecules due to several reasons:
- Using more dye or antibody concentration can cause significant non-specific staining.
- Over-expression of FP or other fluorescent protein-based sensors (e.g. FRET sensors

[Zhang et al. 2002]) can be cytotoxic or can perturb the cellular system of interest.
- Increasing the signal level Y must be accomplished by increasing the emission rates of all N

sources so that the ratio R remains close to 1. Increasing the emission rate of all sources
may not be feasible.

- Changing the emission rates of endogenous sources (auto-fluorescent molecules, multiple
harmonic emission) is usually not possible. If it is necessary to estimate accurately the
emission rates of weak endogenous fluorophores, then the emission rates of the remaining
sources cannot be increased arbitrarily because the ratio R will deviate away from 1,
therefore inducing bias and significant estimation error variance.
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Implications in Instrument Design: Spectral Multi-focal Multi-photon Microscopy
There is significant research effort towards developing high-throughput spectral imaging
microscopes with 3D capability which could be used to study complex biological samples of
large volume (tissues, organs, cell-biomaterial constructs) [Kim et al. 2007b; Ragan et al. 2012].
One class of high-throughput instruments are multi-focal multi-photon microscopes (MMM),
which increase throughput by imaging multiple locations in a biological sample in parallel.
Adding spectral detection capability in MMMs promises to deliver large-area information-rich
data. However, due to slight differences in the excitation and detection part of each MMM focus,
accurate processing and combination of spectral MMM data acquired by different foci requires
careful instrument characterization and calibration. Therefore, spectral MMM instruments can
unleash their information content provided they can be calibrated easily.

Implications in Instrument Design: Spectral-Fluorescent Lifetime Imaging Microscopy
One way to increase the information content of a spectral microscope is by combining it with
fluorescence lifetime microscopy (FLIM). One such promising implementation combines time-
correlated single-photon counting (TCSPC) FLIM imaging with spectral imaging by utilizing a
constant-fraction discriminator to process the output of each channel of a MA-PMT that
operates in photon-counting mode [Becker 2005]. If the instrument utilizes a MA-PMT of M1

channels, and classifies the lifetime of the detected photons into M2 lifetime bins, then the total
number of channels available for statistical inference is M = M, M2 . In this case the signature
si of each source is a M x 1 vector (1s 1i| 1 = 1) that corresponds (by reshaping rows) to the
equivalent M1 x M2 signature matrix Siwhose rows correspond to j = 1,2, ... , M1 spectral
channels, and whose columns to k = 1,2, ... ,M 2 lifetime channels. By designing the instrument
so that elements of source signature matrix Si are significantly nonzero over distinct
rows/columns, it is possible to be increase the information content in order to be able to
estimate accurately the emission of more sources or just estimate more accurately the emission
of very challenging source sets
As proposed in [Neher and Neher 1994] processing data from spectral-lifetime imaging
microscopy can utilize similar tools to the ones used to process spectral microscopy. Indeed it is
possible to use the same mixing models, spectral unmixing algorithms and numerical
implementations like the ones described in Sections 2.4.3, 2.4.4 whose performance can be
analyzed by a procedure similar to the one presented in Section 2.4.5. However, there are
several important features of FLIM that need to be considered:
- The fluorescent lifetime T of a fluorophore can be sensitive to the its environment (e.g. pH,

ion concentration, FRET mechanisms). Such sensitivity in the fluorescence lifetime T

induces uncertainty in the elements of signature matrix Si of the element, which can
deteriorate the precision and accuracy of the estimation approaches described in this thesis.

- In many cases, estimating the fluorescence lifetime of sources is essential (e.g. lifetime
sensors, FRET experiments). Estimating simultaneously the N emission rates ti and the N
fluorescent lifetimes Ti of the sources is a much harder estimation problem, since the
elements of si are non-linear functions of the unknown ri. A more computationally-efficient
solution could be an Expectation-Maximization implementation that alternatively estimates Ai
given the current estimate of ri, followed by improved ri estimation given the current Ai
estimate.
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2.5 Segmentation of Multi-Class Spectral Microscopy Images

2.5.1 Overview

Problem Definition
Image segmentation is the process of partitioning a digital image into regions of particular kinds
(classes) in order to provide a meaningful representation of an image that is easier to
subsequently analyze [Shapiro and Stockman 2001]. Mathematically, image segmentation is
called "coloring" because each image pixel is assigned a discrete "label" from a set of possible
labels [Strauss 1977].
Supervised image segmentation is based on a-priori information provided by the user about the
properties of each class. Unsupervised segmentation attempts to estimate both the correct pixel
partition as well as the properties of the different partitions, a much harder inverse problem. This
work considers the application of Bayesian supervised segmentation in 3D images acquired by
spectral multi-photon microscopy.

Image segmentation in spectral MPM images can be implemented based on three kinds of
information:
- Image intensity: the intensity level at different classes could be different due to different

presence and amount of sources.
- Emission spectrum: the emission signatures detected at different classes could be different

due to the presence of different kinds of sources or due to the presence of same sources at
different composition ratios.

- Class neighborhood: classes represent physical entities (e.g. cell nuclei, cell cytoplasm,
nerve axons, collagen fibers) whose dimensions lie within specific meaningful limits. Each
class can neighbor particular kinds of classes and cannot neighbor others (e.g. a pixel
labeled as "nucleus" should not lie next to a pixel labeled as "collagen fiber"). This makes
possible to distinguish classes of similar composition (sources, composition ratios) as long
as they can neighbor different classes.

In this work, it is assumed that the user has a relatively good knowledge of the chemical
composition (equivalently the gene expression pattern) of each class:

- Number of classes present in the image
- Identity of sources present in each class
- A coarse range of expected emission rates for all sources present in each class.

In many biological experiments, these are not demanding assumptions

Exploiting Image Segmentation to Increase the Information Content of Spectral Imaging
The analysis of spectral unmixing (Section 2.4) suggests that there is an upper bound on the
number of sources that can be accurately unmixed in a single pixel of an image. This limit arises
from several experimental constraints:

- Spectral similarity of source emission spectra
- Spatial extent of the source emission spectra
- Uncertainty in source emission spectra knowledge
- Availability of fluorophores for particular applications (dyes, antibody conjugates,

fluorescent proteins)
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- Experimental noise: Detector noise, Poisson noise (low emission rate regime)
- Number of sources that can be excited by excitation light
- Detecting range and resolution of the sensor

Therefore extending the information content of an image just by increasing the number of
sources present in the image is limited. On the other hand, it is possible to extend the
information content by carefully staining the sample so that the image consists of many
information-rich yet "distinguishable" classes.

Image Segmentation Pipeline
Image segmentation of spectral images is implemented in two steps:
i) Local (pixel-wide) segmentation (Section 2.5.2): For each pixel, this step first calculates the

probability (called "evidence") that the pixel belongs to one of the possible classes present in
the image. The calculation utilizes only the data measured at that pixel and prior information
on the class presence. This calculation is able to identify the coarse location of class
regions, however it suffers from noise (especially when the signal level is low or when the
composition range of classes have overlap), inaccurate estimation of region boundaries, and
lack of ability to incorporate constraints about the spatial relationships of different classes.
Part of the noise is removed by processing the evidence calculation using simple
morphological-based operations [Soille 2003]. Finally, each pixel is labeled with a class by a
Bayesian classifier.

ii) Global (region-wide) segmentation (Section 2.5.3): The outcome of the pixel-wide
segmentation is refined using Markov random field (MRF) modeling and global optimization
[Li 2009]. Region-wide segmentation methods provide the optimal labeling for a
neighborhood of pixels by considering the signal detected at all these pixels, and a-priori
information about the spatial relationships of different classes [Richards and Jia 2006]. Due
to the high computational cost of global segmentation, in this thesis global segmentation is
applied to a fraction of the image, particularly at the boundaries of the regions and at
locations were valid spatial class neighborhood rules are broken.

2.5.2 Local Image Segmentation by Bayesian Classification

Image Segmentation as a Model Selection Problem
In local (pixel-wide) image segmentation, labeling each pixel with a class can be posed as a
model selection problem: Given the emission spectrum y measured at a pixel and prior
information about the classes present in the image, the objective is to label the pixel with the
class that best describes this emission.
Let D denote the number of classes present in the image, N denote the number of sources
present in the image, and Nd denote the set of sources present at class d = 1,2, ..., D. Let Adi (i
= 1, 2, ...Nd ) denote the emission rate of the i-th source present in class d. The following
properties are assumed to be known:
- the number of classes D and the elements of sets Nd (sources present in each class)
- the a-priori probability pD(d) of occurance of class d in the image. If this is unknown then

PD(d) can be the non-informative (contant) prior
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- a coarse estimate of the range [At, A] for the possible values of emission rates Adi of the

sources at each class

Local Segmentation Algorithm
The proposed local segmentation algorithm consists of three parts:
1. for each pixel calculate the calculate the D x 1 evidence vector e,

o for each one of the D classes perform spectral unmixing to calculate the ML estimate

djI of the Na sources present in the class based on the spectral data y
o for each one of the D classes calculate the evidence P(dly) that this pixel belongs to this

class. Normalize to calculate the D x 1 evidence vector e,
o The evidence vectors of the R x C pixels are combined to form the R x C x D evidence

array E. The d-th plane Ed contains the evidence for class d.
2. Refine the evidence calculations by morphologic image processing

o Each array Ed is treated as grayscale image and is processed via a series of
morphological operators that provides a R x C x D refined evidence array E .

o Each pixel of the refined evidence array E is normalized so that the sum of its planes
equals 1. Therefore each plane td contains the updated evidence for class d.

3. Each pixel is classified into a particular class based on the values of the corresponding td

pixel.

Class Evidence Calculation
Given the measured emission spectrum y at a pixel, Baye's theorem provides the probability
that this pixel belongs to class d [Richards and Jia 2006]:

P(dly) = oc P(yld) -PD(d) [2.5-1]

where i refers to the index of the pixel, and pD (d) is the a-priori probability that a pixel belongs
to class d. The denominator is common in all classes and is skipped. The probability

P(yld) = fff_+ pcoA(yIia) [2.5-2]

called the "evidence" of class d, is a partition function-like integral that incorporates the
probability of detecting the emission y for all possible emission rates of the sources present in
the class [MacKay 2003]. The elements of the Nd x 1 vector A are the emission rates tAj for
the sources of class d. The pdf PYvA(ylIa) is the observation model for class d, providing the

probability of detecting the spectrum y when the emission rates of the Nd sources equal A (see
Sections 2.4.3 and 2.4.4).

The PDF PA(td) describes the possible values for the parameter vector Ad of class d. In this
thesis for simplicity, it is assumed that the a-priori knowledge on each Adi is described as a

uniform PDF between boundaries d i and :

PA~ac) = HI P A@,I) [2.5-3]

0 , otherwise

So that the class evidence integral becomes:
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P(y-d) = [2.5-4]

Id= fffi . y(ylA)dA [2.5-5]
d j

Vd = -(A _ -L i) [2.5-6]

where va is the volume of the Nd-dimensional hypercube Vd bounded by the limits [dij, Agi] of
variables di-

For the i-th pixel of an image the D x 1 evidence vector Es = [ Eil ... Ei,D]T contains the belief
that this pixel belongs to each one of the D classes. The d-th element of E1 :

P(djy) _ iydPD (d)
Edji = -E d[2.5-7]

XD P(tly) ED tY

describes a metric of probability that this pixel belongs to a region of class d. The evidence
vector e is such that -.1 Ed -1

Combined together, the evidence vectors of an R x C x M spectral image generate a R x C x D
evidence array E. The elements of E at row i and column j is the evidence vector of the
corresponding pixel. The d-th plane Ea of array E contains the evidence for class d. Each plane
E can be treated as a grayscale image (its values lie between 0 and 1). Therefore evidence
calculation can be thought as a pixel-wise transformation of the original data {y} (an R x C x D
array) into an R x C x D evidence array E.

Numerical Calculation of the Evidence Integral
At each pixel, it is required to calculate the D x 1 evidence vector E, based on the spectral
measurement y. This requires the calculation of D integrals Id(Y) (one for each class) that are
functions of the spectral measurement y at that pixel. The calculation of Id is the most
computationally expensive part of local image segmentation, however this cost can be reduced
by considering the shape of the corresponding observation model PYA(yIl) with respect to the
argument A. Due to the convexity of pyA(ylA) its value possesses a single peak at the ML
solution AL4 (see Sections 2.4.3 and 2.4.4) and diminishes away from the peak [Shepp and
Vardi 1982]. The magnitude of PYA(yl) is significant only in a neighborhood around its peak.
The extent of this neighborhood can be estimated by modeling the peak as a maultivariate
Gaussian function and approximating the variance I2i based on the inverse of the Fisher
information matrix (Eq. 2.4.29, Section 2.4.5).

Practically there are two ways to calculate Id(Y)

1. If the PYA(yl) peak lies entirely within the hypercube defined by PA(Ad):

d11- 2ui < dj <dj + 2ai , i = 1,2, ... , Nd

then the peak is not truncated by the hypercube boundaries and Id can be approximated
analytically using Laplace's method [Kass and Raftery 1995]:

(27T) N~d
Id = PYIA(Ylmd) . )

d ('X)I
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where Nd is the number of source at class d, A"/ is the ML estimate of the Nd x 1 source

rate vector A given the measurement y, and Jd (AdL)i is the determinant of the fisher

information matrix for class d calculated at the ML estimate AML. The calculation of Id using
the Laplace method is very fast and is based on the calculation of the ML estimate AML via
spectral unmixing described in Section 2.4.

2. If the PYIA(YIA) peak does not lie entirely within the boundaries of the hypercube Vd, the

integral Id needs to be calculated via numerical integration.
Ns

I s(d) ->IPY|A(YIAd(S))

where Ad(s) are samples of Ad obtained from a volume Vs(d) that within the hypercube Vd,
where pYA(ylAd) magnitude is significant. Numerical calculation of the multi-dimensional

integral Id can be implemented using either classical quadrature methods or Monte Carlo
Methods [Press et al. 2007]. Classical quadrature methods sample Ad(s) using a grid of
V1(d) but are considered inefficient for solving multi-dimensional integrals due to the large
sample number Ns required. Simple Monte Carlo methods (usually the only solution for large
dimensionale integrals) sample the volume Vs(d) randomly using an appropriate sampler
(e.g. the Sobol sampler [Press et al. 2007]). The brute-force application of the Monte Carlo

method is still computationally inefficient. The bounds [AL,iA2] that describe the user's a-

priori knowledge define a hypercube that can be much larger than the region where

pyIA(YlAd) takes significant values, therefore a small fraction of Ad(s) will sample the peak

of pYIA(ylAd), causing significant integration errors. As the sample size Ns increases, Id
calculation precision improves but the computational cost can become prohibitive for large
data sets. Advanced Monte Carlo methods [MacKay 2003; Sivia and Skilling 2006; Press et
al. 2007] could provide better Id estimates, but still the computational cost of performing d
Monte Carlo integrations per pixel in a large data set is prohibitive.

It turns out that the choice of the uniform prior simplifies the calculation of Id significantly.
Monte Carlo methods are designed to calculate integrals of functions that contain few sharp
peaks at unknown locations. Since PYIA(ylAd) has a single peak at a known location (the ML

estimate AML), Id can be calculated quite efficiently by choosing Vs(d) as the part of Vd

where pYIA(ylAd) magnitude is large, here it is chosen as the part of the region Lit - 2 adi <

d2i < i + 2crd, that lies inside Vd.

The numerical calculation of Id via numerical integration becomes more expensive when
the signal level is low (below 50 photon counts per pixel) for two main reasons:

- At low signal level, the width of the peak of pYv(YIA) increases, making harder to satisfy

the conditions required for implementing the fast Laplace's method. This means that the
slower numerical integration is implemented more often.

- Utilizing the Poisson observation model pYIA(YIA) is much more computationally

expensive compared to using a Gaussian approximation of the Poisson PDF (Section
2.4.4). However, the appropriate approximation depends on the magnitude of the

Poisson parameter. For those channels whose estimated photon rate dj = tf - As is
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extremely low (<20 photons per pixel) a better approximation to the Poisson observation
is [Rich 2009]:

e-dj . d 1 (yj + 0.5-dj)2
exp(-)

yj! Q 2rd; 2 - dj

The Poisson model PYIA(YI1a) should be used without approximation when the estimated
photon rate dj = tf -A, < 1 because in this range all Gaussian approximations of the
Poisson induce larger errors.

Evidence Refinement by Morphological Imaging
The calculation of the evidence vector ei is a function of the properties of the D classes and the
measurement y, at this pixel. A classification of the pixel to a particular class based just on this
calculation is prone to errors, especially when the signal level is low, or when there exist
multiple classes of similar properties. In order to improve image segmentation performance, it is
necessary to include information about the spatial context present in the image. While this is
mainly implemented by the global image segmentation algorithm described in Section 2.5.3, the
performance of the local segmentation algorithm can be improved by applying some limited
morphological processing that corrects a large fraction of some easy to fix errors. This is of
particular interest for the overall computational efficiency of the pipeline since this correction can
reduce significantly the number of pixels requiring global segmentation, which is a very
computationally expensive task.
Morphological image processing is based on elementary kernels that process neighborhoods of
grayscale images [Soille 2003] to extract or remove image features. Morphological image
processing utilizes spatial context embedded in the kernels. The purpose of utilizing
morphological image processing here is just to remove some obvious classification errors locally
by correcting evidence array calculation that is used for pixel classification.
For each plane of Ed the morphological processing applied is a sequence of three operators: i)
morphological reconstruction Rg (-), ii) morphological closing 0(.), and iii) median filtering M(.):

$d= M(#(R( (y(Ed))))

Morphological reconstruction R9 (f) of a "marker" image f with respect to a "mask" image g
refers to repeated geodesic dilations Sg(f) of the "marker" image f with respect to the "mask"
image g until stability (more geodesic dilations do not change the outcome). Geodesic dilation
Sg(f) = min(6(f),g) refers to the pixel-wise minimum of g and the dilation 6(f). Morphological
opening y(f) = 6(E(f)) of an image f refers to sequential elution E(-) and then dilation 6(-).
Morphological closing #(f) = E(6(f)) of an image f refers to sequential dilation 6(-) and then
elution E(-). All morphological operators assume the 4-neighborhood system [Soille 2003].
Morphological opening of a grayscale image removes positive artifacts (small regions of high
intensity compared to its surroundings). Morphological closing of a grayscale image removes
negative artifacts (small regions of low intensity compared to its surroundings). Morphological
reconstruction Rf(f) dilutes the "marker" image in a way that is constrained by the "mask"
image. Here the "marker" image was chosen as the opening f = y(Ed), while the "mask" was
chosen as the morphological closing g = b(Ed). The outcome of morphological reconstruction
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R8d(y(Ed)) provides a dilution of y(Ed) that is always less than P(Ed). This operation

achieves to remove both negative and positive artifacts. All morphological operators in this step
utilize a disk-shaped structuring element of radius 1 pixel [Soille 2003; Li 2009].

The above described morphological reconstruction has the overall effect that it increases the
outline of regions by an offset of approximately 1 pixel. This offset is corrected by first applying
the second operator (morphological closing (P(.)) and then applying the third operator (median
filtering M(-)). The kernel of the median filter was chosen to be 3x3 pixels, which also results in
increasing the size of the objects by approximately 1 pixel. To compensate for the dilation
effects of the first and third operator, the structural element of the second operator
(morphological closing) was chosen to be a disk-shaped structuring element of radius 2 pixels.

Applying the sequence of morphological operators to each plane Ed of the evidence array E

provides a grayscale image that is used as the d-th plane td of the refined evidence array t.

Each pixel of the refined array t is then normalized so that the sum of its D elements equals 1,
and corresponds to 1 the refined evidence vector 2-.

Pixel Classification
In the last step of local image segmentation, each pixel is assigned to a label (a particular class)
based on its refined evidence vector -i and a selection law. Let 1i denote the label of pixel i . A
simple selection law is the maximum a-posteriori estimate:

1i = argmaxfEij

where pixel i is labeled to belong to the class that corresponds to the largest value in the refined
evidence vector Ei.

Another more elaborate way is to divide the D-dimensional space RF = {x = [X1 ... XD]T E
RD: 0 5 xi 1, lixJI1 = 1 } into D complementary decision regions Hd (d = 1,2,... D) and decide
the class of pixel I based on which decision region contains the refined evidence vector E, of the
pixel [Gallager 2009; Wornell 2010]. Decision regions -C can be constructed before this
classification step by i) generating simulated data for each one of the D classes based on the

source rates bounds [Lig, A J provided by the user, ii) calculating the evidence vector E, for the

simulated data, iii) partition RD into regions and assign each region to the class that generates
the largest number of Ei that lie in this region.

The final outcome of the local segmentation task is a R x C local segmentation array LI, whose
elements take integer values in the set {1,2, ... D} and describe the resulting segmentation of the
image. L, can be equivalently described by a R x C x D binary local segmentation array B1,
whose elements take values 0 or 1. The pixels of the d-th plane B1,d equal 1 only at the pixels

classified to domain d in L1.

2.5.3 Global Image Segmentation by Markov Random Fields
Since local segmentation methods do not incorporate spatial context information, their outcome
suffers from several errors:

- Many pixels can be misclassified into a wrong class. While ideally image segmentation
partitions the image into regions (each one belonging to a particular class), in practice these
regions are corrupted with pixels misclassified, generating a salt and pepper style noise
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pattern. This noise makes very hard to estimate correctly the extent and geometric
properties (surface, boundary) of the corresponding physical objects (e.g. cells and fibers)
and degrades or prevents their quantification.

- Local segmentation does not prevent neighboring pixels from belonging to incompatible
classes, that is classes that cannot be in contact.

Global segmentation methods can prevent or reduce significantly these errors by incorporating
spatial context information and segmenting a set of pixels simultaneously instead of segmenting
individual pixels. Markov random field (MRF) modeling can be utilized to conduct global image
segmentation [Li 2009]. Since all published methods for solving MRF are very computationally
expensive, and high-throughput microscopy provides very large data sets, it is extremely
computationally expensive to conduct global image segmentation in these data sets. This
section describes an efficient way to implement MRF-based global image segmentation in high-
throughput 3D spectral microscopy data. The basic idea is that MRF-based image segmentation
is implemented to refine the outcome of the computationally cheaper (but more error-prone)
local segmentation method described in Section 2.5.2. Specifically MRF is applied to segment
neighborhoods of pixels located at the interface of the regions provided by the local image
segmentation algorithm.

Markov Random Field (MRF) Modeling
As described in Section 2.2.5, a Markov Random Field (MRF) is a set of random variables
,= [F1, F2,...,Fm] defined on an undirected graph 9 (a set of sites S with respect to a
neighborhood system N) that satisfy the positivity and Markov property [Li 2009; Koller and
Friedman 2009]. In the image segmentation problem, every site (node) describes a pixel in the
image, and corresponds to a random variable Fi whose value fi can take a value from the
discrete-value label set L = {1,2,..., D} that corresponds to the D classes. MRF models fuse the
observed image {y} = [Y1,Y2, ... ,ym] and a model of spatial context by describing the joint
probability P(tf}Ify}) of a configuration {f} = [fJf2, ... , fm] based on a posterior energy function
U({f}|{y}). The joint probability P({f}tyi}) of a configuration {f} given a spectral image
{y} = [Y1,Y2, -- ,ym] is calculated as a Gibbs distribution [Hammersley and Clifford 1971; Li
2009]:

P(ff}Ityi}) = Z'1exp(-U({f}|{yiJ)) [2.5.3]

U({f}I{yi}) = U(tyi}|ff}) + U({f}) [2.5.4]

Solving the MRF provides a configuration {f} that is optimal based on some criterion. When the
MRF models an image segmentation problem, the solution {f} provides the optimal pixel
coloring into classes.

The maximum a posteriori (MAP) configuration is a popular estimate of the most "probable"
configuration of the MRF [Li 2009]. Finding the MAP requires solving the optimization problem
of finding the configuration that minimizes the MAP energy U({f}{yi})3:

tf}MAP = argmintf(U(tf}I{yiJ))

3 The correspondence with statistical mechanics, where low-energy configurations are the most probable
is obvious [Dill and Bromberg 2002]
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The likelihood energy U({yi}If}) incorporates the effect of the data (the spectral image fyi}).
The total likelihood energy of the image is the sum of the likelihood energies of its m pixels:

m

U(fyijtf}) = u(yilfi)

Where u(yjIfj) is the likelihood energy of the i-th pixel, a function of the data yj and the label
(class).

In this study, the likelihood energy of each pixel u(yjIf 1) is chosen as the minus natural
logarithm of the refined class evidence vector Ei of this pixel (which is a function of the data yi).

u(yilfi = d) = -log(Et a)

u(yjjf1) is a function of the discrete value label fi that takes D values (1,2,...D). As the
evidence of a class increases (larger ?i,a) then the pixel likelihood energy u(yjjf1) decrases,
therefore this label becomes more probable.

The prior energy U({f}) is the way to model the spatial context present in the image. When
U(ff}) U({yjI{f}) the model includes no spatial context in the model. When U(tyi}|tf}) «
({f}) then data do not affect the MAP solution and the solution depends only on its boundary
conditions and U(tf}). The balance between the two is a metric of trust in the available data. In
the MRF literature, the prior energy U(tf}) is expressed via clique potentials [Li 2009], where
cliques correspond to local neighborhoods of pixels compatible with the neighborhood system
[Koller and Friedman 2009]: For computational feasibility reasons, practical MRF models utilize
cliques of order up to two:

U({f}) = UC1 (fi) + Uc2(Vi fit)
i=1 i1ENi

The first term corresponds to the energy contribution of cliques of size 1 (a single node) and the
second term to cliques of size 2 (neighboring nodes of the graph). Uci are functions (clique
potentials) that provide the clique energy as a function of the labels of the nodes. Ni denotes the
neighboring nodes of node i [Koller and Friedman 2009]. The energy of size 1 cliques is not
critical for MRF (encodes no spatial context) and can be neglected. However, the expression for

Uc2 (fi,fi,) is very critical as this is the way to describe spatial context.

In this thesis, the prior energy is modeled using a standard multi-level logistic (MLL) model [Li
2009], a generalization of the famous Ising model [MacKay 2003]. The energy of cliques of size
1 is neglected. The energy of the size 2 cliques is modeled as:

Uc2(fi = k,f 1i = 1) = 'P(k,l) = k1

where ykl is the element at the k-th row and l-th column of the D x D class-context matrix 1P.
WkL contains the energy "penalty" for the case where neighboring pixels are labeled with classes
k and I respectively. For simplicity, Tk1 can be written as

a, k=l
Pkl = , k 1 and k - I compatible

y , k I I and k - 1 incompatible

Where a, fl, y are positive constants. Usually a > fl since if a pixel belongs to class k, it is more
possible that neighboring pixels belong to the same class (assuming the pixel size is smaller
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than the size of the objects that correspond to the classes). The value of y should be very large
in order to prevent neighboring pixels from being labeled into incompatible classes. The
diagonal elements of 'P equal a. The non-diagonal elements are equal to either f (compatible
classes) or y (incompatible classes). The model parameters a,ft are chosen in application-
specific basis based on a small number of reference images. The exact value of y does not
matter, as long as it is much smaller compared to a and ft.
The total MAP energy for a particular configuration of the MRF can be expressed as:

U({f}|{y}) = Et CDi(fi) + DL ZEE Ni 'kl (fi, fi') [2.5.5]
Where OPi(fi) = - log(sigf) are the energy terms that depend just on the label of pixels, and
Wkl(fi,fi') are the energy terms that depend on the configurations of pairs of neighboring pixels.
This expression is written in the form of the logarithm of the joint probability of a factor graph
that contains factors of order one (first term) and two (second term) and therefore its MAP can
be found using the max-sum belief propagation algorithm 4 [MacKay 2003].

Max-sum Belief Propagation Algorithm
The max-sum belief propagation (BP) is an algorithm used to calculate the optimal configuration
of factor graphs that contains factors of order up to 2 [MacKay 2003]:

m m

Utf} = pi (fi) + Y 1i (fi, f1)
i=1 jENi

where the joint probability P(ff}) of any graph configuration {f} equals P({f}) oc exp(-Utf }).
The max-sum BP algorithm is based on calculating the beliefs Bisj between the nodes of the
graph. Bis; is a D x 1 vector (where D is the size of the labeling set, here the number of
classes) that propagates from node i to node j. the term Bij;(fj) corresponds to the particular
elemebt of vector Bij. corresponding to the label fj. Bi-, qualitatively describes the probability
assigned by an observer in node i about the possible states in node j [MacKay 2003]. The
marginal probability for the configuration of node i P*(fi) can be expressed as a function of the
believes from the neighbors Ni of node I towards i.

Li= log(P*(f)) = qpi(fi) + Bjsi
jENi

BP was initially developed for non-loopy graphs. In this case Bis; can be calculated analytically
[MacKay 2003]. When BP is applied in loopy graphs, such as graphs that describe pixels in an
image, believes need to be calculated using an iterative procedure until they converge [MacKay
2003; Koller and Friedman 2009]:

Min-sum algorithm

1. Initialize believes: B(O

2. Iterate until convergence
a. Update believes:

4 Since the max-sum algorithm is designed to find the maximum of a potential energy, while the MAP pf
the expression 2.5.3.2 corresponds to its minimum, the max-sum algorithm is applied to solve the minus
of the expression 2.5.3.2.
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Bi (f]) = minf. pt(fi) + $vij(fi, f) + EkE(N,\j)B('i(fi)

b. Keep track of optimal solution

#iQ(f) = argmin,{Bi1)(j)}

c. Check convergence
3. Pick a random node i and solve (find its optimal configuration fA):

= argminftLj(fj)} = argminf, ti (fi) + ]jENi B (Ti

4. Trace-back
a. Iterate for all neighbors of solved nodes j E Ni

i. Identify the optimal configuration of node j

f] = fli(, i

where the superscripts (t) correspond to the t-th iteration of the believes calculation, and the
superscript (T) refers to the final result of this iteration. It needs to be commented that this is a
synchronous computation scheme because each iteration calculates the believes BiZ>fQ)

over the whole graph based on the believes Bt) (fi) of the previous iteration calculated also
over the whole graph.

Fast Numerical Implementation of the Belief Propagation Algorithm
Numerical calculation of the MAP solution in MRF is a very computationally expensive task. The
main computation cost in the max-sum BP algorithm utilized in this thesis, originates from the
calculations of the believes between nodes. Theory suggests that ordinary (synchronous: all
believes are calculated simultaneously for each iteration) BP implementation requires at most
as many iterations as the "dimension" of the graph g [Koller and Friedman 2009]. In practice it is
suggested that a much smaller number of iterations is required for convergence [Tappen and
Freeman 20031. The same paper also suggests that accelerated (asynchronous) BP decreases
computation time 11 times without significant reduction in estimation accuracy, making it as fast
as the ordinary graph cut algorithm. Nevertheless, the calculation of the MAP solution in realistic
high throughput imaging data sets is still very expensive. For example, finding the MAP in a
2000x 1500 pixel spectral image that contains four labels (Chapters 3) requires several hours of
CPU time in a quad-core Core i7 PC.
In this thesis, the numerical implementation of MRF is accelerated in three ways:

1. Instead of the standard synchronous calculation scheme, an "east-west-bottom-top"
asynchronous scheme is implemented for calculating the believes between nodes,
described in [Tappen and Freeman 2003]. For simplicity of discussion, let's consider a
rectangular grid consisting of R rows and C columns. Asynchronous implementation starts
by processing the rows (which can be implemented by parallel computing in order to get
additional performance improvement). For each row, update the "east" believes in a
progressive way: first update the belief from the node of the 1st column to the node of the 2nd

column, then use this result to update the belief from the node of the 2 nd column to the node
of the 3 rd column, and keep on until the update of the belief from the node of C-1th column to
the node of the Cth column. Then, for each row (apply parallel processing) update the "west"
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believes starting from the belief of the node Cth column to the node of the C- 1 th column, until
finally the belief from the node of the 2 nd column to the node of the 1st column. Then, in a
similar approach calculate for each column (apply parallel processing) the "south" believes,
and finally the "north" believes. This concludes a full iteration of the asynchronous BP
algorithm. The 4 parts of the asynchronous BP are repeated until convergence. This
approach seems to accelerate the convergence of believe calculation because
asynchronous updates favor faster information travel within the graph.

2. The initialization of the belief B) is not random, but it is chosen to equal the refined
evidence vector -i of the image pixel that corresponds to node j, since this provides a
relatively good initial estimate about the probability if the possible configuration f1 (classes)
of that pixel.

3. Perform global segmentation by MRF only in those parts of the image where local
segmentation performance is under question. Image analysis data provided below show that
local image segmentation can identify quite well the bulk of regions that correspond to
different classes. There is no reason to include the core of these solid regions in the MRF
model, since they will increase the computation cost without a gain in segmentation
accuracy since it is almost certain MRF will provide identical segmentation as the local
segmentation algorithm. Instead, the parts of the image that are included in the graph g of
the MRF model are:
- Pixels around the interface between neighboring regions classified in different classes.

These pixels G are calculated using a morphological operation on the binary array B,
provided by local image segmentation:

D D

G = __6r (BI,d) n BI,d,
d=1 d'=1

Where n , u are the intersection and union operators, 6(-) is the dilation operator using
as structural element a disk of radius r [Soille 2003], and Bl,d is the d-th plane of the
binary local segmentation array B1. By selecting the radius r of the dilation operator it is
possible to control the thickness of the image around the region interface that is included
in the MRF model.

- Pixels that were assigned to a particular class even though the evidence of this class
was relatively low.

The resulting graph 9 that corresponds to the pixels that satisfy these criteria may not be
connected. Instead usually it consists of several disconnected regions, each of which
corresponds to a smaller graph. For computational reasons it is not advantageous to
process graphs of very small or very large size. It is advantageous to combine several
disconnected graphs into an equivalent graph (a "forest") of appropriate size consisting of
several disconnected graphs ("trees") and solve them using the same MRF. For the
particular MATLAB implementation of asynchronous BP, the optimal size of the forest that
provided the best performance (2.1 msec/pixel) is approximately 2E4 - 2E5 nodes in a
system of 4 classes.

The "known" nodes K that are not included in the MRF model and have known labeling
provided by the local segmentation algorithm. The known nodes act as boundary conditions
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that affect the global segmentation. This needs to be incorporated into the MAP energy of
the forest in a way that will

The nodes of the MRF forest g are partitioned into two core nodes C (not in contact with the
"known" nodes 3), and boundary nodes B (in contact with at least one "known" node so that
the intersection Ni n X is non-empty). The total MAP energy for a particular configuration of
the forest that incorporates the effect of the boundary nodes is:

U({{Ityi}) = Di(fh) + I (i h) + I '41(fifi) + 'Fk1(fiif)

ie C ijEB i'G(NinX) iEg iiE(Ni\K)

The first two terms are a function only of the label fi of a single pixel. The first term
corresponds to pixels that belong to the core nodes C. The second term corresponds to
boundary pixels B. It suggests that in these pixels (Di needs to be modified in order to
incorporate the effect of the boundary cells. The third term is a function of pairwise labels
fi,f 1iof two neighboring pixels that belong to the forest 9 (neighbors of forest pixels that
belong to the known nodes are not included anymore). This expression is also written in the
form of logarithm of the joint probability of a factor graph that contains factors of order one
(first two terms) and two (third term) and therefore its MAP can be found using belief
propagation [MacKay 2003]. The only difference compared to the standard MRF practice
that utilizes the whole image is that the first order factors of the boundary nodes B need to
contain the term Zile(NinX) kl (fif i') in addition to the term cI(fi).

2.5.4 Segmentation Performance
This section provides simulation results that quantify the performance of the image
segmentation algorithms described in Section 2.5. The key step for image segmentation is local
segmentation, because it provides a coarse partition of the image into regions dominated by
particular classes. The downstream global image segmentation algorithm aims in refining the
outcome of local segmentation. Furthermore, when local image segmentation is successful in
identifying regions dominated by particular classes, the number of pixels required to be refined
by global image segmentation decreases, and image segmentation is much faster.

Performance Metrics
Each pixel in the image is assumed to belong to one particular class. If pixel i belongs to class
d, the detected signal y at this pixel is a random vector due to the stochastic nature of the
emission rates AO,d of the Nd sources, and the stochastic nature of photon arrival at the detector
(particularly at low signal levels).

Based on the measurement y at some image pixel, the probability that this pixel belongs to
domain d = 1,2,..., D is described the evidence vector e1 described by Equations 2.5-1 to 2.5-7
of Section 2.5.2. Local image segmentation assigns pixel i to a class based on a decision rule
(e.g. the MAP rule: d = argmaXd Ei,d). The accuracy of this decision depends on three factors:
- How "similar" are classes: the degree of similarity between two classes depends on how

similar are the spectral signatures and emission rate vectors of their emission sources
- The uncertainty in the knowledge of the emission rates of the sources. Class evidence

calculations (Equations 2.5-3 to 2.5-6) depend on the limits [ALilui] defined by the user,
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which express the approximate knowledge on the range of values of the rates of the sources
tAd of each class. These limits are approximations of the actual (unknown) pdf of Adj.

- Pixel signal cross-talk. This describes the signal detected at pixel i contains some
contributions of signal from surrounding pixels. When this contribution is significant,
significant decision errors can be induced.

Local image segmentation is a classification problem. Here, the accuracy of local image
segmentation is quantified by the following two metrics:
- The classification error matrix E is a D x D matrix, whose (ij) element E, contains the

probability that a pixel belonging to class i will be classified the local segmentation algorithm
as belonging to class j.

- The sensitivity SEd and specificity SPd of identifying pixels of class d are defined as
SE - TPd - Ed,d

TSdFd = D d = 1,2, ... D
TFd+FNd t=1 Ed, P

SPd - TNd _ id1ZjedEij-PD(0J d = 1,2,... D
FPd+T Nd Zi,1dt jed Eij-PD(i+Ei,d J

Where PD (d) is the a-priori probability of class d, TPd is the "true positive" probability for class d
(a pixel belonging to class i will be classified as class i), FNd is the "false negative" probability of
d (a pixel belonging to class i will be classified as class j # i), FPd is the "false positive"
probability of d (a pixel belonging to class j # i will be classified as class i), and TNd is the "true
negative" probability of d (a pixel belonging to any class j * i will be classified as any class j
i). The mean sensitivity and specificity SEand SP can be calculated as:

SE = D=1 SEd -PD(d)

Sp = E=1SPd - PD(d)

A locus (SEd(x),1 - SPd(x)) where x is some parameter that affects the calculation of the
evidence vector Ej, defines a receiver operating characteristic (ROC) curve for domain [Wornell
2010]. SEd describes the probability that image segmentation assigns a pixel to class d when
the pixel indeed belongs to class d. 1 - SPd(x) describes the probability that image
segmentation assigns a pixel to class d when the pixel does not belong to class d.

Case Study
It is not possible to derive analytical expressions for SEd and SPd that are valid in any imaging
case. The performance of the local classifier and its sensitivity to key parameters needs to be
evaluated for each imaging case separately. In the following sub-sections, the performance of
local image segmentation is evaluated the case of the cell-seeded scaffolds data-set discussed
in Section 2.6.2 and Chapter 3. The system classes, sources and source rates bounds (actual
and assumed assumed) are summarized in Table 2.5-1. The class map is shown in Fig.
2.6.3.The system consists of four classes. The class "void" contains only instrument noise and
describes empty space. Class "nucleus" and class "cytoplasm" contain two sources each and
have a common source (CMTMR). Here, the class "scaffold" contains a single source (collagen
fluorescence) whose spectral signature is similar to the signature of Hoechst 33342 present in
the "nucleus" class (Figure 2.4.3).
The emission rates of the sources of each class are chosen so that the classes "nucleus",
"cytoplasm" and "scaffold" have approximately equal mean emission that is SNR times larger
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than the emission rate of the background. The parameter V is used to increase the range of the
assumed emission rate of the sources of the "cytoplasm" class used in evidence calculations.

Class Emission sources Actual emission rate Assumed emission rate
bounds [AL,, AU] bounds [AL, ,t ]

void Instrument noise 0.2 0.2
nucleus CMTMR [SNRxO.33, SNRx1.7] [SNRxO.33, SNRx1.7]

Hoechst 33342 [SNRx0.33, SNRx1.7] [SNRxO.33, SNRx1.7]
cytoplasm CMTMR [SNRxO.33, SNRx1.7] [SNRxO.33, SNRx1.7xV]

Alexa fluor 488 [SNRxO.33, SNRx1.7] [SNRx0.33, SNRx1.7xV]
scaffold Collagen [SNRxO.04, SNRx4] [SNRxO.04, SNRx4]
Table 2.5-1: Parameters of simulations for the evaluation of local image segmentation performance presented in
Section 2.5.4. Emission rates are expressed in photons/pixel. "Actual emission rate bounds" are used to generate the
simulated data. "Assumed emission rate bounds" are used in the evidence calculations described in Section 2.5.2.

The Effect of Class "Similarity"
Correct classification of pixels in the appropriate class depends on the degree of similarity of
different classes. Different classes can be distinguished based on the spectral signatures and
the emission rates of their sources. The larger the difference between the spectral signatures or
the emission rates of the sources of different classes, classification should be more accurate
(larger sensitivity SEd and specificity SPd).

Figure 2.5.1 shows how the performance of the local image segmentation algorithm varies as a
function of the SNR parameter (see Table 2.5-1). When SNR is low, the measured data y
corresponding to the "nucleus", "cytoplasm", and "scaffold" classes become very similar to the
emission of the "void" class. Results show that as SNR decreases, then the sensitivity SEd of
"nucleus", "cytoplasm", and "scaffold" classes and the specificity SPd of "void" class decrease.
The classification error matrices also show that this is because pixels of "nucleus", "cytoplasm",
and "scaffold" classes are classified as "void". The performance of the local segmentation
algorithm provides at least 80% sensitivity and specificity when SNR>40. Given that the mean
pixel noise of the instrument utilized is approximately 0.2 photons/pixel, SNR>40 corresponds to
signal of at least 8 photons/pixel, suggesting that the algorithm can perform well even in very
low signal levels.

Similar analysis can quantify how ROC curves vary as the mean level of emission at different
classes caries. The results shown in Figure 2.5.1 correspond to classes that have equal mean
emission. It is expected that as the difference between the mean emission of classes increases,
the performance of the classifier will also increase.
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Figure 2.5.1: Performance of the local image segmentation algorithm as a function of the signal to noise ratio (SNR)
when there is accurate knowledge of the source emission rates and there is no pixel signal cross-talk. Top: ROC

curves for the four classes as a function of SNR. Bottom: Classification error matrix E for four various values of SNR.
Results are based on 10000 random data-points per case.

The Effect of the Uncertainty of Class Source Emission
Bayesian classification and model selection schemes are known to be sensitive to their hyper-
parameters that describe prior knowledge on the system parameters [Kass and Rafterry 1995].
In the local segmentation approach described in Section 2.5.2, prior knowledge is described by

the emission rate bounds [2ALi[]. The results of Figure 2.5.1 were obtained assuming perfect

knowledge of these bounds. Is it of interest to describe how the performance of the local image
classifier varies as imperfect knowledge of these bound increases. In the model described in

Table 2.5-1, this uncertainty is modeled using the parameter V. When V = 1 then there is

perfect knowledge of the bounds. When V < 1 or V > 1 then the upper limit of the emission
rates for the "cytoplasm" class is underestimated or over-estimated respectively.

Figure 2.5.2 shows how the performance of the local image segmentation algorithm varies as a
function of the parameter V). When V deviates away from 1, the specificity of the "cytoplasm"
class and the sensitivity of the "nucleus" class decrease. At the same time the classification
performance of "void" and "scaffold" pixels remains unchanged. Results suggest that as V

deviates away from 1 more "cytoplasm" pixels get misclassified as "nucleus" pixels, probably
because "nuclei" and "cytoplasm" classes have relatively similar spectral signatures and mean
emission rates (both contain the CMTMR source). Results show that very large errors in the
knowledge of the bounds of the sources of the "cytoplasm" (underestimate 4 times or

overestimate 10 times) induce classification errors (decrease specificity of "cytoplasm" by 30%).
Reasonable errors (underestimate or overestimate 2 times) cause reasonable classification
errors (decrease specificity of "cytoplasm" by <10%).
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Figure 2.5.2: Performance of the local image segmentation algorithm as a function of uncertainty in theemission
rates of "cytoplasm" class when there is no pixel signal cross-talk, and SNR=60. Top: ROC curves for the four

classes as a function of parameter V. Bottom: Classification error matrix E for four various values of V. Results are
based on 10000 random data-points per case.

The Effect of Class Signal Mixture
The results presented in Figure 2.5.1 and Figure 2.5.2 are based on simulations where the
simulated data y for each pixel contain signal from a single class. In practice, due to the
geometry of light focusing, the signal detected at pixel i contains contributions from sources
located at pixels in the proximity of pixel i. This means that measured data y contains
contributions of various classes (pixel cross-talk signal), which can deteriorate the performance
of the local segmentation algorithm.
Figure 2.5.3 shows how the performance of the local image segmentation algorithm varies as a
function of the fraction of the signal that is cross-talk from neighboring "cytoplasm" pixels. As the
fraction of cross-talk signal increases, the sensitivity of the "void" and "scaffold" classes and the
specificity of the "cytoplasm" class decrease. The response of the ROC for the "nucleus" class is
more complex, small fraction of cross-talk "cytoplasm" signal decrease "nucleus" class
specificity, larger fractions decrease "nucleus" class sensitivity. Results show that the
"cytoplasm" cross-talk signal causes void pixels (whose emission is much weaker that
"cytoplasm" pixels) to be misclassified as "cytoplasm" pixels. Results also show that the
"cytoplasm" cross-talk signal causes "scaffold" pixels to be misclassified as "nucleus pixels",
probably because mixing the spectral signatures of "scaffold" sources (blue-green) and
"cytoplasm" sources (green-orange) forms spectral signatures similar to "nucleus" sources (blue
and orange). Such simulations suggest that local image segmentation algorithms may not
classify accurately pixels located close to the boundaries of class regions. However, as long as
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the local image classifier achieves to classify accurately the bulk of the region pixels, then the
pixels located around region boundaries will be classified using the global image segmentation
algorithm.
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Figure 2.5.3: Performance of the local image segmentation algorithm as a function of pixel signal cross-talk from the
"cytoplasm" class when there is accurate knowledge of the source emission rates and SNR=60. Top: ROC curves for

the four classes as a function of the fraction of signal that corresponds to "cytoplasm". Bottom: Classification error
matrix E for four various values of the fraction of signal that corresponds to "cytoplasm". Results are based on 10000

random data-points per case.

2.6 Challenging Applications of Spectral Multi-photon Imaging
Section 2.6 provides applications of the image processing pipeline described in this Chapter in
the analysis of experimental datasets acquired by the spectral multi-photon microscope
described in section 2.3. Each one of the three samples presents a different set of image
processing challenges. The last two applications (Sections 2.6.2 and 2.6.3) are based on the
imaging studies related to peripheral nerve regeneration described in Chapters 3 and 4.

2.6.1 Imaging Endogenous Molecules in P. Aeruginusa
P. Aeruginusa is a bacteria strain that forms colonies in patients that suffer from cystic fibrosis.
Bacteria colonies are much more resistant to antibiotics and treatments compared to single
isolated bacteria. Several critical functions of P. Aeruginusa (including cell-cell signaling,
electron harvesting and biofilm formation) are modulated by phenazines, a family of
endogenous small molecules [Price-Whelan et al. 2006; Mavrodi et al. 2006; Dietrich et al.
2008]. Phenazines, including PYO and PCA, are fluorescent when they are reduced, which can
be exploited for their quantification [Sullivan et al. 2011]. Since existing methods for studying the
redox state of small molecules are tedious and provide no spatial resolution and low temporal
resolution, it is of interest to exploit fluorescence imaging to study the redox state of these
molecules with high spatiotemporal resolution in vivo.
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Samples of wild type and mutant P. Aeruginusa cells were prepared by Dr. N. Sullivan
(Newman Lab, Department of Biology, MIT). 1 ml cell aliquots from overnight 100ml cultures
were pelleted. Bacteria were suspended in PBS and 100 pl samples were transferred inside
glass wells, sealed by a #1.5 coverslip. Cell samples were imaged every 15 min sampling time
for 2h after sealing [Sullivan et al. 2011].
The P. Aeruginusa imaging data set consists of 2D images of P. Aeruginusa bacteria in solution
at various time points after transferring bacteria from 0 2-rich to 02-limited conditions. The
major challenge in this dataset is the need to estimate the concentration of multiple endogenous
weak fluorophores whose emission spectra lie within a 200nm window of the EM spectrum. The
dataset contains 2 classes (cells, medium). The "class map"5 of the system is shown in Figure
2.6.1. The "cell" class describes pixels that correspond to bacteria and contains between 1 (just
NADH) and 4 emission sources (NADH, PVD, PCA, PYO) in the wild type strain that expresses
both phenazines ( PYO, PCA) and the siderophore PVD. The "solution" class describes pixels
that correspond to the medium that surround bacteria, and the emission sources of the "cell"
class apart from NADH and PVD that are not secreted. This fluorophore set is hard to unmix, as
described by the data shown in Figure 2.4.16 and Figure 2.4.17.

EPVD

Cells Solution NADH*mlls*"-""-"""""""""*PYO*

* PCA*

Figure 2.6.1: Class map for P. Aeruginusa imaging for the wild type strain that expresses both PCA and PYO
phenazines. Asterisk (*) refers to a molecule that is fluorescent only when in reduced state.

Figure 2.6.2 shows an application of the developed methodology in quantifying the temporal
response of reduced phenazines, reduced NADH and PVD after P. Aeruginusa are transported
from an oxygen-rich to an oxygen-limited environment. This application provided the first
estimation of reduced phenazine concentration in vivo, and the first measurement of the
dynamics of the phenazine-PVD-NADH system [Sullivan et al. 2011].
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Figure 2.6.2: Quantifying the dynamics of reduced phenazine concentraton in P. Aeruginusa after a sudden move
from an oxygen-rich to an oxygen-limited environment by spectral multiphoton microscopy. a: Left: representative
images of bacteria (all 16-channels have been added to form a grayscale image (raw). The signal level is on the
order of 5 photons per pixel. Right: Pixels classified as "cells". b: spectral unmixing of the fluorescence emission for
the sum of the signal in pixels belonging to the "cell" class. C: time response of the concentrations of reduced

5 The "class map" is a schematic that shows the classes present in an image (shown as boxes), the
emission sources present in each class (colors inside the class box) and the valid neighborhood
relationships between classes (shown as arrows).
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phenazines PYO* and PCA*, the siderophore PVD and reduced NADH within 90 minutes after oxygen depletion.
Data are obtained from [Sullivan et al. 2011].

2.6.2 Imaging Human Dermal Fibroblasts inside Porous Collagen Scaffolds
Image informatics is an imaging-based method for studying complex signal transduction
pathways inside cells [Perlman et al. 2004; Nir et al. 2010]. Information about the pathway of
interest is inferred by studying how the cell response to particular stimuli changes when one or
multiple parts of the signal transduction pathway are perturbed, see Chapter 3. The response of
each experiment is described by a series of imaging-based features that quantifies each cells
present in the dataset.
This dataset is part of an image informatics study of the SMAD-mediated TGFP-induced
differentiation of fibroblasts inside porous collagen scaffolds. Lentiviral shRNA was used to
knock down particular genes of the TGFP-SMAD pathway in primary human dermal fibroblasts
(HDF). Transfected cells were seeded inside porous collagen-GAG (CG) scaffolds similar to the
ones used clinically for skin regeneration [Yannas et al, 1982, 1989]. Cells were incubated at
37*C, 5%C0 2 for five days in the presence of TGFP isoforms, and then fixed, immune-stained
and imaged. More information about this experiment can be obtained in Chapter 3.
The data set consists of four classes: cell nucleus (nuc), cell cytoplasm (cyto), scaffold (scaf)
and void (the empty space between cells and scaffold struts). The class map of the system is
shown in Figure 2.6.3. The spectral unxmixing performance of each class is expected to be very
good, since each class contains just 2 sources that are quite well separated.

- second harmonic
Uhoechst33342

NUC CYTO SCAF ilcst34
W ..E.. .... collagen

alexa fluor 488
CMTMR

Figure 2.6.3: Class map for imaging cell-seeded scaffolds. Left: Spectral image of fibroblasts seeded inside the
scaffold after spectral unmixing. Red: cells, green: scaffold.

Results on the application of the developed pipeline to process the images of the cell-seeded
scaffolds of the image informatics study are provided in Chapter 3.

2.6.3 Imaging Ex Vivo Samples of Injured Peripheral Nerves
Multi-photon imaging is a promising imaging modality for in vivo imaging of small animals, due
to its key features (large penetration depth, low photo-toxicity). In this dataset, the unique
properties of multi-photon excitation are exploited for acquiring information-rich images of ex
vivo rat peripheral nerves (PN) samples obtained from a peripheral nerve regeneration animal
model [Soller et al. 2012]. The objective of this study is to provide tissue and cellular level
description of how biomaterials of different properties affect the kinetics and final outcome of
wound healing in severely injured PN. More information and results about this experiment is
available in Chapter 4.
Scaffold fabrication, animal experiments, and nerve tissue harvesting, fixation and sectioning
was conducted by Dr E. Soller (Yannas Lab, Department of Mechanical Engineering, MIT). After
transecting the sciatic nerve in rats and separating the resulting stumps by 15 mm (a significant
wound that cannot regenerate by itself), the two stumps are entubulated by a collagen tube and
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let heal for 1, 2, or 9 weeks. The harvested nerves are sections, immunolabeled for various
antigens of interest and imaged. In this study, the ability of multiphoton excitation to excite
simultaneously multiple fluorophores and to distinguish D-banded versus non-banded collagen
based on the emission of second harmonic scattering, are exploited in order to obtain
information-rich images of the nerve regenerates with minimal sample usage.

Based on nerve anatomy, and the staining protocol applied to the sample and the localization of
the corresponding antigens (Chapter 4), the class map of the system is shown in Figure 2.6.4. It
consists of ten classes "cell nucleus" (nuc), "perineurium" (prn), "blood vessels" (bvs),
"myofibroblasts" (mfb), "fibroblasts" (fbc), "schwann cells" (scc), "axons" (axn), "endoneurial
matrix" (end), "banded collagen" (col) and "collagen scaffold" (scf). Each class contains between
1 to 3 sources. Therefore, even though there are 7 emission sources in the system, 3 of which
have very similar spectral signature (dapi, collagen autofluorescence, alexa fluor 350), spectral
unmixing in each class is expected to be accurate because the emissions of each class have
quite distinct spectral signatures.

- - - - - - - - - - - - - - - - - I
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Figure 2.6.4: Class map for the ex vivo nerve imaging dataset.
Results on the application of the developed pipeline to process the images of the ex vivo nerve
imaging dataset are provided in Chapter 4.

2.7 Summary and Future Work
This chapter provides an image processing pipeline for large data-sets of spectral microscopy
images of complex biological samples. The developed image processing pipeline is a key
enabling technology for extensive application of spectral fluorescence microscopy in biological
research. The wide-spread use of fluorescence microscopy in biological research, lead to the
development of many image processing software tools, some proprietary and available
commercially (e.g. Imaris), others open-sourced and available at no cost (e.g. BiolmageXD,
CellProfiler, FARSIGHT, Fiji, ImageJ) [Eliceiri et al. 2012; Hamilton 2012; Kankaanpaa et al.
2012; Schindelin et al. 2012]. These software tools include a wide range of features: microscope
control and data acquisition, image visualization, image processing (segmentation,
classification), image quantification, particle tracking, and statistical analysis. Nevertheless none
of these tools has been designed in a way that exploits the high information content present in
spectral fluorescence microscopy. Only a few of them provide basic spectral unmixing
calculations [Hamilton 2012]. The generic pipeline described in this Chapter can act as the first
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image processing step whose outputs can be further analyzed by the available image
processing tools developed to process 3D fluorescence images. Although all application
described in this thesis were acquired by multi-photon microscopy, the analysis and algorithms
described in this thesis can be applied also to spectral confocal (single-photon excitation)
microscopy.

The pipeline consists of two main parts: a local image segmentation scheme and a global image
segmentation scheme. By far the most important part of the pipeline is the local image
segmentation, which treats pixel-wide image segmentation as a model selection problem. The
local segmentation scheme requires D spectral unmixing and D class evidence computations
per pixel (D is the number of pixel classes present in the image), making essential the efficient
and accurate implementation of spectral unmixing and class evidence calculations. This chapter
provides analytic estimates of the estimation error of spectral unmixing as a function of the set
of sources present in a pixel, their emission rates and modeling/calibration errors. The validity of
these expressions depends strongly on the signal level and the "difficulty" of spectral unmixing
quantified by the variance factors Gi. These estimates are reasonably accurate for signal level
larger than 30 photons/pixel and G, > 0.15. Simulation results compare the performance of three
spectral unmixing algorithms (EM, Gaussian Variable Noise (GVN), and Gaussian Common
Noise (GCN)) and suggest that GVN and EM algorithms are 1-2 orders of magnitude slower
than the basic GCN without significant gain in estimation accuracy and precision even at low
signal images. The convexity of spectral mixing observation models is utilized in efficient
calculations of class evidence integrals. The performance of the pipeline depends on the ability
of the local segmentation algorithm to provide a relatively accurate segmentation of the image,
specifically identify coarsely the regions that correspond to different objects.
Global image segmentation refines the outcome of local segmentation to provide regions of
smooth boundaries, remove pixel classification errors, and prevent incompatible classes from
coming to proximity. Global image segmentation algorithms are very computationally expensive,
prohibiting their application in large data sets. Here, a fast global image segmentation approach
was implemented by including only parts of the image (boundaries of regions provided by the
local image segmentation, pixels where incompatible classes meet) in a Markov Random Field
model, and then solving the model by an efficient belief propagation numerical scheme. The
computation cost (per pixel) of global segmentation is approximately 2 orders of magnitude
higher than the computation cost of spectral unmixing, and 1 order of magnitude higher than the
cost of local segmentation.

The developed image processing pipeline has three key features:
- enables high-content fluorescent imaging that is not feasible using standard fluorescence

microscopy instrumentation and processing. The imaging applications presented in Section
2.6 and Chapters 3, 4 are beyond the published state-of-the-art in terms of information
content (total number of classes, total number of sources) per image acquisition (Section
2.2.3). However, the analysis of the image processing pipeline presented in this Chapter
suggests that high-content high-accuracy imaging can be achieved only when the staining
protocol and the imaging acquisition parameters are chosen appropriately to ensure that i)
neighboring classes are significantly "different", ii) the sources present at each class have
significantly different spectral signatures but similar range of emission rates.
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- Can be applied to process large data sets obtained by high-throughput imaging due to the
utilization of algorithms that are computationally efficient and can be run in parallel
processing mode.

- Can be utilized by users that are not expert in optics or signal processing. Specifically, the
inputs required by the user are parameters that either depend on the nature of the sample
and the staining protocol (number of classes, sources per class), or can be easily estimated
after imaging (coarse bounds on source emission rates).

The developed pipeline can be extended and improved in several ways
- The code of the image processing pipeline was implemented in the MATLAB scientific

computing environment. Although MATLAB is an efficient environment for rapid prototyping
of software tools, its numerical performance is limited and it is not open-sourced. A much
more efficient version of the code would be implemented in a more efficient programing
language such as C or Java. Such an implementation would increase its outreach to the
biological/medical research community either as a standalone application or as a plugin to
ImageJ, favoring wide use of spectral fluorescence microscopy.

- Several image computation tasks can be done in parallel. This enables their implementation
in way that can make use of the massive parallel processing power of graphics processing
units (GPU) cards available commercially. Implementations based on multi-core GPUs could
improve the speed of all computation-intensive tasks (spectral unmixing, evidence
calculations, belief propagation) by at least one order of magnitude.

- The image content of fluorescence imaging can be further increased by combining spectral
microscopy with fluorescence life-time imaging (FLIM). High-sensitivity spectral-FLIM
imaging can be implemented using MA-PMTs whose outputs are processed by an array of
constant-fraction discriminator and counter circuits [Becker 2005]. A large fraction of the
analysis and algorithms described in this Chapter can be applied to analyze Spectral-FLIM
fluorescence microscopy images. Spectral-FLIM fluorescence imaging could enable
accurate 3D imaging of very challenging fluorophore sets (such as the phenazine set
described in Section 2.6.1) that are hard to image using spectral imaging alone, and could
improve significantly the accuracy and precision of the estimation of the emission rates of
the sources present in fluorescence images.

- The implementation of spectral fluorescence imaging in deep tissue imaging in vivo may
require modification of the image processing algorithms, or implementation of optical tricks
to handle the deteriorating effects of emission light scattering in the spectral response.

Accelerating the required computations of the proposed image processing pipeline aims
towards implementation of the pipeline in real time. In this case, the developed pipeline can be
embedded inside the software that controls microscope acquisition, leading to the generation of
"smart" microscopes. Such instruments could enable high-throughput high-content imaging of
large complex biological samples, for example tissue cytometry [Kim et al. 2007b, Ragan et al.
2012], with minimal user input.
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Chapter 3: An Image Informatics Study of
TGFB Signaling via the SMAD Pathway
3.1 Chapter Overview
This chapter describes an imaging-based method for studying signal transduction pathways in
cells that interact with 3D matrices. The methodology belongs to the "image informatics"
framework: inference about the role of individual components of a signaling pathway is based
on how particular perturbations to the pathway affect cell response to particular stimuli, where
the system response is quantified based on imaging assays. It combines RNA interference, the
spectral multi-photon imaging techniques described in Chapter 2, and statistical analysis. The
methodology is applied in a pilot study of the TGFP signaling via the SMAD pathway in
fibroblasts inside porous collagen scaffolds (CG), in order to infer how different components of
the pathway modulate the different effects of TGFP1 and TGFP3 isoforms.

3.1.1 Motivation
Cells sense and respond to their environment via signal transduction pathways, cascades of
proteins and small molecules that transmit information (in the form of molecule concentration
and modification) inside the cell [Gomperts et al. 2009; Scott and Pawson 2009; Gough and
Yaffe 2011; Palsson 2011]. The vast majority of existing knowledge about signal transduction
pathways is based on established biochemical and genetic methods. Current efforts to model
and understand signal transduction using complex biological systems requires novel high-
throughput approaches, including genomic and proteomic methods [Yaffe 2008; Zhang and
Neubert 2009; Zhang et al. 2010], and imaging-based methods such as image informatics
[Perlman et al. 2004; Bakal et al. 2007; Wollman and Stuurman 2007].
Image informatics methodologies combine genetic manipulation of cells, large scale imaging,
image processing and statistics to study complex signal transduction pathways in cells. So far,
image informatics has been applied in studies of cells cultured on standard culture dishes.
Unfortunately, the 2D surface of a culture dish presents to cells an environment that is very
different compared to the microenvironments felt inside tissues. Since the insoluble
microenvironment of cells affects critically their phenotypes [Griffith and Swartz 2006], it is
important to develop imaging-based studies that can study cells inside more physiologically
relevant 3D matrix models.

This study extends the image informatics framework into studies of signal transduction
pathways in cells that interact with a 3D matrix. The role of individual pathway components is
inferred based on how knocking down particular components of the cell-matrix system affects
the system response to particular stimuli. A novel feature compared to previous image
informatics approaches is that the output of the cell-matrix system is quantified not just based
on morphometric features of the cells, but also on morphometric features that describe cell-
matrix adhesion. The methodology is applied in a pilot study on the role of SMAD pathway
components in mediating TGF signaling, a pathway known to affect many cell phenotypes,
including myofibroblast differentiation, a critical phenotype in wound healing (Chapter 4).
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3.1.2 Chapter Description
Section 3.2 provides basic background on the image informatics approach, on the SMAD
pathway and on the role of TGFP in wound healing. Section 3.3 describes the various steps of
the image informatics methodology, the experimental implementation in the SMAD ilot study,
the application-specific image processing steps, and the immunoblotting assay used to validate
the results of the imaging analysis. Section 3.4 provides the results of the study, Section 3.5
discusses the findings, and Section 3.6 suggests directions for future research.

3.1.3 Contributions to this study
This study was a collaborative effort of the author of this thesis (Dimitrios Tzeranis) with two
visiting students (Chengpin Shen, Jin Guo) at the So lab (MIT). Chengpin Shen developed the
lentiviral shRNA vector expression system and contributed to experimental design and several
experimental protocols (shRNA transfection, immune-blotting and immune-fluorescence). Jin
Guo finalized and verified the shRNA transfection procedure, finalized WB and IF protocols,
verified the shRNA protein knock-down efficiency, and acquired the data. Melissa contributed in
acquisition of Western Blot data, and preparation of samples for imaging. The author (DT)
contributed in experimental design, protocol troubleshooting, developed the image processing
pipeline, and performed statistical analysis in both IF and WB data.

3.2 Background

3.2.1 Image Informatics

Description of Image Informatics
Image informatics refers to imaging-based approaches that infer information about the
components of a cell signaling pathway. The pathway of interest is modeled as a system, whose
response to external stimuli (inputs) can be quantified based on imaging-based assays (outputs)
called features, Figure 3.2.1. The output response of the system is expected to change
significantly when a critical part of the system is perturbed. Therefore, the roles of individual
pathway components can be inferred by quantifying how the system output varies over different
treatment conditions.

Inputs Stimuli

- - - -- - - - --.R I

I gII~ P1 P2

Cellular
system

Outputs Optical assays
(features)

Figure 3.2.1: Image informatics considers the signal transduction pathway of interest as a system, which is excited
by stimuli (inputs) and quantified via optical assays (features).
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Each experimental condition is called a treatment condition (TC), and corresponds to a

combination of a particular input applied to a particular perturbed system, see Figure 3.2.2. The

role of pathway components is inferred by statistical analysis of the outputs of all TC. Signal
transduction pathways are usually large (in terms of component number) and complex (in terms
of component topology, variation among different cells) [Gomperts et al. 2009]. Therefore in

order to pick the most informative TC and analyze TC results it is necessary to incorporate a-
priori knowledge of the basic biology of the pathway.

Key Features of Image Informatics
Image informatics methodologies are based on large-scale high-resolution imaging of a large
number of treatment conditions (TC). Each TC is described based on images of cells (here cells

are located inside a matrix), where each individual cell is quantified by a vector of imaging-
based assays called "features". Each TC is described therefore by the feature matrix that

contains the feature vectors of its cells. Since the methodology relies on imaging assays, it can
be applied to systems where the pathway of interest affects markers that can be detected by
imaging. From a systems theory perspective this describes the need for a system (signaling
pathway) that is "controllable" by the stimuli and "observable" by the measured outputs (feature
vector) [Chen 1998].

Unperturbed system Perturbed system 1 0.. Perturbed system N

Stimuli Stimuli
-I-- - -- - - - -

st II2Ri

II P1 P2 P1 (P2)~

P3 P4 P3 P4 a li

F I F TF I

..L.3.............

I_ mage Processing mg roesn

Feature vector 0 Feature vector 1

rStatistical Analysis

I

Stimuli
-- ------

R1 R2 I

P1 P2 ;
44

II

~ Feature vector N

inference
Figure 3.2.2: Overview of the image informatics approach. The role of individual components of a signal transduction
pathway is inferred by quantifying how the response (evaluated by optical-based assays called features) of the
system to particular stimuli changes when one or more components of the pathway are perturbed.

Image informatics infers information about an intracellular molecular system and does not
provide direct biochemical/genetic evidence. Therefore it is usually necessary to verify its
conclusions through standard biochemical or genetic experiments. In some cases, statistical
analysis of image informatics data includes known positive/negative results in order to estimate
the sensitivity/selectivity of the approach [Perlman et al. 2004; Nir et al. 2010]. Even when this
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validation is not possible, a key contribution of image informatics is to accelerate discovery in
complex biological systems through guiding the focus and design of the more laborious, and
expensive biochemical and genetic experiments needed to obtain solid proof of molecular
interactions and biological significance.

State-of-the-Art in Image Informatics
The pioneering paper in the image informatics field profiled the dose-dependent effects of 100
different drugs in human cell morphology, grouped drugs of similar mechanisms, and predict
targets for drugs of uncertain mechanism [Perlman et al. 2004]. Another key study classified cell
morphologies in a RNAi screening of 249 genes predicted to affect cell morphology, and
identified signaling networks that regulate cell protrusion, adhesion and tension [Bakal et al.
2007]. RNAi screening and single-cell classification was used to infer potential RhoGAP-
GTPase interactions in fruit fly cells [Nir et al. 2010]. High-dimensional quantitative phenotyping
found that half of 4718 nonessential gene deletion yeast mutants affected cell morphology
[Green and Yamada 2007]. A whole genome RNA interference screen combined with
automated image analysis identified genes that affect cell spreading in Drosophila [Madri et al.
1988]. A novel segmentation algorithm applied to more than 55,000 cell images infected by
either hepatitis C or dengue virus identified genes involved in virus entry and replication
[Grinnell 2003]. A FRET-based screening of JNK regulators by 1565 dsRNAs detected groups
of individual dsRNAs with common patterns of genetic interaction [Bakal et al. 2008].

Limitations of Current Image Informatics
The major limitation of current image informatics implementations is that they are based on
images of cells cultured on flat culture disks. Although cell culture on culture plates is the
standard practice in biological research, it lacks a biologically-relevant extracellular matrix
(Section 5.2.1). It is known that many important physiological or pathologic cell phenotypes
depend critically on the matrix around cells [Madri et al. 1988, Grinnell 2003, Stegemann et al.
2005; Griffith and Swartz 2006; Allen and Jones 2011]. The absence of a physiologically
relevant matrix prevents accurate studies of many important phenomena. Current image
informatics implementations can be considered as a first step towards more biologically relevant
models that could emulate the microenvironment that cells sense in tissues [Green and Yamada
2007], where cells interact either with other cells or with the extracellular matrix. The next
generation of image-informatics implementations should therefore include an appropriate matrix,
treat the cell-matrix system as a whole, and utilize imaging-based assays to quantify both cell
morphology and cell-matrix interactions.

The vast majority of current image informatics studies quantify TC based on morphometric
assays of cells using a single fluorescent stain of the cell cytoplasm. Since cell-matrix systems
are significantly more complex, it seems necessary to describe them by a larger variety of
assays. In this case it may not be adequate to rely on cell morphometric features derived from a
single fluorescent stain localized in the cell cytosol [Madri et al. 1988, Grinnell 2003, Stegemann
et al. 2005]. There is a need to describe such complex cell-matrix systems by multiple
fluorescent markers. At the same time it is necessary not to increase the number of imaging
experiments (and the associated costs). These two contradicting objectives can be satisfied by
utilizing high-throughput high-content 3D-imaging modalities, such as spectral multi-photon
imaging described in Chapter 2 and utilized in this study.
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3.2.2 Image Processing
Image processing pipelines for image informatics are long and complex. They consist of a
generic pipeline, followed by an application-specific pipeline.
The generic pipeline depends on the instrument being used. Most studies utilize wide-field
fluorescence microscopy in commercially available automated imaging platforms (e.g.
cellomics) that provide software that implements the generic pipeline. This thesis utilizes a
custom-built spectral multi-photon microscope. The generic image processing pipeline for
spectral microscopy described in Chapter 2 provides: i) a segmentation of the 3D image into
regions belonging to particular "classes" (kinds of objects), and ii) the ML estimate of the rates
of the emission sources present in the image.

The application-specific image processing pipeline processes the outputs of the generic pipeline
in order to identify and quantify objects of interest. In the image informatics implementation
discussed here, the objects of interest are cells (described by the classes "nucleus" and
"cytoplasm"), and the surrounding matrix (described by the class "scaffold"). Processing cell
objects is quite tricky because cells may touch each other, making necessary to segregate cell
clusters. The same problem occurs in cells interacting with a matrix. Therefore, here the
application-specific part of the image processing pipeline focuses on identifying and quantifying
single cells in cell clusters.

Processing Images that Contain Cell Clusters
Imaging-based methods often face the challenge of processing images that contain cell
clusters. Part of the image processing pipeline focuses on identifying accurately the boundaries
of cell nuclei and cytoplasm in such cell clusters. Published pipelines usually consist of five
parts:
1. Pre-processing: Prepares data for segmentation using operations such as denoising, voxel

size correction (3D imaging) and intensity correction. Noise artifacts can be attenuated using
low-pass filtering [Lin et al. 2003; Wthlby et al. 2004; Adiga et al. 2006]. Intensity correction
compensates for non-uniform illumination or for intensity attenuation in 3D imaging [Wahlby
et al. 2004].

2. Segmentation: In the vast majority of published studies, images consist of one or two
emission sources, whose emission is detected in two separate channels. One channel
usually detects a nucleic acid stain that labels cell nuclei. The second channel detects a
stain that is localized in cell cytoplasms. In the segmentation step, each channel is divided
into "foreground" (the class of interest, e.g. nuclei, cytoplasm) and "background" using
segmentation algorithms developed for single-channel grayscale images (discussed in detail
in Section 2.2.4). When the image contains non-overlapping cell cytoplasm regions (e.g.
low-density cell cultures where cells are well separated and do not make large cell-cell
contacts) the segmentation task is relatively easy and simple segmentation algorithms can
be sufficient [Dima et al. 2011; Hangwood et el 2012]. Some kinds of segmentation errors
can be corrected using morphological processing such as filling and opening [Lin et al.
2003; Cheng and Rajapakse 2009]. More advanced and accurate methods include active
contours [Zimmer et al. 2002; Xiong et al. 2006; Cheng and Rajapakse 2009], watersheding
based on channel intensity gradient [W~hlby et al. 2004], thresholding [Lin et al. 2003; Adiga
et al. 2006; Xiong et al. 2006], Markov Random Fields [Al-Kofahi et al. 2010], and dynamic
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programming [Rosado-Toro and Rodriguez 2012]. In all published papers the signal level in
the class of interest is significantly larger compared to the background signal. Usually
segmentation of cell nuclei is easier than segmentation of cell cytoplasm because nuclei
have sharper edges and standard shapes.

3. Seeding: When the image contains regions of overlapping objects (e.g. nuclei or cell
cytoplasms in contact), it is critical to first identify the number of the objects, and provide an
initial seed for each object. In several studies the user manually provides the seeds of the
overlapping regions [Zimmer et al. 2002; Jones et al. 2005]. In high-throughput automated
studies it is preferred to identify these seeds computationally. Nuclei objects are easier to
identify. Nuclei objects can be used as seeds for cell cytoplasm [Xiong et al. 2006]. This is
adequate in 2D imaging but may not be enough in 3D imaging. Most published pipelines use
as seeds the local minima of the internal distance transform [Soille 2003; Lin et al. 2003;
W~hlby et al. 2004; Adiga et al. 2006; Cheng and Rajapakse 2009]. This approach usually
provides more seeds than the actual number of objects particularly in noisy images. Some
noisy seeds can be eliminated by h-min morphological filtering [Cheng and Rajapakse
2009]. Alternative methods for seeding include applying Laplacian of Gaussian filtering
followed by local maximum clustering [Al-Kofahi et al. 2010], and identifying the local minima
of the gradient-weighted inner distance transform [Lin et al. 2003].

4. Splitting (region growing): This step divides a cytoplasm region that corresponds to a cell
cluster into individual cell objects. Splitting is based on the seeds provided by the seeding
step and information provided by the image. A simple but inaccurate approach is Voronoi
segmentation, where each pixel is assigned to the nearest seeding point [Soille 2003]. The
standard approach for splitting regions in contact is to apply the watershed algorithm in the
inner distance transform [W~hlby et al. 2004; Adiga et al. 2006]. Improved cell splitting is
achieved by incorporating edge information by applying the watershed algorithm to a
gradient-weighted distance transform [Lin et al. 2003], or by applying Voronoi segmentation
to a modified distance metric that incorporates gradient information [Jones et al. 2005] (the
method implemented in the CellProfiler image processing platform) [Lamprecht et al. 2007;
Vokes and Carpenter 2008]. Other methods include identifying cell contacts using gradient-
difference information [Surut and Phukpattaranont 2010], Markov random field modeling
[Chen et al. 2006; Al-Kofahi et al. 2009] (included in the FARSIGHT image processing
platform [Bjornsson et al. 2008]), applying dynamic programming to identify the minimum
cumulative path [Rosado-Toro and Rodriguez 2012], applying the watershed algorithm in
the outer distance transform [Cheng and Rajapakse 2009] (appropriate for circular regions
of similar dimensions), and active contour methods that can handle touching regions [Xiong
et al. 2006; Coulot et al. 2006]. In all cases, successful splitting requires accurate seeding.
There are few exceptions where segmentation and splitting are implemented in a single-
step, for example using Markov Random Fields [Chen et al. 2006].

5. Post-processing: This step corrects over-segmentation caused by incorrect seeding [Lin et
al. 2003; Coelho et al. 2009].

In this study, parts 1-2 are implemented by the generic image processing pipeline described in
Chapter 2, and parts 3-5 are implemented by an application-specific image processing pipeline
described in Section 3.3.5.
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3.2.3 Mathematical Methods in Image Informatics
Image informatics methodologies rely on analyzing large data sets obtained by high-throughput
imaging experiments. They can borrow several tools developed in computer science and
systems biology for processing large data sets in order to extract statistically-significant
correlations [Tan and Linding 2009]. This section summarizes some of these methods.

Dimension Reduction
Each cell object is described by a large number of features (a feature vector). Each treatment
condition (TC) is described by a feature matrix that contains the feature vectors of a population
of cells. Due to the large dimension of feature vectors utilized in image informatics, it is
necessary to reduce the dimension of the feature vector in order to remove redundancy,
increase calculation accuracy and decrease computational cost. Dimensionality reduction
methods include projection-based, and feature selection techniques. Projection-based methods,
particularly principal component analysis (PCA), have been applied extensively, including
several image informatics studies [Nir et al. 2010; Lee et al. 2012]. The main disadvantage of
PCA is that the new base set does not correspond to features of biological context. Feature
selection techniques reduce dimension by selecting a subset of the initial features in order to
minimize redundancy or maximize the information content without data transformation [Hall
2000].

Statistical Analysis of Image Informatics Data
There is no standard way to process the large amount of imaging data provided by image
informatics experiments. This thesis applies a simple statistical analysis based on clustering
similar to the one implemented in a related study [Nir et al. 2010]. Clustering segregates TC into
groups of "similar" reduced feature arrays. Clustering methods include the widely-adopted k-
means and expectation maximization (EM) methods [Jain et al. 1999]. The centroid-based k-
means clustering is visually intuitive and guaranteed to converge, however it lacks the
theoretical statistical foundation provided by distribution-based methods such as the expectation
maximization (EM) clustering method. EM clustering, when applied to data sets modeled by the
Gaussian mixture model (GMM), provides the maximum a posteriori (MAP) estimates of the
GMM parameters [Dempster et al. 1977].

3.2.4 SMAD-Mediated TGFP-Induced Myofibroblast Differentiation
The developed image informatics methodology is demonstrated in a pilot study of the SMAD
signal transduction pathway in primary fibroblasts inside porous collagen scaffolds. The SMAD
pathway is the major pathway that transduces the effects of TGFP cytokines [Massague 2000],
important regulators of many pathological processes including wound healing [Yannas 2001]. Of
particular interest is the effect of TGFP1 and TGF33 isoforms on myofibroblast differentiation
during wound healing.

Myofibroblasts and Wound Healing
Myofibroblasts (MFB) are transformed cells that express significant contractile apparatus
[Deodhar and Rana 1997; Desmouliere et al. 2005]. MFB appear in several pathological
conditions including wound healing and fibrosis [Desmouliere et al. 2005; Hinz 2007, 2009].
Several kinds of cells in various organs (e.g. fibroblasts in skin, stellate cells in liver [Masuzaki
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et al. 2012]) can differentiate into MFB by appropriate stimuli [Hinz et al. 2007]. During
spontaneous wound healing, capsules of contractile cells rich in MFB appear at the wound
edges [Murphy et al. 1990; Troxel 1994; Chamberlain 1998b]. The presence of MFB in wound
healing is correlated with wound contraction and scar formation [Yannas 2001]. MFB apply
significant contractile forces and synthesize a collagen-rich capsule. Both effects are believed to
have significantly adverse effects on the wound healing outcome, and in particular on the ability
of the organ to regenerate spontaneously (for more details, see Chapter 4).

The SMAD Signal Transduction Pathway
The SMAD pathway is the major signal transduction pathway that cells use to transduce TGFP
stimuli [Massague 1998; Massague and Gomis 2006]. The pathway operates in six steps
(Figure 3.2.3). 1: The TGFP molecule binds to a TGFP type I receptor (TGFBR2) dimer on the
cell membrane. 2: The TGFBR2 complex recruits a TGFP type I receptor (TGFBR1) dimer
(homodimer or heterodimer). 3: TGFBR2 activates TGFBR1 by phosphorylating residues at its
cytosolic domain. 4: The cytosolic domains of activated TGFBR1 recruit and phosphorylate
receptor-SMADs (rSMAD: SMADI, 2, 3, 5, 8). 5: Activated rSMADs bind the coSMAD Smad4.
6: The rSMAD-coSMAD complex translocates into the nucleus and regulates gene transcription
by acting as a transcription factor [Goumans et al. 2002, 2003, 2009; Feng and Derynck 2005;
Massagu6 and Gomis 2006].

Cytokines TGFP1, TGFP2,
TGFP3

Type I ALK1,ALK5
Receptors Type I TGFBR2

SMAD1, SMAD2,
SMAD rSMAD SMAD3, SMAD5,
proteins SMAD8

_ coSMAD SMAD4

TGFO

P-10I ANI

6/

Figure 3.2.3: Overview of the TGFO pathway. Left: List of the core proteins of the TGFP pathway. Right: Steps of cell
stimulation by TGFP isoforms via the SMAD pathway (edited from [Derynck and Zhang 2003]).

TGF isoforms in Wound Healing
The three isoforms of the transforming growth factor beta (TGFP1, 2 and 3) are members of the
TGFP superfamily [Derynck and Miyazono 2007]. Although the three isoforms are very similar in
primary structure [Massagu6 1990], they are associated with antagonistic effects in wound
healing. In animal models of skin wound healing, TGFP1 is associated with wound repair via
wound contraction and scar formation, TGFP2 appears to synergize with TGFP1, and TGFP3 is
associated with improved regeneration. TGFp1 is a prerequisite for MFB differentiation [Grinnell
1994, Klass et al. 2009], promotes chemotactic recruitment of fibroblasts in skin wounds
[Grinnell 1994]. Neutralizing antibodies against TGFP1 and TGF02 reduce scar formation in rat
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dermal wounds [Shah et al. 1995]. On the other hand, TGFP3 promotes epidermal cell
migration, halts dermal cell migration, and down-regulates MFB differentiation [Bandyopadhyay
et al. 2006; Waddington et al. 2010]. Transient overexpression of TGFP3 in rat lungs initiates
pro-fibrotic effects similar but less severe than TGFP1, by less drastic inhibition of matrix
degradation and gene regulation of SMAD pathway components (TGFP3 down-regulates
TGFP1, up-regulates SMADs, but does not affect ALK1 and ALK5) [Ask et al. 2008].

3.3 Methods

3.3.1 Overview of the Proposed Image Informatics Methodology
This section describes an image informatics methodology for studying signal transduction
pathways in cells interacting with a 3D matrix in vitro. The signaling pathway is considered as a
system that is stimulated by external inputs (soluble molecules or insoluble matrix), see Figure
3.2.1. The response of the system is quantified by spectral multi-photon 3D imaging,
complimented by biochemical assays. The role of individual components of the signal
transduction pathway is inferred by quantifying how the system response to particular stimuli
changes when one or more components of the pathway are knocked down (Figure 3.2.2). The
key components of the methodology (Figure 3.3.1) are:
System perturbation: remove (or significantly down-regulate) a component of the pathway under
study. Here, stable knock-down of a protein component of the pathway is achieved by using
lentivirus-based transfection to induce stable expression of shRNA that targets the mRNA of this
protein. Normal cells are referred to as "wild type" (WT). Cells stably expressing shRNA that
knocks down the expression of target gene X are referred to as "X" cells.
System stimulation: "WT" or shRNA-transfected X- cells are seeded inside an appropriate 3D
matrix and (optionally) stimulated by a soluble regulator (e.g. cytokine, growth factor, hormone).
Although a soluble regulator is usually considered as the stimulant of signal transduction
pathways, the matrix can be considered as another regulator of the pathway, as signal
transduction pathways induced by adhesion receptors cross-talk with signaling pathways
stimulated by receptors for soluble regulators [Gomperts et al. 2009].
Output quantification: The cell-matrix system is incubated for an appropriate period. Then the
cell-matrix system is imaged in order to quantified its response by imaging-based assays. All
imaging data were acquired using the spectral multi-photon microscope (So lab, Department of
Biological Engineering, MIT) described in Section 2.3. Alternatively, some cell-matrix samples
can be lysed and analyzed by immunoblotting.
Image Processing: Imaging data are processed first by the generic image processing pipeline
described in Chapter 2, and then by an application-specific pipeline that identifies and quantifies
cell objects. Image processing quantifies each TC by a feature array that includes the feature
vectors for a number of cells.
Statistical Processinq: Low-level statistical analysis quantifies the degree of "difference" (a
metric of "distance") between the feature arrays of different TC. High-level statistical analysis
combines these distance results with a-priori knowledge on the biology of the signal
transduction pathway in order to infer conclusions about the role of pathway components.
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Figure 3.3.1: Schematic of the proposed image informatics methodology applied in the study of TGF3 isoform
signaling via the SMAD pathway.

Advances Compared to the State-of-the-Art
- The developed methodology focuses on quantifying a signal transduction pathway in cells

that interact with a 3D matrix (here: a porous collagen biomaterial). In contrast, existing
image informatics studies focus on cells cultured on flat plastic surfaces that lack a
physiologically relevant ECM.

- The signal transduction pathway is considered to be a part of an integrated cell-matrix
system. The state of the system is described using imaging-based features that describe
both cells (morphology, aSMA expression), and cell-matrix interactions (extent, topology). In
contrast, existing image informatics studies quantify only cell morphology.

- Due to the complexity and the 3D nature of a cell-matrix system, imaging features are
calculated based on spectral multi-photon microscopy images (Section 2.3). Multi-photon
microscopy provides 3D imaging capability. Spectral microscopy enables to quantify both
cell morphology features and cell-matrix adhesion features from the same image.

- The response of the cell-matrix system is quantified mostly by imaging-based assays.
Imaging results are supplemented by a proteomic assay (immune-blotting).

3.3.2 Experimental Design
The proposed image informatics framework is demonstrated in a study of TGFP signaling via
the SMAD signal transduction pathway in human dermal fibroblasts seeded inside porous
collagen scaffolds. The study focuses on identifying the role of various components of the
SMAD pathway in the differential transduction of TGFP1 and TGF@3 stimuli.

The system of interest is stimulated by one of the two TGFP isoform solutions. Perturbation of
the system is implemented by knocking down components of the SMAD pathway via RNA
interference (RNAi). Each treatment condition (TC) corresponds to a particular TGFP stimulation
and a particular system perturbation. After 5 days of incubation, the response of each cell-
seeded scaffold is quantified by either spectral multi-photon imaging or by immunoblotting. Both
assays focus on the expression of contractile cell phenotypes, particularly the expression of
alpha smooth muscle actin (aSMA), an established marker of myofibroblasts (MFB).

The SMAD-mediated response of fibroblasts to TGFP is a system well-suited for an image
informatics study. TGFP isoforms regulate MFB differentiation and can affect significantly both
the shape of the cells (contractile cells are more elongated and contain stress fibers) and the
way cells interact with the surrounding cells and matrix. Therefore, genetic perturbations against
SMAD pathway components are expected to affect the system response that is detected by
imaging (cell morphology, and cell-matrix adhesion topology).
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TC # Treatment Condition Cell Type Stimulation
1 WT No TGFP WT No TGFP
2 WT TGFP1 WT TGFP1
3 WT TGFP3 WT TGFP3
4 SMAD1- No TGFB SMAD1- No TGFP
5 SMAD1~ TGFP1 SMAD1- TGFP1
6 SMAD1- TGFP3 SMAD1- TGFP3
7 SMAD2~ No TGFP SMAD2- No TGFP
8 SMAD2- TGFP1 SMAD2~ TGFP1
9 SMAD2- TGFP3 SMAD2- TGFP3
10 SMAD3 No TGFP SMAD3- No TGFP
11 SMAD3~ TGFP1 SMAD3- TGFP1
12 SMAD3~ TGFP3 SMAD3- TGFP3
13 SMAD5- No TGFP SMAD5- No TGFP
14 SMAD5- TGFP1 SMAD5~ TGFP1
15 SMAD5~ TGFP3 SMAD5~ TGFP3
16 ALKV No TGFP ALK1- No TGFP
17 ALK1-TGFP1 ALK1- TGFP1
18 ALK1 TGFP3 ALKV TGFP3
19 ALK5-No TGFP ALK5- No TGFP
20 ALK5- TGFP1 ALK5~ TGFP1
21 ALK5- TGFP3 ALK5- TGFP3

Table 3.3-1: Overview of the treatment conditions (TC) for the pilot TGF3 SMAD signaling image informatics study.

3.3.3 Cell culture, RNA Interference and Stimulation
The cell-matrix system consists of primary human dermal fibroblasts (CC-2511 Lonza, Basel,
Switzerland) seeded inside porous collagen GAG scaffolds. Fibroblasts were cultured at 370C,
5% CO2 in complete culture medium (high-glucose DME medium, 10% fetal bovine serum, 1%
penicillin/streptomycin). The cell-matrix system was perturbed by knocking down one member of
the SMAD pathway via shRNA. The members of the SMAD pathway that were knocked down in
this study consist of two TGFBRI receptors (ALK1,5) and four SMAD proteins (SMAD1,2,3,5).

Stable knock-down was achieved by using lentivirus to stably transfect the "wild type" primary
human dermal fibroblasts with the shRNA construct. Lentivirus containing shRNA plasmids were
produced in HEK293T (Figure 3.3.2 left). Stable transfection of fibroblasts with shRNA lentivirus
was done in the presence of 8 pg/ml hexadimethrine bromide (Sigma). Virus-treated cells were
selected by 2 pg/ml puromycin (Sigma) treatment over 3 days. A puromycin killing curve
concluded that 2 pg/ml is the minimal concentration of puromycin where non-transfected cells
cannot survive. The appropriate multiplicity of infection (MOI; how many virus particles per cell
are necessary for successful cell transfection) was determined to be 25-30 TU per fibroblast (1
TU = 10 physical viral particles) via puromycin screening with 2 pg/ml puromycin [Guo 2013]. In
virus-transfected cells, the shRNA DNA incorporated in the cell DNA reduces significantly the
expression of the target protein by preventing the translation of the transcribed mRNA using the
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intrinsic RNA interference mechanism present in cells (Figure 3.3.2 right). The efficiency of all
shRNA-mediated protein knock-down was estimated around 70-80% via immune-blotting [Guo
2013].

shRNA
lentiviral
particles

lentivirus enters cell
integrates *hRNtA
D4A-t6 cell DNA

shRNA
recombinant shRNA Packagig packing DNA
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Figure 3.3.2: Knocking down the expression of one SMAD pathway component (target protein) by RNA interference
implemented by stable shRNA expression in primary cells. Left: Recombinant expression of lentiviral particles that
contain the shRNA DNA for the target protein (adapted from Sigma Aldrich). Right: Mechanism utilized by shRNA
lentiviral particles to knock down the expression of the target protein via RNAi (adapted from www.scbt.com/ ).

Collagen-GAG scaffolds (0.5% solid fraction, approximately 96 pm mean pore diameter, cross-
linked by DHT for 48h at 120*C under 50 mTorr vacuum) were fabricated as described in
Appendix E. Upon reaching 80% confluency, cells (wild type or transfected with shRNA) were
trypsinized and seeded inside the scaffold by placing a scaffold sample in contact with a 20pl
drop of 2000 cells/pl suspension on an agarose-coated well. The cell-seeded scaffold was
incubated 1 h at 37'C, 5% CO 2 before adding more culture medium in order to let cells attach to
the scaffold. After overnight incubation, the medium was replaced by fresh culture medium,
which could be supplemented with no TGFP isoform, or 5 ng/ml TGF1 or 5 ng/ml TGFP3
(Peprotech, Rocky Hill, NJ) in order to stimulate the SMAD pathway. Cell-seeded scaffolds were
incubated 5 days, during which the culture medium was replaced once on the third day.

3.3.4 Staining and Imaging
Cells inside cell-seeded scaffolds were stained by incubating with 25pM cell-tracker Orange
CMTMR (C2927, Invitrogen) in DMEM for 45 min at 37 C and 5% C0 2 , incubating 45 min more
in DMEM, and washing by ice-cold PBS twice. Samples were then fixed for 15 min with 4%
paraformaldehyde, permeabilized with 0.25% Triton X100 in PBS for 15 min, blocked by 5%
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BSA in 0.25% PBST for 1.5 h at room temperature, treated with mouse anti-aSMA primary
antibody (A2547 Sigma) diluted 1:400 in antibody diluent (1% BSA in 0.25% PBST) at 4'C
overnight, washed by PBS three times for 10 min at room temperature, treated with 1:200 alexa
fluor 488 conjugated anti-mouse secondary antibody (715-545-150, Jackson Immunoresearch,
West Grove, PA) in antibody diluent for 1.5 h at room temperature, counterstained with 20 nM
Hoechst 33342 (H21492, Invitrogen) in PBS at 37 *C for 30 min, and washed three more times
with PBS for 10 min at room temperature.

3D images of stained cell-seeded scaffolds were acquired using the spectral multi-photon
microscope described in Section 2.3. Specimen were excited by 16 mW 775nm femtosecond
pulsed laser through a Zeiss 40x C-apochromat 1.2 NA objective. 3D imaging over a region
500x500 pm wide and 30pm thick was achieved by acquiring multiple images using a motorized
sample stage (Prior Scientific, Cambridge, UK) and a piezoelectric objective actuator (P-721.00,
Physik Instrumente, Karlsruhe, Germany). Each 256x256 pixel (40 ps pixel sampling, 11 Ox110
pm field of view) contains 16 channels per pixel, where each channel detects photons within a
13 nm wide range of the spectrum, so that the 16 PMT channels detected photons in the [380,
590] nm range.

3.3.5 Image Processing
Image processing consists of a sequence of computational tasks (processing pipeline, Figure
3.3.3) that analyzes raw imaging data and provides for each cell of each treatment condition
(TC) a N-sized feature vector that describes its morphology and its interaction with the
surrounding matrix. The image processing pipeline consists of two parts.
The first part consists of the general-purpose image processing pipeline (image registration,
spectral unmixing and image segmentation) described in Chapter 2. Images contain regions that
belong to four classes. Three of them contain a distinct set of 2 emission sources: the
"cytoplasm" class (CMTMR, Alexa fluor 488), the "nucleus" class (CMTMR, Hoechst 33342) and
the "scaffold" class (fluorescence and second harmonic emission by collagen). The fourth class
is "void" (empty space between cells and scaffold) whose emission is modeled as instrument
noise. The set of emission sources present in the cells is similar to the alexa350-alexa488-
CMTMR system described in Section 2.4.7 which was shown to be easy to spectrally unmix
accurately. The two sources present in the matrix are also easy to spectrally unmix because
>90% of SH is concentrated in channel 1, where collagen fluorescence emission is practically
zero. Since Hoechst33342 and collagen fluorescence have similar spectral signatures,
straightforward application of spectral unmixing would result in significant errors.

cell
Raw Local Image Global Image Ions Seeding Splitting Cell object TC
imaging Loam r toll Feature
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Figure 3.3.3: Schematic of image processing steps for calculating the feature matrixc that describes each treatment
condition.

The second part of the image processing pipeline consists of three application-specific
processing tasks: region identification, cell identification, and cell quantification.
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Region identification organizes neighboring pixels of identical class ("nucleus", "cytoplasm",
"matrix", "void") into regions. Due to the nature of the classes present, nuclei regions are
surrounded by cytoplasm regions, which are surrounded by either matrix or void regions.

Cell identification identifies cell objects, each consisting of one nucleus and one cytoplasm
region. In many cases cells are in contact with other cells, so a single cytoplasm region may
enclose multiple nuclei. In this case the cytoplasm region is segregated into multiple cell objects
using the "seeding" and "splitting" tasks described in Section 3.2.2. Here, seeding is
implemented by the h-min morphological filtering algorithm described in [Cheng and Rajapakse
2009]. This seeding approach usually provides excess seeds due to the low SNR at low signal
level. Seeds corresponding to nuclei are usually easy to identify because it is relatively easy to
identify cell objects. However, in 3D imaging it is possible that the number of cells present in a
plane is more than the number of nuclei present in the same imaging plane (some nuclei may
be located in different planes). The user needs to manually pick the correct seeds in the
cytoplasm based on intensity contours. Splitting of cell cytoplasm regions is implemented using
a Voronoi segmentation scheme that utilizes a modified distance metric that incorporates
gradient information [Jones et al. 2005]. The user can exclude cell objects whose cytoplasm
segmentation clearly appears wrong. Only cell objects that contain a nucleus are including in
the following quantification step.
Cell obiect quantification: The third step of the processing pipeline calculates a series of N
assays (features) that describe each cell object. The N-dimensional feature vector of each cell
consists of features that describe the morphology of the cytoplasm, the morphology of the
nucleus, and the morphology of cell-matrix proximity. The features that describe the morphology
of the nucleus utilize the emissions based on the nucleic and cytoplasmic stains, and the
expression of contractile phenotypes based on the immunofluorescence signal for aSMA. Matrix
features describe the extent and spatial distribution of cell-matrix contact sites (based on
proximity of pixels classified as cytoplasm and matrix). A detailed description of features is
provided in Table 3.3-2. The feature vectors of all cells correspond to the feature matrix of the
treatment condition.
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Cytoplasm Morphology Nucleus Motphology Cell Microenvironment
Feature Meaning Feature Meaning Feature Meaning
CA Area [pm2] NA Area [pm1 ] CMPA Cell-Matrix

Proximity Area [um2]
CP Perimeter [pm] NP Perimeter [pm] CMPAF Cell-Matrix Proximity

Area Fraction
CSF Shape factor NSF Shape factor CMPAIA Cell-Matrix Proximity

Alexa488 Int. Average
CE Eccentricity NE Eccentricity CMPAIS Cell-Matrix Proximity

Alexa488 Int. Std Dev
CPNPR Cell Perimeter to NTIA Total intensity CMCCO Cell-Matrix Proximity Cell

Nucl. Perimeter Ratio average [PC] Centroids Offset

CTIA Total Intensity NTIS Total intensity std. CVPA Cell-Void Proximity Area
Average [PC] dev. [PC] [um2]

CTIS Total Intensity std NHIA Hoechst Intensity CVPAF Cell-Void Proximity Area
dev [PC] average [PC] Fraction

CAIA Alexa488 Intensity NHIS Hoechst Intensity CVPAIA Cell-Void Proximity
Average [PC] std. dev. [PC] Alexa488 Int. Average

CAIS Alexa488 Intensity NCIA CMTMR Intensity CVPAIS Cell-Void Proximity
std dev [PC] average [PC] Alexa488 Int. Std. Dev.

CCIA CMTMR Intensity NCIS CMTMR Intensity CVCCO Cell-Void Proximity Cell
average [PC] std. dev. [PC] Centroids Offset

CCIS CMTMR Intensity std. NGCO Grayscale CCPA Cell-Cell Proximity Area
dev. [PC] centroid offset [um2]

[pm]
CNIAR Cytoplasm to NCO Nucleus-cell CCPAF Cell-Cell Proximity Area

Nucleus Int. Average centroids offset Fraction
Ratio [pm]

CNCAR Cytoplasm to CCPAIA Cell-Cell Proximity
Nucleus CMTMR Alexa488 Int. Average
Average Ratio

CGCO Grayscale Centroid CCPAIS Cell-Cell Proximity
Offset [um] Alexa488 Int. Std. Dev.

CCO Cell Centroids Offset CCCCO Cell-Cell Proximity Cell
[um] Centroids Offset

CMPF Cell-Matrix Interface /
Perimeter Fraction

CVPF Cell-Void Interface /
Perimeter Fraction

CCPF Cell-Cell Interface /
Perimeter Fraction

Table 3.3-2: Imaging-based features utilized in quantifying individual cells. 15 features describe the cell cytoplasm
(morphology, aSMA expression). 12 features describe the cell nucleus (morphology). 18 features describe the cell
immediate environment (cell-matrix, cell-cell, cell-void).
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3.3.6 Statistical Analysis
Following [Nir et al. 2010], statistical analysis takes place in two steps (Figure 3.3.4). Low-level
statistical analysis compares different treatment conditions (TC) by evaluating the degree of
"similarity" between their feature arrays. High-level statistical analysis combines the results of
the low-level statistical analysis with a-priori knowledge of the biological system to infer
relationships related to specific biological questions. This study focuses on the low-level
statistical analysis part, and specifically in quantifying how each shRNA knock-down affects the
differences between cell responds to the three treatments (No TGFP, TGFP1, TGFP3).

A priori information

TC D Mahalanobis Infer pathway
feature Normalization No* euction ' m lz ww distance :"M.0. Clustering . . structure &
matrix Leucio J calculation propertiesNturemtrix

LoWJ0el High-level
Figure 3.3.4 Schematic of the steps utilized in statistical analysis.

Low level statistical analysis
The output of each treatment condition (TC) describes how a particular cell-scaffold system
responds to a particualr stimulus. The outcome of the i-th TC is described by the feature matrix

Fi = [fii ... fi,Ni i,1 ... Vi,N,] T

Fi is a NF x Ni matrix whose columns f ,j are the feature vectors of the Ni cells of the TC,
calculated based on the procedure described in Section 3.3.5. The Ni elements of the j-th row
vij, is a sample of the random variable Vij that describes the j-th feature of i-th TC. vi, can be
used to estimate the statistic distribution of Vi, 1. The larger the number of cells Ni quantified per
TC, the more accurate is the estimation of the statistical distribution of V1,.

When the responses of two TC differ significantly, then many of the statistical distributions Vi,
will also differ. The objective of low-level statistical analysis is to quantify the degree of
"difference" between the responses of different TC, or equivalently, quantify how different are
the statistical distributions that describe Vi,. This can be challenging due to the large number NT

of treatment conditions, the different nature of the various features included in the analysis, the
large dimension NF of the feature vector, and the large number Ni of cells present in each TC.
The low-level statistical analysis utilized in this study follows closely the approach described in
[Nir et al. 2010] and consists of three steps:

Feature normalization:

The response of each TC is quantified based on a set of imaging-based features (Table 3.3-2).
Only cells that do not contain outliers are considered in the following analysis. For each TC and
for each feature, outliers are defined as data outside the range [FL - 1.5dF, Fu + 1.5dF] where
FL, Fu are the 2 5 th and 7 5 th percentiles, and dF = Fu - FL is the interquantile range [Hlrdle and
Simar 2003].
The features shown in Table 3.3-2 describe a wide range of attributes, do not have common
units and their numerical values may differ by orders of magnitude. In order for each feature to
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contribute equally to the "distance" metric it is necessary to non-dimensionalize all features.
Here, the j-th feature of the i-th TC is non-dimensionalized as:

Zj = Vie-Aj
a1

yj and 67 are the estimates of the mean and standard deviation of the j-th feature over the
union of cell populations of all treatment conditions (union of the j-th row vi, of all Fi). The
resulting normalized NF x Ni feature matrix:

Pi = [fi1 ... ii,N = [Zil ... Zi,N ] T

Contains the normalized feature vectors if, for the j=1,2,..., Ni cells of the i-th TC. This step
resembles the transformation of a normal random variable Vi, into a standard normal
distribution Zi,1. Therefore, the values of the normalized features correspond to distance (in units
of standard deviation -;) from the mean ^j of features of the entire TC cell population.

Dimension reduction:

The image processing pipeline quantifies each cell using a feature vector of large dimension NF.

The reason to include a large number of features is that it is not known a-priori which features
contain useful information and can distinguish the outcome of different TC. It is possible that
many features do not contain useful information and just vary randomly. It is also possible that
the values of many features are highly correlated, creating redundancy. The presence of such
redundant features is not known a-priori. Therefore, in order to decrease computational cost,
reduce complexity, increase accuracy and perhaps gain insight on critical features of the
system, it is advised to reduce the dimension of the feature vector. Although there are multiple
mathematic methods for vector dimension reduction (see Section 3.2.1), this work the projection
method of Principal Component Analysis (PCA), a computationally efficient method that has
been applied extensively in the signal processing literature. PCA decomposes the augmented
normalized feature matrix P (the union of the Pi arrays of al TC) into a new coordinate system
described by the NF x NF orthogonal matrix P:

The columns of matrix 15 contain the axes of the new coordinate system by order of decreasing
variance [Hastie et al. 2009]. 0 contains the projections of F in the PCA axes P. Dimension
reduction is achieved by keeping a few NR "significant" rows of P:

Where P, Q contain the first NR rows of P, and the first NR rows of Q respectively.
Unfortunately, the axes of the reduced-dimension system (columns of P) are linear
combinations of the normalized features Zij and therefore usually they have no physical
meaning. This is the major disadvantage of PCA.

Eventually, for each TC dimension reduction converts its normalized feature matrix Pi into a
reduced normalized NR x Ni feature matrix Qi, which describes the outcome of the i-th TC.

Qi = [qi,i ... qi,Ni] = [i, 1  ... ni,NR]T

Mahalanobis Distance calculation:
The j-th row ni,1 of Qi contains a sample for the j-th random variable Ni,1 that describes the
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value of the j-th reduced feature in the i-th TC. The "similarity" between different TC response is
quantified based on how different are the statistical distributions for Ni,1 for different TC.

It is assumed that for the i-th TC, the NR x 1 random vector Ni = [Ni, ... NI,NR ]T that
describes the values of its reduced normalized features can be modeled as a multivariate
normal distribution N(pi, C) of mean pi and covariance matrix C, that can be estimated as:

111 = [P1,1  -.. Yi,NR]T

Ni

where Psi,k is the mean of the k-th row of the Qj matrix.

The "fitness" of the measured output of the i-th TC (described by the feature matrix Qj) for the j-
th TC can be quantified by the Mahalanobis distance of the feature matrix Qj = [qi,1 ... qi,Ni]

from the multivariate normal distribution N(p 1 , Cj) [Hastie et al. 2009]:

rnN=}-i k=tj(q,k -j ii] T l(q,k - A)

In multivariate normal distributions, the Mahalanobis distance is the corresponding entity to the

non-dimensional distance z = used in the standard normal distribution to describe the

"distance" of a measurement x from the mean p given variance a2 . Therefore mi, describes the
average distance of the cell measurements of the i-th TC from the multivariate normal
distribution that models the j-th TC. In general mi # mji, so mij by itself cannot be used as a
"distance" metric. Instead, the degree of "difference" between the reduced normalized features
of cells from two different TC is quantified by the following Mahalanobis mean distance metric:

rmi, + m,1

2 -NR

where NR is the dimension of the reduced normalized feature space.

Low-level analysis provides for each TC the reduced normalized feature matrix Qj and the
multivariate Gaussian distribution N(pi, C1) that fits best the data in Qj. The difference between
the response of two TC's are described by the distance metric D1,.

High level statistical analysis
This pilot study does not provide a detailed high-level analysis or a mathematical model that
attempt to interpret the distance D1, between different TC. For the c-th kind of cell (WT or X-)
low-level statistical analysis provides a 3 x 3 cell response matrix Dc that contains the distances
Dij, between the 3 TC that describe the cell response to the stimuli (No TGFP, TGFP1, TGFP3).
Some qualitative intuition about the effects of each shRNA knock down can be obtained by
studying how the off-diagonal elements of Dc (the elements corresponding to Di, between
different stimuli) change compared to the response of WT cells.

Additional intuition is provided by considering the response of different kinds of cells to identical
stimulus. This is implemented by clustering the mean Mahalanobis distance Di, between the
corresponding TC utilizing the shortest distance algorithm [Hastie et al. 2009].
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3.3.7 Immuno-blotting
After 5 days of incubation with TGFP1, TGFP3, or no TGFP, cell-seeded scaffolds were washed
twice with ice-cold PBS with gentle shaking, and lysed by adding 25 pl ice-cold lysis buffer
(50mM Tris HCI pH 7,150mM NaCl, 5mM EDTA, 0.5% NP40, 10 pl/ml protease inhibitors, 2mM
NaVO3, 10mM NaF) per scaffold and incubating 1.5 hour at 40C while rotating. Protein
concentration in the lysates was measured by BCA assay (Protocol J.2). Lysates of equal
protein amount in reducing Laemmli buffer were boiled at 950C for 5 min, loaded and run in a
Tris-HCI gel (Bio-Rad), transferred to PVDF membranes (Millipore), blocked with 3% BSA in
TBST at room temperature for 2h, treated with 1:500 anti-aSMA antibody (A2547, Sigma) or
1:10000 anti-atubulin antibody (ab7291, abcam) in antibody diluent (1% BSA in TBST)
overnight at 4*C, washed three times in TBST, and incubated with HRP-conjugated secondary
antibody (1:1 E5 for aSMA, 1:4E for atubulin, 31340, Thermo Scientific) in antibody diluent for 1
hour at room temperature. Membranes were washed four times in TBST, treated with 500pi
chemiluminescence substrate (34095, Thermo Scientific) and imaged in a FluorChem 8900
station (Alpha Innotech). Blot images were quantified by densitometry using the appropriate
plugin of ImageJ software (National Institute of Health, Bethesda , MD).

3.3.8 Research Question
Both TGFp1 and TGFP3 isoforms are involved in several important pathological processes
including inflammation, wound healing and fibrosis. Although there is a significant body of
literature about TGFP1, the effects of TGFP3 and in particular how it stimulates cells different
than TGFP1 are not well understood. Few studies compare how these isoforms induce different
effects to cells. Although the TGFBR-SMAD cascade is known to be the major pathway that
regulates MFB differentiation [Gu et al. 2007; Usuki et al. 2012], up to date it is not known how
this pathway transduces stimuli by different TGFP isoforms (particularly TGFP1 and TGFp3) and
whether this results in different MFB differentiation. It is not known whether different
components of the SMAD pathway regulate differential TGFP1 versus TGFP3 stimuli response,
and whether this is related to MFB differentiation. This study was chosen due to the suggested
critical role of TGFP isoforms in the expression of contractile phenotypes during wound healing,
a phenotype that is suggested to affect significantly the outcome of wound healing in injured
organs [Singer and Clark 1999; Yannas 2001; Douglas 2010].

3.4 Results

3.4.1 The need to Include the Surrounding Matrix in Cell Signaling Studies
Figure 3.4.1 shows representative images of contractile cells in 2D in vitro cultures, 3D in vitro
cultures, and ex vivo animal samples. Figure 3.4.1a shows differentiated myofibroblasts cultured
on glass surfaces, and Figure 3.4.1b shows differentiated myofibroblasts cultured inside porous
collagen-GAG scaffolds. In both cases myofibroblasts were derived by differentiating fibroblasts
by a 5-day treatment with 5 ng/ml TGFP1. Figure 3.4.1c shows contractile cells interacting with
porous collagen scaffolds in ex vivo samples of transected rat sciatic nerves grafted with
collagen scaffold (type D, see Chapter 4).
The images of Figure 3.4.1 show a dramatic difference between the morphology of contractile
cells in 2D and 3D micro-environments. Myofibroblasts grown in 2D are extremely flat, thin and
large (dimensions of cell axes are more than 50 pm), and their nuclei are located above the
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main body of the cell, resembling in shape fried eggs. Large stress fibers containing aSMA span
their length ending in focal adhesions [Hinz 2006, 2007]. Myofibroblasts cultured inside a 3D
matrix environments are spindle-shaped, their long axis is approximate 20-50 pm long, and their
nuclei are located in the center of the cell surrounded by actin fibers. The morphology of cells
grown inside porous scaffolds in vitro appear very similar to the morphology of cells interacting
with similar scaffolds in vivo. Since the insoluble environment of cells is a major modulator of
their phenotypes (see also Section 5.2.1) it is expected that cells will behave differently in the
2D and 3D cell cultures [Grinnell 2003; Griffith and Swartz 2006; Green and Yamada 2007],
making the porous collagen scaffold a much more biologically relevant system to study signal
transduction in cells.

Figure 3.4.1: Representative spectral multi-photon images of contractile cells in various insoluble microenvironments.
a: contractile cells cultured on glass surfaces in vitro, b: contractile cells cultured inside collagen scaffolds in vitro, c:
ex vivo image of contractile cells inside a collagen scaffold during nerve regeneration (see Chapter 4). Blue: DAPI
(cell nuclei), Green: collagen scaffold, Red: phalloidin (actin).

3.4.2 Image Processing
Figure 3.4.2 shows representative images of results at various steps of the image processing
pipeline that converts raw spectral multi-photon microscopy data into cell objects surrounded by
matrix. Figure 3.4.2a shows an intensity image obtained by summing the photon counts of the
16 channels of the spectral image. Cells can be distinguished from the surrounding scaffold
struts because total cell emission is larger than total scaffold emission. Nevertheless, intensity
by itself cannot be utilized to accurately distinguish cells from the matrix due to the
inhomogeneity of emission throughout the cell bodies and the presence of significant noise.
Instead, the various regions in the image are resolved based on the emission properties of their
sources as described in Chapter 2. Figure 3.4.2b shows a HSV pseudo-color maximum intensity
projection image of spectral unmixing results. Here spectral unmixing calculations consider for
each pixel all possible sources present in the image. The emission of the scaffold is dominated
by collagen auto-fluorescence (green). The emission of cells contains mostly CMTMR (yellow)
and alexa488 (red) that is conjugated to the secondary antibody against the primary anti-aSMA
antibody. Few nucleus pixels are dominated by the Hoechst33342 nucleic acid stain (blue).
Spectral unmixing (for each domain separately) is the basis of the image segmentation scheme
described in Chapter 2. Figure 3.4.2c shows the corresponding image segmentation map
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provided by global image segmentation. Green corresponds to "scaffold" pixels, red to
"cytoplasm" pixels, blue to "nucleus" pixels and black to "void" pixels.

In general cell-scaffold imaging reveals that fibroblasts and myofibroblasts interact extensively
with their surrounding matrix. Although a few clusters of cells of moderate size are present (for
example the one located in the bottom left part of Figure 3.4.2c), neither in WT cells nor in any
one of the shRNA-treated cells was observed a tendency to cells to form cell niches.

Figure 3.4.2: Representative images of the various steps in the image processing pipeline of the image informatics
study. a: intensity data (sum of the signal from all 16 channels). b: Maximum intensity projection of spectral unmixing
outcome. Red: Alexa fluor 488 conjugated secondary antibody against aSMA primary antibody, yellow: CMTMR cell
tracker, blue: Hoechst 33342 dye, green: collagen auto-fluorescence. c: outcome of the global image segmentation
algorithm. Blue: nuclei, Green: matrix, Red: cytoplasm. d: Selected cell objects to be quantified. The field of view of
each image is approximately 400x400 pm.

The segmentation map shown in Figure 3.4.2c is the outcome of the generic image processing
pipeline described in Chapter 2, and the input to the application-specific image processing
pipeline described in Section 3.3.5. Figure 3.4.2c highlights some of the challenges faced when
processing spectral images of cells inside 3D matrix environments. For example, some
cytoplasm regions contain multiple nucleus regions (corresponding to cells that are in contact),
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while others contain no nucleus region (nucleus is located in another plane). Figure 3.4.2d
shows the outcome of the application-specific image processing pipeline. While many steps of
the application-specific image processing are automatic (identification of nuclei regions and
nuclei in contact, seeding in cytoplasm regions in the presence and absence of nuclei, and cell
splitting) the pipeline still requires user input at two points. First, the user needs to correct the
outcome of cell seeding, since the significant presence of noise induces some errors. Second,
the user needs to pick appropriate cell objects where the outcome of cell splitting seems
meaningful. The result is that usually a small percent of the cells (less than 30%) present in
each field satisfies the necessary conditions and is selected for further processing. The
remaining cells are not selected primary due to three main reasons: i) The cell cytoplasm lacks
a nucleus (nucleus is located in another plane), ii) The cell is part of a big cell cluster and the
outcome of cell seeding/splitting calculations does not look convincing, iii) other imaging
artifacts. In Figure 3.4.2d, the selected cells are highlighted in bright red and blue. Each one of
these cell objects is then quantified by the feature vector described in Table 3.3-2.
Figure 3.4.3 shows representative results of class evidence maps for the six TC corresponding
to ALK1 cells and SMAD3- cells. Figure 3.4.4 shows the selected identified cell objects that
correspond to the images shown in Figure 3.4.3. These figures show that the type of cell and
the type of stimulus affects the observed response. For example TGFP3 increases cell
proliferation in ALK1 cells (which is quantified by the fraction of cell perimeter in contact with
other cells) much more than SMAD3-. TGFP1 decreases cell size in SMAD3- cells more than
ALK1 cells.

It should be noted that even in the case where an imaging field contains a large number of cells
(e.g. the TGFP3 treatment of ALK1 -cells) the cells do not form clusters and keep their extensive
cell-matrix adhesion pattern.

NoTGF TGF31 TGF03

ALK1-

SMAD3

Figure 3.4.3: Representative image segmentation maps of six treatment conditions. Top row: SMAD3~ cells. Bottom
row: ALK1~ cells. Left column: No TGF3 stimulus. Middle column: TGFP1 stimulus. Right column: TGF33 stimulus.
Red: cell cytoplasm. Green: collagen scaffold. Blue: cell nuclei.
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NoTGF@ TGF31 TGFI3

ALK1-

SMAD3-

Figure 3.4.4: Representative images of cell objects selected for quantification for the six treatment conditions of
Figure 3.4.3. Top row: SMAD3~ cells. Bottom row: ALK1~ cells. Left column: No TGFP stimulus. Middle column:
TGFP1 stimulus. Right column: TGF03 stimulus. Red: cell cytoplasm. Green: collagen scaffold. Blue: cell nuclei.

Figures Figure 3.4.3 and Figure 3.4.4 also show that different treatments affect the morphology
of the matrix surrounding cells. It has been experimentally demonstrate that the cells utilized in
this study (fibroblasts) can apply enough forces to buckle the struts of the scaffold [Freyman et
al. 2001; Harley et al. 2007]. The results of the contractile forces applied by cells are evident
macroscopically since the diameter of the scaffold decreases significantly within 5 days,
particularly to TC known to induce significant MFB differentiation (e.g. wild type cells treated by
TGFP1).

3.4.3 Data Analysis

Raw Data
Figure 3.4.5 shows the sample size Ni (number of cells analyzed) for each TC for the
preliminary results presented here. Unfortunately, the sample size of some TC is inappropriately
small because samples contained less cells, because some samples were much harder to
analyze than others, or because some imaging fields contained fewer cells. As more imaging
data are incorporated in the analysis, the sample size Ni is expected to increase. All data
presented in this thesis are obtained from 2 to 4 samples.
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Figure 3.4.5: Sample size (number of cells analyzed) per treatment condition.

Figure 3.4.6, Figure 3.4.7, and Figure 3.4.8 shows the statistical distribution of the NF = 45
features utilized in this study. The features are organized as features that quantify the cell
cytoplasm (Figure 3.4.6), features that describe cell nuclei (Figure 3.4.7) and features that
describe the micro-environment of cells (Figure 3.4.8). Each figure provides box plots that show
the distribution of each feature in the 18 TC, and a histogram that shows the distribution of the
feature over the entire cell population of all TC. Each box plot shows the 25th and 75th

percentiles FL , Fu (rectangular box), the median value (horizontal line), therange of data not
considered outliers (whiskers), and outliers (shown as +), defined as data outside the range
[FL - 1.5dF, FU + 1.5dF] where dF = Fu - FL is the interquantile range [Hardle and Simar 2003].
Data are quite noisy. Some features seems to be indistinguishable in all TC (e.g. the mean cell-
tracker intensity per cell CCIA), other features seem to vary more among different TC. The
distribution of most features seems reasonably approximated by a normal distribution (although
a statistical analysis is necessary to prove this claim), although there are some exceptions
(particularly the features that describe cell-cell adhesion in Figure 3.4.8)
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Figure 3.4.6: Statistical distribution of features that quantify cell cytoplasm. Left: Box plots of the features for the 18
TC considered in this study. Right: Histogram of each feature over the entire experiment cell population. The
description of the features is available in Table 3.3-2.
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Figure 3.4.7: Statistical distribution of features that quantify cell nuclei. Left: Box plots of the features for the 18 TC
considered in this study. Right: Histogram of each feature over the entire experiment cell population. The description
of the features is available in Table 3.3-2.
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Figure 3.4.9: Eigenvalues of the principal components.

Figure 3.4.10 shows scatter plots for the first 3 reduced normalized features of the 18 treatment
conditions. Each point corresponds to a cell of the corresponding TC. Each figure shows results

for a particular kind of cells (WT or shRNA treated). Each color corresponds to a particular

stimulus (No TGFP, TGFP1, TGFp3). In some cases the segregation of points corresponding to

cells of different TC is visible (e.g. SMAD3-), in others not.
WT SMAD1 SMAD2~

5

cOmp. 1 5 5 comp. 2

SMAD3

5

0

-5
-5

x, X

-5

COMP. 1 5 comp. 2

Ci.

E
0
0.

E

XX X X X

X X X XX
01 X

X X
XX AX X > %X X

XX X -5
X X

0 X X>b 0
COMP. 1 5 comp. 2

SMADS

5 * x

W xX

X -X

c Xmp. 1, 5 cm.2

CL

E
0

X x

01 m 1 X o p

ALK x NoTGFb
TGFbI
STGFb31:M

0,,

L) -

cOmp. 1 5 5 comp. 2

Figure 3.4.10: Scatter plots of the 3 reduced normalized features after PCA for the 18 TC considered in this study.

Each figure corresponds to a particular kind of cell. Each color to a particular kind of stimulus.

Figure 3.4.11 shows the results of hierarchical clustering the response of the six treatment

conditions (TC) that correspond to no TGFP stimulation (Figure 3.4.1 1a),TGFP1 stimulation

(Figure 3.4.11b), and TGFp3 stimulation (Figure 3.4.11c).The colormap shown in Figure 3.4.11c
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assigns blue color to "similar" TC and red color to "different" TC, as quantified by the distance
metric Di,. Results suggest that in the absence of TGFP stimulation, the responses of the six
kinds of cells considered is quite similar. The response of WT cells to TGF1 is similar to the
responses of SMAD5- , less similar to the response of ALK1 - and SMAD2- cells, and much less
similar to the response of SMADV and SMAD3- cells to TGFP1. The response of WT cells to
TGFP3 is quite similar to the responses of SMADV, SMAD5~ and SMAD2-, and much less
similar to the response of SMAD3- and ALKV cells to TGFP3. Results of Figure 3.4.11 suggest
that both SMAD2 and SMAD3 knock-down affect the response of WT cells to both TGF1 and
TGFP3, SMAD1 knock-down affects the response of WT cells to TGFP1 much more than
TGFP3, ALK1 knock-down affects the response of WT cells to TGF33 much more than TGFP1,
and SMAD5 knock-down has minor effects to the response of WT cells to TGFP isoforms.

a No TGFp b TGFpI TGFp3

SMAD1 SMAD5 SMAD1 0.9
0.3

SMAD2- ALK1 SMAD2_ 0.7

WT SMAD2' V
05

SMAD3W SMAD3 0.4

0.3
SMAD5~ SMAD1 SMAD5 0.2

ALK1~ SMAD3 ALK1
10

Figure 3.4.11: Results of hierarchical clustering the 6 TC that correspond to no TGFP stimulation (a), TGF@1
stimulation (b), and TGFP3 stimulation (c) based on the Mahalanobis distance metric Dij.
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Figure 3.4.12: 3x3 cell response matrices that contain the Mahalanobis
correspond to the three stimuli (No TGFP, TGFP1, TGF03) for each cell kind.
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Figure 3.4.12 shows the 3 x 3 cell response matrices Dc (distances Dij between the 3 TC that
describe the cell response to the three stimuli) for six kinds of cells. Each Dc describes how the
response of each cell type (WT or X-) differs as a function of the applied stimulus. The results of
Figure 3.4.12 suggest that WT, SMAD5~ and ALK- cells respond to TGFP1 and TGFP3
somewhat different compared to the No TGFP case. SMADV, and SMAD2~ seem to have
indistinguishable responses to all three stimuli. SMAD3 cells respond to TGFP1 (but no TGFP3)
different than No TGFP. SMAD5- cells respond to TGFP3 (but no TGFP1) slightly different than
No TGFP. Finally ALK1 cells response to TGFp3 (but no TGFP1) much more differently than No
TGFP.
The calculations shown in Figure 3.4.11 and Figure 3.4.12 were based on a set of features that
consists of features that quantify the cell cytoplasm, features that quantify the cell nucleus, and
features that describe the interaction of the cell with its micro-environment (Table 3.3-2). Figure
3.4.13 shows how the response matrices Dc depend on the sub-set of features utilized in the
calculations of the Mahalanobis distance. They show that the three groups of features provide
similar results.

All features Cytoplasm only Cytoplasm
and Nucleus Interface only

WT

SMAD1E

SMAD2~

SMAD3

SMAD5~

ALK1~

Figure 3.4.13: Comparison of the response matrices shown in Figure 3.4.12 as a function of the sub-set of features
utilized in the calculations of the Mahalanobis distance.
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3.4.4 Immuno-blotting results
Figure 3.4.14 shows immuno-blotting results of aSMA expression in lysates from the 21 TC.
This assay includes ALK5- cells, which have not been included yet in the imaging assay.

Results show that in most cell kinds both TGFP1 and TGFB3 stimuli increase aSMA expression
compared to no TGFP stimulus. Knocking down any one of the SMADs and ALKs considered in
this study seems to have no effect on aSMA expression in the absence of TGFP stimulation.

Knocking down the components of canonical TGFP signaling pathway (SMAD2,3 and ALK1,5)
has variable effects. Knocking down ALK5 and SMAD3 increases aSMA expression induced by
TGFP1 and TGFp3 stimulation. Knocking down SMAD2 increases aSMA expression induced by
TGFP1 but not by TGFP3. Knocking down ALK1 seems not to affect aSMA expression induced
by TGFP1 and TGFP3.
Knocking down components of non-canonical TGFP signaling part has different results.
Knocking down SMAD1 expression reduces aSMA expression response to TGFP1 and TGFP3.
Knocking down SMAD5 seems not to affect the aSMA expression response to both TGFP1 and
TGF3.

9-

8

7 -

~Wr
6

mALK1-
5 mALK5-

4 m SMAD2-

*SMAD3-
3 - SMAD1-

SMAD5-

0
TGFP1 TGFP3 No TGFs

Figure 3.4.14: Quantification of aSMA expression in the 21 TC considered in this study by immune-blotting (the 18
TC considered shown in imaging study plus the three TC for the ALK5~ cells). The expression of aSMA is quantified
by densitometry and is normalized based on the expression of atubulin at the same samples.

3.5 Discussion

3.5.1 Image Informatics in 3 Dimensional Cell-Matrix Samples
This Chapter describes an image informatics methodology for studying signal transduction in
cells that interact with a 3D matrix. In the proposed methodology, shRNA is used to stably knock
down one component of the pathway of interest in cells, which are then seeded inside a
biologically-relevant 3D matrix. The response of cells inside the 3D to particular stimuli is
quantified by spectral multi-photon microscopy and subsequent imaging using the methods
described in Chapter 2, which enable high-content 3D imaging of complex cell-matrix systems.
Each treatment condition (cells treated with a particular shRNA vector and stimulated by a
particular input) is quantified by describing each cell in its images using a vector of features. The
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role of each pathway component is inferred by quantifying the effect of its knock-down to the
response of the cell-scaffold system.
This is the first time that image informatics have been attempted in the study of cell signaling in
cells that interact with a 3D matrix. Previous implementations used cells cultured on flat plastic
surfaces. The inclusion of the surrounding matrix can provide more physiological relevant
results and enable the application of image informatics for in vitro imaging-based screening
related to biological processes, where the matrix is a key regulator of cell phenotypes.
Examples of such case include the interaction of cell with biomaterials and the interaction of
cancer cells with their surrounding matrix. Furthermore, in the approach described here, the
cell-matrix system is quantified by quantifying both cell morphology as well as the immediate
microenvironment in the proximity of cells (matrix, cells, void), in contrast with the standard
image informatics approach that utilized only features that describe cell morphology.

Implementing image informatics in 3D cell-matrix systems is much more experimentally
challenging compared to the standard implementation on flat plastic surfaces. This work utilized
spectral multi-photon imaging for two reasons. First, multi-photon imaging enables 3D imaging
of the cell-scaffold system, since standard fluorescence microscopy (used in previous image
informatics studies) is not able to quantify 3D structures. Second, spectral detection combined
with the image analysis pipeline described in Chapter 2 enables high-content imaging, which
reduces the number of required experiments and enables quantifying the cell-scaffold system
using a larger number of assays.

3.5.2 Probing the Role of SMAD Pathway Components in TGFP Isoform Signaling
The developed methodology is applied in a pilot study of TGFP signaling in fibroblasts seeded
inside porous collagen matrixes via the SMAD signal transduction pathway. The objective of the
study is to collect evidence that can explain whether and how the two major TGFP isoforms
(TGFp1 and TGFP3) stimulate cells in different ways via the SMAD pathway. The two TGFP
isoforms are structurally similar and their effects are known to be mediated by the SMAD
pathway. However, it is not known if different SMAD components are responsible for their
different effects to cells.
This pilot study is of significant biological relevance. TGFP isoforms are known to be involved in
several important biological processes including wound healing. TGF@1 and TGFP3 are
associated with very different outcomes in wound healing. TGFP1 is associated with wounds
that heal by wound contraction and scar formation (repair). TGFP3 is experimentally shown to
reduce scar formation and wound contraction, therefore favoring regeneration (see Chapter 4).
The study is implemented in fibroblasts seeded inside porous collagen-GAG scaffolds.
Fibroblasts can differentiate into myofibroblasts, a key process that is believed to affect the
wound healing outcome significantly. The porous collagen-GAG scaffolds used in this study are
very similar to the ones utilized clinically to induce regeneration in skin and nerve nerves
[Yannas et al. 1982, 1989; Chamberlain et al. 1998]. Such collagen scaffolds provide a 3D
microenvironment where cells adhere extensively both in vitro (Figure 3.4.2 and Figure 3.4.3)
and in vivo (Chapter 4).
The main results of this pilot study (Figure 3.4.11 and Figure 3.4.12) show that almost all
components of the SMAD pathway have some involvement in TGFP signaling. So far it is known
that some of the SMAD pathway components are involved in TGFP signaling (SMAD2,3) and
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some components are involved in BMP signaling (SMAD1,5,8). The results of this pilot study
show that indeed knocking down both "canonical" components (SMADS2,3) affects the
response of WT cells to both TGFP isoforms, in agreement with the known critical role of these
SMADS in TGFP signaling. Results show that knocking down SMAD1 affects the response of
WT cells to TGFP1 more than their response to TGFP3. On the contrary, knocking down the
TGFBR1 receptor ALK and to less extent SMAD5 affect the response of WT cells to TGFP3
more than the response to TGFP1 (Figure 3.4.11).

While the response of WT cells to TGFP1 and TGFP3 is slightly different than the unstimulated
response, the response of SMAD1- and SMAD2- cells to TGFP1 or TGFP3 is similar to the
unstimulated case (Figure 3.4.12). However, the unstimulated responses of SMAD1 and
SMAD2 are similar and slightly different than the unstimulated response of WT cells. SMAD3-
cells respond more6 to TGFP1 and less to TGFP3 compared to WT cells (Figure 3.4.12). The
response of SMAD5- and ALK1 cells to TGFP1 is similar to the unstimulated case. SMAD5-
cells respond less to TGFP3 compared to WT cells, while ALKV cells respond much more to
TGFP3 compared to WT cells.

A comparison of the results shown in Figure 3.4.11 and Figure 3.4.12 highlight the multi-
dimensional nature of the problem. The distance metric D11 shown in Figure 3.4.11 and Figure
3.4.12 corresponds a distance between points in a NR-dimension coordinate system, where
each point corresponds to a particular TC.
Although the analysis presented here is preliminary, it suggests that apart from the two
"canonical" SMAD2,3, the non-canonical SMAD1,5 affect TGFp signaling. The involvement of
non-canonical SMAD1,5 and TGFBR receptors (ALK1) could cause TGFP1 and TGFP3 to
induce different effects to cells. SMAD1 seems to affect mostly TGFP1 signaling, while SMAD5
and ALK1 seem to affect mostly TGFP3 signaling. These conclusions are subject to more
detailed statistical analysis. A letter of warning is that image informatics cannot provide direct
evidence about a molecular interaction. Instead they provide evidence that can guide future
biochemical/genetic experiments that can give definitive proof of these claims.

3.6 Summary and Future Work
This chapter describes an image informatics methodology that can be used to study signal
transduction pathways inside 3D matrices. The methodology is applied in a pilot study of TGFP
isoform signaling in primary fibroblasts inside porous collagen scaffolds. The results of the pilot
study suggest that non-canonical SMADS (SMAD1,5) and receptor ALK1 could be involved in a
mechanism that causes cells to respond differently to TGFP1 and TGFP3 signaling.
The presented data are not complete and conclusive. Specifically, there is need to increase the
sample size in several of the TC presented here (see Figure 3.4.5) and to include the imaging
results of the ALK5 knock-down cells. This will be done by including several imaging
experiments conducted recently. There is a need for a more detailed statistical analysis that can
provide statistical evidence on the significance of the results presented in this Chapter. Of
particular interest is to quantify the statistical significance of the Mahalanobis distances Di,

6 Here, the term "more" response to some TGFP isoform means that the response of cells to that TGFP
isoform is more drastic compared to the unstimulated response (No TGFP).
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shown in Figure 3.4.11 and Figure 3.4.12. It is also possible to increase the number of features
calculated per cell and evaluate how the number and identity of features used affect the result.
This study emphasizes the role of the insoluble matrix as a regulator of signal transduction
pathways in cells interacting with 3D matrices. The response of each cell is quantified not only
based on its morphology, but also based on its binding pattern with the surrounding matrix.
Here, the binding pattern was quantified based on the proximity between the cell and the
surrounding matrix. More accurate ways to evaluate cell interactions with the matrix should
focus on labeling particular components of the cell adhesion mechanism or utilize FRET
reporters of focal adhesion molecules [Ritt et al. 2013]. Furthermore, additional information
could be inferred by the morphology of the matrix itself. For example Figure 3.4.4 shows that
certain TC treatments alter scaffold porosity significantly.
The methodology described in this Chapter can be applied to study the effect of matrix
properties on regulating signaling induced by soluble regulators such as TGFP isoforms.
Specifically, it is known that signal transduction pathways induced by cell adhesion cross-talk
with signaling pathways stimulated by soluble regulators (see [Gomperts et al. 2009] and the
Background section of Chapter 5). In this study all experiments took place using collagen-GAG
scaffolds of identical properties. However, experiments can take place inside scaffolds of
various physic-chemical properties. Such experiments could use scaffolds of varying mean pore
size [O'Brien et al. 2004], scaffolds of varying cross-linking density [Soller et al. 2012], or
scaffolds of varying surface chemistry (see Chapter 5). The later could be implemented by
"doping" the collagen with ECM components, such as the recombinant fibronectin fragments
described in Appendix E. Targeting the surface chemistry can modulate the type and amount of
integrin ligands available to cells for adhesion, and therefore control the signaling pathways
excited by cell adhesion.

Large-scale experiments in 3D matrices require high throughput due to the large size and the
complexity of the samples. The implementation of the image informatics described here is
based on a spectral multi-photon microscope which provides high-content images, however its
frame throughput is moderate. Large-scale experiments would benefit great by automatic
sample handling, microfluidic devices for handling solutions into the 3D cell-scaffold samples,
and high-throughput high-content 3D imaging instruments, such as the multi-focal multi-photon
microscopes (MMM) with spectral-lifetime imaging capability under development in the So Lab
[Bird et al. 2004; Kim et al. 2007].
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Chapter 4: Imaging Peripheral Nerve
Regeneration Induced by Collagen Scaffolds
4.1 Chapter Overview
This chapter describes an ex vivo imaging study in an established animal model of peripheral
nerve (PN) regeneration. This study follows up a recent study that demonstrated a strong
inverse relationship between wound contraction and quality of PN regeneration 9 weeks post-
injury, and focuses on the early response (1 and 2 weeks post-injury) of PN wound healing.
Transected nerves are treated with two kinds of tubular collagen scaffolds known to cause
significantly different wound healing outcomes 9 weeks post-injury. The objective of the study is
to trace back the performance of these materials during the early events of wound healing, and
provide evidence about how these scaffolds regulate critical early processes of PN wound
healing that affect its final outcome. Of particular interest is to quantify the formation of the
capsule of contractile cells that forms around injured PN during these early time points. The
available evidence supports the hypothesis that PN wound healing outcome depends on the
"race" between the formation of new nerve tissue and the formation of a contractile cell capsule
at the wound edges that impedes regeneration.

4.1.1 Motivation
Severe injury in adult organs is generally irreversible. The spontaneous wound healing process
triggered by severe organ injury does not result in the formation of new organ tissue of normal
morphology and function [Yannas 2001]. Current options to replace injured organs
(transplantation and auto-grafts) suffer from limited availability and side effects. There is urgent
need to develop treatments for inducing regeneration in injured organs. Despite numerous
research efforts, at the moment there are few clinically applied procedures that can change the
wound healing process in ways that induce regeneration (formation of organ tissue of normal
morphology and function).

Although it is known that certain biomaterials can induce regeneration, understanding how these
materials work in multiple levels (tissue-level, cell-level, molecular-level) is still an area of active
research. Such understanding would very valuable for the systematic development of novel
biomaterial-based treatments that could induce improved regeneration in a wider range of
injured organs.

4.1.2 Chapter Description
This Chapter is a study of PN regeneration induced by biomaterials in the organ-scale and cell-
scale. Section 4.2 provides extensive background on wound healing and induced regeneration
in peripheral nerves, Section 4.3 describes the animal experiment and the imaging methods
used to analyze the ex vivo nerve samples, Section 4.4 provides the results of the imaging
study, Section 4.5 discusses the findings, and Section 4.6 suggests directions for future
research.
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4.1.3 Contributions to this study
This study follows-up the peripheral nerve regeneration study conducted by Dr. Eric Soller for
his PhD thesis. Specifically, Dr. Soller designed the animal study, fabricated the scaffold tubes,
supervised the animal experiments, sacrificed the animals, prepared the harvested nerves
(fixation, sectioning), and contributed in result interpretation. Dr. HP Xu (VA Hospital, Jamaica
Plains, MA) performed the animal surgeries. While Dr. Soller harvested PN samples 1, 2 or 9
weeks post-transection, his PhD worked focused on the 9-week response. This study focuses
on imaging and quantifying the nerve samples collected by Dr. Soller 1 and 2 weeks post-injury.
I acknowledge the valuable help of Melissa Buydash in staining nerve samples, and aSMA
immunofluorescence imaging and IF image analysis. The author (DT) contributed in section
preparation, protocol development, imaging, image processing, and statistical analysis.

4.2 Background

4.2.1 Wound Healing in Adults

Repair and Regeneration
Organ injury initiates a complex biological process called wound healing. The outcome of wound
healing is classified as "regeneration" when the resulting tissues match the structure and
function of the initial organ. The outcome is classified as "repair" when the resulting tissues do
not match the structure of the initial organ, and therefore fail to function normally. The outcome
is called "spontaneous" when wound healing takes place in the absence of any specific
treatment (e.g. grafts, drugs).
The outcome of spontaneous wound healing depends on several parameters. The most
important are the nature of tissues damaged, the size of the injury, and the age of the patient. In
adults, the outcome of spontaneous wound healing is repair [Yannas 2001]: at the site of injury
site a scar (collagenous-rich abnormal ECM) forms and the dimensions of the organ alter.
"Severe" injury depends on the nature of tissues injured and the size of the defect. Several cell-
rich tissues can regenerate spontaneously (e.g. epidermis, axons after crush). Injuries involving
only such tissues are "reversible". However, when injury involved vascularized ECM-rich tissues
(e.g. dermis) the response changes dramatically and apart from very small defects, the outcome
of wound healing is repair. Such injuries are therefore called "irreversible".
The response to wound healing varies among different species [Poss 2010]. Some species
have the ability to regenerate throughout their adult life. Others (including humans) respond to
injury very differently during early gestation compared to late gestation and adulthood [Gurtner
et al. 2008]. These observations provide hope that humans possess an intrinsic regenerative
capability that if properly "guided" can led to inducing regeneration in severe injuries in adults.

Current Approaches for Induced Regeneration
At the moment, there are three major approaches to replace injured organs: organ
transplantation, auto-grafting, and in vivo induced regeneration. The first two are widely
implemented in clinical practice, however they suffer from limited availability and complications.
Induced regeneration has at the moment few successful clinical applications [Yannas 2001],
however it is a promising field of active research.
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The objective of regenerative medicine is to develop treatments that can induce regeneration in
injured organs [Orlando et al. 2008]. Such treatments would change the wound healing process
in vivo, leading to the formation of new tissue of normal structure and function. Current research
efforts towards this goal include the use of biomaterials [Yannas 2001], decellularized organs
[Uygun et al. 2010; Badylak et al. 2011; Orlando et al. 2011], small molecules [Zhu et al. 2011],
and stem cells [Pomerantz and Blau 2004; Tanaka and Galliot 2009].
This study focuses on the application of biomaterials to induce regeneration in severe
irreversible peripheral nerve injuries. Peripheral nerves and skin are among the few organs
where commercially available biomaterial treatments for inducing regeneration exist [Abou Neel
et al. 2013]. By studying how the properties of biomaterial affect wound healing in these organs
the objective is to acquire understanding that could be utilized in the development of
biomaterials that could induce regeneration in a wider variety of organs.

4.2.2 Irreversible Injury and Spontaneous Wound Healing in Peripheral Nerves

The Clinical Need for Peripheral Nerve Regeneration Treatments
Severe injury in peripheral nerves is an important clinical challenge. Approximately 5% of all
accidents in US involve peripheral nerve injury (PNI) [lJkema-Paassen et al. 2004]. In US,
approximately 200000 patients are treated each year for PNI that requires surgical intervention
[Madison et al. 1992]. The current clinical practice for PNI is that small-size injuries are treated
by suturing the nerve stumps, while larger defects are treated using nerve autografts [Schmidt
and Leach 2003; Bozkurt et al. 2012]. Both approaches suffer from severe limitations. The PNI
defect size that can be treated by suturing is limited, because the required tension to bring
stumps in proximity impedes nerve regeneration and increases scar [Schmidt and Leach 2003;
IJkema-Paassen et al. 2004]. Perineural suturing after fascicle alignment is possible but induces
intraneurial fibrosis [IJkema-Paassen et al. 2004]. Peripheral nerve autografts (e.g. from the
sural nerve) are biocompatible, have been used to bridge gaps at least 1.5 - 7cm long [lJkema-
Paassen et al. 2004], and are considered today's golden standard. Nevertheless autografts
result in a second PNI, and their success rate (fraction of patients that regain useful function) is
40-50%. Clearly, there is significant clinical need in developing better treatments for inducing
regeneration in severely injured peripheral nerves).

Several methods have been considered as alternatives to autograft treatment of severe PNI.
The use of non-autologous nervous tissues has larger supply compared to autografts, however
there is danger of disease transmission and need for immunosuppression. The use of
processed non-autologous tissues (for example decellularized organs obtained by removing
immunogenic cells through chemical means) is a promising extension [Uygun et al. 2010;
Badylak et al. 2011; Orlando et al. 2011]. A promising family of PNI treatments is based on
using biomaterials to graft the injured organ to change the wound healing outcome and induce
regeneration [Schmidt and Leach 2003].

Peripheral nerve anatomy
The peripheral nervous system (PNS) consists of the nerves and ganglia residing outside of the
central nervous system (CNS, the brain and the spinal cord). The PNS connects the CNS to the
limbs and organs, transmitting motor and sensory signals. Peripheral nerves (PN) contain two
kinds of tissue elements: parenchymal (neuronal) and stromal (connective) [Soller 2011].
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Parenchymal PN components mediate PNS function. They consist of nerve fibers surrounded
by Schwann cells (SC) and often myelin. Each nerve fiber consists of a neuronal cell body
(axon) that conducts action potentials. Nerve fibers may be unmyelinated or myelinated. In
myelinated nerve fibers myelin is surrounded by SC cytoplasm, which is ensheathed in a
basement membrane that contains collagen IV, laminin, hyaluronan, fibronectin, entactin,
versican, chondroitin-sulfate and heparin sulfate proteoglycans [Carbonetto 1984; Tona 1993;
Yannas 2001]. Non-myelinated SC interact with multiple nerve fibers.

The stroma of PN consists of three kinds of vascularized connective tissue structures [Thomas
1963; Flores et al. 2000; Kerns 2008]. The endoneurium is the innermost connective tissue that
surrounds, and organizes the parenchymal components (axon-SC units). Endoneurium consists
of a loose mesh of collagen and other ECM molecules, fibroblasts, and blood vessels
surrounded by pericytes. The perineurium is the thin connective tissue that surrounds
endoneurium and parenchymal components forming fascicles. Perineurium is composed of
multiple layers of flattened perineurial cells (epitheloid, myofibroblasts) covered by basal lamina.
Perineurial cells form tight, impermeable connections with each other forming a blood-nerve
barrier that protects axons in the endoneurium [Parmantier et al. 1999]. The epineurium is the
dense connective tissue that surrounds, holds together and protects the nerve fascicles (in
many cases, PN contain multiple fascicles). After PN injury the pattern of ECM molecule
expression changes dynamically.
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Figure 4.2.1: Structure and morphology of normal peripheral nerve tissues. A: Nonlinear image of a cross-section of
a rat sciatic nerve. Red: cell cytoplasm. Green: collagen 1. B: Schematic of a fascicle of a peripheral nerve [Joseph et
al. 2004]. C: Schematic of the components of a peripheral nerve fascicle [Mizisin and Weerasuriya 2011]. D:
Transition electron microscopy of endoneurial tissue in peripheral nerves [Schmalbruch 1986]. E: Scanning electron
microscopy of endoneurial tissue in peripheral nerves after tissue decellularization by detergent shows the
endoneurial collagen sheaths around axons and Schwann cells [Ushiki and Ide 1990]. F: Scanning electron
microscopy showing endoneurial collagen fibrils surrounding the basement membrane of Schwann cells around
myelinated nerve fibers [Friede and Bischhausen 1990]. MF: Myelinated nerve fiber, UMF & N: unmyelinated fiber, F:
fibroblast, V: Blood vessel, End: Endoneurium, Peri: Perineurium, Epi: epineurium, S: Schwann cells, BM: basement
membrane, MY: myelin, COL: collagen fibrils.
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Irreversible Injury in Peripheral Nerves
As discussed in Section 4.2.1, the wound healing outcome after injury in adult organs depends
on the nature of the injured tissue and the dimensions of the defect [Yannas 2001]. Studies of
induced regeneration need to consider injuries that are severe enough so that they cannot
regenerate spontaneously.
Several kinds of peripheral nerve injury (PNI) are considered in the literature, which differ in the
identity of tissues injured and the extent of the injury (Figure 4.2.2). When only axons are injured
(neurapraxia, axonotmesis) without damaging Schwan cells and surrounding basement
membranes, the injury is considered reversible because axons after an initial period of
degeneration and swelling will grow again and reach their targets. Such injuries, which can
occur by nerve crushing, are therefore appropriate for studies of induced regeneration. More
severe PNI include damage to the endoneurial tissue, the perineurial tissue, and finally
complete transection of the peripheral nerve (nerotmesis). These injuries cause a defect to both
the parenchymal components and the stroma tissues. Nerve transection creates a gap of length
L between the two resulting nerve stumps.
After nerve transection the wound healing outcome depends on the length L of the gap between
the two nerve stumps [Yannas et al 2007]. Nevertheless, nerve transection is a severe nerve
injury frequently encountered in practice that
well-defined defect that can be used to study
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Figure 4.2.2: Peripheral nerve injury and its effects to axons. Left: The five degrees of nerve injury according to
Sunderland as classified based on the identity of the identity of tissues injured. Right: Schematic of the fate of an
axon during peripheral nerve wound healing. A, B: Wallerian degeneration, C: Axon sprouting and elongation through
Schwann cell columns (bands of Buengner), D: When PN regenerates successfully, axon crosses the gap and
reconnects with the target organ, E: When axon sprouts fail to cross the injury site a neuroma is formed [Deumens et
al. 2010].

Wound Healing in Transected Peripheral Nerves
The formation of nervous tissue (myelinated axons, glia, supporting ECM) during wound healing
in transected peripheral nerves consists of five main steps [Williams et al. 1983; Yannas 2001;
Schmidt and Leach 2003], see Figure 4.2.3:

1) exudate flows into the gap from both stumps (within a few days).

2) formation of fibrin matrix from plasma precursors in the exudate (within 1 week).
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3) migration of endoneurial cells (schwann cells, endothelia, fibroblasts) into the fibrin matrix
and remodeling of the fibrin matrix into endoneurial tissue (within approximately 4 weeks).

4) elongation and myelination of axon sprouts from the proximal stump towards the distal
stump through endoneurial tissue (lags a few weeks behind endoneurial cell migration).

5) myelination of axons that bridged the gap and reach target organ (within a couple of years).
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Figure 4.2.3: Schematic of the elementary processes of PN wound healing after transection.

A detailed description of these elementary steps can be found in section 4.2.4. Successful
regeneration of transected PN requires the successful outcome of all five steps. The successful
outcome of each step depends strongly on the outcome of previous steps:
- The formation of a continuous large-diameter fibrin matrix that bridges the two nerve stumps

(step 2) cannot take place unless the exudate provides necessary fibrin components (step
1) [Williams et al. 1984].

- The fibrin matrix (step 2) functions as the scaffold for the migration of endoneurial cells
(fibroblasts, Schwann cells, endothelia cells) into the gap (step 3) [Fu and Gordon 1997].

- Axons cannot cross the gap and reach the target organ (step 4) unless endoneurial cells
form appropriate structures (Schwann cell columns and vascularization) throughout the gap
(step 3), and unless axons are attracted by chemical clues from the distal stump.

- Axons cannot survive and get myelinated (step 5) unless they interact with schwann cell
columns (step 3) and manage to reach the target organ (step 4) [Fu and Gordon 1997].

Experimental data suggest that in parallel with nerve tissue synthesis, a structurally distinct
tissue forms in the outer part of the newly-formed tissue, see Figure 4.2.3. This tissue, referred
to as "contractile cell capsule", consists of contractile cells and connective tissue of
circumferential-longitudinal orientation. The role of this capsule in the wound healing outcome is
of particular interest in this study. According to the "pressure cuff' theory the contractile cell
capsule impedes nerve regeneration by inteerfring with the steps of nerve tissue synthesis.
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Figure 4.2.4: Schematic of the response of the elementary processes of wound healing after peripheral nerve
transection. The tissue composition of the nerve is shown in lateral sections at various time instances.

Peripheral Nerve Wound Healing Outcomes
Depending on the outcome of the elementary processes of PN wound healing, the outcome of
the wound healing process is classified as:

- Nerve trunk: all five steps succeed at least partially: an endoneurial bridge forms, a fraction of
the axons manage to elongate through the gap and get myelinated. The nerve trunk consists
of endoneurial tissue organized in mini-fascicles, surrounded by a contractile cell capsule.

- Tissue cable: an endoneurial bridge forms but axons fail to elongate through the gap. Tissue
cable consists of axon-free endoneurial tissue surrounded by a contractile cell capsule.

- Neuroma: an endoneurial bridge does not form because either a fibrin matrix didn't bridge the
gap or because endoneurial cells didn't bridge the gap. Neuroma consists of connective tissue
and immature axons (proximal stump only) surrounded by a contractile cell capsule that
ensheaths each stump.
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4.2.3 Elementary Processes of Peripheral Nerve Wound Healing
This section summarizes experimental observations for the elementary steps of wound healing
This study considers the standard Lundborg model for studying peripheral nerve regeneration
(PNR): the peripheral nerve is transected, and the resulting nerve stumps are separated by a
gap and tabulated in a conduit. The majority of in vivo studies on PN wound healing have been
conducted in transected rat sciatic nerves treated with silicone conduits [Lundborg et al. 1982a,
c; Williams et al. 1983, 1984, 1985, 1987; Williams 1987; Kemp 2009]. This treatment has been
shown to result in some degree of regeneration when the resulting nerve injury is up to 10mm
[Yannas et al. 2007]. Data from transected rat sciatic nerves treated with silicone conduits will
be used as the baseline for comparison with other treatments. Unless otherwise mentioned, in
this section data come from experiments in transected rat sciatic nerves entubulated with
silicone conduits.

Exudate Flow and Fibrin Matrix Formation
After nerve transection, exudate liquid flows from both nerve stumps into the gap. A 10mm gap
of 11 pl volume treated by an empty silicone conduit fills within approximately 12 hours [Williams
et al. 1985]. Through the process of coagulation plasma components in the exudate are
converted into a precursor fibrin matrix. The formation of the fibrin matrix takes place over a
period of few days as additional plasma precursors enter from the nerve stumps and diffuse
inside the gap. This precursor matrix consists mostly of fibrin fibers, recognized by a
characteristic 20nm periodicity, and contains macrophages that remove cell debris [Williams et
al. 1987]. Meanwhile, at the distal nerve stump macrophages and Schwann cells remove debris
of myelinated axons (Wallerian degeneration) and start releasing axon growth promoting
factors. Myelin degradation is accomplished by Schwann cells the first two days, and mostly by
infiltrating macrophages afterwards [Fu and Gordon 1997].
One week post-injury the resulting fibrin matrix has a characteristic tampered shape (its
diameter diminishes near the gap midpoint) and does not make contact with the surrounding
conduit even in gap lengths as small as L=4mm. Instead, the fibrin matrix is separated from the
conduit by a fluid [Lundborg et al. 1982a,c; Williams et al. 1983, 1984, 1985]. One week post-
injury the fibrin matrix does not stain for laminin, stains strongly for fibronectin, and contains
endoneurial cells (migrating into the gap) only in the proximity of nerve stumps [Longo et al.
1984; Liu 1992; Zhao et al. 1992]. Fibrin fibers have preferable longitudinal-circumferential
orientation both at 3 days and 7 days post-injury [Williams et al. 1983; Schrbder et al. 1993;
Weis et al. 1994].

The formation of a fibrin cable does not always result in the subsequent formation of a nerve
trunk. Although a fibrin cable may form in 20mm gaps treated with silicone conduits [Williams et
al. 1987], a myelinated nerve trunk generally does not form for gaps longer than 10mm [Yannas
et al. 2007]. The possibility of forming a nerve trunk after forming a fibrin cable decreases as the
gap length increases [Lundborg et al.1982c], possibly due to the small diameter of the resulting
fibrin matrix.
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Figure 4.2.5: Exudate flow and fibrin matrix formation in transected nerves treated by silicone conduits. A: Schematic
of exudate flow in 10mm gaps treated by empty silicone conduits of inner diameter (ID) 1.2mm (El 1), 1.8mm (E25) or
3.1mm (E75) [Williams et al. 1985]. B: schematic of fibrin matrix and subsequent nerve trunk formation in transected
nerves treated with silicone conduits [Longo et al. 1984]. C: Fibrin matrix formation in a 10mm rat sciatic nerve gap
model treated with saline pre-filled 1.8mm ID silicone conduits [Williams et al. 1987]. D: Formation of fibrin matrix (3d,
5d) and nerve trunk (4w) a 6 mm rat sciatic nerve gap model treated with a 1.4mm ID silicone conduit [Liu 1992].

Endoneurial Tissue Synthesis
After fibrin matrix formation, several kinds of cells migrate from both stumps into the gap, using
the fibrin matrix as a scaffold. Experimental observations suggest that two distinct cell migration
phenomena take place in parallel from both nerve stumps [Williams et al. 1985], see Figure
4.2.4:

" Endoneurial cells (Schwann cells, fibroblasts and endothelia cells) migrate in the core of the
fibrin matrix. Endoneurial cells form critical cell structures (blood vessels, Schwann cell
columns) that support axon elongation, and remodel the extracellular matrix (fibroblasts,
Schwann cells) by degrading the fibrin/fibronectin matrix and synthesizing endoneurial stroma.

" Perineurial cells migrate in the outer surface of the fibrin cable. These perineurial cells are
believed to be the origin of the capsule of contractile cells and connective tissue that forms in
outer surface of the nerve trunk.

In some cases endoneurial cells manage to migrate through the fibrin matrix, bridge the gap
between the two stumps, and synthesize endoneurial tissue that connects the two nerve stumps
(an endoneurial bridge). In 10 mm gaps treated with silicone conduits, the two fronts of
endoneurial cells meet sometime between 2 and 3 weeks post-injury [Williams et al. 1983,
1985; MOller et al. 1987]. In more challenging wounds the two fronts of migrating endoneurial
cells do not meet and an endoneurial bridge does not form. The formation of the fibrin matrix
affects strongly the formation of the endoneurial tissue [Williams et al. 1985]. One possible
reason for failing to form an endoneurial bridge is that the fibrin matrix precursor did not bridge
the gap [Williams et al. 1984]. A second possible reason is that the progress of the endoneurial
cell front is much slower than the formation of the contractile cell capsule.

As endoneurial cells migrate inside the fibrin matrix towards the gap midpoint, they gradually
remodel the fibrin matrix, and change its composition and organization. The fibrin matrix is
progressively replaced by endoneurial tissue consisting of Schwann cell columns, blood
vessels, and extracellular matrix. Endoneurial tissue may be organized in mini-fascicles.

Schwann cells are the key cells of peripheral nerve regeneration [Fu and Gordon 1997] because
axon elongation through the gap requires the presence of Schwann cell columns. After nerve
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transection, Schwann cells at the stumps are stimulated by inflammation, change their
phenotype from "myelination mode" (myelinate axons, contain basement membrane) to "growth
support mode", proliferate, and migrate in the fibrin matrix forming columns called bands of
Buengner. Schwann cell proliferation takes place in two steps. The first step peaks 2-3 days
post-injury and is caused by loss of axon contact and mitogens secreted by myelin-digesting
macrophages. The second step takes place later, when Schwann cells in the gap establish
contact with elongating axons [Fu and Gordon 1997]. The formation of a fibrin clot is not by itself
sufficient to promote Schwann cell migration into the gap. Schwann cell adhesion to fibrin
promotes proliferation [Akassoglou et al. 2002a] but impedes migration; instead Schwann cells
can migrate on fibronectin [Akassoglou et al. 2003]. Molecular clues (such as VEGF) released
by cells at the distal nerve stump seem to be necessary to induce Schwann cell migration
[Sondell et al. 1999]. Accordingly, it was shown that the fibrin matrix formed when the conduit
distal end is left open (PO) is similar to the fibrin matrix formed when the conduit distal end
entubulates the distal nerve stump (PD); nevertheless, Schwann cell and axon migration into
the fibrin clot is observed only in the PD case [Williams et al. 1984]. Accordingly, the
endoneurial cell front does not reach the middle of a 5mm gap within 4 weeks when the distal
end of the silicone conduit is left open [Lundborg et al. 1982c]. Although the presence of nerve
tissue at the distal conduit end can guide the elongation of axons, it seems that Schwann cells
show no preferential growth towards nervous tissues [Zhao et al. 1992]. Schwann cells migrate
into the fibrin matrix and form columns even when axon elongation is prevented [Zhao et al.
1992]. However, the formation of basement membrane by Schwann cells is stimulated by the
presence of axons [Carbonetto 1984; Liu 1992]. The inability of inducing regeneration in large
gaps is attributed to limited migratory ability of Schwann cells [Fu and Gordon 1997].
The formation of vasculature is reported to lag slightly behind the front of migrating Schwann
cells and fibroblasts [Williams et al. 1983, 1984, 1985; Schr5der et al. 1993]. Endothelia cells
migrate inside the gap and form blood vessels even when Schwann cells do not migrate
[Williams et al. 1984; Aebischer et al. 1990]; however the opposite is not expected. Most of the
new blood vessels are located in the outer part of the endoneurial tissue, close to the capsule
[Schrdder et al. 1993; Zochodne and Nguyen 1997]. Early blood vessels have small diameter
(2-8pm). Over time the diameter of new blood vessels increases, and 8 weeks post-injury there
are more and larger blood vessels in a nerve trunk compared to a normal nerve [Jenq and
Coggeshall 1985a; Miller et al. 1987; Zochodne and Nguyen 1997]. Experimental results show
that the final diameter of the nerve trunk correlates with the extent of neovascularization [Zhao
et al. 1992]. It is proposed that neovascularization drives Schwann cell migration and axon
elongation in the gap and therefore affects significantly the wound healing outcome [Schrdder et
al. 1993; Zochodne and Nguyen 1997; Kemp et al. 2009].
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Figure 4.2.6: Cross sections of transected rat sciatic nerves of various gap length L (6 - 10 mm) treated with silicone
conduits, at various time points t post-injury (7 days - 3 months). All samples are located in the gap midpoint except
(a) which is located at the proximal nerve stump. The inner diameter of the silicone conduits is either 1.1mm (a-e) or
1.2mm (f-j). All sections demonstrate the presence of the contractile cell capsule around the nerve regenerate.
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References: (a,b): [Schroder et al. 1993], (c-e): [Weis et al. 1994], (f,h,j): [Lundborg et al. 1982],(g): [Williams et al.
1985], (i): [Williams et al. 1984].

The ECM produced by endoneurial cells (fibroblasts, Schwann cells) contains collagen,
fibronectin and basement membrane proteins (laminin, proteoglycans, glycosaminoglycans).
Newly-synthesized collagen fibers that take the place of fibrin matrix have been observed as
soon as 8 days post-injury [Liu 1992]. One week post-injury the fibrin matrix stains for
fibronectin but not for laminin. Two weeks post-injury endoneurial cells in the gap stain for both
fibronectin and laminin. In both proximal and distal nerve, the fibronectin/laminin staining pattern
reveals tubular structures of mean radius around 25 pm (proximal side) and 15pm (distal side)
[Longo et al. 1984]. The expression pattern key components (proteoglycans, laminin) found in
SC basement also changes drastically over time reflecting the SC state [Tona et al. 1993].

The front of Schwann cells is followed by the front of elongating axons. At locations reached by
elongating axons, the newly synthesized endoneurial tissue gets organized into mini-fascicles
(also referred as "regeneration units"): groups of Schwann cells wrapping one or more
elongating axons separated by collagen fibers, and surrounded by elongated perineurial-like
cells. It is believed that mini-fascicle formation is caused by the compromise of the blood-nerve
barrier imposed at the perineurium. [Fu and Gordon 1997] mentions that axons attached to each
mini-fasicle are sprouts of a common parent axon. When axon elongation is prevented, the
newly-formed endoneurial tissue contains Schwann cell columns but no mini-fascicles, which
suggests that axon presence is necessary for mini-fascicle formation [Popovic et al. 1994; Zhao
et al. 1992]. The presence of more axons correlated with the formation of fewer and larger mini-
fascicles [Popovic et al. 1994].

Figure 4.2.7: Formation of mini-fascicles in nerve trunks. Left: Os0 4 stain of myelinated axons in normal
endoneurium [Chamberlain et al. 1998a]. Right: OsO4 staining demonstrates mini-fascicle organization of the newly-

formed endoneurial tissue 8 weeks post-injury in a 8mm gap treated with a silicone conduit: myelinated and
unmyelinated axons supported by SC are surrounded by elongated fibroblasts [Jenq et al. 1985]

Parenchymal Tissue Synthesis
Soon after nerve transection, surviving axons undergo major morphological and molecular
expression changes (chromatolysis) and switch from "transmitting mode" to "grow mode" [Fu
and Gordon 1997]. The proximal stump swells, possibly due to "damming" of proteins and
organelles transported via the axons. Surviving axons usually degenerate to the closest node of
Ranvier, where they subsequently sprout. A single axon gives rise to 50-100 branches. Most
sprouts disappear soon. The basement membrane formed by Schwann cells supports and
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enhances axon elongation [Fu and Gordon 1997]. When an insoluble substrate (endoneurial
tissue) has been synthesized by Schwann cells and fibroblasts inside the gap, multiple axon
sprouts (average 5, maximum 20 per axon) will migrate in the gap. If no support structure for
axon sprouts is available, axons cannot elongate into the gap, and a neuroma forms.
Axon sprout migration into the gap is guided by chemical and morphologic clues [Fu and
Gordon 1997; Chen et al. 2007]. Axons do not grow in exudate [Lundborg et al. 1982a], and
they do not interact directly with the fibrin matrix or granulation tissue [Williams et al. 1983; Liu
1992]. Instead, elongating axons interact extensively with columns of Schwann cells [Lundborg
et al. 1982a], which synthesize proteins known to facilitate axon growth in vitro such as
fibronectin and laminin [Longo et al. 1984]. The liquid surrounding the nerve trunk contains
neurite-promoting factors, known to promote axon growth [Carbonetto 1984; Longo et al. 1984].
If axon sprouts manage to cross the gap, they will continue to elongate inside the empty (due to
Wallerian degeneration) endoneurial sheaths at the distal nerve stump. The degradation of
myelin in the distal stump during Wallerian degeneration is therefore a necessary prerequisite
for axon elongation and reconnection to the target organ [Fu and Gordon 1997].
Axon myelination progresses from the proximal stump towards the distal stump, and lags behind
axon elongation. Myelination is initiated when Schwann cells contact the axolemma of
elongating axons. Schwann cells synthesize and wrap myelin sheath around axons. The
thickness of the myelin sheath is determined by the diameter of the axon [Fu and Gordon 1997].
Schwann cell myelination activity is inhibited by fibrin [Akassoglou 2002] but it is enhanced by
interactions with axons and by the presence of collagen extracellular matrix.

If the daughter sprouts of an axon fail to bridge the gap and reconnect to the target organ,
axons sprouts contract back to proximal stump. After target connection few of the daughter
axons survive, all but few of the daughter sprouts of each axon will degrade over a period of a
few years [Fu and Gordon 1997; Gordon 2009].

Capsule Formation
Several studies have highlighted that soon after an insoluble fibrin matrix forms, perineurial cells
migrate from the nerve stumps on the outer surface of the fibrin matrix towards the gap midpoint
[Williams et al. 1983; Schr6der et al. 1993; Weis et al. 1994]. This cell migration takes place in
parallel with the migration of endoneurial cells in the core of the fibrin matrix. Within 2 weeks
post-injury, a tissue composed of concentric layers of longitudinally-circumferentially aligned
contractile cells and collagenous matrix forms in the outer part of the nerve trunk. This tissue,
referred in this study as "capsule", surrounds the newly-synthesized endoneurial tissue. In the
literature this tissue is referred to as "epineurial cells" [Lungborg et al. 1982a,b,c],
"circumferential cells" [Williams et al. 1984, 1985; MOller et al. 1987], "perineurial connective
tissue"/"perineurial tube"/"perineurial ensheathment" [Jenq and Coggeshall 1985a; SchrOder et
al. 1993; Weis et al. 1994], "epineurium"/"epineurial-like tissue"/"epineurual sheath" [Jenq and
Coggeshall 1985b; Jenq et al. 1987; Aebischer et al. 1989, 1990], "connective tissue capsule"
[Kemp et al. 2009], or "contractile cell capsule"/"myofibroblast capsule" [Chamberlain et al.
2000; Soller et al. 2012]. Many studies refer to the capsule cells as "perineurial" cells because
the capsule is in continuum with the perineurium of the intact nerve stumps [Williams et al.
1984; Weis et al. 1994], and because 7 days post-injury capsule cells stain positively for MUC1
(also known as EMA), a marker of perineurial cells [Schr5der et al. 1993; Weis et al. 1994].
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Interestingly, MUC1 is also expressed in myofibroblasts [Kamoshida and Tsutsumi 1998].
Studies at later time instances show that elongated cells in the capsule stain positively for aSMA
[Chamberlain et al. 1998a, 2000], the major marker of contractile myofibroblasts (MFB)
[Desmoulibre et al. 2005]. Perineurial cells have several structural properties of MFB (spindle
shape, pinocytotic vesicles, dense actin filaments and well-developed Endoplasmic reticulum
[Chamberlain et al. 1998a]) and also stain for vimentin, a marker of cells of mesenchyme origin
[Weis et al. 1994].

Experimental observations suggest that the composition of the capsule changes over time. At
early time points the capsule consists entirely of cells with extensive cell-cell contacts. Over time
the capsule becomes progressively richer in extracellular matrix [Lundborg et al. 1982a],
consisting mostly of circumferentially-oriented collagen fibers [Schr6der et al. 1993]. 2 weeks
post-injury the capsule also stains for fibronectin [Longo et al. 1984]. This observation is related
to the presence of MFB in the capsule, since the EDA splice variant of fibronectin is a known
prerequisite of MFB differentiation [White et al. 2008].

f

Figure 4.2.8: Snapshots of contractile cell capsules formed in transected nerves treated with silicone conduits at
various time points post-injury. a: Longitudinal section of OS04 treated epon-embedded tissue. 6mm gap, 7 days
post-injury, 1.2mm ID silicone conduit [Weis et al. 1994]. b: Cross section of epon-embedded tissue. Midpoint of a 10
mm gap, 6 weeks post-injury, 1.5mm ID silicone conduit. Arrow points macrophages surrounding a collagenous
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capsule [Chamberlain et al. 1998a]. c: Cross section of OS04 treated epon-embedded tissue. Midpoint of a 6mm gap,
18 days post-injury, 1.2mm ID silicone conduit [Weis et al. 1994]. d: Cross section of paraffin embedded tissue
immune-stained for aSMA. Midpoint of a 10 mm gap, 6 weeks post-injury, 1.5mm ID silicone conduit [Chamberlain et
al. 1998a]. e: Cross section of paraffin embedded tissue immune-stained for aSMA. Midpoint of a 10 mm gap, 60
weeks post-injury, 1.5mm ID silicone conduit [Chamberlain et al. 1998a]. f: Cross section of paraffin embedded tissue
immune-stained for aSMA. 10 mm gap, 60 weeks post-injury, 1.5mm ID silicone conduit. Image shows the contractile
cell capsule that forms in the outer surface of the silicone conduit [Chamberlain et al. 1998a]. C: contractile cell
capsule around nerve tissue. N: nerve tissue, S: silicone conduit, EC: external contractile capsule around the silicone
conduit.

4.2.4 Kinetics of Elementary Processes of Peripheral Nerve Wound Healing
This study focuses on the early response of contractile phenotypes during PN wound healing
and its regulation by biomaterials, therefore emphasizes the role of mechanics and kinematics
in determining the wound healing outcome. This section summarizes experimental observations
about the kinetics of the elementary steps of PN wound healing (Figure 4.2.4). Unless otherwise
mentioned, data presented in this section are obtained from transected rat sciatic nerves where
gaps of length L=10 mm were treated with silicon conduits of 1.2 mm ID. Even though silicone
tubes are not the most effective PN grafts in terms of regenerative ability, this section
summarizes finding from silicone tubes because they are the most widely used in the literature.

Exudate Flow and Fibrin Matrix Formation
After nerve transection, exudate flows out of each nerve stump at rate 0.9pl/hour (rat sciatic
nerve). Inside 1.2mm ID empty silicone conduits, this exudate flow rate corresponds to a front
propagating at approximately 138 mm/week. The time required for exudate to fill the gap inside
the conduit is analogous to the gap volume (Figure 4.2.5). Exudate fills a 10 mm gap treated by
a 1.2mm ID empty silicone conduit within 12h (11pl volume) [Williams et al. 1985].
The formation of the fibrin matrix happens progressively within a few days after injury. In L = 10
mm gaps treated with 1.2mm ID empty silicone conduits, a matrix forms within 3 days post-
injury. Since it takes 12h for exudate to fill this gap [Schr6der et al. 1993; Weis et al. 1994], the
time constant of the coagulation process is estimated on the order of 12 - 15 hours. In gaps
treated with 1.2mm ID silicone conduits, 3 days post-injury the fibrin matrix seems to cover
almost the whole volume of the 10mm gap; 7 days post-injury the fibrin matrix diameter is
reduced significantly and the fibrin cable is more tamper-shaped [Lundborg et al. 1982a,c;
Williams et al. 1983, 1984, 1985]. This fibrin diameter reduction is attributed to mechanical
contraction or retraction [Schrdder et al. 1993; Weis et al. 1994]. The kinetics of fibrin clot
formation can be modulated by the experimentalist. Silicone conduits of larger ID delay fibrin
matrix formation [Williams 1987]. Prefilling the gap with a solution eases exudate diffusion
throughout the gap and affects the subsequent formation of the fibrin matrix.

Endoneurial tissue synthesis
Migration of endoneurial cells in the core of the fibrin matrix and formation of endoneurial tissue
takes place between 1 and 4 weeks post-injury [Lundborg et al. 1982a; Williams et al. 1983,
1984, 1985; Jenq et al. 1985a; Liu 1992; Schr6der et al. 1993; Kemp et al. 2009]. In 10 mm
gaps treated with silicone conduits, endoneurial cell migration can be described by two fronts
that start from each nerve stump after a latency period of 3 days (coincides with the formation of
a solid fibrin matrix) and progresses with mean velocity 2.5 mm/week towards the gap midpoint
[Williams et al. 1983, 1984; MOller et al. 1987; Schrder et al. 1993].

176



Fast Schwann cell migration is expected to favor regeneration. 1 week post-injury Schwann
cells lacking basement membranes have migrated 1mm away from the stumps [Williams et al.
1983; Liu 1992]. Bands of Buenger start forming 1 week post-injury [Liu 1992], and are visible 2
weeks post-injury [Longo et al. 1984]. The formation of basement membrane by Schwann cells
in contact with elongating axons and is visible as early as 2 weeks post-injury [Carbonetto 1984;
Liu 1992].
Similarly, the formation of nee blood vessels can be described by two fronts that start from each
nerve stump after a latency period of 5-7 days and progress with mean growth rate 2.5-3
mm/week (measured between 2 to 3 weeks post-injury). A 10 mm gap is fully vascularized
within approximately 3 weeks [Williams et al. 1983; Schr6der et al. 1993]. The progress of blood
vessel fronts approximately matches the progress of the fronts of migrating Schwann cells and
fibroblasts [Williams et al. 1983, 1984, 1985; Miller et al. 1987; Schr6der et al. 1993].

Mini-fascicles are visible as early as 12 days post-injury [Lundborg et al. 1982a; Scaravilli 1984],
and persist at later time points [Lundborg et al. 1982b; Schrider et al. 1993]. In challenging
nerve injuries (gap lengths 15-30mm) treated with collagen guides, mini-fascicles of mean
diameter 25-50 pm are observed at 6, 9, or 12 weeks post-injury [Yoshii et al. 2003; Bozkurt et
al. 2012; Soller et al. 2012].

Axon Elongation and myelination
In 10 mm gaps treated with silicone conduits, nonmyelinated axons are observed up to 1 mm
away from the proximal stump within 1 week, have bridged half the gap within 2 weeks, and the
whole gap within 3 weeks. This corresponds to an axon front that starts from the proximal stump
after a latency period of approximate 6 days, and grows with mean rate 1.5 mm/week
(measured between week 1 to 2 post-injury) and 6 mm/week (measured between week 2 to 3
post-injury) [Williams et al. 1983, 1984]. These kinematic parameters agree with several
independent observations [Lundborg et al. 1982a; Schr5der et al. 1993; Weis et al. 1994; Kemp
et al. 2009]. Axon elongation is much slower inside granulation tissue (1.75 mm/week) but much
faster when axons follow the empty endoneurial tubes after nerve crush (4.4mm/day) [Williams
et al. 1983; Popovic et al. 1994].

Metabolic studies in axotomized neurons, suggest that the growth potential of regenerating
axons peaks around 3 weeks post-injury [Fu and Gordon 1997]. Between 4 and 8 weeks post-
injury, axon number and diameter increase in 5 or 10 mm gaps treated with silicone or collagen
conduits [Kemp et al. 2009]. 9 months post-transection, in the midpoint of a 4mm gap treated
with silicone conduits the number of axons is double compared to that of a normal nerve due to
axon sprouting. In the distal stump of 4mm or 8mm gaps treated with silicone conduits, there
are 50% more unmyelinated and myelinated axons compared to normal nerves [Jenq et al.
1985a].

In 10 mm gaps treated with silicone conduits, myelinated axons are observed within 1mm of the
proximal stump within 2 weeks post injury, reach the gap midpoint within 3 weeks, and bridge
the gap within 4 weeks [Williams et al. 1983]. The progress of axon myelination front can be
described by a front that starts after a latency period of 11-12 days and grows with mean rate 3-
4 mm/week [Williams et al. 1983, 1984]. These kinematic parameters agree with several
independent experimental observations [Lundborg et al. 1982a; Liu 1992; Weis et al. 1994]. The
maturation of myelination fibers (myelin thickness increase) continues for much longer. In
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comparison, the estimated mean rate of the axon myelination front in autografts is 1-2mm/w
[Bozkurt et al. 2012].

Capsule formation
Axial growth: In transected nerves treated with silicone tubes, as soon as the fibrin matrix is
formed, cells start migrating from the nerve stumps matrix towards the gap midpoint on the
outer surface of the fibrin [Williams et al. 1983; Schroeder et al. 1993; Weis et al. 1994]. In
10mm gaps treated with silicone conduits 7 days post-injury capsule cells have migrated 2-3
mm into the gap, and 12 days post-injury capsule cells have migrated 4.75mm. The migration of
capsule cells along the nerve axis can be described by two fronts that start from each stump
after a latency period of approximately 3 days that grow with mean rate 3.85 - 5 mm/week.
Capsule cells cover the fibrin matrix in a 10mm gap within 14 days post-injury [Williams et al.
1983; Schrder et al. 1993; Weis et al. 1994], and a 6mm gap within 12 days post-injury. The
axial progress of the capsule cell front on the fibrin matrix surface starts earlier and is faster
than the progress of the endoneurial cell front that takes place simultaneously in the fibrin matrix
core [Williams et al. 1985; Schr6der et al. 1993].
Radial growth: In transected nerves treated with 1.1mm ID silicone conduits, the thickness of
the capsule 1 week post-injury is progressively decreasing further away from the nerve stumps:
4 layers thick (about 20pm) at the proximal stump and a single cell layer (5pm) 2mm inside the
gap [Schrder et al. 1993; Weis et al. 1994]. The thickness of the capsule increases at least
until 21 days post-injury [Schrdder et al. 1993]. 12 days post-injury images show a capsule
40pm thick close the midpoint of a 10mm gap (z=5mm), and 25-40pm thick close to the
proximal stump of a 6mm gap [Weis et al. 1994]. 2 weeks post-injury the capsule thickness is
aproximately 35 pm 1mm away from the nerve stumps, and 50 pm (10-15 cell layers) in the
midpoint of a 6mm gap. 16 days post injury the capsule thickness 3mm away from the proximal
stump (10mm gap, PBS filling) is 21pm [MOller et al. 1987]. 18 days post-injury the thickness of
the capsule is 30pm approximately constant along a 6mm gap. 4 weeks post-injury the capsule
is 36pm-thick 1mm away from the proximal stump (z=1), 40pm in the gap midpoint (z=5mm)
and 55pm 1mm away from the distal stump (z=9mm) [Lundborg et al. 1982a; Williams et al.
1983; Schr5der et al. 1993]. 6 weeks post-injury there is a collagenous (few cells) 50 pm-thick
capsule in the midpoint of a 6mm gap [Lundborg et al. 1982a; Chamberlain et al. 2000]. In
comparison, 6 weeks post-injury neuromas are ensheathed by collagenous capsules 40-50pm
thick [Chamberlain et al. 2000]. After 6 weeks the thickness of the capsule does not increase
significantly [Chamberlain et al. 2000]. 3 months post-injury, the nerve trunk formed after using
silicone conduit to treat a 10mm gap is covered by a capsule approximately 40pm thick
[Lundborg et al. 1982b]. The thickness of the capsule in the midpoint of 4 or 8mm gaps
decreases between 8 weeks and 9 months post-injury from approximately 40pm to
approximately 15pm [Jenq et al. 1985a]. The corresponding time constant of the radial grow of
the contractile capsule from the initial (single cell layer) to the final thickness is approximately 1
week.

The structure of the contractile capsule also seems to change over time. 2 weeks post-injury the
capsule consists mostly of contractile cells [Lundborg et al. 1982a] and there is extensive cell-
cell contact between capsule cells (focal contacts connected to actin cytoskeleton, tight
junctions, desmosomes) [Weis et al. 1994]. 21 days post-injury the capsule is more collagen-
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rich, and capsule cells have more tight junctions [Schroder et al. 1993]. Between 2 and 5 weeks
post-injury there is progressive synthesis of ECM layers between capsule cell layers [Williams et
al. 1985; Aebischer et al. 1990; Schr6der et al. 1993; Weis et al. 1994]. At later time points the
capsule consists mostly of ECM and few contractile cells [Lundborg et al. 1982a]. The
corresponding time constant for ECM formation in the capsule is also on the order of 1 week.
The following two tables summarize the parameters for a simple model of PN wound healing
based on published observations on the kinetics of elementary processes of PN wound healing,
[Buydash 2013]. Table 4.2-1 shows processes whose progress can be modeled as fronts that
start from the nerve stumps and propagate towards the gap center. Examples of such
processes are the migration of Schwann cells into the gap and the elongation of axons. Table
4.2-2 shows elementary processes that can be modeled as reactions where the presence of
"reactants" leads to the formation of a "result". Examples of such processes include the
synthesis of ECM and the radial growth of the contractile cell capsule.

Propagation Substrate Latency Propagation References
Processes time velocity

[days] [mm/week]
Exudate flow (EX) - 0 137.7 Williams et al. 1985
Endoneurial cells Fibrin matrix or 3 2.5 Williams et al. 1983,
(FB, SC) guide* 1984; Schr6der et al.

1993
Schwann cells Fibrin matrix or 3 1.3 Muller et al. 1987
(SC) guide* 2.2 MOller et al. 1987

2.5 Kemp et al. 2009
Vascularization Fibrin matrix 5-10 2.5-3 Williams et al. 1983,

1984
Axon elongation SC 6 1.5 (1wst<2 w) Williams et al. 1983,

6.0 (2w5t<3 w) 1984
Axon myelination AX 11-12 3-4 Williams et al. 1983,

1984
Perineurial cell Fibrin or conduit* 3 3.85-5 Williams et al. 1983;
migration Schr6der et al. 1993;

Weis et al. 1994
Table 4.2-1: Kinetic parameters of elementary PN wound healing processes that can be modeled as propagating fronts.
Reaction Reactant Result Reaction References
Processes Lifetime

[days]
Coagulation EX Fibrin (FB) <0.75 Schroder et al. 1993;

Weis et al. 1994
Endoneurial SC, FB Endoneurial
matrix synthesis ECM
Myelination SC+AX Myelin >>7
maturation thickness
Capsule radial Capsule cells Capsule 7
growth thickness (t)
Capsule matrix Capsule cells Capsule ECM 7
synthesis I I I
Table 4.2-2: Kinetic parameters of elementary PN wound healing processes that can be modeled as a reaction.
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4.2.5 Wound Contraction during Peripheral Nerve Wound Healing

The Role of Wound Contraction: Experimental Observations
Since the 1980's, several researchers have noticed the presence of multiple concentric layers of
elongated cells and extracellular matrix (ECM) in the outer part of nerve regenerates. This
tissue in this thesis is referred to as "the contractile cell capsule". Although some researchers
recorded several features of this tissue (e.g. its formation rate along the axial axis [Williams et
al. 1983, Schr~der et al. 1993], and several protein markers expressed in capsule cells [Weis
and Schrider 1994]), the role of the contractile cell capsule in the fate of PN wound healing was
not clear. After the finding that the quality of the newly-formed tissue in skin wound healing is
inversely related to wound contraction [Yannas et al. 1989], which is mediated by contractile
myofibroblasts located mostly at wound edges [Troxel 1994; Tomasek et al. 2002; Desmoulibre
2005], research revealed the expression of a smooth muscle actin (aSMA) in the contractile cell
capsule in PN wound healing [Chamberlain et al. 1998a, 2000]. aSMA is the major marker of
myofibroblasts (MFB, [Desmoulibre et al. 2005]). aSMA-positive contractile cells are found in the
edges of many kinds of injured organs, including the bed and edges of skin wounds [Murphy et
al. 1990; Troxel 1994]. Despite the different geometry of skin and PN, in both cases of skin and
PN wound healing MFB share several features that have mechanical significance (Figure 4.2.9):

i) aSMA-positive cells are extremely elongated and contain significant acto-myosin contractile
apparatus [Hinz 2007], suggesting that they are capable of exerting significant forces. In
vitro models suggest that these forces lie in the 10-100 nN/cell range [Harley et al. 2007].

ii) the long axes of neighboring MFB are aligned over significant areas [Murphy et al. 1990;
Troxel 1994; Chamberlain et al. 1998a]. Since MFB stress fibers are parallel to their long
axes [Murphy et al. 1990], this suggests that elementary forces applied by individual MFB
add up into a resulting macroscopic force that is applied along a particular direction. In the
case of skin wound healing, MFB axes lie on the wound bed plane, so that the resulting
MFB force lies also on the wound bed plane [Murphy et al. 1990; Troxel 1994]. In the case
of PN wound healing, MFB in the contractile capsule are aligned either circumferentially or
along the nerve axis, so that the forces applied by capsule MFBs tend to generate hoop
stress in the nerve regenerate (pressure cuff).

The presence of the contractile capsule in PN wound healing has been studied mostly at late
time points (at least 6 weeks post-injury; at that time the final fate of the wound healing process
is determined]) of the wound healing process [Chamberlain et al. 1998, 2000; Soller et al. 2012].
A recent study of the correlation between the contractile cell capsule and the outcome of PN
wound healing focused on a challenging 15mm rat sciatic nerve wound treated with a collagen
scaffold library of 5 members of progressively increased cross-linking (equivalently,
progressively increasing in vivo degradation half-life). This study demonstrated that 9 weeks
post-injury, the cross-linking of the collagen material modulated both the quality of the newly-
formed nerve tissue, as well as the thickness of the contractile capsule. More importantly, it
revealed a significant correlation between the quality of the newly-formed nerve tissue
(described by number and size of axons in the gap of a 15mm gap) and the thickness of the
observed contractile cell capsule at the gap midpoint [Soller et al. 2012]. These findings suggest
that one possible way that biomaterials induce regeneration is by blocking the formation of the
contractile cell capsule.
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Figure 4.2.9: Geometry of the contractile capsule formed during skin and peripheral nerve wound healing. Left: In
skin wound healing the capsule consists of contractile cells whose axis are parallel to the dermis plane. The

macroscopic effect of their forces is shrinkage of the wound area (available for the formation of new tissue) and
deformation of the surrounding tissue. Right: In PN wound healing, contractile cells are located in the outer surface of

the nerve tissue and are oriented mostly circumferentially. The hoop stresses applied by capsule cells cause radial
compression stress that compress the newly-formed tissue and are believed to impede synthesis of new tissue.

Wound contraction kinetics in peripheral nerves
At the moment there is no published study that reports in vivo measurements of contractile
forces applied by MFB during wound healing in skin, PN or other organs. One way to infer the
response of contractile force application, is to monitor its suggested outcomes, and specifically
wound contraction, i.e. the deformation of the injured organ during wound healing. This section
summarizes previous observation about how the diameter of the nerve trunk varies during nerve
regeneration.

In PN wound healing, during the remodeling of the fibrin matrix and the formation of the nerve
trunk, the diameter and structure of the nerve trunk varies over space and time. The nerve trunk
has a tampered shape similar to the shape of its precursor fibrin cable (its diameter diminishes
close to the gap midpoint). The diameter of the nerve stump is larger in the proximity of the
proximal stump compared to the proximity of the distal stump. This diameter difference has
been attributed to the presence of elongating axons from the proximal stump [Williams et al.
1983]. In transected nerves treated with silicone conduits the diameter of the nerve trunk
decreases significantly between 1 and 2 weeks post-injury. This reduction is attributed to fibrin
matrix degradation and correlates with the presence of Schwann cells [Williams et al. 1983,
1987; Williams 1987], which are known to degrades fibrin by expressing tissue plasminogen
activator [Akassoglou and Strickland 2002b]. Experimental results from 10mm gaps treated with
silicone tubes report that between 2 and 4 weeks post-injury the diameter of the nerve trunk
remains practically constant [Lundborg et al. 1982a; Williams et al. 1983], between 4 and 8
weeks the diameter increases slowly [Kemp et al. 2009], and between 6 and 60 weeks the
nerve trunk diameter remains constant [Chamberlain et al. 2000]. The increase of nerve trunk
diameter between 2 weeks and 4 weeks is attributed to axon elongation and myelination
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[Williams 1987]. This hypothesis is further supported by the observation that when axon
elongation is prevented, the diameter of the nerve trunk decreases between 1 and 4 weeks
[Zhao et al. 1992]. In a different study, the increase of nerve stump diameter observed between
8 weeks and 9 months post-injury is attributed to increased myelination and synthesis of
endoneurial connective tissue [Jenq et al. 1985a].
These findings suggest that the critical time window where wound contraction takes place
during PN wound healing starts when the fibrin matrix forms and ends approximately 2 weeks
post-injury. The study presented in this Chapter aims to provide some information about the
possible mediator of the contractile forces that cause contraction (the contractile cell capsule)
and the effect of biomaterials.

4.2.6 Inducing Regeneration in Peripheral Nerves by Biomaterials

Biomaterial Treatments for Peripheral Nerve Regeneration
This study focuses on the use of biomaterials as grafts that can induce regeneration in severely
injured peripheral nerves. Biomaterials can be made of synthetic polymers or natural bio-
polymers. Synthetic polymers usually do not provide ligands for cell adhesion, induce foreign
body response and their degradation may result in toxic products. On the other hand they can
be chemically modified in order to control several mechanical and chemical properties of the
graft. Grafts based on natural biopolymers contain ligands that are recognized by cell adhesion
receptors, and if fabricated properly they form analogs of the natural extracellular matrix (ECM)
of the injured organ [Schmidt and Leach 2003; Tzeranis et al. under preparation]. Furthermore,
biomaterials can be implanted empty or seeded with cell suspensions or small molecule
solutions [Yannas 2001; Yannas et al. 2007; Deumens et al. 2010].
Biomaterial treatments for PN regeneration use grafts that attempt to change the wound healing
dynamics in ways that favor the formation of new nerve tissue (Figure 4.2.10). The desirable
wound healing outcome is that after transection axons survive, migrate through the injury gap,
reach the distal nerve stump, and eventually reach the target muscle.
Two main kinds of biomaterial grafts (scaffolds) have been used in studies of peripheral nerve
regeneration (PNR): conduits (tubes) and guides (fillings).
Conduits
The major component of biomaterial treatments for PNI is a cylindrical conduit that entubulates
the two stumps of the injured PN, generating a volume between the two stumps. The key
properties of nerve conduits are cross-linking (affecting degradation rate & stiffness), surface
chemistry, and porous structure (permeability of cells and proteins to diffuse inside the conduit)
[Harley et al. 2004; Soller et al. 2012]. The most successful conduits used so far are cell-
permeable conduits made of lactic acid or collagen I [Yannas 2001; Yannas et al. 2007].
Fillings
In many treatments the volume inside the conduit is left empty after stump entubulation. Several
studies suggest that the addition of a filling can improve regeneration. Four kinds of fillings have
been applied: solutions, gels, insoluble biomaterials, and cells. A saline solution is by far the
most popular filling. Several solutions of soluble regulators of cells (e.g. cytokines, small
molecules, hormones) have been tested, their efficacy depends strongly on sequence, timing,
dosage, and duration. Several gels of ECM molecules such as collagen, laminin and fibronectin
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have been tested without particular success in improving the wound healing outcome. If gel
density is high, data suggest that gels impede regeneration. Several guides have managed to
significantly improve the wound healing outcome, particularly guides made of collagen, fibrin or
polyamide that contain axially-oriented pores [Yannas 2001]. Cells can be added in addition to
one of the previous three fillings (in suspension, inside a gel, or inside an insoluble matrix). The
presence of Schwann cells has been shown to improve the outcome [Yannas et al. 2007].

Wound grafting
Distal nerve stump

Conduit

Peripheral nerve C
transection

Distal nerve Proximal nerve stump

Spontaneous outcome (repair)

Proxim al nerve stum p 0 0 F

Figure 4.2.10: Biomaterial treatments aim to change the wound healing outcome and induce regeneration (formation
of normal nerve tissue) in severely injured (transected) peripheral nerves that spontaneously do not regenerate.

Metrics for Evaluating the Performance of Induced Nerve Regeneration
The objective of peripheral nerve regeneration is the reconnection of transected axons with the
target organ. The golden standard in evaluating PN wound healing outcome is to conduct
electrophysiological studies at least 12-18 weeks post-transection [Chang et al. 1990]. An
alternative easier way is to assay the quality of the newly-formed nerve tissue using
morphometric assays (e.g. number and diameter of myelinated axons). Animal models of
peripheral nerve regeneration suggest that morphometric assays obtained within at least 6
weeks post-injury correlate semi-quantitatively with electrophysiological measurements obtained
as late as 60 weeks after injury [Arbuthnott et al. 1980; Chamberlain et al. 1998b; Yannas
2001]. Nevertheless, it is necessary to be aware of possible artifacts in evaluating the quality of
nerve regeneration based on morphological features such as axon properties. Counting axons
over-estimates the number of neurons that successfully regenerated into distal stump and reach
target organ because each parent axon gives rise to multiple daughter sprouts [Fu and Gordon
1997; Gordon 2009].
A standardized criterion for comparing the efficacy of different treatments in inducing
regeneration, is the critical axon elongation Lc metric, defined as the gap length where there is
50% probability of observing myelinated axons crossing the gap at sufficient time post-injury
[Yannas et al. 2007].

4.2.7 Theories about the Origin of the "Regenerative Activity" of Collagen Scaffolds
The "regenerative activity" of a biomaterial is defined as its ability to change the wound healing
outcome in ways that favor induced regeneration. In this thesis the terms "biologically active"
and "biologically inactive" scaffolds refer to materials that have been shown to induce significant
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or negligent improvement in the wound healing outcome compared to the spontaneous
response. A more formal way to quantify the "regenerative ability" is the use if the metrics
described in the previous section, for example the critical axon elongation metric utilized in PN
regeneration [Yannas et al. 2007].
Several theories attempt to explain how the wound healing outcome after PN injury depends on
the parameters of the injury model and applied treatment:

Neurotrophic theory
Neurotrophic theory focuses on the effect of soluble regulators on axon elongation, and
emphasizes that endoneurial cell migration and axon elongation towards the distal stump is
regulated by factors released from the distal stump. This theory builds upon the basic biology
knowledge about the effects of growth factors on the guidance of axon growth cone [Fu and
Gordon 1997; Gordon 2009]. Although this theory can explain the positive effect of entubulating
the stumps with a conduit (entubulation favors the formation of a stronger cytokine field inside
the gap), it cannot explain why the wound healing outcome depends strongly on the
physicochemical properties of the biomaterial grafts, for example how materials expected to
cause similar cytokine fields inside the gap result in very different wound healing outcome
[Soller et al. 2012].

Contact guidance theory
Contact guidance theory emphasizes the positive effect of insoluble regulators on the migration
of endoneurial cells inside the gap and the subsequent elongation of axons towards the distal
stump. This theory emphasizes that axon elongation and endoneurial cell migration in the gap
requires guidance by contact with an appropriate insoluble surface. Probably the most important
example of such guidance is the elongation of axons inside into microtubes formed by Schwann
cells (bands of Bungner). This theory can explain the regenerative biological activity of fillings
added inside conduits: those fillings that accelerate the kinetics of the elementary PN wound
healing processes (see Sections 4.2.4 and 4.2.5) such as Schwann cell migration, are the ones
that result in improved wound healing outcome. Nevertheless, contact guidancetheory cannot
explain sufficiently how nerve conduits affect the PN wound healing outcome, since the newly
grown nerve tissue does not interact directly and it is not guided by the conduit.

Pressure cuff theory
While the previous theories focus on the formation of the nerve tissue in the core of the gap,
pressure cuff theory emphasizes the adverse effects of the capsule of contractile cells that
forms in the outer surface of the nerve trunk. This theory suggests that regeneration is impeded
by the applied circumferential mechanical forces and the connective synthesized by contractile
capsule cells. Pressure cuff theory suggests that treatments that block the formation of the
contractile cell capsule should result in improved regeneration. Evidence for this inverse
relationship was obtained recently 9 weeks post-injury [Soller et al. 2012]. This work attempts to
provide additional evidence to support the pressure cuff theory by demonstrating that "active"
biomaterials are the ones that block wound contraction during the first weeks of the wound
healing process.
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Figure 4.2.11: Theories that explain the effect of biomaterials on the wound healing outcome in injured peripheral
nerves. Top: The pressure cuff theory suggests that biomaterials induce regeneration by preventing the formation of
the contractile cell capsule, therefore preventing its adverse effects on the formation of new nerve tissue. Bottom:
Overview of the three theories for the origin of the regenerative biological activity of collagen biomaterials.
Neurotrophic theory suggests that conduits favor regeneration by favoring the formation of a cytokine field that favors
nerve tissue formation (1). Contact guidance theory suggests that conduits favor regeneration by assisting in the
formation of a fibrin clot that acts as a scaffold for endoneurial cell migration (2a). Contact guidance theory also
suggests that biomaterial fillings favor regeneration by acting as a scaffold that accelerates endoneurial cell migration
and axon elongation inside the gap (2b). Pressure cuff theory suggests that conduits favor regeneration by blocking
the formation of the contractile cell capsule (3a), which could impede regeneration by mechanical deformation (3b,
3c) or steric hindrance due to the capsule stroma (3b, 3c) that prevent endoneurial migration and axon growth.

Discussion
At the moment none of the above theories can explain by itself all experimental observations.
Pressure cuff theory could explain why the wound healing outcome depends on both the
characteristics of PN injury (gap length, conduit pre-filling, nerve stump entubulation) and the
properties of the biomaterial treatment (chemical composition, dimensions, pore size, cell
permeability) [Soller et al. 2012]. Each theory focuses on one particular aspect of the PN wound
healing. At the moment it is experimentally very hard to quantify in vivo and interrelate the key
aspects of all three theories (i.e. how soluble regulators affect the formation of the capsule, how
the capsule affects the formation of the nerve tissue, how the properties of the newly-formed
nerve tissue affect the formation of the capsule).

4.2.8 Research Question
One proposed mechanism that explains how biomaterials induce regeneration in severely
injured organs is the inhibition of the formation of a large-scale capsule of highly-contractile cells
at the wound edges (Pressure Cuff Theory, Section 4.2.7). Previous experimental evidence
from skin wound healing and PN wound healing suggests that indeed there exists a strong
inverse relationship between the quality of the newly-formed tissue and the ability of a material
to prevent or reduce the formation of this capsule [Yannas et al. 1989; Murphy et al. 1990;
Chamberlain et al. 2000; Yannas 2001; Soller et al. 2012].

Specifically, the experiments of [Soller et al. 2012] provide strong evidence about the
antagonistic relationship between regeneration and wound contraction, by identifying that 9
weeks post-injury the scaffolds that caused the formation of best nerve tissue were the ones
that caused in the formation of minimal capsule thickness. While 9 weeks post-injury is a good
time instant to evaluate the final outcome of wound healing, but may not be the best time point
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to study the reasons that caused it. Several papers report that wound contraction in transected
nerves treated with silicone materials peaks approximately 2 weeks post-injury [Williams et al.
1983, 1987; Williams 1987]. Furthermore, the thickness of the capsule at 9 weeks was
measured without concern about the composition of the capsule (contractile cells, ECM). A
recent study on the mechanics of wound contraction suggests that the strain imposed in the
nerve tissue due to the forces applied by the contractile cells in the capsule depends on the
mechanical properties of the scaffold, the capsule and the nerve [Buydash 2013]. Therefore,
there exist still several open questions:

1. what is the mechanism of contractile cell capsule formation?
2. what is the effect of different collagen scaffolds on the formation and the composition of

contractile cell capsule during the early phases of wound healing when wound
contraction has been observed?

3. which are the molecular clues provided by scaffolds that affect the formation of the
contractile cell capsule?

4. what are the mechanisms by which the contractile cell capsule can affect the formation
of the new nerve tissue?

This Chapter focuses on question 2. It studies the wound healing response in challenging PN
injuries grafted with the best (device "D") and the worse (device "E") scaffolds identified in
[Soller et al. 2012] at those early time points (1 and 2 weeks post-injury) where mechanics and
prior observation suggest that the nerve is more vulnerable to contraction. Chapter 5 provides
some evidence on question 3.

4.3 Methods

4.3.1 Animal model and Sample Preparation
All animal experiments were designed and conducted by Dr. Soller [Soller 2011; Soller et al.
2012]. The experimental setup follows the established Lundborg animal model for studying the
effects of conduits and fillings in PN wound healing [Lundborg et al. 1982]. Briefly, the sciatic
nerve in adult Lewis rats is fully transected, and the two resulting nerve stumps are separated
by a 15±1mm gap and inserted into a conduit (Figure 4.3.1). The initial study considered the
effects of five kinds of collagen conduits. This study presents results for two of them (Section
4.3.2). Nerve regenerates were harvested after sacrificing animals by C02 inhalation 1, 2 or 9
weeks post-transection (this study focuses on 1 and 2 week data). The harvested sciatic nerve
tissue was rinsed in saline, fixed en block in 4% paraformaldehyde for 8 hours at 40C, treated
overnight in 30% sucrose, embedded in OCT medium, snap-frozen in liquid nitrogen and stored
at -20 0C until sectioning. Frozen blocks were sectioned at 6 pm thickness on a microtome (Keck
Imaging Facility, Whitehead Institute, MIT) and stored at -20 0C until staining and imaging. All
experimental protocols followed NIH guidelines (NIH Publication No. 85-23 Rev. 1985).
The chosen L=15 mm gap length is significantly larger than the Lcr = 9.7±1.8 mm critical gap
length in rat nerves treated with silicone conduits [Yannas 2001; Yannas et al. 2007]. Such large
gap was chosen to provide unambiguous evidence of induced, rather than spontaneous,
reconnection between the two stumps.
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Figure 4.3.1: Schematic of the Lundborg animal model for studying the effects of collagen biomaterials on induced
PN regeneration.

4.3.2 Scaffold Library
In the original study, transected rat PN were treated with five different porous collagen conduits.
All scaffolds are fabricated by freeze-drying a 5% w/v suspension of micro-fibrilar collagen I in
0.05M acetic acid [Soller 2011]. After freeze-drying, the in vivo degradation half-life of the five
scaffolds is modulated by appropriate crosslinking treatment. The result was a library of five
scaffolds of 80pm mean pore diameter that differed from each other on their in vivo degradation
half-life (or equivalently, the intermolecular cross-linking) [Harley et al. 2004; Soller 2011].
This study considers just two of these scaffolds. Specifically, scaffold "D" is cross-linked by
dehydro-thermal treatment (DHT) [Yannas and Tobolsky 1967] resulting in in vivo degradation
half-life of approximately 3 weeks. Scaffold "E" is cross-linked using the cross-linking agents
EDAC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and NHS (N-hydroxysuccinimide),
resulting in in vivo degradation half-life of much larger than 9 weeks [Harley et al. 2004].

4.3.3 Fluorescent Staining
This study utilizes four kinds of fluorescence staining protocols. The details of the protocols are
displayed in Table 4.3.3.

The "contraction" staining protocol focuses on imaging the distribution of cell contractility
apparatus in the nerve trunk using wide-field fluorescence microscopy. This staining protocol
consists of an antibody (A2547, Sigma Aldrich, St. Louis, MI) that binds a smooth muscle actin
(aSMA), and the DAPI (D1306, Life Technologies) counterstains. aSMA is the major marker of
myofibroblasts (MFB). In peripheral nerves aSMA is also expressed in pericytes around blood
vessels. DAPI binds nucleic acids and stains cell nuclei.

The "cell content" staininq protocol focuses on identifying the distribution of cells the nerve
regenerate using wide-field fluorescence microscopy or spectral multi-photon microscopy. This
staining protocol consists of wheat germ agglutinin (WGA) Alexa Fluor 488 conjugate (W1 1261,
Life Technologies), Alexa Fluor 532 phalloidin (A22282, Life Technologies) and DAPI. WGA is a
lectin (sugar-binding protein) that binds to N-acetylglucosamine (GlcNAcP1-4GlcNAcP1-
4GIcNAc) and N-acetylneuraminic acid (Neu5Ac, sialic acid) residues. WGA binds to multiple
glycoproteins found on cell membranes and the extracellular matrix of tissues. In this study,
strong WGA signal was observed in the basement membrane of myelinated Schwann cells.
WGA is expected to bind to heparin sulfate proteoglycans that contain GIcNAc found at
neuromuscular junctions and at Schwann cell basement membranes [Carbonetto 1984]. WGA
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was also observed in the cytoplasm of all cells. Phalloidin binds and stains F-actin in actin
filaments. Large actin expression is found in contractile cells, pericytes and perineurial cells.

The "complete nerve staining" protocol combines the "contraction", "content", and "nerve tissue"
staining protocols and is designed to image nerve sections by spectral multi-photon microscopy.
This staining protocol combines the antibodies for aSMA (A2547, Sigma Aldrich), NF200
(ab72996, Abcam) and S100 (ab76729, Abcam), with wheat germ agglutinin (WGA) Alexa Fluor
488 conjugate (W1 1261, Life Technologies), Alexa Fluor 532 phalloidin, and DAPI.

Contraction Cell content Complete
Protocol Protocol Protocol

aSMA primary ab. 1:400 - 1:600
(A2547) (mouse)

aSMA secondary ab. 1:400 anti-mouse - 1:1000 anti-mouse
Alexa Fluor 488 Alexa Fluor 350

NF200 primary ab. (ab72996) - - 1:1000

NF200 secondary ab. - - 1:400 anti-chicken
tritc

S100 primary ab. (ab76729) - - 1:500

S100 secondary ab. - - 1:300 anti-rabbit
alexa fluor 350

WGA - Alexa Fluor 488 - 1.67 pg/ml 0.1 pg/ml

Phalloidin - Alexa Fluor 532 - 100 200
DAPI 1 E-2 pg/ml 1 E-2 pg/ml 5E-3 pg/ml
Table 4.3-1: Information about the staining protocols utilized to study the ex vivo nerve samples.

Sectioned animal nerves are transferred out of the -20 0C and equilibrated at room temperature
for 30 min, washed twice with TBST for 10 min, blocked by 80 pl block reagent that contains
0.3% Triton X1 00 (X0909 Dako) at room temperature for 1 h, treated with 60 pl primary antibody
solution in antibody diluent (S0809, Dako) overnight at 4*C, washed three times with 100 pl TBS
for 10 min at room temperature, treated with 60 pl secondary antibody solution in antibody
diluent for 2h at room temperature, treated with 50pl counterstain solution in TBS for 30min at
room temperature, washed three times with 100 pl TBS for 10 min at room temperature, add 5
pl mounting medium (17985-10 Fluorogel), add the coverslip and seal using a nail hardener.

4.3.4 Spectral Multi-photon Microscopy and Image Processing
Stained nerve samples were imaged in the spectral multiphoton microscope described in
Section 2.3. The acquired images were processed using the image processing pipeline
described in Chapter 2. The pipeline provides a segmentation of image pixels into various
classes (myofibroblasts, banded collagen fibers, scaffold collagen, axons, schwann cells, cell
nuclei) described by the class map of Fig. 2.6.4, and an estimation of the emission rates for the
emission sources present in each pixel.

4.3.5 Fluorescence Imaging and Image Processing
The distribution of the fluorescently-labeled markers shown in Table 4.3-1 in ex vivo nerve
samples was imaged by wide-field fluorescence microscopy. Stained nerve sections were
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imaged in an Olympus IX81 fluorescence microscope (Olympus) at the Van Vlet Lab
(Department of Material science and engineering, MIT) equipped with a mercury lamp (Prior
Scientific, UK), an ORCA CCD detector (Hamamatsu, Japan), and four filter sets: bright-field
imaging filter set, DAPI filter set, alexa fluor 488 filter set, and alexa fluor 549 filter set. Low
magnification (4x or 10x) images were acquired in order to study their expression and
abundance over the whole area of the nerve-scaffold cross-sections. Image acquisition was
implemented using the microscope's control software to first focus, and then acquire the image.

For each image and channel (red, green, blue), the background noise of the detector, and the
background non-specific staining signal was calculated using a custom-made GUI written in
MATLAB. The sensor background is constant over all samples. The background non-specific
staining varies slightly over the various tissues (nerve tissue, capsule, scaffold). For each
magnification and staining protocol, common threshold values [tL, tU] were chosen and applied
to images from all nerve samples. The low-threshold value tL is chosen so that it is larger than
the background non-specific staining signals observed over all samples. The upper-threshold
value tu is chosen equal to the largest "actual" signal value observed over all images of identical
magnification, channel, and staining protocol. This assures no signal saturation and maximum
dynamic-range data. Images were segmented manually into the three major compartments
(nerve tissue, capsule, scaffold). The mean thickness of the contractile cell capsule was
measured manually at 4 locations in the image located at the 4 opposite quadrants of the
image. For each experimental group (transected nerves treated with scaffolds "D" or "E"), time
of animal sacrifice, and position in the wound (0, 2, or 4 mm away from the point of transection)
at least 3 samples from distinct animals were quantified.

4.3.6 Statistical Analysis
One-factor analysis of variance (ANOVA) tests were performed to determine the effect of
the scaffold graft ("D" or "E") on the mean thickness capsule at a each time point (1 or 2
weeks) and location in the wound (0 and 2 mm). Statistical significance was accepted for p
< 0.05.

4.4 Results

4.4.1 Exploiting Nonlinear Spectroscopy to Distinguish Banded Collagen
In the ex vivo rat sciatic nerve samples considered in this study, collagen is present either inside
the collagen scaffold, or in the ECM of the nerve tissue. The collagen found in ECM is found in a
semi-crystaline state that causes collagen fibrils to possess a characteristic 67-nm axial
periodicity (see Chapter 5). Such semi-crystaline collagen is called "banded". On the other
hand, scaffolds are made by freeze-drying a collagen I suspension in acetic acid. Due to the
acid treatment, collagen fibrils swell, which causes them to lose their semi-crystalline structure
[Sylvester et al. 1989]. The loss of crystalinity during fabrication is the reason that in TEM
images of scaffolds only a small fraction of the scaffold appears banded (Figure 5.4.10, Chapter
5). This difference in the solid state of collagen in ECM versus in the scaffold is exploited in
order to distinguish them optically. This can be done because while both banded and non-
banded collagen are fluorescent, only banded-collagen can generate second harmonic emission
[Chen et al. 2012]. For the same reason, while gelatin (denatured collagen) is auto-fluorescent,
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it cannot emit second harmonic. Figure 4.4.1 shows spectroscopic results that quantify these
claims. Figure 4.4.1b shows the spectral signatures of pure microfibrillar collagen I (the raw
material utilized to make the scaffolds) and the collagen scaffold itself. These data were
obtained by imaging raw collagen I fibers and collagen scaffolds respectively, binning the data
from all pixels corresponding to collagen, and then normalizing. The results show that the
second harmonic peak of raw collagen is much larger compared to the peak of the scaffold.
Figure 4.4.1a shows the ratio of the second harmonic signal to the fluorescence signal. This
large difference between the ratio of second harmonic emission to fluorescence emission is
exploited in distinguishing the collagen belonging to the scaffold from the collagen that has been
synthesized by rat cells.

2.5 3

ab 2.5 - .-- second harmonic emission
2 -o - raw collagen I

V f 2 -scaffoldA E

lfluorescence emission

000
0. C 0.5

00.5
2 4 6 8 10 12 14 16

2 4 6 detector channel 1 4 1

0 raw collagen scaffold

Figure 4.4.1: Exploiting nonlinear optical spectroscopy to distinguish banded collagen. a: Second harmonic emission
per fluorescence emission in raw microfibrilar collagen I (banded) and in collagen scaffolds (swollen). Mean
standard deviation. b: Spectral signatures of raw microfibrilar collagen I (banded) and in collagen scaffolds (swollen).

4.4.2 Formation of the Contractile Capsule in PN Wound Healing
This section provides imaging results that describe the morphology of peripheral nerves during
the early phase (1-2 weeks post-injury) of wound healing after nerve transection. Nerves have
been treated with two kinds of collagen scaffolds, named "D" and "E". Images of cross sections
of ex vivo rat sciatic nerves treated with collagen conduits are acquired by either wide-field
fluorescence microscopy, or by spectral multi-photon microscopy (Chapter 2).

Figure 4.4.2 shows a schematic that describes the basic morphology of the cross section
images shown in the following figures. The newly-synthesized nerve tissue (N) is surrounded by
a region consisting of cells and ECM, called the "contractile cell capsule" (C). The capsule has
distinct morphology and composition compared to the nerve tissue. 9 weeks post-injury this
capsule consists of circumferentially oriented contractile cells and collagen. The nerve trunk
(nerve tissue and capsule) is located in the inner lumen of the conduit (scaffold, S) that was
used to entubulate the two nerve stumps after transections. The scaffold is itself surrounded by
another capsule of contractile cells, called then external capsule (EC). The observed
morphology of the nerve trunk during wound healing is quite different compared to the normal
morphology of a cross section of a PN, which consists of nerve fascicles surrounded by the
dense collagenous stroma of epineurium.
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Figure 4.4.2: Morphology of cross sections of peripheral nerves during wound healing. a: Schematic of the four main
parts. The new nerve tissue is surrounded by a capsule of contractile cells in the inner lumen of the scaffold. The
scaffold itself is surrounded by the external capsule. b: the four main parts of the PN highlighted in a sample image of
a PN during wound healing. bar = 90pm. c: cross section of a normal peripheral nerve. bar = 90pm. d: high resolution
image of a cross section of a normal peripheral nerve. Red: collagen. Blue: cell nuclei. Purple: phalloidin. Yellow:
WGA. Cyan: axons. bars = 50pm.

Figure 4.4.3 to Figure 4.4.6 show wide-field fluorescence images of ex vivo rat sciatic nerve
cross sections treated with either scaffold "D" or scaffold "E", harvested 1 or 2 weeks post-injury,
0 or 2 mm away from the proximal transection point (the location where the PN was transected
at the stump connected to the spinal cord). Left columns provide images of sections that have
been immuno-labeled for aSMA, the major marker of myofibroblast differentiation. This labeling
identifies cells expressing aSMA, which are either pericytes (contractile cells that wrap around
blood vessels in peripheral nerves) or myofibroblasts. Right columns provide images of sections
that have been stained by fluorescently-labeled phalloidin (a stain that binds f-actin) and wheat
germ agglutinin (a lectin that binds specific kinds of polysaccharides). The phalloidin stain labels
cells that express extensive acto-myosin apparatus, and therefore can apply significant
contractile forces. The WGA stain is less specific, it stains glycoproteins found in cell
membranes, in the Golgi, and several proteoglycans found in the basement membranes of
Schwann cells.

Figure 4.4.7and Figure 4.4.8 show images of ex vivo rat sciatic nerve sections immuno-labeled
for aSMA, and focus on the expression of acSMA in the contractile cell capsule that surrounds
the nerve tissue. These images are higher magnification images of the aSMA results shown in
the first column of Figure 4.4.3 to Figure 4.4.6.

Figure 4.4.9 to Figure 4.4.14 show representative high-resolution spectral multi-photon images
of the contractile capsules that form around the newly-formed nerve tissue. Apart from the
phalloidin (purple), WGA (yellow) and DAPI signals (blue-green), spectral multi-photon imaging
can resolve simultaneously the weak fluorescence emission of collagen in the scaffold (green),
and the second-harmonic emission of banded collagen (red) synthesized by rat cells during
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tissue remodeling. Figure 4.4.14 highlights the locus where capsule cells come in contact with
the surrounding scaffolds.

Figure 4.4.15 and Table 4.4-1 show measurements for the mean thickness of the capsule that
surrounds the new tissue for the two animal groups considered in this study (grafted with
scaffold D or E), at 1 or 2 weeks post-injury, and at 4 distinct locations in the wound.

Scaffold "D" - I week

z=O mm

Phalloidin
WGA
DAPI

Figure 4.4.3: Response of contractile cell phenotypes in transected peripheral nerves treated with collagen scaffolds
"D", 1 week post-injury at 0 and 2mm away from the proximal transection point. Left: Blue: DAPI. Green: alexa fluor
488 conjugated secondary antibody for mouse anti-aSMA primary antibody. Right: Blue: DAPI. Green: alexa fluor
488 conjugated wheat germ agglutinin, red: phalloidin. Bars: 200 pm.
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Scaffold "E" - 1 week
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Figure 4.4.4: Response of contractile cell phenotypes in transected peripheral nerves treated with collagen scaffolds
"E", 1 week post-injury at 0 and 2mm away from the proximal transection point. Left: Blue: DAPI. Green: alexa fluor
488 conjugated secondary antibody for mouse anti-aSMA primary antibody. Right: Blue: DAPI. Green: alexa fluor
488 conjugated wheat germ agglutinin, red: phalloidin. Bars: 200 pm.
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Scaffold "D" - 2 weeks
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Figure 4.4.5: Response of contractile cell phenotypes in transected peripheral nerves treated with collagen scaffolds
"D", 2 weeks post-injury at 0, 2 and 4 mm away from the proximal transection point. Left: Blue: DAPI. Green: alexa
fluor 488 conjugated secondary antibody for mouse anti-aSMA primary antibody. Right: Blue: DAPI. alexa fluor 488
conjugated wheat germ agglutinin, red: phalloidin.
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Scaffold "E" - 2 weeks
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Figure 4.4.6: Response of contractile cell phenotypes in transected peripheral nerves treated with collagen scaffolds
"E", 2 weeks post-injury at 0 and 2 mm away from the proximal transection point. Left: Blue: DAPI. Green: alexa fluor
488 conjugated secondary antibody for mouse anti-aSMA primary antibody. Right: Blue: DAPI. Green: alexa fluor
488 conjugated wheat germ agglutinin, red: phalloidin. Bars: 200 pm.
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Figure 4.4.7: Immunofluoresce staining for aSMA in the contractile cell capsule at various distances z from the
reference point, 1 week post-injury. The second column corresponds to zoom-in images from the same samples as
Figure 4.4.3 and Figure 4.4.4. The third column shows results for the negative antibody control in neighboring
sections to the results shown in the second column. Green: Alexa Fluor 488 conjugated anti-mouse secondary
antibody against the primary mouse anti-aSMA antibody. Blue: DAPI. Images of the first column are provided from
[Buydash 2013] (identical animal experiment, different nerve samples). All bars are 200 pm.
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Contractile capsule, t = 2 weeks
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Figure 4.4.8: Immunofluoresce staining for aSMA in the contractile cell capsule at various distances z from the
reference point, 2 weeks post-injury. The second column corresponds to zoom-in images from the same samples as
Figure 4.4.5 and Figure 4.4.6. The third column shows results for the negative antibody control in neighboring
sections to the results shown in the second column. Green: Alexa Fluor 488 conjugated anti-mouse secondary
antibody against the primary mouse anti-aSMA antibody. Blue: DAPI. Images of the first column are provided from
[Buydash 2013] (identical animal experiment, different nerve samples). All bars are 200 pm.
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Scaffold D, t= i week, z = 0 mm

Scaffold D, t = 1 week, z = 2 mm

I

Figure 4.4.9: High resolution spectral multi-photon imaging of ex vivo transected peripheral nerves treated with
scaffold D, 1 week post injury at z = 0 (top) and z = 2 mm (bottom) away from the proximal point of transection. Red:
banded collagen (collagen synthesized by cells), green: non-banded collagen (scaffold), yellow: glycoproteins (WGA
staining), purple: phalloidin, blue-green: cell nuclei. N: nerve tissue. C: Capsule. S: Scaffold. Bars = 50 pm.
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Scaffold E, t = I week, z = 0 mm

Scaffold E. t = 1 week. z = 2 mm

Figure 4.4.10: High resolution spectral multi-photon imaging of ex vivo transected peripheral nerves treated with
scaffold E, 1 week post injury at z = 0 (top) and z = 2 mm (bottom) away from the proximal point of transection. Red:
banded collagen (collagen synthesized by cells), green: non-banded collagen (scaffold), yellow: glycoproteins (WGA
staining), purple: phalloidin, blue-green: cell nuclei. N: nerve tissue. C: Capsule. S: Scaffold. Bars = 50 pm.
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Scaffold D , t = 2 weeks, z = 0 mm

Scaffold D. t = 2 weeks. z = 2 mm

Figure 4.4.11: High resolution spectral multi-photon imaging of ex vivo transected peripheral nerves treated with
scaffold D, 2 weeks post injury at z = 0 (top) and z = 2 mm (bottom) away from the proximal point of transection. Red:
banded collagen (collagen synthesized by cells), green: non-banded collagen (scaffold), yellow: glycoproteins (WGA
staining), purple: phalloidin, blue-green: cell nuclei. N: nerve tissue. C: Capsule. S: Scaffold. Bars = 50 pm.
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Scaffold D, t = 2 weeks, z = 4 mm

Figure 4.4.12: High resolution spectral multi-photon imaging of ex vivo transected peripheral nerves treated with

scaffold D, 2 weeks post injury at z = 4 mm away from the proximal point of transection. Red: banded collagen
(collagen synthesized by cells), green: non-banded collagen (scaffold), yellow: glycoproteins (WGA staining), purple:
phalloidin, blue-green: cell nuclei. N: nerve tissue. C: Capsule. S: Scaffold. Bar = 50 pm.

Scaffold E, t = 2 weeks, z = 0 mm
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Scaffold E, t = 2 weeks, z = 2 mm

Figure 4.4.13: High resolution spectral multi-photon imaging of ex vivo transected peripheral nerves treated with
scaffold E, 2 weeks post injury at z = 0 (top) and z = 2 mm (bottom) away from the proximal point of transection. Red:
banded collagen (collagen synthesized by cells), green: non-banded collagen (scaffold), yellow: glycoproteins (WGA
staining), purple: phalloidin, blue-green: cell nuclei. N: nerve tissue. C: Capsule. S: Scaffold. Bars = 50 pm.
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t=2 week.;z = 0 mm t=2 week. z = 0 mm

Scaffold D

Scaffold E

Figure 4.4.14: Adhesion pattern of capsule cells to the scaffold. Top: Scaffold D. Bottom: Scaffold E. Red: banded
collagen (collagen synthesized by cells), green: non-banded collagen (scaffold), purple: phalloidin, blue-green: cell

nuclei. Orange: aSMA (in the capsule) or schwann cells (nerve tissue). N: nerve tissue. C: Capsule. S: Scaffold. Bars
= 50 pm. Arrows highlight regions of cell-matrix adhesion that survived the sample cutting procedure. Bars = 50 pm.

Capsule thickness t = 1 week t = 2 weeks
[pm] Z=Omm z=2mm z=0mm z=2mm z=4mm

p 77.7 87.4 60.2 53.7 44.1
Scaffold a 18.6 26.7 8.8 14.0 11.9

D N 3 3 3 3 3
SE 10.8 15.4 5.1 8.1 6.9
p 133.8 176.9 118.3 79.1

Scaffold a 29.6 97.8 29.4 23.1 No nerve
E N 3 4 4 3 tissue

SE 17.1 48.9 14.7 13.4 observed
Table 4.4-1: Statistics of mean thickness of the contractile capsule (in pm) measured around the nerve tissue as a
function of the scaffold graft, the time of sacrifice, and the position z away from the point o transection. The data are
plotted in Figure 4.4.15. p: average, a: standard deviation, N: sample size, SE: standard error of mean
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Figure 4.4.15: Mean thickness of the contractile cell capsule at various locations and time instances as a function of
the scaffold used to treat the transected nerve. P-values are provided for one-way ANOVA analysis on the effect of
the scaffold for each experimental condition. The p-value for pairwise one-side ANOVA tests that quantifies the effect
of different locations equals p=0.633 (device D, t = 1 week), p=0.367 (device D, t = 2 weeks), p=0.577 (device D, t = 1
week), and p=0.372 (device E, t = 2 weeks). Multiple comparison tests using the Tukey-Kramer approximation
suggest that the data sets of the five sets points for group "D" are not statistically different. Similarly, the four data
sets for group "E" are not not statistically different at p=5% significance.

4.5 Discussion

4.5.1 Collagen Scaffolds Regulate the Formation of the Capsule
Figure 4.4.3 to Figure 4.4.13 show that already 1 and 2 weeks post injury the wound healing
response of transected peripheral nerves treated with scaffolds D or E are significantly different.
Specifically, a non-neural tissue ("capsule") rich in contractile cells forms in the outer part of the
nerve tissue. This capsule is imaged at 0, 2 and 4 mm away from the transection point. Tissue
at 4mm was observed only in the animal group D, 2 weeks post-injury.
One week post-injury, the mean thickness of the capsule in animals treated with scaffold D is
approximately 8pm. Statistics suggest that the capsule thickness at z=0 and z=2 mm are not
statistically different. The mean thickness of the capsule formed in animal group D is less than
the mean thickness of the capsule formed in animal group E (approximately 130 pm) (Figure
4.4.15), however the difference is statistically significant only at z=0. Two weeks post-injury, in
both animal groups (D, E) the capsule measurements are slightly less compared to the
measurements of 1 week, however this difference is not always statistically significant. Still, the
measurements of mean capsule formed in animal group D are smaller than the ones of group E,
however this is not always statistically significant. The thickness of the scaffold that forms
withini week post-injury could be related to the inner diameter of the lumen. Specifically, the
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difference between the inner diameter of the scaffold (approximately 1.5 mm [Soller 2011]) and
the outer diameter of the healthy rat sciatic nerve (normally 1 mm but nerves swell after
transection [Harley et al. 2004]). The size of the gap generated between the nerve and the
material may affect the formation of the cell-rich tissue that forms between them early in wound
healing.

The capsule contains a large number of cells (evident in Figure 4.4.3 (z=2mm), Figure 4.4.4
(z=2mm), Figure 4.4.9 and Figure 4.4.10) that are already preferably circumferentially oriented.
The vast majority of cells stain for WGA, many of them stain brightly for actin. The number of
circumferential cells that stain positively for aSMA (excluding blood vessels) seems to be
significantly more in samples grafted with scaffold "E" compared to samples grafted with
scaffold "D" (Figure 4.4.7 and Figure 4.4.8). Capsule is abundant in blood vessels (circular
structures that stain for phalloidin and aSMA) of approximately 10 - 40 pm diameter. Many
blood vessels are observed in the outer part of the newly formed nerve tissue (Figure 4.4.12,
Figure 4.4.13), in agreement with observations in nerve treated with silicone tubes [Schr6der et
al. 1993; Zochodne and Nguyen 1997].
At z=0 and z=2 mm away from the point of transection, the capsule is separated from neural
tissue by a thin layer of highly elongated cells that stain strongly for phalloidin and a few layers
of banded collagen. These structures resemble the structures of perineurium and epineurium
found in normal PN tissue (Figure 4.4.2d) and possibly they are parts of the original PN tissue. It
seems therefore reasonable to suggest that z=0 is not the point of transection any more.

The structure of the capsule is not homogenous. In the animal group D, close to point of
transection the capsule consists of concentric layers of cell and ECM. The inner-most layers
consist of cells attached to large circumferentially oriented collagen fibers (Figure 4.4.11 to
Figure 4.4.11), possibly the collagen fibers of the old epineurium. The few outer-most layers
consist of circumferentially oriented cells that stain for aSMA and are in contact with scaffold D.
A similar structure of circumferentially oriented layers of cells and collagen appears near the
nerve transection point in animal group E (Figure 4.4.6 top, Figure 4.4.13 top). In this case the
thickness of the capsule is larger and the aSMA signal is present in a larger number of layers
(still localized in the outer part of the capsule).

Two weeks post-injury, the morphology of the nerve and the capsule seems very different at
locations away from the point of transection. In both animal groups, the nerve trunk looks much
less organized and consists of a large number of blood vessels, single WGA-positive cells (in
contrast to the honey-comb like staining pattern of WGA close to the transection point), axons,
and Schwann cells (not shown here), see Figure 4.4.12 and Figure 4.4.13 bottom. At these
locations there is no perineurial and epineurial-like structures and there is no clear distinction
between the nerve tissue and the capsule. However, in the outer surface of the nerve trunk
there is a thin region (2-3 cell layers) where cell density is higher compared to the core of the
nerve trunk. These cells stain positively for actin and aSMA (Figure 4.4.7, Figure 4.4.8). It is
possible that this circumferential structure of cells is the precursor of the thick capsules
observed 9 weeks post-injury [Chamberlain et al. 2000; Soller et al. 2012]. The data shown in
Figure 4.4.15 suggest the mean capsule thickness observed at z=4mm in group D is almost
statistically significantly smaller the mean capsule thickness observed at z=2mm in group E
(p=0.08, these two points are compared because the capsule surrounds a newly-formed tissue
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and not the remaining of the old stump), however this is kind of misleading because the capsule
in one of the three samples of the 2-week z=2 set of the E group is much larger compared to the
rest. As shown in Figure 4.4.11 and Figure 4.4.13bottom, in the early steps of capsule formation
around the nerve tissue the capsules in both groups seem similar in size. This suggests that a
factor that may regulate their final growth it their interaction with the surrounding scaffold.

4.5.2 Cell-matrix Interactions and the Outcome PN Wound Healing
Figure 4.4.14 highlights difference in cell-matrix interactions between capsule cells and the
scaffold, close to the point of transection. Nerve cross sections are prepared by fixing,
embedding in OCT and cryo-sectioning the nerve samples after they are harvested.
Unfortunately sectioning induces sectioning artifacts. These artifacts are tears, which form in the
locus of least mechanical strength. For example, in the top left image of Figure 4.4.14 a tear
separates collagen fibers located in the epineurium. In the top right image of Figure 4.4.14 a
tear separates collagen perineurium from the epineurium. In none of these images (and in the
vast majority of the cross sections of the D group) did the tear take place at the location where
the capsule connects to the scaffold (highlighted using arrows). On the contrary, in the vast
majority of the cross sections of the E group, sectioning induced tears exactly at the scaffold-
capsule interface, just like the one shown in the bottom left image of Figure 4.4.14. Another
related observation is that 9 weeks post-injury, in the D animal group the nerve trunk (nerve plus
capsule) is always in touch with the scaffold which shirks and adapts its shape to the shape of
the nerve trunk. On the contrary, 9 weeks post-injury in the E animal group the nerve trunk
inside the gap usually does not make contact with the surrounding scaffold; its outer diameter is
much smaller compared to the inner diameter of the scaffold. These observations resemble the
nerve trunks formed inside silicone tubes [Williams et al. 1983, 1985; Williams 1987]. These
observations suggest that the cell-matrix adhesion between capsule cells and the inner lumen of
the scaffold is stronger in group D and much more fragile in group 3. In group E, it is possible
that as the capsule cells attempt to apply more force to the scaffold, the cell-scaffold
connections break because they are not strong enough, and eventually the nerve trunk
separates from the scaffold. This observation is related to the findings of Chapter 5, which show
that the density of ligands for the two major collagen-binding integrins alp1, a21 is much
smaller in scaffold E compared to D. Fewer ligand correspond to more fragile cell-scaffold
interaction and more fragile capsule-scaffold association.
The previous paragraph suggests that one key difference between groups D and E (which also
could be related to the regulation of the capsule thickness) is the strength of the bond between
capsule cells and the scaffold. This difference means that capsule cells can apply much more
force to scaffold D compared to capsule E. At the same time, 1,2 and 9-week data suggest that
scaffold D leads to the formation of a thinner capsule compared to scaffold E. This pattern
between scaffolds D and E (the ability to transmit force to scaffold is inversely related to the size
of the capsule that forms) resembles results observed experimentally in independent studies of
peripheral nerve regeneration that used materials with very different properties compared to the
ones used in this study (Table 4.5-1):
- [Chamberlain et al. 1998] and [Kemp et al. 2009] observed that the PN wound healing

outcome in transected nerves grafted with silicone conduits is much worse (larger capsule,
more wound contraction) compared to the wound healing outcome in transected nerves
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grafted with collagen conduits similar to the scaffold D of this study. In contrast to collagen
that provides many ligands for adhesion, silicone does not provide ligands and cells cannot
attach and apply forces to it.

- The wound healing response to silicone conduits changes by opening two large holes on the
silicone conduit. This enables the capsule to connect through the holes with the external
capsule that surrounds the scaffold (Figure 4.4.2). This configuration enables the contractile
forces that are applied by the capsule cells to be mechanically transmitted to the silicone
scaffold, even though cells do not directly bind to the scaffold (the two interconnected
capsules act as a cuff). Opening holes in the silicone conduits results in a much thicker
nerve trunk and in the formation of ECM inside the holes [Jenq 1985b]. The same result is
observed when the two holes on the walls of the silicone conduit are covered by a cell-
permeable 5 pm filter. However, when the holes are covered by a cell impermeable 1.2pm
filter the response resembles the one of the silicone tube without holes [Jenq 1987].

- Transected nerves treated with PAN-PVC conduits (artificial polymer, no ligands) of smooth
(cell impermeable) inner lumen surface result in the formation of a fibrin cable and then a
nerve trunk similar to the one observed when using silicone conduits. In this case capsule
cells cannot attach to the conduit inner lumen and apply forces to the conduit. However,
PAN-PVC conduits (same material) of rough (cell permeable) inner lumen result in a
completely different outcome: the fibrin matrix covers the whole gap volume and a very thin
capsule formes. In this case perineurial cells infiltrate the PAN-PVC conduit. Even though
individual cells cannot bind to the conduit, it is possible that arrays of interconected cells that
penetrate the conduit pores could apply forces to the conduit [Aebischer 1990].

- Finally in transected nerves treated with scaffold D or scaffold E, 9-weeks post injury the
resulting nerve tissue in the group D has much larger diameter and more axons compared
to the transected nerves treated with scaffold E [Soller 2012]. Based on the findings on
Chapter 5 of this thesis, scaffold D provides to cells much more ligands compared to
scaffold E, making possible a stronger adhesion between capsule cells and the inner lumen
of the scaffold (which is smooth as shown in [Soller 2011])

Reference Group 1 Group 2
Cells can apply limited Cells can apply force to
force to scaffold scaffold
More wound contraction Less wound contraction

Ikegutchi 2003 Silicone conduits Silicone conduits with C-
anions

Jenq and Coggeshall Silicone conduits with holes Silicone conduits with holes
1985b, Jenq et and cell-impermeable filter Silicone conduits with holes
al.1987 and cell-permeable filter
Aebischer 1990 PMA-PVC smooth surface PMA-PVC rough surface
Chamberlain et al. Silicone conduits Collagen conduits
1998, Kemp et al.
2009
Harley et al. 2004 Collagen conduits E Collagen conduits B, C, D
Soller et al. 2012
This study
Table 4.5-1: Studies that provide that the ability of capsule cells to apply forces to the scaffold is related to the size of
the capsule that forms and the resulting wound contraction.
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The observations of Table 4.5-1 suggest a critical role for mechanics and mechano-biology in
determining the wound healing outcome in transected nerves grafted with conduits. One week
post-injury (when the capsule close to the point of transection has formed) the tissue
surrounded by the capsule is expected to be more compliant compared to normal nerve tissue
(due to remodeling of the initial fibrin clot). These findings agree with a recent mathematical
model of the pressure cuff hypothesis, which suggests that a biomaterial can favor regeneration
by delaying the formation of the capsule in order to prevent its forces from contracting the
complaint nerve tissue present in the early phases of wound healing [Buydash 2013].

4.6 Summary and Future Work
This chapter describes an imaging study of peripheral nerve regeneration. Transected rat sciatic
nerves were treated with either an "active" collagen scaffold (D) or an "inactive" collagen
scaffold (E), sacrificed 1 or 2 weeks post-injury, and then imaged ex vivo. The two biomaterials
are known to induce significantly different regeneration in peripheral nerve 9 weeks post injury
[Soller et al. 2012]. Specifically, observation show that the quality of the wound healing outcome
(area of new nerve tissue, number of axons observed in gap midpoint) is inversely related to the
thickness of the contractile cell capsule that forms around the injured organ.
The results of this study attempt to trace the findings of [Soller et al. 2012] back in the early
phases of wound healing after nerve transection and entubulation. Findings suggest that
already 1 week post-injury the two scaffolds induce different wound healing response. Although
a contractile cell capsule is observed in both animal groups 1 week post-injury, scaffold D
results in a significantly thinner less-contractile capsule that is in more association with the inner
lumen of the scaffold. The early capsules observed 2 weeks post-injury close to the nerve front
are much smaller (50pm) and contain cells that are much less elongated compared to the
capsuls observed 9 weeks-post injury.
Future experiments can aim in probing more the critical role of mechanics and in designing
materials that induce better regeneration by regulating the growth of the capsule between 2
weeks and 9 weeks. Unfortunately, force measurements in vivo are yet impossible.
Nevertheless, it is possible to design experiments where one could modify the maximum force
that can be applied by cells to the scaffold (e.g. by modifying the scaffold surface chemistry) and
evaluate tis effect on the wound healing outcome.
Up to now, the available experimental evidence provides a correlation between wound
contraction and the outcome of regeneration. At the moment there is no study that attempted to
design an experiment in such a way that could prove a direct causality relationship between
wound contraction (expression of contractile phenotypes during wound healing) and the
outcome of regeneration. Such experiments could be designed by using specific agents (e.g.
shRNA lentiviruses) that can target and knock-down specific critical molecular components that
mediate wound contraction (e.g. components of the contractile acto-myosin machinery). Such
experiments could also be developed by modifying the chemical composition of biomaterials
and doping them with components known to impede or accelerate contraction. One example of
such an experiment could be the addition of EDA splice variant of fibronectin (a known mediator
of myofibroblast differentiation) to "active" scaffolds known to be able to induce regeneration. In
both cases those experiments would attempt to prove some sort of causality by using various
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different ways to impede or accelerate wound contraction, measuring the wound healing
contraction, the wound healing outcome, and examining the trend of the results.

Finally, the role of the scaffold in the formation of the contractile capsule can be studied in more
detail by in vivo intravital imaging via multi-photon microscopy. In contrast to existing intravital
imaging studies of nerve wound healing or the diseased nervous system [Misgeld and
Kerschensteiner 2006], PN regeneration studies would require imaging of the injured nerve in
the presence of a biomaterial. Combining transgenic animals, biomaterials and multi-photon
imaging can be used to study the dynamic nature of contractile capsule formation and the
results of various biomaterial designs in regulating capsule formation and eventually the wound
healing outcome.
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Chapter 5: An Optical Method for the
Quantification of the Surface Chemistry
in 3D Matrices in Situ
5.1 Chapter Overview
This chapter describes a novel optical method for quantifying the surface chemistry of 3D
matrices (extracellular matrix or biomaterials) in situ. The surface chemistry of a matrix is
defined as the density of adhesion ligands for particular cell adhesion receptors available to
cells for binding on the matrix surface. Although it is known that the surface chemistry of a
matrix affects the micro-environment felt by cells and can regulate cell phenotypes, at this time
there are very few methods that can quantify the surface chemistry of matrices in situ. This work
fills part of this knowledge gap by providing a method than can quantify the surface density of
adhesion ligands for particular cell adhesion receptors that are available on the surface of a
matrix for cell binding.

The proposed method is an in situ binding assay that quantifies optically the surface density of
fluorescent markers that bind on to the same adhesion ligands as the receptor of interest on the
surface of the matrix. The assay is based on two key technologies. The first is the development
of biomarkers that i) emulate the binding function of the adhesion receptor of interest, and ii) are
fluorescent so that they can be detected optically. The second key technology is the use of
spectral 3D multi-photon imaging (see Chapter 2) which i) utilizes optical sectioning to provide in
situ measurements of the biomarkers bound on the complex surface of a matrix with 3D spatial
resolution, and ii) utilizes spectral information to distinguish the signal of the markers from the
signal emitted by the matrix itself.

The methodology that was developed has been implemented by quantifying the surface
chemistry of porous collagen scaffolds, similar to the ones used clinically to induce regeneration
in severely injured skin and peripheral nerves. Specificially, it is of interest to measure the
density of ligands for the two major collagen-binding integrins (CBI) al 1 , a2P1. The study utilizes
as markers of these receptors the I Domains of their a subunit. Experimental results provide the
first estimates for the surface chemistry of these materials for ligands of alp1 and a2p1, and
demonstrate that different methods for cross-linking scaffolds can affect significantly their
surface chemistry. These findings support recent evidence on the role of mechanics and
kinetics on wound healing (Chapter 4) and provide new tools for designing and quantifying the
chemical environment felt by cells either in tissue ECM or inside biomaterials.

5.1.1 Motivation
There is extensive evidence that the insoluble microenvironment around cells (the "matrix") is a
critical modulator of cell phenotypes. The available experimental evidence includes the ability of
cell-free biomaterials to induce regeneration in severely injured organs in vivo, and also includes
evidence in thousands of published papers that describe how several properties of the matrix
(chemical composition, stiffness, microstructure) affect various phenotypes of various kinds of
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cells in vitro. At the moment the efforts of many research labs focus on the effects of the matrix:
developing new materials for tissue engineering and regenerative applications [Maskarinec and
Tirrell 2005; Nelson and Tien 2006; Sands and Mooney 2007; Soller et al., 2012], understanding
the interplay between cancer cells and tumor ECM [Paszek et al. 2005; Naba et al. 2012],
developing biomaterials that can guide the differentiation of stem cells [Huebsch et al. 2010],
developing novel 3D printing tools that could generate the next generation of "smart"
biomaterials [Derby 2012; Miller et al. 2012].
The insoluble microenvironment of cells is described in much more complex terms compared to
the soluble microenvironment (e.g. growth factors, cytokines). The soluble microenvironment
can be described well by the composition and the concentration of its constituents, parameters
that can be quantified by several established proteomic methods. On the other hand, the
insoluble microenvironment felt by cells is described by a larger number of properties including
chemical composition, surface density, topology, stiffness, degradation rate, and stress field.
The complex geometry of the matrix (ECM in tissues or biomaterials) makes it difficult to
measure in situ many of these properties. Nevertheless, in situ measurements are important
because they provide a direct description of the environment felt by cells, in contrast to average
macroscopic properties (e.g. mass fraction, chemical composition) that are convenient to use
and easier to measure, but are not entities directly sensed by individual cells.
One of the key properties of the matrix around cells is its surface chemistry, defined in this study
as the identity and surface density of adhesion ligands available to cells for binding. The surface
chemistry of a matrix defines which adhesion receptors can be utilized by cells for adhesion,
therefore controls the perception of the cell about its insoluble environment and affects the types
of signals sensed by cells and therefore the resulting cell response. Despite its importance,
there are very few published methods for quantifying the surface density of matrices, and the
latter can be applied only to a small class of artificial biomaterials (Section 5.2.7). This is of no
surprise, since even quantifying the bulk chemical composition of a matrix (the identity,
composition, and modifications) is by itself a challenging task [Naba et al. 2012].
This chapter attempts to fill part of this knowledge gap by providing a methodology that can
quantify the surface chemistry of a 3D matrix. The method is demonstrated by quantifying the
surface chemistry of collagen scaffolds, and specifically by quantifying the adhesion ligands for
the major collagen-binding integrins (alp1, a2P1). The methodology can be extended to
characterize other kinds of 3D insoluble environments felt by cells inside tissues or biomaterials
of various chemical composition (not just collagen).

5.1.2 Chapter Description
Section 5.2 provides background on subjects related to the developed methodology, such as
cell adhesion to collagens via CBI, the effects of cell adhesion to collagen, and the current state
of the art of methods that quantify the surface chemistry of biomaterials. Section 5.3 describes
the various parts of the methodology and its application in quantifying the density of CBI ligands
in collagen scaffolds. A big part of the methodology (Sections 5.3.2 to 5.3.5) describes the
expression and extensive biochemical characterization of recombinant I Domains, utilized in this
study as markers of CBl. The remainder of Section 5.3 describes the experimental procedure
for quantifying and interpreting the density of adhesion ligands in situ. Section 5.4 provides
experimental results, first about the characterization of recombinant I Domains, and then
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presents measurements of the surface chemistry of three kinds of porous collagen scaffolds
used in nerve regeneration studies. Section 5.5 discusses the methodology, its findings, and
their implications. Section 5.6 suggests directions for future research.

5.2 Background

5.2.1 The Extracellular Matrix as a Critical Modulator of Cell Phenotypes

What is the Matrix? Insoluble Regulators of Cells
Cells perceive their environment using receptors on their plasma membrane that bind to
molecules located in their immediate environment. Binding of a receptor to such a molecule
induces a cascade of chemical events inside the cell cytoplasm, referred to as "cell signaling"
[Gomperts et al. 2002]. The outcome of a cell signaling cascade can be either a fast short-term
response (e.g. cytoskeleton polymerization), or a slow long-term response (e.g. gene
expression, differentiation), that eventually regulate cell phenotypes. These molecules, which
are present in the cell's immediate environment, and which bind to its receptors, are referred as
"modulators". For simplicity of discussion, modulators can be classified as:
- Soluble regulators: these are molecules that exist in solution, and reach cell's receptors via

diffusion. Examples of soluble regulators include cytokines, hormones, and growth factors.
Each class of soluble regulators binds to a distinct class of receptors and induces a distinct
set of intracellular signaling cascades [Lodish et al. 2007].

- Insoluble regulators: these are molecules that exist in the solid state, form solid structures
(e.g. fibers, lamellae) where cells can apply forces and induce strain. Binding (adhesion) of
cells to insoluble regulators via adhesion receptors is utilized by cells not just for cell
signaling, but also as a means to exert forces to their environment.

The insoluble microenvironment of cells (matrix) can refer to two kinds of matrix:
- Extracellular matrix (ECM) refers to the native insoluble microenvironment of cells in tissues.

In animals, organs are composed of tissues, which comprise tissue-specific cells surrounded
by tissue-specific ECM. The appropriate combination of cells and ECM provides the
necessary strength and functionality to tissues and organs. ECM is a complex inter-
connected network of macromolecules including structural proteins (collagens, elastin),
adhesion proteins (fibronectin, laminin), proteoglycans, glycosaminoglycans, and bound
soluble factors [Bosman and Stamenkovic 2003; Vakonakis and Campbell 2007; Hynes
2009; Naba et al. 2012].

- Biomaterials refer to materials fabricated by humans that can interact with cells. Usually
biomaterials are used as implants inside the body to support the function or structure of
tissues and organs. Based on their chemical composition, they can be classified as "natural"
(made of biopolymers found in tissues, e.g. proteins, polysaccharides) or "artificial" (made of
artificial polymers not found in tissues) [Ratner and Bryant 2004].

Experimental Evidence for the Role of Insoluble Regulators: Wound Healing
Several pieces of experimental evidence suggest the critical importance of the matrix in
regulating the phenotypes of the cells that interact with it.

The field of regenerative medicine provides three major experimental observations:

217



- After severe organ injury, the outcome of wound healing depends in the nature of the injured
tissue, and changes significantly when injury involves ECM-rich tissues. The outcome of
wound healing is classified as "regeneration" when it is structurally and functionally similar to
or identical to the physiological organ; otherwise it is classified as "repair". Severely injured
organs in adults do not regenerate spontaneously; instead they heal by eventually forming a
scar. Skin is one example where the wound healing outcome is repair, with scar forming
when ECM-rich tissues (stroma) become injured [Yannas 20011. The cell-rich epidermis
tissue can regenerate spontaneously, however the underlying ECM-rich dermis does not
regenerate when injured. Similar results have been observed in other organs, including
peripheral nerves (Chapter 4).

- At this time, clinically successful treatments for inducing regeneration in two kinds of injured
organs (skin and peripheral nerves) are based on collagen-based biomaterials with
particular properties. In the form of highly porous "scaffolds", these materials can change the
kinetics of wound healing and induce partial regeneration in skin [Yannas et al. 1982] and
peripheral nerves [Chamberlain et al. 1998]. Although the performance of these materials
can be enhanced by the presence of cells or soluble regulators contained within, the
presence of an insoluble biomaterial seems to be an absolute prerequisite [Yannas 2001].
Furthermore, animal experiments show that the performance of these materials depends
significantly on several physicochemical properties of the biomaterial, such as mean pore
diameter, degradation rate and chemical composition [Yannas et al. 1989; Soller et al.
2012]. It seems that these biomaterials contain the key "instructions" that guide cells
towards inducing regeneration.

- Recently, several promising approaches attempt to induce regeneration using decellularized
animal organs [Uygun et al. 2010; Badylak et al. 2011; Orlando et al. 2011]. This approach
can be thought of as an extension of the use of biomaterials: instead of using a biomaterial
of simple chemical composition, the motivation is to use a more complex scaffold that
contains a larger variety of insoluble clues and whose properties vary over its volume. Since
current knowledge cannot prescribe with certainty the optimal matrix parameters for all
organs, and since current fabrication methods cannot fabricate scaffolds as complex as
those currently used as decellularized matrices, it appears intuitive to use as scaffold the
native ECM of animal organs, after removing cells or anything else that potentially can
trigger an immune response. Again, the success of decellularized organs to guide the
formation of new functional organs, suggests that the ECM contains the key "instructions"
that guide cells towards inducing regeneration.

Experimental Evidence for the Role of Insoluble Regulators: Cancer
Cancer biology provides experimental observations that support the critical role of the matrix in
regulating cells during pathological conditions. Tumor-associated stroma is associated with all
steps of cancer: initiation of carcinogenesis, tumor progression, and metastasis [Allen and
Jones 2011]. ECM synthesized by tumor cells differs from normal ECM both in terms of
chemical composition and in terms of mechanical properties. Tumor-associated ECM is usually
denser and stiffer compared to normal ECM [Paszek et al. 2005], a sign of abnormal ECM
remodeling dynamics (synthesis versus degradation) [Lu et al. 2012], and eventually leads to
hypoxia, which induces tumor cells to synthesize soluble factors that favor ECM remodeling and

218



angiogenesis [Carmeliet et al. 1998; Canning et al. 2001]. The increased stiffness of tumor ECM
can be attributed to altered chemical composition, increased cross-linking between ECM fibers
(e.g. by increased lysyl oxidase activity [Kagan and Li 2003]) or different structural organization
of collagen fibers [Provenzano et al. 2006]. Tumor ECM composition contains a different profile
of ECM proteins compared to the one observed in normal ECM [Allen and Jones 2011; Naba
2012]. The deposition of several collagens (including 1, 11, and 111) increases during tumor
formation [Zhu et al. 1995; Kauppila et al. 1998; Huijbers et al. 2010]. Tumor ECM often
contains increased amounts of particular isoforms or splice variant of proteins (such as tenascin
C and the EDA splice variant of fibronectin) whose expression is observed during development
or wound healing [Kurose et al. 2001; White et al. 2008]. The combination of stiff ECM and EDA
fibronectin resembles other pathologic cases such as fibrosis and abnormal scar formation in
wound healing [Serini et al. 1998].
The altered tumor ECM is not believed to be a second order effect of cancer, but an integrated
part of the disease that affects critically tumor initiation and progression. The abnormal ECM
synthesized by cancer-associated fibroblasts (CAF) has been shown to impact the behavior of
epithelia, and could affect cancer initiation in locations of epithelial abnormalities [Olumi et al.
1999]. The stiff environment of tumor ECM can facilitate several cancer phenotypes
(metastasis, neutrophil infiltration) via altered integrin signaling, and may affect the kinetics of
tumor progression by affecting the activation of growth factors that bind on the ECM and whose
activation requires mechanical stress. Tumor-associated stroma has been demonstrated to
induce cancer-like phenotypes to normal cells in vitro [Amatangelo et al. 2005].

Implications for Biomaterial Design
Additional examples of systems where the insoluble microenvironment of cells acts as a niche
that affects critically cell phenotype include the interaction between stroma cells and normal
ECM in tissues (tissue homeostasis), and interactions between stem cells and ECM. Stem cell
binding to ECM is essential for maintaining stem cell properties and guides asymmetric stem
cell division [Shen et al. 2008, Raymond et al. 2009]. At the moment the molecular details of
how the ECM guides cells in physiological and pathological conditions are just beginning to
unravel. Knowledge of the identity and spatial organization of the appropriate chemical clues
(including adhesion ligands) could be utilized for the development of improved biomaterials that
could guide cell phenotypes efficiently [Sands and Mooney 2007]. Biomaterial development
based on reverse engineering of natural processes requires methods that can quantify the
insoluble microenvironment felt by cells in ECM and inside biomaterials, such as the one
described in this Chapter.

5.2.2 The Surface Chemistry of a Matrix
The microenvironment felt by cells of a particular type inside a matrix depends both on the set of
adhesion receptors expressed by this cell type, and on the chemical entities present on the
matrix where adhesion receptors can bind (adhesion ligands). In this thesis, the surface
chemistry of a matrix is defined as the density of adhesion ligands for particular receptors
available on the surface of a matrix for cells to bind. In contrast to the macroscopic chemical
composition of the matrix, the concept of surface chemistry attempts to provide a description of
the microenvironment as felt by cells (on the matrix surface cells sense and respond to
adhesion ligands, not molecules).
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Adhesion ligands provide cells with a means for binding to and perceiving their insoluble
microenvironment; therefore these ligands encode part of the information provided by the matrix
to cells, which as discussed in Section 5.2.1 can affect cell phenotypes significantly. The term
'adhesion ligand' in this study refers to the chemical entities recognized by cell adhesion
receptors, located on the surface of a 'parent' molecule. This use of the term "ligand" is distinct
from the use of the term "ligand" in biochemistry, where it describes the entire biomolecule
[Rehm 2006]. Adhesion ligands are found in various ECM components. Adhesion ligands found
in proteins (e.g. collagens, fibronectins) are small peptide motifs such as RGD and GFOGER. A
list of known ligands of integrin receptors is provided in [Plow et al. 2000]. Adhesion ligands
associated with polysaccharides (glycosaminoglycans, proteoglycans) consist of a small
oligosaccharide sequence of particular chemical conformation [Varki 1994; Monsigny et al.
2000; Taylor and Drickamer 2007]. Many adhesion ligands are present in more than one ECM
components (e.g. the RGD ligand). Furthermore, many ECM components contain more than
one type of ligand or several copies of the same ligand (e.g. collagens) [Di Lullo 2002]. The
functionality of adhesion ligands can be conformation-dependent, that is adhesion receptors can
bind the ligand provided the parent molecule is folded correctly. In some cases, the number of
exposed adhesion receptors that are available for cell binding depends on the stress state of the
molecule and stretching the parent molecule exposes additional ligands (e.g. fibronectin) [Mao
and Schwarzbauer 2005].
While ECM and "natural" biomaterials contain the adhesion ligands found in their constituent
molecules, artificial biomaterials do not contain ligands and need to be functionalized by
incorporating peptides or protein domains that contain adhesion ligands. At the moment the
design of optimal artificial polymers by combining several building blocks, including blocks that
contain adhesion ligands, is an area of active research [Nelson and Tien 2006; Sands and
Mooney 2007].
There are several families of adhesion receptors in mammalian cells. The two most important
are integrins (bind ECM proteins) and lectins (bind polysaccharides) [Hynes 2002; Sharon and
Lis 2007]. Each adhesion receptor can bind to more than one type of ligand. The expression of
each adhesion receptor is dependent on cell type. Alltogether, the same matrix will be perceived
differently by different cell types since the latter express different sets of receptors. Therefore, it
is expected that optimal biomaterial design depends strongly on the identity of the cells that will
interact with the biomaterial.

5.2.3 Collagen and Collagen-Binding Integrins (CBI)
This thesis focuses on the surface chemistry of collagen-rich matrices, such as collagen
biomaterials. The surface chemistry of such matrices is dominated by adhesion ligands of
adhesion receptors that bind to collagen. This section describes in detail what is known about
cellular adhesion to collagen.

Collagens
Collagens are a family of proteins found in the extracellular matrix (ECM) of tissues. Collagens
are one of the most important components of ECM and provide both structural support and
functionality to tissues and organs, where they are organized into tissue-specific super-
molecular structures (fibers, fibrils, lamellae, meshes). At the moment 29 isoforms of collagen
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have been identified [Ricard-Blum 2011]. The distribution of collagen isoforms is tissue-
dependent [Gelse et al. 2003]. Different isoforms form different super-molecular structures:
some collagen isoforms (types 1, 11, 111, V, XI) form fibril structures, others (types IV, VIII, X) form
network structures or beaded filaments (type VI), while still others (IX, XII, XIV, XIX, XX, XXI)
associate with fibrils. Collagens bind to many other ECM components, such as adhesion
proteins, and proteoglycans [Di Lullo et al. 2002; Sweeney et al. 2008].

Collagen I
Collagen type I is by far the most abundant isoform of collagen, expressed in multiple tissues
(e.g. dermis, cornea, cervix, tendon, ligaments). Collagen I molecules are organized into super-
molecular structures (fibrils, fibers) in a tissue-dependent way that is believed to be regulated by
other ECM components [Gelse et al. 2003]. Specifically, five collagen molecules arrange
themselves in space to form micro-fibrils, which are then organized into the much larger
collagen fibrils. Fibril diameter ranges between 25 and 400 nm, depending on the tissue and the
age of the animal. Collagen I fibrils have a semicrystalline structure that results in the formation
of an axial 67nm periodicity called "D banding" [Gross and Schmitt 1948; Yannas 1972; Hulmes
and Miller 1979; Orgel et al. 2006]. The process by which cells modulate collagen molecule
organization into fibrils and fibers is an ongoing area of research [Canty et al. 2005].

Apart from being a major component of native ECM in tissues, collagen I purified from animal
tissues is a natural polymer utilized in the development of in vitro cell assays, and in the
fabrication of biomaterials, including the materials utilized in this thesis [Dagalakis et al. 1980;
Yannas and Burke 1980; Yannas et al. 1980; O'Brien et al. 2004].

Families of Collagen Receptors
Mammalian cells use several families of adhesion receptors to bind to collagens: members of
the integrin family, discoidin domain receptors (DDRs), glycoprotein VI (GPVI), leukocyte-
associated IG-like receptor-1 (LAIR-1), and members of the mannose receptor family [Leitinger
and Hohenester 2007; Heino et al. 2009; Leitinger 2011]. Cells can also bind denatured
collagen through various RGD-binding integrins [Gullberg et al. 1992], or can bind collagen
indirectly, by binding matrix proteins that associate with collagens (fibronectins, proteoglycans).

Integrins are the major collagen receptors [Leitinger 2011]. Of the twenty-four members of the
integrin family, five (alp1, a2 Pl1, a33 1 , aclo@1, a @l1i) have been shown to bind at least one type of
collagen [Heino 2000; Tulla et al. 2001]. Four integrins (a1p1, a2I31, alo@l, al@1) comprise the
collagen-binding integrins (CBI) [Hynes 2002], while a3P 1 acts probably as an assisting collagen
receptor rather than a primary receptor [DiPersio et al. 1995]. The four CBIs have overlapping
specificities for collagens and their expression in cells is tissue-dependent. Binding of CBIs to
collagen has been shown to depend on divalent cations. Knocking down the major CBI results
in severe birth defects [Hynes et al. 2002].

There are several types of non-integrin collagen receptors, reviewed in [Leitinger 2011]. The two
DDR receptors (DDR1 and DDR2) are a subtype of receptor tyrosine kinases (RTK) with the
unique feature that they bind to ECM molecules instead of growth factors. DDR receptors are
expressed during development and bind specific types of collagen through a collagen-binding
discoidin domain with affinity similar to integrins. DDR are also involved in the regulation of
collagen fibrogenesis [Flynn et al. 2010] and CBI integrin signaling [Xu et al. 2012]. GPVI are
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expessed in platelets. LAIR-1 is found in several immune cells. Both GPVI and LAIR-1 bind the
collagen triple-helix with low affinity. Mannose receptors (e.g. Endo-180) bind both collagen and
gelatin through their F2 domain and are involved in collagen/gelatin internalization by cells.

Collagen-Binding Integrins (CBI)
The expression of collagen-binding integrins (al 1 , a2p1, a1op1, ap143) varies among different cell
types: al 1 is abundant in smooth muscle cells, mesenchymal cells, hepatic stellate cells,
pericytes, bone marrow stem cells, chondrocytes, and neuronal cells [Hamaia et al. 2012]. a2P1

is the main collagen receptor in epithelia, lymphocytes and platelets. alop1 is present in
chondrocytes. a11p1 is expressed by fetal muscle cells, and by fibroblasts in regions of highly
organized interstitial collagen networks [Carracedo et al. 2010]. Lately integrin a11p1 has been
found to be involved in myofibroblast differentaton, a critical event of the wound healing process
[Carracedo et al. 2010; Talior-Volodarsky et al. 2012], see Chapter 4. Many cell types
(fibroblasts, endothelia cells, lymphocytes) express more than one CBI [Heino 2000; Tiger et al.
2001; Tulla et al. 2001]. Table 5.2-1 provides a partial list of cell types that express both, one or
none of alp1 and a2 P1l, and have been used in CBI-related research.

Cell type Express Express References

CHO - - Jokinen et al. 2004

C2C12 (mouse myoblasts) - - Hamaia et al. 2012

PC12 (rat adrenal pheochromocytoma) + - Hamaia et al. 2012

Rugli (glioma) cells + - Knight et al. 2000

Platelets - + Knight et al. 1998, 2000; Onley
et al. 2000; Raynal et al. 2006

HT 1080 - + Knight et al. 1998, 2000; Raynal
et al. 2006

HGF (human gingivinal fibroblasts) + + Jokinen et al. 2004
MC5 (human lung fibroblasts)* + + Kim et al. 2005
Table 5.2-1: Examples of cell lines used in integrin-mediated collagen adhesion assays. Cell lines can express none,
one, or both of the major collagen-binding integrins a1p1, a21.
* highlights comparable levels of a1p1 and a2p1 expression.

All integrins consist of two subunits, named a and P. Each subunit consists of four parts: head,
leg, transmembrane section, and cytoplasmic domain, Figure 5.2.1. The two heads mediate and
regulate binding to integrin ligands, while the remaining parts regulate integrin activity and
transmit signals from and into the cell [Hynes 2002; Shimaoka et al. 2002; Luo et al. 2007]. The
a subunits of CBI contain an additional domain close to their N terminus, which is called "I
domain" (or sometimes "A domain") [Kamata and Takada 1994; Luo et al. 2007]. In this study,
CBI I domains are referred to as a11, a21, alol, and a1l respectively. In those integrins whose a
subunit contains an I domain (alp1, a2I1, alop1, a11pl, (L2, aMP2, aXP2, aDP2, aEP 7 ), ligand
binding is mediated entirely by this I domain [Hynes et al. 2002; Luo et al. 2007].
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Figure 5.2.1:Schematic of collagen binding integrin structure. Left: Domains of a and 1 subunits. Right: schematic of
an integrin-binding integrin bound to a ligand. Adopted from [Luo et al. 2007].

5.2.4 1 Domains of Collagen-Binding Integrins
I domains of CBI have been shown to contain all the components necessary for binding the
adhesion ligands of the parent integrin [Kamata and Takada 1994; Hynes 2002]. Similarly to the
parent integrin, each type of I domain can bind multiple ligands with varying affinities
[Calderwood et al. 1997; Hynes 2002]. I Domains are of critical importance to this thesis,
because they are utilized as markers of the adhesion ligands of the parent integrin.

1-2F
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Figure 5.2.2: Crystal structure of I domains of the two major collagen-binding integrins. Top: al I domain (structure
1QCY [Nymalm et al. 2004]). Bottom: a21 domain (structure 1AOX [Emsley et al. 1997]). Blue: a helix, magenta: 0

strand, grey: loop, M: Mg 2+. Structures are rendered using Pymol 1.Orl using the crystal structures 1QCY, 1AOX that
can be downloaded from the Protein Data Bank (PDB) database (http://www.rcsb.orq).
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I Domain Structure
The crystal structures of several 1-domains in several conformation states have been obtained
by x-ray crystallography (Table 5.2-2). Resolved structures show that I domains belong to the
Rossmann fold superfamily [Emsley et al. 1997] They consist of a P sheet core containing six P
strands (named A, B, ... F) surrounded by nine amphipathic a helices (named 1, 2, ... 9). All P
strands are parallel with the exception of C. The sequence of secondary structures is A-1 -B-C-
2-3-4-D-5-E-6-7-8-F-9.
The four I domains of the collagen binding integrins (a11, a21, a101, a111) are highly homologous in
terms of primary structure (Figure 5.2.3). The two most well-studied I domains (a11 and a21) are
also highly homologous in terms of secondary and tertiary structure as revealed by the resolved
crystal structures (Figure 5.2.2). The x-ray structures for a1ol, a111 are not currently available.
However, based on the similar primary sequences (Figure 5.2.3), computational tools predict
that alol, a111 have secondary and tertiary structure similar to a11, and a21 (Figure 5.2.4).
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Figure 5.2.3: Multiple sequence alignment of the amino acid sequences of the I domains of the four collagen-binding
integrins. al: residues 151-364 of sequence P56199 (protein ITGA1). a21: residues 154-368 of sequence P17301
(protein ITGA2). a1ol: residues 145-361 of sequence 075578 (protein ITGA10). aill: residues 142-356 of sequence
Q9UKX5 (protein ITGA1 1). Conserved residues are highlighted red, mostly conserved residues are highlighted blue.
Multiple alignment was performed by the online tool MultAlin (http://multalin.toulouse.inra.fr/multalin/).

all VSPTFQVVNS IAP - VQECSTQ LDI V I VLDGSNSIYP WDSVTA FLNDLLERM DIGPK

a21 : PDFQ LSASFSPATQPCPSL I DVVVVCDESNSIYP WDAVKNFLEKFVQGL DIGPT

al01: VDASFQPQGSLAPTAQRCPTY MDVV IVLD GSNSIYP WSEVQTFLRRLVGKL FIDPE

al 1I: VNSNFR FSKTVAPALQRCQTY MD I V I VLDGSNSIYP WVEVQHFL I N ILKKF YIGPG

all : QTQVGI VQYGENVTHEF NLNKYSS TEEVLVAAKK IVQRGGRQTM TALGIDTARK

a21 : KTQVGLI QYANNPRVVF NLNTYKT KEEMIVATSQTSQYGGDLTN TFGAIQYARK
al 01: Q IQVGLVQYGESPVHEW SLGDFRT KEEVVRAAKNLSRREGRETK TAQAIMVACT
al 1I: Q IQVGVVQYGEDVVHEF HLNDYRS VKDVVEAASHIEQRGGTETR TAFIEFARS

all : EAFTEAR GARRGVKKVMV IVTDGESHD NHRLKKVIQDCED EN IQRFS IA IL

a2l : YAYSAAS GGRRSATKVMVVVTDGESHD GSMLKAVIDQCNH DN I LRFGIAVL
al0l: EGFSQSHGGRPEAARLLVVV TDGESHD GEELPAALKACEA GRVTRYG IAVL
al 1I: EAFQK - - GGRKGAKKVM IVI TDGESHD SPDLEKVIQQSER DNVTRYAVAVL

all : GSYNRGNLST EKFVEEIKSIASEP TEKH FFNVSD ELALVT I VKTLGERIF ALEA
a21 : GYLNRNALDT KNL I KEIKAIASIP TERY FFNVSD EAALLEKAGTLGEQIF S IEGTV
al0l: GHYLRRQRDP SSFLREIRTIASDP DERF FFNVTD EAALTD IVDALGDRIF GLEGSH
all1: GYYNRRGINP ETFLNEIKYIASDP DDKH FFNVTD EAALKDIVDA LGDRIF SLEGTN

Figure 5.2.4: Secondary structure of the I domains of the four collagen-binding integrins. all: residues 151-364 of
sequence P56199 (protein ITGA1). a21: residues 154-368 of sequence P17301 (protein ITGA2). a1ol: residues 145-
361 of sequence 075578 (protein ITGA10). aill: residues 142-356 of sequence Q9UKX5 (protein ITGA1 1). Blue: a
helix, Green: p sheet, red: turn. Bold: highly-conserved residues. Secondary structures of a1l and a21 were based on
the crystal structures 1 QCY [Nymalm et al. 2004] and 1 DZI [Emsley et al. 2000] respectively as annotated in the PDB
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database (http://www.rcsb.org). Secondary structures of a1ol and ai1 were estimated based on the primary sequence
of the proteins using the computational tool Jpred (http://www.compbio.dundee.ac.uk/www-jpred/).

I Domain States
Binding of I domains to their ligands is mediated by residues located in three different loops that
form a metal ion-dependent adhesion site (MIDAS): loop Li forms between P strand A and helix
1, loop L2 forms between helices 2 and 3, and loop L3 forms between P strand D and helix 5
(Figure 5.2.5). Binding of I domains to their ligands involves a divalent metal cation (Mn2+ or
Mg2+ but not Ca2+), water molecules, an acidic amino acid in I Domain loop L1, and an acidic
amino acid in the ligand [Emsley et al. 2000].
Based on x-ray crystallography, I domains of CBI can exist in two distinct conformations, called
"closed" and "open", which possess low and high affinity for ligand binding respectively (a list of
solved crystal structures is provided in Table 5.2-2). Experimental evidence suggests that
recombinant I domains in solution exist in both states, however equilibrium favors the "closed"
conformation [Vorup-Jensen et al. 2007]. Conformation change is accompanied by lateral
motion of the three loops (L1, L2, L3) that surround the MIDAS site, a change in the divalent
cation coordination in the MIDAS site, and a large (10 A) vertical motion of helix 9 at the C-
terminus [Emsley et al. 2000]. The vertical motion of the C terminus a helix has been shown to
affect the conformation state of I domains. Preventing the C-terminus helix motion locks the I
domain in "closed" configuration. Interaction of the C terminus helix with the 1 propeller domain
of the a subunit has been demonstrated to be the mechanism by which cells control the activity
of integrins through "inside-out" signaling [Luo et al. 2007]. I domains can be engineered to
remain locked in the "open" or "closed" conformation by appropriate point mutations [Lu et al.
2001; Shimaoka et al. 2001; Tulla et al. 2008]. The binding pattern of such engineered I
domains is less specific compared to the wild-type I-domains. The I domain aL' of the aL integrin
subunit has also been crystallized in a third distinct "intermediate" conformation [Shimaoka et al.
2003], the stability of which was confirmed computationally by molecular dynamics [Jin et al.
2004]. The same computational model predicted that intermediate conformations do not exist in
a11 and a21 I domains.

91

Figure 5.2.5: Crystal structures of the two conformations of the a2 I domain. Blue: "closed" conformation (structure
1AOX [Emsley et al. 1997]). Red: "open" conformation (structure 1DZI [Emsley et al. 2000]). Superposition of the two
structures highlights the large conformation change in the C-terminus a helix (9) and the MIDAS site loops. Structures
are rendered using Pymol 1.0r1 using structures downloaded from the Protein Data Bank (PDB) database
(http://www.rcsb.org).
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BIACORE data suggest that 20% to 40% of native aLl are in "open" configuration (estimate is
based on the maximum binding values of wild type versus constitutively open aL) [Shimaoka et
al. 2001; Vorup-Jensen et al. 2007]. One explanation is the exposure of a hydrophobic amino
acid (F302) in the "open" configuration, which is hidden in the "closed' conformation. Recently,
it was found that Glu336 in a21 regulates switching of a2l into the "active" configuration through
interaction with the P1 subunit in inside-out signaling [Connors et al. 2007].
The different affinity of the "closed" and "open" configurations of I domains for their ligands can
be explained by the stabilization of the divalent cation in the MIDAS site. In the "closed"
conformation, the divalent cation forms two water-mediated bonds with two serine residues
located at loop L1, and interacts with two (negatively charged at neutral pH) aspartates, one at
loop LI and one at loop L3. The stabilization of the cation by two negatively charged aspartates
of the I domain (without contribution from the ligand) is believed to be the cause of the low
affinity of the "closed" configuration for its ligands. In the "open" conformation, due to the
translocation of the cation and the three MIDAS loops, interaction with the L3 aspartate is lost,
and the divalent cation can be stabilized by the aspartate of loop LI plus an acidic amino acid
(D or E) provided by the ligand [Lee et al. 1995; Emsley et al. 2000]. These findings agree with
experimental results of an inverse relationship between the affinity of an I domain conformation
for its ligands and its affinity for the divalent cation [Vorup-Jensen et al. 2007].

PDB file Description Reference
1JLM aMl (closed), Mn2+ Lee et al. 1995
1 IDO aM' (open), Mg 2+ Lee et al. 1995
1LFA aLl (closed), Mn 2

+ Qu et al. 1995
1 MJN aLI (intermediate), Mn2+ Shimaoka et al. 2003
1 MQ9 aLl (open), Mn2+ Shimaoka et al. 2003
1QC5 a1l (closed), Mg 2+ Rich et al, 1999
1 PT6 al (closed), Mg 2+ Nymalm et al. 2004
1QCY al (closed), Mg 2+ Nymalm et al. 2004
1CK4 al (closed) Nolte et al. 1999
4AOQ al E317A (open) Lahti et al. 2011
1AOX a21 (closed), Mg 2+ Emsley et al. 1997
1 DZI a21 (open) + GFOGER- peptide, C02+ Emsley et al. 2000
Table 5.2-2: Available crystal structures of I domains in the RCSB Protein Data Bank (http://www.pdb.org).

5.2.5 Binding of CBI I Domains to Collagen
This section describes in more detail the mechanism utilized by CBI I domains to bind to
collagen, and provides an overview of published experimental results.

Molecular Mechanism of CBI I Domain Binding to Collagen
CBI integrins bind to small peptide motifs ("adhesion ligands") on ECM proteins via the I domain
of their a subunit. Each CBI I domain binds to several kinds of adhesion ligands found on a
particular subset of collagens or other ECM molecules. The affinity and specificity of each CBI I
domain for its ligands can be explained by the molecular details of I domain-ligand binding.
The crystal structure of a21 bound to a triple-helical peptide that contains the GFOGER motif
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(one of the major adhesion ligands for a1l and a2I) provides insight on how I domains bind their
ligands [Emsley et al. 2000]. The acidic negatively-charged E residue of GFOGER protrudes
into the MIDAS site of the I domain, where it coordinates a divalent cation (Co+ 2) together with
several residues of the MIDAS site. This coordination creates the main strength of the I domain
- ligand bond. In addition, the F and R residues of the GFOGER motif participate in hydrophobic
and ionic interactions with a nonpolar residue (Q215) and an acidic amino acid (D219)
respectively on the surface of the I domain. Furthermore, several a21 residues around the
MIDAS site (N154, D219, E258, Y157) are complementary to the surface of collagen [Kamata et
al. 1999; Emsley et al. 2000; Smith et al. 2000]. Although the MIDAS residues that coordinate
the divalent cation are highly conserved among CBI I domains (Figure 5.2.3), the residues that
lie on the I domain surface close to the MIDAS vary among CBI I domains. This variation is
believed to control the specificity and affinity of each CBI I domain for its ligands [Emsley et al.
2000]. For example, when the negatively charged D219 of a21 is substituted with the positively
charged R (present in a1l, and alol) the result has binding specificity to collagens similar to a1l
(binds stronger to collagens IV, VI compared to type 1) [Tulla et al. 2001].

58
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Figure 5.2.6: Residues of the a2 I domain critical for high-affinity binding to GFOGER ligand in fibrilar collagens. The
a2I domain (blue, red) binds a triple helical peptide (green, orange) that contains the GFOFER motif (orange). Based
on structure 1 DZI [Emsley et al. 2000] rendered using Pymol 1.0r.

In some collagens (including types 1, 11) the GFOGER motif is present in two chains of the
collagen triple helix. These two locations of GFOGER are situated close enough so that when
an I-domain binds one GFOGER motif, two residues (F, R) of the neighboring GFOGER interact
with residues around the MIDAS site [Emsley et al. 2000]. The residues of helix 6 are not crucial
for ligand binding specificity and affinity as it was originally proposed [Kamata et al. 1999]. I
domain - collagen binding can also be regulated by collagen post-translational modification.
Specifically, is has been shown that prolyl hydroxylation in the hydroxyproline residue of the
GFOGER motif is required for a11 but not a21 binding to collagen [Perret et al. 2003]. Apart from
collagen, CBI can bind other ECM proteins. all, a21, and a1ol bind laminin-1, while a21 binds
tenascin. a1l and a21 can discriminate different laminin isoforms.However CBI cannot bind
fibronectin or fibrinogen [Tuckwell et al. 1995; Calderwood et al. 1997; Tulla et al. 2001; Tulla et
al. 2008].
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I40

Figure 5.2.7: Surface complementarity between the a21 domain (blue) and a triple helical peptide (green, red, orange)
whose chains contain the GFOGER ligand. The GFOGER motif where a21 binds is shown in orange, the residues (F,
R) of the neighboring GFOGER motif that participate in surface complementarity are shown in red. Based on
structure 1DZI [Emsley et al. 2000] rendered using Pymol 1.Or1.

Ligands of CBI I Domains in Collagens
The GFOGER motif was the first ligand of a1l, a21, identified in collagen I [Knight et al. 1998,
2000]. Later it was found that GFOGER is also a ligand for al [Zhang et al. 2003; Siljander et
al. 2004]. Rotary shadowing experiments revealed that in tropocollagen molecules there are
multiple ligands. CBI I Domain ligands in collagen I are located mostly in three sections (N-
terminus, C-terminus, middle) of the -300nm long collagen molecule [Xu et al. 2000]. In
tropocollagen Ill the ligand close to the C terminus dominates [Kim et al. 2005]. Additional
research revealed several additional ligands of CBI I domains. Particular substitutions of the F
residue of motifs GLOGER and GROGER have been identified as ligands of both al and a21
[Xu et al. 2000; Kim et al. 2005; Raynal et al. 2006]. The motif GASGER, found in human
collagens I, 11 and Ill is also a ligand for integrins a1p1 and a21, however of lower affinity than
GxOGER ligands [Xu et al. 2000]. The proposed motif GAOGER was found to bind a1l and a21
with very low affinity [Kim et al. 2005]. The motif GLOGEN found in human collagen Ill binds
both a1p1 and a211 and has been found to be a better ligand for a11 compared to GFOGER
[Raynal et al. 2006; Hamaia et al. 2012]. Finally the motif GVOGEA has been identified as a
specific ligand for a1p1 [Hamaya et al. 2012]. Binding of recombinant a1l, a21, and aoll to ligand-
containing peptides revealed the following affinity strength sequence: GFOGER>GLOGER>
GLSGER>GMOGER> GAOGER~GASGER [Sijander et al. 2004]. Interestingly, mutant a21
locked in the "open" configuration have similar affinity for peptides containing GFOGER,
GLOGER, GLSGER, or GMOGER ligands, still significantly larger than GAOGER and GASGER
ligands. Competitive binding experiments verified that CBI I domains bind to common ligands in
collagens. For example the GFOGER and GLOGER motifs are ligands of al, a21 and aol
[Knight et al. 1998, 2000; Xu et al. 2000; Zhang et al. 2003; Siljander et al. 2004].

CBI I Domain ligands are present in many collagen isoforms (Figure 5.2.8). GFOGER is present
in collagens I, 11, IV, V, VII and XI, GLOGER is present in collagens 1, 11, 111, VII, and Vill, while
GROGER is present in collagens 1, 111, VII, and X [Xu et al. 2000; Siljander et al. 2004; Kim et al.
2005]. Furthermore, each collagen isoform contains multiple copies of different ligands. For
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example, each collagen I molecule contains 2 GFOGER, 4 GLOGER, 2 GMOGER, and 2
GASGER ligands, while collagen Ill contains 3 GMOGER, 3 GLSGER, 3 GMOGER, and 6
GAOGER ligands [Sijander et al. 2004].

Collagen I

Collagen 11

Collagen III

GROGER GVMGFO GMOGER
GLOGER GFOGER

GLOGER GMG1F0 GMOGER
GFGGER

11140

11130 4138 1

GROGER_1G~ DER 4LSGER

GLTKCEN
GLOGEN
GAOGER

Figure 5.2.8: Ligands of collagen-binding integrins (highlighted blue) and DDR family receptors (highlighted orange)
in collagens 1, 11 and III [Leitinger 2011].

Specificity and Affinity of CBI I Domain Binding to Collagens
Studies on the binding specificity of CBI I domains to ECM molecules rely mostly on two kinds
of binding assays: i) solid phase binding assay (SPBA), and ii) BIACORE binding assay. The
vast majority of published studies focus on interactions of soluble recombinant a11 and a2l with
tropocollagen molecules (usually type I collagen). Few studies consider a1ol and a111. A single
study focused on binding of I domains to collagen I molecules in fiber form. No study so far has
quantified the binding of CBI to ECM tissue or biomaterials.

Although there is great variation in experimental findings, most publications suggest that a11
bind network-forming collagens more strongly than fibril-forming collagens, while a2l bind fibril-
forming collagens more strongly than network-forming collagens [Tuckwell et al. 1995;
Calderwood et al. 1997; Dickeson et al. 1999; Tulla et al. 2001, 2008; Jokinen et al. 2004; Shi
et. 2012]. This pattern agrees with observations of cells expressing al 1 versus cells expressing
a2 1 [Dickeson et al. 1999; Nykvist et al. 2000]. a1ol bind network-forming collagens slightly
better than fibril forming collagens and resemble slightly the pattern of a1l [Tulla et al. 2001]. a111
bind preferably to fibril-forming collagens in a similar way to a21 [Zhang et al. 2003]. I domains
that have been engineered to stay in "open" conformation show much less specificity (i.e. bind
to a wider range of ECM molecules) and greater avidity (bind to more binding sites with
somewhat tighter dissociation constants) [Tulla et al.2008].

Although studies of CBI I domain binding to collagen use tropocollagen I molecules, in tissues
collagen molecules form super-molecular structures such as fibrils, fibers and mesh-like
structures [Gelse et al. 2000]. The single study that has focused so far on the effects of fibril
formation on I domain adhesion to collagen, revealed that fibril formation reduced the affinity of
a11 and a2l binding to collagen and reduced the number of binding sites (ligands) available for
binding [Jokinen et al. 2004].
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Published estimates of the dissociation constant kD for the affinity of CBI I domain to collagen
vary widely, see Table 5.2-3. Possible reasons that can explain this variance are: i) different
experimental methods (SPR, SPBA), ii) different I domains expressed and purified in different
ways, iii) collagen state (amount, conformation), and iv) improper analysis and interpretation of
experimental data, see also the discussion on BIACORE data nanalysis (Section 5.3.5), and the
discussion on binding assays on surfaces (Section 5.3.8). Few papers have highlighted the
difficulty in interpreting these data. Among them, one study suggests that results from CBI I
domain - collagen binding experiments do not agree with 1:1 binding models or cooperative
binding models, and that the presence of multiple adhesion ligands for each CBI I domain on
each collagen molecule complicates the analysis of binding data, because I domains bind to
each ligand with different affinity [Rich et al. 1999]. Most SPBA assays suggest kD on the order
or 200 nM. Most BIACORE assays fit the curves using a bi-exponential model, which usually
provides one strong dissociation constant kD on the order of 10 to 200 nM. However few
published papers provide their BIACORE results for a series of I domain concentrations [Rich et
al. 1999]. Estimations of kD based on kinetic analysis need to agree reasonably with steady-
state binding results from titration experiments. However, most published papers provide few
curves which cannot support dissociation constants on the order of 100 nM [Calderwood et al.
1997; Xu et al. 2000].

I-domain Collagen kD [nM] Assay Reference
isoform (source)M [ - 1

a11 I (rat) 24 4.1E3 8.2 SPR (k) Calderwood et al.
23 - SPBA 1997

a11 I (bovine) 90*, 7000 SPR (eq) Rich et al. 1999
a11 I (bovine) 110 SPBA Xu et al. 2000
a11 I (chic) 260,13900 SPR (eq)

a11 I (rat) 160 SPBA Tulla et al. 2001
a11 I (rec. human) 320 5500 SPR (eq) Kim et al. 2005
GST-al I (bovine) 30 SPBA Jokinen et al. 2004
GST-a11 I fibrils (bovine) 250 SPBA
GST-a11 I (rat) 268 SPBA Tulla et al. 2008
a11 (rec. human) 150, 7280 SPR (eq)
a11 Ill (rec. human) 190, 6150 SPR (eq) Kim et al. 2005
a11 IV (human) 6 12E3 7.3 SPR (k) Calderwood et al.

34 SPBA 1997
a11 IV (rouse) 65 SPBA Tulla et al. 2001
a11 VI (human) 200 SPBA
a21 I (rat) 180 67E3 120 SPR (k) Calderwood et al.

54 SPBA 1997
a21 I (bovine) 10700 SPR (eq)

5800 SPBA Xu et al. 2000
a21 I (chicken) 8800 SPR (eq)
a21 I (rat) 20 SPBA Tulla et al. 2001

230



a21 I (rec. hum) 260, 3990 SPR (eq) Kim et al. 2005
GST-a21 1 500* SPBA Kamata and

Takada 1994
GST-a21 I (bovine) 10 SPBA Jokinen et al. 2004
GST-a 2l I fibrils (bovine) 100 SPBA
GST-a 21 I (rat) 31 SPBA Tulla et al. 2008
a21 11 (rec. human) 1750,16500 SPR (eq)
a21 III (rec. human) 330 14500 SPR (eq) Kim et al. 2005
a21 IV (human) 115 SPBA Calderwood et al.

1997
a2 IV (mouse) 140 SPBA
a21 VI (human) SPBA Tulla et al. 2001
alol I (rat) 350 SPBA
a1ol IV (mouse) 300 SPBA
a101 VI (human) 350 SPBA
Table 5.2-3: Experimental results for binding parameters reported in the literature for the binding of recombinant I
domains (with or without a GST fusion) to collagen molecules (type 1, 11, 111, IV or VI). The estimated equilibrium
parameters are the dissociation constant kD and the number of binding sites n per molecule. The estimated kinetic
parameters are the on rate ko, and the off rate koff of the binding reaction. Binding parameters are estimated from
solid phase binding assays (SPBA) or surface plasmon resonance (SPR) assays. SPR is implemented either in
kinetics mode (SPR(k)) or in equilibrium mode (SPR(eq)). *: question results due to large errors between best fit and
data.

The Effect of Collagen Conformation on CBI I Domain binding
The molecular mechanism of I domain-ligand binding suggests that proper collagen
conformation (triple helix) is required for strong I domain-ligand binding. This has been validated
experimentally. a21 cannot bind heat denatured (gelatinized) fragments of collagen or cleaved
collagen molecules [Tuckwell et al. 1995; Messent et al. 1998]. al and a21 bind collagen with
approximately 10 times higher affinity than gelatin [Tuckwell et al. 1995; Calderwood et al.
1997]. a1l and a21 bind to peptides that contain the GFOGER ligand as long as they form triple
helical quaternary structure [Knight et al. 2000]. Collagen cleavage in vivo by MMPs has been
proposed as a signaling mechanism because it changes the set of integrins utilized by cells to
bind to their environment (cells bind gelatinized collagen by a distinct set of adhesion receptors,
e.g. avPv3 [Messent et al. 1998]). For example, collagen degradation in the early steps of wound
healing has been proposed as a way to enhance cell motility by preventing the formation of
extensive interactions through a2P 1 integrins [Ruoslahti 1992; Pilcher et al. 1997; Messent et al.
1998].

Divalence Cation Dependence of CBI I Domain Binding to Collagens
The affinity of a1l, a21, and aool binding to their ligands is dependent on divalent cations
[Tuckwell et al. 1995; Calderwood et al. 1997; Tulla et al. 2001]. Experimental evidence from
BIACORE experiments, suggests that divalent cation (Mg+2 or Mn+2) binding to I domain is a
prerequisite for I domain binding to its ligand. [Rich et al. 1999] suggest that excluding Mg. 2

reduces I domain binding to collagen significantly. The presence of the chelating agent EDTA
reduces binding of a1l and 021 to collagen by 50% to 90% [Estavillo et al. 1999; Dickeson et al.
1999; Tulla et al. 2008; Hamaia et al. 2012; Shi et al. 2012]. Some papers claim that EDTA
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blocks completely the binding of a1l and a21 to collagen [Calderwood et al. 1997; Messent et al.
1998], or to GROGER peptides [Kim et al. 2005]. However, the effect of EDTA on cell adhesion
is more severe compared to its effect on I Domain binding. EDTA blocks almost completely
several cell adhesion assays [Sijander et al. 2004; Hamaia et al. 2012].
On the other hand, although Ca+2 affects integrin-mediated adhesion, there is conflicting
evidence whether it affects I Domain binding to collagen [Tuckwell et al. 1995; Estavillo et al.
1999; Onley et al. 2000] or to GFOGER peptides [Onley et al. 2000].
It is proposed that the affinity of the I Domain MIDAS site for the divalent cation is inversely
related to the addinity of I Domains for their adhesion ligands. The reported dissociation
constant of a11 for Mg+2 is 10 pM [Rich et al. 1999]. The dissociation constants of wild-type acl
for divalent cations depend on the cation type (3.16 pM for Mn+2, 19.42 pM for Mg+2 , 384 pM for
Ca+2 ). This theory is supported by the finding that constitutively "active" I domains bind ligands
with 2-3 orders of magnitude increased affinity and bind cations with 1 order of magnitude
reduced affinity compared to "closed" wild type I domains [Vorup-Jensen et al. 2007]. In the
same study, the number of binding sites per collagen molecule in BIACORE experiments was
shown to depend on the concentration of both Mg+2 and I domains.

5.2.6 Cellular Effects of Adhesion via Collagen-Binding Integrins

General Effects of Integrin-Mediated Adhesion to Collagen
Even though integrins a01p and a2 1 are structurally similar, they have been found to induce
different effects to cells. al 1 has been found to promote cell proliferation and to impede
collagen synthesis, while a2 1 inhibits the growth of some cell types and increases ECM
production and remodeling [Jokinen et al. 2004; Shi et al. 2012].
Cell contraction has been generally associated with integrin a201. CHO cells (normally
expressing neither a1p1 nor a2 1) transfected stably with a21 contract floating collagen matrices
more than CHO cells transfected with a1 1 [Jokinen et al. 2004]. Furthermore a231 has been
shown to promote (but not to be necessary for) the formation of characteristic long protrusions
in cells cultured on fibrillar collagen (but not on tropocollagen) [Jokinen et al. 2004]. It is obvious
that the molecular organization of collagen affects cell phenotypes, perhaps by affecting the
ability of different integrins to bind collagen.

Adhesion via CBI Affects Several Cell Phenotypes Related to Wound Healing or Cancer
A large number of studies provide evidence of a correlation between the amount and type of
integrin-mediated adhesion to the surrounding matrix of a cell, and the expression of particular
cell phenotypes (adhesion, ECM remodeling, cell contraction, proliferation, migration) related to
important biological processes such as wound healing and cancer.
During wound healing, growth factor patterns which include PDGF and TGF change the
expression pattern of CBI in fibroblasts: a1p1 is down-regulated and a2P1 is up-regulated [Heino
2000]. In general, there is evidence that a 1@1-mediated adhesion to collagen promotes cell
growth and suppresses ECM remodeling [Shi et al. 2012], while a2 1-mediated adhesion
stimulates ECM remodeling by up-regulating synthesis of collagen I and MMPs [Riikonen et al.
1995; Heino 2000; Tulla et al. 2001]. a1p1 and a21 seem to compete with each other [Riikonen
et al. 1995; Heino 2000] in order to fine-tune ECM remodeling and contraction.

232



In vitro studies of collagen gel contraction by fibroblasts show that gel contraction is mediated
entirely by collagen-binding integrins (axp1 integrins excluding a331 and a5 13) and that blocking

C2A, through anti-a 2 antibodies results in 50% less contraction [Schiro et al. 1991]. The same
study shows that, even though a21 adhesion could be mediated by a2 subunits lacking a
cytosolic domain, contraction required the cytosolic domain of a2 subunits, i.e. required
interaction of a2 with cytosolic proteins. Even though evidence suggests that a2 1 seems is a
key feature of ECM contraction, it is not the only CBI that mediates contraction [Schiro et al.
1991; Heino 2000]. A different study showed that stellate liver cells expressed al 1 and not a2 1

before and after (up to 6 days) full-thickness injury [Racine-Sampson et al. 1997]. Adhesion and
contraction of stellate cells harvested 6 days post-injury to collagen I and IV gels was mediated
by a1p 1.
Although the a2 1 integrin is the major integrin found in epithelial cells, re-epithelization of full-
thickness wounds in a2-null mice is not delayed, even though harvested keratinocytes from such
animals failed to adhere in collagen I gels [Grenache et al. 2007]. In the same animal model, the
mRNA expression of several matrix metalloproteinase (MMP) genes is upregulated in a2-null
mice compared to wild-type mice.

The upregulation of matrix remodeling genes by a231 makes a2 1 a protein that could promote
invasive cancer cell phenotypes, therefore a potential target for anti-cancer studies [Riikonen et
al. 1995]. A 3D in vitro model of pancreatic cancer cell adhesion and proliferation inside
collagen-GAG scaffolds (CGS, similar to the ones used in this thesis) showed that a2 1 was
necessary for pancreatic cancer cell adhesion and subsequent proliferation [Grzesiak and
Bouvet 2007].
The vast majority of studies on the effects of CBI on wound healing have focused on integrins
a 101 and a2f 1. Table 5.2-1 provides a partial list of cell lines used in experiments of adhesion via
CBI. Different cell lines have different patterns of CBI expression. Apart from cells that naturally
do not express some CBI, it is possible to use cells obtained from knock-out mice that lack
ITGA1 or ITGA2 genes [Shi et al. 2012]. The effects of adhesion via the remaining two CBI
(alo@1 and a11@1) are much less known.

Cell Signaling Induced by CBI-Mediated Adhesion
Integrins are birectional signaling machines that transmit chemical information in both "outside-
in" and "inside-out" ways [Hynes 2002]. In "outside-in" signaling, binding of an integrin to an
adhesion ligand in the ECM changes the activation state of the integrin, which is transmitted to
the integrin cytosolic domain through conformational changes. Homologous subunits of
activated integrins cluster [Li et al. 2003] and interact with cytosolic signaling proteins to induce
intracellular signal transduction pathways that inform the cell about its environment. In "inside-
out" signaling, integrins interact with cytosolic proteins that regulate their activation state and
therefore the type and amount of cell-matrix interactions [Hynes 2002].

The large conformation changes that occur during I domain activation are involved in both
"outside-in" and "inside-out" integrin signaling [Lee et al 1995; Emsley et al. 2000; Hynes 2002].
Binding of an I domain to its ligand favors transition into the "open" conformation, which is
propagated to the rest of the integrin through the motion of the I Domain C-terminus helix, and
eventually activates the integrin by separating its two subunits. It is believed that integrin
activation (separation of its subunits) leads to conformational changes that lead to vertical
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displacement of the C helix, which favors the "open" conformation of the I domain (inside-out
signaling).
Cell adhesion through integrins has been shown to be very important for cell survival and
proliferation. Many kinds of cells survive only when they adhere to an insoluble matrix. This
requirement has been shown to be implemented in two ways [Gomperts et al. 2002]. The first is
through protein kinase B (PKB/Akt): Activated integrins recruit focal adhesion kinase (FAK) that
autophosphorylates, and activates PKB through phosphatidylinositol-3 kinase (PI-3). PKB
phosphorylates and inactivates caspaces and several transcription factors related to apoptosis.
The second process involves the mitogen-activated protein kinase (MAPK) pathway:
Experiments in cells grown inside 3D collagen matrices show that a231 integrins excite the p38
MAPK pathway through the Cdc42 GTPase and kinases MEK3/4 [Heino 2000]. These events
take place only inside 3D collagen matrices and are not observed when the cells are cultured in
monolayers. The ERK/MAPK signaling has been also involved in the downregulation of collagen
IV expression induced by adhesion to collagen IV through a131 [Shi et al. 2012]. Finaly, a2p1
has been also shown to induce MMP1 through PKC and NF-KB pathways [Heino 2000].
Activated integrins have been shown to interact with several GTPases by first binding and
activating FAK, and then recruiting adaptor proteins (e.g. SOS, GRB2) that interact and activate
GTPases. Ras GTPase is involved in the MAPK pathways described above. Rho family
GTPases (Rac, cdc42, Rho) are involved in regulating cell cytoskeleton (actin and microtubule
polymerization) and cell contraction [Lodish et al. 2007]. In vitro experiments on cells cultured
on 2D glass surfaces suggest that each kind of Rho GTPase favors the formation of different
actin structures: Rac regulates lamellipodia formation, cdc42 regulates filopodia formation and
Rho regulates stress fiber formation [Lodish et al. 2007]. Finally, Rho GTPase participates in
cell contraction by directly phosphorylating (and therefore inducing contraction) the myosin light
chain, or by activating the MCI-1 7 inhibitor of myosin phosphatase.
Integrins are expected to interact with multiple pathways. It was shown above that integrins
excite the MAPK pathway and therefore should cross-talk with other receptors that excite the
MAPK pathway such as receptor tyrosine kinases (RTK, ligands include the NGF, PDGF, FGF,
EGF growth factors) or cytokine receptors (ligands include interferons). MAPK pathway is
involved in activating several transcription factors that are related to cell proliferation [Lodish et
al. 2007], as well as in the control of cyclins, proteins that control cell cycle progression
[Gomperts et al. 2002]. Integrins are also expected to cross-talk with other receptors that excite
Rho family GTPases, such as RTK and G-protein coupled receptors (GPCR). Furthermore, both
the MAPK pathway and Rho family GTPases have been shown to affect the TGP signal
transduction pathway.

Even though the binding patterns of the four collagen-binding integrins (CBI) overlap, it has
been shown that each one of the CBI has different effects to the cell, therefore it is possible that
each CBI triggers different signaling events [Heino 2000]. However, the available information
about the signaling events that are triggered by each one of the four CBI is limited. Furthermore,
most of the available information is based on in vitro experiments in cells cultured on stiff 2D
surfaces. Less information is available about CBI-induced signaling in cells cultured inside more
physiologically-relevant 3D microenvironments such as collagen-GAG scaffolds.

234



5.2.7 Methods for Quantifying the Surface Chemistry of Biomaterials
Current Practice of Reporting the Surface Chemistry of Matrices
The majority of published studies on cell-matrix interactions were carried out on planar surfaces
(petri dish, flasks) where interactions with matrix biomolecules (such as peptides or ECM
molecules) take place by adsorbing (or less often crosslinking) these molecules on the surface.
Published papers hardly ever report the surface chemistry of the corresponding insoluble
environment; instead they provide estimates of the amount of biomolecule adsorbed on the
surface, expressed in units of biomolecule mass/area [Holub et al. 2003; Jirouskova et al. 2007].
Few researchers have measured the mass of the biomolecule that is adsorbed or cross-linked
on a surface. This was accomplished by using appropriately labeled biomolecules, and
detecting the signal emitted by the biomolecule after adsorption/crosslinking, which is then
converted into biomolecule surface density (mass/area) using a calibration curve. Examples
include radiolabelled fibronectin [Maheshwari et al. 2000; Valenick and Schwarzbauer 2006]
and fluorescently labeled collagen [Engler et al. 2004]. Nevertheless, a measurement of
biomolecule surface density is not necessarily proportional to the density of adhesion ligands
available to cells for binding, therefore these methods do not describe accurately the surface
density felt by cells.
Over the past ten years, an increasing number of researches utilize 3D in vitro cell culture
systems, such as gels or porous biomaterials [Griffith and Swartz 2006]. Again, none of these
studies reports the surface chemistry of the corresponding matrix, and instead describe the
chemistry of the matrix felt by cells using bulk properties such as mass fraction and chemical
composition.
Methods for Quantifying Adhesion Ligands in Biomaterials
Two recently developed methods measure quantities that are related to the density of adhesion
ligands in biomaterials. Both of them are applied in artificial biomaterials that contain only RGD
ligands.
The first method was developed for quantifying the density of RGD ligands in artificial
biomaterials made by functionalizing biologically inert surfaces with RGD peptides [Barber et al.
2005; Harbers et al. 2005]. This method works by attaching the RGD entity to a fluorophore
through a linker that contains a protease recognition site. Treatment of the material with the
protease chymotrypsin releases the fluorophores. The detected fluorescence signal emitted by
the released fluorophores is converted to RGD density via a calibration curve.
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The second method quantifies the number of bound RGD ligands on cell adhesion receptors
[Kong et al. 2006; Huebsch & Mooney 2007; Hsiong et al. 2008]. In this method cells, whose
membranes are stained with fluorescein, are incubated inside a gel of alginate molecules
attached to peptides that contain RGD ligands next to a rhodamine dye. The number of cell
adhesion receptors bound to fluorescently labeled RGD peptides is estimated by detecting the
amount of F6rster resonance energy transfer (FRET) between fluorescein and rhodamine.
FRET takes place when the distance between the two fluorophores is less than approximately 8
nm, a condition that occurs in the proximity of an RGD ligand bound to a cell adhesion receptor.
The FRET measurement is converted into number of RGD peptides bound per cell through a
calibration curve. Such measurements can take place in high-magnification optical
configurations in order to quantify cell adhesion to RGD in single cell level [Kong et al. 2006].
The discussion of this section suggests that there is a lack for methods that could quantify the
surface density of adhesion ligands of particular cell adhesion receptors in a wider range of
biomaterials or tissue ECM.

The need for methods to quantify the surface chemistry of a matrix
At the moment, there is considerable effort to study the extracellular matrix of cells using
methods of biochemistry and proteomics (e.g. mass spectroscopy). This is not an easy task,
due to several biochemical properties of ECM macromolecules (large size, extensive inter-
molecular cross-linking between ECM molecules, poor solubility, disulfide bridges) [Naba et al.
2012]. Furthermore, studying bio-molecules in the insoluble state is much more complex
compared to studying bio-molecules in solution. In addition to the chemical composition and its
modifications, the insoluble state is described by a larger number of parameters including its
stiffness and stress tensors, and surface chemistry.
At the moment there exist several techniques that can characterize the chemistry on the surface
of biomaterials or protein-coated surfaces [Ma et al. 2007; Kingshott et al. 2011]. Several
spectroscopic techniques such as Attenuated Total Reflectance Fourier transform spectroscopy
(ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS) and time-of-flight secondary ion mass
spectroscopy (TOF-SIMS) can quantify the chemical structure on the surface of a biomaterial.
ATR-FTIR is an alternative configuration of IR spectroscopy used in monomolecular layer
analysis. XPS measures elemental composition, empirical formula and chemical state. TOF-
SIMS is mass spectroscopy technique that analyzes the elemental and chemical composition of
the outermost molecular or atomic layer of a solid surface. Several colorimetric methods
measure the surface density of particular chemical groups such as carboxylic groups, primary
amines (Rhodamine 6G, methyl orange), or the density of proteins on biomaterial surfaces
(Ninhydrin, bicinchoninic acid). Ellipsometry is utilized for measuring the thickness of protein
coatings. Some of these methods have been applied not just in characterizing functionalized
surfaces, but also in characterizing the ECM of decellularized organs [Brown et al. 2010], an
actual 3D matrix of significant biological activity.
Although the presence of particular chemical groups on the surface of a material has been
found to affect cells in vitro [Keselowsky et al. 2005], the biological relevance of the methods
described in the previous paragraph is limited by their inability to quantify the surface chemistry
from the point of view of cell biology, where what matters is not the presence of particular
elements or functional groups, but instead the presence of chemical entities (adhesion ligands)
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recognized by cell adhesion receptors. Specifically, there is a severe shortage of methods that
can quantify the presence and density of the elementary chemical clues that cells recognize and
bind to in situ on the surface of actual 3D matrices. Such methods could have significant impact
in quantifying the stimuli provided by the matrix to cells, and in characterizing and designing
new biomaterials.

This chapter describes a method that combines fluorescent protein technology and spectral
multi-photon microscopy to measure in situ the density of ligands for particular adhesion
receptors in three-dimensional matrices (such as the connective tissue of organs or
biomaterials). The method attempts to quantify the surface chemistry of a matrix as detected by
cells, and fills a critical gap in cell-matrix interaction studies and biomaterial development.
Although the results presented in this study focus on quantifying the density of ligands for the
two major collagen-binding receptors (integrins a1p1 and a2P1) on collagen-based biomaterials
(similar to collagen-based scaffolds used in [Soller et al. 2012]), the proposed method can be
appropriately generalized to quantify the density of ligands for several types of adhesion
receptors in a wide variety of three-dimensional matrices.

5.3 Methods

5.3.1 Overview of the Methodology of Surface Chemistry Quantification

Key features
The proposed methodology for quantifying the surface chemistry of a matrix is an in situ binding
assay, where 3D fluorescence microscopy is utilized to measure the signal emitted by
fluorescent adhesion biomarkers bound on adhesion ligands on the surface of the biomaterial.
This subsection summarizes two key features of this methodology (adhesion markers, 3D
imaging):

The methodology quantifies the surface chemistry of a matrix by utilizing adhesion markers,
soluble molecules that have similar binding properties (specificity and affinity) as the adhesion
receptor of interest. Possible adhesion markers include soluble recombinant domains of
adhesion receptors that mediate receptor adhesion to its ligands (provided it is feasible to
identify and express these domains). Such soluble markers recognize and bind to ligands
present on the surface of a matrix. For each adhesion receptor of interest, two kinds of adhesion
markers are necessary:
- A fluorescent adhesion marker (denoted as I*). The density of ligands for an adhesion

receptor is quantified by measuring the fluorescence intensity emitted by soluble fluorescent
adhesion markers bound to their ligands on the matrix surface.

- A non-fluorescent adhesion marker (denoted as I), which ideally is identical to the
fluorescent adhesion marker but is non-fluorescent. Non-fluorescent markers are used in
combination with fluorescent markers in competitive binding assays in order to evaluate the
specificity and affinity of the fluorescent marker.

This study focuses on quantifying the surface chemistry of collagen biomaterials. This is
implemented by quantifying the surface density of adhesion ligands for the two major collagen-
binding integrins (CBI) al1 and a2P1. Adhesion markers are based on recombinant I domains of
integrin subunits a1 and a2 (Section 5.2.4). The fluorescent adhesion marker of each CBI is the I
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domain of the corresponding a subunit (ITGA1 or ITGA2) fused to a small tetracysteine tag (TC-
a11, TC-a 2l). TC-tagged I domains are not intrinsically fluorescent, however they become
fluorescent after a small biarsenical dye binds to the TC tag (Section 5.3.6). The non-fluorescent
adhesion marker of each CBI is simply the native I domain (all, a21) of the corresponding a
subunit (Section 5.3.2).
Quantifying the signal emitted by a fluorescent molecule located on the surface of a biomaterial
or ECM is a challenging problem due to the complex 3D geometry of the matrix. Biomaterials
and ECM consist of super-molecular structures (fibers, struts, and lamellae) whose dimensions
vary, and whose orientation can be random. In order to measure the surface chemistry of such
a matrix in situ with minimal matrix perturbation, it is necessary to use a 3D imaging modality
that can image deep inside the matrix and can resolve the matrix volume from its surroundings.
In this thesis this is achieved using spectral multi-photon microscopy (see Chapter 2). Multi-
photon microscopy provides the optical sectioning capability required for imaging complex 3D
geometries inside thick matrix samples [Denk et al. 1990]. The spectral detection capability of
the MPM (see Section 2.3.1) enables simultaneous imaging of the emissions generated by
fluorescent components in the matrix and by the fluorescent I Domains (Chapter 2). In this
thesis, spectral imaging is exploited to image the weak blue-green intrinsic fluorescence
emission of collagen and the green fluorescent emission of the FlAsH biarsenical dye attached
to TC-tagged I domains. Collagen emission is utilized to identify the matrix volume and guide
the interpretation of the fluorescent I Domain emission.

Experimental Protocol Summary
Each experiment for the measurement of the surface density of adhesion ligands of a particular
adhesion receptor on a matrix consists of the following steps:
- I Domain staining: fluorescently stain TC-tagged I Domains by treating them first with 1 mM

TCEP reducing agent (to reduce the cysteines of the TC tag) and then with a slight excess
(10%) of FlAsH biarsenical dye. Remove the excess unbound FlAsH dye by gel filtration.

- Matrix blocking: matrix samples are treated with a blocking agent (e.g. BSA) in order to
reduce non-specific binding of adhesion markers to the matrix.

- Binding of I Domains to the matrix: remove the blocking buffer and add the fluorescently-
labeled I domain solution in appropriate buffer (with or without Mg+2 ions). Incubate matrix
samples overnight at 40C to let the I Domains bind their adhesion ligands on the matrix.

- Imaging: image the matrix sample in binding equilibrium with I domains using a spectral
multi-photon microscope. Acquire a 3D image, by imaging consecutive planes 10-30 pm
away from the material surface at 1 pm increments.

- Image Processing: Apply the image processing algorithms described in Chapter 2 in order to
segment the image into pixels representing the scaffold and pixels representing I Domain
solution. The same algorithms also provide images of the fluorescent emission of collagen
and the fluorescent emission of fluorescently-labeled I domains. Use the fluorescent
emission of collagen to identify the matrix volume. Quantify the emission intensity of
fluorescently-labeled I domains at the scaffold surface at appropriate locations. Transform
the intensity measurements of the emission of fluorescently-labeled I Domains into surface
density of fluorescently-labeled I Domains using a calibration curve. Derive the mean and
standard deviation over six measurements for each experimental setup.
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- Result Interpretation: combine results for the density of adhesion ligands obtained by
treating the same matrix with different concentrations of fluorescently-labeled I domains and
various concentrations of non-fluorescent I Domains. Use a 1:1 binding model to estimate
the number of binding sites on the collagenous matrix and verify that the estimated
dissociation rate kD makes physical sense.

5.3.2 Recombinant Expression and Purification of CBI I domains
Four kinds of recombinant I domains were expressed in BL21 E.coli as GST fusion proteins and
purified by GST affinity chromatography [Wilson and Walker 2000]. After purifying the fusion
protein, the GST entity was removed by thrombin cleavage, I domains were reconstituted in
appropriate buffer, and stored at 40C until use. The purity and concentration of purified I domain
solutions was evaluated via SDS-PAGE electrophoresis and 280nm light absorption
spectroscopy (Section 5.3.3). Advanced characterization of purified I Domains by circular
dichroism (CD) spectroscopy and BIACORE binding assay is described in Sections 5.3.4 and
5.3.5.

Preparation of I Domain cDNA Plasmids
I domains from the a subunits of the two major collagen-binding integrins (CBI) a1@1, a2 1 were
expressed. The cDNA of each CBI I domain (from the a1 and a2 integrin subunits) was was
amplified from the cDNA of corresponding Homo Sapiens a subunit gene (ITGA1 and ITGA2),
and inserted in a pGEX4T3 vector (General Electric Healthcare, NY), appropriate for expressing
GST fusion proteins. For plasmid amplification, plasmids were transfected in DH5a e-coli, and
glycerol stocks of bacteria were stored for long-term at -80*C. More information about the genes
and plasmids of each I domain cDNA is provided in Table 5.3-1.
Two I domains are non-tagged (a11, a21), and two I domains (TC-a11, TC-a 21) are tagged with a
teracysteine (TC) tag that enables their specific fluorescent labeling using biarsenical dyes
[Adams et al. 2002], see Section 5.3.6. The tagged I domains are identical to the non-tagged,
apart from the presence of the tetracystine tag WDCCPGCCK in the N terminus of the I domains.

4*In in e A *i Veetor Rest on TC-tagged

a11 ITGA1 P56199 (147-360) pGEX4T3 BamHl ... Sall
TC-a11 ITGA1 P56199 (147-360) pGEX4T3 BamHl ... Sall YES

a21 ITGA2 P17301 (188-378) pGEX4T3 BamHl ... EcoRI -

TC-a 21 ITGA2 P17301 (188-378) pGEX4T3 BamHl ... EcoRI YES
Table 5.3-1: Information oabout the four I domains expressed and purified in this thesis.

Plasmids containing the cDNA of I domains (a11, a21) of integrin subunits a1 and a2 were a kind
gift of Sue Craig (Martin Humphries Lab, Faculty of Life Sciences, University of Manchester,
UK). Plasmids were transformed into DH5a e-coli by Dr. Amit Roy.

The cDNA of TC-taged I domains was constructed by amplifying the purified a11, a21 plasmids by
PCR using appropriate primers designed using the "oligocalc" software tool
(http://www.basic.northwestern.edu/biotools/OligoCac.html). The cDNA of TC-a1I was amplified
from a11 cDNA using 5-ATAT - GGATCC - TGG GAT TGT TGT CCC GGG TGT TGT AAG -
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GTC AGO CCC ACA TTT CAA GTC7-3 (N-primer; Tm = 54-610C), and 5-ATAT - GTCGAC -
TCA GGC TTC CAG GGC AAA TAT-3 (C-primer; Tm = 52-600C). The cDNA of TC-a 21 was
amplified from a21 cDNA using 5-ATAT - GGATCC - TGG GAT TGT TGT CCC GGG TGT TGT
AAG - TGO CCT TCC CTC ATA GAT GTT-3 (N-primer; Tm = 52-60*C) and 5-GTGT - GAATTC
- TCA AAC AGT ACC TTC AAT GCT GA-3 (C-primer; Tm = 52-60*C). Both N primers contain in
frame the BamHI recognition site GGATCC and the cDNA that encodes for the tetracysteine tag
WDCCPGCCK. Both C-primers contain in-frame a restriction recognition site (Sall and EcoRI)
just after the TGA stop codon. All primers were purchased from IDT (Integrated DNA
Technologies Inc, Coralville, IA). PCR reactions used the PCR master mix (M7505, Promega)
and took place in the Dianne K. Newman laboratory (Dept. of Biology, MIT; current address:
California Institute of Technology, Pasadena, CA) under the supervision of Dr. Lars Dietrich
(current address: Assistant Professor, Department of Biological Sciences, Columbia University,
NY). Successful PCR amplification was verified by 2% agarose gel DNA electrophoresis and
ethidium bromide staining (protocol 1.2).

The amplified cDNA of each TC-tagged I domain was inserted into a pGEX4T-3 vector.
Linearized pGEX4T-3 vectors were obtained by cleaving purified a11 plasmids with BamHI and
Sall (101228-740 and 101228-752, New England Biolabs), separating cleavage products by 2%
agarose gel DNA electrophoresis, and purifying the cleaved pGEX4T-3 vectors from the gel
using the Wizard Plus SV Gel kit (A9281, Promega, Madison, WI). TC-a11 and TC-a 21 cDNA was
ligated in the cleaved pGEX4T-3 vectors using T4 DNA ligase (101228-180, New England
Biolabs, Ipswich, MA) overnight at 140C in a tropicooler device (Dedon Lab, MIT). The ligase
reaction buffer was then used to transform competent DH5a e-coli by thermal shock (protocol
H.8). Transformed cells were selected by spreading 50 pl transformed cell suspension on LB-
agar-amp plates and incubating overnight in a 370C incubator (Dedon Lab, MIT). Upon
successful ligation, several (5-50) DH5a colonies formed. Five colonies of each kind are
inoculated and amplified in 5 ml LB-amp medium overnight in a 37*C shaking incubator (Dedon
Lab, MIT). Purified plasmids from 3 ml of overnight culture of each colony were sequenced in
the MIT biopolymers facility, using the 5-TATAGCATGGCCTTTGCAGGG-3 "pGEX primer".
Those colonies that sequencing indicated successful transformation were stored long-term at -
800C after adding glycerol to 10%.
While DH5a are efficient for cDNA amplification and storage, they are not appropriate for
recombinant protein expression. On the other hand, the BL21 E.coli strain is more appropriate
for recombinant protein expression due its deficient protease machinery. BL21 E.coli were
transformed with I domain plasmids purified from 5ml DH5a overnight cultures. Competent BL21
cells (Sigma Aldrich) were transformed by thermal shock (protocol H.8). Transfected cells were
selected by spreading 50 pl transformed cell suspension on LB-agar-amp plates and incubating
overnight in a 370C incubator (Dedon Lab, MIT). Upon successful transformation, several e-coli
colonies form. Five colonies from each plate were inoculated and amplified in 5 ml LB-amp
medium overnight in a 370C shaking incubator (Dedon Lab, MIT). Purified plasmids from 3 ml
overnight culture were sequenced in the MIT biopolymers facility using the pGEX primer.

7 Underlined text in PCR primers corresponds to the part that will hybridize with the plasmid to be
amplified
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Colonies for which sequencing indicated successful transformation were stored long-term at -
800C after adding glycerol to 10%, and later used for I domain expression.

Expression and Purification of Recombinant I Domains
All four I domains variant are recombinantly expressed in BL21 e-coli as GST fusion proteins.
After E.coli lysis, fusion proteins are batch purified via affinity chromatography. Then purified
fusion proteins are treated with thrombin to cleave and remove the GST domain. The cleaved
GST domains and the uncleaved fusion proteins are removed via affinity chromatography, and
the purified I domains are stored at 4oC until use. The procedure for the expression and
purification follows established practices for the expression of GST fusion protein using the
pGEX system [Harper and Speicher 2008; GST Gene Fusion System Handbook 2009]. The
purification procedure consists of the following paragraphs:

- Protein Expression: After striking BL21 glycerol stocks (stored at -800C) in LB-agar-amp
plates, and overnight culture at 370C, single colonies are inoculated into 5 ml LB-amp and
incubated overnight at 370C with 250 rpm shaking. The next day, the saturated bacteria
culture is transferred into 200 ml fresh LB-amp and incubated at 370C with 250 rpm shaking.
The 595nm O.D. is monitored in a spectrophotometer (Weiss Lab, Department of Biological
Engineering, MIT). When the culture O.D. reaches 0.6, the production of GST- Domain
fusions is induced by adding 400 p1 0.2M IPTG (15502, Sigma Aldrich, St Louis, MO).
Bacteria are cultured 3h more at 370C with 250 rpm to express the GST- Domain fusion
protein. The bacteria suspension is then poured in clean 500 ml centrifuge tubes, and
bacteria are pelleted by centrifugation (6500xg, 10 min, room temperature). After disposing
the supernatant (medium), the bacteria pellet is reconstituted in 50 ml PBS in clean 50 ml
centrifuge tubes. Bacteria are pelleted by centrifugation (6500xg, 10 min, room
temperature), the supernatant PBS is disposed, and the bacteria pellets are stored in a -
80*C freezer. For troubleshooting, 500 pl aliquots of the bacteria culture are removed before
and after the 3h protein expression incubation.

- Cell lysis: The pellets of GST-fusion expressing bacteria stored at -80 0C are thawn on ice
for 30', reconstituted in 5.6 ml lysis buffer (PBS-, protease inhibitors, 1 mM DTT, 2.5 mM
MgC 2 , 0.5 mg/ml lysozyme, 10 pg/ml DNAsel, 150U benzonase) and incubated 1h on ice.
Bacteria are lysed by sonification (4 pulse trains, each 10 sec long, let suspension cool 1
min between pulse trains). After adding 60pl 0.5M EDTA (to final 5 mM) and 600 pl 10%
tritonX100 (to final 1%), the suspension is incubated 15 min on ice, and centrifuged
14000xg for 60 minutes at 40C. The supernatant protein extract is carefully transferred into
ice-cold test tubes. No solid pellet needs to be transferred. If necessary repeat the 14000xg
centrifugation once more.

- GST fusion protein purification: Add 500 pl washed glutathione agarose beads (15160
thermo scientific, Waltham, MA) to the protein extract, and incubate the bead suspension 3h
at 40C so that beads capture the GST fusion proteins. The beads are then pelleted by
centrifugation (280xg, 3 min, 40C), washed three times with bead wash buffer (PBS, 1 mM
DTT, 0.1% TritonX100, 2.5 mM MgCl 2 , 1/10xprotease inhibitors), incubated 20 min in room
temperature in dnaK buffer (bead wash buffer, 2.5 mM ATP) to wash away e-coli
chaperones [Rial and Ceccarelli 2002], and washed three times more in PBS. Then the
GST-l Domainfusion proteins are eluted by incubating in elution buffer (50 mM Tris pH8, 10
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mM reduced glutathione) for 1 h at 40C. The eluted proteins are dialyzed in PBS using a 3.5K
MWCO dialysis cassette (66330 Thermo scientific, Waltham, MA) and 0.2 pm filter
sterilized.

- Thrombin cleavage and removal of GST domains: Add 10 pI 1 00x cleavage buffer (200 mM
MgC 2 , 0.2M TCEP, 2% Tween 20 in PBS ) and 25pi thrombin stock solution (0.5 units/pI in
PBS; 27-0846-01, G.E. healthcare) per 1 ml protein extract. Incubate 36 hours at 40C. Catch
the cleaved GST domains and any uncleaved GST-l Domain fusions by adding 500 pl
washed glutathione agarose beads, incubating the bead suspension 3h at 40C, and pelleting
the beads by centrifugation (280xg, 3 min, 40C). Keep the supernatant. Quantify the
concentration and purity of I Domain solutions via A280 absoption and SDS-PAGE
correspondingly (Protocol J.4).

- I Domain solution concentration: This step is necessary only if the concentration of the
purified I domain solution is not high enough (i.e. 15 pM for TC-tagged I domains, 25 pM for
non TC-tagged I domains). A dense enough I domain solution is necessary for the
experimental implementation of binding experiments (ligand density measurements,
BIACORE assay). Concentration of I Domain solutions is implemented by filter centrifugation
using 4ml Amicon 4 kDa units (Millipore Corporation, Ballerica MA).

Handling I domain solutions
Several research groups that purified I domains for experimental applications, reported that
several issues need to be considered during I recombinant expression and purification. The
most importnat issue is that purified I domains aggregate and precipitate over time. The rate of I
domain precipitation can be significantly reduced by adding a reducing agent [Xu et al. 2000].
Some studies suggest that purified I domains need to be used within 2 weeks after purification
[Xu et al. 2000]. Several studies identified the formation of disulfide bonds between the GST
domain and the I domain, making necessary to treat I Domains with a reducing agent in the end
of the thrombin cleavage step so that the GST can be released and removed [Tuckwell et al.
1995]. A few researchers suggested avoiding sonification and using chemical lysis bacteria
methods, however most published papers use sonification [Estavillo et al. 1999; Smith et al.
2000; Krahn et al. 2006].
Troubleshooting I domain expression and purification revealed the following:
- The yield of purified al I domains (all, TC-a11) was larger than the yield of a2 I domains (021,

TC- a21). The yield of purified tag-free I domains (al, a21) was also larger than the yield of TC-
tagged I domains (TC- all, TC- a21). A typical purification batch, produced 2ml 1.31 mg/ml
(54.9 pM) all, 2ml 0.64 mg/ml (25.8 pM) TC-a11, 750 pl 0.97 mg/ml (41.2 pM) a21, and 500 pl
0.39 mg/ml (15.9 pM) TC-a 21.

- I domain solubility is dramatically reduced after GST removal. While it was possible to purify
>2 mg/ml of any GST-l Domain fusion by 1L e-coli cultures, thrombin cleavage induced
massive protein precipitation. To improve solubility, 0.02% tween 20 detergent, and 2 mM
MgCl 2 is added to the thrombin cleavage buffer. The chosen concentration of tween20
detergent is low enough so that it does not interfere with the Bradford protein assay (Section
5.3.3), and 3 times less than its critical micelle concentration (0.07% w/v or 60 pM [Bhairi
2001]) to avoid detergent concentration during centrifugal filtering.

- Several studies suggest to add 1mM Pme reducing agent in the purified I domain solutions to
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avoid protein precipitation. This was not implemented in this study as Pme interferes with the
staining of TC-tagged I domains by biarsenical dyes [Adams et al. 2002], see Section 5.3.6.
Instead 2 mM of the alternative reducing agent TCEP is added to purified I domain solutions.
TCEP is known not to affect the reaction between a TC tag and a biarsenical dye, however
TCEP is not particularly stable in phosphate buffers. Nevertheless, no protein aggregation
was observed 1 month after purification and addition of TCEP.

- Thrombin cleavage of I domains is not very efficient. Cleavage of the thrombin recognition site
(TRS) located between the GST tag and the I domain may be impeded sterically by disulfide
bonds that form between the GST and the I domain [Tuckwell et al. 1995]. This may explain
why thrombin is less effective in cleaving TC-tagged I domains, because the cysteines of the
TC tag are located next to the TRS. Aaddition of reducing agents (DTT or TCEP) did not
improve cleavage efficiency significantly. Nevertheless, it is necessary to add 2mM TCEP in
the cleavage buffer during the last hour of the thrombin reaction to release the cleaved GST .

- Freezing I domains in PBS buffer caused protein aggregation. It was not possible therefore to
store the purified proteins long-term. Snap-freezing in liquid nitrogen did not avoid
aggregation. Optimization of the freezing buffer (e.g. add glycerol and store at -20OC) was not
attempted.

- Protein concentration of I domains by filter centrifugation needs to be done carefully in order
to avoid protein precipitation. Even though the specifications of AMICON centrifugal devices
suggest concentrating protein solutions by spinning up to 4000xg for 30-90 min, in this study
centrifugation was implemented in short centrifugation steps (15 min each) by applying no
more than 2200xg. After each centrifugation step the retained I domain solution was mixed
using a pipette to avoid high protein concentrations in the proximity of the filter, which can lead
to precipitation.

5.3.3 Characterization of CBI I domains I: Protein Concentration and Purity

Measuring Protein Concentration (Protein Assay)
After protein purification, a critical step in characterizing the purified I domain solutions is to
estimate their concentration. Accurate protein estimation is critical because the design of protein
binding experiments (adhesion ligand surface density assay, BIACORE assay) and the
interpretation of the results depend on the concentration of the binding partners. Estimating the
concentration of purified I domain solutions was done using two methods:

The Bradford assay provides a quick and coarse estimation of protein concentration after
various steps of the purification process (Protocol J.3) [Rehm 2006]. Although it is known that it
is affected by the presence of detergents, the concentration (0.02%) of the tween20 at the I
domain buffer is less than the minimum concentration (0.06%) that interferes with the Bradford
assay [Pierce protein assay selection guide, Thermo scientific]. It was possible to generate
reasonably linear protein concentration calibration standard curves by diluting 2 mg/ml BSA
standards in PBS+3 buffer (PBS, 2 mM MgCl 2 , 2 mM TCEP, 0.02% tween 20) as low as 0.015
mg/ml. The Bradford assay requires 3 pl protein solution, and measurements took place in a
nanodrop 2000 spectrophotometer (Weiss Lab, MIT).

More accurate concentration measurements of I domain solutions were conducted using the
280nm absorption method (Protocol J.1).This method requires that the protein solution contains
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a single protein [Wilson and Walker 2000], whose molar absorption coefficient E2 8 0 can be
estimated based on the protein amino acid primary sequence [Pace et al. 1995]. This method is
not affected by the presence of detergents or reducing agents in the protein buffer.

Quantifying Purity
The purity of the purified I domain solutions is evaluated via SDS-PAGE electrophoresis and
Coomassie Blue staining (Protocol J.4). Loading 4-5 pg purified protein solution per gel lane is
enough to get bright protein bands.

Coomassie Blue staining is a generic protein staining method. However, it is possible to exploit
the high-affinity of the biarsenical dye-tetracysteine interaction in order to specifically stain only
tetracysteine-tagged proteins in a multiple-protein solution [Adams et al. 2002]. The method,
"SDS-PAGE-FIAsH" (Protocol J.5) is a modification of the SDS-PAGE method where protein
solutions are incubated in reducing Laemmli buffer (need to contain TCEP instead of Pme) in
the presence of 5% excess FlAsH dye for 60 min before boiling and gel loading. After running
the gel, the gel is imaged in a fluorescent gel imager that contains a fluorescein filter set (Dedon
Lab, MIT) in order to detect only TC-tagged proteins. The gel is subsequently stained with
coomasie blue in order to visualize all proteins.

5.3.4 Characterization of CBI I domains II: Circular Dichroism Spectroscopy
After expressing and purifying the recombinant I Domains, the secondary structure of the
purified proteins was evaluated by circular dichroism (CD) spectroscopy. The objectives of CD
experiments were i) obtain evidence that the purified proteins were folded correctly, and ii)
obtain evidence that the addition of the tetracysteine tag did not affect folding significantly.

Overview of the Circular Dichroism Assay
Circular dichroism is an optical spectroscopic method that can be used to estimate the
secondary structure of proteins in solution. In contrast to other methods of structural biology (X-
ray crystallography or NMR) far-UV CD cannot provide structural information of proteins at
atomic level of resolution. Nevertheless, CD is a much less demanding method (in terms of
complexity and sample requirements) that can provide information on the structure of a protein
within a few hours [Kelly et al. 2005; Greenfield 2006]. CD can be applied to estimate the
unknown secondary structure of a protein, or to monitor changes in the conformation of a
protein due to mutations/edits, or changes in the protein environment [Johnson 1990; Pain
2004; Kelly et al. 2005]. As such, it is of interest to quantify whether the addition of a
tetracysteine tag in the N terminus of an I domain affects its conformation.
Circular dichroism is based on the property of asymmetric molecules to absorb differently right-
handed and left-handed circularly polarized light. When circularly polarized light passes through
a solution that contains such molecules, the output light has elliptical polarization. The two
requirements for a molecule to exhibit CD at some region of the EM spectrum are that the
molecule absorbs in that particular EM region, and that the molecule is associated with an
optically asymmetric environment [Pain 2004]. There exist several EM regions where proteins
absorb light. The region of interest for protein conformation studies is the far UV region (180-
260 nm), where light absorption by amide bonds between residues depends on the protein
secondary structure [Pain 2004]. Specifically, the presence of particular secondary structures
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(a-helix, anti-parallel P sheets, P turn, triple helix) corresponds to particular CD signatures, see
Figure 5.3.1.
The unknown secondary structure of a protein in solution can be estimated by measuring the
resulting CD after light passes through a known solution length d of the protein solution. CD
measurements are conducted over a range of far UV light wavelengths, A, usually between 180
nm and 250 nm. CD instruments report either the absorbance difference AE (difference of right
handed minus left-handed circular polization), or equivalently the ellipticity 6(A) (in degrees).
The mean residue ellipticity .mrw(A) (in deg-cm2-dmol1 ; independent of the protein's molecular
weight) is calculated as:

mrw,() = 1.d O(A) [5.3-1]

where n is the number of residues of the protein, C is the protein concentration, and d is the
light path length through the solution.

a 8e+4 1- a-helix b 8e+4
2 - Antiparallel 6e+4

6e + 4 3 Extended
4 - Collagen (triple helix)

4e+4 - 2d 4e + 4 5 Collagen (denatured) L
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Figure 5.3.1: Reference far-UV CD spectra of protein with known secondary structure. a) CD spectrum of poly-L-
lysine and collagen at different conformations. 1: poly-L-lysine as a-helix, 2: poly-L-lysine as anti-parallel 3 sheet, 3:
poly-L-lysine extended (denatured), 4: collagen triple helix, 5: denatured collagen [Greenfield 2006]. b) Spectra of
various secondary structures. 1. a-helix, 2: anti-parallel P-sheet, 3: type I p-turn, 4: triple helical (poly-pro), 5: irregular
structure [Kelly et al. 2005].

Experimental Design
The quality of the secondary structure estimation depends on several parameters. CD data that
contain less noise and sample a wider range of far-UV wavelengths (e.g. 180-250nm) can
provide better estimates [Johnson 1990; Greenfield 2006]. Including measurements at
wavelengths below 200nm can improve significantly the structure estimation [Johnson 1990;
Kelly et al. 2005]. However measurements below 200nm contain more noise due to increased
light absorption by particular buffer components (e.g. salts) or by the cuvette glass. Therefore, it
is necessary to pick the protein buffer carefully, and avoid components that absorb significantly
in this region [Aviv Biomedical Technical Notes]. In order to prevent significant light absorption it
is also advisable to avoid concentrated protein solutions. The literature suggests that the 280nm
absorption of the protein solution should be A2 80 <1, however depending on the instrument and
cuvette, it may be necessary to use even more dilute samples. The protein solution should be
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pure enough (>95%) and its concentration C should be accurately determined [Kelly et al. 2006;
Greenfield 2006]. Finally, it is necessary to correct the experimental data for the baseline CD
signal, which is the CD detected using the same cuvette and the same buffer (without protein
content) [Pain 2004]. In practice, the baseline signal 0(A) of the buffer sets the low wavelength
limit where low-noise CD measurements are feasible.
The CD spectra of purified I domain solutions (a11, TC-a11, a21, TC-a2l) after GST cleavage and
removal were measured in an Aviv Model 202 CD spectrometer (Aviv Biomedical, Lakewood,
NJ) located at the MIT Biophysical Instrumentation Facility (room 68-470), led by Mrs Debby
Pheasant. The buffer of all purified I domain solutions was PBS+3 (PBS, 2 mM MgC 2 , 2 mM
TCEP, 0.02% tween 20). Although PBS is a worse buffer for CD compared to other buffers (e.g.
10 mM Phosphate, [Greenfield 2006]) it was chosen because this is the buffer used in other
binding experiments that utilized I domains (Sections 5.3.5 and 5.3.7). Control experiments
(Section 5.4.2) showed that the presence of 2 mM TCEP, 2 mM MgCl 2 and 0.02% tween20 did
not have a significant effect on the baseline CD signal of the buffer compared to plain PBS. The
concentration of all I domain solutions was measured by 280nm absorption spectroscopy
(Section 5.3.3). Stock I domain solutions were diluted inn PBS+3 so that the 280nm absorption
of the samples measured by CD was approximately A2 80 = 0.17. Experiments were conducted
using a Far-UV Quartz cuvette (NE-21CD-Q-1, New Era enterprises Inc., Vineland, NJ), which
was cleaned between subsequent measurements using one 5% soap rinse, ten deionized water
rinses, followed by air drying. All CD wavelength scans were conducted using the following
parameters: 40C temperature, 195-249 nm wavelength range, 1 nm wavelength sampling step,
1 nm bandwidth, 5 sec averaging time, and 0.333 settling time. All samples were equilibrated at
40C for 5 minutes inside the CD instrument before data acquisition.

Computational Analysis
The measured spectrum Omrw(A) can be analyzed by several available software tools (see
below). Each tool estimates the percent contribution of several possible secondary structures
(ahelix, P strand, turn, random coil) in a protein, based on the data &mrw(A) and a reference set
of CD spectra obtained from proteins of known secondary structure [Greenfield 2006]. Since
different algorithms use a different approach to generate and process the reference set, it is
suggested that data are analyzed by more than one software tools.
Experimental data (expressed in ellipticity 0) were pre-processed by subtracting the baseline
signal of the PBS+3 buffer, and then calculating the mean residue ellipticity 0mrw(A) using
Equation 5.3-1. The estimation of the contributions of the various secondary structures to the
measured CD spectra was implemented using three different CD analysis tools (SELCON3,
CONTINLL, CDSSTR), available as parts of the CDPro software package
(http://lamar.colostate.edu/-sreeram/CDPro/main.html, Colorado State University, CO). CD
spectra processing followed the published instructions at the CDPro web site. The three
software tools differ in the way they generate the reference set and the mathematical methods
used to deconvolve the CD spectra (more details are available in [Greenfield 2006]). All three
methods are known to provide good results for globular proteins (I domains are globular
proteins). The known secondary structure for the non-tagged I domains (a1l, a21) was obtained
from the annotation of published crystal structures [Emsley et al. 1997; Nymalm et al. 2004].
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5.3.5 Characterization of CBI I domains III: BIACORE Binding Assay
The BIACORE binding assay is a method used to quantify binding interactions between two
different molecules. Here, it is utilized to characterize the interactions between the purified
recombinant I Domains and collagen. The BIACORE assay therefore is used here as a
functional assay to verify that the purified I Domains function as expected (an indirect evidence
that I Domains are well folded), and to describe how TC-tagging an I Domain affects its binding
to collagen.

BIA CORE Assay Description and Underlying Physics
The BIACORE assay is a high-tech label-free method for studying binding interactions between
two biomolecules. Although the method is based on the optical phenomenon of surface plasmon
resonance (SPR), the term BIACORE is used due to the name of the company (now part of
General Electric Healthcare) that pioneered the commercialization of SPR instruments in the
early 1990's. The BIACORE assay is applied for characterizing and quantifying (affinity, kinetics,
binding mechanism, biological activity) binding interactions between proteins, peptides, nucleic
acids, lipids, and small molecules [Schuck et al. 1999; Biacore Sensor Surface Handbook].

In the BIACORE assay, one of the two binding partners (called "ligand"8) is immobilized on the
surface of a gold-coated glass surface. The second binding partner (called "analyte") flows in
solution inside a microfluidic channel that is in contact with the ligand-gold coated surface (FIG).
In the other side of the glass surface, a polarized infrared (IR) light beam is incident on
appropriate incident angle so that total internal reflection (TIR) takes place. This causes an
evanescent EM wave to propagate normal to the glass plane towards the gold-film and the
microfluidic channel [Sjclander and Urbaniczky 1991].

SPR is an electromagnetic resonance phenomenon that occurs in thin conducting films (such as
the gold film used in BIACORE) placed between media of different refractive indices [Jason-
Moller et al. 2006]. At some particular incident angle (called SPR angle), the amount of reflected
light is reduced due to SPR at the gold film that enhances the electric field of the evanescent
wave, and increases the amount of incident light that "leaks" into the evanescent wave (Figure
5.3.2). SPR formation in the gold film is affected by the nearby environment (within a distance
hi ~100 nm of on the order of tenths of nanometers), causing the SPR angle to depend on the
mass bound on the chip surface. Any variation of the mass of the binding partners close to the
gold film (caused by "ligand" molecules that are immobilized on the gold film, or when "analyte"
molecules associate or dissociate with the immobilized ligand molecules) affects the evanescent
wave, which is detected by measuring the SPR angle.

8: The use of the term "ligand" in this section (and the BIACORE literature in general) should not be
confused with the meaning described in Section 5.2.2 and used in the rest of the thesis, were "ligand"
refers to the small chemical motif that mediates binding.
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Figure 5.3.2: Schematics that describe the operation of the BIACORE assay. a) schematic of the BIACORE
instrument demonstrating its key components: flow cell, gold surface, incident and reflected light, SPR angle. b)
detection of the reflected light profile reveals the SPR angle. c) schematic of the CM5 sensor chip surface. d)
Schematic of the electrostatic interactions during ligand immobilization. Ligands are concentrated on the dextran
surface through electrostatic interactions induced by appropriate choice of the buffer pH. e) Amine coupling of ligands
on the CM5 chip surface using EDC-NHS cross-linking reagents [BIACORE sensor surface handbook].
The output of each BIACORE experiment R(t) (called "sensorgram") is a real-time
measurement of the deflection of the reflected IR light beam as different kinds of buffers run
through the microfluidic channel and interact with the gold-coated surface. The measurement
R(t) is expressed in resonance units (RU), where 1 RU corresponds to a 10-4 degree deflection
of the reflected beam, caused by varying the mass on the surface of the sensor chip by
1 pg/mm 2 (for a 150kDa protein) [Biacore Concentration Analysis Handbook 2008]. The
instrument response R due to the presence of molecules of molecular weight M (g/mole) and
surface density pm (moles/mm 2) within the detection distance hi away from the gold film equals:

R = p M -G [5.3-2]

where G = 1018 RU-m 2/g = 1 RUmm 2/pg.

BIACORE experiments take place in specialized instruments that control the flow of buffers
using elegant microfluidics, conduct SPR measurements, and display results. Experiments
utilize "sensor chips" that contain four gold-coated surfaces of appropriate surface chemistry
that enables immobilization of ligand molecules on the gold film. BIACORE provides several
kinds of sensor chips, appropriate for different applications [BIACORE sensor surface
handbook]. Each sensor chip contains four chambers (flow cells), which are connected via
microfluidic chambers and can be controlled and measured independently.
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Figure 5.3.3: Schematic of the three steps of a typical analyte-ligand binding run: association, dissociation and
regeneration. The plot shows the temporal response of the sensorgram, analogous to the amount of analyte bound to
the immobilized ligand [Cooper 2002].

Experimental Design
Once the sensor chip is placed inside the BIACORE instrument, there is always flow of buffer
through the four flow cells (chambers) of the sensor chip. Unless a particular buffer is run (see
underneath), a running buffer runs through all four sensor chip chambers at all times.

BIACORE experiments consist of two parts:

- Liqand immobilization. In this part, an appropriate amount of ligand molecules are
immobilized on the gold surface of each flow chamber of the sensor chip. There are several
immobilization methods, depending on the surface chemistry of the sensor chip and the
chemistry of the ligand. Immobilization is conducted once per chamber. It is possible to
immobilize a different ligand in each flow chamber, although for experimental reasons it is
better not to immobilize ligand in one of the chambers (blank) in order to be able to measure
the binding of the analyte to the chip surface.

- Analyte-liqand binding. In this part, appropriate buffers that (may) contain analyte molecules
flow through the chambers using the BIACORE microfluidic system. A typical binding
experiment consists of four sequential steps: wash, association, dissociation, and
regeneration (Figure 5.3.3). In the wash step there is flow of running buffers through all flow
cells. In the association step there is flow of an analyte solution through the chambers; As
analyte molecules bind to the immobilized ligand molecules, the measured response R(t)
increases. In the dissociation step again running buffer runs through the channels. As the
previously bound analyte molecules dissociate from the ligand molecules, the response R(t)
decreases. In the regeneration step, an appropriate regeneration buffer runs through the
chambers that forces the dissociation of the remaining analyte molecules bound on the
immobilized ligands. Regeneration conditions need to be mild enough so that the
immobilized ligand molecules do not dissociate or denature. The regeneration step acts as a
reset" that sets the chambers ready for the next binding run. After ligand immobilization, the

same sensor chip can be used to run multiple binding runs that do not depend on each
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other, provided that the regeneration step manages to dissociate all bound analyte without
damaging the immobilized ligand.

In this study, BIACORE experiments were conducted to study how different I domains of
collagen binding integrins (a11, a2l, TC-a11, TC-a2l) bind to collagen I molecules. Experiments
were conducted in a BIACORE T100 instrument (GE Healthcare Bio-Sciences AB, Uppsala,
Sweden) located at the Tufts University core facility genomics core (Jaharis 523A, 150 Harrison
Ave, Boston MA 02111), directed by Dr. Albert Tai.
The BIACORE assay has been already applied to study binding of integrins or integrin I
domains (all, a2l) to their binding partners, including collagen [Calderwood et al. 1997; Rich et
al. 1999a; Estavillo et al. 1999; Xu et al. 2000; Kim et al. 2005; Vorup-Jensen et al. 2007]. The
protocol described below follows closely the protocols in these published studies. A more
detailed discussion of the results follows in Section 5.4.3.
The BIACORE experiments conducted in this thesis involved two kinds of ligands (collagen I,
gelatin) and four kinds of analytes: two native non-tagged I domains (a1l, a21), and two TC-
tagged I domains (TC-a11, TC-a 21) see Section 5.3.2). Ligands were covalently immobilized on
the surface of CM5 sensor chips (GE Healthcare, Piscataway, NJ) via amine coupling. The gold
layer of CM5 chips is covered with a 100 nm thick dextran layer that provides carboxyl groups
for covalently immobilizing ligands (Figure 5.3.2c). Collagen I from tail tendon (tropocollagen)
was purchased as a 3mg/ml solution in 0.012N HCI (354231 BD biosciences, San Jose, CA).
Gelatin (denatured collagen) solution was prepared by heating the collagen I solution at 650C
for 30 minutes. Collagen was chosen as the ligand to be immobilized on the chip (instead of I
domains) due to its much larger tendency for non-specific binding (caused in part by its much
larger size: the molecular weight (MW) of each tropocollagen molecule is approximately 300
kDa, while the MW of I domains are around 24 kDa) [Schuck et al. 1999].
Collagen 1, the main ligand of interest, was immobilized in chambers 2 and 4 of each sensor
chip. Gelatin (denatured collagen 1) was immobilized in chamber 3, while no ligand was
immobilized in chamber 1 (blank). The BIACORE microfluidic system forces buffer to run
sequentially through chambers 1, 2, 3 and then 4. The difference between the sensorgrams of
chamber 4 (collagen) versus chamber 3 (gelatin) R4 3 (t) = R4 (t) - R3 (t) probes the specificity of
I domain binding to collagen I because it is known that denaturing collagen destroys the 3D
conformation of the small motifs (binding ligands, e.g. GFOGER) necessary for integrin binding,
see Section 5.2.3. The difference between the sensorgrams of chamber 2 (collagen) versus
chamber 1 (blank) R 2 1 (t) = R2 (t) - R1(t) is used to correct for various artifacts (see following
sub-section) for example nonspecific binding of analytes to the dextran matrix of the CM5
sensor chip.
Ligand immobilization on the CM5 chip surface was implemented using the amine-coupling
method, as described in the literature [Jason-Moller et al. 2006; Murphy et al. 2006] and the
manufacturer's instructions (GE Healthcare, Piscataway, NJ). All chambers are first treated with
a mixture of EDC and NHS solutions, which activate carboxyl groups on the dextran chains and
make them reactive to primary amines. Then, 30 pg/ml solutions of collagen and gelatin in 10
mM sodium acetate pH 4.5. flow through chambers 2, 4 (collagen) and 3 (gelatin) respectively,
so that activated carboxyl groups on the dextran chains form covalent bonds with primary
amines at the ligand surface (Figure 5.3.2e). The pH=4.5 is chosen so that during
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immobilization the positively charged ligand molecules (pH 4.5 is lower than the isoelectric point
of collagen and gelatin) are attracted to the negative charges on the dextran layer (pH 4.5 is
higher than the pKa of the carboxyl groups found on the dextran layer) causing local ligand
concentration that favors ligand immobilization (Figure 5.3.2d). Finally, a wash with 1 M
ethanolamine quenches the remaining activated carboxyl groups that did not react with ligands.
Since running buffer flows between consecutive crosslinking steps (EDC-NHS, ligand,
ethanolamine), it is important to use a running buffer that does not contain primary amines.
Ligand immobilization is implemented using an automatic script of the T100 instrument, so that
eventually 1200 RU of collagen/gelatin are immobilized on the CM5 surface. This corresponds
to a surface density of approximately 1.2 ng immobilized ligand per mm 2 , or equivalently 2400
collagen molecules per pm 2. Given that the height of the dextran layer is 100 nm [BIACORE
sensor surface handbook], this corresponds to a collagen volume fraction of 24% (assuming the
dimensions of each collagen molecule are 400x5x5 nm). After immobilization, chambers were
washed by 50 mM NaOH.

The binding interaction of each analyte with the ECM is studied by flowing solutions of
increasing analyte concentration (0, 0.05, 0.13, 0.339, 0.830, 2.3 and 6 pM) and recording the
binding of analytes to the immobilized ligands. Each binding run took place at room temperature
using as running buffer HBS-P+ (10 mM HEPES, 150 mM NaCl, 0.05% v/v surfactant P20; GE
Healthcare, Piscataway, NJ) supplemented with 1 mM MgC 2 . The necessary analyte
concentrations were implemented by diluting stock analyte solutions (approximately 50 pM a11,
25 pM TC-al, 40 pM a 21, 15 pM TC-a 21) in PBS+3 (PBS, 2 mM TCEP, 2 mM MgC 2 , 0.02%
tween 20) with running buffer. Each association step lasted 3 minutes. The flow rate through the
chambers during the association phase was 40 pl/minute. The dissociation step lasted 12
minutes. The flow rate during the dissociation phase was 40 pl/min. Regeneration was
implemented by applying 20 pl/min regeneration buffer (HBS-P+, 10 mM EDTA, 0.01% v/v
SDS) for 1 minute. All buffers (running, regeneration) were degassed for 2 hours prior to use.
Each experimental condition was performed in duplicates. The total duration for each run
(running buffer wash, association, dissociation, regeneration) was approximately 20 minutes.

Data Analysis I: Signal Conditioning
Every BIACORE experiment (run) provides a raw sensorgram Rraw(t) i=1,2,3,4 for each one of
four flow cells of the CM5 chip. Although ideally variations in the detected signal Rraw(t) should
be causwed only by analyte association/dissociation with the immobilized ligands, there exist
several kinds of artifacts that affect the measured signal Rraw(t) and complicate signal
interpretation [Karlsson and Ftlt 1997; Myszka 1997; Schuck et al. 1999]:
- Baseline difference: Baseline is the (approximate constant) raw signal Rraw(t) detected at a

channel when running buffer (no analyte) runs through the flow cells, see Figure 5.3.2a.
Each channel has a different baseline, due to small variations in the optical and mechanical
parameters of each channel that define the baseline SPR angle, or due to small differences
in the amount of immobilized ligand on the gold surface of each flow chamber.

- Instrument drift: refers to slow drift of the baseline signal caused by slow variation in the
instrument's optical/mechanical systems. The observed drift was more significant in older
instruments (e.g. BIACORE 2000, Center for biomedical engineering, MIT) compared to the
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newer T100 used in this study. The drift appears to be approximately common in all four
chamber signals of the T1 00 instrument.
Instrument noise: noise inherent in the detection system. In the T100 instrument used in this
study, instrument noise can be calculated from a drift-free part of the baseline signal as a
white and Gaussian signal of standard deviation C-R=O. 11 RU, common to all four channels.
This noise magnitude is significantly smaller than the maximum signal induced by analyte
binding (20 to 40 RU in the samples of largest analyte concentration).
Refractive index changes: A major source of artifacts are signal jumps caused by changes
of the buffer's refractive index (RI). Since the detected signal depends on the local
environment closed to the gold film, measurements are affected by the composition of the
buffer that runs inside the microfluidic chamber. Every time a different buffer is applied
through the microfluidic chamber, the SPR angle will change suddenly. Such a jump takes
place at the beginning of the association step as the buffer switches from running buffer to
analyte buffer. A jump of approximate the same magnitude but opposite sign should take
place in the beginning of the dissociation step as the buffer switches back to running buffer.
Matrix effects: the gold surface of the CM5 chip is functionalized with negatively charged
dextran molecules (called the dextran "matrix"). The ionic strength of the buffer that runs
through the flow chamber affects the distance between adjacent dextran molecules,
therefore affects the mass content in the proximity of the gold film that is detected by SPR.
When different buffers are applied through the flow chambers, the measured signal jumps
not just due to RI changes, but also due to changes in the conformation of the dextran
matrix. Matrix effects are affected significantly by the identity and the amount of immobilized
ligand [Karlsson and Ftlt 1997].
Non-specific binding: Refers to non-specific binding of analyte either in the dextran matrix,
or in the immobilized ligand.
Mass transfer: Affects kinetic measurements, where it is assumed that the con centration of
analyte throughout the chamber is constant and analytes are not depleted (I = 10). In
practice, when the concentration of immobilized ligands is high (larger than 50) and when
the flow rates are not fast enough (less than 30 pl/min), there is a gradient in the
concentration of analyte close to the immobilized ligands. Mass slows both the association
(creation of a analyte depletion zone) and dissociation kinetics (creation of a retention zone),
and therefore can induce significant deviation from the ideal response in binding systems of
strong affinity (low kD) [Myszka 1997; Myszka et al. 1998; Schuck et al. 1999].
Aggregate binding The presence of analyte aggregates induces slow accumulation of
analyte in the sensor surface during the association step, and very slow dissociation of
analyte during the dissociation step. Aggregate binding is caused by either the presence of
analyte olimers in the analyte solution, or by local crowding effects in the proximity of the
immobilized ligands (particularly in the case of large immobilized ligand density). Aggregate
binding also induce significant deviation from the ideal response, in binding systems of poor
affinity (high kD) [Myszka 1997; Myszka et al. 1998; Schuck et al. 1999].

Signal conditioning refers to processing steps that remove some of the major artifacts from the
raw detected signal RTaw(t) and provide a signal Ri(t), which can be fitted into a particular
binding model. Some artifacts can be either estimated and compensated or incorporated into
the mathematic model that describes the analyte-ligand binding response. However, some
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artifacts (mass transport, matrix effects and aggregate binding) are hard to eliminate or
incorporate in the mathematical model. Signal conditioning consists of three steps.

The first step is to calculate the difference R21w(t) = Riaw(t) - Rfaw(t) (collagen surface -

blank surface) and R43w(t) = Riaw(t) - Rraw(t) (collagen surface - gelatin surface) in a way

that incorporates the small time delay necessary for the fluid front to travel between subsequent
chambers. In modern BIACORE instruments (such as the T100) this is done automatically by
the instrument acquisition software. Since the surface of channel 1 contains no immobilized
ligand (reference surface) subtracting R~aw(t) from Rraw(t) should eliminate several artifacts
such as baseline drift, non-specific binding on the dextran matrix and RI induced jumps [Myszka
1997]. Similarly, the signal RTaw(t) = Rraw(t) - Rraw(t) should eliminate several artifacts such

as baseline drift, non-specific binding on the dextran matrix and the gelatin molecule and RI
induced jumps. Nevertheless the signals Rraw(t) and Rraw(t) still contain several important
artifacts. One of them is that signals for different analyte concentrations have different baselines
(shown in Figure 5.3.4a).

The second signal conditioning step corrects this baseline difference by subtracting the R21w(t)

signal for a particular analyte concentration from the R1w(t) signal corresponding to zero
analyte concentration, and then shifting the result so that the signal at the wash step is zero. At
this step, results that correspond to the same analyte concentration are combined by taking
their mean, in order to calculate the baseline-corrected sensorgrams R (t) , R (t) for each
analyte concentration (Figure 5.3.4b). The baseline-corrected sensorgrams are also calculated
automatically by the BlAeval software (provided by the BIACORE manufacturer) and then fitted
into a particular binding model.

As evident from Figure 5.3.4b the baseline-corrected sensorgrams can contain significant signal
jumps in the beginning of the association and dissociation steps. As described previously, these
jumps can be caused either by RI changes (not canceled completely by subtracting the signal of
the reference blank channel) or by matrix effects. Furthermore, the steady-state portion of the
dissociation curve can be non-zero due to matrix effects or aggregate binding. Since these
jumps are on the same order of magnitude as the signal induced by analyte binding, it is
necessary to either subtract these jumps before further processing the data, or incorporate
these jumps in the models used to fit the data. Otherwise, artifact signal jumps can affect
dramatically the estimated kinetic rates and steady state values of binding. The jumps observed
in the baseline-corrected sensorgrams are larger in samples of high analyte concentration,
which contain a larger fraction of the analyte stock solution buffer and less running buffer. In this
study analyte solutions were prepared by diluting the stock analyte solutions using running
buffer. Since the RI and the ionic strength of the running buffer (10 mM HEPES, 150 mM NaCl,
0.05% v/v surfactant P20) are different than the ones of the analyte stock solution buffer (137
mM NaCl, 2.7 mM KCl. 10 mM Na 2 HPO4 , 1.8 mM KH 2PO 4, 2 mM TCEP, 2 mM MgC 2, 0.02%

tween 20), the observed jumps could be attributed to matrix effects.

The third signal condition step focuses on removing signal artifacts caused by signal jumps. Let
SRa and SRd denote the magnitude of the signal jump at the beginning of the association and
dissociation steps respectively. The duration of each jump equals the time required for the
buffer front to move through the length of each flow cell and diffuse through the 100nm thick
dextran matrix; in this study, the 40 pl/min flow rate corresponds to jumps that last 7 time
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samples (0.7 sec). Also, let 6Rss denote the signal in the steady state of the dissociation step.
Experimental observations suggest that 6Rss SRa - &Rd. Matrix effects are complex to include
in a mathematical model solved by global optimization, therefore it was chosen to manually
estimate the magnitude of 6Ra and SRd, and then remove the signal contribution of the jumps
from the baseline-corrected sensorgrams. This correction provides the final corrected
sensorgrams R2 1(t), R4 3 (t) (Figure 5.3.4c). These corrected sensorgrams R21(t), R43 (t) are
then globally fitted into a particular binding model.

a710 b a2 (collagen - blank) C 2 , (collagen - blank): K =8.45 pM, n =0.73

700 - 1 = 0.339 pM 5 [ 1 0.339 pM

as ds 100 -_[a ] = 0.884PM 20 0.884 pM
57690 0

W [a) = 2.3pM [/(] =23 pM
7680 -- 80 - - =
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Figure 5.3.4: Signal processing steps for interpreting and fitting raw BIACORE data. a: Raw sensorgram data RW"' of
a1l (signal for a1l binding to a collagen surface minus signal for all binding to a blank surface). The top-most eight
curves correspond to duplicate runs of 6, 2.3, 0.884 or 0.339 pM analyte [all]. The bottom-most (black) is the signal
obtained by running buffer (no analyte). The three main steps of each run are highlighted as "ws" (wash buffer), "as"
(association step), and "ds" (dissociation step). The regeneration step is omitted for clarity. b: The resulting baseline-
corrected sensorgrams R (t) for each analyte al concentration. Each baseline-corrected sensorgram is calculated
by first subtracting from the signal of each analyte run the signal of the running buffer run, then calculating the mean
of the two runs for each analyte concentration, and finally subtracting the constant signal of the "ws" step. This
baseline-corrected sensorgram is used by the BiaEval for model fitting c: Corrected sensorgrams R21 (t) and their
global fit to a 1:1 binding model (dashed lines). Corrected sensorgrams are calculated by first calculating manually
the magnitude of the signal jumps Ra, 8Rd in the beginning of the association and dissociation steps, and
subtracting the jump contributions from the signal. The corrected sensorgram R2 1 (t) for each analyte concentration
are then globally fitted by a 1:1 binding model (Eq. B2) to calculate the parameters kon, koff, and n .

Data Analysis II: Binding Model
Binding of analytes (I Domains) in solution to their adhesion ligands present in collagen
immobilized on a sensor chip surface can be modeled by a simple 1:1 binding model. This
model is described by the following equation for the rate of formation of ligand-analyte
complexes [Rich et al. 1999b]:

dP= kn - I- PL - koff PB [5.3-3]
where PB and PL are the surface density of bound and unbound adhesion ligands in collagen
molecules respectively (unit: moles/area), kon and koff are the association and dissociation
rates of the analyte-ligand binding reaction, and I is the concentration (unit: M) of I domains in
the proximity of the sensor chip surface. For more details on binding assays on a surface see
Section 0. Assuming mass transfer effects are negligible (see discussion below) the
concentration of analyte inside the microfluidic chamber is considered constant and equal to the
nominal concentration of I domains applied by the user I ~I. The density of unbound adhesion
ligands on collagen molecules equals

PL = PLO - PB = n pco pB [5.3-4]
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where PLO = n -pco is the total density of adhesion ligands for I domains, n is the number of I
domain adhesion ligands per collagen molecule and Pco is the surface density of collagen
molecules (unit: moles/area). Combining Eq. 5.3-3 and 5.3-4, provides a linear ordinary
differential equation that describes the dynamics of the detected signal R(t) (the subscript i from
the signal Ri(t) of channel i is removed for simplicity):

d + (kon -o + koff) - R = kon -Io- Rmax

Rmax = Rc ' n

where M, and Mc are the molecular weights of I domain and collagen respectively, Rc is the
amount of immobilized ligand (in RU), and Rmax is the theoretically maximum signal R(t)
achieved in steady state when all adhesion ligands are bound by analyte. Assuming that during
the association step (0 ! t ! ton) 1 remains constant (no analyte depletion), and that during
the dissociation step (ton < t ton + toff) the buffer flow succeeds in removing dissociated

analyte without re-binding (1o ~ 0), then the solution of the differential equation provides the
time response of the measured signal R(t):

tkI~0 L .(-k ff (1+I))O0~ 0
R(t) = I0+kD Mc [5.3-5]

R(ton) - e-koff-(t-ton) , t s t 5 ton + toff
where kD= koff /kon is the dissociation constant of the binding reaction, and R(ton) is the
signal at the end of the association step. While the time constant during the dissociation phase

remains a constant r = k-1 , the time constant during the association phase T = k- 1  
kD

off Of f (kDJ1)

decreases as the analyte concentration 1 increases. When 10 >> kD and kD
(kD+Io)koff

then in steady state all ligand binding sites are bound to analyte R = Rmax
This 1:1 binding model does not seem suitable to describe the binding of CBI I domains to their
ligands in the collagen molecule. As discussed in Section 5.2.3 and 5.2.4, each CBI recognizes
multiple kinds of ligands in each collagen molecule (some of which are present in more than one
copies) with different affinities. Nevertheless, trying to incorporate more than one kinds of
binding sites (of distinct dissociation constant kD) in a binding model and fitting BIACORE
kinetic data results in a very ill-behaved problem that provides unreliable results. Instead it was
preferred to describe the I Domain-collagen binding system using multiple sites of a single
average dissociation constant.

Data Analysis Ill: Global Fitting
Each binding model is described by a set of parameters x. For the 1:1 binding model, x contains
three parameters:

X = [kon koff n]T

The parameter vector x of a binding model can be estimated from a set of experimental
BIACORE data based on a least-squares method. Let R[k], k=1,2,...N denote the experimental
data to be fitted. The index k refers to the time point and N to the number of time samples. The
kind of data utilized for fitting depends on the algorithm used. BlAeval software uses as R[k] the
baseline-corrected sensorgrams Rtjs(t) and therefore needs to augment the parameter vector x
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with the unknown signal jumps. Straightforward global optimization in MATLAB utilizes as R[k]
the corrected sensorgrams Rij(t).

Let R [k,x] , k =1,2,...,N be the simulated sensorgram response calculated using the model of
interest given a parameter vector x. The least-squares estimator -X is the parameter vector that
minimizes the corresponding X square metric:

= argminx{ =( [k,x] - R[k]) 2 j

Global fitting corresponds to calculating the least-squares estimator - by incorporating results
from several BIACORE response curves R[k], each of which corresponding to a different
analyte concentration I0 (as opposed to calculating - for the signal of each analyte
concentration separately).

One way to estimate the parameters of the 1:1 binding system is to compute the corrected
sensorgrams Ri;(t) for the M analyte concentrations (as described in a previous subsection)
and then globally fit them into a 1:1 binding model. This corresponds to solving the following
optimization problem

= argminx (= k= 1 (Ri [k, I0(i), x] - Ri[k])1

where the response Ri [k,I 0(i), x] is calculated from Eq. 5.3-5 assuming the analyte
concentrations Io(i) used in the experiments. This X square metric incorporates data from M
curves, each of which corresponds to a particular concentration I0 of analyte and has N data
time points. Since the metric to be minimized is a nonlinear function of parameters x, this
optimization problem can be solved numerically using a non-linear least squares solver (e.g. the
Levenberg-Marquardt algorithm) or a generic nonlinear optimization algorithm [Nocedal and
Wright 2006]. Here, numerical optimization was implemented using the functions Isqnonlin and
fmincon of the MATLAB numerical computing environment (Mathworks, Natick, MA)
[Optimization ToolboxTM User's Guide].

An alternative way to fit the baseline-corrected sensorgrams Rp(t) signals into a 1:1 binding
using the BlAeval software, provided by the manufacturer (BIACORE, Uppsala, Sweden).
BlAeval calculates the baseline-corrected sensorgrams RPs(t) automatically, and then fits them
into an 1:1 binding model by including signal jumps in the beginning of the association and
dissociation steps as additional model parameters. Results are provided for both methods.

Challenges in modeling and fitting BIA CORE data
Accurate mathematical modeling of collagen binding to its binding partners is a hard problem
due to the complex nature of the binding interactions. It has been demonstrated that each
collagen molecule contains multiple distinct motifs where a particular CBI I domain can bind
("adhesion ligands" such as GFOGER, GLOGER), each one of which has a different binding
affinity for that I domain (Section 5.2.3 and 5.2.4). Due to the long size and the structural
stiffness of the collagen molecule, it is expected that binding of I domains to these adhesion
ligands can be treated as independent (non-cooperative). By treating the binding of I domains to
each ligand as an independent 1:1 binding event, the detected binding response R(t) equals
the sum of the responses caused by binding of analyte to each kind of adhesion ligand, each of
which is described by an equation identical to Eq. B2 (assuming no analyte depletion).
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Another source of difficulty lies in the fact that each I domain can exist in two conformation
states ("open" and "closed", see Section 5.2.4), that have significantly different binding affinities
for their adhesion ligands. Practically only the "open" state can bind to ligands on collagen. This
causes further deviation from a simple 1:1 binding between I domains and collagen.
Furthermore, there are no estimates for the reaction rates that control the equilibrium between
the two I domain conformation states.

Based on the above two paragraphs, an accurate model that describes integrin binding to
collagen would be quite complex and would contain many parameters that need to be estimated
by fitting the experimental data. Although global curve fitting approaches improve the accuracy
of parameter estimation, the resulting problem of fitting multiple curves to more than 1
exponentials is notoriously hard [Myszka 1997; Schuck 1997; Schuck et al. 1999; Goodrich and
Kugel 2007]. Simulation results show that the presence of measurement noise and pipetting
errors during sample preparation can induce huge estimation errors. Furthermore, the
estimation of many parameters requires data from a large number of experiments so that
independent variables are varied enough to "capture" all aspects of the model. This is usually
not possible due to high experimental cost or other limitations (e.g. biochemical handling of the
analyte solutions).

In summary, the literature suggests that fitting BIACORE data to complex models is very tricky,
error-prone, and can lead to wrong conclusions (especially when a good fit is used as a way to
support the validity of a complex model) [Schuck 1997; Schuck et al. 1999]. Since in this study
the number of experiments for each analyte-ligand pair is limited (limited to a titration of the
analyte concentration), and possibly prone to various artifacts (protein aggregation, mass
transport), this study will not pursue anything more than describing each analyte-ligand pair with
a simple 1:1 binding model, which will be attempted to capture the key properties of such
interaction, and provide approximate answers to the following questions:
- Do the purified I domains of a1 and a2 integrin subunits bind specifically to collagen?
- Does the addition of the tetracysteine (TC) tag affect the affinity of I domains for collagen?

5.3.6 Fluorescent Staining of I Domains Using Biarsenical Dyes

Overview: Fluorescent Staining of Proteins
Fluorescent protein labeling is a key enabling technology for studying protein function, structure,
and localization in vivo with high spatial and temporal resolution via microscopy [Giepmans et
al. 2006]. Unfortunately, the vast majority of proteins do not emit fluorescence when excited by
standard laser lines used in cell and tissue imaging (either UVA or visible) [Lakowicz 2006].
Fluorescence emitted by protein residues that contain aromatic side chains (tryptophan, tyrosine
and phenylalanine) is excited by far UV light, which impedes practical cell and tissue imaging.
Excluding indirect antibody labeling (which usually requires sample fixation and therefore cannot
be applied in vivo), selective fluorescent labeling of a particular protein can be accomplished by
fusing the protein of interest with an appropriate protein tag or a peptide tag [Giepmans et al.
2006; Wombacher and Cornish 2011; Crivat and Taraska 2012].

The most widespread way to fluorescently label a protein in vivo is to express the protein fused
with a fluorescent protein (FP). While FP fusions offer choices of different photophysical
properties (emission spectrum, stability, pH sensitivity), their relatively large size (27 kDa) may
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affect the localization and function of the protein [Zhang et al. 2002; Giepmans et al. 2006;
Lippincott-Schwartz 2011; Crivat and Taraska 2012]. The second class of protein tags are self-
labeling enzymes, which are not fluorescent by themselves, however they can attach to a
specific small fluorescent molecule and make the fusion protein fluorescent. This family includes
enzymes that either covalently attach (e.g. SNAP tag, CLIP-tag, Halo-tag) or non-covalently
bind (e.g. Edhfp, FKBP) to specific small fluorescent molecules [Wombacher and Cornish 2011;
Crivat and Taraska 2012]. Such self-labeling proteins enable several imaging experiments (e.g.
pulse and chase experiments), however their size is still significant (12-22 kDa), and their
practice requires washing away the unreacted small fluorescent molecule [Wombacher and
Cornish 2011].
Peptide tags are much smaller (6 - 30 amino acids) compared to protein tags. An ideal peptide
tag would be as small as possible (to minimally disturb the protein function) and would interact
with a particular fluorescent molecule with high specificity and affinity [Wombacher and Cornish
2011]. The most successful peptide tag is the tetracysteine tag (TC) [Griffin 1998], which reacts
and covalently attaches to a small biarsenical dye. Upon binding to the TC tag, the biarsenical
dye becomes 1000x more fluorescent. Due to the significantly smaller size of the TC tag-
biarsenical dye complex compared to the size of a FP, this method has much less potential to
interfere with the activity and function of the labeled protein [Griffin 1998; Zhang et al. 2002;
Giepmans et al. 2006].

Tetracysteine Tag - Biarsenical Dye System: Description
The tetracysteine tag - biarsenical dye system is a method for fluorescently labeling proteins
using a peptide tag and a small molecule [Griffin et al. 1998]. The method exploits the fragile
covalent bonds that form between a trivalent arsenic (in organoarsenic compounds) and a pair
of thiols located in two neighboring cysteines. The protein of interest is tagged with a small
peptide (10-12 amino acids) that contains four cysteine residues organized in two pairs
separated by two residues (CCxxCC motif). Biarsenical dyes (BD) contain two arsenic atoms
separated by an appropriate distance, so that each arsenic atom can bond with each of the
cysteine pairs of the tetracysteine motif. Although several BD have been developed, the two
most widely used are FlAsH (4,5-bis(1,3,2-dithiarsolan-2-yl) fluorescein) and ReAsH (4,5-
bis(1,3,2-dithiarsolan-2-y) resorufin) [Griffin 1998; Adams et al. 2002; Spagnuolo et al. 2006;
Adams and Tsien 2008; Pomorski and Kreiel 2011]. The tetracysteine-biarsenical method has
been applied to label proteins in many kinds of live cells (mammalian, plant, yeast, e-coli), as
well as in FRET-based assays, single-molecule studies, protein research and biochemistry,
material characterization, and in the control of protein activity, as reviewed in [Luedtke et al.
2007; Pomorski and Kreiel 2011].
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Figure 5.3.5: Molecular structure of FlAsH staining of tetracysteine-tagged proteins. Left: Chemical diagram of
FlAsH-EDT2 complex. Middle: Chemical reaction of FlAsH-EDT2 staining of a CCPGCC tetracycteine tagged protein.
Right: Model of the optimal FLNCCPGCCMEP motif bound to FlAsH (based on the NMR structure described in
[Madani et al. 2009]. Red: FlAsH, purple: As atoms, yellow: thiol groups (in EDT or cysteines) [Crivat and Taraska
2012].

Tetracysteine Tag - Biarsenical Dye System: Chemistry
Biarsenical dyes (BD) can bind to cysteine-rich motifs that contain 4 reduced thiols in close
proximity and appropriate orientation, such as the tetracycteine (TC) tag, and certain cysteine-
rich proteins. BD also bind small vicinal dithiols such as 1,2-ethanedithiol (EDT) and 2,3-
dimercaptopropanol (BAL). In tetracysteine labeling protocols, biarsenical dyes are bound to two
EDT molecules [Adams et al. 2002; Hoffmann et al. 2010] that protect the BD and quench its
fluorescence. The biarsenical dye becomes 1000x more fluorescent once it binds the TC motif.
Due to the presence of the a-helix-breaking PG residues between the two cysteine pairs, TC
motifs have hairpin 3D structure [Madani et al. 2009].
In practice BD are used with their As atoms bound to two small vicinal dithiols (e.g. EDT) that
protect the two As atoms. During TC staining, the two As-EDT bonds are broken, and new
bonds form between the two As and the cysteines of the TC tag. Fluorescent labeling of a TC-
tagged protein (TC) by a BD (e.g. FlAsH) is described by the following equilibrium:

BD-EDT2 + TC *- TC-BD + 2EDT

The kinetics of the tetracysteine tag-BD complex (TC - BD) formation depend significantly on i)
the amino acid composition of the tetracysteine tag, ii) the biarsenical dye, iii) the presence and
concentration on thiols in the reaction buffer [Adams et al. 2002; Cavit and Taraska 2012].
After the discovery of the first tetracysteine motif WEAAAREACCRECCARA [Griffin et al. 1998],
additional screening revealed the much smaller tag CCPGCC that forms a more stable complex
with biarsenical dyes [Adams et al. 2002]. Additional optimization of the flanking residues
provided the optimal TC tags FLNCCPGCCMEP and HRWCCPGCCKTF for mammalian cell
imaging [Martin et al. 2005]. Larger motifs provide better kinetics and offer the chance for
improved contrast imaging, however they may interfere with the function of the tagged protein.
The presence of thiol-containing reducing agents affects significantly both the kinetics and the
dissociation constant of the TC-BD binding. Small vicinal dithiols (EDT and BAL) bind to BD with
significant affinity and compete with TC tags for BD. For the short CCPGCC motif, the IC50 value
of BAL and EDT are 0.7 mM and 1.3 mM respectively [Hoffmann et al. 2010; Zurn et al. 2010].
For the optimized FLNCCPGCCMEP motif, the IC50 value of BAL is 5.6 pM. This affinity is
utilized to reduce non-specific BD staining in live cells (see below). Small vicinal dithiols also
reduce the apparent affinity of a TC motif for a BD. For example, the apparent dissociation
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constant of FIAsH-CCPGCC formation in the presence of 200pM EDT is 0.24 pM, and this
apparent dissociation constant depends on the square of EDT concentration [Chen et al. 2007].
Small monothiols (DTT, P-mercaptoethanol, MES) do not form stable bonds with the biarsenical
dye, however they show some affinity for arsenoxides, and have been shown to accelerate TC-
BD formation and slightly reduce its apparent dissociation constant [Griffin et al. 2000; Adams et
al. 2002; Hoffmann et al. 2010]. Addition of thiols (DTT, P-mercaptoethanol) in BD solutions also
results in some background fluorescence even in the absence of any TC tags [Griffin et al.
2000; Chen et al. 2007].

Tetracysteine Tag - Biarsenical Dye Staining Protocols
The teracysteine tag - biarsenical dye system has been applied mostly for intracellular protein
imaging in mammalian cells, bacteria or yeast [Pomorski and Krezel 2011]. BD staining
protocols aim to provide specific maximum-contrast staining of TC-tagged proteins by
suppressing background staining, the major drawback of BD staining. BD background staining
has two major origins: i) BD that binds cysteine-rich proteins (e.g. SlyD chaperones in bacteria
[Wang et al. 2007]). This thiol-dependent background source can be reduced by adding small
concentrations (<100pM) of small dithiols (EDT and BAL) [Griffin et al. 20000; Hoffmann et al.
2010] that compete for BD and reduce BD binding to cysteine-rich proteins. ii) BD that binds
hydrophobic pockets in proteins (e.g. in bovine serum albumin). This is a thiol-independent
source of background that can be reduced by adding non-fluorescent uncharged dyes (e.g.
disperse blue, patent blue) in the staining solution [Griffin et al. 2000; Machleidt et al. 2007].
Most BD protocols consist of three steps: preparation, staining and washing. In the preparation
step, samples are treated with a reducing agent (usually TCEP) in order to reduce the thiols of
TC cysteines. At the same time BD is treated with EDT to get all As atoms bound to a EDT
molecule. In the staining step, cells are treated with a BD solution in the presence of small
amounts of excess EDT and an uncharged dye. In the washing step, cells are treated with a
dilute BAL solution to reduce thiol-dependent background staining [Griffin et al. 2000; Machleidt
et al. 2007; Hoffmann et al. 2010]. The BAL wash needs to be optimized in order to remove
nonspecific signal without diminishing the specific signal emitted from TC-BD complexes.

Proposed Staining Protocol
In biochemical applications of BD staining of TC-tagged proteins, staining may be simplified
compared to BD staining in live cell imaging. The reason is that since the identity of molecules
present in biochemical experiments is usually well known, their interactions with BD can be
tested. Under appropriate conditions the tedious washing steps with BAL could be omitted. One
such example is staining of purified recombinant TC-tagged calmodulin with FlAsH described in
[Park et al. 2004]. This study follows this approach for staining the TC-tagged I Domains:
- Reduce the cysteines of the tetracysteine tag in TC-tagged I Domains by treating them with

1 mM TCEP for 2h at 40 C.
- Treat the reduced TC-tagged I Domains with 5% excess FlAsH (previously treated with 100

pM EDT in order to get the cysteines of the TC tag react with EDT 2) in the presence of 1 mM
Pmercaptoethanol (Pme) and 1 mM TCEP for 3h at 40C.
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- Remove unbound FlAsH-EDT 2, Pme, TCEP, and EDT present in the FlAsH staining reaction
via gel filtration using Biorad micro bio-spin 6 equilibrated in binding buffer (either PBS with
2 mM MgCl2 , or PBS with 10 mM EDTA).
o It is necessary to remove unbound FlAsH-EDT 2 in order to prevent background staining

with the blocking agent (e.g. BSA, casein, superblock) used in binding experiments.
o It is necessary to remove the excess EDT and Pme due to their nasty smell and because

they increase the apparent dissociation constant of FlAsH for the TC tag from 10 pM
(absence of EDT) to 240 nM (in the presence of 200 pM EDT) [Chen et al. 2007]. The
presence of EDT and Pme favors the dissociation of FlAsH from the TC tag during the
binding experiment.

After gel filtration, the obtained I Domain solution is ready to be used in the binding experiments
described in the following section.

5.3.7 Ligand Density Assay
The ligand density assay is an in situ binding assay, which provides the spatial distribution of
adhesion ligands for particular adhesion receptors present in the surface of the matrix. Adhesion
ligands are labeled using the FlAsH-stained TC-tagged I domains described in the previous
sections of this Chapter). Then, by imaging the I Domain-treated matrix using a 3D microscope
(here a spectral multi-photon microscope) it is possible to quantify the density of I Domains
bound to their ligands.

Porous Collagen Scaffolds
The method developed is utilized to quantify the density of adhesion ligands for the two major
collagen-binding integrins (alp1, a2 1) on the surface of three kinds of porous collagen
biomaterials (scaffolds). Type "D" collagen scaffold is the baseline scaffold. It is very similar to
biomaterials applied clinically to induce regeneration in severely injured skin and peripheral
nerves [Yannas 2001], made by freeze-drying micro-fibrillar collagen 1 (0.5% mass fraction) and
then cross-linking it via dehydro-thermal treatment (DHT), see Appendix F.3. Scaffold "A" is
identical to scaffold "D", however it is not cross-linked. Scaffold "E" differs from scaffold "D" in
that it is cross-linked via chemical agents (EDC-NHS) instead of DHT. The three biomaterials
are members of a degradation rate scaffold library (they are supposed to be identical in all
aspects apart from cross-linking density thereby differing only in in vivo degradation half life),
and they are identical to the scaffolds utilized in an animal study that provides the results
described in [Soller et al. 2012] as well as the nerve samples shown in Chapter 4 of this thesis.
The main difference between the materials used for ligand density experiments and the
scaffolds utilized in [Soller et al. 2012] is the scaffold solid mass fraction (0.5% here, 5% in the
animal study).

Binding Assay Implementation
Each binding assay consists of two experiments. In the "binding" experiment, the binding buffer
of I Domains consists of PBS supplemented with 2 mM MgCl 2. Since divalent cations such as
Mg+2 and Mn+2 are necessary for I Domain binding to collagen (Section 5.2.4), these conditions
should enable binding of I Domains to collagen. In the "control" experiment, the binding buffer of
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I Domains consists of PBS supplemented with 10 mM EDTA. EDTA is a chelator of Mg+ 2 and
Mn+2, therefore EDTA should prevent the binding of I Domains to their ligands.
The in situ binding assay consists of the following steps:
- Scaffold blocking: circular scaffold samples (aprorimately 3mm diameter, 3mm thick) are

transferred inside PCR tubes, and hydrated in 50 pl PBS for 10 minutes. The excess
medium is aspirated (each scaffold holds approximately 7pl of liquid) and the scaffolds are
treated with 1 00pl superblock in PBS (37580, Thermo scientific) for three hours at 40C.

- I Domain binding: The binding buffer is removed and 18 pl of I Domain working solution is
added. I Domain working solutions are prepared by dilution the outcome of gel-filtrated
stained I Domains (see Section 5.3.6) and supplementing it with superblock (to 1:10 final
dilution) and in some cases non-tagged I Domains (competitive binding experiments).
Scaffolds treated with I Domains are incubated overnight at 40C to let I Domains bind their
adhesion ligands on the matrix. After 8 hous the sample is assumed to have reached
equilibrium and it is ready for imaging.

- Since the outcome of the gel filtration step contains trace amounts of FlAsH, and since
FlAsH binds tightly to the TC tag and does not dissociate from the TC-tagged I Domains
within the duration of the binding experiment and imaging, there is little concern that free
unbound FlAsH binds non-specifically to the blocking agent (Super-block) present in the
buffer. Instead over the duration of the experiment, practically all FlAsH will remain bound to
TC-tagged I Domains. Therefore, there is no need to apply BAL washes to remove non-
specifically bound FlAsH before imaging.

- Imaging: Each equilibrated I Domain-scaffold sample is transferred into a clean glass-
bottom dish, and is imaged in the spectral multi-photon microscope described in Section
2.3.1. Imaging is implemented by acquiring a z-stack of 21 planes, each 256 x 256 pixels
and 55 x 55 pm wide. The planes are 1 pm apart from each other and are located
approximately 10 to 30 pm away from thje scaffold surface. Imaging settings are: 4.8 mW
laser power, 775 nm laser wavelength, 40 pm pixel acquisition time. For each experiment
three samples are imaged, two z-stacks per sample.

Experimental design
Three kinds of experiments were conducted.
- the baseline collagen scaffold "D" is treated and imaged with solutions of increasing

concentration of stained TC-tagged I Domains, in the presence of 2 mM Mg+2 or 10 mM
EDTA. The purpose of this experiment is to verify that the presence of EDTA reduces I
Domain binding to collagen significantly, and verify that binding of TC-tagged I Domains to
collagen requires Mg+2.

- The baseline collagen scaffold "D" is treated and imaged with solutions of constant
concentration of stained TC-tagged I Domains but increasing concentration of non- tagged I
Domains (same type), in the presence of 2 mM Mg+2 or 10 mM EDTA. This is a competitive
binding assay that aims to evaluate the specificity of detected I Domain binding to collagen
scaffolds.

- The three collagen scaffolds ("A", "D", and "E") are treated and imaged with identical
solutions of stained TC-tagged I Domains, in the presence of 2 mM Mg+2 or 10 mM EDTA.
The purpose of this experiment is to evaluate the differences between the density of
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adhesion ligands for the two CBI available for cell binding on the surface of these three
materials.

Image Processing
The acquired images are processed by the image processing pipeline described in Chapter 2.
Each image contains two types of regions (classes): "scaffold" and "solution". The "scaffold"
region contains three sources of emission: FlAsH fluorescence, collagen intrinsic fluorescence,
and second harmonic emission emitted by collagen. The "solution region" contains a single kind
of emission, FlAsH fluorescence. What makes it feasible to segment the pixels of the two
classes is the presence of collagen emission in the scaffold as well as the fact that the emission
rate of FlAsH in solution (less than 5 photons per pixel) is at least one order of magnitude less
compared to the fluorescence emission of FlAsH in scaffold pixels. This large FlAsH signal
corresponds to FlAsH molecules bound to I Domains bound to ligands in collagen.

The ligand density assay aims to quantify the density of ligands on the surface of the scaffolds.
This is done by quantifying the emission rate of FlAsH located in scaffold pixels located at the
outer surface of the scaffold. Pixels located on the outer surface of the scaffold are identified as:

D scaffold n52(solution

where Tscaffold, Tsolution are the binary images corresponding to pixels classified as "scaffold"
and "solution" correspondingly, and 62 is the dilation morphological operator (using a disk
structural element or radius 2), see Chapter 2. Regions of interest are then manually picked,
and the mean FlAsH intensity at the scaffold boundary pixels B inside this region corresponds to
one measurement. The regions of interest are picked manually for consistency at locations of
similar geometry.

Statistics
Each assay consists of two experiments. One experiment takes place in the presence of 2 mM
Mg+2 in the buffer and one (control measurement) in the presence of 10 mM EDTA in the
buffer). For each experiment, the mean y and the standard error of the mean 6 of FlAsH
intensity at the outer surface of the scaffold is calculated based on four to six measurements
(two to three scaffold samples per experiment, two measurements per scaffold sample).
Measurements of FlAsH inetensity are then converted into equivalent FlAsH concentration
(equivalently I Domain concentration) based on a standard calibration curve. The brightness of
FlAsH bound on the TC tag is measured as B = 9.381. 10-6 photons/pixel/psec/pM/(mW 2).

5.3.8 Analysis of Protein Binding Experiments

Binding Assays
This section summarizes assays for studying the binding of two molecules (called binding
partners), denoted as "L" and 'I", that form a binding complex, denoted as "B". The choice of
symbols is such that "I" corresponds to I domain molecules, and "L" corresponds to ligands of I
domains located on ECM macromolecules.

Most binding assays quantify binding by measuring the amount of steady state binding
complexes Bss after the initial transient response. Such methods include the BIACORE assay
and the adhesion ligand density assay described in Section 5.3.7. Few methods provide
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accurate kinetic response B(t) data that can be used to quantify the binding kinetic parameters
(association and dissociation rates). One such method is the BIACORE assay (Section 5.3.5).
Nevertheless, most estimates of binding parameters are based on how the steady-state
complex concentration Bss varies as a function of Lo and I0.

Binding assays can take place either in solution or on a surface. The key feature of all binding
assays is a method to measure B(t) without interference from the unbound partners L, I. In
binding assays in solution, both binding partners and the resulting complex are located in the
same solution. In binding assays on a surface, one of the binding partners (L) is immobilized on
a surface, and the other partner (I) is in a solution that is in contact with the surface. In this case
the resulting binding complexes B are also attached to the surface. Adhesion assays on surface
include the BIACORE assay (Section 5.3.5), the developed adhesion ligand density assay
(Section 5.3.7), and the solid phase binding assay.

In most binding assays, it is necessary to stain one of the binding partners (whose concentration
is denoted as I* to distinguish from the concentration of the unstained partner I) by attaching
fluorescent entities or incorporating radioactive atoms. When binding reaches steady state, the
unbound stained partner I* is removed and the amount of B is estimated by measuring the
amount of B bound to stained I*. It these assays, it is assumed that the "hot" (stained) form I*
and the "cold" form I bind identically with their binding partner L.

1:1 Binding Reaction in Solution
In one to one (1:1) binding models, it is assumed that each soluble I domain binds its binding
partner that contains a single ligand per molecule. When the total concentration of ligands Lo is
unknown, Lo can be estimated by quantifying how the steady state concentration Bss of bound
complexes B varies as the initial concentration I0 of I domains varies. In this section it is
assumed that all I domains are "hot" (stained) so the superscript * for "hot" I is omitted.
One to one (1:1) binding of the two binding partners into a binding complex is described by the
chemical reaction:

I + L <-+ B

The concentrations of L, I, and B are denoted as L(t), I(t) and B(t) respectively (in units of
[M]). The kinetics of the 1:1 binding interaction model are described by the rate of B formation:

dB kon-I -L - k -Bdt~L off

B(O) = 0

where kon and koff are the association and dissociation rates (in units of [M-ls-1] and [s1]
respectively). The initial condition B(0) = 0 implies that initially there is no complex. As binding
proceeds and B complexes form, the concentration of unbound L, I are reduced due to the
formation of binding complexes B (depletion). At any time L(t), I(t) and B(t) are constrained by
mass conservation, which in solution is equivalent to a molarity constraint:

I= I(t) + B(t)

Lo= L(t) + B(t)

264



where Lo and I are the initial concentrations of L and I respectively. Expressing L(t) and I(t) as
a function of B(t) and substituting in the differential equation, provides an initial value problem
that describes the binding response:

B = kon - (Io - B) - (Lo - B) - koff -B

B(0) = 0

At steady state the rates of association and dissociation are equal. Setting B = 0 and collecting
the terms of B = Bss provides a second-order polynomial:

Bs2s _(kD + Lo + 10) Bss + 10 - Lo = 0

The valid solution for Bss ,the root of this polynomial that lies between 0 and min(LO,Io).
kD = koff/kon , is the dissociation constant (in units of [M]). Therefore, the steady state

concentration Bss depends on the binding affinity kD and the initial concentrations Lo and I0.

Alternatively, the fraction of bound ligands at steady state f = B equals the root of the

following polynomial that lies between 0 and min(1 ,A):

f2 - (1 + K +A) -f +A= 0 [5.3-6]
where K, A are non-dimensional parameters that describe the system affinity and stoichiometry:

KkD

Lo

Figure 5.3.6 shows contours of the steady state bound fraction f for various values of K and A
(both axes are logarithmic). The plot can be separated in several regions. The right part of the
plot corresponds to the case I > Lo. The presence of "few" or "many" ligands in the binding
reaction depends on the parameter K, or equivalently on the value of Lo relative to kD. Depletion
of I partners causes the curves of constant f to bend vertical, starts taking place for K<10 and
is significant for K<1. For any value of K, the fraction of steady-state bound ligands f is a
monotonically increasing value of A, whose slope equals:

dAL K+A+1-2f(K,A)

The value A50 of A that results in f = 0.5 (50% of ligands L bound) depends on the value of K.

When there are "few" ligands (K >10), then A50 (K) = K or equivalently I0 = kD. When there are
"many ligands" (K<0.1), then A50 = 0.5 (equivalently I = 0.5 -LO) is independent of K.

The value of slope f' at A50 equals:

o = df/d 2(K+A 50(K))

In the case of "few" ligands (K >10) then the slope A50(K) = (4K)' = (4A)-l is a monotonous
increasing function of kD. In the case of "many" ligands then A50(K) = (2K + 1)-1.
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Figure 5.3.6: Contour plot of the fraction of bound ligands f Bss/LO at steady state in a 1:1 binding reaction as a
function of the non-dimensional binding parameters K and A

Multiple Independent 1:1 Binding Reactions in Solution
The previous sub-section assumes that each I domain binds its partner (ECM molecule) at a
single ligand. However, many extracellular molecules contain more than one distinct ligands
recognized by a particular adhesion receptor. For example, collagen contains multiple kinds of
ligands for the two major collagen-binding integrins al 1 and a2P1 (Sections 5.2.3 to 5.2.4). The
total concentration of ligands LT available for binding to a receptor, can be estimated by
studying how the steady-state number of I Domain-ligand complexes varies as the initial
concentration of I Domains I0 changes.

Assuming that each I domain I can bind J distinct kinds of ligands L1, L2 , --- Lj found on an
ECM molecule in a non-cooperative manner (e.g. binding of an I Domain to a ligand in a
collagen molecule does not affect the affinity of I domains for other ligands on the same
molecule), total binding can be modeled as multiple 1:1 binding reactions that take place in
parallel. In this case, the total concentration of ligands LT in solution is:

LT = LO - En

where n1 is the number of type j ligands per ECM molecule and LO is the initial concentration of
the ECM molecule. Due to the non-cooperative binding assumption, the steady state
concentration Bss,j (j=1,2,...,J) of the complex I:Lj can be calculated using the steady state
equations of the corresponding 1:1 binding reaction:

B55,3  = j ___ (nj-L0-Bj).(I0-B)
kDJ kDj

where Bss = E Bss,j is the total concentration of bound ligands, kDJ is the dissociation constant

for the binding complex Bj, and I is the initial concentration of I domains. Solving this equation
for Bss,j and then substituting to Bss = E Bs,, provides a J+1 order polynomial for Bss:
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Bss = LO(1 0 - Bss) =1tkD.+I -Bss}

The steady-state concentration Bss of I domains bound to ligands is the root of this polynomial
that lies between 0 and mintLT,IO}. The steady-state fraction of ligands bound to I domains
equals f = Bss/RT-

In the case of J=2 distinct kinds of ligands per molecule, the steady state fraction f of ligands
bound to I domains is the root of the following polynomial that lies between 0 and A:

f3 -(1+ 2A + K1 + K2) f 2 + ((A + K1) - (A + K2 )+ 6+ 1) -f + = 0 [5.3-7]
KjkD~j

LT
- 0

LT

nl+n2  nl+n2

where Kj are non-dimensional numbers that describe the affinity of each kind of ligand for I

Domains, 2 is a non-dimensional number that describes the ratio of total available I domains to
total available ligands, and 6 is a non-dimensional number that describes the contribution of
each kind of ligand to the total response f.
Figure 5.3.7 shows contours of the steady state fraction f of bound ligands for several cases of
K1 /K 2 and n 1/n 2. When the concentration of a ligand dominates (e.g. n, >> n 2 ), then the system
becomes a 1:1 binding system. In the case of collagen, the numbers of different types of ligands
per molecule are similar (between 1 and 4), see Section 5.2.5. For example, type I collagen
contains 2 GFOGER, 4 GLOGER and 2 GMOGER ligands per molecule [Siljander et al. 2004].

Due to the large number of unknown parameters (nl, n 2 , kD1, kD2 , LO) involved even in the case
where I Domains bind to just J=2 independent sites on collagen it seems hard to estimate
reliably all these parameters based on noisy binding experiment data. Therefore, in this thesis, it
is chosen to describe the binding response f of CBI I domains with collagen by an equivalent
1:1 binding system of just two parameters: the total number of ligands LT and an "equivalent"
affinity keq:

Keq niK 2K 2fl1 +f 2 fl1 +f 2
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Figure 5.3.7: Contour plot of the fraction of bound ligands f = Bs,/LTin the case of I Domain binding to 2
independent ligand sites on its binding partner L as a function of the non-dimensional binding parameters , and 1,

for four cass of ni/n 2 and c1/I 2 .

Figure 5.3.8 compares the steady state fraction of bound ligands f for a sample system of J=2
independent binding sites system and of the equivalent 1:1 binding system of LT sites and keq

affinity parameter. The approximation provides a good estimate of the locus 15 0(K 1 ,K 2 ).

Approximation error increases as K1/K 2 deviates away from 1.
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Figure 5.3.8: Approximation of the steady state fraction of bound ligands f = Bss/LT in the case of I Domain binding
to J=2 independent ligands on collagen by a single 1:1 binding system of LT binding sites and keq affinity parameter.
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1:1 Binding Reaction on a Surface
In the two previous sub-sections, it is assumed that both binding partners L, I and the binding
complex B are soluble molecules. However, in many experimental assays, this is not the case.
Instead, one of the binding partners (L) is immobilized on a surface while the other partner (1) is
dissolved in a solution that is in contact with the surface. When diffusing I molecules bind to
immobilized L molecules, they are "caught" so that the resulting B complex is also immobilized
on the surface. Examples of such assays include the BIACORE assay (Section 5.3.5), the
developed adhesion ligand assay (Section 5.3.7), and the solid phase binding assay.

The geometry of the surface where the binding reaction takes place can be simple or complex.
The simplest geometry is a planar surface in contact with a solution, e.g. in the BIACORE
assay. An example of a complex geometry is binding of soluble I domains on their adhesion
ligands on the surface of a porous biomaterial. In order to focus on the binding reaction, any
geometry of a solution of volume V in contact with a surface of area S is modeled as a simpler
1-dimensional geometry, where a planar surface located at coordinate x = 0 is in contact with a
solution that extends between x = 0 and x = R, where:

R = -S

Molecules I can diffuse in the fluid and can bind to immobilized molecules L located at x = 0
assuming a 1:1 binding model. No binding interactions takes place at x = R.

A simple 1D mathematical model that describes binding interactions on a surface contains two
state variables: the density of unbound ligands on the surface pB(t) (units: [moles/area]) and
the concentration I(x, t) of unbound I molecules (units: M), and is set as a system of differential
equations.

aI(x,t) D a21(x,t)
at ax 2

D aI(o,t) = kon - 1(0,t) PL (t) - kff - B(t)
ax

subject to initial conditions:

PB(O) =0

I(x, t = 0) = 1o

and boundary conditions:
dl(R,t) 0

ax

dB(t)
d t =$(t) = kon-' 1(,t) -PL(0- kof -pB (0

where D is the diffusion coefficient for the I molecules, kon and koff are the association and

dissociation rates (in units of [M-1s-1] and [s-1] respectively) of the 1:1 L + I ++ B binding reaction.
The initial condition I(x, 0) = Io describes the assumption that when the reaction is initiated the
concentration of I molecules in solution is constant and equal to 10. The initial condition PB(O) =

0 describes that initially no ligands are bound to I Domains. Conservation of mass imposes the
following constraints:

Po = PL() + pB(t)
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I - V = (fR I(x, t)dx + PB () S - R = fo I(x, t)dx + PB(t)

Where po is the total surface density of immobilized L. The first equation describes mass
conservation of the immobilized molecule L. The second equation describes the mass
conservation of I Domains, which can be found either in solution at spatially-varying
concentration I(x, t) or can be immobilized on the surface as a complex with L.

The steady state density of bound ligands can be calculated by setting all time derivatives and
spatial derivative to zero, resulting in the following system:

Iss PL,ss - kD ' PB,ss = 0

Po = PL,ss + PB,ss

Io R = Iss - R + PB,ss

Where Iss is the steady state concentration of I Domains in solution. The steady-state fraction of
bound ligands V = PB,ss/PO is the root of the following polynomial that lies between 0 and 1:

2p2 
- (1 + + )() p Z = 0

Po

[5.3-8]

= R '0

Po

This polynomial is the equivalent to Equation 5.3-6 derived for the case of 1:1 binding in
solution. The non-dimensional parameters K,A differ from the parameters K, A, in that they
incorporate the length R, i.e. the ratio of solution volume to surface area. The shape of 'p(,K()
is identical to the shape of f(K,A) shown in Figure 5.3.6. It is important to note that the steady
state fraction of bound ligands 'p on the surface does not depend simply on the initial I domain
concentration I and the dissociation constant kD, but also depends on the length R.
The vast majority of published papers on this topic do not include R in the interpretation of
surface binding experiments (BIACORE, solid phase binding assays), and estimate kD as
kD = IO( p = 0.5), that is the value 10,50 of I0 where (p = 0.5. This can be tricky because the
parameter K(R) controls the shape of the binding curve P(Io). In BIACORE assays A -+ oo
(assuming adequate analyte flow rate) and therefore indeedI0 ,50 = kD. However, when K < 0.1
then 10,50 = p0/2R * kD and the estimate kD = 10,50is misleading. This observation may explain
why published estimations of kD for I Domain binding to collagen vary so much (Section 5.2.5).
Small values of KZ correspond to either small R or large po (large amount of immobilized
collagen).

Application of Binding Models in the Developed Adhesion Ligand Density Assay
In the ligand density assay described in Section 5.3.7, the situation seems to be an intermediate
between a binding assay in solution and a binding assay on a surface. Although fluorescently
labeled I Domains are initially in solution and their ligands are present on collagen molecules
immobilized on the scaffold, imaging experiments show that FlAsH-stained TC-tagged I
Domains are small enough to diffuse inside the scaffold struts. This is not surprising given that
the diameter of an I Domain is approximately Snm [Emsley et al. 2000]. The detected FlAsH
fluorescence signal is usually larger close the surface of the collagen scaffold strut, however
there is signal inside the collagen struts.

270



In order to describe this case, Equation 5.3-9 is modified by expressing the detected signal
(concentration of FlAsH-stained I domains) as PB,,s = r -Bss and the total density of adhesion
ligands as po = r -Lo, where Bss, Lo are volume concentrations (units: M), and r- 1 is the surface
volume density of the collagen struts (collagen surface per strut colume). Equation 5.3-10 then
becomes identical to equation 5.3-6 (the equation that describes binding in solution) with
binding parameters

K= GkD

A = G '0

where the immobilization factor
R

G = -
r

describes the ratio of the volume that contains soluble I Domains to the volume that contains the
immobilized ligands. In the case of the experimentqal protocol described in Section 5.3.7 the
volume of I Domain solution is approximately 25pl, while the volume of the collagen struts that is
approximately 0. 2pl (0.5% of the volume of 1

/ of a cylindrical scaffold of diameter 8mm and
height 3mm). The immobilization factor for the ligand density experiment of Section 5.3.7 is on
the order of G = 125.

The immobilization factor G acts as an amplifier. In an ordinary binding experiment in solution
(equation 5.3-6) if the initial concentration of I Domains is I0, then the concentration of I
Domains bound to ligands lies between 0 and min(LO,Io). Due to the immobilization factor G
the concentration of I Domains bound to ligands inside the collagen strut can lie between 0 and
min(LO, G -10). This means that the local density of Fluorescent I Domains bound to collagen
inside the strut will be higher than the concentration of I Domains in solution. This amplification
is a key element that enables distinguishing the signal of I Domains bound to collagen from the
signal of the surrounding I Domains in solution. Of course this happens after the dynamics of
the solution-surface binding system have equilibrated.

Due to the large value of G, it is expected that both K and A parameters will be large, therefore I
Domain binding to collagen is described by the top-right part of Figure 5.3.6 In this case the
concentration 10,50 of I Domains where half ligands are bound to I Domains equals 1,50 = kD,
i.e. half the ligands in the scaffold will be bound to I Domains when IO,50 = kD.

5.3.9 Electron Microscopy

Scanning Electron Microscopy
Dry porous collagen scaffolds were imaged in a Jeol 5600LV scanning electron microscope
located in the Department of Materials Science and Engineering (MIT) under guidance by
Donald Galler.

Transmission Electron Microscopy
Transmission electron microscopy images of dry CGS were conducted by Nicki Watson (Keck
imaging facility, Whitehead Institute, MIT). Dry porous collagen scaffolds were fixed with
glutaraldehyde, stained with osmium tetroxide and uranyl acetate, dehydraded in 100% ethanol,
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embedded in Spurr's resin polymerized at 500C, and cut into 50 nm thick sections. Sections
were post-stained with uranyl acetate and lead citrate, and imaged in a FEl Technai Spirit
Transmission Electron Microscope.

5.4 Results

5.4.1 Recombinant Expression of CBI I Domain
Figure 5.4.1 shows a representative example of a SDS-PAGE gel loaded with purified
recombinant I Domains. The gel has been stained with Coomassie Blue. Lanes 1-4 contain I
Domains before thrombin cleavage, where the GST tag ("G") is fused with either non-tagged (G-
al, G-a2) or TC-tagged (G-TC-al, G-TC-a2) I Domains. Lane 5 contains the protein standard
(STD). Lanes 6-9 contain I Domains after thrombin cleavage, where the GST tag is removed.
SDS-PAGE reveals that the size of fusion proteins is approximately 50-51 kDa and the size of I
domains after cleavage is approximately 23 kDa. These numbers agree with predictions based
on the known primary structure of I Domains, the GST tag and the TC tag (see protocol J.1).
TC-tagged proteins are 1014 Da larger than non-tagged I Domains, and this is also evident in
the gel. All cleaved I Domain fractions apart from a11 contain small fractions of uncleaved fusion
proteins. The impurity of uncleaved fusion proteins is more severe in samples that are harder to
cleave (TC-tagged I Domains). All lanes were loaded with 4 pg of protein sample, as estimated
based on A280 nm absorption.

150
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50
37

20

15
10

Lane 1 2 3 4 5 6 7 8 9
Sample G-al G-TC-al G-a2 G-TC-a2 STD al TC-al a2 TC-a2

Figure 5.4.1: SDS-PAGE of purified fractions of non-tagged and TC-tagged I domains before and after thrombin
cleavage. The gel was stained using coomasie blue. STD: protein standards (sizes on the right in kDa).

Figure 5.4.2 shows a representative example of a SDS-FIAsH-PAGE gel loaded with the
outcome of recombinant expression of I Domains (different batch compared to the proteins
shown in Figure 5.4.1). Lanes are loaded the same way as the ones of the gel shown in Figure
5.4.1. All samples contain 4 pg protein (based on A280 absorption assay) that were treated first
with TCEP and 5% excess FlAsH, before being loaded in the gel. After running, the gel was
imaged in a fluorescent imager (bottom image), and then stained with coomasie blue and
imaged in a conventional imager (top image). The bottom image shows that FlAsH fluorescent
signal is emitted only by TC-tagged I domains, either cleaved I Domains (TC-a11, TC-a 21) or
fusion proteins (G-TC-a11, G- TC-a21). Non TC-tagged I Domains emit no FlAsH signal even
though they were treated with FlAsh.
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Figure 5.4.2: SDS-FIAsH-PAGE of purified fractions of non-tagged and TC-tagged I domains before and after
thrombin cleavage. Samples were reduced by TCEP and stained by FlAsH before denaturing pnd loading. The gel
was initially imaged in a fluorescent imager (bottom). Then it was stained using coomasie blue and imaged in a
conventional imager (top). STD: protein standards (sizes on the right in kDa).

In summary Figure 5.4.1and Figure 5.4.2 show that I Domains are purified with reasonable
purity. After thrombin cleavage, impurities of approximately 15% (as revealed by densitometry)
correspond to uncleaved GST fusion proteins. The A280 nm absorption protein assay seems to
provide quite reasonable results, since the signal of all lanes appears to be reasonably similar
(within 20%). Treatment with FlAsH before gel loading stained TC-tagged I Domains without
staining non-tagged I Domains.

5.4.2 I Domain Characterization: Circular Dichroism Spectroscopy

Results
The first CD measurements evaluated the ability to conduct CD spectroscopy in the purified I
Domain solutions, given that I Domains are stored in PBS+3 buffer (PBS supplemented with
adding 2mM TCEP, 2mM MgCl 2 and 0.02% tween20). It is of interest to see how the addition of
TCEP, MgC 2 and tween 20 affect the CD spectrum of the PBS buffer. Figure 5.4.3 shows that
the spectrum of the protein buffer (PBS+3) is indistinguishable from the CD spectrum of plain
PBS, as well as the CD spectrum of the empty cuvette. The background signal is significantly
different when a different cuvette is used. These results suggest that the majority of the
background signal is caused by cuvette birefringence.
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Figure 5.4.3: Evaluation of the magnitude of the background CD signal O(A). Left: Comparison of the PBS CD
spectrum versus the protein buffer (PBS, 2mM TCEP, 2mM MgCI 2 and 0.02% tween20) CD spectrum. Right:
Comparison of the empty cuvette CD spectrum versus the protein buffer CD spectrum. The difference between the
protein buffer CD spectra observed in the two experiments is due to the use of two different cuvettes. All CD spectra
shown in this section have been acquired using the cuvette of right image.

Figure 5.4.4 left shows the measured CD spectra O(A) in millidegrees. Even though all solutions
have similar 280nm absorbance, the magnitude of the CD spectra 6() is quite different. Figure
5.4.4 right shows that the calculated mean residue ellipticity Omrw is almost identical for all I
domains for A>205 nm. The CD spectra 6mrw of I domains differ significantly for wavelengths
less than 205 nm. Tetracysteine-tagged I domains (TC-a11, TC-a 21) have smaller 0 mrw values
compared to non-tagged I domains (all, a21) suggesting that the presence of the tetracysteine
tag somewhat increases the amount of random coil structure.
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Figure 5.4.4: Circular dichroism spectra of purified I domain solutions. Left: Raw measured ellipticity data (after
baseline signal subtraction). Right: Results for the mean residue ellipticity 0,m-w(A).
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I domain Secondary X-ray data* Estimation based on CD spectra
structure SELCON3 CONTINLL CDSSTR

Helix % 0.39 0.339 0.355 0.407
a11 Strand % 0.21 0.187 0.189 0.170

Turn% 0.11 0.217 0.202 0.161
Random coil % 0.29 0.263 0.253 0.262
Fitting NRMSD - 0.207 0.040 0.072
Helix % - 0.312 0.236 0.420

TC-a1l Strand % - 0.162 0.230 0.159
Turn % - 0.216 0.240 0.184
Random coil % - 0.298 0.292 0.236
Fitting NRMSD - 0.420 0.047 0.124
Helix % 0.390 0.346 0.336 0.376

a 21 Strand % 0.200 0.171 0.184 0.163
Turn % 0.093 0.211 0.214 0.186
Random coil % 0.317 0.287 0.265 0.280
Fitting NRMSD - 0.149 0.034 0.060
Helix % - 0.258 0.176 0.411

TC-a 21 Strand % - 0.174 0.201 0.251
Turn % - 0.218 0.262 0.145
Random coil % - 0.372 0.361 0.192
Fitting NRMSD - 0.276 0.105 0.097

Table 5.4-1: Estimations of the contribution of each secondary structure kind (helix, strand, turn, random coil) in each
kind of purified I domains based on three computational tools (SELCON3, CONTINLL, CDSSTR) that deconvolve CD
spectra. For each fit, the normalized root-mean-square deviation (NRMSD) is provided as a measure of the goodness
of fit. *X-ray data for a1I are based on crystal structure 1QCY [Nymalm et al. 2004] that contains residues 169...361
of ITGA1(P56199). X-ray data for a21 are based on crystal structure 1AOX [Emsley et al. 1997] that contains residues
168... 366 of ITGA2(P17301).

Table 5.4-1 shows the estimated contributions of particular secondary structures (a-helices, p-
strands, turns, and random coil (irregular structure)) for each one of the four purified I domains,
obtained from three CD analysis software tools (SELCON3, CONTINLL, CDSSTR). The known
contributions of secondary structures in a11 and a21 (based on the annotations of the known
crystal structures 1QCY [Nymalm et al. 2004] and 1AOX [Emsley et al. 1997] provided by the
protein data bank (http://www.rcsb.org)) are also shown for comparison. Results show that
- With the exception of TC-a 21 the three algorithms provide similar estimates.
- All three algorithms estimate relatively well the contributions of a-helices and P-strands but

overestimate the contributions of P-turns and underestimate the contribution of random coils.
CDSSTR estimates for a11 and a21 seem to be slightly better compared to SELCON3 and
CONTINLL.

- The normalized root mean square deviation (NRMSD) of each fitting seems not to have a
practical use, since CONTINLL always has the lowest NRMSD without significantly better
accuracy in estimating the secondary structure of a11 and a21.

- The addition of the tetracysteine tag seems to cause slight chances in the contributions of
the secondary structures. In general SELCON3 and CONTINLL suggest that the TC tag
decreases slightly the contribution of a-helices and increase slightly the contribution of
random coils (a reasonable response). CDSSTR suggests the opposite change (increased
helical contribution), which does not make sense since the TC tag is known to fold in a turn.
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Discussion
Circular dichroism data were acquired for solutions of I domains, with and without a TC tag.
Proteins were reconstituted in the same PBS buffer as the one used in subsequent binding
experiments (BIACORE, adhesion ligand surface density assay). Data suggest that the buffer
and the cuvettes used permitted low noise CD spectra measurements for wavelengths larger
than 200nm (Figure 5.4.3 and Figure 5.4.4). The most likely source for the significant noise
observed below 200nm is light absorption by salts of the PBS buffer, dissolved oxygen, or the
quartz cuvette [Greenfield 2006]. It is possible that different I domain concentrations (resulting in
A280 different than 0.17) could improve the signal to noise ratio.
The detected CD spectra for the four I domains are almost identical for A>205 nm and vary for
A<205 nm (Figure 5.4.3). Since CD spectra for A>210nm are dominated by the a-helical
contribution, data could suggest that the TC tag does not affect significantly the presence of the
nine a-helices present in I domains. However, TC-tagged I domains show reduced ellipticity
around 200nm, suggesting increased random coil contribution. Due to the presence of the a-
helix breaking PG residues between two cysteine pairs, TC motifs have hairpin 3D structure as
shown by a recent NMR study [Madani et al. 2009]. This suggests that adding the 9-residue
WDCCPGCCK tag to an I domain (210 residues approximately) should slightly decrease the
contributions of a-helices and P-sheets, and increase the contributions of turns and random coil.
The three CD analysis tools provide similar predictions of the secondary structure, with the note
that CDSSTR provides increased estimates of the helix contribution. The estimated
contributions of secondary structures for the tagged-free I Domains (a1l, a21) agree reasonably
with the known contributions provided by the x-ray structures. Compared to TC-free a1l, the TC-
tagged TC-a11 is predicted to have slightly more contribution of turns and random coil, which
agrees with the published structure of the TC tag. On the other hand, the three predictions for
TC-a 21 differ more compared to each other, perhaps due to the presence of more contaminants
in the protein solution. The mean of the three predictions suggests that adding the TC tag to a21
reduces helix contribution by 7% and favors mostly random coil structure. Overall these results
supports that the addition of the TC tags do not disturb the secondary structure of I Domains
significantly, and that the predicted secondary structure of I Domains agrees very well with the
one provided by x-ray crystallography.

5.4.3 I Domain Characterization: BIACORE Binding Assay
The objectives of the BIACORE experiments are: i) to evaluate the binding affinity of the purified
I Domains for their adhesion ligands in collagen molecules, ii) to evaluate the effect of the
tetracysteine (TC) tag on the binding affinity of I Domains for their ligands. Indirectly, the
BIACORE assay acts as a way to evaluate the correct folding of I Domains after their
recombinant expression and purification, since only well-folded I Domains are expected to bind
their ligands.

Processing BIACORE data can be implemented by two approaches. The first approach is to
manually condition the raw signal provided by the instrument (R1w(t) and Raw(t)) in order to
calculate first the baseline-corrected sensorgrams R (t) and R bs(t), then the corrected
sensorgrams R21(t) and R43 (t) , and then fit the later into a 1:1 binding model using generic
nonlinear optimization algorithms (Section 5.3.5). The second approach is to use the BIAeval
software tool (provided by BIACORE) that automatically calculates the baseline-corrected
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sensorgrams R s(t) , R1s(t) and then fits them into a 1:1 binding model that also incorporates
signal jumps.

Baseline-corrected Sensorgrams
Figure 5.4.5 and Figure 5.4.6 show the calculated baseline-corrected sensorgrams that
correspond to binding of a,1-based analytes and a21-based analytes respectively to collagen and

gelatin. Each figure contains four images, that show the baseline-corrected sensorgrams R1(t)

(left column) and R s(t) (right column) for non-tagged I Domains (top row) and TC-tagged I
Domains (bottom row). For clarity only the three-four sensorgrams that correspond to larger
analyte concentration are shown. Baseline-corrected sensorgrams were calculated in MATLAB
using the procedure described in Section 5.3.5.

Figure 5.4.5 and Figure 5.4.6 show that there are signal jumps in the beginning of the
association and dissociation steps. The magnitude of signal jumps depends on the identity and
concentration of the analyte. Signal jumps are larger in analyte solutions of increased
concentration. Signal jumps are also larger in solutions of analytes whose stock solutions are
more dilute (stock TC-tagged I Domains are more dilute than non-tagged I Domains; a2-based I
Domains are more dilute than a1 1-based I Domains), therefore require less dilution in running
buffer. Both observations support that these signal jumps induced by the properties (e.g. RI and
ionic strength) of the stock analyte buffer (PBS+3) and the running buffer (HBS-P+ plus 1 mM

Mg12 ) used to prepare the dilutions. Larger signal jumps correspond to solutions where the
analyte buffer has larger mass fraction compared to the running buffer. The relationship
between the analyte concentration and the mass fraction of PBS+3 buffer in the solution is not
linear due to dilution math.

Figure 5.4.5 and Figure 5.4.6 also show that the signal jumps are smaller in R b(t) compared to

R21 (t). This also supports the idea that these signal jumps are due to matrix effects because the
matrix of chambers 2, 4 (collagen immobilized on dextran) is more different than the matrix of
chamber 1 (dextran only) compared to the matrix of chamber 3 (gelatin immobilized on dextran).
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Corrected Sensorgrams and Global Fitting
Figure 5.4.7 and Figure 5.4.8 show the calculated corrected sensorgrams that correspond to
binding of a11-based analytes and a21-based analytes respectively to collagen and gelatin. Each
figure contains four images, that show the corrected sensorgrams R2 1 (t) (left column) and
R4 3 (t) (right column) for non-tagged I Domains (top row) and TC-tagged I Domains (bottom
row). For clarity only the three or four sensorgrams that correspond to larger analyte
concentration are shown. Corrected sensorgrams were calculated in MATLAB from baseline-
corrected sensorgrams (Figure 5.4.5 and Figure 5.4.6) after subtracting the contribution of the
signal jumps at the beginning of the association and dissociation steps, as described in Section
5.3.5.
Figure 5.4.7 and Figure 5.4.8 also provide two parameters of the 1:1 binding model (dissociation
constant kD= koff /kon, number of adhesion ligands per immobilized molecule n) estimated by
global fitting of the corrected sensorgrams. A detailed list of the 1:1 binding system parameters
(kon, koff, n) obtained by global fitting of the corrected sensorgrams R21(t), R4 3 (t) can be found
in the "global fitting" columns of Table 5.4-2. Figure 5.4.7 and Figure 5.4.8 provide the binding
responses (dashed lines) that correspond to the parameters estimated by global fitting based on
Eq. 5.3-5.
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Overall, the shape of corrected sensorgrams of the same type Ri;(t) for TC-tagged TC-all and
non-tagged ail shown in Figure 5.4.7 and Figure 5.4.8 appear quite similar (similar rates of
association and dissociation kinetics, similar maximum signal within the same association
period). Unfortunately, the three minute duration of the association period is not enough to
reach the steady-state signal that corresponds to each analyte concentration (estimated kon
rates range between 300 and 1000 M1s1 with the exception of TC-a 21, see later discussion,
Table 5.4-2). On the other hand, the 12 minute duration of the dissociation period seems
adequate for complete dissociation of the bound analyte (estimated koff rates range between
440 and 600 s1, Table 5.4-2). The corresponding dissociation constant kD, a metric of binding
affinity lies in the 5-20 pM range. Global fits seem to match well with all binding curves that
correspond to different concentrations of the analyte, with the exception of TC-a 21.
Binding curves for TC-a 21 had the largest signal jumps at the beginning of the association and
dissociation steps compared to all other analytes, and the largest residual signal in the steady
state of the dissociation step, (Figure 5.4.5 and Figure 5.4.6). These artifacts could be due to
matrix effects or protein aggregation artifacts described in Section 5.3.5. The reason was that
TC-a 21 was the I Domain that was hardest to purify and cleave using thrombin, resulting in the
lowest yield and most dilute stock solution (approximately 10 to 12 pM TC-a 21 in PBS+3). TC-a 21
solutions were also the most sensitive to protein aggregation, and required careful handling
(Section 5.3.2). Global fits for TC-a 21 data seem quite worse compared to global fits for the
remaining analytes. The estimated association rates kon are approximately 5 times faster
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compared to the corresponding non-tagged I Domain (a21), and the simulated response curves
do not agree well with measured curves. It is possible that these errors are induced by impact
compensation of artifacts related to matrix effects or protein aggregation [Schuck et al. 1999].

In all cases, the corrected sensorgrams R4 3 (t) (collagen minus gelatin) have approximately
30% less magnitude compared to the corrected sensorgram R2 1 (t) (collagen minus blank).
Gelatin is used as a negative control molecule that has the same primary structure as collagen,
is expected to lack its adhesion ligands due to the loss of the triple helical conformation (Section
5.2.3), and hopefully has the same non-specific binding properties. The difference between the
R43(t) and R2 1 (t) signals suggests that most of the binding detected in R2 1 (t) is specific to
collagen and does not take place in gelatin. It is not clear if the difference can be attributed to
different non-specific binding or slight affinity of CBI I domains for adhesion ligands in gelatin.
Global fits for R43 (t) result in larger association rates kon, smaller dissociation rates koff
(resulting in smaller dissociation constant kD), and fewer adhesion sites per collagen molecule n
compared to R2 1 (t), which agree with the hypothesis that the signal R4 3 (t) lacks some part of
non-specific binding to collagen that is included in signal R21(t). Nevertheless this cannot be
proved based on the presented data.

The presence of the TC tag qualitatively seems to decrease slightly the corrected sensorgrams
R21 (t) and R4 3 (t) compared to the corresponding non-tagged I Domain. Compared to al data,
TC-a11 data are fitted by 1:1 binding models of slightly slower association rates kon, slightly
larger dissociation rates koff (resulting in larger dissociation constant kD). Compared to a2l
data, TC-a 21 data are fitted by 1:1 binding models of similar dissociation rates koff. The must
larger association rates kon for TC-a 21 (resulting in smaller dissociation constant kD) are
probably caused by artifacts and are not considered meaningful.

So far, the discussion in this Section deals with results calculated using the signal conditioning
and global fitting procedure described in Section 5.3.5. Figure 5.4.9 shows a representative
result of the global fitting procedure carried in the BlAeval software. It shows the baseline-
corrected data Rs(t) as calculated by the BlAeval software, and the resulting global fit using a
1:1 binding model augmented with signal jumps.

Figure 5.4.9: Baseline-corrected sensorgrams R21(t) (noisy curves) and global fits (thin smooth lines) to a 1:1
binding model for analyte solutions of a1I calculated using the BIAeval software.
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A comparison of the baseline-corrected data of Figure 5.4.9 with the baseline-corrected data of
Figure 5.4.5 (top left) calculated based on the procedure described in Section 5.3.5, highlights
their similarity. A comparison between the properties of the 1:1 binding model calculated by the
global fitting approach described in Section 5.3.5, or by the global fitting algorithms of the
BlAeval software is shown in Table 5.4-2. BlAeval software predicts faster association rates kon,
slower dissociation rates koff and similar Rmax values (calculated from n using Eq. B4c) most
probably due to different way of modeling the signal jumps in the beginning of association and
dissociation steps.

Analyte Data

a 1  2-1
4-3 744 497

359 178 4.97 77.3
13201 131 0.99 17.80.356.69

TC-a11 2-1 363 652 17.94 0.83 71.9 1422 96 0.67 20.3
4-3 796 572 7.19 0.26 22.5 1231 86 0.69 14.2

a2I 2-1 619 563 9.10 0.81 70.1 831 262 3.15 44.2
4-3 994 481 4.84 0.32 27.7 1013 216 2.14 23.5

TC-a 21 2-1 3048 558 1.83 0.25 21.7 1644 124 0.76 38.3
4-3 4134 440 1.07 0.15 12.9 1960 141 0.72 24.9

Table 5.4-2: Results of the parameters for the 1:1 binding model of I domains to collagen minus blank (2-1) or
collagen minus gelatin (4-3). Results are provided for two kinds of computations: i) computations using global
nonlinear optimization of baseline-corrected data whose jump artifacts are removed manually, and ii) computations
sing the BiaEval software.

Discussion
The presentation of the results highlights some of the difficulties involved in processing and
interpreting BIACORE data. The presence of signal artifacts such as mass transfer, matrix
effects, RI differences or protein aggregates can affect significantly the shape of sensorgrams
and the resulting global fits. In this study, all curves were reasonably well globally fitted into 1:1
binding models apart from the TC-a2l analyte, where the large content of analyte buffer in the
analyte solutions induced severe artifacts that result in non-convincing global fits. Nevertheless
even for the TC-a 21 analyte some qualitative comments can be made.

The motivation for globally fitting the data using 1:1 binding models was to provide a qualitative
rather than quantitative description of binding of I Domains to collagen, and how this is affected
by the TC tag. The results obtained by globally fitting for the association and dissociation rates
kon, koff (and the resulting dissociation constant kD) can be used only as a coarse estimation.
Although it is known that collagens contain multiple binding sites for I Domains, the BIACORE
experiment as designed and implanted in this thesis cannot resolve the properties of the
individual I Domain - adhesion ligand binding, since data contain enough artifacts that cannot be
adequately removed.

A further point that complicates the analysis of BIACORE data is that I Domains in solution are
found in two conformations ("open" and "close") and one of them ("open") seems to have much
larger affinity for its ligands compared to the other (see Section 5.2.4). Previous experiments
suggest that in solution 20% to 40% of aL' are in "open" configuration [Vorup-Jensen et al.
2007], which would result in increasing the estimated dissociation constant kD by 2.5 to 5 times.
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Overall, the shape of BIACORE curves suggest that the majority (approximately 2/3) of I
Domains bound on immobilized collagen does not bind to the negative control molecule
(gelatin). Therefore most of I Domain bound to collagen is collagen specific and does not bind to
gelatin. The presence of the TC tag seems to slightly worsen the affinity of the I Domain for its
ligands. The TC does not seem to prevent I Domains from binding their ligands, does not
cancel the specificity of I Domain binding to collagen (rather than gelatin), and does not reduce
the affinity of I Domains for collagen significantly (e.g. at least one order of magnitude).
Evidence for the effects of the TC tag is stronger for TC-a11 compared to TC-a2l, where more
severe artifacts make global fitting more challenging.

The reported affinities of 5 to 20 pM for CBI I Domain binding to collagen I show some level of
agreement with previous BIACORE measurements of I Domain (a1l, a21) binding to collagen I
(summarized in Table 5.2-3, Section 5.2.5), however comparisons need to be carefully. The
previous publication that estimated the affinity of CBI I Domains for collagen I based on kinetic
analysis of BIACORE data suggests kD = 24 nM for binding of a1l to collagen I, and kD = 180
nM for binding of a2l to collagen I [Calderwood et al. 1997]. Such tight affinities seem
questionable given the experiment design of that study: the very small applied flow (5pl/min)
induces significant mass transfer that affect kinetics, and the very slow dissociation rates
estimates (which result in the very small values of dissociation constants) were based on a
dissociation step of very small duration that can induce significant estimation error and does not
reveal what is the steady state response of the dissociation step. Several different studies
attempted to estimate the affinities of CBI I Domains for collagen I from BIACORE using the
steady-state response of the sensorgram in the end of the association step, and analyzing
results using Scatchard plots assuming a binding model that includes one or two kinds of
independent 1:1 binding sites. Their findings suggest one kind of sub-micromolar affinity kD

binding site (0.09 to 0.32 pM for a1l, 0.26 pM for a21) and one micromolar affinity kD binding site
(5.5 to 13.9 pM for al1, 3.99 to 10.7 pM for a21) [Rich et al. 1999; Xu et al. 2000; Kim et al. 2005].
The pM binding sites of these models usually correspond to 4 to 6 more binding sites per
molecule n compared to the sub-pM sites [Rich et al. 1999; Xu et al. 2000] therefore seem to
affect the binding response more. Overall these estimates agree with the findings of this study.
Finally, several studies studied the affinities of CBI I Domains for collagen I using solid-phase
binding assays (SPBA). These studies model binding using a single kind of 1:1 binding, and
report much smaller dissociation constants (23 to 260 nM) for a1l binding to collagen I and
widely varying results (20 nM, 54 nM and 5800 nM for a21 binding to collagen 1), see Table Table
5.2-3. There is no clear explanation for the disagreement between BIACORE results and SPBA
results.
The result of the BIACORE experiments presented in this study could be improved in several
ways. One way would be to infer the binding properties by using the steady state response of
the association step, instead of trying to fit kinetic data as attempted here. This approach may
be less sensitive to artifacts. In this case, analyte flow rates could be further reduced, leading to
savings of valuable analyte. Another critical way would be to change the buffer of the I Domain
stock solutions into something closer to the running buffer (HBS-P+ plus 1 mM Mg12 ) in order to
reduce matrix effects and RI difference effects. Buffer change requires some optimization, as it
can affect the rate of I Domain aggregation, see Section 5.3.2. Finally, it seems advisable to
reduce the amount of collagen or gelatin immobilized on the CMS chip, since the amount
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immobilized in this study (1200 RU) is suggested to be quite high for kinetic experiments and
can induce mass transfer and matrix effects [Karlsson and Falt 1997; Myszka 1997; Schuck et
al. 1999].

5.4.4 Quantifying the Density of CBI Ligands on Porous Collagen Biomaterials

Imaging Results
Figure 5.4.10 shows representative scanning electron microscopy images of the collagen
scaffolds considered in this study. Scanning electron microscopy reveals the porosity of the
scaffold, which qualitatively agrees with the published mean pore diameter of approximately 100
pm expected based on the chosen fabrication protocol [O'Brien et al. 2004]. Transmission
electron microscopy reveals that scaffold struts have amorphous structure and there is only
occasional presence of D-banded collagen [Yannas 1972; Gelse et al. 2003]. While type I
collagen found in tissues is organized in fibrils that are "banded" (collagen is in a semi-
crystalline state), during the fabrication of the scaffold this semi-crystaline state seems to be lost
due to collagen fibril swelling in 0.05M acetic acid (protocol F.1).

Figure 5.4.10: Electron microscopy images of porous collagen scaffolds highlight its porous structure and provide
information about the conformation of collagen molecules. Top row: Scanning electron microscopy on dry porous
collagen scaffolds. Bottom row: Transmission electron microscopy of thin (50nm) sections of fixed porous collagen
scaffolds. Asterisks correspond to locations where the D-banding of collagen is evident.

Figure 5.4.11 and Figure 5.4.12 show representative images of three kinds of porous collagen
scaffolds (A, D, and E) treated with 6 pM FlAsH-stained TC-a11 and TC-a2l respectively. Raw
spectral multiphoton images are processed by the pipeline described in Chapter 2 in order to
unmix and segment the images. The images in the left columns of Figure 5.4.11 and Figure
5.4.12 show the spectral unmixing outcome when -the samples are treated with TC-ail in the
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presence of MgC 2. The images in the right columns show the spectral unmixing outcome when
the samples are treated with TC-all in the presence of EDTA. All unmixed images dispay the
three emission sources present in the system (collagen fluorescence, FlAsH fluorescence,
collagen second harmonic emission) using the same colormap.

Unmixed image - Mg 2 Segmented image - Mg 2

scaffold A

scaffold D

scafflold

Figure 5.4.11: Representative images of three kinds of porous collagen scaffolds treated with 6 pM FlAsH-stained
TC-a11 domains in the presence of 2 mM MgCl2 (left column) or 10 Mm EDTA (right column). 16-channel spectral
multi-photon images have been spectrally unmix to resolve the signals of collagen autofluorescence (red; range: 1-10
photons/pixel), FlAsH (green; range: 5-150 photons/pixel) and second harmonic emission (blue; range: 1-4
photons/pixel). Middle column: the corresponding image segmentation maps (green: scaffold, red: solution) of the
MgCl 2 . All images are 55x55 pm wide.

The images of the middle columns of Figure 5.4.11 and Figure 5.4.12 show the outcome of the
local image segmentation algorithms (class vidence calculations, see Section 2.5.2) scaffold
and solution classes. The resulting segmentation is used to define pixels that belong to the
scaffold outer surface, used in the following calculations. In the presence of 2 mM MgC 2 ,
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fluorescent I Domains stain the whole volume of the scaffold. In the presence of EDTA FlAsH
emission from the scaffold is much less and is localized mostly at its outer surface.

Unmixed image - Mg 2 Segmented image - Mg +2 Unmixed image -EDTA

scaffold A

scaffold D

scafflold

Figure 5.4.12: Representative images of three kinds of porous collagen scaffolds treated with 6 pM FlAsH-stained
TC-a 21 domains in the presence of 2 mM MgCl 2 (left column) or 10 Mm EDTA (right column). 16-channel spectral
multi-photon images have been spectrally unmix to resolve the signals of collagen autofluorescence (red; range: 1-10
photons/pixel), FlAsH (green; range: 5-150 photons/pixel) and second harmonic emission (blue; range: 1-4
photons/pixel). Middle column: the corresponding image segmentation maps (green: scaffold, red: solution) of the
MgC 2 . All images are 55x55 pm wide.

I Domains Bind to Collagen Scaffolds in a Mg+2-dependent and Specific Manner
Figure 5.4.13 shows the fluorescence emission rate of FlAsH on the surface of porous collagen
scaffolds "D" treated with solutions of various concentration of TC-a11 or TC-a 21 in the presence
of either 2 mM Mg+2 or 10 mM EDTA. As discussed in Section 5.3.2 it was decided not to purify
TC-tagged I domains in concentrations larger than 10-20 pM in order to prevent protein
precipitation. Therefore the concentration of TC-tagged I Domain solutions was chosen in the
region 0.75-6 pM. Results show that the FlAsH signal on the scaffold surface in the presence of
Mg+2 is significantly larger than the signal in the presence of EDTA. These results agree with
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previous knowledge that highlights the necessity
collagen (Section 5.2.3).
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Figure 5.4.13: Concentration of bound I Domains on the surface of the porous collagen scaffold "D" when the
scaffold is treated with various concentrations of FlAsH-stained TC-tagged I Domains. Dark grey bars correspond to
signals in the presence of 2 mM Mg+2. Light grey bars correspond to signals in the presence of 10 mM EDTA.

Figure 5.4.14 shows the fluorescence emission rate of FlAsH on the surface of porous collagen
scaffolds "D" when the emission in the presence of EDTA is subtracted from the signal in the
presence of Mg+2 . Since I Domain binding is Mg+2-dependent, the signal in the presence of
EDTA can be treated as mostly mon-specific and therefore it needs to be subtracted from the
signal in the presence of Mg+2. Results show that in both cases, solutions of TC-tagged I
Domain of 6 pM concentration do not result in signal saturation.
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Figure 5.4.14: Concentration of bound I Domains on the surface of the porous collagen scaffold "D" when the
scaffold is treated with various concentrations of FlAsH-stained TC-tagged I Domains. The results show the
difference of the signal in the presence of Mg +2 minus the signal in the presence of EDTA.

Figure 5.4.15 shows the fluorescence emission rate of FlAsH on the surface of porous collagen
scaffolds "D" when scaffolds are treated with solutions of constant FlAsH-stained TC-tagged I
Domain concentration and increasing non-tagged I Domain concentration. Results highlight the
fact that for both I Domain kinds, as the concentration of the non-tagged I Domain increases,
the concentration of TC-tagged I Domains on the surface of the scaffold decreases. This signal
decrease suggests that FlAsH-stained Tail and non-tagged I Domains ail bind to the same
ligands, therefore TC-tagged binding to collagen scaffold is specific. Results suggest that the
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dissociation constant of the TC-a11 is approximately 8-10 pM, and that the dissociation constant
of the TC-a 21 larger, probably around 15 pM.

14 [TC-al] =1.5 pM [TC-a2] = 1.5 pM
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Figure 5.4.15: Concentration of bound I Domains on the surface of the porous collagen scaffold "D" when the
scaffold is treated with 1.5pM FlAsH-stained TC-tagged I Domain and various concentrations of non-tagged I
Domains. The results show the difference of the signal in the presence of Mg+2 minus the signal in the presence of 10
mM EDTA.

Quantifying the Total Density of Adhesion Ligands in Collagen Scaffolds
Based on the last part of Section 5.3.8, the total number of adhesion ligands (units: [M]) on the
material can be estimated based on an equivalent 1:1 binding model as:

LT= 4 - k 1 dIO 10=kD

where Bss is the measured concentration of I Domains bound on the biomaterial (corrected data

shown in Figure 5.4.14), S is the slope of the Bss(Io) curve, and kD is the dissociation constant
dIO

for I Domain binding to collagen. Based on the BIACORE data (Section 5.4.3) and the
competitive binding data of Figure 5.4.15, an equivalent dissociation constant for the binding of
TC-alI and TC-a 21 to collagen is on the order of kD = 8 pM and kD = 15 pM respectively. The

slopes B are numerically estimated from the data shown in Figure 5.4.14 and Figure

5.4.15 as 8.5±1.7 (for TC-a11) and 10.4±2.5 (for TC-a 21) respectively. The slightly larger value of
the slope for TC-a 21 agrees with analytic predictions that systems of worse affinity (larger kD)
have stiffer slope around I = kD. The resulting estimates of the total density of adhesion
ligands for integrins alp1 and a2P1 in the collagen scaffolds are: LT(axll) 204.9±41 pM and
LT (a2fl1) 248.3±61 pM respectively.

Quantifying the LD in Different Porous Collagen Materials
Figure 5.4.16 shows the fluorescence emission rate of FlAsH on the surface of porous collagen
scaffolds of three different kinds ("A", "D", and "E") when treated with identical solutions of TC-
tagged I Domains. Type "A" scaffolds are collagen scaffolds that have not been cross-linked.
Type "D" scaffolds are collagen scaffolds that have been cross-linked by dehydro-thermal
trearment for 48 hours at 1200C (Protocol F.3). Type "E" scaffolds are collagen scaffolds that
have been cross-linked chemically by EDAC-NHS (Protocol F.4). Results show that "E"
scaffolds contain much fewer ligands for integrins a1 1 and a20 1 compared to "D" scaffolds.
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Results also suggest that type "A" scaffolds contain 25% less ligands for integrin a1 p1 and 10%
less ligands for a2P1 (not statistically significant) compared to "D": scaffolds.
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Figure 5.4.16: FlAsH signal (expressed as equivalent concentration of ligands) on the surface of the porous collagen
scaffold "D" when the biomaterial is treated with 1.5pM FlAsH-stained TC-tagged I Domain and various
concentrations of non-tagged I Domains. The results plotted are the difference of the signal in the presence of Mg +2
minus the signal in the presence of 10 mM EDTA.

Assuming that the cross-linking treatment (DHT, EDAC-NHS) does not change the identity of
ligands but just their density, these results suggest that scaffolds E contain statistically
significantly fewer ligands for both al 1 and a2P, (14.4% and 30% respectively) compared to the
DHT treated scaffold "D".

5.5 Discussion
The insoluble environment (matrix) of cells is a critical modulator of cell phenotypes in
physiology and pathology. Quantifying the molecular details of how the matrix modulates cell
behavior is critical for in-depth understanding of critical biological processes (wound healing),
diseases (fibrosis, cancer) and for axiomatic principle-based design of biomaterials. This effort
has two parts: i) define a state vector for the matrix that includes the features of the matrix that
can be sensed by cells, and ii) define how cells respond to the matrix state.
Quantification of the matrix state is hard. Cells can sense a wide range of matrix properties,
including its chemical composition, its stiffness [Engler et al. 2004; Vogel and Sheetz 2006], and
its topology in the nano and the micro level [Maheshwari et al. 2000; Griffith and Swartz 2006].
Chemical composition is a critical part of the matrix state. The surface chemistry of the matrix
(adhesion ligands for particular adhesion receptors present on the matrix surface) defines what
kind of cell receptors can be utilized by cells, and therefore what kind of stimuli are provided by
the matrix to the cell. Unfortunately the chemical composition is hard to quantify: native ECM in
tissue is composed of a large number of multi-domain crosslinked and hard to isolate bio-
molecules [Naba et al. 2012]. Existing proteomic methods require digesting and homogenizing
the matrix, and then applying modifications of standard biochemical/proteomics methods such
as mass spectroscopy. However, matrix digestion destroys the 3D structure of the matrix and
provides an average answer that may differ from what cells really feel. Clearly there is a need to
describe the chemical composition of the matrix, from a cell-based perspective, that preserves
the 3D structure of the matrix.
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This Chapter presents a novel optical-based method for quantifying the surface chemistry of a
3D matrix in situ. The method relies on using fluorescently-labeled soluble markers that
resemble the binding behavior of an adhesion receptor of interest, imaging the binding
interaction between the matrix and the marker by 3D microscopy, and applying appropriate
image analysis and binding reaction analysis to calculate the density of adhesion ligands
present in the image for the adhesion receptor of interest. This methodology is a major advance
compared to previous methods [Barber et al. 2005; Harbers et al. 2005; Kong et al. 2006;
Hsiong et al. 2008] which quantify the surface chemistry in very specific biomaterials based on
RGD peptides, or to spectroscopic methods that quantify the chemistry in the surface of
materials in terms of elements and chemical groups [Ma et al. 2007; Kingshott et al. 2011].
In this thesis, the method is applied in quantifying the density of adhesion ligands for the two

major collagen-binding integrins (a1 1, a2P1) in three kinds of porous collagen materials used in
nerve regeneration studies, aiming to gain some understanding about why these materials
induce so different wound healing outcomes in animal models of peripheral neve regeneration
[Soller et al. 2012].

5.5.1 Development of Fluorescent CBI I Domain Markers
A critical aspect of the proposed methodology is the development of soluble markers that
resemble the binding properties of the adhesion receptor of interest. In the case of the two
major collagen-binding integrins (CBI: alp1, a2P1) such biomarkers exist, and consist of the I
Domains of their a subunit [Hynes 2002].
For experimental purposes two kinds of markers are required in binding experiments:
fluorescently-labeled markers and non-labeled markers. Since the vast majority of proteins are
not fluorescent when excited by imaging laser lines, it is necessary to develop fluorescent
versions of the markers by fusing the marker with an appropriate peptide or protein. Due to the
small size of I Domains (25 kDa) and the dependence of I Domain function on large
conformation changes during binding to its ligands, fluorescent versions of I Domains were
constructed by fusing them with a small tetra-cysteine motif at their N terminus and treating
them with small biarsenical dyes (Section 5.3.6). All markers were expressed in BL21 e-coli as
GST fusions and were purified by affinity chromatography and subsequent GST removel
(Section 5.3.2).
Extensive biochemical characterization quantified the purity, size, structure and binding
properties of the TC-tagged and non-tagged I Domains (Sections 5.3.3, 5.3.4, and 5.3.5). SDS-
PAGE-FlAsH analysis revealed that only TC-tagged I Domains (and not non-tagged I Domains)
bind to the small biarsenical dye FlAsH and become fluorescencent (Section 5.3.3). Circular
dichroism analysis revealed that the secondary structure of non-tagged I Domains agrees with
published x-ray results and that the presence of the TC tag does not alter the secondary
structure significantly (Section 5.3.4). BIACORE analysis revealed that I Domains bind to
collagen with affinity on the order of 8 - 15 pM, that they have significantly more affinity for
collagen at its correct triple-helical state compared to its denatured state (gelatin), and that the
presence of the TC tag has a small effect on the binding affinity of I Domains (Section 5.3.5). In
all steps of purification and characterization the effect of the TC tag on the a1 I Domain was less
severe compared to the effects on the a2 I Domain.
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5.5.2 Measuring the Density of CBI Ligands on Porous Biomaterias in Situ
Several publications present biochemical studies on the binding interactions of CBI I Domains
with ECM molecules such as collagens, and laminin (Table 5.2-3). However, most ECM
molecules are normally not found in the soluble state. Instead after being expressed by cells
they are organized into insoluble structures (fibrils, fibers, meshes) that form the complex
macro-molecular network of the matrix (tissue ECM or biomaterials). So far, only a single
biochemical study has considered binding of I Domains to collagen fibrils [Jokinen et al. 2004],
where collagn molecules are organized based in the semicrystalline array that results in the
formation of D-banding [Orgel et al. 2006; Sweeney et al. 2008]. This study concluded that fibril
organization affects the avidity of I Domains binding and affects the way cells sense and spread
on collagen. This study supports the need to develop methods that can quantify the surface
chemistry of a matrix in situ since ECM molecule organization may affect the way integrins
recognize and bind their ligands.

This study presents the first methodology that quantifies the surface chemistry on a 3D matrix in
situ. Specifically, the TC-tagged and non-tagged I Domains are utilized to quantify the density of
ligands for integrins alp1 and a21 available on the surface of porous collagen scaffolds in situ.
This is implemented by conducting an in situ imaging-based binding assay, where scaffolds are
treated with various concentrations of FlAsH-stained TC-tagged I Domains and non-stained
non-tagged I Domains, and then imaged by spectral imaging microscopy. The image processing
pipeline described in Chapter 2 is then utilized to recover the spatial concentration of FlAsH on
the surface of the scaffold. Results show that binding of stained TC-tagged I Domain to the
scaffold surface is concentration-dependent and divalent-cation dependent. The detected signal
is much larger in the presence of MgC 2 (specific signal) compared to the signal in the presence
of EDTA (control), Figure 5.4.13. This divalent cation dependence agrees with previous
published reports on the I Domain [Tuckwell et al. 1995; Calderwood et al. 1997; Tulla et al.
2001]. The results of the competitive binding experiment suggest that binding of stained TC-
tagged I Domains to the scaffold surface is also specific, since the detected signal of bound
stained I Domains decreases as the concentration of non-tagged I Domains increases, Figure
5.4.15. The shape of competitive binding curves is consistent with the equivalent dissociation
constants (approximately 8 pM for all, 15 pM for a21) estimated based on the BIACORE assay.
Imaging results were carefully interpreted into binding parameters (number of ligands,
dissociation constants) using a 1:1 binding model that combines the properties of binding
experiments in solution and on a surface (Section 5.3.8).
The developed methodology was applied in quantifying the density of ligands for the two major
CBI (a1p1, a211) in three kinds of porous collagen scaffolds, used in a recent study of induced
regeneration in peripheral nerves (PN) [Soller et al. 2012]. The three materials consist of the
"active" material "D" (induces improved regeneration in severely injured PN) and the "inactive"
scaffolds "A" and "E" (induce limited regeneration in severely injured PN). The three materials
differ in their cross-linking treatment. A is not cross-linked, D is cross-linked by DHT, E is
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crfosslinked by the chemical cross-linkers EDC and NHS. Scaffold D is similar to ones used for
inducing regeneration in peripheral nerves.
The results show that "active" porous collagen scaffolds D contain 204.9±41 pM a1p1 ligands
and 248.3±61 pM a21 ligands. Inactive scaffolds A contain approximately 25% less a1p1 ligands
and approximately 10% less a21 ligands (not statistically significant) compared to scaffold D.
This difference between the density of ligands of scaffolds A and D could be the result of partial
denaturation of the collagen molecules in scaffold A, since cross-linking delays scaffold
denaturation and scaffolds were imaged approximately 1 month after fabrication. Scaffolds A
are known to have a very short in vivo half life (much less than 1 week) [Harley et al. 2004;
Soller et al. 2012].

On the other hand, inactive scaffolds E contain significantly less ligands for both a11 and a21
integrins (85.6% and 70% less respectivel) compared to scaffolds D. This reduction is
hypothesized to be the result of the chemical cross-linking trestment applied to scaffold E.
Specifically, the cross-linker EDC is known to attack and activate carboxyl groups turning them
reactive for primary amines [Hermanson 2008]. Since the ligands of CBI contain acidic residues
(aspartic acid, glutamic acid) and the carboxylic groups of their side chains actively participate in
formation of the bonds between CBI I Domains and collagen (Sections 5.2.4 and 5.2.5), it is
expected that EDC treatment can destroy these ligands, and therefore deplete scaffolds E of
their surface chemistry.
These results suggest that binding interactions between the collagen scaffold and cells inside
the wound may be of critical importance for the ability of a biomaterial to induce regeneration. In
the case of scaffold A, although this "inactive" uncrosslinked material contains as many ligands
as the "active" scaffold D, it degrades quickly in vivo so the ligands disappear. In the case of
scaffold E, the scaffold degrades very slowly in vivo, however it contains much fewer ligands
compared to scaffold D. The low density of ligands on scaffold E can explain why contractile
cells located just inside its inner lumen do not interact extensively with scaffold E: these cells
seems to prefer to bind each other, become contractile (as shown by the significant upregulaton
of actin) and are aligned circumferentiallu, parallel to the inner lumen surface of the scaffold.
This structure suggests that the contractile forces applied by these cells are not transmitted to
the scaffold. Furthermore, often these cells lose contact with the scaffold, as evident by the
much smaller outer diameter of the capsule compared to the scaffold inner diameter. In
contrast, in transected PN grafted with active scaffold D, the cells locatedin the outer surface of
the nerve make always contact with the scaffold and do not get a preferential circumferential
orientation. Further experiments are required to provide quantitative evidence about the effect of
ligand density to particular cell phenotypes in vitro and in vivo.

5.6 Extensions of the Methodology and Future Work
The developed methodology provides a new tool that can be used to quantify the insoluble
microenvironments felt by cells inside a 3D matrix. Instead of the standard approach to describe
the chemistry of a matrix based on the composition of ECM molecules, the proposed
methodology quantifies the density of ligands of particular adhesion receptors, which can be
present in more than one kind of ECM molecules.
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The methodology can be applied to quantify various kinds of 3D matrices including tissue ECM
and biomaterials. The application of the methodology in biomaterial characterization follows the
approach described in this Chapter. The methodology could be applied to biomaterials based on
either natural biomolecules or artificial polymers functionalized with peptides/domains that
contain adhesion ligands. This is in contrast to the existing specialized methods of quantifying
RGD peptides, which can be applied only to a very limited range of artificial materials.

At the moment, cell-scaffold interactions are described by quantifying how cell phenotypes of
interest depend on particular structural (mean pore size), mechanical (stiffness), and chemical
(composition) properties of the scaffold [O'Brien et al. 2005; Harley et al. 2008; Yannas et al.
2010]. A useful approach to study the effect of a particular material property is by generating a
librariy of scaffolds consisting of members that differ only in the property of interest, whose level
varies smoothly across the scaffold members of the library. The methodology developed here
introduces the concept of a small scaffold library with members that contain a variable density of
ligands of particular adhesion receptors. Scaffold libraries in combination with high-throughput
screening by proteomic/genetic assays or imaging (for example the method described in
Chapter 3) [Hubbell 2004; Gallagher et al. 2006] can provide a quantitative description of the
effects of the scaffold surface chemistry on particular phenotypes of interest.

The methodology can be also applied to quantify the surface chemistry of tissue ECM. Tissue
ECM can be thought of as a very complex (in terms of chemical composition) information-rich
scaffold that regulates cells [Badylak 2007]. The methodology developed here could be applied
to quantify the surface chemistry of tissue ECM, after cellular components have been removed
via a decellularization process [Uygun et al. 2010; Badylak et al. 2011]. This introduces
opportunities for quantifying the surface chemistry felt by cells in healthy tissue and comparing it
with the surface chemistry during pathological conditions, or for quantifying how the chemical
environment felt by cells changes during the progression of diseases associated with significant
changes in the ECM, for example cancer [Olumi et al. 1999; Lu et al. 2012].

In this study, the method is applied for quantifying the density of ligands of the two major
collagen-binding integrins (alp1, a2P1). The method can be extended and used to quantify the
ligands of various cell adhesion receptors. This requires two steps:
- Identifyting a soluble protein that can act as a marker of the adhesion receptor of interest.

An appropriate marker should have approximately the same specificity and affinity for
ligands as the receptor. Identifying or developing such markers requires understanding at
the molecular scale of the structure and function of the receptor of interest. Sometime this
task is not hard. For example the marker of integrins that bind their ligands via the I Domain
of their a subunit is that particular I Domain. Examples of such integrins include the two less-
abudant collagen-binding integrins alop1, al 13. The development of markers for integrins
that bind their ligands using both subunits (e.g. the RGD integrins a3p1, a5 1p, acp1) is harder,
and probably requires engineering an appropriate fusion of the P propeller of the a subunit
with the I domain of the P subunit (see Figure 5.2.1). The development of such markers
requires an understanding of the domain structure and conformation changes induced by
binding, because it is possible that appropriate modifications are necessary so that the
fusion protein can be in an "open" state. One example of such fusion protein design is the
a8 -p1 fusion protein design developed to identify ligands of integrin a8 P1 [Marciano et al.
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2007]. Apart from integrins it is possible to seek for markers of adhesion receptors that
belong to other families, for example DDR collagen receptors and sugar-binding receptors.
Markers of DDR receptors can be based on the diskoidin domain of DDR receptors. As
markers for particular sugar oligomers, it is possible to use sugar-binding lectins (WGA,
SBA) that are already commercially available.

- Generate fluorescent markers. This can be tricky as the fluorescence entity should interfere
minimally with the structure and the conformation changes that regulate the specificity and
affinity of the marker for its ligands. Fluorescent markes can be engineered by fusing the
non-fluorescent marker with a peptide or domain that will make it fluorescent, or by
chemically conjugating the non-fluorescent markers with reactive fluorescent dyes
[Hermanson 2008].

Finally, even though the implementation of the method described in this Chapter utilized
spectral multiphoton microscopy, it is possible to apply the methodology using other 3D imaging
techniques. Specifically, the method can be implemented using confocal microscopy, an
imaging modality that is nowadays widely available. Finally, it could be combined with emergent
methods of super-resolution, such as PALM, STORM and STED (although some of them
require conjugating the markers with particular fluorophores) [Hell and Wichman 1994; Betzig et
al. 2006; Rust et al. 2006].
Last but not least, a major impact of the developed methodology is that it can be modified in
order to develop methods to edit the surface chemistry of a biomaterial. In combination with
emerging 3D printing tools, such methods could lead to the development of biomaterials whose
surface chemistry can edited in 3D at will [Derby 2012; Miller et al. 2012], in order to provide
appropriate chemical clues to the various kinds of cells that will interact with the material at
various locations.
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Chapter 6: Conclusions

6.1 Conclusions
In this thesis we combine the use of advanced imaging, probabilistic image processing,
materials science, and biology to conduct three studies that focus on how biomaterials regulate
the wound healing outcome in peripheral nerve wound healing. Special emphasis is placed on
the regulation of contractile phenotypes by the physicochemical properties of the matrix. This is
an exciting research area due to the huge potential impact of quantifying, understanding and
exploiting cell-matrix interactions in the development of novel biomaterial-based treatments that
can induce regeneration in injured adult organs.

Chapter 2 is not directly involved to a problem related to peripheral nerve regeneration.
However, it provides the necessary image processing tools that are used to process the imaging
data utilized in the remaining three chapters.
- Provides an image processing pipeline that converts raw spectral microscopy data (not

necessary multi-photon) into regions corresponding to particular physical entities of specific
chemical composition.

- The algorithm can handle complex low-signal images and can be utilized by users that are
not expert in optics or signal processing. It fills a gap in the area of high-content
fluorescence imaging, since none of the available image processing toolkits is designed to
process low-signal spectral images.

- It presents analytic relationships for the variance and bias of spectral unmixing, the key
calculation in processing spectral data, suggests their range of validity, and provides
guideline for the experimental design of high content spectral imaging experiments.

Chapter 3
- Describes an imaging-based methodology for studying signal transduction pathways in cells

that interact with 3D matrices. It is based on quantifying single cells using imaging assays of
their morphology and their binding pattern with the surrounding microenvironment (matrix,
cells).

- The methodology is applied to a pilot study of TGFP isoform signaling via the SMAD
pathway in fibroblasts inside porous collagen scaffolds similar to the ones utilized in
chapters 4 and 5.

- The results of the pilot study suggest that, apart from the canonical SMAD proteins
(SMAD2,3), the non-canonical SMADs (SMAD1,5) affect the response of cells to TGFP.
Specifically, SMAD1 seems to affects the response to TGFP1 more than TGFP3; while the
TGFBR1 receptor ALK1 and to a lesser extent SMAD5 have the opposite effect. The
involvement of the non-canonical SMADs may lead TGFP1 and TGFP3 to induce different
effects in cells.
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Chapter 4
- describes an imaging study of the early (1 and 2 weeks post-injury) wound healing response

in two groups of severely injured peripheral nerves treated with either regeneratively "active"
scaffolds D or regeneratively "inactive" scaffolds E respectively.

- Imaging results show that the response observed 1 and 2 weeks post-injury follows the
trend observed by [Soller et al. 2012] at 9 weeks. In nerves treated with the active scaffold
"D" the capsule is thin, contains less aSMA-positive cells and is in contact with the inner
lumen of the scaffold. In nerves treated with the inactive scaffold "E" the capsule is thicker
and makes fragile contact with the scaffold.

Chapter 5
- Describes a new methodology for quantifying the surface chemistry (surface density of

adhesion ligands for particular adhesion receptors) in 3D matrices (biomaterials, ECM).
- The methodology is based on fluorescently-labeled soluble markers that emulate the

corresponding adhesion receptor. It provides a quantitative description of the insoluble
environment felt by cells.

- The methodology is applied to quantify the ligands of the two major collagen-binding
integrins alp1, a2P1 on the surface of collagen scaffolds "D" and "E" utilized in the animal
study of chapter 4, using as markers fluorescently-labeled I Domains of the corresponding
integrin.

- Results show that the regeneratively active scaffolds "D" have significantly more ligands
compared to the regeneratively inactive scaffolds "E". This difference is attributed to the
chemical cross-linking procedure applied to "E" which attacks the carboxyl groups that are
necessary components of al P1, a2p1 ligands.

Even though chapters 3, 4 and 5 may not seem closely related, they all focus on the critical
effects of mechanical (contractile) forces occurring during wound healing. Specifically, Chapter
3 focuses on a signaling pathway known to induce contractile phenotypes. Chapter 4 shows
that, in nerves grafted with "inactive" scaffold "E" the cells of the capsule tissue that surrounds
the nerve express more contractile phenotypes and bind the inner lumen of the scaffold in a
more fragile way. In contrast, in nerves grafted with "active" scaffold "D" the expression of
contractile phenotypes around the nerve is weaker and there is much more adhesion of cells in
the inner lumen of the scaffold. Finally, Chapter 5 shows that the "active" scaffold "D" exposes
cells to a much higher density of al1pl, a2p1 ligands for adhesion compared to the inactive
scaffold "E". These ligands are required by cells in order to adhere to the matrix and to apply
mechanical forces to the scaffold.

6.2 Future Work
The image processing pipeline described in Chapter 2 can be improved in several ways:
- Implement the code in an efficient programming language such as C or Java and utilize

GPUs to enhance its computational efficiency. Embed the image processing code in the
microscope control software and generate "smart" microscopes that can image large area
samples by picking autonomously the regions of interest.
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- Convert the pipeline into an ImageJ plug-in and make it freely available to investigators of
various spectral microscopy modalities.

- Utilize spectral-FLIM detection for processing extremely hard cases where spectral imaging
by itself cannot resolve the components accurately.

- The implementation of spectral fluorescence imaging in deep tissue imaging in vivo may
require modification of the image processing algorithms, or implementation of optical tricks
to handle the deteriorating effects of emission light scattering in the spectral response.

The image informatics methodology described in Chapter 3 can be used to study the role of
individual ECM molecules or adhesion receptors in cell-scaffold interactions
- perturbation of the cell-matrix system can be implemented by changing the chemical

composition of the matrix, adding or removing ECM components, or cytokines known to bind
to ECM components. This approach can be utilized as a screening of ECM molecules for
the development of new improved scaffolds of more complex chemical composition

- 3D imaging experiments are relative slow. High throughput imaging modalities can speedup
imaging but this is probably not enough. The application of image informatics in large-scale
cell signaling studies or screenings requires extensive automation such as sample handling,
microfluidics, and image acquisition that would enable consistent staining, and user-free
imaging of batches of samples.

- the prediction capacity of the approach can be improved by describing single cells by more
imaging assays, and by developing appropriate statistical analysis methods that can
interpret complex large-scale results.

The observations of the imaging study described in Chapter 4 can be extended in several ways:
- results suggest that scaffolds D and E regulate differently the elementary processes taking

place during the first week (coagulation, fibrin matrix formation, and cell migration into the
fibrin matrix). It may be reasonable to conduct a study that focuses on how scaffold
properties (particularly surface chemistry) regulate the formation of the capsule during the
first week after injury.

- the ability of nonlinear optics to distinguish banded collagen (synthesized by cells) from non-
banded collagen (banding lost due to collagen fibril swelling in acid during laboratory
processing) could be useful in developing in vitro assays for studying collagen fibrilogenesis.

- The study presented in Chapter 4 is ex vivo. An intravital multi-photon imaging study of
peripheral nerve wound healing in the presence of a scaffold can provide information that is
not possible to collect by other means, and answer questions related to the mechanism of
capsule formation and how its formation is affected by the presence of biomaterials of
various physic-chemical properties. Intrvital imaging combined with molecular targeting of
agents that upregulate and downregulate wound contraction could provide solid evidence
about a causal relationship between wound contraction and wound healing outcome.
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The methodology for quantifying the surface chemistry of 3D matrices described in Chapter 5
can be extended in several ways:
- It can be applied to quantify the density of a113 and a2p1 ligands in different biomaterials,

providing a standard way to compare them and quantify their effects to cells.
- It can be applied to quantify the density of a11 and a2p1 ligands in tissue ECM after

decellularization. Experiments could focus on how the progression of particular diseases
(e.g. fibrosis, cancer) affect the surface chemistry of the matrix felt by cells

- It can be applied to quantify the density of ligands of other kinds of adhesion receptors. This
requires the design, expression and characterization of an appropriate fluorescent marker.
In some cases this is straightforward (e.g. a10P1 and a1113). In other interesting cases
(e.g. ligands of a3p1, a5p1, a8p1) this may be harder and require some iteration

- The developed methodology can have a major impact if it is modified and combined with
emerging 3D printing tools in order to modify the surface chemistry of a 3D biomaterial at
will.
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Appendix A: Instrument Description
This Appendix provides a brief description of the spectral single-photon counting multi-photon
microscope utilized in this thesis.

Al. Optical System
The optical system consists of the optical components that deliver the ultrafast mode-locked
infrared excitation beam into the sample, collect the emission and detect it via PMT sensors.
The system provides three different PMT sensors.
* A 16-channel MA-PMT (Hamamatsu R59000P-00-L16) used for spectral imaging
* A fast PMT (Hamamatsu R7400P) used for fluorescence lifetime imaging (FLIM) or single-

channel intensity imaging.
* A high-efficiency Photon counting head (Hamamatsu H7421-40) used for fluorescence

correlation spectroscopy (FCS) or single-channel intensity imaging.

Pump laser Ti-Sph.M

168
M3 Al H1 12 L2 L 11

131 SH

L5 R5900U-00-L16
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R7400P
M 11

14 F/ ST
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15 i~ ~M6/D2 EP
B B-- S -F2-1

c TL2 M9

M77 L4 F3 M8

M1b H7421-40

Figure A1.1: Schematic of the optical system. Red: illumination laser beam. Green: emission.
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Component Description & catalogue number
Pump laser Millenia 1OW laser, Spectra Physics
Ti-saph. Tsunami titanium-sapphire laser, Spectra Physics
M1,M2,M3 Broadband ultrafast mirror 1" 700-930nm, Newport 1OB20UF.25
M4,M5,M1O,M11 Broadband metallic mirror 1" 480-20000nm, Newport 1OD20ER.2
M6 Enhanced silver reflective mirror, Chroma Tech. 21010
M7,M8,M9 Metallic mirrors, part of the Zeiss Axiovert S100 microscope
Li Plano-concave lens 1" f=-25mm, 650-1000nm, Newport KPC043AR.16
L2 Plano-convex lens 1" f=62.9mm, 650-1000nm, Newport KPX085AR.16
L3,L4 Plano-convex lens 1" f=25mm, 430-700nm, Newport KPX076AR.14
L5 Plano-convex lens 1" f=25mm, 430-700nm , Newport KPX076AR.14
SL Scan lens, aspherical biconvex 1", f=25mm, Zeiss 444232-9902C
TL Tube lens, plano-convex 1", f=125mm, 430-700nm, Newport

KPX097AR. 14
TL2 Tube lens for scanned detection configuration, f=165 mm, Zeiss
EP Eyepiece, Zeiss
OL C-apochromat 40x 1.2NA 0.28mm WD water immersion, Zeiss 441757-

9970-000
Fluar 10 x 0.5NA 1.9mm WD, Zeiss 440135-0000-000
Fluar 20 x 0.75NA 0.6mm WD, Zeiss 440145-0000-000

11 ...19, IB, IC Adjustable iris for system alignment
D1 Dichroic mirror T:350-670 R:720-1080, Chroma Tech. T700DCSPXRUV
D2 Dichroic mirror, Chroma Tech. 675DCSX
F1 Bandpass filter (394-680nm), Chroma Tech. ET680SP-2p8
F2 Bandpass filter, Chroma Tech. E700SP2P8

Bandpass filter BG39, schott
F3 Bandpass filter, Chroma Tech. E700SP2P8
H1 A/2 plate 1", 780nm, Newport 1ORPO2-28
Al Glan-Thomson polarizer 650-1000nm, Newport 1OGTO4AR.16
B1 Beamsplitter
SH Shutter, melles griot
SM x-y galvanometric scanning mirrors, Cambridge Technology 6350
P1 Piezoelectric actuator 100pm, Physik instrumente P-721.00
ST Motorized x-y stage, Prior ES111
SP 1/8m f=120mm F/3.7 spectrograph, Oriel MS125

600 lines/mm AB=400nm ruled grating, Newport 77414
F-PD Fast photodiode, Beckle & Hickle PHD-400
MA-PMT 16channel multialkali MA-PMT 300-600 nm, Hamamatsu R5900P-00-L16
PCH Photon counting head GaAsP PMT 300-720nm, Hamamatsu H7421-40
F-PMT Fast bialkali PMT 300-650nm, Hamamatsu R7400P
Table Al-1: Information about the optical components shown in the optics schematic of Fig. Al-1.

A2. Electronics System
The electronic system consists of three main parts. The first part are power electronics and
drivers that control the various actuators of the microscope (scanning mirrors, x-y stage,
piezoelectric objective actuator) based on signals provided by the microscope control GUI. The
second part are electronics that process (condition, single-photon counting) the electric signal
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provided by the three PMTs of the microscope. The third part are voltage regulators that provide
appropriate voltage to various components, necessary for their operation.

Stage controller +--

SM driver 4

- Piezo driver _

-+-ach rd

PCH controller -

- PC

7z

-V

Figure A2.1:
analog signals

Electronics schematic. Red lines: DC power supply. Green lines: digital signals. Blue lines:
(500), Black lines: analog driver voltage. Green boxes: sensors. Red boxes: power supplies &

regulator.

Component Description & catalogue number
SM x-y galvanometric scanning mirrors, Cambridge Technology 6350
SM controller x-y galvanometric scanning mirror controller, Cambridge Technology 6350
Pi Piezoelectric actuator 100pm, Physik instrumente P-721.00
PI controller Custom-made piezoelectric actuator power supply (0-1 OOV), So lab
ST Motorized x-y stage, Prior ES111
ST controller Motorized x-y stage controller, Prior
F-PD Fast photodiode, Beckle & Hickle PHD-400
MA-PMT 16channel multialkali MA-PMT 300-600 nm, Hamamatsu R5900P-00-L16
16ch card Custom-made 16-channel counting card (Buehler et al. 2005), So lab
PCH Photon counting head GaAsP PMT 300-720nm, Hamamatsu H7421-40
PCH controller Photon counting head controller, Hamamatsu M9011
F-PMT Fast bialkali PMT 300-650nm, Hamamatsu R7400P
Preamplifier Preamplifier 26 dB 1.6GHz, Beckle & Hickle HFAC-26
HV PS High voltage power supply (-800V)
LV PS Low voltage power supply (12-14 V)
VR1 Voltage regulator 12V 3A, National semiconductor LM1085 IT-12
VR2 Voltage regulator 12V 400 mA, Micrel MIC2920A-12WT
VR3 Voltage regulator 9V 500 mA, ST microelectronicsLF90CV
I/O card Custom made input/output PCI card. Contains an FPGA chip that reads

inputs and communicates with the microscope GUI. So lab
FLIM card Time-correlated single photon counting module, Beckle & Hickle SPC 730
Table A2-1: Information about the electronic components shown in the schematic of Fig. A2-1.
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A3. Microscope Control and Acquisition Software
The operation of the microscope and the acquisition of images is controlled by appropriate
software and firmware.

XY Stage
power driver

-Sof.ware,
C, C4+or C#

Firmnware
VHDL

Discriminators Scanning mirror power driver
Piezo power driver

Figure A3.1: Overview of the software that controls the microscope and acquires data from the 16-channel
MA-PMT.

The software that controls the microscope has four parts:
1. Interface Software (confocal.exe): Provides a GUI for user input and image display.

Creates high-level commands for the z-piezo, the z-y stage and the scanning mirrors. Reads
imaging data from 1/O card. It is written in visual C++. The source code for the confocal
application consists of many files, most of which are class definitions and declarations for
the GUI: AcqMode.cpp, ConfocalFrame.cpp, PPSheet.cpp, ProppageAcquisition.cpp,
ProppageDetector.cpp, ProppageFCS.cpp, Proppage_ ntgOpt.cpp,
ProppagePriorCont.cpp, ProppageSaveOpt.cpp, ProppageScanner.cpp,
ProppageTRACK.cpp, and Toolbar Acq.cpp and the corresponding header .h files.
The user can run the confocal application in four different imaging modalities (four different
ways to communicate with the FPGA chip, read and display the data): intensity imaging,
particle tracking, pulse correlation and FCS. Classes named confocal... are related to
intensity imaging, classes named track... to particle tracking, classes named pulse... are
related to pulse correlation, and classes named FCS... are related to FCS. The AcqMode
class corresponds to the dialog box where the user chooses which of the four to use.
The confocal application uses five threads (intensity imaging mode). The first and most
important is the CConfocalApp that probably corresponds to the confocal program itself. The
second thread is CDataThread, probably related to data handling. The third is CViewThread
that is probably related to data displaying. The last two classes are specific to the imaging
modality used and are "children" of the previous two classes. For example, in the case of
intensity imaging class CConfocalThread inherits from CDataThread and class
CConfocalThreadView inherits from CViewThread.
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Figure A3.2: Hierarchy of the classes of the confocal application. Grey boxes: standard Microsoft foundation library
classes. Yellow boxes: classes defined in the confocal application related to GUI functions. Green boxes: threads.

Red boxes: classes defined in window handling. ~
2. I/0 Card Driver (cscan.dll and cscan.sys): Controls the communication between the

computer and the I/0 card through the PCI bus. The I/0 card driver consists of two parts.
The first part is the "cscan.dll", a DLL that controls the communication between the FPGA
chip on the I/0 card and the microscope GUI software (confocal). It is located on the folder
"cscan" and was generated by a software tool called DriverAgent once provided by the
company Numega (the company doesn't exist anymore). The second part is the "cscan.sys"
that is located on the folder "cscan\cscan_agent". This is the software that handles the low-
level communication between the computer and the FPGA chip.

3. Serial Port Driver (Serial Device.dl11): Implements data exchange through the serial port of
the computer. The "Serial Device.d1l" dynamically-link library that controls the serial port of
the computer and provides functions for controlling the motion of the XY stage of the
microscope (also known as the "prior" stage). The functions that control the stage have
name format Prior.., and their definitions are located in the file Serial Device. cpp.

4. FPGA Code: i) Receives high-level commands from the interface software through the I/O
Card Driver, translates these commands into low-level electronic control signals and sends
these control signals to the power drivers of the piezo, XY stage and scanning mirrors, ii)
receives the incoming digital electronic signal from the discriminators, translates them into
"photon counts" and transmits this result to the interface software through the I/O card
driver". It is written in VHDL language. There are many versions of this program, depending
on the type of sensor used.
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Appendix B: Instrument Characterization
This Chapter provides protocols to characterize the instrument utilized in the thesis.

B1. Pixel Size Calibration
Pixel size P (in pm) depends on the objective magnification, and on the range of the scanning
mirror motion (controlled by the "res" field of the confocal GUI).
Protocol
o Image a ronchi ruler of known spacing D (lines/pm). The lines of the ruler should be parallel

to the y axis of the image
o Calculate the 2D FFT on the image. The magnitude of the 2D FFT should contain harmonics

position on the kx axis (spatial frequency along x axis). The first harmonic should be n pixels
away from the DC frequency (kx = ky = 0). This corresponds to a spatial frequency of n/P
pm 1 when then pixel size P is expressed in pm. This spatial frequency equals the frequency
of the Runchi ruler D pm 1, therefore the pixel size is calculated as:

P = nD

Results
Res 32 16 8 4

40x 0.432 0.216 0.108 0.0054
1 ox 1.728 0.864 0.432 0.216

Table B1-1: Pixel size (pm) as a function of the objective magnification and the range of motion of the scanning
mirrors (described by the "res" parameter).
Res 32 16 8 4

40x 110.6 55.3 27.7 13.8
lox 442.4 221.2] 110.6 55.3

Table B1-2: Field of view (pm) of a 256x256 image as a function of the objective magnification and the range of
motion of the scanning mirrors (described by the "res" parameter).

B2. Point Spread Function Measurement
This protocol describes a procedure to measure the point spread function (PSF) of the multi-
photon microscope. The PSF is fit into a Gaussian beam model, where the square of excitation
light intensity around the focus is modeled as

I2(r, z) = I1 (1+(Z)2-2 ep( -4r 2

ZR w 2 (Z))

where zR =W
7z.

Protocol
o Dilute 1:2000 0.02pm yellow-green fluorescent latex beads (F8787, invitrogen) in 2%

agarose (dilute first 1:50 in H20, then 1:500 in H20, then dilute in 2% agarose).
o Image beads at low power (2 mW in the sample, 25 mW after analyzer), 1 kHz sampling,

250 nm z-steps, 13.75 pm field of view (0.05371 pm pixel size).
O Pick image regions around single beads. Sum the intensity profiles of single beads over

different z planes. Identify the focus plane and fit axial data to a Lorentzian profile (obtained
by summing 12 (r, z) over r:
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2z= a+#8-(I+(- 2-
ZR

o Identify the centroid location of the bead, sum 12 (r, z) over z and then fit into:

I2 (r) = a+p8 -exp(-( r 2)

Results
When using the C-apochromat 40x 1.2NA water-immersion objective, typical results are wo =
0.405 to 0.42 pm, ZR = 0.667 to 0.71 pm, and Wr = 0.1968pm. The PSF can be improved
(reduce wo) by overfilling more the objective BFP.

bead 1 - z axis
350

300 -

250

200

150

100-

0
0 1 2 3 4 5 6

Figure B2.1: Typical axial PSF measurement obtained using a 40x 1.2NA objective. The measured PSF theoretically
corresponds to a NA less than 1.2.

B3. Calibrating the Gains of the 16-Channel Discriminators
This protocol describes a procedure to measure the relative gains of the 16 PMT- single photon
counting channels of the instrument. Due to slight variations in the PMT channels and the
single-photon counting circuitry, the same emission signal is expected to produce slightly
different photon counts by different channels. The objective of this protocol is to quantify this
difference.
Protocol
o Use the SH emission of a collagen I sample to find spectrograph knob position so that SH

signal is centered at each channel. These knob positions are called "centered" positions.
o Image a 300 pM fluorescein sample at all knob "centered" positions.
o Compare how the signal at each channel varies at different "centered" knob positions

Results
Figure B3.1 shows representative results. Each row contains the emission of fluorescein for a
particular calibration of the spectrograph knob position. The calibration is described by the PMT
channel that contains the SHG emission. The emission spectrum of fluorescein is visible in each
row, e.g. when SHG is located at channel 1 (775nm excitation), then fluorescein emission peaks
at channel 10. Each column therefore also contains the emission spectrum of fluorescein, as
detected by a single channel. The emission detected by different channels differs by a
multiplicative factor which is used to quantify the gain.
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Gain is independent of the objective magnification. Identical results were obtained by lOx and
40x objectives, however the "centered" knob positions for each objective are slightly different. It
is important to use a mono-chromatic emission (such as the SH emission) to describe the
spectral calibration of the emission optics.

signal per channel per pixel, 300uM fluorescein, 25 mW, 40x

80,

60,

40,

20,

0~

-10
-5

0
5

channel that contains SHG

Figure B3.1: Typical data used to estimate PMT-discriminator gain.
ChanneI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Gain 1 0.96 0.99 0.93 0.94 0.95 1.00 0.95 0.97 0.94 1.02 0.97 1.00 0.95 0.95 0.94
Table B3-1: Gains for the R5900P-00-L1 6 MA-PMT sensor.

B4. Spectral Response Measurement
This protocol provides a way to quantify the spectral response of the instrument, which
describes how a monochromatic emission generates photon counts to a neighborhood of
channels centered around the channel that should ideally provide all photon counts based on
geometric optics.
Protocol
o Image a collagen I sample at the "centered" knob positions (see Section B3 above).
o Quantify the spectral response based on the signal one particular channel at different

"centered" knob positions. This signal should peak when the SH is centered in this channel,
and should fade as the SH emission is centered in a different channel. The spectral
response is symmetric.
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Figure B4

0 ±1 ±2 ±3 ±4
1Ox objective 0.8971 0.0437 0.0045 0.0019 0.0014
40x objective 0.8047 0.0870 0.0071 0.0025 0.0010
Table B4-1: Spectral response of the detection system using a 1 Ox or a 40x objective.
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Appendix C: Spectrograph Design
C1. System Description
The existing spectrograph available in the So Lab (oriel 77400) consists of [Buehler et al. 2005]:
- input concave mirror MS1, f, = 120 mm.
- diffraction grating DG (model oriel 77400, grating spacing 600 lines/mm, d = 1667 nm,

blazing wavelength AB = 400nm, blazing angle eB 6.89 deg, max efficiency fmax=0. 8 5 ).
- output concave mirror MS2, fs = 120 mm.

It is of interest to evaluate if the diffraction grating should be substituted in order to optimize the
spectrograph performance in the wavelength region of interest [380 nm, 620 nm].

56 A

MS1 DG MS2 PMT
fs= 120mm fs= 120mm d = 16mm

Figure C1.1: Schematic of the spectrograph and MA-PMT assembly.

C2. Light Diffraction by a Grating
When a ray of monochromatic light of wavelength A is incident on a diffraction grating (width W,
ruling spacing d = G1, brazing angle b) at incident angle p, then it will be reflected at several
directions. The field of the light that is reflected towards angle a is given by the following
convolution [James 2007]:

F(p) = W -sin c(;Wp) ( [sin c(fp )- 7 (GPG

where = sin(p) + sin(O) 2 sin(b) a dwhr p=,q = , x) n: o(x - nG) and (9 describes the

convolution operator.
Light will be reflected towards discrete directions (called "orders"), specified by the pulsetrain
function G(x). For a particular incident angle (p (for sign nomenclature check [Palmer and

Lowen 2005, James 2007]) the direction of the m-th order is given by:
p = mG -> sin(O)= mGA -sin(p)

This direction depends only on p, A and G. It does not depend on the grazing angle b. The case
m=0 (zero order) corresponds to reflection. In spectrographs the mode of interest is m=1.
The efficiency of the m-th mode is defined as the percentage of the incident light intensity that it
reflected towards mode m, and can be calculated analytically as:
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(sin c(r( p )) (sin c(fr(m - ))2 (sin c(7t(m - B 2

7 G _ G 2

(sin c(fr( pq2 1 (sin c(;i(m - q ))2 = (sin c(zv(m _B 2

pG=-ox G ,M=- G 2

Comments:

o The efficiency of each mode depends on the wavelength of the incident light A
o At one particular wavelength (brazing wavelength) all light is diffracted into order

2 sin(b)GB= q=GG
o The efficiency of the first order as a function of A equals:

(sin c(7r(1 B 2

771 77M 5
L(sin c(r(m -B2

m=-5 2

0 .9 5 - - ... -.. -_.. _._....._.....

grating a: G = 600 lines/mm, B = 400nm

0.9 --- grating b: G = 400 lines/mm, A =500nm
0.85-

0 .8 - -.. ... ...-. .. -. .-. .... ...-. ...- .
U
C

. 0.75 -

0 .7 - - - -.-.-.-

0.65- -
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Figure C2.1: Efficiency of the first order for the diffraction grating of the instrument (a) and an alternative
diffraction grating (b) in the wavelength region of interest.

C3. Nominal Beam and Detected Range of the Spectrum
For the particular instrument considered here, the wavelength region of interest lies between
380 and 620 nm. The nominal ray corresponds to a beam of wavelength AO = 500 nm (the
center wavelength of the wavelength region of interest) that is focused on axis on the input
plane of the spectrograph entrance slit. The beam is collimated by mirror MS1, gets incident on
the diffraction grating at angle To, its first order is diffracted at angle 0 (deviation angle KO = Go-
go), and then is focused by mirror MS2 into the center of the MA-PMT area. Since the exact
value of KO = G0-g0 is not known exactly (varies slightly after each instrument alignment), the
nominal beam is calculated for three values KO = {20, 25, 30} deg. For each value of Ko, the
corresponding value of go is calculated from:

sin(Ko + p()+sin(po)= GAO
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For an input beam of arbitrary wavelength A incident on the grating at the same angle (Po, the
angle O(A) where the Vt order of wavelength A is reflected is calculated as:

0(A) = sin-'(GA - sin(o0 )) A C [2rn A]= [380 620]nm

6n : 0(2Zn)

0. :0(2A)

The min and max values of e correspond to the min and max values of the wavelengths of
interest Amin = 380 nm and Amax = 620 nm. Light of wavelength A different than the nominal Ao will
be reflected to angle G(A) and will be focused by lens MS2 on the PMT surface at distance 6x
away from the position where the nominal ray AO is focused.

&(A) = f, tan((2) - 00)

&n :&(2,a)

The spectrum range [A, 2,] that can be imaged by the PMT (when AO is focused on the center

of the PMT) can be calculated based on the total width of the PMT sensor W, =16mm (the width

of each PMT channel is c, = 1mm) and the focal length f =120 mm of mirror MS2:

WP
A, = G 1 (sin(y 0 ) + sin(00 - tan-'( W

AU = G-'(sin(po) + sin(00 + tan- (2

The range of wavelengt 4 A2' ] that is detected by each channel can be calculated by finding

the wavelengths A2 that are focused on positions Lx! xi] on the i-th channel of the PMT

l = G (sin(po)+sin(, + tan-'('), x- - (j-1)pj = 1, 2, .16

l = G- (sin(po) +sin(OO + tan-'(xU j - -W + j - PC j = 1, 2, .. ,16

The spectral width that is detected by sensor channel j equals SR, = AU -
Nominal beam Detected spectrum

KO (Po 00 8min ... Gmax A1 ... AU [SR1 , SR8, SR 16]
(deg) (deg) (deg) [nm] (nm/pixel)
20 -1.24 18.76 14.46 ... 23.18 393.9 ... 603.8 13.4, 13.2, 12.8
25 -3.66 21.33 16.98 ... 25.85 395.0 ... 601.5 13.2, 13.0, 12.6
30 -6.06 23.94 19.48 ... 28.52 397.8 ... 600.4 13.0, 12.7, 12.3
Table C3-1: Nominal beam (Ao = 500 nm), detected spectrum range ([Ai, AJ]), and spectral width per channel
(SR) for the instrument utilized in this thesis, for three different values of the deflection angle Ko.
The detected spectral width per channel is less for red channels compared to blue channels,
and it depends slightly on Ko.
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C4. Deviation Due to Off-axis Focusing on the Input Plane
Nominal ray calculations are valid when the emission light is focused on the optic axis on the
input slit of the spectrograph. When the emission light is focused 4y, away from the optic axis,

the resulting incident angle on the diffraction grating will be

The resulting reflection angle of the 1 t order for wavelength A is:

6* =sin -(GA- sin(p*))

cos(po) cos(qPO) y
0 cos(6(2)) sin(&p) - cos(6(2)) si( ,

or approximately:

5 =cos(yO) yi
cos(6(2)) f,

The resulting position displacement gy, of the focus point for the beam of wavelength A on the

PMT surface is:

S, = f, (tan(6* (2)) - tan(O(2)))
Which can be approximated by:

cos(PO)

cos(6(2))
Diffraction grating A

- -A=380 nm
- =440 nm

-- A= 500 nm
-- = 560 nmn

- )L 620 nm

6
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2
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K = 25":
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Figure C4.1: Deviation of focus y, on the PMT plane as a function of off-axis position y, for various
wavelengths A.
Comments:
- the deviation y, on the PMT plane is larger than the deviation y in the spectrograph

entrance, because usually poI < 6(2)|.

- y is approximately a linear function of y,
- The focus of red emission is shifted more than the focus of blue emission. This means that

in microscopes of "scanned" configuration, the spectrum region that will be detected by each
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channel will depend on the pixel position. The proportionality constant K of y, ~ K -y,
depends on the grating and on the nominal deviation angle KO (greater KO results in
greater K), and can vary significant as a function of the system setup and calibrartion.
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Appendix D: Maximum Likelihood
Solution of the Poisson Mixing Model by

the Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm finds the maximum of a log-likelihood function

L(A I y) through an iterative two-step process [Dempster et al. 1977]. It is assumed that the

observed "incomplete" data y corresponding to random variables Y arise from a set of

unobserved "hidden" random variables X. The complete "data" Z = [X,Y] are described

through the pdf pz(X,Y;O), where 0 is the vector of parameters to be estimated via ML. The

"expectation" step of EM calculates the expectation Q(O,O) of ln(pz(X,Y;Q)) with respect to

the hidden random variables X conditioned on the measurement y and the current estimate

of the parameters 0

Q(O, 0) = E[ln(pz (Z; )) 1 Y, 0] = fn(Pz ( _2))Px (X I y; O)dx
x

The "maximization" step of EM finds an updated estimate for 0 by maximizing Q(O,0). The EM

iteration generates a sequence of updates for 0 that converges on the ML estimate of 0.

The derivation of the EM solution of the Poisson mixing model described in Chapter 2 follows

the derivation described in [Candy 2009]. The observed variables Y are the photon counts

detected on the sensor channels, while the hidden variables are the number of photons

N = [N, NN]T emitted by each source. The Poisson mixing model provides the complete

likelihood of the source emission rate vector A equals:

N M An.
NL(z )

i=1 =ij

n is the number of photons emitted by source i and detected by detector j (such that

M N

Yni = n, , and n = y ). The corresponding random variable Ni is a Poisson process of
j=1 i=1

rate 2, = s ,. The complete log-likelihood Az is:

Az= ln(PzL(Z;24)) = -0401 + 1Z{1 n1j 1n(sj,2,)} - Ln(nj!)}
i=1 j=1 i=1 j=1

which can be written in the form of an exponential family [Wornell 2010]:

A z= -a(A) + CT (A)t(Z) ±p8(z)
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N

a(A) = = I 2, , 8(z)
l=1

... ln(ANM)]N1M= - ln(n, !)}1, c(A) = [In( ,)

t(z) = [n,1 ... nNM]T

In this case, the M-step becomes

Q(, A) = E[Az /1 y, ]= -a(A) c (2) E[t(z)I y, ] + E[/p(z)I y, A]

Since the last term is not a function of A, it will not affect the E-step, and can be dropped:

TN N M

(2, 2) = --a(2)+ c (A) -E[t(z)I y, 2]= -LA + j{1n(sA2) -E[nj I y,2]}.
i=1 i=1 j=1

n (k+E)In the E-step, the next estimate for 2 is chosen as 2 = arg max Q(, :

aQ(2, )a(ki

M+]

M

-+ I{sUj
j =1

E[nj | y,2 ]
--- }
S, (k+1)

1 M
= -+ -I {E[n0

Sj=1

M

A(k+1) - {EE[n y, ]} , i =1
j=1

The expected value of n1, given the measurement yj in channel j equals [Shepp and Vardi
1982]

E[n |y, ]= yj N

s , ,k)

Therefore the EM algorithm becomes:
M

k+1) - 25k) {y} N Sj
j=1 (k)

l=1

Or in matrix form

2(k = diag(A() ) S T -diag(d ( A)) y
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Appendix E: Fabrication of Porous
Collagen Scaffolds

El. Overview
The procedures for fabricating porous collagen scaffolds applied in this study are based on the
freeze-drying process, and follow the methodology established in the Yannas Lab over the past
30 years [Dagalakis et al. 1980; Yannas and Burke 1980; Yannas et al. 1980; Harley 2006;
Yannas et al. 2010]. The outcome of the fabrication process is a dry scaffold sheet that can be
used in two major kinds of experiments: i) in vivo experiments of inducing skin regeneration in
animals where the scaffold is used as a graft for severe skin injuries [Yannas et al. 1982, 1989;
Troxel 1994; Yannas 1998, 2001], ii) in vitro studies of cell-matrix interactions, where the
scaffold is seeded with cells and is used as an analog of tissue ECM [Freyman et al. 2001a,
2001 b; Zaleskas et al. 2001, 2004; Corin 2005; Soller 2005; O'Brien et al. 2005, 2007; Harley et
al. 2007a, 2008; Keogh et al. 2010; Caliari et al. 2011, 2012; Murphy et al. 2012]. Scaffold
fabrication consists of four major processes:
- Preparation of collagen suspension: Microfibrillar collagen I fibers and other components

(in this study glycosaminoglycans (GAG) or fibronectin isoforms) are dissolved in 0.05M
acetic acid. The resulting suspension contains collagen particles and air bubbles.

- Freeze-drying: The collagen suspension is poured into a mold that provides the shape of
the final dry scaffold. The aqueous part is removed by first freezing the suspension, and
then removing the resulting ice crystals via sublimation. What remains is a dry porous
sponge-like material whose struts contain the solid material (collagen, GAG, ECM proteins)
that was trapped between ice crystals during freezing.

- Scaffold Cross-linking: Formation of additional intra-molecular bonds in the scaffold in
order to improve resistance to proteinase degradation and increased the material stiffness.
Cross-linking can be implemented by thermal (dehydro-thermal treatment) or chemical
(chemical cross-linkers) means.

- Sample preparation: In vivo applications of collagen scaffolds in skin and peripheral nerve
regeneration require scaffolds of relative large dimensions (on the order of cm), and planar
or tubular geometry respectively. In contrast in vitro applications of scaffolds for studying
cell-scaffold interactions require multiple copies of small samples (size around 5-8mm),
which are prepared by cutting scaffold sheets.

The following sections describe each process in more detail.

E2. Suspension Preparation
Suspension Types
Four types of collagen-based suspensions were fabricated by homogenizing collagen fibers in
0.05M acetic acid using a dispersing element (IKA Works, Inc., Wilmington, NC). The collagen
mass fraction in all four suspensions is approximately 0.5%. Collagen suspension (denoted as
"0.5C100") consists of banded micro-fibrillar collagen particles. Gelatin suspension (denoted as
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"0.5G100") consists of gelatinized collagen (made using the same collagen source as collagen
suspension). Gelatinization of collagen is implemented by keeping the suspension during
homogenization at elevated temperature. Collagen-gelatin suspensions (denoted as "0.5CxGy"
where x and y correspond to the percentage contribution of collagen and gelatin suspensions
correspondingly) are mixtures of collagen suspension and gelatin suspension of various
proportions. Collagen-GAG suspension (denoted as "0.5CG100") consists of co-precipitant
particles of microfibrillar collagen I and chondroitin-6-sulfate and is the standard suspension
described in [Harley 2006] and is the closest match for the material used in skin regeneration
studies [Yannas et al. 1982, 1989].

Homogenization
During suspension homogenization, raw collagen I fibers (and potentially other ECM
components) is dissolved into 0.05M acetic acid pH 3.2. Table E2-1 summarizes the blending
protocol parameters for preparing a 50 ml suspension batch. The baseline is the collagen
suspension fabrication protocol. First, mcoll = 250 mg collagen I (Integra LifeSciences,
Plainsboro, NJ) is dissolved into V1 = 50 ml 0.05M acetic acid inside a glass beaker. The
suspension is homogenized by blending for tb = 12.5 min using a dispersing element spinning at
15000 rpm. During blending the suspension is kept inside iced water and its temperature is
monitored so that it does not exceed 10 0C. The resulting collagen suspension is partially
transparent, and the most viscous from all four suspension types.
The fabrication of the gelatin suspension differs in that during blending the suspension is heated
at 65 0C using a dry heater underneath the glass beaker. Gelatin suspension is more transparent
and much less viscous compared to collagen suspension. The preparation of collagen-gelatin
suspension consists of blending appropriate volumes of collagen suspension and gelatin
suspension for 3 min while monitoring the suspension so that its temperature does not exceed
10 0C. The properties of collagen-gelatin suspensions depend on the composition (contribution
of collagen and gelatin parts).
The preparation of collagen-glycosaminoglycan (GAG) suspension is divided in two steps.
Initially mcol = 250 mg collagen is blended in V1 = 41.6 ml 0.05M acetic acid for t/2 = 6.25 min.
Then mGAG = 22.2 mg chondroitin-6-sulfate GAG (Sigma-Aldrich Chemical Co., St. Louis, MO) is
added drop-wise to the suspension while blending. The collagen-GAG suspension is blended
for tb/2 minutes more. The presence of GAG lowers the suspension viscosity and reduces
viscosity-induced heat dissipation. Collagen-GAG suspension is less viscous than pure collagen
suspension, a bit more viscous compared to gelatin suspension, and has a white milky-like color
(unlike collagen and gelatin suspensions that look partially transparent and appear turbid). The
size of collagen I particles in a collagen-GAG suspension lie in 40 - 150 pm size [Lee 1994].
It is possible to prepare suspensions of volume other than 50 ml. In this case the values of tb,

mcoll, mGAG, V1, V2 need to scale analogous to the suspension volume.
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Suspension Abbreviation tb Tb mcoli V mGAG V2
[min] [*C] [mg] [mL] [mg] [mL]

Collagen 0.5C100 <10
50

Gelatin 0.5G100 12.5 65 250
Collagen- 0.5CxGy* <10 - -
gelatin

Collagen-GAG 0.5CG100 <10 1 41.6 22.2 8.4
Table E2-1: Parameters for preparing collagen-based suspension (0.5% collagen mass fraction). *x and y
correspond to the percentage contribution of collagen and gelatin in the suspension (x+y = 100)

Degassing
After homogenization, all suspensions contain trapped air bubbles, whose size ranges from the
micron level to centimeter level. It is necessary to remove the large-size bubbles in order to
prevent suspension inhomogeneity and the formation of large irregular-sized pores in the final
scaffold. Degassing is implemented by transferring the suspension into a large-surface
Erlenmeyer flask and apply 15 Pa vacuum for 90 min while keeping the flask in iced water.
The effect of applying vacuum for removing air bubbles from a suspension depend on: i)
vacuum applied, ii) degassing duration, vacuum-suspension surface area (need to use an
Erlenmeyer flask of volume at least 10 times the volume of the suspension), and iv) the
suspension viscosity. Since the four suspensions described above (collagen, gelatin, collagen-
gelatin, collagen-GAG) have different viscosities, it is expected that the same vacuum treatment
should remove air bubbles more effectively in low-viscosity suspensions (gelatin-rich, collagen-
GAG) than high-viscosity suspensions (collagen-rich). However at no experiment was conduct
to verify this claim and it relies on empirical observations from the turbidity of the degassed
suspensions.

Degassing should not be extensive (very high vacuum, long time) otherwise this interferes with
the porosity of the final freeze-dried scaffold. Extensive degassing in collagen and gelatin
suspensions is inferred by significant reduction in the turbidity of the suspension (caused by the
removal of tiny air bubbles).

After degassing, suspensions can be used at 40C until use (within 1-2 months). At this
temperature, all suspensions remain stable (no visible change in color, turbidity, viscosity was
observed) with the exception of the gelatin suspension, which progressively gels at 40C.

Doping Collagen Suspension with Fibronectin Fragments
Collagen scaffolds can be thought of as a simple analog of the extracellular matrix (ECM) found
in tissues. Although in many tissues collagen I is the main component of ECM, the composition
of tissue ECM is much more rich, and contains multiple additional components such as other
collagen isoforms (e.g. collagen 111), other scaffold proteins (e.g. fibronectin),
glycosaminoglycans and proteoglycans [Hay 1991]. It makes sense therefore to try to fabricate
more complex scaffolds, made of collagen I plus other key ECM molecules. The preparation of
collagen-GAG scaffolds can be thought of as a step in this direction [Yannas et al. 1980].
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In this study, 0.5% mass fraction collagen suspension is doped with fibronectin isoforms,
expressed in e-coli and purified via metal ion affinity chromatography (poly-His tag) [Bloom et al.
1999]. Due to the high cost of purchasing or purifying ECM components, it is impractical to
prepare suspensions of large enough volume (more than >20ml) that can be homogenized
using a dispersing element as described above. In this case, it is necessary to prepare the
suspension using a different strategy.
Small batches (360pl) of fibronectin-doped collagen suspension were prepared by adding 2 88pl
0.5% collagen suspension (0.5C100), 36 pI solution of purified fibronectin isoforms, and 36pl
0.05M acetic acid. The doped suspension is homogenized by repetitive pipeting. The mass
fraction of the resulting fibronectin-doped collagen suspension is 0.4%. The fibronectin mass
corresponds to approximately 2% of the total solid mass. It is important to reconstitute the
purified fibronectin isoforms in 0.05M acetic acid before mixing with the collagen suspension.
Since the isolectric point (pH of minimum solubility) is approximately 5.2 [Tooney et al. 1983]
(lies between the pH of the initial buffer (PBS) and the final 0.05M acetic acid) there is danger of
fibronectin precipitation during buffer exchange. To avoid fibronectin precipitation around the
isolectric point, the purified fibronectin fragments are diluted in PBS (density less than 0.3
mg/ml) before changing buffer, and then are concentrated using an AMICON 3 kDA MWCO
centrifugal filter unit (Millipore, Billerica, MA). The resulting 360 pI fibronectin-doped collagen
suspension has too small volume to be used with the ordinary 125x125 mm stainless steel
freeze-drying pan. Instead it is used to fabricate six cylindrical scaffold samples of 5mm
diameter and 3mm height using miniature 5mm-diamater freeze-drying pans cut in an elastomer
sheet.

E3. Freeze-Drying
Freeze-drying consists of two major steps. In the freezing step the collagen suspension
(suspension) is cooled. This causes the majority of the water content to form ice crystals. These
ice crystals are surrounded by a glassy phase that contains the collagen particles. In the drying
step, the water content is removed via sublimation by applying high vacuum. The final outcome
consists of a porous sponge-like material consisting of struts (correspond to the glassy collagen
phase that was trapped between ice crystals after freezing) and pores (correspond to the ice
crystals that were removed by sublimation).
In practice, freeze-drying is implemented by pouring the collagen suspension in a mold, and
applying an appropriate temperature/pressure profile in a lyophilizer. The structural parameters
of the resulting scaffold (pore diameter, homogeneity) depend on the physicochemical and
thermodynamic properties of the collagen suspension, the temperature and pressure profile
applied, and the thermal properties of the mold used [Schoof et al. 2001; Zmora et al. 2002]. A
more detailed description of the freeze-drying process for the fabrication of porous collagen
scaffolds can be found in [Harley 2006].
Freezing
In the freezing step the collagen suspension is cooled so that it solidifies. Specifically, as the
suspension temperature T, drops below the acetic acid solution melting temperature Tm (a
function of the acetic acid mole fraction rlHAc; initially rlHAc(O)=0.001), ice crystal nuclei start to
form. The rate of ice nuclei formation depends on suspension undercooling T, - Tm and the
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presence of impurities in the system. When the suspension undercooling is enough, the newly-
formed ice nuclei survive and grow and form ice grains (crystals). As water molecules form ice
crystals, the remaining acetic acid and any acetic-acid soluble "impurities" (in this case collagen
particles) are excluded from the ice and stay in a liquid phase. As freezing proceeds (more ice
crystals form, and existing ice crystals grow) the remaining liquid phase contains collagen
particles in increasingly concentrated acetic acid. The thermodynamics of the pure water-acetic
acid system suggest that as rlHAc increases Tm drops (Fig. E3-1 left) and that the lowest
temperature that water and acetic acid can survive in liquid phase is -25'C. However, the
freezing response of a collagen suspension deviates from the response of the pure water -
acetic acid system because the collagen particles interfere with the formation of a crystal solid
phase. Instead, as the temperature drops, when the suspension temperature reaches the glass
transition temperature T9 of the collagen-acetic acid system, the remaining collagen suspension
in the boundaries of ice grains solidify into a glassy phase (vitrification) [Tang and Pikal 2004].
The glass transition temperature Tg of the collagen particle suspension in acetic acid used in
this application is unknown.
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Figure E3.1: Thermodynamic properties that affect the fabrication of porous collagen scaffolds via freeze-
drying. Left: Phase diagram (solidus temperature as a function of mole fraction of water rjH20) of the acetic

acid - water system. A eutectic point is present at (nH20 = 0.7, T = 248K). Data kindly provided by the
Dortmund Data Bank (http://www.ddbst.com). Right: Phase diagram (temperature, pressure) of water at low

pressures and temperatures. Source: http://en.wikipedia.org/wiki/Water_(data-page)

In this study, the freezing process follows the protocols and practice described in [O'Brien et al.
2004; Harley 2006]. Collagen suspension is poured in 18-gauge 304 stainless steel molds
(thickness: 1.27mm, heat capacity: 503 J-kg*-K1, thermal conductivity: 20 W-m*-K1). The
suspension is then frozen in a lyophilizer (VirTis, Gardiner, NY) by controlling the lyophilizer
shelf's temperature. The shelf temperature starts initially at room temperature, then is help
constant at -50C for 15 min (ensure homogenous temperature in the whole suspension; this
small supercooling is not enough to induce ice crystal formation), and is set to ramp to final
temperature Tf = -400C with a rate of -1 K/min. For this particular thermal system, this rate was
found to result in fabricating scaffolds of homogenous mean pore diameter, in contrast to
quenching (very rapid cooling) that produces scaffolds of inhomogenous pore diameter.
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After the shelf temperature reaches the final shelf temperature Tf = -40'C, the shelf temperature
is kept at Tf = -400C for 1h more. This step, named "annealing" in [Harley 2006], provides
thermal energy and time so that neighboring ice crystals merge, therefore increasing the mean
pore diameter of the scaffold (coarsening). [Tang and Pikal 2004] mentions that annealing will
take place as long as the frozen suspension temperature raises above Tg (the glass transition
temperature of the collagen-acetic acid solution system just before vitrification).
The pore microstructure of the resulting scaffolds depends significantly on the thermal treatment
(time profile of the temperature of the lyophilizer shelf) during the freezing step. It was found that
by varying the final shelf temperature Tf (while keeping the shelf cooling rate at -1 K/min) it was
possible to control the mean pore diameter of the scaffold [O'Brien et al. 2004]. It was
suggested that the scaffold pore microstructure is modulated mainly by ice crystal coarsening
[Harley 2006]. However, experimental practice suggests that there are other factors that also
affect decisively the resulting pore microstructure of the scaffold. In particular, unpublished
observations of this thesis suggest that the presence of air bubbles in the suspension (not
removed by degassing) affects significantly the resulting scaffold mean pore diameter. For given
collagen suspension composition, using suspension that has undergone extensive degassing
(high vacuum 3 hours, on ice) leads to scaffolds of much smaller mean pore size compared to
using suspension degassed according to the protocol described above. The presence of much
fewer air bubbles in the extensively degassed suspension was inferred by the significantly
reduced turbidity of the suspension. Furthermore, experimental observations suggest that
suspension viscosity and chemical composition also affect the resulting pore microstructure (for
given thermal treatment during freezing). Viscosity affects the ability of degassing treatments to
remove bubbles. Suspension composition and viscosity are expected to affect the kinetics of ice
crystal formation (nucleation, growth, and coarsening) as well as the glass transition
temperature. The biggest difference was observed between scaffolds made of 0.5C100
suspension and 0.5 G100 suspension, since gelatin slurry has much less viscosity compared to
collagen. This study did not pursue further to quantify in detail the effects of suspension
composition and viscosity in the resulting scaffold pore microstructure.

Drying
In the drying step the vast majority of the water content of the original collagen suspension is
removed via sublimation. In pharmaceutical applications, drying consists of two steps. During
primary drying, the majority of the water (water that froze into ice crystals) is removed by
carefully applying high vacuum in low temperature. During secondary drying, most of the
remaining water (water that did not froze and is located in the scaffold struts) is removed by
applying high vacuum in elevated temperature [Tang and Pikal 2004].
In the established protocol for fabricating porous collagen scaffolds, primary drying was
conducted by applying vacuum <300 mTorr at 00C for 17 hours, while secondary drying was
skipped [Harley 2006]. According to this practice, after annealing the lyophilizer pressure drops
to 300 mTorr, and then temperature rises from Tf= -400C to OC. This quick crossing of the water
sublimation line is expected to induce sudden sublimation in the frozen suspension. This
sudden change of phase is the corresponding phenomenon to the sudden freeze of water
induced by rapid cooling of water (quenching).
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Based on scientific literature, the temperature of primary drying TP needs to be chosen carefully.
If TP is close to the sublimation temperature Tr, then the sublimation rate is slow (major
drawback in pharmaceutical applications because drying is the longest and most energy-
consuming part of the freeze-drying process). On the other hand, elevated Tp induces fast
sublimation (limited by the mass transfer capability of the lyophilizer), however when Tp exceeds
a critical "macroscopic collapse temperature" Tc, then the remaining solid structure (in this case
the struts of the collagen scaffold) will collapse [Tang and Pikal 2004]. The collapse temperature
Tc, the temperature above which the freeze-dried product loses macroscopic structure, is
usually 20C higher than the glass transition temperature T9 of the collagen-acetic acid solution
just before vitrification [Tang and Pikal 2004].
In this study, the primary drying protocol is slightly different compared to [Harley 2006]. After
freezing and annealing, the shelf temperature drops to -50 0C (thermocouples placed on the
mold show that the resulting temperature of the frozen suspension is around -40'C). Sblimation
is then gradually induced by first applying 150 mTorr pressure, and then ramping the shelf
temperature to TP = -200C within one hour (the sublimation temperature of water at 150 mTorr is
approximately -36 C, Table E3-1). Primary drying is conducted at -20*C, 150 mTorr for 12
hours. Secondary drying is conducted by applying 150 mTorr at 000 for 12 hours more.

T [oC] -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10
P [Pal 0.54 1.08 2.08 3.92 7.17 12.79 22.27 37.90 63.13 103.6 165.0 259.7
P [mT] 4.0 8.1 15.6 29.4 53.8 95.9 167.0 284.3 473.5 777.1 1238 1948

Table E3-1: Saturated pressure (in Pa and mTorr) of vapor over ice at various temperatures [Sonntag and
Heinze 1982]. Data correspond to the low-pressure part of Fig E3.1. right.

Based on the literature, secondary drying of amorphous freeze-dry products is a slow process
that takes place at elevated temperatures T. (e.g. 400C for 6h). Secondary drying should take
place only when primary drying is over (all ice crystals have been sublimated), which can be
detected by either measuring the moisture inside the lyophilizer chamber or can be inferred by
monitoring the mold temperature (ice sublimation causes mold cooling). The rise of the shelf
temperature from TP to T, should be slow (0.1*C/min) to avoid collapse of the freeze-dried
product [Tang and Pikal 2004]. In this study secondary drying took place at 00C for 12h. In the
last step of freeze drying, the shelf temperature is set equal to room temperature, so that when
the scaffold is removed from the lyophilizer, no moisture condensation is collected on the
scaffold struts.

E4. Scaffold Cross-Linking
After freeze-drying, the scaffold is cross-linked in order to increase its resistance to degradation
(by enzymes secrete by cells) and to increase its mechanical stiffness [Harley et al. 2007b].
Cross-linking involves the formation of covalent bonds between different molecules in the
scaffold struts. In this study, cross-linking is implemented by two methods:
- Dehydro-thermal treatment (DHT): the absence of moisture drives intermolecular

condensation reactions in the scaffold struts that lead to scaffold cross-linking. DHT is
implemented by applying vacuum (50 mTorr) at elevated temperature (1050C to 1200C)
[Yannas and Tobolsky 1967]. Longer DHT duration and higher DHT temperature increase
the resulting stiffness of collagen-GAG scaffolds [Harley et al. 2007; Haugh et al. 2009].
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Experimental results suggest that increasing DHT temperature is more effective compared
to increasing DHT duration (the vast majority of crosslinking takes place within the first 24h),
however DHT temperature higher than 150'C should be avoided because it induces
collagen denaturation. DHT treatment has the advantage that it provides a dry and sterile
scaffold. However its ability to increase the material stiffness is limited. Specifically, DHT can
increase the compressive and tensile moduli of collagen-GAG scaffolds 2-fold and 3.8 fold
respectively [Haugh et al. 2009]. In this study, all kinds of scaffolds (collagen, gelatin,
collagen-gelatin hybrids, collagen-GAG, collagen-fibronectin) were cross-linked by DHT
treatment at 1200C for 48 hours. This DHT treatment was chosen because it was the one
that provided tubular collagen scaffolds of "optimal" ability to induce regeneration in
peripheral nerves [Harley et al. 2004; Soller et al. 2012].

- Chemical crosslinkinq: In this method covalent intermolecular bonds in the collagen struts
are produced using small molecules that are reactive towards particular chemical groups
present in the scaffold molecules. Such small molecules (cross-linkers) are used widely in
biochemistry for bioconjugation [Hermanson 2008]. In this study, chemical cross-linking was
implemented using an carboxyl-amine coupling conjugation chemistry consisting of the
crosslinkers 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-
Hydroxysulfosuccinimide (NHS). This is a method widely applied in previous studies of
collagen-GAG scaffolds [Harley 2006]. The degree of scaffold crosslinking by EDC-NHS
chemistry can be modulated by controlling the cross-linker amount to collagen amount and
the duration of the cross-linking reaction. EDC molecules produce intermediate groups
reactive to primary amines, which can be quenched using ethanolamine.

E5. Scaffold Sample Preparation
The outcome of the freeze-drying process is a dry scaffold sheet. On the other hand, cell-
scaffold interaction experiments or biomaterial characterization experiments need much smaller
cylindrical samples of scaffolds. These samples are cut from the original sheet using biopsy
punches (Miltex).

E6. Differences Compared to Previous Fabrication Practice
The protocols described in this Appendix are based on established protocols for fabricating
porous collagen scaffolds described in [Harley 2006; Yannas et al. 2010], which have been
modified in several ways to achieve particular goals:
First, the volume of suspension preparation batch was reduced approximately 20 times. The
standard practice for fabricating sheet scaffolds was to prepare suspension batches of 720 ml
volume and 0.5% collagen mass fraction, store the suspension at 40C, and use 65 ml
suspension to fabricate each 125x125x3 mm sheet [Harley 2006]. Downscaling the batch size
from 720 ml to 30-50 ml reduced the required collagen I mass per batch from 3600 mg to 150 -
250 mg. The motivation for downscaling suspension batch size was the cost and availability of
raw collagen I. The raw collagen I used in this work was a proprietary microfibrillar collagen I
provided to the Yannas lab by Integra Life Sciences in 2000. This collagen I supply is not
available commercially, and the quantity of raw collagen I provided to the Yannas lab by Integra
was limited, making necessary to minimize its consumption. Many alternative commercially
available collagen products are tropocollagen preparations (e.g. Sigma C7661, BD 354231 and
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354236, Santa Cruz Biotech Sc-29009, R&D 3447-020-01, Millipore 08-115) that cost $1 - $5
per mg. The lack of fibrillar organization and their high cost, makes the use of these products for
scaffold fabrication questionable or impractical. Other commercial collagen products (Sigma
C3511, C9791, C9879, USB 13815) are purified from bovine skin or tendon tissues (therefore
are likely to contain collagen fibrils) and cost much less ($0.02 - $2 per mg). Although some of
these materials have been used in published studies to fabricate porous scaffolds (for example
[Klapperich and Bertozzi 2004; Javorski and Klapperich 2006]), trial suspension preparations
using these products resulted in suspensions of significantly different properties (viscosity,
color) and in scaffolds of significantly different structure (presence of impurities, strut geometry)
compared to the scaffolds fabricated using Integra collagen. Based on the observed differences
in suspension viscosity and color, possible reasons why several alternative fibrillar collagen
products fail to replicate the outcomes of Integra micro-fibrillar collagen are the presence of
salts or other impurities, and gelatinization of collagen, both by-products of the collagen
purification process. Nevertheless, we haven't been able to test other commercially available
microfibrillar collagen I supplies, for example Geistlich (Geistlich Pharma AG, Wolhusen,
Switzerland) or Devro (Devro Pty Ltd, Bathurst, NSW, Australia) [Kanungo and Gibson 2010].
Second, the dimensions of the fabricated scaffolds were reduced. This reduction was motivated
by several reasons: i) match suspension requirements with the new collagen suspension batch
size and consume less suspension, ii) reduce collagen waste: collagen scaffolds should be
used within 1-2 months after their fabrication in order to prevent degradation, iii) the need to
fabricate a large variety of similar but not identical scaffolds (e.g. making scaffold libraries). The
available stainless steel molds provide 125x125mm scaffold sheets. Each such sheet can
provide either 150 8-mm diameter scaffold samples or 220 5-mm diameter scaffold samples. In
many cases, the demand of collagen scaffold samples is much smaller, leading to degradation
(and disposal) of the uncut fabricated sheet. Scaffold dimensions were reduced in two ways:
- Reduce the mold size. This was achieved by dividing the original 125x125 stainless steel

pan into four equal quadrants using an adhesive elastomer as a spacer. Each quadrant of
the pan was approximately 58x58 mm wide. The resulting 58x58 sheet can provide
approximately 25 8mm-diameter or 64 5mm-diameter cylindrical samples, that is adequate
samples for many experimental procedures.

- Reduce the thickness of the scaffold sheet. This is achieved by using less collagen
suspension per pan area. In this study the required suspension volume was calculated
assuming a sheet thickness of 3mm. The required suspension volume per 58x58x3 sheet is
approximately 10 ml. Many applications require or would be benefitted by even thinner
scaffolds. For example, fluorescent imaging of cells inside scaffolds takes place usually
within 100pm from the scaffold surface. Thinner scaffolds would make ligand density
measurements easier since they accelerate the diffusion of proteins inside scaffolds,
therefore reduce required incubation duration. However, fabricating scaffolds thinner than 2
mm using the existing stainless steel pans was quite challenging, because thin scaffolds are
hard to remove them from the mold without stretching or tearing, and are hard to cut using
biopsy punches. The alternative idea of using a 2-piece mold (where a 1mm-thick
suspension is sandwiched between two heat-conductive surfaces) was tried with significant
success (homogenous-looking scaffolds) but was not pursued further because the mold
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properties affect significantly the mean pore diameter of the produced scaffolds and there
was no time for a detailed optimization of the freeze-drying protocol.

- Fabricate individual cylindrical scaffold samples rather than fabricating sheets. This
approach could reduce significantly raw material waste (the leftover scaffold sheet after
cutting cylindrical samples with a punch). Fabricating scaffold samples in miniature molds
minimizes the consumption of ECM raw materials. For example, fabricating a 5mm-diameter
3mm-thick scaffold sample requires 60pl collagen suspension, with contains 300 pg
collagen (for 0.5% collagen mass fraction). Doping such a scaffold with an additional ECM
components by would require 15 pg ECM protein (5% doping), an amount that is feasible to
purchase or express recombinately. This idea was implemented by covering the surface of a
stainless steel pan with a 3mm-thick elastomer that contains holes of either 5mm or 8mm
diameter. These holes acted like miniature molds from freeze-drying scaffolds. This
approach was used to fabricate 5mm-diameter 3mm-thick cylindrical scaffold samples
doped with recombinant fibronectin fragments (due to the difficulty in purifying fibronectin
fragments) of 0.4% mass fraction. This approach suffers from the "skin" effect, which is
observed during freeze drying. Specifically, apart from the pan side of the scaffold, all other
sides seem to be covered by a "skin" layer of reduced porosity that makes scaffolds less
permeable to cells or chemical solutions.
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Appendix F: Scaffold Fabrication
Protocols
Contents
F.1. Preparation of Collagen-Based Suspensions
F.2. Collagen-GAG Scaffold Fabrication
F.3. Dehydrothermal Cross-linking of Collagen Scaffolds
F.4. Scaffold Cross-linking by EDAC-NHS
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F.1. Preparation of Collagen-Based Suspensions
Based on [Harley 2006]

This protocol describes the preparation of 0.5% (mass collagen/suspension mass) 50 ml
collagen, gelatin, collagen-gelatin or collagen-GAG suspension (suspension).

Supplies
* Type I microfibrillar bovine tendon collagen (Integra LifeSciences, Inc., Plainsboro, NJ);

stored at 40C.
* Distilled, deionized water.
" Glacial Acetic Acid (Mallinckrodt Chemical Co., Paris, KY).
" Chondroitin 6-sulfate from shark cartilage (Cat. No. C-4384, Sigma-Aldrich Chemical Co.,

St. Louis, MO); stored at 40C.

Equipment
. Dispersing element (Ultra Turrax T18 Overhead blender, IKA Works, Inc., Wilmington, NC)
* Vacuum pump.

Procedure
Part I: Preparation
o Prepare 60 ml 0.05M acetic acid solution (for suspension preparation).

o Add 174 ul glacial acid to 60 ml ddH 20 (2.9 pl acetic acid per ml ddH 2 O).
o Cool the acetic acid at 40C for 15 minutes.

o Clean the mixing chamber and the dispersion element components with 0.05 M acetic acid
and wipe them with kimwipes to remove dust and remaining content from the previous run.

o Incubate the dispersing element at 40C for 10 min inside an autoclave pouch.
Part II: Suspension Homogenization
The following protocols describe the preparation of 50 ml collagen suspension (a), or gelatin
suspension (b), or collagen-gelatin suspension (c), or collagen-GAG suspension (d). To prepare
a different suspension volume, then scale V1, V2 , mcoll, tb accordingly.

Collaqen Suspension Preparation
. Transfer V1 = 50 ml 0.05M acetic acid into a 100 ml beaker.

o Keep the beaker inside a bucker filled with iced water for the remaining steps.
. Add mcol = 250 mg micro-fibrillar bovine tendon collagen I to V1 ml 0.05M acetic acid.
. Incubate suspension at 40C for ten minutes so that collagen swells in the acetic acid.
. Assemble the dispersing element.
. Blend the collagen suspension at 15,000 rpm (setting 3.25) for tb = 12.5 minutes.

o Monitor the suspension temperature. When the suspension temperature reaches 10 0C,
stop blending. Resume when the suspension temperature drops to 70C.

o Soon collagen fibers get suspended into the acetic acid, and the suspension becomes
viscous and heats up quickly.

Gelatin Suspension Preparation
* Transfer V1 = 50 ml 0.05M acetic acid into a 100 ml beaker
. Add mcooi = 250 mg micro-fibrillar bovine tendon collagen I to V1 ml 0.05M acetic acid.
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* Incubate suspension at room temperature for ten minutes so that collagen swells in the
acetic acid.

* Place the beaker on top of a dry heater. Set the heater temperature so that the suspension
temperature reaches 65 C.

. Assemble the dispersing element.

. Blend the collagen suspension at 15,000 rpm (setting 3.25) for tb= 12.5 minutes.
o Collagen fibers get suspended in acetic acid. The suspension doesn't get too viscous.

Collagen-Gelatin Suspension Preparation
. Prepare a collagen suspension and a gelatin suspension as described in sections (a, b).
. To prepare 20 ml collagen-gelatin suspension of X% collagen composition (and Y=100-X %

gelatin composition), add 0.2X ml collagen suspension and 20-0.2X ml gelatin suspension in
a 50 ml glass beaker.

o Keep the beaker inside a bucker filled with iced water for the remaining steps.
. Assemble the dispersing element.
. Blend the collagen suspension at 15,000 rpm (setting 3.25) for tb= 3 minutes.

o Monitor the suspension temperature. When the suspension temperature
reaches 10 0C, stop blending. Resume when the suspension temperature
drops to 70C.

Collagen-GAG Suspension Preparation
. Transfer V1 = 41.6 ml 0.05M acetic acid into a 100 ml beaker

o Keep the beaker inside a bucker filled with iced water for the remaining steps.
. Add mcoli = 250 mg microfibrillar bovine tendon collagen I to V1 ml 0.05M acetic acid.
. Incubate suspension at 40C for ten minutes so that collagen swells in the acetic acid.
. Assemble the dispersing element.
. Blend the collagen suspension at 15,000 rpm (setting 3.25) for tb/2 = 6.25 min.

o Monitor the suspension temperature. When the suspension temperature reaches 10'C,
stop blending. Resume when the suspension temperature drops to 7'C.

o Soon collagen fibers get suspended into the acetic acid, and the suspension becomes
viscous and heats up quickly.

. Prepare GAG solution: dissolve mGAG = 22.2 mg chondroitin-6-sulfate in V2 = 8.4 ml 0.05M
acetic acid.

. Use a 1 ml pipette to transfer drop-wise the GAG solution to the collagen suspension while
bending the suspension at 15,000 rpm (setting 3.25).

o Rate: 8 ml/min or 133 ul/sec (add one drop from a 1 ml pipette per second).
o Need to add GAG slowly to avoid the formation of a massive collagen-GAG

precipitate.
. Blend the collagen-GAG suspension tb/2 = 6.25 min at 15,000 rpm (setting 3.25).

o The addition of GAG decreases the viscosity of the suspension, which
now heats up less. The suspension temperature should therefore remain
below 10 C as long as the beaker is inside iced water.

Part III: Degassing and Storage
. Transfer the suspension from the beaker into an ice-cold 500 ml Erlenmeyer flask using a

serological pipette
o Use a flask whose volume is 10 times the suspension volume.

. Seal the flask top and place flask inside a bucket that contains iced water. Keep the flask
inside the iced water during degassing.

. Apply 15 Pa vacuum for 90 minutes.

. Use a serological pipette to transport the suspension in a sterile 50 ml conical tube.
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. Transfer the suspension into clean molds for freeze-drying, or store the suspension at 4C.
0 Use the suspension within 1 month.

F.2. Collagen-GAG Scaffold Fabrication

Supplies
* Type I collagen-glycosaminoglycan suspension (67.25 ml/sheet)
* 0.05 M acetic acid

Equipment
* 5" x 5", 18 gauge 304 stainless steel pan (VirTis Inc., Gardiner, NY)
* Genesis freeze dryer (VirTis)

Procedure
. Prepare the freeze-dryer

o Remove drain tubing from condenser drain.
o Make sure both windows can be tightly closed

* Clean the stainless steel pan with 0.05 M acetic acid and wipe its inside with Kim-Wipes to
remove all dust and any remaining CG content from previous runs. Allow the pan to air dry.
o Do not touch the inside of the pan with your bare hands. Use gloves.

. Pipet 10 ml of degassed suspension into each quarter of the pan.

. Clean the shelves with 70% ethanol. Place the pan on the shelves.
o Make sure there is good contact between the pan and the shelf.

. Close tightly the chamber door.

. Choose the "freeze-dry screen" tab and either enter the freeze-drying program, or click the
"load recipe" button and load a freeze-drying program. The program utilized in this thesis is
shown in Fig F2.1.
o This freeze-drying program is based on "program 2" of [Harley 2006] that fabricates

scaffolds of approximately 100 pm mean pore diameter.
. Click "start cycle" and then "yes" to get freeze-drying starting.
. When secondary drying is done, click "cancel current cycle" and then "yes" to stop the

freeze-drying run.
. Click the "semi-auto functions" tab and turn on the "pressure release" switch. When the

chamber pressure reaches atmospheric pressure, open the chamber door and transfer the
pan inside a bio-hood. Use sterile forces to transfer the dry scaffold sheet inside aluminum
foil packets. Either store them in a dessicator, or cross-link them by DHT.

. In the "semi-auto functions" tab, turn off the "pressure release" switch, and then turn on the
"defrost" switch to thaw the ice trapped in the condenser. Connect the drain tube in the
condenser drain.
o Defrosting lasts usually 15 min. Defrosting stops automatically within 1 h after its start.
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Figure F2.1: I ypical treeze-drying protocol for tanricating porous coiiagen scatfolas.
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Figure F2.2: Temperature profiles of the shelf (reference and actual), the air above the pan, the stainless steel mold
close to the shelf, and the shelf top surface. This response was measured when using the protocol described in Fig.
F2.1. The steps of the process (equilibration, freezing, annealing, primary drying, secondary drying) can be
distinguished based on the response of temperature at different locations.
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F.3. Dehydrothermal Cross-linking of Collagen Scaffolds
Supplies

* 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC, Cat. No. E-7750, Sigma-Aldrich
Chemical Co., St. Louis, MO); store in a dessicator at -20oC.

* N-hydroxysuccinimide (NHS, Cat. No. H-7377, Sigma-Aldrich); store in a dessicator at
room temperature.

" Polystyrene cell culture 6-well plate (BD Falcon Multiwell Flat-Bottom Plates, Cat. No.
62406-161, VWR Scientific, Inc., Bridgeport, NJ)

* Sterile Phosphate Buffered Saline (PBS, Cat. No. 20012-043, Invitrogen, Inc., Carlsbad,
CA)

Equipment
* Isotemp vacuum oven (Model 201, Fisher Scientific, Hanover Park, IL).

Procedure
. 1-2 hours before starting DHT, verify that the oven temperature is correct. Otherwise set to

desired temperature.
. Immediately after freeze drying, place porous collagen scaffold sheets inside clean

aluminum packets. Leave packet open.
. Place the packets inside the vacuum oven.
. Quickly close and tighten oven door, turn off the "vent" switch, turn on the "vacuum" switch,

and turn on the vacuum pump.
. After the appropriate DHT treatment duration, turn off the vacuum pump, turn off the

"vacuum" switch, turn on the "vent" switch.
. Wait until the pressure inside the oven becomes equal to the atmospheric. Then quickly

open the oven door, close the aluminum packets, and store them in a dessicator.
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F.4. Scaffold Cross-linking by EDAC-NHS
Based on [Harley 2006]

Supplies
S1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC, E-7750, Sigma-Aldrich

Chemical Co., St. Louis, MO); store in a dessicator at -20oC.
* N-hydroxysuccinimide (NHS, H-7377, Sigma-Aldrich); store in a dessicator at room

temperature.
* Sterile Phosphate Buffered Saline (PBS, 20012-043, Invitrogen, Inc., Carlsbad, CA)

Equipment
* 5, 6, or 8 mm diameter dermal biopsy punch (52441, 52442, 52443, Miltex)

Procedure
. Cut the scaffold samples to be crosslinked using a 5, 6, or 8 mm dermal biopsy punch.
. Estimate (assume 0.5% mass fraction) the dry mass of the scaffold samples Mscaffold to be

crosslinked as

Mscaffold = f - P -Vscaff old

Where f=0.005 is the mass fraction, p ~ 1mg/pI is water density, and Vscaffold is the scaffold

volume. For a 0.5% 8mm-diameter 3mm-thick scaffold sample, Mscaffold ~ 377pg

. Calculate the required amount of EDAC, and NHS reagent to cross-link each scaffold.
Calculations assume 1.2 mmol of carboxylic acid (COOH) groups per gram of collagen [Olde
Damink et al. 1996], and 5:2:1 EDAC:NHS:COOH reaction ratio (all units are in mg):

MEDAC = 5 -Mscaffold - 0.0012 - 191.7 = 1.15 - Mscaffold

MNHS = 2 'Mscaffold - 0.00 12 116 = 0.2784 - Mscaffold

" Determine required EDAC-NHS reaction volume Vr = 410 -Mscaffold, where Mscaff old is in
mg and Vr in pl.

. Prepare Vr/4 pl 4x working solution of EDAC in H20 (57.6 mM), and Vr/4 pl 4x working
solution of NHS in H20 (22.2 mM) for each scaffold.

o Thaw EDC to room temperature first.
o Prepare the EDC and NHS solutions fresh!

. Transfer scaffolds in sterile clean PCR tubes (2 scaffolds per tube)
o Hydrate the scaffolds at 40C in Vr/2 sterile water for 15 minutes.

. Prepare 2x EDAC-NHS working solution by mixing 4x working solutions of EDAC and NHS.

. Add Vr1/2 of 2x EDAC-NHS working solution per scaffold, mix using a pipette, and incubate
1 h at room temperature.

. Use a pipette to remove the EDAC-NHS working solution. Dispose by EHS standards.

. Add V. quench solution (0.1M ethanolamine or 50 mM Tris HCI pH 7.4) per scaffold.
Incubate 30 min at room temperature.

. Use a pipette to remove the quench solution.
" Wash scaffolds with excess PBS at 40C. 3 times for 30 min each and one overnight.
. Store scaffolds in PBS at 40C until use.
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Appendix G: Cell Culture Protocols
Contents
G.. Mammalian Cell Culture on Flasks
G.2. Cryo-Preservation of Cell Suspensions
G.3. Thawing Cryo-Preserved Cells and Initiating a New Cell Culture
G.4. Seeding Cells in Porous Collagen-Based Scaffolds
G.5. Extract Cells from Porous Collagen Scaffolds Using Collagenase
G.6. Cell Lysis
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G.1. Mammalian Cell Culture on Flasks
Cells are grown in cell culture flasks or dish. As cells proliferate cell density increases and if left
untreated the culture becomes confluent (cells neighbor each other). It is usually necessary to
detach cells from the flask and transport them into new flasks at lower cell density before the
culture reaches confluency. This protocol describes how to detach cells from cell culture flasks
and transfer them into new sterile culture flasks.

Supplies
* PBS, without calcium and magnesium, sterile (Gibco 14190-1440), stored at 40C.
* DMEM++ cell culture medium (DMEM plus 10% FBS, 1% penicillin/streptomycin)

o DMEM, high glucose, no sodium pyruvate (Invitrogen 11965092)
o Fetal bovine serum (Invitrogen 16000036), stored at -20 0C until added to DMEM.
o Penicilin/streptomycin (Invitrogen 15140148), stored at -200C until just before added to

DMEM.
o Prepare 555ml DMEM by adding one 50ml shot of FBS and 5ml penicillin/streptomycin

to a 500ml bottle of DMEM inside a bio-hood.
* Trypsin 0.05% with 0.02% EDTA (Gibco 25300-054), thaw bottle, make 10ml aliquots, store

at -20*C long term, thaw one aliquot and store at 40C for a few days before use.
* Pasteur pipettes, sterilized (VWR 14672-380).
* Serological pipettes, 5 mL, 10 mL (VWR).
* Pipettes and pipette tips, 200 pL, 1 mL.
* T25 or T75 Cell culture flasks with vented cap (BD 353108, BD 353136).
* Trypan blue (Gibco 15250-061).

Equipment
* Water bath (Yannas Lab 3-315, So Lab NE47-235)
* Biological Hood (Yannas Lab 3-315, So Lab NE47-205)
* Cell incubator connected to C02 tanks (Yannas Lab 3-315, So Lab NE47-205)
* Upright light microscope (Yannas Lab 3-315, So Lab NE47-216)
* Hemocytometer (Yannas Lab 3-315, So Lab NE47-205)
" Table centrifuge (Yannas Lab 3-315, So Lab NE47-216)

Safety Precautions
* Keep the cell incubator clean:

o Always spray hands with 70% ethanol before opening the cell incubator.
o Wipe any items with 70% ethanol before transfer inside the incubator.
o Open the incubator door gently, for as small angle as possible, and as quickly possible.
o Each user needs to keep his/her cells together in a separate part of the incubator.

* Keep the bio-hood clean:
o Always use gloves in the bio-hood.
o Wipe working area with 70% ethanol before and after use.
o Spray gloved hands with 70% ethanol before inserting hands in hood.
o Transfer the minimum number of items necessary in the hood. Always spray items to be

transferred inside the bio-hood with 70% ethanol. Avoid blocking the air-flow.
o Clean any spills immediately (especially ones involving cell culture medium).

* Check that the cell incubator works properly:
o C02 supply: Check the two C02 tanks periodically.
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o Humidity: there is sterile water on a pan located in bottom shelf of the incubator. This
water keeps the incubator humidified. Need to add 1L of autoclaved sterile water per
month.

* Keep cells in a sterile environment:
o Do not open cell culture flasks outside the biohood.
o Do not open sterile solutions outside the bio-hood.
o If growth is noticed in a cell culture, bleach and dispose the flask. Do not place back in

incubator or biohood,
* Contamination

o If the pH of the culture medium in a cell culture flask gets acidic (pH indicator color
changes from red to yellow) this is a sign of contamination.

o If cell culture medium looks turbid, this is a sign of contamination.
o Bleach and dispose contaminated flasks immediately. Do not place back in biohood or

incubator. If contamination persists then dispose all cells, disinfect biohood & incubator
and start a new cell culture.

* When handling liquids & cell suspensions:
o Do not touch surfaces that contain cells with liquid-handling instruments (tips, pasteur

pipettes, serological pipettes) from touching when the same instrument will come in
contact with a liquid that should remain sterile.

o Minimize contact between liquid-handling instruments (pipettes or pasteur pipettes) and
glass-ware, flasks, bottles.

o Minimize the exposure of sterile liquids to air inside the bio-hood.
o Minimize the time where your hands are located above open bottles inside the bio-hood.

Procedure
Preparation
. Prepare the bio-hood: switch light from "UV" to "light", wipe surface with 70% ethanol.
. Open the Pasteur pipette metal box, remove one Pasteur pipette (without touching the

others), and place the Pasteur pipette on the vacuum tube.
. Warm PBS, trypsin/EDTA and cell medium aliquots in a water bath at 370C, 10 min.

o Make sure there is enough amount of sterile PBS, trypsin/EDTA and cell culture
medium.

. Transfer the culture flasks (ideally one representative) to be splitted from the cell incubator
on the microscope stage. Image the culture flask and check the confluency of the cell
culture.
o Confluency: the percentage of the culture flask area that is covered by cells.

. Proceed in cell splitting when the cell culture flasks are approximately 70-80% confluent.

Detach cells
. Transfer cell culture flasks from the cell incubator into the bio-hood.
. Aspirate the cell medium in the cell culture flasks using the Pasteur pipette connected to the

vacuum pump.
. Use a serological pipette to add VPBS ml PBS to each flask (Table G1-1). Roll gently. This

wash removes residual cell culture medium that impedes trypsin/EDTA activity.
. Aspirate PBS using a Pasteur pipette.
* Use a serological pipette to add Vtrypsn ml trypsin/EDTA to each flask (Table G1-1).
* Incubate flasks for 5 minutes inside the 370C cell incubator.
* Hit gently the flasks on the side to detach cells from the flask surface.
* Image the flasks in the microscope to check that cells have indeed detached from the flask.

o Detached cells appear like spheres floating in the medium.
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* If cells are not detached incubate 5 min more in the cell incubator, or add a bit more trypsin.
" Use a serological pipette to add Vmedneutr ml cell culture medium to each flask, see Table G1-

1. This step neutralize trypsin/EDTA action. Extensive trypsin action can kill cells.
" Use a serological pipette to aspirate the detached cells from the flasks.

o Aspirate and wash the flask surface 8 times, avoid creating bubbles.
o Aspirate and respirate the cell suspension 8 times, avoid creating bubbles.
o Aspirate the cell suspension and transport in 15 mL or 50 ml conical tubes.
o Repeat procedure for all flasks.

VPBS [mL] Vtrypsin [mLU Vmedneutr mL] Vmedflask [mLU
T25 flasks 1.5 0.5 1 3

T75 flasks 3 1.5 3 5
Table G1-7-1: Parameters for cell detachment.

Wash & count cells
* Centrifuge conical tubes that containing the cell suspension at 560xg (1700 rpm), 15 min,

25 0C.
. During centrifugation prepare the flasks of the new culture passage:

o Calculate number of flasks of new culture. For fibroblasts and smooth muscle cells,
usually each flask can provide 2-3 new flasks.

o Label the new flasks with date, cell type, passage number, and user name. The
"passage" number is a indicator how many times a particular cell culture has been split.
Every split increases passage number by 1.

o Add Vmedflask cell culture medium to each flask (Table 1).
o Wipe the flasks with 70% ethanol and transfer them in the cell incubator.
o Dispose the flasks of the previous cell culture: add 10% bleach, incubate 20 minutes,

dispose bleached medium in the sink, dispose used flasks as biohazard trash.
. When centrifugation is done, transfer the conical tubes in the biohood, and use a Pasteur

pipette to aspirate the supernatant without disturbing the cell pellet.
. Use a 1ml pipettor to add 1 mL PBS to each centrifuge tube. Use the same pipette to break

the cell pellet so that cells resuspend in PBS.
. Collect all cell suspensions (same cell type, passage number) into a single conical tube. Add

2-5 ml more PBS. Make sure to keep record of total volume of PBS VceIPBS added to cells.
. Mix the cell suspension well (use 1 ml pipettor) and then quickly use a 200ul pipettor to

transfer a 40 pL aliquot of cell suspension into a PCR tube. This aliquote will be used for cell
counting.

. Centrifuge the conical tube at 560xg (1700 rpm), 15 min, 25*C.
* During centrifugation, use the 40 pL cell suspension aliquot for cell counting:

o If it is desired to estimate fraction of live cells, add 20 uL trypan blue dye to the cell
aliquot & mix the suspension.

o Clean the hemocytometer surfaces using 70% ethanol.
o Transfer 20 pL of cell suspension into the two parts of the hemocytometer.
o Count the total number of cells in the quadrants of the hemocytometer. Calculate the

mean number M of cells counted on each hemocytometer quadrant.
o Total number of cells Neis in the cell suspension

Ncelis = d - M - VcelIPBS ' 10

where d is the cell dilution. d=1 if no trypan blue is added, otherwise it is d=6/4 = 1.5
o Each 100% confluent T75 flask provides 1.5-2 million fibroblasts. Each 100% confluent

T25 flask provides 0.5-0.7 million fibroblasts.
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* When centrifugation is done, transfer the conical tubes in the biohood, and use a Pasteur
pipette to aspirate the supernatant, avoid disturbing the cell pellet.

" Use a 1 ml pipettor to transfer Nceiis mL cell culture medium to each pellet, and use the same
pipettor to break the pellet. This results in 1000 cells/ul cell suspension.
o E.g. if the cell pellet contains Nceiis = 1E6 cells, add 1 ml medium.

Create new cell culture
* Transfer the flasks of the new culture from the incubator into the bio-hood.
. Use a pipette to transfer a proper amount of 1000 cells/ul cell suspension to each flask. The

proper number of cells depends on the cell line. For fibroblasts, transport 250E3 cells to a
T25 flask and 750E3 cells to a T75 flask.

. Spray the flasks with 70% ethanol and transfer back to the incubator.

Clean the bio-hood
" Aspirate 5-10 ml 10% bleach using the Pasteur pipette. Dispose the Pasteur pipette.

. This will clean the vacuum tube and prevent growth.
. Cover the vacuum tube with aluminum foil.
* Wipe the cabinet with 70% ethanol, switch light from "light" to "UV", and close the sash.
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G.2. Cryo-Preservation of Cell Suspensions

Supplies
. RecoveryTM Cell Culture Freezing Medium (Invitrogen #12648-010)
* Cryovials (VWR #16001-114)
. PBS, without calcium and magnesium (Gibco #14190-1440)
. Trypsin 0.05% with EDTA (Gibco #25300-054)
* Cell culture medium (DMEM++): DMEM + 10% FCS +1% penicillin streptomysin

- DMEM medium, high glucose, no sodium pyruvate (Gibco #11965-092)
- Fetal Calf serum (Gibco #12483-012)
- Penicilin and streptomycin (Gibco #15070-063)

* Pasteur pipettes, sterilized (VWR )
. Serologic pipettes, 5 mL, 10 mL (VWR)
* Pipettes and pipette tips, 200 pL, 1 mL (VWR)
. 15 mL centrifuge tubes (VWR )
. 200 pL eppendorf tubes (VWR)

Equipment
. Biological hood
. Warm water bath
. 40C refrigerator, -20 0C freezer, -80 OC freezer
. Liquid nitrogen storage tank and liquid nitrogen supply.

Procedure
This protocol is used to store cells in cryovials by cryo-preservation. Cells are suspended in a
proper buffer, then frozen and stored in liquid nitrogen.

Preparation
* Thaw one aliquote of RecoveryTM Cell Culture Freezing Medium and store at 40C.
* Label cryovials (the cells of a 90% confluent T75 flask can provide 2-3 cryovials) with

date, cell type, passage number, and usename.
o KEEP CRYOVIALS STERILE AT ALL COSTS!!!

Detach cells from the cell culture flasks
* Use a Pasteur pipette to aspirate the cell culture medium from the flasks.
* Use a serological pipette to add a mL PBS to the flasks (Table G2-1). Shake gently.
* Aspirate PBS using a Pasteur pipette.
* Use a serological pipette to add P mL trypsin/EDTA to the flasks (Table G2-1).
* Incubate flasks for 3 minutes inside the 37 0C incubator.
* Carefully hit the flasks on the side in order to detach cells. Check that cells have

detached from the flask/disk in the light microscope. If cells are not detached, wait and
add a little more trypsin/EDTA or repeat gentle hits. When cells detach then proceed.

* Use a serological pipette to add y mL DMEM++ to the flasks in order to neutralize
trypsin/EDTA (Table G2-1).

* Use a serologic pipette to aspirate and spray the cell suspension in each flask in order to
wash detached cells from the flask surface. Repeat this 8-10 times, being careful not to
create bubbles. Use the same pipette to aspirate and respire the cell culture from the

352



bottom corner of the flask. Repeat this 8-10 times, being careful not to create bubbles.
Aspirate the cell suspension and transport into a 15 mL centrifuge tube.

o Repeat this step for all flasks.
" Centrifuge the 15 mL centrifuge tubes (containing the cell suspension) at 1700 rpm, 15

min, 25 deg.
" Use a Pasteur pipette to aspirate supernatant, being careful not to aspirate the cell

pellet.

Cryo-p reservation of the cell suspension
* Resuspend cells in RecoveryTM Cell Culture Freezing Medium (stored at 40C).

o Add 1 mL Cell Culture Freezing Medium per 1 million of cells.
o Break pellet by pipetting gently.

* Transfer 1 mL cell suspension per cryovial.
* Store the cryovials at 40C for 2 hours.
* Store the cryovials at -20 OC for 2 hours.
* Store the cryovials at -80 OC for 2 hours.
* Store the cryovials in liquid nitrogen (77 K) for long-term storage.

a [mL PBS] 1 [mL Trypsin/ EDTA] y [mL DMEM++]
T25 flasks 2 0.5 1
T75 flasks 4 1.5 3
Table G2-7-2: Culture parameters for cell cryo-preservation.
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G.3. Thawing Cryo-Preserved Cells and Initiating a New Cell Culture

Supplies
. Cell suspension stored inside cryovials in a tank filled with liquid nitrogen. See
. DMEM++ cell culture medium for Fibroblasts (DMEM + 10% FCS + 1% penicillin/streptom)

o DMEM medium, high glucose, no sodium pyruvate (Gibco #11965-092)
o Fetal Bovine serum
o Penicilin and streptomycin (Gibco #15070-063)

. Serologic pipettes, 5 mL, 10 mL (VWR #)

. Pipettes and pipette tips, 200 pL, 1 mL (VWR #)

Equipment
. Biological hood
. Warm water bath

Procedure
Cells are preserved over long time periods inside cryovials, stored inside liquid nitrogen. This
protocol describes how to start a new cell culture from one of these cryovials.

Prepare cell culture flasks
. Turn on the warm water bath. Set the water bath temperature at 37 deg. Use the water bath

to warm one bottle containing cell culture medium.
. Each cryovial is used to seed two or three T25 cell culture flasks.
. Label two or three sterile flasks with cell type, passage number, user name, and date.
. Add 3 mL cell medium to each flask.

Initiate the cell culture
* Remove one cryovial of proper cell type and passage number from the liquid nitrogen tank.

o Use heat-protection gloves to avoid frost-bites that happen when skin comes in contact
with liquid nitrogen.

* Spray the cryovial with 70% ethanol, quickly transfer it inside a bio-hood, unscrew the vial
cup (to relieve pressure), and re-tighten the cryovial screw.

* Place the vial inside the warm water bath (set at 37 deg) for 30-60 sec.
o Use a foam floater to prevent the water from getting into contact with the vial cap screw.
o At the end of this short incubation the cell suspension is thawed.

* Use a pipette to mix and transport the thawed cell suspension into the culture flasks.
" Swirl gently so that cells are distributed uniformly in the medium inside the flasks.
* CHANGE ALL THE MEDIA AFTER THREE HOURS OR ON THE FOLLOWING DAY THE

LATEST.
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G.4. Seeding Cells in Porous Collagen-Based Scaffolds
This protocol describes the seeding of eukaryotic cells inside porous collagen-based scaffolds
inside agarose-coated 6-well plates.

Supplies
0 3mm-thick sheet of porous collagen-based scaffold, sterile, fabricated by freeze-drying,

cross-linked by DHT, stored desiccated inside aluminum foil in room temperature.
* 6-well polystyrene plate (BD Falcon #353046).
* 0.2% agarose solution.
* PBS, sterile (Gibco #14190-144), stored at 40C.
. DMEM++ Cell culture medium, stored at 40C (DMEM, 10% FBS, 1 % penicillin streptomycin)

o DMEM medium, high glucose, no sodium pyruvate (Invitrogen #11965092)
o Fetal bovine serum (Invitrogen #16000036)
o Penicilin and streptomycin (Invitrogen #15140148)

. Biopsy punch, 8mm diameter (Miltex #33-37) or 5mm diameter (miltex #33-35).

Equipment
. Biological Hood (Yannas Lab, 3-315).
. Forceps (sterile) (Yannas Lab, 3-315).
. Cell incubator (Yannas Lab, 3-315).
. Mini-centrifuge, eppendorf 5415C (Yannas Lab, 3-315).

Procedure
Safety Precautions
Check the safety precautions mentioned in the "Mammalian Cell Culture on Flasks" protocol.

Coat the wells of a 6-well plate with aqarose
" Take one 6-well plate out of its sterile cover and place it quickly inside the hood
* Add 800 uL 0.2% agarose on each well.
* Shake the plate mildly so the agarose solution is distributed evenly on the wells.
. Incubate the 6-well plate inside the bio-hood overnight (at least 8 hours).

o The purpose of this incubation is to dry the agarose solution, remove the water and let
the agarose coating on the wells.

o Do not place the cover on the 6-well plate. The cover will slow down air-drying.
. The wells of the plate now are covered with agarose. Agarose coating prevents cells from

attaching on the plate and favors their attachment on the scaffold.

Prepare cylindrical scaffold samples
. Transfer the collagen scaffold sheet (inside its aluminum foil cover) from the desiccator into

the bio-hood.
. Use a biopsy punch to cut 8mm-diameter samples from scaffold.

o If necessary store the samples in petri dish, store in a desiccator.
. Transfer the collagen scaffold sheet back to the desiccator.

Prepare the cell suspension
. Detach cells from a flask, wash in PBS, and resuspend them in cell culture medium to a final

concentration of 1000 cells/ul (see "cell splitting protocol")
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o Need approximately 50000 cells for each 8mm -diameter scaffold and 30000 cells for
each 5mm-diameter scaffold.

Seed cells into the scaffold
. Use a 200 uL pipette to place a drop of cell suspension an agarose-coated well.

o The drop size is 50 ul for 8mm scaffolds and 30 ul for 5mm scaffolds.
o Add 1-3 drops per well, the drops should be far away or else they will unify.

. Use sterile forceps to place a scaffold just above the drop. The "pan side" (least shiny) of the
scaffold should be facing the drop.

. As the scaffold and the cell suspension drop get slowly into contact, the cell suspension is
aspirated inside the scaffold due to capillary action. Quickly release the scaffold from the
forceps.

. Within 30 sec most of the cell suspension drop will be aspirated inside the scaffold.

. Repeat the seeding procedure for all scaffolds to be seeded.

Scaffold incubation
. Place the cover of the 6-well plate on the plate, wipe with 70% ethanol and transfer into the

cell incubator.
. Incubate the plate 1 h at 370C, 5% CO2.

o This provides enough time for cells to bind to the scaffold.
. After the 1 h incubation, transfer the 6-well plate in the bio-hood.
. Add 1 mL warmed (370C) cell culture medium per seeded scaffold in each well.
. Incubate the cell-seeded scaffolds at 37 0C, 5% CO2. Change medium every 3 days.
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G.5. Extract Cells from Porous Collagen Scaffolds Using Collagenase

Supplies
* Collagenase 1, 200 Units/mg, stored at 4 deg. (Worthington # LS004196)
* Tris-HCI buffer, 1 M, pH 7.0, 1 L (Boston Bioproducts # BM 310)
* Eppendorf tubes (VWR)
* Pasteur pipette, sterile
* NaCl
" CaC12 (Boston Bioproducts #BM-625)
* PBS, sterile (Gibco #14190-144)
* DMEM++ cell culture medium for fibroblasts (Invitrogen #11965 plus 10% FBS plus 1 %

pen icillin/streptomycin)

Equipment
* Biological Hood (Yannas Lab, 3-315)
* Forceps (sterile) (Yannas Lab, 3-315)
* Mini-centrifuge, eppendorf 5415C (Yannas Lab, 3-315)

Procedure
Prepare Collagenase Stock Buffer
. Prepare "Tris-HCI buffer": 50 mM Tris-HCI pH 7, 200 mM NaCl, 5 mM CaC 2.
. Prepare collagenase stock solution by dissolving 2 mg of collagenase I per mL of Tris-HCI

buffer (resulting in 0.4 U/pL). Aliquote and store at -20 deg.

Prepare Working Enzymatic Solution
. Thaw one aliquote of collagenase stock buffer.
* For each 8 mm seeded scaffold to be digested, prepare 80 pL of "working enzymatic

solution" inside an eppendorf tube by mixing 40 pL collagenase stock solution with 40 pL of
cell culture medium. Each eppendorf tube contains 16 U of collagenase 1.

Scaffold Digestion
" Get the seeded scaffolds (inside the wells of a 6-well plate) out of the 37 deg incubator,

place them inside the bio-hood.
. Aspirate the medium from each well of the 6-well plate.
. Add 3 mL PBS to each well that contains a seeded CGS, shake gently for 20 seconds, wait

three minture, aspirate PBS. Repeat wash twice.
. Use forceps to transport each scaffold from its own well in the 6-well plate into a separate

eppendorf tube containing 80 pL collagenase working solution. Avoid closing the cap tightly.
Cover with aluminum foil (to protect from the UV light).

. Incubate inside the hood at 37 deg for 2 hours.

Wash cells
. Mini-centrifuge (14000 rpm, 10 sec). Aspirate supernatant. Add 200 pL PBS, break pellet,

mini-centrifuge (14000 rpm, 10 sec), aspirate PBS.
* Add a proper amount of cell culture medium (DMEM++ for fibroblastS), break pellet. The cell

suspension.is ready for further use.
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G.6. Cell Lysis
Jin Guo, Dimitrios Tzeranis

Supplies
. 2x RIPA: Boston Bioproducts BP-1 15, NE47-235, 4C refrigerator.
. 0.5 M EDTA: Boston Bioproducts BM-150, NE47-235, NE47-235, 4C refrigerator.
. 500 mM NaF, NE biolabs #P0759S, stored aliquoted at NE47-214, -20 C freezer
. 100 mM NaVO3, NE biolabs #P0758S, stored aliquoted at NE47-214, -20C freezer
. Halt 100x protease inhibitor cocktail, Pierce #78430, stored at NE47-235, 4C refrigerator.

Procedure
Prepare lysis buffer (50mM Tris Hcl pH 7,150mM NaCl, 5mM EDTA, 0.5% NP40, 10ul/ml
protease inhibitors, 2mM NaVO3, 10mM NaF)
o Need 25 pl per 5mm-diameter collagen scaffold, 100 pl per well of a 24-well plate.
o Add 100 parts 2xRIPA, 88 parts dH20, 2 parts 0.5M EDTA, 2 parts protease inhibitor, 4

parts 0.1M NaV03, 4 parts 0.5M NaF.
Place each cell-seeded scaffold in a PCR tube, 1 CGS per well.
Add 200uL PBS to each scaffold, incubate at room temperature for 5 minutes. Use a pipette
to discard PBS. Repeat PBS wash 2 times more.
o Make sure no residual PBS remains in tube walls after washes.
Add 25ul lysis buffer per scaffold.
Incubate 1.5 hour at 40C while fast rotating
Microcentrifuge the tubes for 1 min at 13000 rpm
Aspirate and store supernatant at -200C until downstream use.
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Appendix H: Bacteria Culture Protocols
Contents
H.1. Ampicillin Stock Solution Recipe
H.2. LB-Agar-Ampicillin Plate Recipe
H.3. LB & LB-Ampicillin Medium Recipe
H.4. Bacteria Culture on Petri Dish
H.5. Inoculate a Single Bacteria Colony into a Suspension Culture
H.6. Bacteria Suspension Culture for Recombinant Protein Expression
H.7. Prepare Bacteria Extracts for SDS-PAGE
H.8. Transform Competent Bacteria
H.9. Store E-coli Cultures
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H.1. Ampicillin Stock Solution Recipe
This protocol describes the preparation of 2.65 mg/ml ampicillin stock solution.

Supplies
. Distilled deionized water ddH20 (Cellgro #)
. Ampicillin (Sigma #A9393 or #A9815; A9815

stored at 40C.
" Sterile 0.22 um filter (Pall corporation #)

Equipment
. Magnetic stirrer (Yannas Lab, 3-315)
. Bio-hood (Yannas Lab, 3-315)
. 40C cold box (Yannas Lab, 3-315)

has much better solubility 50 mg/ml in water),

Procedure
. Identify necessary volume V of ampicillin solution

Culture size [ml] 80 100 400 500 600 1000

Necessary mass of ampicillin [mg] 4 5 20 25 30 50

Ampicillin 50 mg/ml stock (A9815) [ml] 0.08 0.1 0.4 0.5 0.6 1.0
. Preparation (inside a glass beaker):

o A9393: Add 2.65V mg A9393ampicillin to V ml distilled deionized water.
o A9815: Add 50V mg A9815 ampicillin to V ml distilled deionized water.

Use a magnetic stirrer to dissolve ampicillin in water inside a 40C cold box (takes >15 min).
Filter-sterilize ampicillin solution inside a bio-hood using a 0.22 um filter.
Divide the sterile solution into aliquots and store at -200C.
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H.2. LB-Agar-Ampicillin Plates Recipe

Supplies
a LB-Agar powder (USB #75851-250, VWR #101172-028)
* Sterile ampicillin stock solution (see "ampicillin stock solution recipe" protocol), 50 mg/ml,

stored at -20oC.
* 100 mm glass Petri Dish or 100 mm single use Petri dish.
* Serological pipette (25 ml)

Equipment
. Autoclave (Yannas Lab, 3-315)
. Water bath (Yannas Lab, 3-315)
. Heat magnetic stirrer (Yannas Lab, 3-315)
* 40C refrigerator (Yannas Lab, 3-315)

Procedure
. The following protocol refers to the coating of six to eight

of plastic Petri dish, each consists of a dish and a cover.
100mm Petri dish. Use either glass

Prepare LB-aqar solution
* Add 7 g LB-agar powder to 200 ml deionized water in a 250 ml bottle.
. Stir and heat until LB-Agar media is dissolved.
. Autoclave the LB-agar solution (liquid cycle) for 20 min.
. When the autoclave temperature cools to approximately 180F (820C),

water bath set at approximately 450C.

Prepare the LB-aqar-ampicillin solution
. Thaw one aliquot of 50mg/ml ampicillin stock solution (need 200ul).
* When the LB solution temperature stabilizes around 450C, add 200 pl ampicillin stock

solution, stir mildly to mix the solution and keep the beaker inside the 450C water bath.
. The final ampicillin concentration in the LB-agar-ampicillin solution is 50 pg/ml.

Coat the dish
* Label eight 100mm petri dish with name, date and content.
* Use a 25 ml serological pipette to add 24 ml LB-agar-ampicillin solution to each dish in a

single shot.
o Use the serological pipette to remove any bubbles formed on the plate.

. Let the plates cool in room temperature. Place the cover on top of the dish at some angle in
order to prevent the condensated water from falling on the dish (lid covers the dish fully).

. Incubate the LB-agar-ampicillin coated plates at room temperature until the LB-agar-amp
medium has solidified (takes approximately 30 min)

* Seal the dish/cover with parafilm, store them in a 40C refrigerator upside-down.
. Use the petri dish within two weeks.
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H.3. LB & LB-Ampicillin Medium Recipe

Supplies
. Luria Broth powder (USB #75854-250, VWR #101172-030).
. Glass bottles (VWR) or glass flasks.
. Sterile ampicillin stock solution (see "ampicillin stock solution recipe" protocol), 50 mg/ml,

stored at -20'C .
. Serological pipettes (5 ml, 10 ml, 25 ml)

Equipment
. Autoclave (Yannas Lab, 3-315)
. Water bath (Yannas Lab, 3-315)
. Heat magnetic stirrer (Yannas Lab, 3-315)
. 40C refrigerator (Yannas Lab, 3-315)

Procedure
. This protocol describes the preparation of LB or LB-amp medium inside glass flasks.
. Every time one opens a bottle containing LB medium, it is a good practice to:

o minimize the exposure of the open bottle
o flame the bottle lips using a Bunsen burner in the beginning and the end of the process.

Prepare LB medium
. Add V ml deionized water and LB powder inside a bottle or flask of proper size

Culture size [ml] 80 100 400 600 1000

LB powder [g] 1.6 2 8 12 20

Ampicillin stock 50 mg/ml [pl] 80 100 400 600 1000

Flask size [ml] 500 500' 2000 2000 6000
. Steer the solution until the powder is completely dissolved in the water.
. Autoclave the solution (liquid cycle) for 20 min (make sure the cap of the flask is loose).
. To prepare LB medium, wait until the flask/bottle cools down to approximately 450C, tighten

bottle cap and store the sterile LB in 40C.
. To prepare LB-ampicillin, proceed to next steps.

Prepare LB-ampicillin medium
. When the temperature of the autoclave cools to approximately 180F (820C), transfer the

beak in a water bath set at approximately 450C.
. Thaw one aliquot of ampicillin stock solution for each batch (see table).
. When the temperature of the LB solution has stabilized around 4500 add ampicilin

aliquote to the LB medium.
o The final ampicillin concentration in the LB-ampicillin solution is 50 pg/ml.

. Tighten the bottle cap, cover with the aluminum foil, seal with para-film, and store at 40C.

. Use the LB and LB-amp solutions within a month.
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H.4. Culture Bacteria on Petri Dish

Supplies
* Petri Dish coated with LB-Agar or LB-Agar-Ampicillin (see "LB-Agar-Ampicillin Plate Recipe"

protocol).
. Bacteria stored in 10% glycerol solution inside cryovials at -800C.
. Inoculating loops (VWR #90001-100)

Equipment
" -80'C freezer (NE 47 second floor)
. Bunsen burner (Dedon Lab, NE 47 second floor)
. Bacteria incubator 370 C (Dedon Lab, NE 47 second floor)

Procedure
* Get one cryovial containing bacteria out from -800C freezer (second drawer, top lane, NE 47

second floor).
. Turn on the bunsen burner and perform the rest of the steps under its flame to enhance

sterility.
. Open the tube that contains the inoculation loops and flame its entrance. Get a sterile

inoculating loop out of the tube. Flame the entrance again and close the tube.
. Use the sterile inoculating loop to touch the frozen bacteria suspension in the cryovial.

o Do not thaw bacteria! Place cryovial back to -800C quickly after streaking.
* Touch the loop to the surface of the plate, move the loop back and forth on the first quarter

of the plate, moving towards the center of the dish.
. Streak the loop in the second quarter of the dish, start by crossing the previous streak once

and continue by moving the loop back and forth on the second quarter of the plate, moving
towards the center of the dish.

. Repeat the previous step in the third and fourth quadrants.

. Incubate the bacteria-containing Petri dish in a 370C incubator for 12h.
o The next day single colonies will be formed on the plate. In the parts of the plate where

the distance between neighboring colonies is large enough, single colonies can be
picked using an inoculation loop for suspension culture (see "Start a Suspension Culture
of a Single Bacteria Colony" protocol).

* Petri dish can be sealed using paraffin and stored at 40C for 2 weeks before bacteria die.

* For more information about streaking bacteria on LB-agar-plates, take a look in chapter 1
of "current protocols in molecular biology" and chapter 11 of "At the bench", by K. Barker.
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H.5. Inoculate a Single Bacteria Colony into a Suspension Culture

Supplies
Bacteria streaked in a plate coated with LB-agar-ampicillin (see "Culture bacteria on LB-
Agar(-Ampicillin) Plates" protocol).
Sterile LB or LB-Ampicillin medium (see "LB & LB-Ampicillin Medium Recipe" protocol).
Inoculating loops (VWR #90001-100)
Round-bottom test tubes, polypropylene, 14 ml (BD falcon #352059)
Serological pipettes (5 ml or 10 ml).

Equipment
" Bunsen burner (Dedon Lab, NE 47 second floor)
. Shaking incubator (Dedon Lab, NE 47 second floor)

Procedure
Prepare Test Tubes
. Turn on the Bunsen burner and perform the rest of the steps under its flame to enhance

sterility.
. Remove the cap of a test tube, and flame its entrance.
. Unscrew the cap of the bottle that contains the LB or LB-amp medium, flame its entrance,

use a serological pipette to aspirate the growth medium, flame the entrance and place cap.
o Use LB medium to culture bacteria that do not contain ampicillin resistance genes, for

example during the preparation of competent bacteria
o Use LB-amp medium to culture or select bacteria that contain ampicillin resistance

genes.
. Uncap a test tube, flame its entrance, transfer the growth medium into the test tube, flame

the tube entrance and place its cap back.
o Repeat the previous three steps for each test tube.
o The amount of medium that is less than 5 ml for a 14 ml test tube.

Pick a Single Colony and Inoculate in a Suspension Culture
. Transfer the LB-agar or LB-agar-ampicillin plates, which contain the bacteria colonies, from

the 37 0C incubator on the bench, under the flame of the Bunsen burner.
. Open the tube that contains the inoculation loops and flame its entrance. Get a sterile

inoculating loop out of the tube. Flame the entrance again and close the tube.
. Use the sterile inoculating loop to touch gently a colony on the Petri dish.
. Remove the cap of a test tube that contains growth medium and flame its entrance.
" Place and move the loop inside the medium quickly.
. Flame the test tube entrance and place its cap back. Dispose the inoculation loop
. Incubate the suspension culture in a 37'C shaking incubator (250 rpm) overnight.
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H.6. Bacteria Suspension Culture for Recombinant Protein
Expression

Supplies
. Saturated suspension cultures of single bacteria colonies in LB-ampicilin medium inside 14

ml test tubes, incubated overnight at 37 0C with 250 rpm shaking (see protocol "Inoculate a
Single Bacteria Colony into a Suspension Culture").

" Sterile LB-Ampicillin medium (see "LB & LB-ampicillin medium recipe" protocol).
* IPTG (Sigma #15502), in 0.2M aqueous solution. Stored in 1 ml aliquots at -200C.
* 500 ml centrifuge tubes for JLA 10.5 Beckman centrifuge rotors (max 13400 g, Newman

Lab, 68-380, or Dedon Lab, NE 47 second floor)
* 50 ml centrifuge tubes for JA 17 Beckman centrifuge rotors
. 5ml cuvettes (So Lab)
. 5 ml serological pipettes (VWR)

Equipment
. Bunsen burner (Dedon Lab, NE 47 second floor)
. Shaking incubator (Dedon Lab, NE 47 second floor)
. Spectrophotometer (Dedon Lab, NE 47 second floor)
. Floor centrifuge (Dedon Lab, NE 47 second floor).

Procedure
Preparation
. Prepare three 600 ml sterile LB-ampicillin medium solutions inside 2L glass flasks (see "LB

& LB-ampicillin medium recipe" protocol). Store at 40C until use.
. Each 600 ml bacteria culture requires 1.2 ml 0.2M IPTG stock solution (stored in 800 ul

aliquots at -200C)
. Grow one overnight 100 ml bacteria culture at 37 0C, 250 rpm shaking.

Start the bacteria culture
. Turn on the Bunsen burner and perform the rest of the steps under its flame to enhance

sterility.
. Transfer aseptically 30 ml of overnight saturated culture to each one of the 600 LB-amp

solutions.

Monitor Bacteria Growth
. Incubate the three 600ml bacteria suspensions in a shaking incubator at 370C, 250 rpm.
. After some initial lag time, the bacteria will start to grow exponentially. It is desired to prevent

them from growing too much before inducing the protein expression, or else the amount of
produced protein will be small.

. Monitor bacteria growth by measuring the 595 nm absorbance O.D. of the bacteria
suspension.
o Use a 1 ml pipette to sample 500 ul from each bacteria culture
o Transfer this aliquote into a cuvette.
o Use 500 ul sterile LB-amp medium as the blank sample.
o Measure 595nm absorbance O.D. in a spectrophotometer (Dedon Lab, NE47).
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. When the bacteria 595nm O.D. Is between 0.6 and 0.8, thaw and add 1.2 ml 0.2M IPTG
stock solution (2 pl IPTG stock solution per ml bacteria culture).
o The resulting IPTG concentration in the bacteria suspension is 0.4 mM.

. Incubate the bacteria suspension for 3h in a shaking incubator at 370C, 250 rpm.

Pellet bacteria
. After the 3h protein expression incubation, take a 100 ul aliquot from each flask.

o This is an aliquote of a 40x OD59 5=0.75 bacteria culture which will be used to assess the
expression of the recombinant proteins.

o Spin down the aliquot (in a 1.5 ml eppendorf tube) 6500xg, 10 min, at 40C.
o Store the aliquot pellet at -200C.

. Pour the three 600 ml bacteria cultures into four 500 ml plastic centrifugation bottles.
o Don't transfer more than 400 ml bacteria suspension per bottle because it may leak

during centrifugation.
o Add 10% bleach to the remaining bacteria suspension. Discard after 20 min.

" Centrifuge the bacteria suspension at 6500xg, 10 min, 40C in a Beckman floor centrifuge
loaded with a Beckman JLA 10.5 rotor. Make sure:
o the proper settings are loaded in the centrifuge controller (rotor type, acceleration, time,

temperature).
o the plastic JLA bottles have approximately the same weight (±20 mg error) Use a

serological pipette to add/remove bacteria suspension or PBS.
o the plastic JLA tubes are positioned inside metal JLA containers, the JLA container

metal cap is tightened, and the JLA containers are positioned properly (counter-side) in
the JLA rotor.

o the JLA rotor cap is placed and securely tightened before centrifuging [!!].
. After centrifugation, the bacteria form a pellet in the bottom of the plastic JLA bottle. See the

next steps, while the supernatant contains LB medium.
o Some medium may have leaked outside the plastic centrifugation bottles. In this case

bleach the JLA containers for 20 min, and then wipe with 70% EtOH.
. Pour the supernatant in the previously used 2L flasks (apart from 15 ml supernatant per

500ml bottle), add 10% bleach to the flask, and dispose in the sink after 20 min.
. Use the 10 ml remaining supernatant to break the pellet in each bottle using a 10 ml

serological pipette.
. Transfer the four 10 ml bacteria suspension from the four 500ml centrifugation tubes into a

single 50 ml JA centrifugation tube.
o Bleach the plastic JLA bottles, and dispose the bleach in the sink after 20 min.

. Centrifuge the 40 ml bacteria suspension at 6500xg, 10 min, 40C in a Beckman floor
centrifuge loaded with a Beckman JA 17 rotor. Follow the above safety precautions.

. Pour the supernatant in the previously used 2L flasks, add bleach and dispose the flask
context after 20 min.

. Either store the bacteria pellet in the 50ml centrifugation tube at -800C, or proceed
immediately to the protein purification protocol.
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H.7. Prepare Bacteria Extracts for SDS-PAGE

Supplies
. Bacteria pellet from 100 ul aliquots of 40x OD595=0.75 bacteria cultures, stored at -80oC.

Procedure
. Resuspend the bacteria pellet in 100 ul PBS.
. Add 24 ul bacteria pellet in PBS to 8 ul 4x Laemmli SDS reducing buffer.
. Heat at 90-950C for five minutes and run SDS-PAGE gel.
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H.8. Transform Competent Bacteria

Supplies
0 E-coli bacteria (not either competent or not), stored at -80 deg.
0 LB-Agar coated plates (see protocol "Preparation of LB-Agar-Ampicillin Plates")
. LB-Agar-ampicillin plates (see protocol "Preparation of LB-Agar-Ampicillin Plates")
0 LB medium (see protocol "Preparation of Sterile LB-Ampicillin Medium")
. CaCI2 (Mallinckrodt #4160)
. PIPES (Sigma #P1851)
. Round-bottom test tubes, polypropylene, 14 mL (BD falcon #352059)
. 50 mL centrifuge bottles for JA1 7 Beckman centrifuge rotors (max 50000 g)
. Inoculating loops (VWR #90001-100)

Equipment
. Autoclave (Yannas Lab ,3-315)
" Spectrophotometer (Dedon Lab, 2nd floor NE47)
. -80 deg freezer (Dedon Lab, 2nd floor NE47)
. Ultracentrifuge (Dedon Lab, 2nd floor NE47)
. 37 deg bacteria incubator (Dedon Lab, 2 nd floor NE47)
* 37 deg shaking bacteria incubator (Dedon Lab, 2 nd floor NE47)

Procedure
Prepare Buffers for Making Bacteria Competent
. Prepare 110 mL CaCl2 working solution (60 mM CaC 2, 15% glycerol, 10 mM PIPES pH 7).

o Add 13.2 mL 500 mM CaC 2, 11 mL 100 mM PIPES pH 7, 16.5 mL glycerol, 69.3
mL sterile dH20. Then autoclave (liquid cycle) and store at room temperature.

* Prepare 50 mL LB medium in a 100 mL bottle.
. Prepare 200 mL LB medium in a 1 L flask.
. Prepare LB-agar plates (without ampicillin).

Bacteria Culture for Competent Bacteria Preparation
* Take a cryovial that contains untransformed, not competent E-coli out of the -80 freezer.
. Touch the frozen bacteria suspension with an inoculation loop and streak an LB-agar plate.

0 Place the bacteria cryovial back to -80 deg quickly before the suspension
thaws.

. Incubate the LB-agar plate for 12-16h in a 37 deg incubator.
o The next day colonies will form.

* Use an inoculation loop to pick a single colony and inoculate it into 4 mL sterile LB medium
inside a 14 mL test tube.

. Incubate the test tubes overnight in a shaking incubator (37 deg, 250 rpm).

. Transfer 2 mL bacteria suspension in a 1 L flask containing 200 mL sterile LB medium.

. Incubate in a shaking incubator (37 deg, 250 rpm) until the absorbance OD595=0.4 of the
bacteria suspension.

o The O.D. can be measured by a spectrophotomerer (Dedon lab).

Prepare Competent Bacteria
. Place the CaCl 2 working solution on ice.
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. Aliquote the bacteria culture in four 50 mL ice-cold JA-17 tubes. Incubate the tubes in ice for
10 minutes.

" Centrifuge the tubes at 1600xg, 7 min, 4 deg in an ultracentrifuge (Dedon lab).
* Aspirate and dispose the supernatants. Resuspend each pellet gently in 10 mL ice-cold

CaC12 working solution, while the tubes are placed in ice.
. Centrifuge the 50 mL tubes at 11 00xg, 5 min, 4 deg, in an ultracentrifuge (Dedon lab).
* Aspirate and dispose the supernatants. Resuspend each pellet gently with 10 mL ice-cold

CaCl 2 working solution.
" Incubate the 50 mL JA-17 tubes in ice for 30 min.
. Centrifuge the tubes at 11 00g, 5 min, 4 deg in an ultracentrifuge (Dedon lab).
. Aspirate and dispose the supernatants. Resuspend each pellet gently with 2 mL ice-cold

CaCl 2 working solution. Make sure there are no bacteria chunks in the suspensions.
. Dispense bacteria into 250 uL aliquots inside 1.5 mL eppendorf tubes. Make sure the

aliquots are kept in ice. Store aliquots immediately at -80 deg.

Transform Competent Bacteria
. Set the warm water bath to 42 deg,
. Aliquote 10 ng plasmid DNA in 20 uL dH20 inside an ice-cold 14 mL sterile round-bottom

test tube Place the tube in ice. Add as negative control a tube that doesn't contain DNA.
. Rapidly thaw the competent bacteria suspensions by hand warming.
. Immediately after thawing, transfer 100 uL of the competent bacteria culture inside each

DNA-containing tube. Mix by tapping. Place in ice for 20 min.
. Heat shock cells by placing the test tubes in a water bath set to 42 deg for 2 minutes.
. Add 1 mL of LB medium per test tube.
. Incubate for 1 h in a shaking incubator (37 deg, shaking at 250 rpm).
. Transfer 50 uL of bacteria suspension on a LB-agar-ampicillin plate.

o Store the remaining bacteria suspension at 4 deg until further use.
. Use an inoculating loop to spread the 50 ul bacteria suspension.
. Allow plate to dry in room temperature for 30 minutes.
. Incubate inverted plates overnight in a 37 deg incubator.

o Only bacteria transformed with plasmids contain ampicillin-resistant genes and
form colonies.
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H.9. Store E-Coli Cultures

Supplies
. LB (USB #75854)
. LB-Agar (USB #75851)
. Ampicillin (Sigma #A9393)
. Glycerol (USB #16374)
. Pippetors and tips.
. Cryovials.

Equipment
. Autoclave
. -80 deg freezer
. Centrifuge

Procedure
. Prepare a 20% glycerol aqueous solution. Autoclave the solution at liquid setting. Store at

room temperature.
. Centrifuge the bacteria culture at 6000g, 10 min.
. Aspirate and discard supernatant.
* Resuspend the pellet in LB medium, in 1/20 of the original volume. Break pellet gently
. Add an equal amount of autoclaved 20% glycerol (to final 10% glycerol).
. Mix gently by inverting the tube.
. Label cryovials.
. Use a 1 mL pipettor to aliquote 1 mL of bacteria glycerol suspension inside the cryovials.
. Place the cryovials in a -80 deg freezer.
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Appendix I: Molecular Biology Protocols

Contents
1.1. Measure DNA Concentration using the Nanodrop Spectrophotometer
1.2 Agarose Gel Electrophoresis of DNA Solutions
1.3. Restriction Digestion of DNA
1.4. Insert and Ligate a cDNA Construct in a Linearized Vector
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1.1. Measure DNA Concentration using the Nanodrop
Spectrophotometer

Equipment
. Thermo Scientific Nanodrop Spectrophotometer ND-1000 (Newman Lab, 68-380)

Procedure
. Always use gloved hands when using the device and the computer since there may be

ethidium bromide.
. Open the cover of the instrument.
. Turn on the software ND-1000. Choose "nucleotides" in the new window that opens.
. As the software requests, add a 2 uL aliquote on the bottom imaging base, close cover.
. Use a kimwipe to remove the aliquote.
. Add a 2 uL aliquote of the buffer of the DNA solution on the bottom imaging base, close

cover.
* Click the "blank" button.
. Use a kimwipe to remove the aliquote.
. Add a 2 uL aliquote of the DNA solution on the bottom imaging base, close cover.
. Click the "measure" button.
. The instrument provides the emission spectrum of the sample, the estimated

concentration in ng/uL, as well as the rations of the O.D. at 260 versus 280.
. Use a kimwipe to remove the aliquote.
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1.2. Agarose Gel Electrophoresis of DNA Solutions

Supplies
* TAE buffer (Boston Bioproducts # BM-250X)
. Ethidium Bromide solution (Sigma #E1 385)
. Electrophoresis-grade agarose (Bio-rad #161-3100)
. DNA Ladder (New England Biolabs # N0468S)
. Gel Loading Buffer 6X (Boston Bioproducts #BM-100F)
. Nitrile gloves.

Equipment
. Water bath
. Horizontal gel electrophoresis apparatus
. Gel casting platform
. Gel slot formers (combs)
. DC power supply
. UV transilluminator (Dedon Lab, NE47 second floor)

Procedure
Preparing the agarose gel
* Add the desired amount of agarose (0.8 to 1.5%) in TAE buffer (50 mL for the yannas lab

system). The final thickness of the gel should be between 0.5 and 1 cm.
* Create a proper volume of ethidium bromide working solution by diluting to a final

concentration of 0.5 ug/mL using water. Add the ethidium bromide (EtBr) solution to the
agarose solution.

* Melt the agarose solution by autoclaving. Let the solution cool in a waterbath set to 55 deg.
* Seal the gel casting platform at its open ends using adhesive tape.
* Pour the melted agarose solution and insert gel comb making sure no bubbles remain.
* Let the gel harder in room temperature. Remove the tape from the open ends and the gel

comb.

Load and run the gel
. Place the gel casting platform that contains the hardened gel in the electrophoresis tank.

The gel should be placed in such a way that DNA is initially close to the negative pole and
will migrate towards the positive pole.

. Add sufficient TAE buffer to the electrophoresis tank so that the gel is just covered. Make
sure no bubbles are trapped in the wells.

. Dilute the DNA samples to the final desired volume using the gel loading dye.

. Load the DNA samples and the DNA ladder in the wells using a pipette. Make sure that the
DNA samples don't overflow the gels and samples from adjacent wells don't mix.

. Set the electrophoresis voltage to approximately 1 to 10 V/cm of gel length.

. The progress of the electrophoresis can be monitored by the migration of the DNA ladder
and the bromophenol blue contained in the gel loading buffer.

. When the bromophenol blue had reached close enough to the positive end of the gel, turn
off the power supply.

. Dispose the TAE buffer that contains EtBr as a hazardous waste.

Visualize the bands in the gel
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* Place the gel on a large clean Petri dish. Since the gel contains ethidium bromide make sure
to handle the gel with gloved (nitrile gloves, not latex!!!) hands.

* Place the Petri dish on a UV transilluminator (Dedon Lab, NE47 second floor).
. Select the proper zoom and focus the camera on the agarose gel surface.
. Dispose gels that contain ethidium bromide as hazardous, in appropriate containers.
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1.3. Restriction Digestion of DNA

Supplies
. BamHI Restriction Enzyme, 10000U, 100000U/mL, (New England Bio Labs # R0136T)
. Sall Restriction Enzyme, 2000U, 100000U/mL, (New England Bio Labs # R0138T)
* Pipettes and tips (1 mL, 200 uL)
. Sterile PCR tubes

Equipment
. Heating block (Polymers and Fibers Lab, 3-315).
. Water bath (Polymers and Fibers Lab, 3-315).

Procedure
The following protocol is a 20 uL reaction that contains approximately 1 ug of DNA. For larger
reactions scale all buffer volumes.

. Prepare the 20 pl reaction volume inside a sterile PCR tube
o 1 ug DNA (purified plasmids, linearized vectors, oligos)
o 2 uL of 1OX Buffer (depends on restriction enzyme).

Double digestions can be done simultaneously when they require same buffer
and enzymes do not interfere. Check New England Bio Labs manual. For
example BamHl and Sall can be applied in parallel since they operate at the
same buffer and temperature conditions. If this is not possible, run two reactions
in series.

o 2 uL BSA buffer (required by some enzymes) to final BSA concentration 100 ug/mL.
o 1-5 units of each restriction enzyme per pg DNA.

- Make sure total restriction enzyme solution is less than 10% of total reaction
volume (e.g. don't add more than 2 pl of restriction enzymes to a 20 pl reaction).

o The remaining should be molecular biology water.
. Incubate for 2h in the appropriate temperature (usually 370C).

o Check New England Bio Labs manual.
. In order to verify digestion, take a small aliquote for agarose gel electrophoresis.
. Inactivate the enzymes and stop the reaction.

o Most enzymes can be deactivated by heating the solution for 15 min at 75 0C.
O Check New England Bio Labs manual for special cases. Another method is repeated

freeze-thaw cycles.

375



1.4. Insert and Ligate a cDNA Construct in a Linearized Vector

Supplies
* ATP 10 mM (New England Biolabs #P0756S)
. T4 DNA Ligase, includes buffer (New England Biolabs #M0202S)
" Sterile PCR tubes

Equipment
" Heating block
. Tropicooler device (Dedon Lab, MIT).

Procedure
The number of open end moles for a mass m of a sd DNA of N bp length is:

#moles = 2m /(649 *N)

1 pmol of ends of pGEX vector corresponds to approximately to 1.67 mg of pGEX DNA.
1 pmol of ends of TC-labeled I-domain corresponds to approx. 160 ug of I-domain-TC DNA.

. Inside a PCR tube add 0.1 ug of TC-label I-domain DNA (0.6 fmol of free ends, 0.03 uM) in
4 uL buffer, 1 ug of linearized pGEX vector (0.6 fmol of free ends, 0.03 uM) in 4 uL buffer,
0.2 uL of 100 mM ATP, 2 mL of 1OX T4 Ligase buffer, and 20 units of T4 DNA ligase. Add
water so that the total volume becomes 20 uL.

. Incubate the solution for 2h at 160C in a tropi-cooler.

. Terminate reaction by heating at 65 deg for 10 min.
" The resulting solution (20 uL) contains DNA constructs made of 0.03 uM TC-label I-domain

DNA and 0.03 uM linearized pGEX vector. The resulting solution can be used right away for
bacteria transformation (preferably) or can be stored at -20 C.
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Appendix J: Biochemistry

Contents
J.1. Measure Protein Concentration via 280 nm Absorption
J.2. Measure Protein Concentration via the BCA Assay
J.3. Measure Protein Concentration via Bradford Protein Assay
J.4. SDS-PAGE Electrophoresis of Protein Samples
J.5. SDS-PAGE with FlAsH Detection of Tetracysteine-Tagged Proteins
J.6. Purification of GST-Tagged Proteins Expressed in E-Coli
J.7. Protein Quantification by Immuno-blotting

J.8. Circular Dichroism Spectroscopy Standard Operating Procedure
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J.1. Measure Protein Concentration via 280 nm Absorption

Supplies
0 Protein sample of unknown concentration
0 10 ul pipette and tips
0 Kimwipes

Equipment
* Nanodrop spectrophotometer (Weiss lab, NE47-235)

Application Note
Used to quantify protein samples whose density is at least 0.2 mg/ml. For more dilute samples,
use the BCA method. Need to correct errors induced by DNA impurities using the A260/A280
ratio, however this correction requires A2 80 < 1.5. Very dense samples need to be diluted to
satisfy this limit.

Procedure
* Estimate molar absorption coefficient £280 for the protein of interest

o Count the number of tryptophan, tyrosine and cysteine residues W, Y and C in the
sequence of the protein of interest.

o Calculate E280 based on the formula [Pace et al. 1995]:
E280 = 5500W + 1490Y + 125C [M 1cm 1]

* Nanodrop measurement
o Instrument provides A 28 0 (280 absorption for d = 1 cm path)
o Blank: Use 2ul buffer used to reconstitute protein sample3.
o Measurement: Add 2ul protein sample.

" Estimate the concentration C and mass density p:
A280 1 -C - [M]

d-E280 - E280

p=M-C=y- -*A280=y-PO-E280 [mg/ml]

A280

where M is the protein's molecular weight [g/mole]. The correction factor y (Warburg-Christian
method) corrects the 280nm absorption by nucleic acid impurities based on the A 26 0 /A 28 0 ratio
(correction is valid when A 2 80 < 1-5. If A2 80 > 1.5 repeat measurement with diluted sample)
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Table J 1-7-3: Parameters for the estimation the concentration of a protein solution based on A280.
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J.2. Measure Protein Concentration via the BCA Assay

Supplies
* Protein sample of unknown concentration
* BCA kit (Pierce23227 )
* BSA protein standards 2mg/ml in PBS (Pierce)

Equipment
* Nanodrop spectrophotometer (Weiss lab, NE47-235)

Application Note
Can be used to quantify protein samples whose density is as low as 0.5 pg/ml and as high as 2
mg/ml. More robust than the Bradford assay, however it is also sensitive to several reagents
(e.g. TCEP), for more info check the Pierce application note in references.

Procedure
* Prepare a series of protein standards (2, 1, 0.5, 0.25, 0.125, 1/16, 1/32 mg/ml) by diluting

the stock 2 mg/ml BSA standard in the corresponding buffer.
o Protein standards should be in same buffer as proteins to be measured.

* Prepare at least 5 pl working reagent (WR) per sample (standards or unknown) to be
measured
o Add 25 parts of BCA reagent A to 1 part BCA reagent B. Mix until solution becomes

homogenous.
* For each sample (standards or unknown), add 5 pl WR to 5 pl sample.
* Incubate samples 30 min at 370C.
* Measure 562 nm absorption in a nanodrop spectrophotometer

o Use 3 ul BCA-sample solution per measurement.
o Measure first known protein standards in order to get a standard curve.
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J.3. Measure Protein Concentration via Bradford Protein Assay

Supplies
* Protein sample of unknown concentration
* Quickstart bradford assay dye (Bio-rad 500-0205)
* BSA protein standards 2mg/mI in PBS (Pierce)

Equipment
* Nanodrop spectrophotometer (Weiss lab, NE47-235)

Application Note
Can be used to quantify protein samples whose density is as low as 0.5 pg/ml and as high as 2
mg/ml. Bradford (coomasie) assay is sensitive to detergents (check the Pierce application note
in references), however it is fast and can be used to quickly estimate protein concentration.

Procedure
* Prepare a series of protein standards (2, 1, 0.5, 0.25, 0.125, 1/16, 1/32 mg/ml) by diluting

the stock 2 mg/ml BSA standard in the corresponding buffer.
o Protein standards should be diluted in same buffer as proteins to be measured.
o Buffers tested: PBS, PBS+++ (PBS, 2.5 mM MgCI2, 1 mM TCEP, 0.02% tween 20),

0.05M Acetic acid, glutathione elution buffer (10 mM glutathione in 50 mM Tris HCI pH
8).

* Mix each sample (standards or unknown) with Bradford assay reagent (need at least 3 ul
mixture per sample).
o Use 1:1 sample:bradford reagent mixture for very dilute samples (up to 0.1 mg/ml).
o Use 1:32 sample:bradford reagent mixture for samples up to 2 mg/ml.

" Mix well and incubate 10 min at room temperature.
" Fast qualitative conclusions are based on comparing the color of the coomasie-sample with

the color of the standards
* Quantitative measurements: Measure 595 nm absorption in a nanodrop spectrophotometer

o Use 3 ul bradford-sample solution per sample.
o Measure first known protein standards in order to get a standard curve.
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J.4. SDS-PAGE Electrophoresis of Protein Samples

Supplies
0 Protein solution.
0 Ready Gel Tris-HCI gel, 4-15%, 10-well 30 pL (Bio-Rad 161-1104) stored at 40C.
* Tris-Glycine-SDS Running Buffer 10x (Boston BioProducts BP-150).
* Laemmli's non-reducing SDS Buffer 4x (Boston BioProducts #BP-1 1 ONR).
0 Precision Plus All Blue standards (Biorad 161-0373).
0 Invitrogen Simply Blue stain, 1L (Invitrogen LC6060).
* Acetic Acid glacial (Mallinckrodt).
* Methanol (Mallinckrodt).
* P-mercaptoethanol (Sigma Aldrich 63689).
* 4% NaCl solution (0.68 M).
* 1M NaOH solution.

Equipment
* Mini-PROTEAN Tetra Cell (BioRad 165-8030), (room 3-315).
* Power supply, able to provide up to -200V and up to -50 mA (room 3-315).
* Dry block heater, includes 1.5 mL eppendorf tube block (room 3-315).
* Camera apparatus and FluorChem8900 image acquisition software (Dedon Lab).

Procedure
Preparation
* Rinse the Mini-PROTEAN Tetra cell with de-ionized water.

o The cell can be used to run up to 4 gels at the same time.
* Turn on the dry heating block and set the temperature at 95 0C.
* Prepare 1L 1x Tris-Glycine-SDS running buffer by mixing 100 ml of 1Ox Tris-Glycine-SDS

running buffer with 900 ml clean water inside a bottle.
o The running buffer can be re-used 2-3 times. It is stored at 40C.

* Prepare V pl 3.7x reducing Laemmli buffer (RLB).
o Add 92.5V pl 4x Laemmli non-reducing buffer to 7.5V pl P-mercaptoethanol.

Position the Gel
* Take one ready gel, cut the black tape on the bottom using a razor, and remove slowly and

carefully the cover of the gel wells by gentle pulling.
* Place the ready gel in the electrophoresis cell so that wells face inner side of the

electrophoresis cell. Secure the gel using the two handles.
o Use the cell that contains two electric plugs on the top, if 1 or 2 gels will be run. Use the

second cell (doesn't contain plugs) if more than 2 gels will be run.
o When running 1 or 3 ready gels, use the provided buffer dams to cover the extra empty

spot of the cell.
o Making sure that red/black plugs are on the red/black marked sides of the tank.
o The space between two gels or between a gel and a dam forms an "inner well".

* Place the cell-ready gel-dam assembly inside the tank.
* Add 1 x running buffer in the inner well until the gel wells are fully covered.
* Add running buffer to the tank up to the signed level (for running 1-2 or 3-4 gels).
Prepare Protein Samples
0 Prepare the samples inside clean 0.5 ml eppendorf tubes. Use one tube per sample.
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o Each sample has volume v ul (10 - 30 ul, check max volume that can be loaded)
o Each sample should contain 1 - 10 ug protein in the case it contains few proteins or 25-

50 ug in case it contains a complex mix of proteins.
* Prepare samples by adding v/3.7 3.7x RLB and 0.73v protein solution.
* Check and correct if necessary the pH of the samples

o The color of the samples should be dark blue (same as the Laemmli buffer).
o Use a 10 ml pipette to add tiny drops of 1 M NaOH to correct the color.

* Store the samples at 4 deg until use.
Load the Gel
* Heat the electrophoresis protein samples in the dry heater at 950C for five minutes.
* Let the electrophoresis protein samples cool back to room temperature.
* Micro-centrifuge the electrophoresis protein samples for 10 sec.
* Use a 10 pl pipette to load each protein sample (max 10-30 ul per well) inside a well of the

ready gel.
o Only the fine 10 ul pipette can enter the wells without damaging the gel.
o If possible, leave empty lanes between samples.

* Use a 10 pl pipette to load 10 pi protein standard to one or two gel wells.
Run the Gel
" Place the lid of the assembly on top on the tank-cells.
* Connect the electrodes to the power supply using the cables.
* Turn on the power supply and select the applied voltage and electrophoresis time.

o Run the gel at 60V for 3h or 32V for 6h or 24V for 8h.
o Electrophoresis progress can be monitored using the bromophenol blue dye line.

Retrieve the Polyacrylamide Gel
" After the gel is run, drain the electrophoresis buffer (it can be disposed in the sink) or store it

at 4 deg so that it can be re-used (up to 3 times total).
* Unsecure the handles and remove the ready gels from the electrophoresis cell.

o Each ready gel contains a polyacrylamide gel sandwiched between plastic covers.
* Remove the transparent tape that connects two plastic covers.
* Gently separate the two plastic covers. The polyacrylamide gel will remain attached to one

of the two plastic covers.
o Don't touch the polyacrylamide gel without gloves. Acrylamide is neurotoxic.

* Transfer the polyacrylamide gel inside a small plastic that contains a small amount of water
(acts as a lubricant; friction could cause the gel to break during handling).
o Be careful when transferring the gel to avoid breaking it. Use both hands gently.

Coomasie Staining (Fast Protocol)
* Prepare 35 ml staining solution (10% acetic acid, 10% methanol, 20% commasie)

o Add 7 ml simply blue coomasie stain to 1.25x stock staining solution (12.5% acetic acid,
12.5% methanol) stored at room temperature.

o Handle staining solution in the chemical hood as it is toxic and irritating.
* Pour 35 ml diluted staining solution to the gel.
* Incubate at room temperature inside the chemical hood for 8h.

o Within 2h the staining pattern should appear.
* Dispose the staining solution (according to EHS).
* Wash gel with 20 ml deionized water (dispose with staining solution according to EHS). Add

20 ml deionized water and incubate at least 2h before taking a picture.
Coomasie Staining (Standard Protocol - Not Used Anymore)
* Wash the gel three times with clean water.
* Add 15-20 ml simply blue coomasie stain (barely cover the gel).
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* Incubate overnight at room temperature with gentle shaking.
* Dispose stain in the sink and wash the gel twice with deionized water.
* Add 20 ml 4% NaCl and incubate at room temperature for 2h with gentle shaking.

o This steps aims to reduce non-specific binding of coomasie and enhance contrast.
* Dispose the NaCl solution, wash the gel twice with deionized water.
* Add 20 ml deionized water and incubate overnight at room temperature.

o This step makes the coomasie staining more bright.
Imaging the Gel
* Clean a flat glass plate (larger than the gel) with 70% ethanol.
* Use both hands to transfer carefully the polyacrylamide gel on the glass plate.
* Open the imaging system (FluorChem8900) door, un-flip the white light, place the glass

plate on the white light and close the door.
* Choose filter wheel position 1 (no filter), turn on the transilluminant white light

("transilluminesence white" button).
* Log in the computer (login: guest, password: growl) and run the "fluorchem8900" acquisition

software. The login and password for the software are the same.
* Press the "acquire" button to start acquisition. Manually adjust the zoom, focus and iris size

of the camera until the sample is in focus and the image has good brightness and contrast.
* Click the "acquire image" button to acquire an image of the gel.
* Use the "white", "black" and "gamma" settings to modify the brightness, contrast and gamma

correction of the image and verify that the image is good enough.
" Save the image as a "tif" file bly choosing the menu "file">"save".
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J.5. SDS-PAGE with FlAsH Detection of Tetracysteine-Tagged
Proteins

Supplies
* Protein sample.
* Laemmli' non-reducing SDS Buffer 4X.
* Ready Gel Tris-HCI gel, 4-15%, 10-well 30 pL (Bio-Rad #161-1104); store at 4 'C.
* Tris-Glycine-SDS Running Buffer 1OX (Boston BioProducts #BP-150).
* Precision Plus All Blue standards (Biorad #161-0373).
* TC-FlAsH In-cell tetracysteine tag detection kit (Invitrogen #T34561). The FlAsH dye is

stored in 100 pM aliquots at -20 deg.
* TCEP Hydrochloride solution 0.5M pH 7 (Sigma Aldrich #646547).
* Invitrogen Simply Blue stain, 1 L (Invitrogen #LC6060).
* 4% NaCl solution (0.68 M).

1 1M NaOH solution.

Equipment
* Mini-PROTEAN Tetra Cell (BioRad #165-8030), (room 3-315).
* Power supply, able to provide up to -200V and up to -50 mA (room 3-315).
* Dry block heater, includes 1.5 mL eppendorf tube block (room 3-315).
* Camera apparatus and FluorChem8900 image acquisition software (Dedon Lab).

Procedure
Preparation
* Rinse the Mini-PROTEAN Tetra cell with de-ionized water.

o The cell can be used to run up to 4 gels at the same time.
* Turn on the dry heating block and set the temperature at 95 0C.
* Prepare 1L 1X Tris-Glycine-SDS running buffer by mixing 100 ml of 1OX Tris-Glycine-SDS

running buffer with 900 ml clean water inside a bottle.
o One can prepare the running buffer from Tris, glycine and SDS.
o The running buffer can be re-used 2-3 times. It is stored at 4 deg.

Position the Gel in the Cell
* Take one ready gel, cut the black tape on the bottom using a razor, and remove slowly and

carefully the cover of the gel wells by gentle pulling.
* Place the ready gel in the electrophoresis cell so that wells face inner side of the

electrophoresis cell. Secure the gel using the two handles.
o Use the cell that contains two electric plugs on the top, if 1 or 2 gels will be run. Use the

second cell (doesn't contain plugs) if more than 2 gels will be run.
o When running 1 or 3 ready gels, use the provided buffer dams to cover the extra empty

spot of the cell.
o Making sure that red/black plugs are on the red/black marked sides of the tank.
o The space between two gels or between a gel and a dam forms an "inner well".

" Place the cell-ready gel-dam assembly inside the tank.
* Add 1X running buffer in the inner well until the gel wells are fully covered.
* Add running buffer to the tank up to the signed level (for running 1-2 or 3-4 gels).
Electrophoresis Protein Samples Preparation
* Prepare the samples inside clean 1.5 ml eppendorf tubes. Use one tube per sample.
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o The maximum volume v of each sample is limited by the size of the gel wells (usually
between 10 - 30 ul).

o Each sample should contain 4-5 pg TC-tagged protein. Minimum detection level is
aproximately 1.5 pg (SNR approximately 2)

* Prepare the samples by mixing protein samples (see above comment for the proper amount
of protein to be added), v/4 4x non-reducing Laemmli SDS buffer, TCP (final concentration
5 mM) and deionized water to total volume 19v/20.

* Check and correct if necessary the pH of the samples
o The color of the samples should be dark blue (same as the Laemmli buffer).
o Use a 10 ml pipette to add tiny drops of 1M NaOH to correct the color.

* Store the samples at 4 deg until use.
FlAsH Staining
* Heat the electrophoresis protein samples in the dry heater (95 deg) for five minutes.
* Let the electrophoresis protein samples cool back to room temperature.
* Micro-centrifuge the electrophoresis protein samples for 10 sec.
* Add v/20 40 uM FlAsH dye (2 uM final concentration).
* Incubate the protein samples for 30 - 45 min at room temperature.
Load the Gel
* Use a 10 pl pipette to load each electrophoresis protein sample (max 10-30 ul per well)

inside a well of the ready gel.
o Only the fine 10 ul pipette can enter the wells without damaging the gel.
o If possible, leave empty lanes between samples.

" Use a 10 pl pipette to load 10 pl protein standard to one or two gel wells.
Run the Gel
* Place the lid of the assembly on top on the tank-cells.
* Connect the electrodes to the power supply using the cables.
* Turn on the power supply and select the applied voltage and electrophoresis time.

o The gels run within approximately 3h/6h when 60V/30V is applied.
o The protein displacement progress can be monitored using the blue line made of the tiny

bromophenol blue dye.
Retrieve the Polyacrylamide Gel
* After the gel is run, drain the electrophoresis buffer (it can be disposed in the sink) or store it

at 4 deg so that it can be re-used (up to 3 times total).
* Unsecure the handles and remove the ready gels from the electrophoresis cell.

o Each ready gel contains a polyacrylamide gel sandwiched between plastic covers.
* Remove the transparent tape that connects two plastic covers.
* Gently separate the two plastic covers. The polyacrylamide gel will remain attached to one

of the two plastic covers.
o Don't touch the polyacrylamide gel without gloves. Acrylamide is neurotoxic.

Fluorescent Imaging of FlAsH-labeled Proteins
* Clean a flat glass plate (larger than the gel) with 70% ethanol.
" Use both hands to transfer carefully the polyacrylamide gel on the glass plate.

o Always wear nitrile gloves!
o Be careful when transferring the gel to avoid breaking it. Use both hands gently.

* Open the imaging system (FluorChem8900) door, flip the white light to expose the UV
illuminator, place the glass plate on the UV illuminator and close the door.

* Choose filter wheel position 3, turn on the transilluminant white light ("transilluminesence
white" button).

* Log in the computer (login: guest, password: growl) and run the "fluorchem8900" acquisition
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software. The login and password for the software are the same.
" Press the "acquire" button to start acquisition. Manually adjust the zoom, focus and iris size

of the camera until the sample is in focus and the image has good brightness and contrast.
* Choose filter wheel position 1 (SYBR green filter), turn on the UV transilluminant light

("transilluminesence UV" button).
" Press the "acquire" button to start acquisition. Adjust the exposure time in order to acquire

an image as sharp as possible.
" Click the "acquire image" button to acquire an image of the gel.
* Use the "white", "black" and "gamma" settings to modify the brightness, contrast and gamma

correction of the image and verify that the image is good enough.
" Save the image as a "tif" file bly choosing the menu "file">"save".
Coomasie Staining
* Transfer the polyacrylamide gel inside a small plastic that contains a small amount of water

(acts as a lubricant; friction could cause the gel to break during handling).
o Be careful when transferring the gel to avoid breaking it. Use both hands gently.

* Wash the gel three times with clean water.
* Add a small amount of simply blue coomasie stain (barely cover the gel).
" Incubate the box overnight at room temperature with gentle shaking.
De-Staining
* Dispose the stain in the sink and wash the gel twice with clean water.
* Add 20 ml 4% NaCl solution and incubate at room temperature for 2h with gentle shaking.

o This steps aims to reduce non-specific binding of coomasie and enhance contrast.
* Dispose the NaCl solution, wash the gel twice with clean water.
* Add 10 ml water (barely cover the gel) and incubate overnight at room temperature.

o This step makes the coomasie staining more bright.
Imaging the Gel
* Clean a flat glass plate (larger than the gel) with 70% ethanol.
" Use both hands to transfer carefully the polyacrylamide gel on the glass plate.
* Open the imaging system (FluorChem8900) door, un-flip the white light, place the glass

plate on the white light and close the door.
* Choose filter wheel position 1 (no filter), turn on the transilluminant white light

("transilluminesence white" button).
* Log in the computer (login: guest, password: growl) and run the "fluorchem8900" acquisition

software. The login and password for the software are the same.
* Press the "acquire" button to start acquisition. Manually adjust the zoom, focus and iris size

of the camera until the sample is in focus and the image has good brightness and contrast.
* Click the "acquire image" button to acquire an image of the gel.
* Use the "white", "black" and "gamma" settings to modify the brightness, contrast and gamma

correction of the image and verify that the image is good enough.
* Save the image as a "tif" file bly choosing the menu "file">"save".
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J.6. Purification of GST-Tagged Proteins Expressed in E-Coli
Supplies
* Autoclaved distilled dionized water (addH20) (Cellgro #25-055-CV)
* Immobilized glutathione in agarose beads (Pierce #15160), stored at 4oC.
* L-glutathione reduced (Sigma # G4251), stored at 4oC.
* Phosphate-buffered saline (Boston Bioproducts #BM-220S)
* EDTA 0.5M (Boston Bioproducts #BM-150)
* DTT 1M (Sigma Aldrich #43816)
* Sodium azide powder (Sigma Aldrich #438456)
0 Halt protease inhibitor single-use cocktail (Pierce #78430)
* Amicon YM3 centrifugal filter device, 3 kDa MWCO (Millipore #UFC800308)
* 5 ml polystyrene round bottom test tube (BD #352054)
* Screw-cap microcentrifuge tubes (VWR #80089-660)
* 50 ml centrifuge bottles for JA1 7 Beckman centrifuge rotors (max 50000 g)
* 15 ml polypropylene centrifuge tubes (BD #352070)
* Lysozyme power (Sigma #L6876), stored at -80oC
* DNAse I (Sigma #D4527), stored in 5 mg/ml in 0.15M NaCl aliquots at -80oC or -20oC.
0 Benzonase (Novagen #70746-3).
* 1 Ox phosphate buffered saline without divalent cations (PBS-) (Invitrogen 70011-044).
* Thrombin protease stock solution, 500 units reconstituted in 1 ml PBS, divided in twenty 50

pl aliquots (G.E. healthcare 27-0846-01).
* 3 ml slide-a-lyzer dialysis cassette, 3.5 kDa MWCO (Thermo scientific 66330)

Equipment
* Ice machine (NE47, autoclave room)
* Cooled tabletop centrifuge (3-315)
* Microcentrifuge placed inside a 4oC cold box (3-315)
* Tip sonificator (Dedon Lab, NE47 second floor, cold room)
" Cooled floor centrifuge (Palker Elkin, Dedon Lab, NE 47 second floor).
" Nutator shaker (3-315).

Procedure
. This protocol describes the batch purification of a GST-tagged protein expressed in a 200 ml

e-coli culture. Bacteria have been pelleted in a JA17 50 ml bottle
o This protocol may take place immediately after bacteria pelleting. Alternatively, pelleted

bacteria may have been stored at -800C.
. Affinity purification of GST-tagged proteins uses glutathione immobilized on agarose beads.

o Do not vortex the bead slurry, because this can damage the beads. Instead, mix bead
suspensions by gentle tipping and inverting.

o Before transferring bead slurry by pipetting, cut the front of the pipette tip using a razor.
This prevents damaging the beads during transport.

" It takes about 20 min for the tabletop centrifuge to stabilize its temperature at 40C.
Preparation
* For each 200 ml bacteria pellet, prepare the following:
* 1 ml 50% glutathione bead slurry (prepare fresh)

o Shake gently the immobilized glutathione bottle to resuspend the 50% bead
slurry (bed volume is half the slurry volume) that contains 0.05% sodium azide.
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o Transfer 1 ml bead slurry into an ice-cold 5 ml test tube.
o Add 4 ml ice-cold PBS, mix bead suspension by tipping and inverting the tube.
o Centrifuge the tube 190xg for 2 minutes at 4oC.
o Aspirate supernatant without disturbing bead pellet.
o Repeat the PBS wash three more times.
o Store the 50% glutathione-agarose bead slury at 4oC until use.

* 5.25 ml lysis buffer [PBS-, protease inhibitors, 1 mM DTT, 2.5 mM MgCI2, 1% Triton X100]
o Recipe for 22 ml: 2.2 ml 1Ox PBS-, 19.53 addH20, 44 pl 1M MgCI2, 22 pl 1M

DTT, 200 pl 100x protease inhibitors.
o Add DTT and protease inhibitors just before use.

a 150 pl 40x lysozyme solution (20 mg/ml) in PBS
o Recipe for 620 pl: 12.4 mg lysozyme, 62 ul 10x PBS, and 550 ul addH20.

* 600 pl 10% triton X-100 in PBS
o Recipe for 2.5ml: 1.25 ml 20% triton x-100, 250 ul 1 Ox PBS, and 1ml addH20.

* 20 ml wash buffer 1 [PBS, 1 mM DTT, 0.1% Triton X100, 2.5 mM MgCI2, 1/10xprotease
inhibitors]

o Recipe for 80 ml: 8 ml 1OxPBS-, 80 pl 1M DTT, 400 pl 20% TX100, 200 pl 1M
MgCI2, 80 pl 100x protease inhibitor cocktail, 71.25 ml addH20.

o Add DTT and protease inhibitors just before use.
o Use 1% of wash buffer 1 to prepare the "dnaK" buffer
o Store at 4oC until use.

* 5 ml DnaK removal buffer [wash buffer 1, 2.5 mM ATP]
o Recipe: Add 6.875 mg ATP per 5 ml wash buffer 1
o Store at 4oC until use.

* 20 ml wash buffer 2 [PBS]
o Recipe for 80 ml: 8 ml PBS-, 72 ml addH20.
o Store at 4oC until use.

* 3 ml elution buffer [10 mM reduced glutathione, 50 mM Tris pH8.0]
o Recipe for 12.5 ml: 38.7 mg reduced glutathione, 625 pl 1M TrisHCI pH 8, to

11.875 ml addH20. Check pH=8.
o Add reduced glutathione just before use. Store at 4oC until use.

For each 200 ml bacteria pellet, make sure the following aliquots are available:
* 10 pl 5mg/ml DNAsel stock solution stored at -80oC or -20oC.
* 3 pl (75 units) benzonase nuclease stored at -20oC.
* 25 pl 1 U/pl (0.2 NIH U/pl) thrombin stock solution stored at -20oC or preferably -800C.

Cell Lysis
Resuspend bacteria in lysis buffer (1.5h + 15 min per sample)
During cell lysis keep the 50 ml JA17 tubes that contain bacteria pellets in a bucket
containing ice.
. If bacteria were stored in -80 0C, incubate the bacteria pellet on ice for 30 min to let

bacteria thaw.
. Add 5.25 ml lysis buffer into the JA1 7 bottle.
. Break pellet and resuspend bacteria in lysis buffer by vortexing and using a

serological pipette.
0 Make sure no bacteria chunks remain in the suspension before sonification.

. Add 150ul 40x lysozyme solution, 10 ul 5mg/ml DNAsel solution and 3pl 50U
benzonase to each sample.

389



. Incubate 1h on ice. Lysozyme digests bacteria walls. DNase I and benzonase chop
the released genomic DNA and reduce solution viscosity.

. If the extract remains viscous add 5 ul more 5mg/ml DNAsel or 2pl more benzonase,
and incubate more time.

Sonication (15 min per sample)
During lysis keep the 50 ml JA17 tubes that contain bacteria pellets in a bucket
containing ice.
. Prepare the sonification tip:

0 Before sonification of each sample, wipe sonification tip with 70% ethanol in
kimwipes.

. Sonicate the bacteria suspension by applying 4 pulsetrains (each 100% duty cycle,
10 sec long). Let the suspension cool on ice for 60 sec between pulsetrains.
" Start and stop the sonification using the time knob.
o Adjust sonification power resonance to maximize sonification power (resonance

phenomenon). This takes place around power setting 1.5.
o When the cells are lysed, the bacteria suspension becomes darker and less

turbid.
. Add 600 pl ice-cold 10% triton x-100 in PBS. Mix until solution becomes

homogenous.
o The total volume of each cell extract is approximately 6 ml.

. Incubate 15 minutes on ice.
o If extract becomes viscous add 10 ul 5mg/ml DNAsel or 20U benzonase, and

incubate more.
. Centrifuge sonicated bacteria suspension 14000xg for 60 minutes at 40C.

o If viscous solution remains between the solid pellet and the supernatant,
transport the supernatant and the viscous solution in a new clean JA1 7 tube and
centrifuge 14000xg for 40 minutes at 40C.

. Transfer protein extract into an ice-cold 15 ml conical tube placed on ice.
o Make sure that no pellet or insoluble material is transferred.

Affinity Purification by Glutath ione-aq arose beads
Catch GST-tagged proteins using glutathione-agarose beads (2h)
. Transfer the 6 ml protein extract into the 15 ml test tube that contains the 1 ml 50%

glutathione-agarose bead slurry.
. Incubate 3h on a nutator at 40C.

Remove unbound fraction (5 min + 5 min per sample)
. Pellet the bead suspension.

o Bead pelleting is done by centrifuging 190xg for 1 min at 40C
. Aspirate gently supernatant without disturbing the bead pellet. Store at 40C for

troubleshooting ("unbound" fraction).

Wash beads (15 min + 10 min per sample)
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. Add 5 ml ice-cold wash buffer 1 to each bead pellet, resuspend beads by gentle
shaking.

. Pellet the bead suspension. Aspirate gently and discard the supernatant without
disturbing the bead pellet.

. Repeat the wash using wash buffer 1 twice more.

. Add 5 ml ice-cold DnaK removal buffer to each bead pellet, resuspend beads by
gentle shaking.

. Incubate 20 min on a nutator at room temperature.

. Pellet the bead suspension. Aspirate gently and discard the supernatant. Avoid
disturbing the bead pellet.

. Add 5 ml ice-cold wash buffer 2 (PBS) to each bead pellet, resuspend beads by
gentle shaking.

. Pellet the bead suspension. Aspirate gently and discard the supernatant. Avoid
disturbing the bead pellet.

. Repeat the wash using wash buffer 2 three times more.

Elution
. Add 1 ml elution buffer to the bead pellet.
. Transfer bead suspension to a 2 ml eppendorf tube.
. Incubate 1 h at 40C on a nutator shaker.
. Micro-centrifuge protein the samples 190xg for 5 minutes at 40C.
. Transfer 1 ml supernatant in an ice-cold 2ml eppendorf tube without disturbing the

bead pellet. Store at 40C ("eluted fraction 1").
. Add 1 ml elution buffer to the bead pellet, resuspend beads by tube inversion.
. Micro-centrifuge protein the samples 190xg for 5 minutes at 4'C.
. Transfer 1 ml supernatant in an ice-cold 2ml eppendorf tube without disturbing the

bead pellet. Store at 40C ("eluted fraction 2").
. Repeat elution step once more to get ("eluted fraction 3").

Dialysis
. Measure the amount of purified protein in each fraction using a Bradford protein

assay.
. Add the eluted fractions that contain significant protein into a single fraction.
. Transfer the eluted fraction into a 3 ml dialysis cassette according to manufacturer's

instructions using a 18 gauge needle.
. Use buoy to hold 1 or 2 dialysis cassettes inside a 1 L beaker containing fresh PBS

(equilibrated at 4oC) that contains a magnetic stir-bar on top of a magnetic stirrer.
Incubate 3h at 4oC while stirring.

. Change the PBS with fresh PBS and incubate 3h more at 4oC while stirring.

. Change the PBS with fresh PBS and incubate overnight more at 4oC while stirring.

. Use a 18-gauge needle to remove the dialyzed protein from the dialysis cassette into
a sterile 5 ml syringe. Remove the needle, place a 0.2pm Pall filter, and filter-sterilize
the eluted protein extract into ice-cold eppendorf tubes.

Thrombin Cleavaqe
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. For each ml of eluted protein add 10 pl 100 cleavage buffer (200 mM MgCI2, 0.2M
TCEP, 2% Tween 20 in PBS) and 25pl thrombin stock solution (0.5 units/pI in PBS;
27-0846-01, G.E. healthcare).

. Incubate 36 hours at 4oC to allow thrombin to cleave the fusion protein.

. Add 1 mM additional TCEP to the cleavage solution 2h before the end of the
incubation.

. For each ml of eluted protein, add 500 pl washed glutathione agarose beads.

. Incubating the bead suspension for 3h at 4oC in order to catch the released GST and the
uncleaved fusion protein.

. Pelleting the beads by centrifugation (280xg, 3 min, 4oC) and store the supernatant into ice-
cold eppendorf tubes.

. Quantify the concentration and purity of the cleaved protein solution via A280 absoption and
SDS-PAGE.

Concentration
. If the concentration of the purified cleaved protein solution is not high enough,

transfer the solution into a 4 ml Amicon 4 kDa filter centrifugation unit.
. Concentrate the cleaved protein solution by several centrifugation steps of 2200xg

for 15 minutes. At the end of each step remove the filter centrifugation units from the
centrifuge and use a pipette to mix the retained solution.
0 Careful centrifugation is necessary to avoid protein precipitation in the proximity

of the filter
. Repeat the short centrifugation steps until the volume of the cleaved protein solution

has reduced enough.
. Remove the cleaved protein solution from the Amicon filter centrifugation unit

following the instructions of the manufacturer.
. Use purified proteins in downstream applications.
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J.7. Protein Quantification by Immuno-blotting
Jin Guo and Dimitrios Tzeranis

Supplies
" Transfer buffer 1OX (BP-1 00, Boston BioProducts). Store 1 Ox buffer at room temperature.

Store 1Ox buffer at 40C.
" Tris-buffered Saline with 0.05% Tween-20 (TBST) powder (Sigma 9039-1OPAK).
" Instant dry non-fat milk (Carnation, wet lab/room temperature)
" Methanol (wet lab flammable material zoom/room temperature)
" Immobilon PVDF membrane (IPSN07852, Millipore)
" Primary antibody for antigen of interest
" HRP-conjugated secondary antibody against the species of the primary antibody.
" SuperSignal West Femto Chemiluminescent Substrate (Thermo Fisher Scientific #34095, wet

lab/ 4 degree freezer), stored at 4oC.
" Bovine Serum Albumin (03116999001, Roche), stored at 4oC.

Equipment
* Mini-PROTEAN Tetra Cell (BioRad 165-8030), (room 3-315).
* Power supply, able to provide up to -200V and up to -50 mA (room 3-315).
* FluorChem8900 image acquisition system (Dedon Lab or Grodzinsky Lab).

Procedure
Preparation
0 Run the protein samples by SDS-PAGE as described in protocol J.4.

o After the gel is run do not stain the gel using coomasie blue.
0 1 hour before SDS-PAGE is done i) start soaking the transfer cassette, filter paper, and fiber

pads (Mini Trans-Blot Cell) in transfer buffer for 1 hour inside a plastic container in the
chemical hood. Remove any air bubbles from the fiber pads, ii) soak the Immobilon
membrane in 100% methanol for 15 seconds and let sit in transfer buffer.

Transfer
" When SDS-PAGE run is done, drain the running buffer (it can be disposed in the sink) or

store it at 4oC for re-use (use up to 3 times).
" Remove the sticker that connects two plastic covers of the gel. Separate the two plastic

covers carefully. The polyacrylamide gel will remain attached to one of the two plastic
covers.

" Assemble the blotting sandwich. Place one pre-wetted fiber pad on top of the black side
of the open cassette. Add a sheet of filter paper. Carefully add the gel, and remove any
air bubbles. Place the membrane on top of the gel. Note that the membrane is cut
smaller than the gel, so make sure it covers the appropriate area. Place another sheet of
filter paper on top, followed by a second fiber pad. Close the cassette firmly while
keeping the contents stable. Use rubber bands to fasten the cassette. Place the blotting
sandwich in the transfer module, with the black side of the cassette facing the black
plate of the module.

* Place the module in the tank. Fill the tank with transfer buffer so that the whole
membrane is submerged. Add a standard stir bar to help maintain even temperature and
ion distribution.

" Put on the tank lid and move the Tetra Cell assembly to 40C cold room or cold box.
Place the Tetra Cell assembly on top of a magnetic stirrer. Set the stirrer on a fast
speed setting. Plug the transfer cell cables into the power supply.
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* Apply a specific amount of voltage or current for a specific time duration. Appropriate
conditions depend on the the size of the protein. For proteins whose size is
approximately 60 kDa (e.g. SMADs, TGFRs and Tubulin) appropriate seetings are 30V
for 12hr or 11OV for 1.5hr.

o Towards the end, prepare 8 ml blocking buffer.
* Disassemble the blotting sandwich in a plastic container in the chemical hood.
* Check if transfer was successful by evaluating if corresponding lanes (of relevant size)

of the protein standard have been transferred into the membrane.
Blocking

* Carefully remove the membrane, and use flat-end forceps to transfer it in a small
container with enough blocking buffer (either 5% nonfat milk or 3% BSA in TBST) so that
membrane is immersed completely.

o Rinse the transfer cell, fiber pads, and cassettes well with deionized water.
* Incubate the membrane with rocking for 1.5 h at room temperature or overnight at 4 deg.

Immuno-blotting
* Prepare antibody diluent: 1 % BSA, 0.05% Tween 20 in TBS or 5% Milk, 0.05% TBST.

Store at 4oC.
* Prepare 150 ml wash buffer (0.05% Tween 20 in TBS) per membrane.
* Prepare primary antibody solution by diluting the stoc antibody in antibody diluent.

Dilution depends on the protein and the protocol.
* When membrane blocking is done, rinse the membrane 4 times with 10 mL wash buffer.
* Add 2 ml primary antibody working solution (dilution ration, see Table 1) to each

membrane in a small plastic container.
Incubate the membrane with shaking overnight at 40C.

* Towards the end of the primary antibody incubation, prepare 2 ml secondary antibody
solution per membrane, by diluting stock antibody solutions with antibody diluent.

* Aspirate the primary antibody solution, and wash each membrane four times with 10 ml
wash buffer for 10 minutes in a plastic container

o When immunoblotting takes place at 4oC, the primary antibody solutions can be
stored at 40C for future use (within a few days).

* Add 2 ml secondary antibody solution per membrane and incubate 1 hour at room
temperature or overnight at 4 deg.

* Aspirate the secondary antibody solution.
* Wash each membrane 4 times with 10 ml wash buffer for 10 minutes.

Chemiluminescence-based imaging
* Before staining and imaging, make sure that the imager (FluorChem 8900) is available.

Log into the FluorChem 8900 software and use an old blot to focus the CCD.
* Stain and image each membrane by itself so that results are consistent:
* In a dark room, prepare 500 ul chemiluminescence solution by adding 250 ul luminal and

250 ul oxidizing solution
* Use flat-end forceps to place the membrane between two plastic sheets. Place the

sandwich over a kimwipe, and use the kimwipe to aspirate the extra wash buffer
* Pipette 500 ul chemiluminescence solution on the membrane, use a pipette tip to smear

the solution homogeneous.
* Remove air bubbles, incubate membrane for 2 min in the dark room, and then transfer

the system to a FluorChem8900 system.
* Place the membrane on the FluorChem8900 imager, use the white board inside the

machine.
* Image the membrane with full open iris, filter set 1, and appropriate exposure time
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(depends on the signal level so that the signal is good and it does not saturate).
Make sure the membrane is always on focus when take imaging.
Process images using FluorChem's software or ImageJ.

Antigen Clone Vendor Catalo Storag Description Size WB dilutions
g# e [kDa]

ALK1 Abgent AP780 40C Rabbit pAb 56 Prim: 1:250
(ACVRL1) 7a H,M Sec: 1:1000

0.25 mg/mI
ALK5 V-22 Santa Sc-398 40C Rabbit pAb IgG 53 Prim: 1:500
(TGFBR1) Cruz H,M Sec: 1:4000

0.2 mg/ml
SMAD1 D59D7 Cell 6944 -200C Rabbit mAb 60 Prim: 1:1000

Signaling H,M Sec: 1:2000
Incubate
membrane with
diluted antibody
in 5% w/v nonfat
dry milk

SMAD2 D43B4 Cell 5339S -200C Rabbit mAb 55-60 Prim: 1:1000
signaling H,M,R Sec: 1:4000

11 ug/ml
SMAD3 C67H9 Cell 9523S -200C Rabbit mAb 52 Prim: 1:500

signaling H,M,R Sec: 1:2000
75ug/ml

SMAD5 Q-20 Santa sc- 40C Goat pAb IgG 52 Prim: 1:200
Cruz 26418 H,M,R Sec: 1:10000

0.2mg/mI
P-Smad2 138D4 Cell 3108 -200C Rabbit mAb 60 Prim: 1:1E3
(S465/467) signaling H,M,R Sec: 1:1E3
P-Smadl/5 41D10 Cell 9516 -20oC Rabbit mAb 60 Prim: 1:1E3
(S463/S465) signaling H,M,R Sec: 1:1E3
Tubulin Abcam ab7291 -200C Mouse anti 50 Prim: 1:1E4

human Sec: 1:4E4
aSMA Sigma A2547 -200C Mouse mAb Prim: 1:500

Aliquoted 1:10 Sec: 1:1E5
Secondary Santa sc- 40C
anti goat Cruz 2020
Secondary Cell 7074 -200C
anti rabbit signaling
Secondary Pierce 31430 -200C
anti mouse
Table J.7-4: Protocol parameters for immune-blotting protein quantification.

395



J.8. Circular Dichroism Spectroscopy Standard Operating Procedure
Provided by Debby Pheasant

(Biophysical Instrumentation Facility, MIT)

. Protein solution should be at A280 < 1.0 in an appropriate buffer. Check the chart in Notes
from Aviv to see which buffer components have absorbance which could interfere. For
lengthy scans, solutions should be degassed or sparged with argon (30 min. with stirring).
The cells* hold 300ul of solution. Run a buffer blank as well as your sample and subtract the
blank from your run.

. To prepare the instrument, turn on the house nitrogen (5 valves) and check the flow rate by
looking at the height of the silver beads in the air valve windows. Insufficient flow may
indicate a leak. Allow the nitrogen to flush through the instrument for 15 minutes. It is
important to purge the lines since oxygen/ozone will etch the lenses and mirrors in the CD.

. After 15 minutes of nitrogen flushing, turn on the "lamp power" switch. (left black switch on
the power box, down low) Wait for the "Lamp Ready" light to come on, wait 1 minute then
push the red button: "Push to Start". If the lamp lights, you will see the green "Lamp On" light
come on. If the lamp doesn't light, try again. Record the number of times it took to start the
lamp in the log book under "# starts". Let the lamp warm up for at least 45 minutes.

. After the lamp is warmed up, turn on the "CPU & instrument" switch. (right black switch on
power box) Then turn on the computer with the button on the front of the HP tower. Log on
as "Aviv user".

. Before opening the Aviv software, make a folder for yourself in the DATA folder on the C:
drive.

. Open the Aviv V 320b software. With this software you must always hit "enter" on the
keyboard then click "return" or "okay" on the screen to save a value. The Data Collection
window will open and initialize. To set your data path, open Displays then Data Browser. Set
your data path in the Default Dataset Path window. (ex: C:\DATA\Debby) Leave the cursor
in that window, hit enter, then click the Return button. Now go to Configure Experiment. Give
a description and name to your experiment then choose the type it will be: either
Wavelength scan or Temperature scan. (You can do both at the same time but you need a
macro).

* Go to Experiment Configuration and under Wavelength Configuration, enter starting and
ending wavelengths (260-195nm is a typical range) and change sampling parameters if you
wish. The WL Step Scan is the traditional scan. (The WL Schedule is to quickly get values at
wavelengths which you specify. It will, however, draw straight lines between your points.)
For Temperature Experiment Configuration, enter starting and ending temperatures for a
scan (range is -10* to 1100 C). Enter your preferred temperature steps and averaging time.
Temperature Step is the traditional scan and Temperature Schedule is like WL Schedule.

. With everything set, go to Save Data Options and choose CD signal and dynode. Always
check the second box in the Experiment Data section. Now choose Experiment
Configuration and Set Experiment Counter. Set Counter to 1. Close the Configure
Experiment window by choosing Exit/Save Configuration. Go to Control Panels and set
Temperature Control Parameters. (For a wavelength scan, set the equilibration time to
zero).

. To start the experiment, hit the Run Experiment button. Keep your eye on the dynode level
as the scan moves to lower wavelengths. If it gets to 400V above your baseline, stop the
experiment because something is absorbing light and you won't get good CD data.
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. When your experiment is over, choose to have your data go to the Data Browser and Hard
Disk. Fill in the log book before turning off lamp. Read the lamp hours off the black dial.
Read max. dynode and wavelength range off the screen. To determine the air dynode at
200nm, remove the cuvette, change the wavelength under Monochromator to 200nm, then
click Return. When the wavelength has changed, read dynode level in the CD-PMT box and
record that number in the log book. This helps us assess the lamp's lifetime.

. If you did a temperature scan, go back to the Control Panel and remove the equilibration
time. Close the software before turning off the lamp so the instrument can return to its home
wavelength of 543.5 nm. Now turn off the lamp with the black switch. Let the nitrogen flush
the instrument for 5 minutes then turn off the nitrogen, closing valves in the reverse order
from turning them on. You can save your data to a CD, flash drive or email it to yourself.
Then turn off the computer at the screen. After it has shut down completely, turn off the
black "CPU & instrument" switch.
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Appendix K: Fluorescence Labeling
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K.1. Preparation of 4% Paraformaldehyde in PBS
K.2 Fluorescence Staining of Nerve Samples
K.3 Immunofluorescence staining of cell-seeded collagen scaffolds
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K.1. Preparation of 4% Paraformaldehyde in PBS

Supplies
* Sterile Phosphate Buffered Saline (PBS, 20012-043, Invitrogen, Inc., Carlsbad, CA).
* Paraformaldehyde (P6148, Sigma Aldrich), stored at 4'C. TOXIC!

Equipment
* Magnetic stirrer
* Chemical Hood

Procedure
* Weight and transfer 800 mg paraformaldehyde in a 50 ml beaker.
* Perform the remaining steps in a chemical hood.
* Add 20 ml PBS, cover the conical beaker with parafilm.
* Inside the chemical hood, stir and heat (55 to 65 0C) until the solution becomes clear

o make sure solution does not boil! Otherwise PFA is useless
* Let the solution cool to room temperature.
* Store at 40C until use.

399



K.2. Fluorescence Staining of Nerve Samples
M. Buydash and Dimitrios Tzeranis

Supplies
* Wheat Germ Agglutinin conjugated to alexa fluor 488 (W1 1261, invitrogen).
* Nerve samples: 6 pm thick sections of rat sciatic nerves, embedded in OCT, stored at -200C.
* Hydrophobic pen, stored at 40C
* Tris Buffered Saline with 0.05% tween20 (TBST)
* Tris Buffered Saline (TBS)
* DAKO protein block, stored at 40C
* DAKO antibody diluent, stored at 40C
" Triton X100 (TX1 00)

S 5100 primary antibody (ab76729, Abcam)
* a-SMA primary antibody (A2547, Sigma Aldrich).
* NF200 primary antibody (ab72996, Abcam).
* Mouse IgG1 control antibody (sc3877, Santa Cruz).
* rabbit IgG control antibody (sc2027, Santa Cruz).
* Donkey anti-rabbit alexa488 secondary antibody (Jackson immunolabs)
* Donkey anti-rabbit alexa350 secondary antibody (Invitrogen)
* Donkey anti-mouse alexa488 secondary antibody (Jackson immunolabs)
* Donkey anti-mouse alexa350 secondary antibody (Invitrogen)
* Donkey anti-chicken TRITC secondary antibody (Jackson immunolabs)
* DAPI (D1306, Invitrogen)
* Rhodamine phalloidin (R415, Invitrogen)
* Phalloidin alexa fluor 532 (A22282, Invitrogen)
* Mounting medium (Fluoro-Gel)
* #1.5 coverslips

Equipment
* Immunofluorescence microscope (Van Vliet Lab)
* Spectral multi-photon microscope (So lab).

Procedure
* Thaw samples by incubating at room temperature for 30 min.
* Place samples inside a microscope glass holder filled with TBST and shake gently two times

for 10 min.
* Prepare 80 pl blocking buffer per section.

o DAKO protein block, 0.3% Triton X100: 0.24 pl TX100 80 pl DAKO protein block.
* Use a folded kimwipe to remove TBST around and between nerve sections.
* Add TBST if necessary to prevent drying.
* Use a hydrophobic pen to isolate each tissue section (on the dried part of the glass).
* Aspirate remaining TBST from the sections and add 75 pl blocking buffer per section.
* Incubate for 60 min at room temperature.
* During the last part of the blocking incubation prepare 60 pl primary antibody or control

antibody solution per section.
o Dilute the antibodies in DAKO antibody diluent.
o The control antibody should be from the same host and have the same antibody isoform

as the primary antibody.
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o The control antibody solution should contain the same antibody density (pg/ml) as the
primary antibody solution.

* Micro-centrifuge primary antibody solutions at 14000rpm for 40 seconds to pellet antibody
aggregates.

* Add 50 pl primary/control antibody solution per section.
o Use one tip for each group of sections that contain the same primary/control antibody.

" Incubate the sections with the primary/control antibody solutions overnight at 4oC.
* Aspirate the primary/control antibody solutions.
* Wash the sections three times for 10 minutes each using 80-100 pl TBS.

o Apply the following steps in the dark, using a red lamp to prevent photo-bleaching.
* During the last two washes, prepare 60 pl secondary antibody solution per section.

o Dilute the secondary antibody in DAKO antibody diluent.
o Micro-centrifuge the secondary antibody solutions at 14000rpm for 40 seconds to pellet

antibody chunks.
* After the last wash, add 50 pl secondary antibody solution per section.
* Incubate the samples for 2 hours at room temperature in the dark.
* Toward the end of the secondary antibody incubation, prepare 60 pl counter-staining

solution per section.
* Aspirate the secondary antibody solution from each section.
* Wash the sections two times for 10 minutes each using 80-100 pl TBS.
" Add 50 pl counterstain solution per section.
* Incubate for 30 min at room temperature in the dark.
* Aspirate the counterstain solution and dispose according to EHS regulations.
* Wash the sections three times with 80 pl TBS for 10 min each. Dispose of washes according

to EHS regulations.
* During the washes, prepare coverslips.

o Wipe a #1.5 coverslip with 70% ethanol and dry thoroughly.
o Note the location of the sections with respect to the coverslip (when the coverslip does

not cover the white part of the microscope glass).
o Place a drop of mounting medium inside an eppendorf tube. Transfer 4 pl mounting

medium on the coverslip at locations corresponding to the sections.
o ! ! Avoid bubbles.

* After the last wash, slowly place the coverslip on top of the samples without trapping
bubbles between the section and the coverslip.

* Seal the sample and the coverslip using nail hardener.
* Image the samples no sooner than 15 min to let the hardener solidify.
* Image samples using an epi-fluorescence microscope (van Vliet lab) or a multi-photon

microscope (So lab).
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K.3. Immunofluorescence staining of cell-seeded collagen scaffolds
M. Buydash and Dimitrios Tzeranis

Supplies
* CMTMR (C2927, Invitrogen), aliquoted in 10 mM samples (in DMSO) stored at -200C.
* DMEM (11965-092, Gibco)
* FBS (16000-077, Gibco) stored at -200C.
* Penicillin/Streptomycin (5140, Gibco), stored at -200C.
* Primary and secondary antibodies (see Table K3-1)
* BSA (3116999001 Roche), stored at 40C.
* Triton X100 (93427 Fluka)
* PBS powder (P3813-1OPAK, Sigma Aldrich)
* Paraformaldehyde (P6148-500G, Sigma Aldrich), stored at 40C.
* Methanol.
* Hoechst33342 (H3570), stored at -20*C.
* SYT082 (NE47-235), stored at 40C.

Equipment
" Immunofluorescence microscope (Van Vliet Lab)
* Spectral multi-photon microscope (So lab).

Procedure
This protocol described the immunofluorescent staining of cells seeded inside collagen-GAG
scaffolds (CGS). Usually 40000 fibroblasts are seeded in 5mm-diameter porous collagen
scaffolds, are treated according to some experimental design, and then are fixed and stained.
Stain cells with a cell-tracker dye
* Use sterile forceps to transfer each cell-seeded scaffold inside a well of a 96-well plate.
* Prepare the cell-tracker staining solution (25 uM CMTMR (emission peak 565nm) or 25 uM

CMFDA (emission peak 517nm) or 25 mM CMRA (emission peak 576nm) in DMEM) by
diluting 10 mM CMTMR/CMFDA/CMRA 1:400 in serum-free DMEM.

* Add 200ul 25uM cell-tracker staining solution into scaffold in a well.
* Incubate the plate in a sterile hydrated cell incubator (37oC, 5% C02) for45min.
* Aspirate and dispose the cell-tracker staining solution. Add 200ul complete culture medium

(DMEM supplemented with 10% FBS and 1%P/S) per well.
* Incubate cell-seeded scaffolds in a sterile incubator (370C, 5% C02) for45min.
* Aspirate and dispose the complete culture medium. Add 200ul PBS per well.
* Wash twice the scaffold by gently shaking the plate for 10min. Use the big orbital shaker

(shaking speed should be between 4 and 5).
o !! Avoid aggressive shaking or vortexing because it causes cell detachment.

Fixation
* Two possible fixation methods:

o Methanol protocol: Add 200 ul ice-cold methanol (stored at -200C) per well. Shake
gently for 7 min at room temperature.

o Paraformaldehyde protocol: Add 200 ul 4% paraformaldehyde (stored at 40C) per well.
Shake gently for 15 min at room temperature.

* Paraformaldehyde (PFA) fixation is the preferred protocol for preparation as it preserves
cells better.

" Aspirate and dispose the fixation medium (methanol/PFA) by EHS specifications.
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* Add 200 ul PBS per well, shake gently for 10 min at room temperature.
* Aspirate and dispose PBS.
* Repeat the 10-min PBS wash two more times.
Immunofluorescence Staining
* Add 200 ul permeability buffer (0.25% TritonX100 in PBS, prepared by adding TritonX100 to

PBS, stored at 4 oC refrigerator) per well, shake gently for 13 min at room temperature.
* Aspirate and dispose permeability buffer.
* Add 200 ul permeability buffer per well, gently shaking for 5 min.
* Aspirate and dispose the permeability buffer.
* Wash samples with 200 uL PBS for 10 min, shake gently for 3 times at room temperature.
* Add 200 uL blocking buffer (5% BSA in 0.25% PBST). Incubate at room temperature for 1.5

hour while shaking gently.
* During sample blocking, prepare the primary antibody solutions. Dilute primary antibody

stock solutions in antibody diluent (1 % BSA in PBST), see Table K3-1.
* Aspirate blocking solution. Add 150-200ul primary antibody solution per sample.

Incubate at 4*C (NE47, cold room) overnight while shaking gently.
* The following day, aspirate the primary antibody solution.
* Do three washes with 200ul PBS (10 min, room temperature, shake gently).
* During the three PBS washes prepare the secondary antibody solutions. Dilute secondary

antibody stock solutions 1:200 in antibody diluent (1 % BSA in PBST), see Table K3-1.
After the last wash, aspirate PBS
sample. Incubate samples at RT for
Do three washes with 200ul PBS (10

and add 150-200ul secondary antibody solution
2h, shake gently and protect samples from light.
min, room temperature, shake gently).

per

Antigen Clone Antigen Vendor Catalog Storage Info Prim. ab Sec. ab
Size # dilution dilution

Smad1 D59D7 60 kDa Cell 6944 -20oC Rabbit 1:200 1:200
signaling IgG, mAb

SMAD2 D59D7 55-60 Cell 5339S -200C Rabbit 1:50 1:200
kDa signaling IgG, mAb

11 Oug/ml
SMAD3 C67H9 52 kDa Cell 9523S -200C Rabbit 1:50 1:200

signaling IgG, mAb
75ug/ml

SMAD5 Q-20 52kDa Santa sc- 40C Goat IgG, 1:100 1:200
Cruz 26418 pAb
biotech 200 pg/ml

P-Smadl/5 41D10 52kDa Cell 9516 -20 0C Rabbit 1:50 1:200
(S463/S465) signaling IgG, mAb

Tubulin DM1A 50 kDa Abcam ab7291 -20 0C Mouse 1:500 1:200
Aliquoted IgG, mAb

1 mg/ml
aSMA 1A4 42 kDa Sigma A2547 -20 0C Mouse 1:400 1:200

aldrich Aliquoted IgG2a,
1:10 mAb
dilution

Table K3-5: Information for immune-labeling of cell-seeded scaffolds.
Counterstaininq
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* Prepare counterstaining solution:
o Nucleic acid stain: Use either 1:8E5 Hoechst33342 diluted in PBS, or 1:3E4 SYTO82

diluted in PBS. Use a fresh aliquot.
o Actin stain: dilute 1:100 phaloidin-TRITC.

" Add 200ul counterstaining solution per well.
" Incubate samples 30 min for 370C, shake gently.
" Wash samples three times with 200ul PBS, 10 min, at room temperature.
Sample Preparation and Storage
* Prepare the scaffold imaging housing: Use a Press-to-SealTM silicone isolator, tear off the

transparent membrane (red side) of the isolator first, press a #1.5 coverslip onto the isolator,
flip the coverslip-isolator and tear off the white membrane of the isolator.

" Transport 2-6 scaffolds on the coverslip. Press a glass slide onto the coverslip-isolator and
generate the "sandwich" coverslip-isolatorOglass slide housing.

" Store the samples in a white cryo-box (NE47-216, 4oC refrigerator). Place a tube of water
inside the box to keep the box humidied.

" Image the scaffolds the same or the following day.

Imaging
* Image samples using an epi-fluorescence microscope (van Vliet lab) or a multi-photon

microscope (So lab).
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Appendix L: Standard Operating
Procedure for the So Lab "Original"
Spectral Multi-Photon Microscope
The various systems of the "original" multi-photon microscope are described in Appendix A. The
microscope is able to acquire 2D or 3D images:
. 2D: acquire the image of a plane, whose field of view depends on the objective

magnification and the motion range of the scanning mirrors (see Table Li -1). In order to
image an area that is larger than the field of view, it is necessary to use the prior xy stage to
translate the sample and acquire multiple images.

. 3D: acquire a "z-stack", which is a sequence of parallel planes that are separated by some
constant axial spacing Az. The acquired volume is limited in the transverse plane by the field
of view, and in the axial plane by the travel range of the piezoelectric actuator (100 pm).

scan mirror motion range

Objective 32x 16x 8x 4x 2x 1x
magnificatio
n

40x 110xllOpm 55x55pm 28x28pm 14xl4pm 7x7pm 3.5x3.5pm

20x 220x220pm 110x1lOp 55x55pm 28x28pm 14xl4pm 7x7pm
m

1ox 440x440pm 220x 220 p 110x1lOp 55x55pm 28x28pm 14xl4pm
m m

Table L1-6: Field of view of a single image as a function of the objective magnification, and the scanning mirror tilt
motion range.

LI. The "Confocal" Microscope Control GUI
"Confocal" is the GUI application that controls the microscope and acquires data. The confocal
application can be loaded using a shortcut located on the computer desktop that controls the
"original" microscope.
There are two versions of the confocal application.
. 16-channel version (called "confocall6") acquires data from the 16-channel MA-PMT

R5900P-00-L16.
. 1-channel version (called "confocal4") acquires intensity imaging from any single-channel

PMT (R7700P, H7421-40, H7421-50).
The C++ code of each version, together with the compiled application, is located inside a folder
called "confocall6" and "confocal4" respectively. The folder of the appropriate application needs
to be renamed "confocal" and placed in the "code" folder. A shortcut to this folder is located on
the desktop. Obviously only one of the two confocal versions can be located in this directory.
The version not in use, is usually stored on the desktop. Care is needed to avoid confusing the
two folders that contain the two versions of the confocal application.
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Main screen of confocal application

stop
Acquire continuously

Acquire snapshot

Acquire Volume Data

Stage Ruster Scan
Kilr

. Acquire snapshot: acquire a single image and display it on the screen

. Acquire continuously: acquire images of a plane repeatedly and display the latest one.
Continuous acquisition stops by clicking the stop button, and is done when the "Data
acquisition" message in the bottom of the screen disappears.

. Stop: stop continuous image acquisition.

. Stage Raster Scan: setup the x-y stage and z-piezo for 3D image acquisition.

. Acquire Volume Data: acquire a 3D image. Click this after clicking Stage Raster Scan.

. Kill: Stop immediately any image acquisition. Use only in urgent conditions, especially
when the "FAIL" message appears in the bottom of the screen. Avoid using this button if
possible!!

Hardware Settings Menu
Image acquisition parameters are chosen in a set of tabs that appears by clicking on the
Controls menu, and then on Hardware Settings. The key fields are described below:

. Acquisition Tab:
o Origin X/Y: defines the initial position of the XY scanning mirror during the scanning

of a plane. Units are analogous to angular position of the scanning mirrors.
o Origin Z: In 2D imaging provides the constant position of the z-piezo. In 3D imaging,

provides the z position of the first plane of the z-stack. Expressed in units of 10 nm
(e.g. 10 means 100 nm).

o Steps X/Y: DO NOT CHANGE this field (the application will crash).
o Steps Z: In 3D imaging provides the number of steps along the Z axis of the z-stack.
o Resolution XY: Controls the scanning mirror tilt motion range (Table 1). Its value can

be 32, 16, 8, 4, 2 or 1. The peak-to-peak motion of the mirror equals 8000 angle
units (the units used in the Origin X/Y field).

Motion range [angle units] = 250*Res
Controls the field of view of each image (also depends on objective magnification),
which is approximately (see Table 1)

Field of view (um) = 275/2*Res/MAG
o Resolution Z: Used in 3D imaging. Defines distance between neighboring planes of

the z-stack. Expressed in units of 10 nm (e.g. 10 means 100 nm).

406

I



o Lock X, Y, Z: Makes the position of the scanning mirrors and the z-piezo to be
constant and equal to the position defined by the Origin X/Y and Origin Z fields
respectively. Used in Fluorescence Correlation Spectroscopy (FCS).

o Pixel Clock: Defines the pixel sampling frequency. It can be chosen in the [0.5, 25]
kHz range. Equals the inverse of the sampling time per pixel in msec (25kHz
corresponds to 40 psec per pixel). Larger values correspond to faster sampling,
faster acquisition, but less signal (photons per pixel) and SNR.

Detector Channels Tab:
o Make sure to select the "Intensity/Spectra" field when in 16-channel detection.

. Prior XYZ Control Tab:
. Block Size field X/Y: Defines the spacing [in microns] between neighboring images (2D

imaging) or z-stacks (3D imaging).
. Num of Blocks field X/Y: Defines the numbers of steps along the X/Y axis.

. The three fields of the Z column are of no use in the particular stage used.

L2. Safety Precautions
" WEAR SAFETY GLASSES
" Fill log-in paper when you start using the microscope (date, time, wavelength, beam power,

pump current, name)
" BLOCK THE LASER OUTPUT EVERY TIME THE BEAM PATH IS MODIFIED.
" MAKE SURE THE LASER BEAM PATH IS KNOWN.
" FOLLOW INSTRUCTIONS OF MIT LASER SAFETY CLASS.
" KEEP ROOM LIGHTS OFF WHEN A PMT IS ON!

L3. Prepare the System for Imaging
Usually all the instrument components are turned on and the instrument is ready-to-use. In this

case the user just needs to do a fine alignment before acquiring experimental data. If it is
necessary to restart the computer, then the user needs to restart, program and check various
system components. In order to switch between 16-channel and 1-channel imaging, then the

user needs to reprogram the FPGA and choose the appropriate confocal application.
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Turn on system components
* Check that the LP power supply is on and provides voltage to electronics.

- The 16-channel photon counting card operates at 13.4V and consumes approximately
1.1A.

- The voltage regulator board operates at 13.7V.
* Verify that any high voltage power supply for the PMTs do not provide voltage to PMTs.
* Turn off the scanning mirror controller, prior stage controller and piezoelectric actuation

controller.
* Restart the computer.
* Log in the computer as the administrator (administrator knows password).
* Program the FPGA (protocol 9).
* Load the proper confocal application (protocol 10).
* Turn on the scanning mirror controller. Test that scanning mirrors work ok.
* Turn on the prior stage controller. Test that it works ok.
* Turn on the piezoelectric actuation controller. Test that it works ok.

Program the FGPA
* Run the Impact software by loading its shortcut located on the desktop.
* Choose Slave Serial Mode.
* Load the appropriate FPGA file:
* 16-channel imaging: choose cscanml.bit
* 1-channel imaging: choose 4chscan2sp.bit.
* Right-click on the FPGA schematic and choose Program.
* Close the program without saving.

Run the Proper Confocal Application
* There are two "Confocal" applications: the 16-channel and the 1-channel. The source code

and the compiled executable of each application is located inside a folder.
* The folder that contains the appropriate confocal application needs to be renamed "conf"

and be copied in the "code" directory. There is a shortcut to this directory on the PC
desktop.

* Make sure not to delete the confocal applications as you switch between 1-channel and 16-
channel imaging.

* Run the confocal application by running the "confocal" shortcut located on the desktop.
" The confocal application runs only in 8-bit windows color mode.
o Maximize the confocal application window (to avoid a potential C++ bug).
o In 16-channel imaging: Select the Intensity/Spectra mode on the Detector Channels tab of

the Hardware Settings (Controls menu).

Turn on and check the x-y stage and the z-piezo actuator
. Turn on the prior stage controller.
. Acquire a 2x4x1 x-y-z 3D image with (95,95,0 pm) spacing (see Protocol XX)

0 1 mm prior motion corresponds approximately to a full rotation of the prior stage knobs.
0 Check that the knob returns to its initial position.
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o The stage sometimes does not perform the XY raster motion as asked. In this case, do a
power cycle (turn off then turn on the prior stage controller) and repeat 2x4x1
acquisition.

* Turn on the piezoelectric actuator controller.
* Acquire a 1 x1 x4 x-y-z 3D image at (95,95,10 pm) spacing (see Protocol XX).

o This command acquires a z-stack of 4 planes that are spaced 10 pm apart.
o When the piezoelectric actuator operates normally, a "tick" noise can be heard every

time the piezo translates the objective.
o If the piezo does not perform task correctly, it is usually a bad cable connection (the

cable that controls the piezo at the point where it enters the piezo).
. Run a 1 x2x4 XYZ run at (95,95,10 pm) spacing (see Protocol XX).

o This step verifies that piezo electric and the x-y stage operate correctly simultaneously.
* If the instruments do not perform the task correctly, do a power cycle on the prior stage

controller and repeat this 3D image acquisition.

Fine tune microscope alignment
The microscope is already aligned by the administrator. However it is possible to check and
fine-tune this alignment.

L4. Imaging
Sample preparation
. Use coverslip #1.5 for best performance.
. Very thin samples are sandwiched between a microscope glass and a coverslip.
. Thick samples can be positioned between the microscope glass and a coverslip, separated

by a silicone spacer.
Prepare the obiective
* Clean objective using a lens cleaning paper and spectroscopic-grade methanol (ask

administrator to show you how if you do not know).
" Add a drop of immersion medium (water or oil) on the objective lens.

- Make sure no bubbles are trapped in the immersion medium.
- ASK ADMINISTRATOR BEFORE USING OIL IMMERSION!

Position the sample on the microscope
o Use the z-positioning knob to move the objective a bit away from the sample.
o Place and secure the microscope glass on its proper spring-secured position.
o Use the z-positioning knob to move the objective closer to the sample until the immersion

medium makes contact with the coverslip.
* CHECK THAT IMMERSION MEDIUM IS IN CONTACT WITH THE COVERSLIP AND NOT

THE MICROSCOPE GLASS. Imaging cannot take place through microscope glass.
* Do not contaminate the immersion water with fluorescent dye solutions.
* Make sure the coverslip is clean! Clean with 70% ethanol if necessary.
o The sample to be imaged must make contact with (or be very close to) the coverslip, which

must make contact with the immersion medium.

Focus on the sample
0 Verify that the excitation laser shutter is closed.
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o Verify that the laser beam is not blocked in the output of the ti-sapphire laser.
o Before imaging it is necessary to manually focus on the sample.
* BE VERY CAREFUL DURING FOCUSING. AVOID HAVING THE COVERSLIP TOUCH

THE OBJECTIVE BECAUSE THIS CAN DAMAGE THE OBJECTIVE
o Set the microscope sliding filter-set housing at its left position (select dichroic D2) and guide

the emission ligh into the eyepiece (Ml 1 in path, M14 out of path).
* Check the emission path: turning off PMT power supplies, shine some light into the

objective, verify that light reaches the eyepiece.
* MAKE SURE PMTs are OFF when shining light into an objective.
o Use the z-positioning knob to move SLOWLY the objective closer to the sample until the

sample is on focus.
* Focusing is sample-dependent:

* Focusing on solid piece samples (e.g. a piece of tissue, collagen fibers) is easy. When the
object is in focus it will appear sharp on the eyepiece.

* Focusing on liquid solutions can be done by exciting the solution with a low power laser
beam (2 mW) and simultaneously aquire images continuously (Acquire continuously button).
When the laser focuses inside the solution, a sharp fluorescent line will appear in the
eyepiece.

* Make sure the filter F2 is on place and wear IR-blocking goggles.
- Focusing on cells on a petri dish is harder and requires some training.
- Focusing on very thin samples (e.g. bacteria on a coverslip) is even harder.

Image acquisition
* After focusing on the sample, images can be acquired.
* Place a "imaging on, do not turn lights off' sign on the lab door. This will prevent other lab

members from turning on the room's lights when the PMTs are on.
* Place the power meter head after the polarizer Al and set its offset to zero.
* Open the shutter (at the moment the shutter is located right after Al) and measure the laser

beam power.
* Select the proper laser beam power by adjusting the roll position of the half-wave plate H1.
* Close the shutter and remove the power meter head out of the beam path.
* Make sure the microscope light is off.
* Turn off the microscope light before changing the emission path. This will prevent light from

shining on the PMTs, which causes PMT degradation.
* Change the emission light path.
o For de-scanned configuration imaging (16-channel, FLIM, 1-channel) Set the microscope

sliding filter-set housing at its center position (select mirror M5).
o For scanned configuration imaging (1-channel, FCS). Set the microscope sliding filter-set

housing at its left position (select dichroic D2). Get the mirror M1 1 out of beam path (beam
goes into bottom PMT).

* Select imaging conditions in the Acquisition Tab of the Hardware Settings in the Tools
menu.

- See the "Imaging Overview" and the "The "Confocal" Microscope Control GUI" sections
above for description.

- Origin X/Y: The value of the fields OriginX and OriginY should depend on i) the values
OriginX0 and OriginYO that are chosen by the administrator during full microscope
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alignment, and ii) the field of view (parameter ResX/Y) as OriginX= OriginXO - 125*ResXY
and OriginY= OriginYO - 125*ResXY

* MAKE SURE ALL LIGHTS I THE ROOM ARE OFF.
" Turn on the high voltage power supply of the PMT of interest.
" Open the shutter.
* Acquire the image of interest:
- In order to acquire a single snap of a plane click the Acquire snapshot button.
o The image can be then saved, through the save button.
o When an image is acquired, a message appears in the bottom of the "confocal" GUI

window.
" In order to acquire images continuously, click the Acquire continuously button. When it is

necessary to stop the acquisition, click the Stop button.
- In order to use the piezoelectric actuator and acquire a z-stack, select the z-stack start

(Origin Z), the number of steps (Steps Z) and the z step size (Resolution Z) in the acquisition
tab of the Acquisition Tab of the Hardware Settings command menu. Then click the Stage
Raster Scan button and then click the Acquire Volume Data button.

o The image can be then saved, through the save button.
- In order to use the stage and the piezoelectric actuator for raster-scanning, select the z-

stack start (Origin Z), the number of steps (Steps Z) and the z step size (Resolution Z) in the
acquisition tab of the Acquisition Tab of the Hardware Settings command menu. Then select
the number of X and Y steps (Number of Blocks X/Y) and the size of X and Y steps
(BlockSize X/Y) in the Prior XYZ Control tab of the Hardware Settings command menu.
Then click the Stage Raster Scan button and then click the Acquire Volume Data button.

o Raster-scanning data can only be saved as soon as they are acquired. Before clicking the
Stage Raster Scan and Acquire Volume Data buttons, go to the Save Option tab of the
Hardware Settings command menu, add the directory path where data will be saved, the
prefix of the saved files and click to enable the two save options.

* Be very patient with the confocal GUI. It is always better to wait until image acquisition is
done. If the program stalls, one can try to use the Kill button on the GUI. After using the Kill
button it is better to check all the parameters in the Hardware Settings command menu and
to test that the stage works ok.

* In the case where it is necessary to force quit the confocal GUI, it is advisable to restart and
follow the protocols described in part 11.

Turn off microscope (everyday use)
* Block the output of the Ti-Sapph laser using the laser blocker.
* Ensure that all PMT high-voltage power supplies are turned off.
* Remove the sample from the sample holder on the stage.
* Place a kimwipe in contact with the water immersion medium. The kimwipe will aspirate

most of the immersion medium.
- Do NOT use the kimwipe to clean the objective; the kimwipe can scratch the objective.

* Clean the objective using lens cleaning paper and spectroscopic-grade methanol (ask
administrator to show you how).

* Turn off room lights.
* Remove the "imaging on, do not turn lights off" from the lab door.
* If you are the last user for the day and someone plans to use the laser the following day,

reduce the laser power to 8W. If none plans to use the Ti-Sapph the same or the following
day, turn off the laser
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Turn off Ti-Sapphire laser
* Press the P1 button to set green laser power level to 0.2W
* When the green laser output reaches 0.2W, then press the power button and the laser turns

off completely.

412



Appendix M: Image Processing Pipeline
Implementation in MATLAB

Overview
The image processing pipeline described in Chapter 2 is implemented in MATLAB. Due to the
large number of data files that need to be processed, the large number of image processing
functions involved, and the requirement for non-experts (in optics and image processing) to be
able to use the pipeline, a graphical user interface (GUI) was developed that calls various
functions that implement different parts of the pipeline.
The software consists of two kinds of functions (Figure M.1): "Processing functions" implement
the various parts of the pipeline. "GUl" functions are part of the GUI. The way each function
calls the others is shown in Figure M.1.

ConvData2MATLABFrapes_2_7 readconfocale6ZStasck

ImageRegistration'16Ch_8 3 M redcnfoar6pis

SpectrumCalibration 3 7isprovid_2_3

ImageDecompositionher w o prod es
Dom~idene~al_1_5 SpectralUnmixing_1_0 Spec~afibWln 1

AssembleDomEvid_1_6v iCtangeFhodsnParsk . T0
tProcGutc16 me11 2 -slrwtiilnFei_10u

DisplayLoadingc6ch_7 10 Dome xlectWpr n 4 Domt
ImPrint 1 4| MicrPrbp" , 1, 4|

ImAsse b ry_1_t Ain s elin a3
GMaxlPr_1_0 |Imprint n-1_3|

NucleiCount_1_1 AddFixedComnp2S 2 5 Legend

CellSc~bj_1_1 OpticEffCalcII Function call

processing Cpara eer_ ThispisdmplemProcessing function

strta ewpaaetrfl rmrthr 12] geeat nwpamte fieb7eiigle

il rageSegm _h mmp aGl h Correctl oadDSu_1_1 GUlfunct ion

Figure M.7.3: Function tree of the MATLAB software that implements the image processing pipeline.
A brief description of the key functions shown in Figure M1 is provided in Table M.1. Each
function requires an input (either raw data or the data outcome of another function) and provides
an output (which is saved in the computer hard disk). This generates a hierarchy between the
functions (e.g. some functions need to run first so that a particular function can run and process
their outcome), which is shown in Figure M.2.

The two key GUI functions are "ProcGUI16ch" and "DisplayLoading16ch". For each experiment,
the user is required to generate a "parameter" file that contains imaging parameters and image
processing parameters. This is implemented using function "DisplayLoading16ch", which can
start a new parameter file from scratch or generate a new parameter file by editing older
parameter files. "ProcGUI16ch" is the major GUI file that controls the execution of the various
functions that implement the processing pipeline. This function calls the "DisplayLoading 16ch" in
order to select particular experimental data, enables batch mode (process multiple experiments
in a queue), and enables parallel processing (utilization of multiple CPU cores).
Function |Description I Input |output

Processing Functions - General Purpose
ConvData2MATLABFra Convert raw data to MATLAB I User raw data RawFrame (1)
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mes files MaxlntPlane(2)
ImageRegistrationl6Ch Image registration RawFrame (1) RegImagDat (3)

ImageExt (4)
SpectrumCalibration MA-PMT spectral position User raw data pLO,pDL,pK (5)

calibration
ImageDecomposition Spectral unmixing (include all RawFrame (1) CompConMap (6)

sources of all classes) pLO,pDL,pK (5)
ImAssembly Assemble unmixed frames CompConMap (6) AsblConMap (7)

RegImagDat (3)
GMaxIPr Generate assembly of unmixed MaxintPlane(2) MaxlData,

images at plane of max intensity ReglmagDat (3) MaxIntImage (8)
AsblConMap (7)

ImPrint Save assembled unmixed frames AsblConMap (7) -

as images Maxintimage (8)
DomEvidenceCalc Calculate class evidence of each RawFrame (1) CompConMap,

frame pLO,pDL,pK (5) EvidenceDom (9)
AssembleDomEvid Assemble class evidence CompConMap, DomProbMapPROC,

calculations of all frames EvidenceDom (9) AsblCompConMap
RegimagDat (3) (10)

ImageSegm Image segmentation: first local DomProbMapPROC, ImSegm (11)
(Bayesian classifier), then global AsblCompConMap (10)
by MRF ImageExt (4)

Processing Functions - Cell-Scaffold Processing
CellScObj Identify cell objects in segmented AsblConMap (7) CellsOBJ (12)

images ImSegm (11)
CellScMetr Quantify features for each cell DomProbMapPROC (10) CellMetrics, Metr (13)

CellsOBJ (12)
GUI Functions

ProcGUl16ch - Call DisplayLoadingl6ch -

- Pick and run particular parts of
the image processing pipeline
- Display results
- Turn parallel processing on/off
- Enable batch mode.

DisplayLoading16ch Load, edit, save parameter files. -

Table M-7: Description of the major functions of the MATLAB software implementation of the image processing codes
described in chapters 2 and 3.

ImPrint
Calibration Spectrum pLO, pDL, Ima COmpCOMap ImAssembly AsblCompConMap

MaxIntPlane G Maxj-r Mxntm

Raw ConvData2MAT Max Mata

data LABFrames ImageRegist RegImLat
RawFrame ration'16Ch ImageExt Ia

Dmvdnc CompConMap, Assemble DomProbMap, Imsegm
Cac "EvidenceDom DomEvid AsblCompConMap

Legend cellScObJ
Function call

Function

mecellScMetr CeMetrics

Figure M.4: Function hierarchy. Depiction of the function outcomes required to run downstream functions.

The MATLAB source code of the key processing functions is provided in the following sections:

The complete MATLAB GUI software is available online at web.mit.edu/tzeranis/Public/Code
and in the web site of the So lab (web.mit.edu/solab).

ConvData2MATLABFrames
function ZstepSaved = ConvData2MATLABFrames_3_1(Dat)
% m-file that converts raw microscope data (generated by the confocal aps)
% into matlab M-files
% Dimitris Tzeranis February 2009 - JUne 2013
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fprintf('=== Convert Raw Data to Matlab Frames ===\n')
% create folder if necessary

if isempty(dir(Dat.DatCnv.Dir))
mkdir(Dat.DatCnv.Dir);

end
%% PROCESS MMM DATA (Jaewon's Code)
if strcmpi(Dat.Img.Instr,'MMM')

FileName = [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.Nom.fname,Dat.Nom.Suffix];
Raw4Frame = ReadMMMFrame_10 (FileName);
% save images in disk
for ctF = 1:4

RawFrame = Raw4Frame(:,:,:,ctF);
SaveFileName = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,'

Padding(ctF-1,Dat.Nom.PadNum),'_',Padding(l,Dat.Nom.PadNum)];
save(SaveFileName,'RawFrame')

end
ZstepSaved = 1;

fprintf('\t ... done\n\n')
return

end
%% PROCESS ORIGINAL MICROSCOPE DATA
DatDatCnv = struct('DatCnv',Dat.DatCnv, 'Nom',Dat.Nom, 'Img',Dat.Img);
if (Dat.Img.Xsteps==l) && (Dat.Img.Ysteps==l)

FileName = [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.Nom.fnameDat.Nom.Suffix];
if -isempty(dir(FileName))

if Dat.Img.Zsteps==l % single image
% read
RawFrame = uintl6(readconfocall6pics(FileName));
% save
SaveFileName = [Dat.DatCnv.DirDat.Nom.DASH,Dat.Nom.fname, '

Padding(D,Dat.Nom.PadNum), ' ',Padding(lDat.Nom.PadNum) ];
save(SaveFileName,'RawFrame')
ZstepSaved = 1;

else % Z-stack
ReadFindMaxISaveZstack(DatDatCnv,FileName,0);

ZstepSaved = Dat.DatCnv.ZRange(l):Dat.DatCnv.ZRange(2);
end

else
% the file does not exist
disp(['the file ',FileName,' was not found'])
ZstepSaved = [];
fprintf('... done\n\n')
return

end
else

% identify which frames to process
XWinSz = Dat.DatCnv.XRange(2) - Dat.DatCnv.XRange(l) + 1;
YWinSz = Dat.DatCnv.YRange(2) - Dat.DatCnv.YRange(l) + 1;
FileNum = zeros(l,YWinSz*XWinSz);
ctFN = 0;
for ctR = Dat.DatCnv.YRange(l):Dat.DatCnv.YRange(2)

for ctC = Dat.DatCnv.XRange(l):Dat.DatCnv.XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps;
ctFN = ctFN +1;

FileNum(ctFN) = ctF-1;
end

end
CheckFile = false(l,length(FileNum));
if Dat.Proc.ParProc

disp('distributed computing enabled')
parfor ctFF = 1:length(FileNum)

ctF = FileNum(ctFF);
if Dat.Nom.Under

FileName = [Dat.Nom.MainDir,Dat.Nom.DASHDat.Nom.fname, '
Padding(ctF+Dat.Nom.FirstFileNum,Dat.Nom.PadNum),Dat.Nom.Suffix];

else
FileName = [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.Nom.fname,...

Padding(ctF+Dat.Nom.FirstFileNum,Dat.Nom.PadNum),Dat.Nom.Suffix];

end
if ~isempty(dir(FileName))
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CheckFile(ctFF) = true;
if Dat.DatCnv.ZBinSw && ((Dat.DatCnv.ZRange(2)-Dat.DatCnv.ZRange(i))>O)

% binning
ReadBinSaveZstack(DatDatCnv,FileName,ctF);

else

% no binning
ReadFindMaxISaveZstack(DatDatCnv,FileName,ctF);

end
else

% the file does not exist
disp(['the file ',FileName,' was not found'])

end
end

else
disp('distributed computing not enabled')
for ctFF = 1:length(FileNum)

ctF = FileNum(ctFF);
% filename to read
if Dat.Nom.Under

FileName = [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.Nom.fname,' ',...
Padding(ctF+Dat.Nom.FirstFileNum,Dat.Nom.PadNum),Dat.Nom.Suffix];

else

FileName = [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.Nom.fname,...
Padding(ctF+Dat.Nom.FirstFileNum,Dat.Nom.PadNum),Dat.Nom.Suffix];

end
% read file if it exists

if -isempty(dir(FileName))

CheckFile(ctFF) = true;
% save
if Dat.DatCnv.ZBinSw && ((Dat.DatCnv.ZRange(2)-Dat.DatCnv.ZRange(l))>O)

% binning
ReadBinSaveZstack(DatDatCnv,FileName,ctF);

else

% no binning
ReadFindMaxISaveZstack(DatDatCnv,FileName,ctF);

end
else

% the file does not exist
disp(['the file ',FileName,' was not found'])

end
end

end
if sum(CheckFile)==length(FileNum)

ZstepSaved = Dat.DatCnv.ZRange(l):Dat.DatCnv.ZRange(2);
else

ZstepSaved = [];
end

end
fprintf('\t\t..... done\n\n')
return
%% ReadFindMaxISaveZstack
function ReadFindMaxISaveZstack(Dat,FileName,ctF)
% read and save data as MATLAB files
ZstackRead = readconfocall6ZStack(FileName,Dat.Img.Zsteps);
ZPlanes = Dat.DatCnv.ZRange(l):Dat.DatCnv.ZRange(2);
PC = zeros(256,256,length(ZPlanes),'uintl6');
for ctZ = 1:length(ZPlanes)

RawFrame = ZstackRead(ZPlanes(ctZ)).RawData;
PC(:,:,ctZ) = uintl6(sum(RawFrame,3));
RawFrame = uintl6(RawFrame);

SaveFileName = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',...
Padding(ctF,Dat.Nom.PadNum), '_',Padding(ZPlanes(ctZ),Dat.Nom.PadNum)];

save(SaveFileName,'RawFrame')
end
% find and save plane of maximum intensity
[maxPC,MaxIntPlane] = max(PC,[],3);
clear maxPC
MaxIntPlane = uint8 (MaxIntPlane);
SaveFileName = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,...
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' MaxIntPlane' ,Padding(ctF,Dat.Nom.PadNum)];
save(SaveFileName,'MaxIntPlane')
return
%% ReadBinSaveZstack
function ReadBinSaveZstack(Dat,FileName,ctF)
ZstackRead = readconfocall6ZStack(FileName,Dat.Img.Zsteps);
RawFrame = ZstackRead(Dat.DatCnv.ZRange(l)).RawData;
for ctB = (Dat.DatCnv.ZRange(l)+l):Dat.DatCnv.ZRange(2);

RawFrame = RawFrame + ZstackRead(ctB).RawData;
end
RawFrame = uintl6(RawFrame);
% save
SaveFileName = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,

Padding(ctF,Dat.Nom.PadNum), '_',Padding(1,Dat.Nom.PadNum)];
save(SaveFileName,'RawFrame')
return

readconfocal16pics
function fdata = readconfocall6pics(fname)
% m-file to read int files generated by the "confocal" application.
% reads files that contain 16 channels
% Ceated by Hyuk San. Modified by Dimitris Tzeranis, So Lab, March 2006

% SYNTAX: fdata = readconfocall6pics('fname');
fid = fopen(fname,'r'); % open file
fdata = zeros(256,256,16); % initialization
for ctl = 1:16;fdata(:,:,ctl) = fread(fid, [256 256],'uintl6'); end % read
fclose(fid); % closing file

readconfocal16ZStack
% m-file to read int files generated by the "confocal" application of the
% original microscope when it runs in z-scanning mode. Each image contains
% 16 channles and its size is 2 MB (2*1024^2 bytes).
% Based on the file "readconfocall6pic" that reads a single 16-channel
fid = fopen(fname,'r'); % open file
for ct2 = 1:NumberFrames; fdataS(ct2) .RawData = zeros (256,256,16, 'uintl6'); end
for ctl = 1:16

for ct2 = 1 : NumberFrames
fdataS(ct2).RawData(:,:,ctl) = (fread(fid, [256 256],'uintl6'))';

end
end
fclose(fid); % close file

ImageRegistration1 6Ch
function ZstepSaved = ImageRegistrationl6Ch_8_5(Dat)
% function ImageRegistrationl6ChV2 that generates an assembly image by
% putting together many small images. The algorithm works as follows:

% 1) for each pair of neighbouring images calculate how the cross
% correlation CC of the overlaping parts of the images varies as a function

of the shift between the two images.

% 2) pick as nominal shift rO = [dx,dy] the one that maximizes cross-
% correlation.
% 3) In the neighborhood of rO approximate cc = cc(r()) - 1/2 [dx,dy] *K* [dx dy]
% The "stiffness" matrix K denotes how sensitive is the result to the
% choice of 0
% 4) Combine the K, rO calculated from the elementary image pairs into a
% larger system KK*RO = bb(rO)
% 5) Solve for RO. This is the optimum global position of the images.
% 6) From RO calculate the optimum shif between images

% 7) assemble image based on RO

% Dimitrios Tzeranis, Feb 2009 - June 2013

fprintf('=== Image registration ===\n')

[unusedl,unused2,unused3] = mkdir(Dat.ImReg.Dir);
DEBUGMODE = false; % if true save 'NaNMatrix','degenC','degenR','RegData'
%% === case stepX = stepY = 1
if (Dat.Img.Xsteps==l) && (Dat.Img.Ysteps==l)

for ctZ = Dat.ImReg.ZRange(1) :Dat.ImReg.ZRange (2)
% === data input
% read RawFrame
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname, '

417



Padding(0,Dat.Nom.PadNum),' _',Padding(ctZ,Dat.Nom.PadNum)]);
AsblFrame = RawFrame; clear RawFrame
if Dat.ImReg.RemLSw

AsblFrame = AsblFrame(Dat.ImReg.RemLPixNum + 1:end,:,:);
end
ImageExt = true(Dat.Img.NumRow,Dat.Img.NumCol);
SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',

Dat.ImReg.SvName,' ImageExt'];
save(SaveFileDir,'ImageExt')
if Dat.ImReg.SwSvImg

photons = sum(AsblFrame,3);
photons = imadjust(double (photons)/max(max(photons)));
SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname,'

Dat.ImReg.SvName,' ',Padding(ctZ,Dat.Nom.PadNum),'.png'];
imwrite(photons,SaveFileDir,'png')

end
end

ZstepSaved = Dat.ImReg.ZRange(l):Dat.ImReg.ZRange(2);
fprintf('\t\t..... done\n\n')
return

end
%% === case Step X>l or Step Y>l
if Dat.Proc.ParProc

fprintf('\tdistributed computing enabled\n')
else

fprintf('\tdistributed computing not enabled\n')
end
% initialize output
RegImagDat = struct('dispo',[],'posiO',[],'KK',[],'bb',[],'insertO',[],'rangeO',[]);
% size of the assembly window in images
XWinSz = Dat.ImReg.XRange(2) - Dat.ImReg.XRange(l) + 1;
YWinSz = Dat.ImReg.YRange(2) - Dat.ImReg.YRange(l) + 1;
% identify the frame numbers to be processed, store in FileNum vector
FileNum = zeros(l,YWinSz*XWinSz);
ctFN = 0;
for ctR = Dat.ImReg.YRange(l):Dat.ImReg.YRange(2)

for ctC = Dat.ImReg.XRange(l):Dat.ImReg.XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps;
ctFN = ctFN +1; FileNum(ctFN) = ctF;

end
end
% === calculate optimum dispacement & stiffness for pairs of neighbor images
% prepare Data matrix for the function ReadMChImage
DataIMR = cell(5,1);
DataIMR{l} = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname, '_;
DataIMR{2} = Dat.Nom.PadNum; DataIMR{3} = Dat.ImReg.RemLSw;
DataIMR{4} = Dat.ImReg.RemLPixNum; DataIMR{5} = Dat.Img.Instr;

% calculate Dat.ImReg.SrchxRL, Dat.ImReg.SrchyTB
Dat.ImReg.SrchxRL = (Dat.Img.NumCol -
round(Dat.Img.XstepSz/(Dat.Img.PxSz*(Dat.Img.Res/32)* (40/Dat.Img.Magn)))) +
[-20:20]; % search space x, left-right case
Dat.ImReg.SrchxRL(Dat.ImReg.SrchxRL<4) = []; Dat.ImReg.SrchxRL(Dat.ImReg.SrchxRL>250) = [];
Dat.ImReg.SrchyTB = (Dat.Img.NumRow -
round(Dat.Img.YstepSz/(Dat.Img.PxSz*(Dat.Img.Res/32)* (40/Dat.Img.Magn)))) +
[-20:20]; % search space y, top-bottom case
Dat.ImReg.SrchyTB(Dat.ImReg.SrchyTB<4) = [];
Dat.ImReg.SrchyTB(Dat.ImReg.SrchyTB>250) = [];
% prepare Data matrix for the function MaxCorr2Im_V4_6
DataCR = cell(4,1);
DataCR{l} = Dat.ImReg.SrchxRL;DataCR{2} = Dat.ImReg.SrchyRL;
DataCR{3} = Dat.ImReg.SrchxTB;DataCR{4} = Dat.ImReg.SrchyTB;
DataCR(5} = Dat.Img.XstepSz;DataCR{6} = Dat.Img.YstepSz;
DataCR{7} = Dat.Img.PxSz;DataCR{8} = Dat.Img.Magn;
DataCR{9} = Dat.Img.Res;

% initialize local KK and bb
RegData = struct('KKL',[],'KKT', [],'bbL',[],'bbT',[]);
for ctF = 1:XWinSz*YWinSz

RegData(ctF).KKL = zeros(2); RegData(ctF).KKT = zeros(2);
RegData(ctF).bbL = zeros(2,1); RegData(ctF).bbT = zeros(2,1);

end
% calculate local KK and bbs
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fprintf('\tCompare neighbouring images for Row: ')

if Dat.Proc.ParProc
ctF = 1; ctZ = Dat.ImReg.CalcZRange(l); % define snap size

Im16F = sum(ReadMChImage(FileNum(ctF) ,ctZ,DataIMR) ,3);

ImSzR = size(Iml6F,1); ImSzC = size(Iml6F,2);

CalcZRange = Dat.ImReg.CalcZRange; Z range

% initialize NaNMatrix
NaNMatrixRL = zeros (YWinSz*XWinSz,1);
NaNMatrixTB = zeros(YWinSz*XWinSz,1);

% calculate the K matrix and the b vector based on all stacks
parfor ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1;

ctC = ctF - (ctR-1)*XWinSz;
% correlate neighb images
if (ctR == 1) && (ctC == 1)

elseif (ctR == 1) && (ctC > 1)
% corr2 L-R
for ctZ = CalcZRange(l):CalcZRange(2)

ctL = ctF - 1;
ImL = sum(ReadMChImage(FileNum(ctL),ctZDataIMR),3);
ImF = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrO,NaNMatrixRL(ctF) ] = MaxCorr2Im_4_6(ImLImF,1,DataCR);
RegData(ctF).KKL = RegData(ctF).KKL + KrO;
RegData(ctF).bbL = RegData(ctF).bbL + KrO*rO;

end
elseif (ctR > 1) && (ctC == 1)

fprintf(' %s',num2str(ctR))
% corr2 T-B
for ctZ = CalcZRange(l):CalcZRange(2)

ctT = ctF - XWinSz;
ImT = sum(ReadMChImage(FileNum(ctT),ctZ,DataIMR),3);
ImF = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrONaNMatrixTB(ctF)] = MaxCorr2Im_4_6(ImTImF,2,DataCR);
RegData(ctF).KKT = RegData(ctF).KKT + KrO;
RegData(ctF).bbT = RegData(ctF).bbT + KrO*rO;

end
else

for ctZ = CalcZRange(l):CalcZRange(2)
% corr2 L-R
ctL = ctF - 1;
ImL = sum(ReadMChImage(FileNum(ctL),ctZ,DataIMR),3);
ImF = sum(ReadMChlmage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrONaNMatrixRL(ctF)] = MaxCorr2Im_4_6(ImL,ImF,l,DataCR);
RegData(ctF).KKL = RegData(ctF).KKL + KrO;
RegData(ctF).bbL = RegData(ctF).bbL + KrO*rO;
% corr2 T-B
ctT = ctF - XWinSz;
ImT = sum(ReadMChImage(FileNum(ctT),ctZ,DataIMR),3);
[rO,KrO,NaNMatrixTB(ctF)] = MaxCorr2Im_4_6(ImT,ImF,2,DataCR);
RegData(ctF).KKT = RegData(ctF).KKT + KrO;
RegData(ctF).bbT = RegData(ctF).bbT + KrO*rO;

end
end %location of frame

end % all frames
NaNMatrix = zeros (YWinSz,XWinSz,2);
NaNMatrix(:,:,l) = reshape(NaNMatrixRL, [YWinSz,XWinSz]);
NaNMatrix(:,:,2) = reshape (NaNMatrixTB, [YWinSz,XWinSz])
clear NaNMatrixTB NaNMatrixRL

else %SERIAL IMPLEMENTATION - NO PARALLEL PROCESSING
% initialize NaNMatrix matrix
NaNMatrix = zeros(YWinSz,XWinSz,2); first plane for L, second for T
% calculate the K matrix and the b vector based on all stacksl 2
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz;
% correlate neighb images
if (ctR == 1) && (ctC == 1)

ctZ = Dat.ImReg.CalcZRange(l);
Iml6F = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
ImSzR = size(Iml6F,1);
ImSzC = size(Iml6F,2);
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fprintf(' %s',num2str(ctR))

elseif (ctR == 1) && (ctC > 1)
% corr2 L-R
for ctZ = Dat.ImReg.CalcZRange(l):Dat.ImReg.CalcZRange(2)

ctL = ctF - 1;
ImL = sum(ReadMChImage(FileNum(ctL),ctZ,DataIMR),3);
ImF = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrO,NaNMatrix(ctR,ctC,1)] = MaxCorr2Im_4_6(ImL,ImF,1,DataCR);
RegData(ctF).KKL = RegData(ctF).KKL + KrO;
RegData(ctF).bbL = RegData(ctF).bbL + KrO*rO;

end
elseif (ctR > 1) && (ctC == 1)

fprintf(' %s',num2str(ctR))
% corr2 T-B
for ctZ = Dat.ImReg.CalcZRange(l):Dat.ImReg.CalcZRange(2)

ctT = ctF - XWinSz;
ImT = sum(ReadMChImage(FileNum(ctT),ctZ,DataIMR),3);

ImF = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrO,NaNMatrix(ctR,ctC,2)] = MaxCorr2Im 4 6(ImT,ImF,2,DataCR);
RegData(ctF).KKT = RegData(ctF).KKT + KrO;
RegData(ctF).bbT = RegData(ctF).bbT + KrO*rO;

end
else

for ctZ = Dat.ImReg.CalcZRange(l):Dat.ImReg.CalcZRange(2)

% corr2 L-R
ctL = ctF - 1;
ImL = sum(ReadMChImage(FileNum(ctL),ctZ,DataIMR),3);
ImF = sum(ReadMChImage(FileNum(ctF),ctZ,DataIMR),3);
[rO,KrO,NaNMatrix(ctR,ctC,l)] = MaxCorr2Im_4_6(ImL,ImF,1,DataCR);
RegData(ctF).KKL = RegData(ctF).KKL + KrO;
RegData(ctF).bbL = RegData(ctF).bbL + KrO*rO;
% corr2 T-B
ctT = ctF - XWinSz;
ImT = sum(ReadMChImage(FileNum(ctT),ctZ,DataIMR),3);
[rO,KrO,NaNMatrix(ctR,ctC,2)] = MaxCorr2Im_4_6(ImT,ImF,2,DataCR);
RegData(ctF).KKT = RegData(ctF).KKT + KrO;
RegData(ctF).bbT = RegData(ctF).bbT + KrO*rO;

end
end %location of frame

end % all frames
end % parallel or not
fprintf ( \n')
%% === identify degenerate columns/rows
degenC = find(sum(NaNMatrix(:,:,l),l)==size(NaNMatrix,l)); %degenerate columns
degenR = find(sum(NaNMatrix(:, :,2),2)==size(NaNMatrix,2)); %degenerate rows
if ~isempty(degenC) 11 -isempty(degenR)

if ~isempty(degenC);
fprintf(['\tcolumns ',num2str(degenC(:)'), are degenerate wrt their left columns\n'])

end
if -isempty(degenR);

fprintf(['\trows ',num2str(degenR(:)'), are degenerate wrt their above rows\n'])
end

end
%% ===== generate K,b matrices
RegImagDat.KK = zeros(2*XWinSz*YWinSz);
RegImagDat.bb = zeros(2*XWinSz*YWinSz,l);
fprintf('\tGenerate K,b matrices for Row: ')
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz;
if (ctR == 1) && (ctC == 1)

fprintf(' %s',num2str(ctR))
elseif (ctR == 1) && (ctC > 1)

ctL = ctF - 1;
Kaddress = [2*ctF-1,2*ctF,2*ctL-1,2*ctL];
RegImagDat.KK(Kaddress,Kaddress) = RegImagDat.KK(Kaddress,Kaddress) + [1 0 -1 0 ;0 1 0 -

1]'*(RegData(ctF).KKL)*[l 0 -l 0 ;0 1 0 -1];
RegImagDat.bb(Kaddress) = RegImagDat.bb(Kaddress) +

[RegData(ctF).bbL;-RegData(ctF).bbL];
elseif (ctR > 1) && (ctC == 1)

fprintf(' %s',num2str(ctR))
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ctT = ctF - XWinSz;

Kaddress = [2*ctF-1,2*ctF,2*ctT-1,2*ctT];
RegImagDat.KK(Kaddress,Kaddress) = RegImagDat.KK(Kaddress,Kaddress) + [1 0 -1 0 ;0 1 0 -

ll'*(RegData(ctF).KKT)*[l 0 -1 0 ;0 1 0 -1];

RegImagDat.bb(Kaddress) = RegImagDat.bb(Kaddress) +
[RegData(ctF).bbT;-RegData(ctF).bbT];

else

ctL = ctF - 1;

Kaddress = [2*ctF-1,2*ctF,2*ctL-1,2*ctL];
RegImagDat.KK(Kaddress,Kaddress) = RegImagDat.KK(Kaddress,Kaddress) + [1 0 -1 0 ;0 1 0 -

l]'*(RegData(ctF) .KKL)*[l 0 -1 0 ;0 1 0 -1];

RegImagDat.bb(Kaddress) = RegImagDat.bb(Kaddress) +
[RegData(ctF).bbL;-RegData(ctF).bbL];

ctT = ctF - XWinSz;

Kaddress [2*ctF-1,2*ctF,2*ctT-1,2*ctT];
RegImagDat.KK(Kaddress,Kaddress) = RegImagDat.KK(Kaddress,Kaddress) + [1 0 -1 0 ;0 1 0 -

1]'*(RegData(ctF).KKT)*[l 0 -1 0 ;0 1 0 -1];
RegImagDat.bb(Kaddress) = RegImagDat.bb(Kaddress) +

[RegData(ctF).bbT;-RegData(ctF).bbT];
end

end
fprintf(' \n ')
% saving temporarily registration results (DEBUG MODE ONLY)
if DEBUGMODE

SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, '_ImageRegTemp'];

save(SaveFileDir, 'RegImagDat','NaNMatrix', 'degenC', 'degenR','RegData')

end
%% === identify the slides of the image that cannot be registered

addressF = zeros(2,1);
SnapsDGch = false(l,XWinSz*YWinSz);
for ctF = 1:XWinSz*YWinSz

addressF = [2*ctF-1;2*ctF];
if (sum(sum(abs(RegImagDat.KK(addressF, :))))+sum(sum(abs(RegImagDat.KK(:,addressF)))))==0

SnapsDGch(ctF) = true;
end

end
SnapsDG = find(SnapsDGch); the snaps that canoot be registered
%% === solve for the optimum global positions of images

fprintf('\t Calculate optimum displacements '
RegImagDat.posiO = zeros(2*XWinSz*YWinSz,l);

if isempty(SnapsDG)
% solve the linear system. by definition, the position of frame 1 is [0,0]
RegImagDat.posiO = [0;0;RegImagDat.KK(3:end,3:end)\RegImagDat.bb(3:end)];

else
Snaps2calc = 1:XWinSz*YWinSz; Snaps2calc([l;SnapsDG(:)]) = [;

addr2calc = [2*Snaps2calc(:) - 1;2*Snaps2calc(:)];
RegImagDat.posiO(addr2calc) = RegImagDat.KK(addr2calc,addr2calc)\RegImagDat.bb(addr2calc);
% for each degenerate pixel, try to find a neighbor whose I know the

% optimum position
PxSz = (Dat.Img.Res)/(Dat.Img.Magn)* (40/32)*Dat.Img.PxSz; %pixel size [um/pixels]

FOV = 256*PxSz; FOVrow = Dat.Img.NumRow*PxSz;
FOVcol = Dat.Img.NumCol*PxSz; SnapsDGres = sort(SnapsDG);

while ~isempty(SnapsDGres)
DG2solved = [];

for ctDG = 1:length(SnapsDGres)
ctF = SnapsDG(ctDG); ctR = floor((ctF-1)/XWinSz) + 1;

ctC = ctF - (ctR-1)*XWinSz;

addF = [2*ctF-1,2*ctF];
if (ctC-1)>0 && isempty(find(SnapsDG==(ctF-1))) % try right

ctG = ctF - 1; addG = [2*ctG-1,2*ctG];

RegImagDat.posiO(addF) = RegImagDat.posiO(addG) + .

[(FOVcol-Dat.Img.XstepSz)/PxSz;0];
elseif ((ctC+l)<=XWinSz) && isempty(find(SnapsDG==(ctF+l))) try left

ctG = ctF + 1; addG = [2*ctG-1,2*ctG];

RegImagDat.posiO(addF) = RegImagDat.posiO(addG) - ..

[(FOVcol-Dat.Img.XstepSz)/PxSz;01;
elseif ((ctR-1)>0) && isempty(find(SnapsDG==(ctF-XWinSz))) % try top

ctG = ctF - XWinSz;

addG = [2*ctG-1,2*ctG];
RegImagDat.posiO(addF) = RegImagDat.posiO(addG) +
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[0; (FOVrow-Dat.Img.YstepSz)/PxSz];
elseif ((ctR+l)<=YWinSz) && isempty(find(SnapsDG==(ctF+XWinSz))) % try bottom

ctG = ctF + XWinSz; addG = [2*ctG-1,2*ctG];
RegImagDat.posiO(addF) = RegImagDat.posiO(addG) -

[0;(FOVrow-Dat.Img.YstepSz)/PxSz];
else

ctG = 0;
end
if ctG;

DG2solved = [DG2solved;ctDG];
end

end
SnapsDGres(DG2solved) = [];

end
end
RegImagDat.posiO = round(RegImagDat.posiO);
%% === calculate optimum displacements between images
RegImagDat.dispO = zeros(YWinSz*XWinSz,l);
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz;
addF = [2*ctF-1,2*ctF];
if (ctR == 1) && (ctC == 1)

RegImagDat.dispO(1:2) = 0;
elseif (ctR > 1) && (ctC == 1)

ctT = ctF - XWinSz; addT = [2*ctT-1,2*ctT];
RegImagDat.dispO(addF) = RegImagDat.posiO(addF) - RegImagDat.posiO(addT);

else
ctL = ctF - 1; addL = [2*ctL-1,2*ctL];
RegImagDat.dispO(addF) = RegImagDat.posiO(addF) - RegImagDat.posiO(addL);

end
end
%% === calculate insert points
RegImagDat.insertO= zeros(YWinSz*XWinSz,1);RegImagDat.rangeO = zeros(YWinSz*XWinSz,1);
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1; ctC = ctF - (ctR-1)*XWinSz;
addF = [2*ctF-1,2*ctF];
RegImagDat.insertO(addF) = [-ImSzC*(ctC-1);ImSzR*(ctR-1)] +

[RegImagDat.posiO(addF(l));-RegImagDat.posiO(addF(2))] + [ImSzC*XWinSz -
((ImSzC))+1;1];

RegImagDat.rangeO(addF) = ReglmagDat.insertO(addF) + [ImSzC-l;ImSzR-1];
end
% saving registration results
SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, 'ImageRegOverview'];
save(SaveFileDir,'RegImagDat')
%% === image assembly
% find the range of values of the insert and range matrices elemtents
maxR = max(RegImagDat.rangeO(1:2:end));
minR = min(RegImagDat.insertO(1:2:end));maxC = max(RegImagDat.rangeO(2:2:end));
minC = min(RegImagDat.insertO(2:2:end));
% remove columns/rows that are zero
if minR-=l

TotalPixX = maxR - minR + 1;
RegImagDat.rangeO(1:2:end) = RegImagDat.rangeO(1:2:end) - minR + 1;
RegImagDat.insertO(1:2:end) = RegImagDat.insertO(1:2:end) - minR + 1;

else
TotalPixX = maxR;

end
TotalPixY = maxC;
if minC<=0

TotalPixY = TotalPixY - minC + 1;
RegImagDat.rangeO(2:2:end) = RegImagDat.rangeO(2:2:end) - minC + 1;
RegImagDat.insertO(2:2:end)= RegImagDat.insertO(2:2:end) - minC + 1;

end
fprintf(' Assemble & Save Plane: ')
% assemblying frames
for ctZ = Dat.ImReg.ZRange(l):Dat.ImReg.ZRange(2)

fprintf('%s ',num2str(ctZ))
AsblFrame = zeros(TotalPixY,TotalPixX,Dat.Img.ChNum,'uintl6');
if ctZ == Dat.ImReg.ZRange(l)

ImageExt = false(TotalPixY,TotalPixX);
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end
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-1)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz;
addF = [2*ctF-1,2*ctF];
ImF = ReadMChImage(FileNum(ctF),ctZ,DataIMR);
dO = RegImagDat.dispO(addF);
% process images to combine data from neighbouring images

if (ctR == 1) && (ctC == 1)
elseif (ctR == 1) && (ctC > 1)

% === L-R
ctL = ctF - 1;
ImL = ReadMChlmage(FileNum(ctL),ctZ,DataIMR);
[csl,cs2] = CalculateWindowCS(ImL,ImF,1,dO(1),dO(2));
MaskLR = (linspace(0,1,csl(4)-csl(3)+1)'*ones(l,csl(2)-csl(1)+))';
for ctCH = 1:Dat.Img.ChNum

ImF(cs2(1):cs2(2),cs2(3):cs2(4),ctCH) =

round((1-MaskLR).*double(ImF(cs2(l):cs2(2),cs2(3):cs2(4),ctCH)) +

MaskLR.*double (ImL(csl(1) :csl(2),csl(3) :csl(4),ctCH)));
end

elseif (ctR > 1) && (ctC == 1)
% === T-B
ctT = ctF - XWinSz;
ImT = ReadMChImage(FileNum(ctT),ctZ,DataIMR);
[csl,cs2] = CalculateWindowCS(ImT,ImF,2,dO(1),dO(2));
MaskTB = (ones(csi(4)-csl(3)+1,1)*linspace(0,1,csl(2)-csl(1)+l))';
for ctCH = 1:Dat.Img.ChNum

ImF(cs2(i):cs2(2),cs2(3):cs2(4),ctCH) =

round((MaskTB).*double(ImF(cs2(1):cs2(2),cs2(3):cs2(4),ctCH)) + (1-
MaskTB) *double (ImT (csl (1) :csl (2) ,csl (3) :csl (4) ,ctCH))

end
else

% === L-R
ctL = ctF - 1;
ImL = ReadMChImage(FileNum(ctL),ctZ,DataIMR);
[csl,cs2] = CalculateWindowCS(ImL,ImF,,dO(1),dO(2));
MaskLR = (linspace(0,1,csl(4)-cs(3)+)'*ones(i,csl(2)-csl(l)+))';
for ctCH = 1:Dat.Img.ChNum

ImF(cs2(l):cs2(2),cs2(3):cs2(4),ctCH) =

round((1-MaskLR).*double(ImF(cs2(1):cs2(2),cs2(3):cs2(4),ctCH)) +

MaskLR.*double(ImL(csl(1):csl(2),csl(3):csl(4),ctCH)));
end
% === T-B
ctT = ctF - XWinSz;
addT = [2*ctT-1,2*ctT];
dO = RegImagDat.posiO(addF) - RegImagDat.posiO(addT);
ImT = ReadMChImage(FileNum(ctT),ctZ,DataIMR);

[csl,cs2] = CalculateWindowCS(ImT,ImF,2,dO(1),dO(2));
MaskTB = (ones(csl(4)-csi(3)+1,1)*linspace(0,1,csl(2)-csl()+l))';
for ctCH = 1:Dat.Img.ChNum

ImF (cs2 (1) :cs2 (2) ,cs2 (3) :cs2 (4) ,ctCH)
round((MaskTB).*double(ImF(cs2(1):cs2(2),cs2(3):cs2(4),ctCH)) + (1-
MaskTB) .*double (ImT (csl(1) :csi (2) ,csl (3) :csl(4) ctCH)))

end
end
AsblFrame(RegImagDat.insertO(addF(2)):RegImagDat.rangeO(addF(2)),

RegImagDat.insertO(addF(1)) :RegImagDat.rangeO(addF(l)),:) = ImF;
if ctZ == Dat.ImReg.ZRange(l)
ImageExt(RegImagDat.insertO(addF(2)):RegImagDat.rangeO(addF(2)),...

RegImagDat.insertO(addF(l)):RegImagDat.rangeO(addF(i))) = true;
end

end
% save ImageExt
SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, '

Dat.ImReg.SvName,' _ImageExt'];
save(SaveFileDir,'ImageExt')
% save images
if Dat.ImReg.SwSvImg

photons = sum(AsbiFrame,3);
photons = imadjust(double(photons)/max(max(photons)));
% scale
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ImLength = length(photons);
ScaleF = ImLength/800;
if ScaleF>l; photons = imresize(photons,l/ScaleF); end
% save to HD
SaveFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',.

Dat.ImReg.SvName,'_ ',Padding(ctZ,Dat.Nom.PadNum),'.png'];
imwrite(photons,SaveFileDir,'png')

end

end
ZstepSaved = Dat.ImReg.ZRange(1) :Dat.ImReg.ZRange (2); % save version
fprintf('\t\t..... done\n\n')
return
function [csl,cs2] = CalculateWindowCS(Iml,Im2,Dim,dx,dy)

% coordinates of the windows in the base image (B) and the image (F) that
% is positioned with respect to B @ displacement [dx,dy]' along dimension
% Dim. Iml: base image (R or T). Im2: image that needs to be positioned (L or B)
% Dimitris Tzeranis, February 2009
if Dim == 1 % R-L

if dy>=0
cs2 = [dy+l,size(Im2,1),size(Im2,2)-dx+l,size(Im2,2)];
csl = [l,size(Iml,1)-dyl,dx];

else
cs2 = [,size(Im2,1)+dy,size(Im2,2)-dx+l,size(Im2,2)];

csl = [1-dy,size(Iml,l),l,dx];
end

else % T-B
if dx>=0

cs2 = [l,dy,l,size(Im2,2)-dx];
csl = [size(Imll)-dy+l,size(Iml,l),dx+l,size(Iml,2)];

else
cs2 = [l,dy,l-dx,size(Im2,2)];
csl = [size(Iml,l)-dy+l,size(Iml,l),l,size(Iml,2)+dx];

end
end
csl = round(csl);cs2 = round(cs2);
return
function ImMF = ReadMChImage(ctF,ctZ,Data)

load([Data{l},Padding(ctF-lData{2}),'_',Padding(ctZ,Data{2})]);
if Data{3)

if strcmpi(Data{5},'MMM')
ImMF = RawFrame(8:end,:,:);

else
% original microscope: remove left pixels
ImMF = RawFrame(:,Data{4} + 1:end,:);

end
else

ImMF = RawFrame;
end
return

MaxCorr2lm
function [rO,KrO,NaNFlag] = MaxCorr2Im 4_6(ImlIm2,Dim,Data)
% m-file that registers two images based on intensity data only
% - gets raw imaging data (no thresholding)
% - looks for a common optimum threshold that maximizes correlation and
% then approximates correlation in the area as a quadratic function of
% image overlap
% Iml: base image (R or T)
% Im2: image that needs to be positioned (L or B)
% Dim: 1 for L-R, 2 for T-B
% dxm: range of shift along x
% dym: range of shift along y
% rO: optimum displacement in pixels [xo,yo]
% KrO: stiffness matrix for the result,
% (1,1): fxx , (1,2): fxy , (2,2): fyy
% Dimitrios Tzeranis, February - July 2011
NaNFlag = 0;
dxmRL = Data{l};% Dat.Asbl.SrchSpc.dxmRL
dymRL = Data(2);% Dat.Asbl.SrchSpc.dymRL
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dxmTB = Data{3};% Dat.Asbl.SrchSpc.dxmTB

dymTB = Data{4};% Dat.Asbl.SrchSpc.dymTB
% ======-== Part 1: find position of maximum correlation

if Dim == 1
dxm = dxmRL; dym = dymRL;

else
dxm = dxmTB; dym = dymTB;

end
CorrCoeff = zeros(length(dxm),length(dym));
ctF = 0;

for ctx = 1:length(dxm)

dx = dxm(ctx);
for cty = l:length(dym)

dy = dym(cty); ctF = ctF + 1;
[Windl,Wind2] = CalculateWindow(Iml,Im2,Dim,dx,dy);
[szWR,szWC] = size(Windl);
if Dim == 1 % R-L

szWRm = round(linspace(l,szWR+1,9));
for ctTH = 1:8

temp = Windl(szWRm(ctTH):szWRm(ctTH+l)-l,:);
Windl(szWRm(ctTH) :szWRm(ctTH+1)-1, :) = (temp>=prctile(temp(:),50));
temp = Wind2(szWRm(ctTH):szWRm(ctTH+1)-1,:);
Wind2(szWRm(ctTH):szWRm(ctTH+1)-l,:) = (temp>=prctile(temp(:),50));

end
else % T-B

szWRm = round(linspace(l,szWC+1,9));
for ctTH = 1:8

temp = Windl(:,szWRm(ctTH):szWRm(ctTH+1)-l);

Windl(:,szWRm(ctTH):szWRm(ctTH+1)-l) = (temp>=prctile(temp(:),50));

temp = Wind2(:,szWRm(ctTH):szWRm(ctTH+1)-l);
Wind2(:,szWRm(ctTH):szWRm(ctTH+1)-l) = (temp>=prctile(temp(:),50));

end
end
CorrCoeff(ctx,cty) = corr2(Wind2,Windl);

end
end
maxCorr = max(max(CorrCoeff));
if isnan(maxCorr)

if Dim == 1 % R-L
rO = [(256-round(Data{5}/(Data{7}*(Data{9}/32*40/Data{8}))));0];

else
rO = [0; (256-round(Data{6}/(Data{7}*(Data{9}/32*40/Data{8}))))];

end
KrO = le-3*eye(2);
NaNFlag = 1;
return

end
[ctx,cty] = find(CorrCoeff == maxCorr);
rO = [dxm(ctx);dym(cty)];
NumrO = size(rO,2);
if NumrO>l

rO = rO(:,round(NumrO/2));
end

% ===== Part 2: calculatew stiffnes around max error

% calculate the "stiffness" matrix by approximating the CorrCoeff as a
% quadratic function z = b - A*(r-rO), where b = max(max(CorrCoeff)) and rO
% is the point of the optimum

dxm rO(l) + [-4:4];

dym = rO(2) + [-4:4];

if Dim == 1
dxm(dxm<l) =[;

else
dym(dym<l) = [1;

end
CorrCoeff = zeros (length (dxm) ,length(dym))

b = zeros(length(dxm)*length(dym),l);
A = ones(length(dxm)*length(dym),3);
ctF = 0;

for ctx = 1:length(dxm)
dx = dxm(ctx);

for cty = 1:length(dym)
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dy = dym(cty);
ctF = ctF + 1;
[Windl,Wind2] = CalculateWindow(Iml,Im2,Dim,dx,dy);
[szWR,szWC] = size(Windl);
if Dim == 1 % R-L

szWRm = round(linspace(l,szWR+1,9));
for ctTH = 1:8

temp = Windl(szWRm(ctTH):szWRm(ctTH+l)-l,:);
Windl(szWRm(ctTH):szWRm(ctTH+1)-1,:) = (temp>=prctile(temp(:),50));
temp = Wind2(szWRm(ctTH):szWRm(ctTH+1)-l,:);
Wind2(szWRm(ctTH):szWRm(ctTH+1)-l,:) = (temp>=prctile(temp(:),50));

end
else % T-B

szWRm = round(linspace(l,szWC+1,9));
for ctTH = 1:8

temp = Windl(:,szWRm(ctTH):szWRm(ctTH+1)-l);
Windl (:,szWRm (ctTH) : szWRm (ctTH+l) -1) = (temp>=prctile (temp (:),50));
temp = Wind2(:,szWRm(ctTH):szWRm(ctTH+1)-l);
Wind2 (:,szWRm (ctTH) : szWRm (ctTH+l) -1) = (temp>=prctile (temp (:),50));

end
end
CorrCoeff(ctx,cty) = corr2(Wind2,Windl);
b(ctF) = CorrCoeff(ctx,cty); A(ctF,l) = dx; A(ctF,3) = dy;

end
end
b = reshape(CorrCoeff,length(dxm) *length(dym) ,1) - max(max(CorrCoeff));

A(:,2) = -2*(A(:,l)-dxm(ctx)).*(A(:,3)-dym(cty));

A(:1) = - (A(:1) -dxm (ctx)).^2; A (:,3) = (A(:3)-dym (cty)).2; x =A\b;
% if there is NaN, then stiffness is very small
if sum(isnan(x))

NaNFlag = 1; x = [le-3 0 le-3];
end
% form stiffness matrix
KrO = [x(l),x(2);x(2),x(3)];
return
function [Windl,Wind2] = CalculateWindow(Iml,Im2,Dim,dx,dy)
SkipPix = 3;% This needs to be smaller than dx,dy!!!!
if Dim == 1 R-L

if dy>=0
Wind2 = Im2(dy+l:end,end-dx+l+SkipPix:end,:);
Windl = Tml(l:end-dy,l+SkipPix:dx,:);

else

Wind2 = Im2(1:end+dy,end-dx+l+SkipPix:end,:);
Windl = Iml(l-dy:end,l+SkipPix:dx,:);

end
else % T-B

if dx>=0

Wind2 = Im2(1+SkipPix:dy,l:end-dx,:);
Windl = Iml(end-dy+l:end-SkipPix,dx+l:end,:);

else
Wind2 = Im2(1+SkipPix:dy,l-dx:end,:);
Windl = Iml(end-dy+l:end-SkipPix,l:end+dx,:);

end
end
return

SpectrumCalibration
function Output = SpectrumCalibration 3 8(Dat)
% m file that calibrates the spectrum
% Dimitris Tzeranis Feb 2009 - June 2013
[unused,unused2,unused3] = mkdir(Dat.SpcClb.Dir);
%% ========= SPECTRUM CALIBRATION
fprintf('=== Spectrum Calibration ===\n')

% Choose the variables Dat.SpcClb.L0o (beginning of the spectrum range
% of first channel) and Dat.SpcClb.DeltaLo (spectrum width of each
% channel) in order to minimize the error between the measured and
% estimated spectra of several calibration dyes

=== initialize global variables
NumDyes2Use = Dat.SpcClb.NuComp;Tag = Dat.SpcClb.SpcIG;

% === calculate the system optical efficiency
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Dat.Img.OptEff = OpticalEfficiencyCalculation_VlO(Dat.Img,false);
=== define variables for optimization

Data = struct('NumDyes2Use', [],'Tag',[],'ChUsed', [],'SHGch', [],'OptEff',[],...
'SpecResp', [],'PMTDiscRelGains', []);

Data.NumDyes2Use = Dat.SpcClb.NuComp;Data.Tag = Dat.SpcClb.SpcIG;
Data.ChUsed = Dat.Img.ChUsed;Data.SHGch = Dat.SpcClb.SHGch;
Data.OptEff = Dat.Img.OptEff;Data.SpecResp = Dat.Img.SpecResp;
Data.PMTDiscRelGains = Dat.Img.PMTDiscRelGains;

%% === spectrum calibration loop
% read the calibration dye images
CalDyeImages = cell(NumDyes2Use,1);
for ctD = 1:NumDyes2Use

CalDyeImages{ctD} =
readconfocall6pics ( [Dat.Nom.MainDir,Dat.Nom.DASH,Dat.SpcClb.SpcFname{ctD}]);
end

% divide each 256x256 image into SpectrEstimYSpacing parts along Y axis
YSpacLim = 256/Dat.SpcClb.DivNum;CalDyeSpec = zeros (NumDyes2Use, 16);
xL zeros(l,Dat.SpcClb.DivNum);yLOo = zeros(l,Dat.SpcClb.DivNum);

yDLo = zeros (1,Dat.SpcClb.DivNum) ;yKo = zeros(1,Dat.SpcClb.DivNum);
fprintf('\trows:')
for ctDiv = 1:Dat.SpcClb.DivNum

% which rows to read
R2ReeadRng = round([(ctDiv-1),ctDiv]*YSpacLim + [1 0]);

fprintf('%sto%sI ',num2str(R2ReeadRng(l) ),num2str(R2ReeadRng(2)))
% read files and calculate spectrum

for ctD = 1:NumDyes2Use
tmp = CalDyeImages{ctD};
CalDyeSpec(ctD,:) = LStackSpectrum(tmp(:,R2ReeadRng(l):R2ReeadRng(2),:));

end
Data.CalDyeSpec = CalDyeSpec;

% === initial estimation of the three parameters

xO = zeros(1,3);
if ctDiv ==l

if ~isempty(Dat.SpcClb.SHGch) && -isempty(Dat.Img.LasWvl)
xO(l) = Dat.Img.LasWvl/2 - (13.5)/2 - (Dat.SpcClb.SHGch-l)*13.5;

else
xO(l) = mean(Dat.SpcClb.LORange);

end
xO(2) = 13.5; xQ(3) = 0;

else
x0 = xx;

end
% === run optimization

OptiLim = [Dat.SpcClb.LORange(1) ,Dat.SpcClb.LORange (2)
Dat.SpcClb.DeltaLRange(l),Dat.SpcClb.DeltaLRange(2)
-1,1];

if Dat.SpcClb.DispOptim
xx = fminunc(@(x)SpectrumError(x,Data),x0,optimset('LargeScale','off','Display','off'));

else
xx =

fmincon(@(x)SpectrumError(x,Data),x0, [],,[],[],OptiLim(:,1),OptiLim(:,2), ,optimset('TolFun',1
e-6, 'Algorithm', 'active-set', 'Display', 'off'));

end
xL(ctDiv) = mean(R2ReeadRng); yLOo(ctDiv) = xx(1);

yDLo(ctDiv) = xx(2); yKo(ctDiv) = xx(3);
end
fprintf ( '\n')

% approximate optimum values of LO, DL, K as function or row

fprintf('\tlocal calculations\n')

pLO = polyfit(xL,yLOo,1); pDL = polyfit(xL,yDLo,l); pK = polyfit(xL,yKo,l);
% save calibration results

SaveFileDir = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname, '',Dat.SpcClb.SvName];

save(SaveFileDir,'pLO','pDL','pK')
if Dat.SpcClb.SaveSw

% plot how LO, DL, and K vary over rows
figure,plot(xL,yLOo,'x',1:256,polyval(pL0,1:256, 'r--'))
title(['LO = ',num2str(pLO(1)), '*R + ',num2str(pLO(2))])
A = getframe(gcf);
SaveFileDir = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname,' polynomialLO.bmp'];
imwrite(A.cdata,SaveFileDir,'bmp')
close (gcf)
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figure,plot(xL,yDLo,'x',1:256,polyval(pDL,1:256,'r--'))
title(['DL = ',num2str(pDL(l)),I*R + ',num2str(pDL(2))])
A = getframe(gcf);
SaveFileDir = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_polynomialDL.bmp'];
imwrite(A.cdata,SaveFileDir,'bmp')

close(gcf)
figure,plot(xL,yKo,'x',1:256,polyval(pK,1:256,'r--'))
title(['K = ',num2str(pK(l)),'*R + ',num2str(pK(2))])
A = getframe(gcf);
SaveFileDir = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_polynomialK.bmp'];
imwrite(A.cdata,SaveFileDir,'bmp')

close (gcf)
% plot aproximation at top, middle and bottom row
Rows = [1 128 256]; % where to compare (which rows)

SpcEstData = cell(7,1);
SpcEstData{l} = pLO; SpcEstData{2} = pDL; SpcEstData{3} = Dat.SpcClb.SHGch;
SpcEstData{4} = pK; SpcEstData{5} = Dat.Img.OptEff;
SpcEstData{6} = Dat.Img.SpecResp; SpcEstData{7} = Dat.Img.PMTDiscRelGains;

ColorsP = 'bgrcmk'; figure,hold on
for ctR = 1:length(Rows)

for ctD = 1:NumDyes2Use
SpecE = SpectrumEstim_2_3(TaglctD),SpcEstData,true,Rows(ctR));
SpecE = SpecE(Dat.Img.ChUsed); SpecE = SpecE/sum(SpecE);

% measured spectrum
tmp = CalDyeImagesjctD};
SpecM = LStackSpectrum(tmp(:,Rows(ctR),:));
SpecM = SpecM(Dat.Img.ChUsed);
SpecM = SpecM/sum(SpecM);

plot(Dat.Img.ChUsed,SpecM,ColorsP(ctR),Dat.Img.ChUsed,SpecE, [ColorsP(ctR),'--'])
end

end
title('top row (blue), middle row (green), bottom row (red)')
A = getframe(gcf);
SaveFileDir = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_estimerror.bmp'];
imwrite(A.cdata,SaveFileDir,'bmp') close (gcf)

end
Output = 1; % save version
fprintf('\t\t..... done\n\n')
return
function Error = SpectrumError(x,Data)

% Function that calculates the error between the estimated and the measured
% emission spectra of several fluorescent dyes. The estimated spectra are
% calculated from the function IntegrateSpectra based on one parameter:
% Dat.SpcClb.LOo (beginning of the spectrum range of first channel)
% LO = x(l);
% DeltaL = x(2);
% K = x(3);
Errori = zeros(l,Data.NumDyes2Use);
for ctD = 1:(Data.NumDyes2Use)

% estimated spectrum
SpcEstData = cell(7,1);
SpcEstData{l} = x(l); SpcEstData{2} = x(2);
SpcEstData{3} = Data.SHGch; SpcEstData{4} = x(3);
SpcEstData{5} = Data.OptEff; SpcEstData{6} = Data.SpecResp;
SpcEstData{7} = Data.PMTDiscRelGains;
SpecE = SpectrumEstim_2 3(Data.TagjctD},SpcEstData,0);

SpecE = SpecE(Data.ChUsed); SpecE = SpecE/sum(SpecE);
% measured spectrum

SpecM = Data.CalDyeSpec(ctD,Data.ChUsed); SpecM = SpecM/sum(SpecM);
% error metric calculation

Errori(ctD) = sum((SpecM(:) - SpecE(:)).^2);
end
Error = sum(Errori);

return

ImageDecomposition
function ZPlanes = ImageDecomposition_2_ 4(Dat)
% Maximum likelihood estimation of the rate vector lambda based on a
% measurement y and a spectrum matrix S.
% Calculation consists of 2 parts
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% i) NNLS calculation -- > LAMBDA NNLS

% ii) ML optimization, use LAMBDANNLS as initial guess -- > LAMBDAML
% Dimitris Tzeranis June 2009 - May 2013

fprintf('=== Spectral Unmixing (all components) ===\n')
%% ====== initialization

% load spectrum estimation data
FileDirSpcClb = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',Dat.SpcClb.SvName];
load(FileDirSpcClb) % load pLO pDL pK

generate data for SpectrumEstim_2 3
SpectrumEstim 2 3(SpcIG,SpcEstData,l,Row)

SpcEstData = cell(4,1);SpcEstData{l} = pLO;
SpcEstData{2} = pDL;SpcEstData{3} = Dat.SpcClb.SHGch; SpcEstData{4} =pK;

SpcEstData{5} = Dat.Img.OptEff;SpcEstData{6} = Dat.Img.SpecResp;
SpcEstData{7} = Dat.Img.PMTDiscRelGains;

% create folder if necessary
[unusedl,unused2,unused3] = mkdir(Dat.ImDcmp.Dir);
% === identify which frames & planes to process

% which frames to process
XWinSz = Dat.ImDcmp.XRange(2) - Dat.ImDcmp.XRange(l) + 1;
YWinSz = Dat.ImDcmp.YRange(2) - Dat.ImDcmp.YRange(1) + 1;
FileNum = zeros(l,YWinSz*XWinSz);
ctFN = 0;
for ctR = Dat.ImDcmp.YRange(l):Dat.ImDcmp.YRange(2)

for ctC = Dat.ImDcmp.XRange(l):Dat.ImDcmp.XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps;
ctFN = ctFN +1; FileNum(ctFN) = ctF-1;

end
end

% which planes to process
ZPlanes = 1;

if ~Dat.DatCnv.ZBinSw; ZPlanes = Dat.ImDcmp.ZRange(l):Dat.ImDcmp.ZRange(2);end
%% ====== main loop

FileNameConstR = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_'];
FileNameConstS = [Dat.Nom.MainDir,Dat.Nom.DASH];
FileNameConstW = [Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_',Dat.ImDcmp.SvName,
PadNum = Dat.Nom.PadNum;
ImDcmpWinSw = Dat.ImDcmp.WinSw;ImDcmpCompRead{l} = Dat.ImDcmp.CompRead;
ImDcmpCompFName{l} = Dat.ImDcmp.CompFName;DomNum = 1;
ImDcmpDomName = 'all';
ImDcmpDomComp{1} = Dat.ImDcmp.CompName;ImDcmpDomCompNum = Dat.ImDcmp.CompNum;

SpcClbSHGch = Dat.SpcClb.SHGch;ImDcmpAlgor = Dat.ImDcmp.Algor;
ImDcmpSaveSw = Dat.ImDcmp.SaveSw;NumCh = Dat.Img.ChNum;
ChUsed = Dat.Img.ChUsed;NumChUsed = length(ChUsed);
RowNum = Dat.Img.NumRow;ColNum = Dat.Img.NumCol;
ParProc = Dat.Proc.ParProc; clear Dat
if ParProc %distributed computing enabled

fprintf('\tdistributed computing enabled \n')
else

fprintf('\tdistributed computing not enabled \n')
end

%= = =-----== calculate normalized spectra matrix (row-dependent)

NumChUsed = length(ChUsed); SpectraRows cell(DomNum,1);
UssRow = cell(DomNum,1);PseudolnvSSRow = cell(DomNum,l);
if ParProc

parfor ctD = 1:DomNum
DomComp = ImDcmpDomComp{ctD}; DomCompNum = ImDcmpDomCompNum(ctD);
DomCompRead = ImDcmpCompRead{ctD}; DomCompFName = ImDcmpCompFName{ctD};

SpectraRows{ctD} = zeros(NumChUsed,DomCompNum,RowNum);
UssRow{ctD} = zeros(NumChUsed,DomCompNum,RowNum);
PseudoInvSSRow{ctD} = zeros(DomCompNum,NumChUsed,RowNum);
for ctR = 1:RowNum % iterate over rows

SS zeros(16,DomCompNum);
for ctE = 1:DomCompNum

ElemID = DomComp{ctE};
if DomCompRead(ctE)

FileName = [FileNameConstS,DomCompFName{ctE}];
TempSpec = LStackSpectrum(readconfocall6pics(FileName));
if strcmpi(ElemID,'collagen')

TempSpec(l:SpcClbSHGch) = 0;

end
SS(:,ctE) = TempSpec/sum(TempSpec);
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else
SS(:,ctE) = SpectrumEstim_2_3(ElemID,SpcEstData,l,ctR);

end
end
% keep only the channels that contain data
SS = SS(ChUsed,:);
for ctE = 1:DomCompNum

SS(:,ctE) = SS(:,ctE)/sum(SS(:,ctE));
end
SpectraRows{ctD}(:,:,ctR) = SS;
% SVD decomposition
[Uss,Sss,Vss] = svd(SS);
UssRow{ctD)(:,:,ctR) = Uss(:,l:DomCompNum);
% pseudoinverse
PseudoInvSSRow{ctD}(:,:,ctR) =

Vss*diag(1./diag(Sss(1:DomCompNum,1:DomCompNum) ))*(Uss(:,1:DomCompNum))
end

end
else

for ctD = 1:DomNum
DomComp = ImDcmpDomComp{ctD}; DomCompNum = ImDcmpDomCompNum(ctD);
DomCompRead = ImDcmpCompRead{ctD};
DomCompFName = ImDcmpCompFName{ctD};
SpectraRows{ctD} = zeros(NumChUsed,DomCompNum,RowNum);

UssRow{ctD} = zeros(NumChUsed,DomCompNum,RowNum);
PseudoInvSSRow{ctD} = zeros(DomCompNum,NumChUsed,RowNum);
for ctR = 1:RowNum % iterate over rows

SS = zeros(16,DomCompNum);
for ctE = 1:DomCompNum

ElemID = DomComp{ctE};
if DomCompRead(ctE)

FileName = [FileNameConstS,DomCompFName{ctE}];
TempSpec = LStackSpectrum(readconfocall6pics(FileName));
if strcmpi(ElemID,'collagen')

TempSpec(l:SpcClbSHGch) = 0;
end
SS(:,ctE) = TempSpec/sum(TempSpec);

else
SS(:,ctE) = SpectrumEstim_2_3(ElemID,SpcEstData,l,ctR);

end
end
% keep only the channels that contain data
SS = SS(ChUsed,:);
for ctE = 1:DomCompNum

SS(:,ctE) = SS(:,ctE)/sum(SS(:,ctE));
end
SpectraRows{ctD}(:,:,ctR) = SS;

[Uss,Sss,Vss] = svd(SS); UssRow{ctD}(:,:,ctR) Uss(:,l:DomCompNum);
PseudoInvSSRow{ctD}(:,:,ctR) = ...

Vss*diag(l./diag(Sss(l:DomCompNum,l:DomCompNum)))* (Uss(:,l:DomCompNum))';
end

end
end

%% ======== calculations for 1-photon counts
SinglePhotonDec = cell(DomNum);
for ctD = 1:DomNum

DomCompNum = ImDcmpDomCompNum(ctD);
SinglePhotonDec{ctD} = zeros(DomCompNum,NumChUsed,'single');
SS SpectraRows{ctD}(:,:,128);

yy = eye(NumChUsed);
% = linear model, common noise solution
solbatch = fcnnls(SS,yy);
do SS*solbatch;
% = linear model, individual noise solution
% make sure that whn y[i]>0 then d[i]~=0
do(do==0 & yy>0) = 0.1; solbatch = zeros(DomCompNum,NumChUsed);
for ctR = 1:NumChUsed

% use only those channels for which do>0
% THIS IS REQUIRED OTHERWISE lsqnonneg does not work well
IndxNZ = find(do(:,ctR)>0);
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% NNLS
solbatch(:,ctR) =

lsqnonneg(diag(1./sqrt(do(IndxNZ,ctR)))*SS(IndxNZ,:),diag(1./sqrt(do(IndxNZ,ctR)))*yy(IndxNZ,ctR)

end
SinglePhotonDec{ctD} = single(solbatch);
end

% == == = == == = = MAIN LOOP

if ParProc %distributed computing enabled
parfor ctFF = 1:length(FileNum) % iterate for all z-stacks

ctF = FileNum(ctFF);
if mod(ctF,10) == 0; fprintf('.'); end

for ctZZ = 1:length(ZPlanes);
ctZ = ZPlanes(ctZZ);
FileName = [FileNameConstR,Padding(ctF,PadNum), '_',Padding(ctZ,PadNum)];

RawFrame = LoadMatFile(FileName);
RawFrame = RawFrame(:,:,ChUsed);
if ImDcmpWinSw

FrameMean = zeros(RowNumColNum,NumChUsed);
for ctCH = 1:NumChUsed

FrameMean(:, :,ctCH) = imfilter(double(RawFrame(:,:,ctCH)),fspecial('average',3),'replicate');
end

end
% === image decomposition per domain
CompConMap = cell(DomNum,l);

% loop over all domains
for ctD = 1:DomNum

DomCompNum = ImDcmpDomCompNum(ctD);
ParamUnmix = cell(2,1); ParamUnmix{l} = ImDcmpAlgor;

ParamUnmix{2} = DomCompNum;
CompConMap{ctD} = zeros(RowNum,ColNumDomCompNum,'single');
% iterate over rows
for ctR = 1:RowNum

SS = SpectraRows{ctD}(:,:,ctR); R = UssRow{ctD}(:,:,ctR);
PseudoInvSS = PseudoInvSSRow{ctD}(:,:,ctR);
if ImDcmpWinSw % use low-pass filtering

yy = squeeze(FrameMean(ctR,:,:))';
else

yy = squeeze(double(RawFrame(ctR,:,:)))';
end
yy = yy(ChUsed,:); yySUM = sum(yy);

yy0indx = find(yySUM==O);
yylindx = find(yySUM==l & sum(yy==l)==l);

yyNZindx= setdiff(l:ColNum, [yy0indx,yylindx]);
% ===== ===== unmix pixels whose there are not photons

CompConMap{ctD)(ctR,yyOindx,:) = single(0);

% ===== ===== unmix pixels where just one channel contain 1 photom

for ctC = 1:length(yylindx)
indxl = find(yy(:,yylindx(ctC))==l);

CompConMap{ctD} (ctR,yylindx(ctC),:) = SinglePhotonDec{ctD}(:,indxl);
end
% ===== ===== unmixing remaining pixels

yya = yy(:,yyNZindx);

CompConMap{ctD}(ctR,yyNZindx,:) =
SpectralUnmixing_1_0(yya,SS,PseudoInvSS,R,ParamUnmix);

end % row
end % domain
if ImDcmpSaveSw

SaveFileDir = [FileNameConstW,Padding(ctF,PadNum), '',Padding(ctZ,PadNum)];

SaveData(CompConMap,SaveFileDir)

end
end % plane

end % z-stack
else % distributed computing not enabled

for ctFF = 1:length(FileNum) % iterate for all z-stacks
ctF = FileNum(ctFF);
if mod(ctF,10) == 0; fprintf('.'); end

for ctZZ = 1:length(ZPlanes);
ctZ = ZPlanes(ctZZ);
FileName = [FileNameConstR,Padding(ctF,PadNum),' ',Padding(ctZ,PadNum)];
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RawFrame = LoadMatFile(FileName); RawFrame = RawFrame(:,:,ChUsed);
if ImDcmpWinSw

FrameMean = zeros(RowNum,ColNum,NumChUsed);
for ctCH = 1:NumChUsed

FrameMean(:, :,ctCH) = imfilter(double(RawFrame(:, :,ctCH) ),fspecial('average' ,3), 'replicate');
end

end
% === image decomposition per domain

CompConMap = cell(DomNum,l);
for ctD = 1:DomNum

DomCompNum = ImDcmpDomCompNum(ctD); ParamUnmix = cell(2,1);
ParamUnmix{l} = ImDcmpAlgor; ParamUnmix{2} = DomCompNum;
CompConMap{ctD} = zeros(RowNum,ColNum,DomCompNum,'single');
for ctR = 1:RowNum

SS = SpectraRows{ctD}(:,:,ctR);
R = UssRow{ctD}(:,:,ctR);
PseudoInvSS = PseudoInvSSRow{ctD}(:,:,ctR);
if ImDcmpWinSw % use low-pass filtering

yy = squeeze(FrameMean(ctR,:,:))';
else

yy = squeeze(double(RawFrame(ctR,:,:)))';
end
yy = yy(ChUsed,:);
yySUM = sum(yy);
yyOindx = find(yySUM==O);
yylindx = find(yySUM==l & sum(yy==l)==i);
yyNZindx= setdiff(l:ColNum, [yyOindx,yylindx]);
% ===== ===== unmix pixels whose there are not photons
CompConMap{ctD}(ctR,yyOindx,:) = single(O);
% ===== ===== unmix pixels where just one channel contain 1 photom
for ctC = 1:length(yylindx)

indxl = find(yy(:,yylindx(ctC))==l);
CompConMapictD}(ctR,yylindx(ctC),:) = SinglePhotonDec{ctD}(:,indxl);

end
% ===== ===== unmixing remaining pixels
yya = yy(:,yyNZindx);

CompConMap{ctD}(ctR,yyNZindx,:) = SpectralUnmixing_1_0(yya,SS,PseudoInvSS,R,ParamUnmix);
end % row

end % domain
% save results
if TmDcmpSaveSw

SaveFileDir = [FileNameConstW,Padding(ctF,PadNum), '_',Padding(ctZ,PadNum)];
save(SaveFileDir,'CompConMap')

end
end % plane

end % z-stack
end

fprintf('\t... done\n\n')
return
function Err = funML(x,Param)
Err = -ones(Param{3},1);x = x(:);
for cti = 1:Param{3}

for ctCH = 1:length(Paraml})
Err(cti) = Err(cti) + Param{l}(ctCH)*Param{2}(ctCHcti)/(Param{2}(ctCH,:)*x);

end
end
function RawFrame = LoadMatFile(FileName)

load(FileName)
return
function y = SaveData(CompConMap,SaveFileDir)

save(SaveFileDir,'CompConMap')
return

%% =fast NNLS
function [K, Pset] = fcnnls(C, A)
% NNLS using normal equations and the fast combinatorial strategy
% I/O: [K, Pset] = fcnnls(C, A);

K = fcnnls(C, A);
C is the nObs , lVar coefficient matrix
A is the nObs A, pRHS matrix of observations
K is the lVar A, pRHS solution matrix
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% Pset is the lVar A, pRHS passive set logical array

% M. H. Van Benthem and M. R. Keenan

% Sandia National Laboratories
% Pset: set of passive sets, one for each column

% Fset: set of column indices for solutions that have not yet converged

% Hset: set of column indices for currently infeasible solutions

% Jset: working set of column indices for currently optimal solutions

% slight modifications (see %D% sign) by Dimitris Tzeranis, Feb 2012
error(nargchk(2,2,nargin))
[nObs, lVar] = size(C);

if size(A,1)-= nObs, error('C and A have imcompatible sizes'), end
pRHS = size(A,2);W = zeros(lVar, pRHS);iter = 0; maxiter = 3*lVar;

% Precompute parts of pseudoinverse
CtC = C'*C; CtA = C'*A;

% Obtain the initial feasible solution and corresponding passive set
K = cssls(CtC, CtA);Pset = K > 0;K(-Pset) = 0;D = K;Fset = find(~all(Pset));

% Active set algorithm for NNLS main loop
while ~isempty(Fset)

% Solve for the passive variables (uses subroutine below)
K(:,Fset) = cssls(CtC, CtA(:,Fset), Pset(:,Fset));
% Find any infeasible solutions
Hset = Fset(find(any(K(:,Fset) < 0)));
% Make infeasible solutions feasible (standard NNLS inner loop)

if -isempty(Hset)
nHset = length(Hset); alpha = zeros(lVar, nHset);
while ~isempty(Hset) & (iter < maxiter)

iter = iter + 1; alpha(:,l:nHset) = Inf;
% Find indices of negative variables in passive set
[i, j] = find(Pset(:,Hset) & (K(:,Hset) < 0));
hIdx = sub2ind([lVar nHset], i, j); temp = Hset(j)';%D%
negIdx = sub2ind(size(K), i(:), temp(:)); %D%
alpha(hIdx) = D(negIdx)./(D(negIdx) - K(negIdx));
[alphaMin,minIdx] = min(alpha(:,l:nHset));
alpha(:,l:nHset) repmat(alphaMin, lVar, 1);

D(:,Hset) = D(:,Hset)-alpha(:,l:nHset).*(D(:,Hset)-K(:,Hset));

idx2zero = sub2ind(size(D), minIdx, Hset);

D(idx2zero) = 0; Pset(idx2zero) = 0;
K(:, Hset) = cssls(CtC, CtA(:,Hset), Pset(:,Hset));

Hset = find(any(K < 0)); nHset = length(Hset);
end

end
% Make sure the solution has converged

if iter == maxiter, error('Maximum number iterations exceeded'), end

% Check solutions for optimality
W(:,Fset) =CtA(:,Fset)-CtC*K(:,Fset);Jset = find(all(~Pset(:,Fset).*W(:,Fset) <= 0));

Fset = setdiff(Fset, Fset(Jset));

% For non-optimal solutions, add the appropriate variable to Pset
if -isempty(Fset)

[mx, mxidx] = max(~Pset(:,Fset).*W(:,Fset));
Pset(sub2ind([lVar pRHS], mxidx, Fset)) = 1; D(:,Fset) = K(:,Fset);

end
end
return

function [K] = cssls(CtC, CtA, Pset)

% Solve the set of equations CtA = CtC*K for the variables in set Pset
% using the fast combinatorial approach

K = zeros(size(CtA));
if (nargin == 2) || isempty(Pset) || all(Pset(:))

K = CtC\CtA;
else

[lVar pRHS] = size(Pset);
codedPset = 2.^(lVar-l:-1:0)*Pset; [sortedPset, sortedEset] = sort(codedPset);

breaks diff(sortedPset); breakIdx = [0 find(breaks) pRHS];

for k = 1:length(breakIdx)-l
cols2solve = sortedEset(breakIdx(k)+1:breakIdx(k+l))
vars = Pset(:,sortedEset(breakIdx(k)+1));
K(vars,cols2solve) = CtC(vars,vars)\CtA(vars,cols2solve);

end
end
return
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ImAssembly
function ZPlanes = ImAssembly_1_5(Dat)
% assemble decomposed images based on the optimum image registration
% Dimitrios Tzeranis, Nov 2010 - July 2011
fprintf('=== Assemble decomposed images ===\n')

%% === initialization
[unusedl,unused2,unused3] = mkdir(Dat.ImAsbl.Dir);
ZPlanes = Dat.ImAsbl.ZRange(1):Dat.ImAsbl.ZRange(2); DomNum = 1;% print "all"
%% === assemble images

fprintf('\tPlane:')
for ctZ = ZPlanes

fprintf(' %s',num2str(ctZ))
AsblCompConMap = cell(1,Dat.ImDcmp.DomNum);
if (Dat.Img.Xsteps==l) && (Dat.Img.Ysteps==l) case of a z-stack

load([Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname, ...
Dat.ImDcmp.SvName,' ',Padding(0,Dat.Nom.PadNum), '.'...
Padding(ctZ,Dat.Nom.PadNum)]); % read "CompConMap"

for ctD = 1:l%iterate over domains
if Dat.ImReg.RemLSw

AsblCompConMap{ctD} = CompConMap{ctD}(Dat.ImReg.RemLPixNum + 1:end,:,:);
end

end
else % general case where I need to assemble the component maps

Dat.ImAsbl.XRange = Dat.ImReg.XRange;
Dat.ImAsbl.YRange = Dat.ImReg.YRange;
XWinSz = Dat.ImAsbl.XRange(2) - Dat.ImAsbl.XRange(l) + 1;
YWinSz = Dat.ImAsbl.YRange(2) - Dat.ImAsbl.YRange(l) + 1;
FileNum = zeros(l,YWinSz*XWinSz); ctFN = 0;
for ctR = Dat.ImAsbl.YRange(1):Dat.ImAsbl.YRange(2)

for ctC = Dat.ImAsbl.XRange (1):Dat.ImAsbl.XRange(2)
ctF = ctC + (ctR-l)*Dat.Img.Xsteps;
ctFN = ctFN +1; FileNum(ctFN) = ctF;

end
end
load([Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_ImageRegOverview']);
posiO = RegImagDat.posiO; dispO = RegImagDat.dispO;
insertO = RegImagDat.insertO; rangeO = RegImagDat.rangeO;
clear RegImagDat
maxR = max(rangeO(1:2:end)); minR = min(insertO(1:2:end));
maxC = max(rangeO(2:2:end)); minC = min(insertO(2:2:end));
if minR-=l

TotalPixX = maxR - minR + 1;
rangeO(1:2:end) = rangeO(1:2:end) - minR + 1;
insertO(1:2:end) = insertO(1:2:end) - minR + 1;

else

TotalPixX = maxR;
end
TotalPixY = maxC;
if minC<=0

TotalPixY = TotalPixY - minC + 1;
rangeO(2:2:end) = rangeO(2:2:end) - minC + 1;
insertO(2:2:end) = insertO(2:2:end) - minC + 1;

end
for ctD = 1:1 % this is for printing only preliminary

AsblCompConMap{ctD} = zeros(TotalPixY,TotalPixX,Dat.ImDcmp.CompNum);
for ctF = 1:XWinSz*YWinSz % for all snaps

ctR = floor((ctF-1)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz;
addF = [2*ctF-1,2*ctF];
dO = dispO(addF);

load([Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname,' '
Dat.ImDcmp.SvName,'_',Padding(FileNum(ctF)-1,Dat.Nom.PadNum), '
(ctZ,Dat.Nom.PadNum)]); DecImF = CompConMap{ctD};
if Dat.ImReg.RemLSw; DecImF = DecImF(:,Dat.ImReg.RemLPixNum + 1:end,:); end

dimF = size(DecImF);
if (ctR == 1) && (ctC == 1)

elseif (ctR =

% === L-R

1) && (ctC > 1)
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ctL = ctF - 1;
load([Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname,'

Dat.ImDcmp.SvName,' ',Padding(FileNum(ctL)-,Dat.Nom.PadNum),' ',
Padding(ctZ,Dat.Nom.PadNum)]);

DecImL = CompConMapjctD};
if Dat.ImReg.RemLSw;DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end, :);end

dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,1,dO);

MaskLR = (linspace(0,1,csl(4)-csl(3)+1)'*ones(i,csl(2)-csl(l)+1))';
for ctE = 1:Dat.ImDcmp.DomCompNum(ctD)

DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE) = round((1-
MaskLR).*double(DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE)) +
MaskLR. *double (DecImL (csi (1) :csl (2) , csl (3) :csl (4) , ctE))

end
elseif (ctR > 1) && (ctC == 1)

% === T-B
ctT = ctF - XWinSz;

load( [Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname, ',Dat.ImDcmp.SvName, '_',Padding(FileNum(ctT)-
1,Dat.Nom.PadNum), _', Padding(ctZ,Dat.Nom.PadNum)]);

DecImT = CompConMapjctD};
if Dat.ImReg.RemLSw;DecImT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end, :);end

dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);
MaskTB = (ones(csl(4)-csl(3)+1,1)*linspace(0,1,csl(2)-csl(1)+1))';
for ctE 1:Dat.ImDcmp.DomCompNum(ctD)

DecImF(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =
round((MaskTB).*double(DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE)) + (1-
MaskTB) .*double (DecImT (csl(1) :csl (2) ,csl(3) :cs1(4),ctE)

end
else

% === L-R
ctL = ctF - 1;

load([Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname,
.ImDcmp.SvName, _ ',Padding(FileNum(ctL)-l,Dat.Nom.PadNum), '',
Padding(ctZ,Dat.Nom.PadNum)]);

DecImL = CompConMapfctD};
if Dat.ImReg.RemLSw;DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end, :);end

dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,l,dO);

MaskLR = (linspace (0,1, csl (4) -csl (3) +1)'*ones (1, csl (2) -csl (1) +1))';
for ctE = 1:Dat.ImDcmp.DomCompNum(ctD)

DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE) = round((1-
MaskLR).*double(DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE)) +

.*double(DecImL(csl(1):csl(2),csl(3):csl(4),ctE)));
end
% === T-B
ctT = ctF - XWinSz; addT = [2*ctT-1,2*ctT];

dO = posiO(addF) - posiO(addT);
load([Dat.ImDcmp.Dir,Dat.Nom.DASH,Dat.Nom.fname,
Dat.ImDcmp.SvName, _ ',Padding(FileNum(ctT)-1,Dat.Nom.PadNum), _',Padding(ctZ,Dat.Nom.PadNum)]);

DecImT = CompConMapjctD};
if Dat.ImReg.RemLSw;DecImT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end,:);end

dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);
MaskTB = (ones(csl(4)-cs1(3)+1,1)*linspace(0,1,csl(2)-csl(l)+l))';
for ctE = 1:Dat.ImDcmp.DomCompNum(ctD)

DecImF(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =

round((MaskTB).*double(DecImF(cs2s(2)cs2s(2)cs2(3):cs2(4),ctE)) + (1-
MaskTB) .*double (DecImT (csl (1) :csl (2) ,csl (3) csl (4) ,ctE))

end

end
AsblCompConMapIctD} (insertO(addF(2)) :rangeO(addF(2)),insertO(addF(1)) :rangeO(addF(l)),:) =

DecImF;
end
AsblCompConMap{ctD} = single(AsblCompConMaplctD});

end % domain
end % z-stack versus assembly

% save data
if Dat.ImAsbl.SaveSw
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SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',...
Dat.ImAsbl.SvName, ' ',Padding(ctZ,Dat.Nom.PadNum)];

save(SaveFileDir,'AsblCompConMap')
end

end % z plane
fprintf('\n') fprintf('\t\t..... done\n\n')
return
function [csl,cs2] = CalculateWindowCS2(dl,d2,Dim,d)

% coordinates of the windows in the base image (B) and the image (F) that
% is positioned with respect to B @ displacement d=[dx,dy]' along dimension
% Dim
% Iml: base image (R or T)
% dl = size(Iml);
% Im2: image that needs to be positioned (L or B)
% d2 = size(Im2);
% Dimitris Tzeranis, February 2009, November 2010
if Dim == 1 % R-L

if d(2)>=0
cs2 = [d(2)+l,d2(1),d2(2)-d(l)+l,d2(2)];
csl = [l,dl(l)-d(2),l,d(1)];

else
cs2 = [1,d2(1)+d(2),d2(2)-d(1)+1,d2(2)];

csl = [l-d(2),dl(l),l,d(1)];
end

else % T-B
if d(l)>=0

cs2 = [l,d(2),1,d2(2)-d(l)];
csl = [dl(l)-d(2)+l,dl(l),d(l)+l,dl(2)];

else
cs2 = [l,d(2),l-d(l),d2(2)];
csl = [dl(1)-d(2)+1,dl(1),1,dl(2)+d(1)];

end
end
return

GMaxlPr
function ZPlanes = GMaxIPr 1 l(Dat)
% assemble the maxfintensity} image projection
% Dimitrios Tzeranis, Yannas Lab, So Lab, June 2011 - June 2013
fprintf('\tCalculating the maximum Intensity Projection')
%% === initialization
[unusedl,unused2,unused3] = mkdir(Dat.GMaxIPr.Dir);
ZPlanes = Dat.GMaxIPr.ZRange(l):Dat.GMaxIPr.ZRange(2);
if isempty(Dat.Img.Instr); Dat.Img.Instr = 'original'; end
%% === generate the image that contains the maximum planes
if (Dat.Img.Xsteps==l) && (Dat.Img.Ysteps==l) case of a z-stack

if Dat.Img.Zsteps==l
MaxIData = ones(256,256,'uint8');

else
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' MaxIntPlane ',...

Padding(0,Dat.Nom.PadNum)]); % loads MaxIntPlane
MaxIData = MaxIntPlane;

end
% coordinate matrix
MaxICrds = cat(3,zeros(256,'uint8'),uint8 (repmat([1:256]', [1 256])),uint8(repmat([1:256], [256

1])));
else

% size of the assembled frames
Dat.ImAsbl.XRange = Dat.ImReg.XRange;
Dat.ImAsbl.YRange = Dat.ImReg.YRange;
XWinSz = Dat.ImAsbl.XRange(2) - Dat.ImAsbl.XRange(l) + 1;
YWinSz = Dat.ImAsbl.YRange(2) - Dat.ImAsbl.YRange(l) + 1;

% identify the frame numbers to be processed, store in FileNum vector
FileNum = zeros(l,YWinSz*XWinSz); ctFN = 0;
for ctR = Dat.ImAsbl.YRange(l):Dat.ImAsbl.YRange(2)

for ctC = Dat.ImAsbl.XRange(l):Dat.ImAsbl.XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps;
ctFN = ctFN +1; FileNum(ctFN) = ctF;

end
end
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% find the range of values of the insert and range matrices elements
load( [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ImageRegOverview']);

posiO = RegImagDat.posiO; dispO = RegImagDat.dispO;

insertO = RegImagDat.insertO; rangeO = RegImagDat.rangeO;
clear RegImagDat
maxR = max(rangeO(1:2:end)); minR= min(insertO(1:2:end));

maxC = max(rangeO(2:2:end)); minC = min(insertO(2:2:end));
if minR~=l

TotalPixX = maxR - minR + 1;
rangeO(1:2:end) = rangeO(1:2:end) - minR + 1;

insertO(1:2:end) = insertO(1:2:end) - minR + 1;
else

TotalPixX = maxR;
end
TotalPixY = maxC;
if minC<=O

TotalPixY = TotalPixY - minC + 1;

rangeO(2:2:end) = rangeO(2:2:end) - minC + 1;
insertO(2:2:end) = insertO(2:2:end) - minC + 1;

end
MaxIData = zeros(TotalPixY,TotalPixX);
MaxICrds = zeros(TotalPixY,TotalPixX,3, 'uint8');

MaxICrdsTMP = cat(3,uint8(repmat([1:256]',[l 256])),uint8(repmat([l:256], [256 1])));
for ctF = 1:XWinSz*YWinSz % for all snaps

ctR = floor((ctF-1)/XWinSz) + 1; ctC = ctF - (ctR-1)*XWinSz;
addF = [2*ctF-1,2*ctF]; dO = dispO(addF);
% read DecImF
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' MaxIntPlane '...

Padding(FileNum(ctF)-l,Dat.Nom.PadNum)]); % loads MaxIntPlane
DecImF = MaxIntPlane;
CrdsF = cat(3,ones (256, uint8')*uint8 (FileNum(ctF)-1),MaxICrdsTMP);
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImF = DecImF(8:end,:,:); CrdsF = CrdsF(8:end,:,:);

else
% original microscope: remove left pixels
DecImF = DecImF(:,Dat.ImReg.RemLPixNum + 1:end,:);
CrdsF = CrdsF(:,Dat.ImReg.RemLPixNum + 1:end,:);

end
end
dimF = size(DecImF);
if (ctR == 1) && (ctC == 1)
elseif (ctR == 1) && (ctC > 1)

% === L-R
ctL = ctF - 1;
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_MaxIntPlane_ ',...

Padding(FileNum(ctL)-l,Dat.Nom.PadNum)]); % loads MaxIntPlane
DecImL = MaxIntPlane;
% remove left pixels
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImL = DecImL(8:end,:,:);

else
% original microscope: remove left pixels
DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end,:);

end
end
dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,l,dO);
temp = zeros(cs2(2)-cs2(1)+l,cs2(4)-cs2(3)+1,2);
temp(:,:,l) = DecImF(cs2(l):cs2(2),cs2(3):cs2(4));
temp(:,:,2) = DecImL(csl(1):csl(2),csl(3):csl(4));
DecImF(cs2(l):cs2(2),cs2(3):cs2(4)) = round(mean(temp,3));

elseif (ctR > 1) && (ctC == 1)
% === T-B
ctT = ctF - XWinSz;
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' _MaxIntPlane_',...

Padding(FileNum(ctT)-l,Dat.Nom.PadNum)]); % loads MaxIntPlane
DecImT = MaxIntPlane;
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
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DecImT = DecImT(8:end,:,:);
else

% original microscope: remove left pixels
DecImT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end,:);

end

end
dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);
temp = zeros(cs2(2)-cs2(1)+l,cs2(4)-cs2(3)+1,2);
temp(:,:,l) = DecImF(cs2(l):cs2(2),cs2(3):cs2(4));
temp(:,:,2) = DecImT(csl(l):csl(2),csl(3):csl(4));
DecImF(cs2(l):cs2(2),cs2(3):cs2(4)) = round(mean(temp,3));

else
% === L-R
ctL = ctF - 1;
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' MaxIntPlane_

Padding(FileNum(ctL) -1,Dat.Nom.PadNum)); % loads MaxIntPlane
DecImL = MaxIntPlane;
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImL = DecImL(8:end,:,:);

else
% original microscope: remove left pixels
DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end,:);

end
end
dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,l,dO);
temp = zeros(cs2(2)-cs2(1)+l,cs2(4)-cs2(3)+1,2);
temp(:,:,l) = DecImF(cs2(l):cs2(2),cs2(3):cs2(4));
temp(:,:,2) = DecImL(csl(l):csl(2),csl(3):csl(4));
DecImF(cs2(1):cs2(2),cs2(3):cs2(4)) = round(mean(temp,3));

% === T-B
ctT = ctF - XWinSz;
addT = [2*ctT-1,2*ctT];
dO = posiO(addF) - posiO(addT);
load([Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname,' MaxIntPlane_',

Padding(FileNum(ctT)-l,Dat.Nom.PadNum)]); % loads MaxIntPlane
DecImT = MaxIntPlane;
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImT = DecImT(8:end,:,:);

else
% original microscope: remove left pixels
DecTmT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end,:);

end
end
dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);
temp = zeros(cs2(2)-cs2(1)+l,cs2(4)-cs2(3)+1,2);
temp(:,:,l) = DecImF(cs2(l):cs2(2),cs2(3):cs2(4));
temp(:,:,2) = DecImT(csl(l):csl(2),csl(3):csl(4));
DecImF(cs2(l):cs2(2),cs2(3):cs2(4)) = round(mean(temp,3));

end
MaxIData(insertO(addF(2)) :rangeO(addF(2)),insertO(addF(1)) :rangeO(addF(l)),:) =

DecImF;
MaxICrds(insertO(addF(2)) :rangeO(addF(2)),insertO(addF(1)) :rangeO(addF(l)),:) = CrdsF;

end
end
MaxIData = round(medfilt2 (double (MaxIData), [Dat.GMaxIPr.MedFSz Dat.GMaxIPr.MedFSz], 'symmetric'));
RowNum = size(MaxIData,l);
ColNum = size(MaxIData,2);
MaxIntImage = cell(l,Dat.ImDcmp.DomNum);
for ctD = 1:(Dat.ImDcmp.DomNum)

MaxIntImage{ctD} = zeros (RowNum,ColNum,Dat.ImDcmp.DomCompNum(ctD));
end

% generate the maximum projection
for ctZ = ZPlanes

PxList = find(MaxIData==ctZ);
if -isempty(PxList)

ColList = floor((PxList-l)/RowNum) + 1;
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RowList = PxList - (ColList-l)*RowNum;

load([Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,'
Dat.ImAsbl.SvName, '_,Padding(ctZ,Dat.Nom.PadNum)]);

for ctD = 1:(Dat.ImDcmp.DomNum)
for ctF = 1:length(PxList)

MaxIntImageIctD} (RowList (ctF) ,ColList (ctF),:) = AsblCompConMap{l} (RowList (ctF) ,ColList (ctF) , ctD)

end
end

end
end

% save data
if Dat.GMaxIPr.SaveSw

save ([Dat.GMaxIPr.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',Dat.GMaxIPr.SvName], ...
'MaxIData','MaxIntImage','MaxICrds')

end
fprintf('\n\t\t..... done\n\n')

return
function [csl,cs2] = CalculateWindowCS2 (dl,d2,Dim,d)

% coordinates of the windows in the base image (B) and the image (F) that
% is positioned with respect to B @ displacement d=[dx,dy] along dimension
% Dim

Iml: base image (R or T)

% dl = size(Iml);
% Im2: image that needs to be positioned (L or B)

% d2 = size(Im2);
% Dimitris Tzeranis, February 2009, November 2010
if Dim == 1 % R-L

if d(2)>=0
cs2 = [d(2)+1,d2(1),d2(2)-d(1)+1,d2 (2)];
csl = [1,dl(l)-d(2),ld(l)];

else
cs2 = [l,d2(1)+d(2),d2(2)-d(l)+l,d2(2)];
csl = [l-d(2),dl(l),l,d(l)];

end
else % T-B

if d(l)>=D
cs2 = [l,d(2),l,d2(2)-d(l)];
csl = [dl(1)-d(2)+1,dl(1),d(1)+1,dl(2)];

else
cs2 = [l,d(2),l-d(l),d2(2)];
csl = [dl(1)-d(2)+1,dl(1),1,dl(2)+d(l)];

end
end
return

ImPrint
function ZPlanes = ImPrint 1_4(Dat)
% print the assembled decomposed planes or maximum intensity projection
% Dimitrios Tzeranis, June 2011 - august 2012

fprintf('=== Printing assembled decomposed images ===\n')
if Dat.Proc.ParProc & Dat.ImAsbl.ImPrintHSV

fprintf('\t\tapply distributed computing\n')

end
initialization

ZPlanes2Print = Dat.ImAsbl.ImPrintZRange(1) :Dat.ImAsbl.ImPrintZRange (2)
ZPlanes = [];
RGBpallete = [ 1 0 0; 0 1 0 ; 0 0 1 ; 1 1 0 ; 0.5 0 1 ; 1 0.5 0 ; 0 1 1];

HSVpallete = zeros(7,1);
for ctR = 1:7

temp = rgb2hsv(RGBpallete(ctR,:)); HSVpallete(ctR) = temp(1); %save only H value

end
if -isfield(Dat.ImAsbl,'ImPrintScale')

Dat.ImAsbl.ImPrintScale = 100;

else
if isempty(Dat.ImAsbl.ImPrintScale); Dat.ImAsbl.ImPrintScale = 100; end

end
if isempty(Dat.ImAsbl.ImPrintComp); Dat.ImAsbl.ImPrintComp = false; end

if isempty(Dat.ImAsbl.ImPrintCmpnd); Dat.ImAsbl.ImPrintCmpnd = false; end

%% === print images
fprintf('\n\tPlane:')
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for ctZ = ZPlanes2Print
fprintf(' %s',num2str(ctZ))
if ctZ==O

FileDir = [Dat.GMaxIPr.Dir,Dat.Nom.DASH,Dat.Nom.fname,'_',Dat.GMaxIPr.SvName,'.mat'];
else

FileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,' ',...
Dat.ImAsbl.SvName, '_',Padding(ctZ,Dat.Nom.PadNum),'.mat'];

end
if ~isempty(ls(FileDir))

ZPlanes = [ZPlanes,ctZ]; load(FileDir)
if ctZ==C

Image2Print = MaxIntImage;
clear MaxIData MaxIntImage

else
Image2Print = AsblCompConMap;
clear AsblCompConMap

end
else

disp(['this file was not found: ',FileDir])
end
NumberRows = size(Image2Print{l},l); NumberCols = size(Image2Print{l},2);
for ctD = 1 % :Dat.ImDcmp.DomNum %FOCUS ON THE FIRST DOMAIN

VisThr = Dat.ImAsbl.VisThr{ctD}; VisChan = Dat.ImAsbl.VisChan{ctD};
if Dat.ImAsbl.ImPrintHSV

% generate the HSV matrix and then convert to RGB
Indx = find(VisChan>O); Ch2Vis = VisChan(Indx);
Th2Use = VisThr(:,Indx); colorsi HSVpallete(Indx);

Im2Process = reshape(Image2Print{ctD}(:,:,Ch2Vis), [NumberRows*NumberCols,length(Ch2Vis)]);
for ctCH = 1:length(Ch2Vis)

Im2Process(:,ctCH) = (Im2Process(:,ctCH)-Th2Use(2,ctCH))/(Th2Use(l,ctCH)-Th2Use(2,ctCH));
% print individual components
if Dat.ImAsbl.ImPrintComp

CompIm2Print = reshape(Im2Process(:,ctCH), [NumberRows,NumberCols]);
CompIm2Print(CompIm2Print<0) = 0; CompIm2Print(CompIm2Print>l) = 1;

ElemName = [' E',num2str(VisChan(ctCH)),...
'T',num2str(VisThr(2,ctCH)),'-',num2str(VisThr(l,ctCH))];

SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,'
Dat.ImAsbl.SvName,' _z',Padding(ctZ,Dat.Nom.PadNum),'_Dom',num2str(ctD),ElemName];

if (Dat.ImAsbl.ImPrintScale==100)

imwrite(CompIm2Print, [SaveFileDir,'.png'],'png')
else

imwrite(imresize(CompIm2Print,Dat.ImAsbl.ImPrintScale/100) ,....
(SaveFileDir,'_sc',num2str(Dat.ImAsbl.ImPrintScale),'.png'],'png')

end
end

end
% print compound images
if Dat.ImAsbl.ImPrintCmpnd

[maxIm2Process,maxIm2PrIndx] = max(Im2Process, [],2);
maxIm2Process(maxIm2Process<0) = 0; maxIm2Process(maxIm2Process>l) = 1;

% convert to RGB
Im2PrintHSV = hsv2rgbDIM( [colorsi(maxIm2PrIndx) ,ones (length (maxIm2PrIndx) ,l) ,maxIm2Process(:)])

Im2PrintHSV = reshape(Im2PrintHSV, [NumberRows,NumberCols,3]);
ElemName = ';
for ctE = 1:length(Ch2Vis)

ElemName = [ElemName,'E',num2str(Ch2Vis(ctE))];
ElemName = [ElemName, 'T',num2str(VisThr(2,ctE)), '-',num2str(VisThr(1,ctE))];

end
SaveFileDir = [Dat.ImAsbl.DirDat.Nom.DASH,Dat.Nom.fname, ...
Dat.ImAsbl.SvName,' _z',Padding(ctZDat.Nom.PadNum),'_Dom',num2str(ctD),ElemName,'HSV'];

if (Dat.ImAsbl.ImPrintScale==100)
imwrite(Im2PrintHSV, [SaveFileDir,'.png'],'png')

else
imwrite(imresize(Im2PrintHSV,Dat.ImAsbl.ImPrintScale/100),...

[SaveFileDir,'_sc',num2str(Dat.ImAsbl.ImPrintScale),'.png'],'png')

end
end

else %RGB
Im2PrintRGB = zeros(NumberRows,NumberCols,3);
for ctCH = 1:3

if VisChan(ctCH) && (VisThr(1,ctCH)>=0) && (VisThr(2,ctCH)>=0) && (VisThr(1,ctCH)-VisThr(2,ctCH))
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Im2PrintRGB(:, :,ctCH) = (double(Image2Print{ctD} (:,:,VisChan(ctCH)))-
VisThr(2,ctCH) )/(VisThr(1,ctCH) -VisThr(2,ctCH))

end
end
Im2PrintRGB(Im2PrintRGB>l) = 1; Im2PrintRGB(Im2PrintRGB<0) = 0;

if Dat.ImAsbl.ImPrintComp
for ctCH = 1:3

ElemName = [' E',num2str(VisChan(ctCH)), 'T',num2str(VisThr(2,ctCH)), -',num2str(VisThr(1,ctCH))];
SaveFileDir = [Dat.ImAsbl.DirDat.Nom.DASH,Dat.Nom.fname, ...

Dat.ImAsbl.SvName, '_z ,Padding(ctZ,Dat.Nom.PadNum), _Dom',num2str(ctD),ElemName];
if (Dat.ImAsbl.ImPrintScale==100)

imwrite(Im2PrintRGB(:,:,ctCH), [SaveFileDir,'.png'],'png')
else

imwrite (imresize (Im2PrintRGB(:, :,ctCH) ,Dat.ImAsbl.ImPrintScale/100),...
[SaveFileDir, _sc' ,num2str(Dat.ImAsbl.ImPrintScale) ,.png'], 'png')

end
end

end
% print compound images
if Dat.ImAsbl.ImPrintCmpnd

ElemName = ' ';
for ctE = 1:3

ElemName = [ElemName,'E',num2str(VisChan(ctE))];
ElemName = [ElemName,'T',num2str(VisThr(2,ctE)), '-',num2str(VisThr(1,ctE))];

end
SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname, ...

Dat.ImAsbl.SvName,' _z',Padding(ctZDat.Nom.PadNum), '_Dom',num2str(ctD) ,ElemName];
if (Dat.ImAsbl.ImPrintScale==100)

imwrite(Im2PrintRGB, [SaveFileDir,'.png'],'png')
else

imwrite (imresize (Im2PrintRGB,Dat.ImAsbl.ImPrintScale/100), [SaveFileDir, '_sc',num2str(Dat.ImAsbl.I

mPrintScale), '.png'],'png')
end

end
end

end
end % z plane
fprintf('\n')
fprintf('\t\t..... done\n\n')
return
function [rout,g,b] = hsv2rgbDIM(hin)
h = 6.*hin(:,1); s = hin(:,2);v = hin(:,3); k = floor(h);
rout = zeros(size(hin,l),3,'single');

rout(:,1) (k==D I k==6 I k==5) + (k==l).* (1-s. * (h-k)) + (k==2 I k==3).* (1-s) + (k==4).*(1-

S.* (1-h+k)
rout(:,2) = (k==0 I k==6).* (1-s. *(1-h+k)) + (k==l I k==2) + (k==3).* (1-s.* (h-k)) + (k==4 I
k==5) .* (1-s);

rout(:,3) = (k==0 I k==6 I k==l) *(1-s) + (k==2) .*(1-s.* (1-h+k)) + (k==3 I k==4) + (k==5).*(l-

s.* (h-k));

rout = bsxfun(@times, v./max(rout(:)), rout);
return

DomEvidenceCalc
function ZPlanes = DomEvidenceCalc_2_2(Dat)
% Image segmentation using maximum a-posteriori model selection
% Dimitris Tzeranis, August 2012 - June 2013
fprintf('=== Calculating Domain Evidence ===\n')

Ns = 100; NumSig = 2;
% load spectrum estimation data
FileDirSpcClb = [Dat.SpcClb.Dir,Dat.Nom.DASH,Dat.Nom.fname, '_',Dat.SpcClb.SvName];
load(FileDirSpcClb) % load pLO pDL pK
SpcEstData = cell(4,1);
SpcEstData{l} = pLO; SpcEstData{2} = pDL;
SpcEstData{3} = Dat.SpcClb.SHGch; SpcEstData{4} = pK;
SpcEstData{5} = Dat.Img.OptEff; SpcEstData{6} = Dat.Img.SpecResp;
SpcEstData{7} = Dat.Img.PMTDiscRelGains;

% create folder if necessary
[unusedl,unused2,unused3] = mkdir(Dat.ImSegm.Dir);
clear unusedl unused2 unused3
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% === identify which frames & planes to process
XWinSz = Dat.ImSegm.XRange(2) - Dat.ImSegm.XRange(l) + 1;
YWinSz = Dat.ImSegm.YRange(2) - Dat.ImSegm.YRange(l) + 1;
FileNum = zeros(l,YWinSz*XWinSz); ctFN = 0;
for ctR = Dat.ImSegm.YRange(i):Dat.ImSegm.YRange(2)

for ctC = Dat.ImSegm.XRange(i):Dat.ImSegm.XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps;
ctFN = ctFN +1; FileNum(ctFN) = ctF-1;

end

end
if Dat.DatCnv.ZBinSw;

ZPlanes = 1;
else

ZPlanes = Dat.ImSegm.ZRange(l):Dat.ImSegm.ZRange(2);
end

RowNum = Dat.Img.NumRow; ColNum = Dat.Img.NumCol;
%% ====== main loop

FileNameConstR = [Dat.DatCnv.Dir,Dat.Nom.DASH,Dat.Nom.fname, '_'];
FileNameConstS = [Dat.Nom.MainDir,Dat.Nom.DASH];
FileNameConstW = [Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname,

Dat.ImSegm.SvName,' '];
ChNum = Dat.Img.ChNum;ChUsed = Dat.Img.ChUsed;NumChUsed = length(ChUsed);
PadNum = Dat.Nom.PadNum;

SpcClbSHGch = Dat.SpcClb.SHGch; ImDcmpWinSw = Dat.ImDcmp.WinSw;
ImDcmpCompRead = Dat.ImDcmp.CompRead; ImDcmpCompFName = Dat.ImDcmp.CompFName;
VoidDomSw = Dat.ImDcmp.VoidDomSw;DomNum = Dat.ImDcmp.DomNum;
ImDcmpDomName = Dat.ImDcmp.DomName; ImDcmpDomComp = Dat.ImDcmp.DomComp;
ImDcmpDomCompNum = Dat.ImDcmp.DomCompNum;
DomCompMat = Dat.ImDcmp.DomCompMat; DomCompLim = Dat.ImDcmp.DomCompLim;
DomPrior = Dat.ImSegm.DomPrior; DomTransMat = Dat.ImSegm.DomTransMat;
if isempty(DomPrior); DomPrior = ones(DomNum+VoidDomSw,l);end

DomPrior = DomPrior/sum(DomPrior);
VoidSpec = ones(NumChUsed,1)/NumChUsed; VoidRate = Dat.Img.Noise;
ImDcmpAlgor = Dat.ImDcmp.Algor; ImSegmSaveSw = Dat.ImSegm.SaveSw;
ParProc = Dat.Proc.ParProc; % NeighbSegmSw = false;
InclPiorSw = true;
if ParProc %distributed computing enabled

fprintf('\tdistributed computing enabled \n')
else

fprintf('\tdistributed computing not enabled \n')
end

%% ======= calculate normalized spectra matrix (row-dependent)
fprintf('\tpreliminary calculations I ') SpectraRows = cell(DomNum,1);
UssRow = cell(DomNum,l);PseudoInvSSRow = cell(DomNum,l);
for ctD = 1:DomNum

DomComp = ImDcmpDomComp{ctD}; DomCompNum = ImDcmpDomCompNum(ctD);
DomCompID = find(DomCompMat(:,ctD)); DomCompRead = ImDcmpCompRead(DomCompID);

DomCompFName = ImDcmpCompFName{DomCompID};
SpectraRowsDM = zeros(NumChUsed,DomCompNum,RowNum);
UssRowDM = zeros(NumChUsed,DomCompNum,RowNum);
PseudoInvSSRowDM = zeros(DomCompNum,NumChUsed,RowNum);
if ParProc

parfor ctR = 1:RowNum % iterate over rows
SS = zeros(ChNum,DomCompNum);
for ctE = 1:DomCompNum

ElemID = DomComp{ctE};
if DomCompRead(ctE)

TempSpec = LStackSpectrum(readconfocall6pics ( [FileNameConstS,DomCompFName{ctE}]))
if strcmpi(ElemID,'collagen')

TempSpec(l:SpcClbSHGch) = 0;
end
SS(:,ctE) = TempSpec/sum(TempSpec);

else
SS(:,ctE) = SpectrumEstim_2_3(ElemID,SpcEstData,l,ctR);

end
end
SS = SS(ChUsed,:);

for ctE = 1:DomCompNum
SS(:,ctE) = SS(:,ctE)/sum(SS(:,ctE));

end
SpectraRowsDM(:,:,ctR) = SS;
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[Uss,Sss,Vss] = svd(SS);

UssRowDM(:,:,ctR) = Uss(:,l:DomCompNum);

PseudoInvSSRowDM(:,:,ctR) = ...
Vss*diag(1./diag(Sss(1:DomCompNum,1:DomCompNum)))* (Uss(:,1:DomCompNum))

end
else

for ctR = 1:RowNum % iterate over rows

SS = zeros(ChNum,DomCompNum);
for ctE = 1:DomCompNum

ElemID = DomComp{ctE};
if DomCompRead(ctE)

TempSpec = LStackSpectrum(readconfocall6pics([FileNameConstS,DomCompFName{ctE}]));
if strcmpi(ElemID,'collagen')

TempSpec(l:SpcClbSHGch) = 0;
end
SS(:,ctE) = TempSpec/sum(TempSpec);

else
SS(:,ctE) = SpectrumEstim_2_3(ElemID,SpcEstData,l,ctR);

end
end
% keep only the channels that contain data
SS = SS(ChUsed,:);
for ctE = 1:DomCompNum

SS(:,ctE) = SS(:,ctE)/sum(SS(:,ctE));
end
SpectraRowsDM(:,:,ctR) = SS;
[Uss,Sss,Vss] = svd(SS);

UssRowDM(:,:,ctR) = Uss(:,l:DomCompNum);

PseudoInvSSRowDM(:,:,ctR) =

Vss*diag(1./diag(Sss(1:DomCompNum,1:DomCompNum)))* (Uss(:,l:DomCompNum))
end

end
SpectraRows{ctD} = SpectraRowsDM; UssRow{ctD} = UssRowDM;

PseudoInvSSRow{ctD} = PseudoInvSSRowDM;

end
clear SpectraRowsDM UssRowDM PseudoInvSSRowDM

%% ============= prepare data structures for EvidenceIntCalc_1_1
% initialize domain data structure
DomI = struct('SS', [],'SSPinv', [],'DomCompNum', ,'DomCompLim',[,...

'polSam', [],'VLIM', []);
for ctD = 1:DomNum

% number of components per domain
DomI (ctD) .DomCompNum = ImDcmpDomCompNum(ctD);
% component limits per domain
DomI(ctD).DomCompLim = DomCompLim{ctD};
% random sampling for each domain
DomI (ctD) .polSam = sobolset (ImDcmpDomCompNum(ctD), 'Skip', le3, 'Leap', le2)
% boundary volume
DomI(ctD) .VLIM = prod(diff(DomCompLim{ctD}'));

end
% noise data structure
NoiseI = struct('VoidSpec',VoidSpec,'VoidSpecPinv', [],'VoidRate',VoidRate,...

'VoidDomSw',VoidDomSw);
% noise Spectral matrix pseudoinverse
[Uss,Sss,Vss] = svd(VoidSpec);

NoiseI.VoidSpecPinv = Vss*1./Sss(1)* (Uss(:,1))
% Monte Carlo Integration Parameters
MCIPar = struct('Ns',Ns,'NumSig',NumSig);
clear ctD

fprintf('\tpreliminary calculations done \n')
%===========MAIN LOOP for calculating the evidence of each frame
fprintf(' evidence calculations')
if ParProc %distributed computing enabled

if length(FileNum)>l
parfor ctFF = 1:length(FileNum) % iterate for all z-stacks

ctF = FileNum(ctFF);
if mod(ctF,10) == 0

fprintf('.')
end
DomIL = DomI;
for ctZZ = 1:length(ZPlanes);
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ctZ = ZPlanes(ctZZ);
FileName = [FileNameConstR,Padding(ctF,PadNum),'_',Padding(ctZ,PadNum)];

RawFrame = LoadMatFile(FileName);
RawFrame = RawFrame(:,:,ChUsed);
FrameMean = zeros(RowNum,ColNum,NumChUsed);

for ctCH = 1:NumChUsed
FrameMean(:,:,ctCH) = round(imfilter(double(RawFrame(:,:,ctCH)),...

fspecial('average',3),'replicate'));
end
% === initialize output
% component maps
CompConMap = cell(VoidDomSw+DomNum,1);
if VoidDomSw

CompConMap{l} = zeros(RowNum,ColNum,'single');
end

for ctD = 1:DomNum
CompConMap{VoidDomSw+ctD} =

zeros(RowNum,ColNum,ImDcmpDomCompNum(ctD),'single');
end

% domain log probability
DomLogProb = -inf(RowNumColNum,VoidDomSw+DomNum);

% loop over rows
for ctR = 1:RowNum

% ===== ===== read & process raw data yy
if ImDcmpWinSw % use low-pass filtering

yy = squeeze(FrameMean(ctR,:,:))';
else

yy = squeeze(double(RawFrame(ctR,:,:)))';
end

% those pixels that have zero counts, use mean
yySUM = sum(yy); % calculate sum
yy(:,yySUM==O) = squeeze(FrameMean(ctR,yySUM==O,:))';

% ====== ===== update DomIL with row-specific data
for ctD = l:DomNum

DomIL(ctD).SS = SpectraRows{ctD)(:,:,ctR);
DomIL(ctD).SSPinv = PseudoInvSSRow{ctD}(:,:,ctR);

end
% ======-=====-calculate ML & evidence integrals

[DomLogProbLCompConMapL] = EvidenceIntCalc_11(yy,DomIL,NoiseI,MCIPar);
DomLogProb(ctR,:,:) = DomLogProbL;
for ctD = 1:(DomNum+VoidDomSw)

CompConMap{ctD}(ctR,:,:) = CompConMapL{ctD);
end

end % row
%% add prior if necessary
if InclPiorSw

DomLogProb = DomLogProb +
repmat(reshape(DomPrior, [1,1,DomNum+VoidDomSw]), [size(DomLogProb,1),size(DomLogProb,2)]);

end
%% check whether all domains have -inf

PxAllInf = find(all(isinf(DomLogProb),3)); PxAllInf = PxAllInf(:);
if ~isempty(PxAllInf)

DomLogProb = reshape(DomLogProb, [RowNum*ColNum,VoidDomSw+DomNum]);
[rr,cc] = ind2sub([RowNum ColNum],PxAllInf);

rN = repmat(rr, [1 4]) + repmat([-1 1 0 0], [length(PxAllInf),l]);% T B R L
cN = repmat(cc, [1 4]) + repmat([0 0 1 -1], [length(PxAllInf),l]);% T B R L

Nghb2Use = (rN>=l) & (rN<=RowNum) & (cN>=l) & (cN<=ColNum);
for ctPx = 1:length(PxAllInf)

NghbPx = sub2ind([RowNum
ColNum],rN(ctPx,Nghb2Use(ctPx,:)),cN(ctPx,Nghb2Use(ctPx,:)));

NghbPx = setdiff(NghbPx,PxAllInf);
if ~isempty(NghbPx)

DomLogProb(PxAllInf(ctPx),:) = max(DomLogProb(NghbPx,:));
end
if all(isinf(DomLogProb(PxAllInf(ctPx),:)))

if VoidDomSw
DomLogProb(PxAllInf(ctPx),l) = 1;
DomLogProb(PxAllInf(ctPx),2:(l+DomNum)) = 0;

else
DomLogProb(PxAllInf(ctPx),:) = 0;

end
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end
end
DomLogProb = reshape(DomLogProb, [RowNum,ColNum,VoidDomSw+DomNum]);

end
%% ===== normalize domain probability results

DomProbN = single (exp(DomLogProb - repmat(max(DomLogProb, [],3), [1, 1,DomNum+VoidDomSw])));
tmp = DomProbN(:,:,l); tmp(logical(all(isinf(DomLogProb),3))) = 1;

tmp(sum(DomProbN,3)==O) = 1; DomProbN(:,:,l) = tmp;
EvidenceDom = single (DomProbN./repmat (sum(DomProbN,3), [1, 1,DomNum+VoidDomSw]));

if ImSegmSaveSw
SaveFileDir = [FileNameConstW,Padding(ctF,PadNum), ',Padding(ctZ,PadNum) ];

SaveSegmData(CompConMap,EvidenceDom,SaveFileDir);
end

end % plane
end % file (z-stack)

else % when there is only one z-stack, parfor over z
fprintf('.')

parfor ctZZ = 1:length(ZPlanes);
DomIL = DomI;

FileName = [FileNameConstR,Padding(FileNum(l) ,PadNum), '',Padding(ZPlanes(ctZZ) ,PadNum)];
RawFrame = LoadMatFile(FileName);
RawFrame = RawFrame(:,:,ChUsed);
FrameMean = zeros(RowNum,ColNum,NumChUsed);
for ctCH = 1:NumChUsed

FrameMean(:, ,ctCH) = round(imfilter(double(RawFrame(:, :,ctCH)),
fspecial('average',3),'replicate'));

end
CompConMap = cell(VoidDomSw+DomNum,1);

if VoidDomSw; CompConMap{l} = zeros(RowNum,ColNum,'single'); end

for ctD = 1:DomNum
CompConMap{VoidDomSw+ctD) =

zeros(RowNum,ColNum,ImDcmpDomCompNum(ctD), 'single');

end
DomLogProb = -inf(RowNum,ColNum,VoidDomSw+DomNum);
for ctR = 1:RowNum

if ImDcmpWinSw % use low-pass filtering
yy = squeeze(FrameMean(ctR,:,:))';

else
yy = squeeze(double(RawFrame(ctR,:,:)))';

end
yySUM = sum(yy); % calculate sum

yy(:,yySUM==O) = squeeze(FrameMean(ctR,yySUM==,:));
for ctD = 1:DomNum

DomIL(ctD).SS = SpectraRows{ctD}(:,:,ctR);

DomIL(ctD).SSPinv = PseudoInvSSRow{ctD}(:,:,ctR);
end

[DomLogProbL,CompConMapL] = EvidenceIntCalc_1l (yy,DomIL,NoiseI,MCIPar);
DomLogProb(ctR,:,:) = DomLogProbL;

for ctD = 1:(DomNum+VoidDomSw)
CompConMap{ctD}(ctR,:,:) = CompConMapL{ctD};

end
end % row
if InclPiorSw

DomLogProb = DomLogProb +

repmat (reshape (DomPrior, [1,1, DomNum+VoidDomSw]), [size (DomLogProb, 1) ,size (DomLogProb, 2)]);
end
PxAllInf = find(all(isinf(DomLogProb),3));
PxAllInf = PxAllInf(:);
if -isempty(PxAllInf)

% reshape the DomLogProb matrix
DomLogProb = reshape(DomLogProb, [RowNum*ColNum,VoidDomSw+DomNum]);

[rr,cc] = ind2sub([RowNum ColNum],PxAllInf);

rN = repmat(rr, [1 4]) + repmat([-l 1 0 0], [length(PxAllInf),1]);% T B R L
cN = repmat(cc, [1 4]) + repmat([0 0 1 -1], [length(PxAllInf),1]);% T B R L

Nghb2Use = (rN>=l) & (rN<=RowNum) & (cN>=l) & (cN<=ColNum);

for ctPx = 1:length(PxAllInf)
NghbPx = sub2ind( [RowNum ColNum],rN(ctPx,Nghb2Use(ctPx, :)),cN(ctPx,Nghb2Use(ctPx,:)))

NghbPx = setdiff(NghbPx,PxAllInf);
if ~isempty(NghbPx)

DomLogProb(PxAllInf(ctPx),:) = max(DomLogProb(NghbPx,:));
end
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if all(isinf(DomLogProb(PxAllInf(ctPx),:)))
if VoidDomSw

DomLogProb(PxAllInf(ctPx),l) = 1;
DomLogProb(PxAllInf(ctPx),2:(l+DomNum)) = 0;

else
DomLogProb(PxAllInf(ctPx),:) = 0;

end
end

end
DomLogProb = reshape(DomLogProb, [RowNum,ColNum,VoidDomSw+DomNum]);

end
%% ===== normalize domain probability results
DomProbN = single(exp(DomLogProb -

repmat(max(DomLogProb, [],3), [1,1,DomNum+VoidDomSw])));
tmp = DomProbN(:,:,l); tmp(logical(all(isinf(DomLogProb),3))) = 1;
tmp(sum(DomProbN,3)==0) = 1; DomProbN(:,:,l) = tmp;
EvidenceDom = single(DomProbN./repmat(sum(DomProbN,3), [1,1,DomNum+VoidDomSw]));

if ImSegmSaveSw
SaveFileDir = [FileNameConstW,Padding(FileNum(l),PadNum), ' ',Padding(ZPlanes(ctZZ),PadNum) ];

SaveSegmData(CompConMap,EvidenceDom,SaveFileDir);
end

end % plane

end
else % distributed computing not enabled

for ctFF = 1:length(FileNum) % iterate for all z-stacks
ctF = FileNum(ctFF);
if mod(ctF,10) == 0; fprintf('.'); end
DomIL = DomI;
for ctZZ = 1:length(ZPlanes);

ctZ = ZPlanes(ctZZ);
load([FileNameConstR,Padding(ctF,PadNum), '_',Padding(ctZ,PadNum)])
RawFrame = RawFrame(:,:,ChUsed);
FrameMean = zeros(RowNum,ColNum,NumChUsed);
for ctCH = 1:NumChUsed

FrameMean(:,:,ctCH) = round(imfilter(double(RawFrame(:,:,ctCH)),...
fspecial('average',3),'replicate'));

end
CompConMap = cell(VoidDomSw+DomNum,1);
if VoidDomSw; CompConMap{l} = zeros(RowNum,ColNum,'single'); end
for ctD = 1:DomNum

CompConMap{VoidDomSw+ctD} = zeros(RowNum,ColNum,ImDcmpDomCompNum(ctD),'single');
end
DomLogProb = -inf(RowNum,ColNum,VoidDomSw+DomNum);
for ctR = 1:RowNum

if ImDcmpWinSw % use low-pass filtering
yy = squeeze(FrameMean(ctR,:,:))';

else
yy = squeeze(double(RawFrame(ctR,:,:)))';

end

yySUM = sum(yy);% calculate sum
yy(:,yySUM==0) = squeeze(FrameMean(ctR,yySUM==0,:))';
for ctD = 1:DomNum

DomIL(ctD).SS = SpectraRows{ctD}(:,:,ctR);
DomIL(ctD).SSPinv = PseudoInvSSRow{ctD}(:,:,ctR);

end
[DomLogProbL,CompConMapL] = EvidenceIntCalc_1_l(yy,DomILNoiseI,MCIPar);

DomLogProb(ctR,:,:) = DomLogProbL;
for ctD = 1:(DomNum+VoidDomSw)

CompConMap{ctD}(ctR,:,:) = CompConMapL{ctD};
end

end % row
if InclPiorSw

DomLogProb = DomLogProb + repmat(reshape(DomPrior, [1,1,DomNum+VoidDomSw]),
[size(DomLogProb,1),size(DomLogProb,2)]);

end
PxAllInf = find(all(isinf(DomLogProb),3)); PxAllInf = PxAllInf(:);

if ~isempty(PxAllInf)
DomLogProb = reshape(DomLogProb,[RowNum*ColNum,VoidDomSw+DomNum]);
[rr,cc] = ind2sub([RowNum ColNum),PxAllInf);
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rN = repmat(rr, [1 4]) + repmat([-1 1 0 0], [length(PxAllInf),1]);% T B R L
cN = repmat(cc, [1 4]) + repmat([0 0 1 -1], [length(PxAllInf),1]);% T B R L

Nghb2Use = (rN>=l) & (rN<=RowNum) & (cN>=l) & (cN<=ColNum);

for ctPx = 1:length(PxAllInf)
NghbPx = sub2ind( [RowNum ColNum] ,rN(ctPx,Nghb2Use(ctPx, :)),cN(ctPx,Nghb2Use(ctPx,:)));

NghbPx = setdiff(NghbPx,PxAllInf);
if ~isempty(NghbPx)

DomLogProb(PxAllInf(ctPx),:) = max(DomLogProb(NghbPx,:));
end
if all(isinf(DomLogProb(PxAllInf(ctPx),:)))

if VoidDomSw

DomLogProb(PxAllInf(ctPx),l) = 1;

DomLogProb(PxAllInf(ctPx),2:(l+DomNum)) = 0;

else
DomLogProb(PxAllInf(ctPx),:) = 0;

end
end

end
DomLogProb = reshape(DomLogProb, [RowNumColNum,VoidDomSw+DomNum]);

end
DomProbN = single (exp(DomLogProb - repmat(max(DomLogProb, [],3), [1, 1,DomNum+VoidDomSw])));

tmp = DomProbN(:,:,l); tmp(logical(all(isinf(DomLogProb),3))) = 1;
tmp(sum(DomProbN,3)==0) = 1; DomProbN(:,:,l) = tmp;

EvidenceDom = single(DomProbN./repmat(sum(DomProbN,3), [1,1,DomNum+VoidDomSw]));
if ImSegmSaveSw

SaveFileDir = [FileNameConstW,Padding(ctF,PadNum) ,'_',Padding(ctZ,PadNum)];

save(SaveFileDir,'CompConMap','EvidenceDom')
end

end % plane
end % z-stack

end
fprintf('\n')
fprintf('\t... done\n\n')
return

function Err = funML(x,Param)
yy = Param{l};

S Param{2};
DomCompNum = Param{3};

Err = -ones(Param{3},l);
x = x(:);
for cti = 1:Param{3}

for ctCH = 1:length(Param{l})
Err(cti) = Err(cti) + Param{l}(ctCH)*Param{2}(ctCH,cti)/(Param{2}(ctCH,:)*x);

end
end
function RawFrame = LoadMatFile(FileName)
load(FileName)
return

function y = SaveSegmData (CompConMap, EvidenceDom, SaveFileDir)
save(SaveFileDir,'CompConMap','EvidenceDom')
return

AssembleDomEvid
function ZPlanes = AssembleDomEvid 1 8(Dat)
% assemble decomposed images based on the optimum image registration
% Dimitrios Tzeranis, Aug 2012 - June 2013

fprintf('=== Assemblying Evidence Frames ===\n')
DEBUGMODEsw = false; % if true save 'DomProbMap','DomProbMapPROC'
[unusedl,unused2,unused3] = mkdir(Dat.ImAsbl.Dir);

ZPlanes = Dat.ImSegm.ZRangePrint(1) :Dat.ImSegm.ZRangePrint(2)
if Dat.ImDcmp.VoidDomSw

NumEle = [1 Dat.ImDcmp.DomCompNum];
else

NumEle = Dat.ImDcmp.DomCompNum;
end
DomNum = Dat.ImDcmp.DomNum;VoidDomSw = Dat.ImDcmp.VoidDomSw;

for ctZ = ZPlanes
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fprintf('\tPlane %s: Assemble Evidence 1',num2str(ctZ))
if ctZ % non-zero z

if (Dat.Img.Xsteps==l) && (Dat.Img.Ysteps==l) % case of a z-stack
load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname,'',...

Dat.ImSegm.SvName,_ ',Padding(O,Dat.Nom.PadNum),' '...
Padding(ctZ,Dat.Nom.PadNum)]); % reads CompConMap and EvidenceDom'

DomProbMap = EvidenceDom; AsblCompConMap = CompConMap;
clear CompConMap EvidenceDom

else
XRange = Dat.ImReg.XRange; YRange = Dat.ImReg.YRange;
XWinSz = XRange(2) - XRange(l) + 1; YWinSz = YRange(2) - YRange(l) + 1;
FileNum = zeros(l,YWinSz*XWinSz); ctFN = 0;
for ctR = YRange(l):YRange(2)

for ctC = XRange(l):XRange(2)
ctF = ctC + (ctR-1)*Dat.Img.Xsteps; ctFN = ctFN +1;
FileNum(ctFN) = ctF;

end
end
load([Dat.ImReg.DirDat.Nom.DASHDat.Nom.fname,'_ImageRegOverview']);

posiO = RegImagDat.posiO; dispO = RegImagDat.dispO;
insertO = RegImagDat.insertO; rangeO = RegImagDat.rangeO;
clear RegImagDat
maxR = max(rangeO(1:2:end)); minR = min(insertO(1:2:end));
maxC = max(rangeO(2:2:end)); minC = min(insertO(2:2:end));
if minR~=l

TotalPixX = maxR - minR + 1;
rangeO(1:2:end) = rangeO(1:2:end) - minR + 1;
insertO(1:2:end) = insertO(1:2:end) - minR + 1;

else
TotalPixX = maxR;

end
TotalPixY = maxC;
if minC<=0

TotalPixY = TotalPixY - minC + 1;
rangeO(2:2:end) = rangeO(2:2:end) - minC + 1;
insertO(2:2:end) = insertO(2:2:end) - minC + 1;

end
DomProbMap = zeros(TotalPixY,TotalPixX,VoidDomSw+DomNum);
AsblCompConMap = cell(VoidDomSw+DomNum,1);
for ctD = 1:(VoidDomSw+DomNum)

AsblCompConMap{ctD} = zeros(TotalPixY,TotalPixX,NumEle(ctD),'single');
end
for ctF = 1:XWinSz*YWinSz

ctR = floor((ctF-l)/XWinSz) + 1;
ctC = ctF - (ctR-1)*XWinSz; addF = [2*ctF-1,2*ctF];
dO = dispO(addF);

load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname, '
Dat.ImSegm.SvName,' ',Padding(FileNum(ctF)-l,Dat.Nom.PadNum), ...
Padding(ctZ,Dat.Nom.PadNum)]); % reads 'CompConMap','EvidenceDom'

DecImF = EvidenceDom; ComImF = CompConMap;
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImF = DecImF(8:end,:,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImF{ctD} = ComImF{ctD}(8:end,:,:);
end

else
% original microscope: remove left pixels
DecImF = DecImF(:,Dat.ImReg.RemLPixNum + 1:end,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImF{ctD} = ComImF{ctD}(:,Dat.ImReg.RemLPixNum + 1:end,:);
end

end
end
dimF = size(DecImF);
clear CompConMap EvidenceDom
if (ctR == 1) && (ctC == 1)
elseif (ctR == 1) && (ctC > 1)

% === === ==- L-R
ctL = ctF - 1;

load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname, ' .'...

448



Dat.ImSegm.SvName, ' ,Padding(FileNum(ctL)-,Dat.Nom.PadNum), '.'...
Padding (ctZ,Dat.Nom.PadNum) ]); % reads 'CompConMap', 'EvidenceDom'

DecImL = EvidenceDom; ComImL = CompConMap;

if Dat.ImReg.RemLSw;
DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end,:);

for ctD = 1:(VoidDomSw+DomNum)
ComImLIctD} = ComImL{ctD} (:,Dat.ImReg.RemLPixNum + 1:end,:);

end
end
dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,l,dO);

MaskLR = (linspace (0,1, csl (4) -csl (3) +1) '*ones (1, csl (2) -csl (1) +1))';

for ctE = 1:(VoidDomSw+DomNum)

DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE) = ...
round((1-MaskLR).*double(DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE)) +

MaskLR.*double(DecImL(csl(1):csl(2),csl(3):csl(4),ctE)));
end
for ctD = 1:(VoidDomSw+DomNum)

for ctE = 1:NumEle(ctD)
ComImF{ctD}(cs2(1):cs2(2),cs2(3):cs2(4),ctE)

round((1-MaskLR).*single(ComImF{ctD}(cs2(1):cs2(2),cs2(3):cs2(4),ctE)) +
MaskLR.*single(ComImLfctD}(csl(1):csl(2),csl(3):csl(4),ctE)));

end
end
clear CompConMap EvidenceDom

elseif (ctR > 1) && (ctC == 1)

% === === === T-B
CtT = ctF - XWinSz;

load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname,
Dat.ImSegm.SvName, '_,Padding(FileNum(ctT)-l,Dat.Nom.PadNum), '.'...
Padding (ctZ, Dat.Nom. PadNum) ]); % reads 'CompConMap', 'EvidenceDom'

DecImT = EvidenceDom; ComImT

if Dat.ImReg.RemLSw
if strcmpi(Dat.Img.Instr,'MMM')

DecImT = DecImT(8:end,:,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImT{ctD} = ComImTlctD}(8:end,:,:);
end

else

ComImT{ctD} =

= CompConMap;

% original microscope: remove left pixels

DecImT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImT{ctD}(:,Dat.ImReg.RemLPixNum + 1:end,:);
end

end
end

dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);

MaskTB = (ones(csl(4)-csl(3)+1,1)*linspace(0,1,csl(2)-csl(l)+l))';
for ctE = 1:(VoidDomSw+DomNum)

DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE) = ...
round((MaskTB).*double (DecImF(cs2 (1):cs2 (2),cs2(3):cs2(4),ctE)) +

(1-MaskTB) .*double (DecImT (csl(1) :csl (2) ,csl (3) :csl (4) ,ctE)));
end
for ctD = 1:(VoidDomSw+DomNum)

for ctE = 1:NumEle(ctD)
ComImF{ctD}(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =

round ( (MaskTB) .*single (ComImF ctD} (cs2 (1) : cs2 (2) , cs2 (3) : cs2 (4) , ctE)) + ...

(1-MaskTB). *single(ComImT ctD}(csl(1):csl(2),csl(3):csl(4),ctE)));
end

end
clear CompConMap EvidenceDom

else

% =======L-R

ctL = ctF - 1;
load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname, ' ,

Dat.ImSegm.SvName, '_,Padding(FileNum(ctL)-l,Dat.Nom.PadNum), '.'...
Padding(ctZ,Dat.Nom.PadNum)]);

DecImL = EvidenceDom; ComImL = CompConMap;
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if Dat.ImReg.RemLSw
if strcmpi(Dat.Img.Instr,'MMM')

DecImL = DecImL(8:end,:,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImL{ctD} = ComImL{ctD}(8:end,:,:);
end

else
DecImL = DecImL(:,Dat.ImReg.RemLPixNum + 1:end,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImLfctD} ComImL{ctD}(:,Dat.ImReg.RemLPixNum + 1:end,:);
end

end
end
dimL = size(DecImL);
[csl,cs2] = CalculateWindowCS2(dimL,dimF,l,dO);

MaskLR = (linspace(0,1,csl(4)-csl(3)+1)'*ones(l,csl(2)-csl(l)+l));
for ctE = 1:(VoidDomSw+DomNum)

DecImF(cs2(1):cs2(2),cs2(3):cs2(4),ctE) = ...
round((l-MaskLR).*double(DecImF(cs2(l):cs2(2),cs2(3):cs2(4),ctE)) +

MaskLR.*double(DecImL(csl(l):csl(2),csl(3):csl(4),ctE)));
end
for ctD = 1:(VoidDomSw+DomNum)

for ctE = l:NumEle(ctD)
ComImF{ctD}(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =

round((l-MaskLR).*single(ComImF{ctD}(cs2(l):cs2(2),cs2(3):cs2(4),ctE)) +
MaskLR.*single(ComImL{ctD}(csl(l):csl(2),csl(3):csl(4),ctE)));

end
end
clear CompConMap EvidenceDom
% === === = T-B
ctT = ctF - XWinSz;
addT = [2*ctT-1,2*ctT];
dO = posiO(addF) - posiO(addT);

load([Dat.ImSegm.Dir,Dat.Nom.DASH,Dat.Nom.fname, ...
Dat.ImSegm.SvName, ',Padding(FileNum(ctT)-l,Dat.Nom.PadNum), '...
Padding(ctZ,Dat.Nom.PadNum)]); % reads 'CompConMap','EvidenceDom'

DecImT = EvidenceDom; ComImT = CompConMap;
if Dat.ImReg.RemLSw

if strcmpi(Dat.Img.Instr,'MMM')
DecImT = DecImT(8:end,:,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImT{ctD} = ComImT{ctD}(8:end,:,:);
end

else
DecImT = DecImT(:,Dat.ImReg.RemLPixNum + 1:end,:);
for ctD = 1:(VoidDomSw+DomNum)

ComImT{ctD} = ComImT{ctD}(:,Dat.ImReg.RemLPixNum + 1:end,:);
end

end
end

dimT = size(DecImT);
[csl,cs2] = CalculateWindowCS2(dimT,dimF,2,dO);
MaskTB = (ones(csl(4)-csl(3)+1,1)*linspace(O,1,csl(2)-csl(l)+l))';
for ctE = 1:(VoidDomSw+DomNum)

DecImF(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =

round((MaskTB).*double(DecImF(cs2(l):cs2(2),cs2(3):cs2(4),ctE)) +
(1-MaskTB).*double(DecImT(cs1(l):cs1(2),cs1(3):cs1(4),ctE)));

end
for ctD = 1:(VoidDomSw+DomNum)

for ctE = 1:NumEle(ctD)
ComImF{ctD}(cs2(l):cs2(2),cs2(3):cs2(4),ctE) =

round((MaskTB).*single(ComImF{ctD}(cs2(l):cs2(2),cs2(3):cs2(4),ctE)) +
(1-MaskTB).*single(ComImTlctD}(csl(l):csl(2),csl(3):csl(4),ctE)));

end
end
clear CompConMap EvidenceDom

end
DomProbMap(insertO(addF(2)):rangeO(addF(2)),...

insertO(addF(l)):rangeO(addF(l)),:) = DecImF;
for ctD = 1:(VoidDomSw+DomNum)
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AsblCompConMap{ctD}(insertO(addF(2)):rangeO(addF(2)),...
insertO(addF(l)):rangeO(addF(l)),:) = ComImF{ctD};

end
end
DomProbMap = single(DomProbMap);

for ctD = 1:(VoidDomSw+DomNum)
AsblCompConMap{ctD} = single(AsblCompConMap{ctD));

end
end % is there stage raster scanning

else % zero z
load([Dat.GMaxIPr.Dir,Dat.Nom.DASH,Dat.Nom.fname, ' ',Dat.GMaxIPr.SvName])
FrmCrds = MaxICrds(:,:,l); RowCrds = MaxICrds(:,:,2);
ColCrds = MaxICrds(:,:,3);
clear MaxIntImage MaxlCrds

load( [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, '_',Dat.ImReg.SvName, '_ImageExt'])

TotalPixY = size(MaxIData,l);
TotalPixX = size(MaxIData,2);
DomProbMap = zeros(TotalPixY*TotalPixX,VoidDomSw+DomNum);
AsblCompConMap = cell(VoidDomSw+DomNum,1);
for ctD = 1:(VoidDomSw+DomNum)

AsblCompConMap{ctD} = zeros(TotalPixY*TotalPixX,NumEle(ctD),'single');
end
for ctF = unique(FrmCrds)'

PxF = find((FrmCrds==ctF) & ImageExt);
for ctZZ = setdiff(unique(MaxIData(PxF))',O)

load([Dat.ImSegm.DirDat.Nom.DASHDat.Nom.fname, '
Dat.ImSegm.SvName,' ',Padding(ctFDat.Nom.PadNum),'
Padding(ctZZ,Dat.Nom.PadNum)]); % reads 'CompConMap','EvidenceDom'

EvidenceDom = reshape(EvidenceDom, [256*256,size(EvidenceDom,3)]);
for ctD = 1:(VoidDomSw+DomNum)

CompConMap{ctD} = reshape(CompConMap{ctD}, [256*256,NumEle(ctD)]);
end
PxFZ = find((FrmCrds==ctF) & MaxlData==ctZZ & ImageExt);

PxFZl = sub2ind([256,256],double(RowCrds(PxFZ)),double(ColCrds(PxFZ)));
DomProbMap(PxFZ,:) = EvidenceDom(PxFZl,:);
for ctD = 1:(VoidDomSw+DomNum)

AsblCompConMap{ctD}(PxFZ,:) = CompConMap{ctD}(PxFZl,:);
end

end
end

DomProbMap = single (reshape (DomProbMap, [TotalPixY, TotalPixX, VoidDomSw+DomNum]))
for ctD = 1:(VoidDomSw+DomNum)

AsblCompConMap{ctD} = single(reshape(AsblCompConMap{ctD}, [TotalPixY,TotalPixX,NumEle(ctD) ));
end

end
%% Morphological Processing
fprintf(' Morphological Processing I
[sx,sy,sz] = size(DomProbMap); % (sz = VoidDomSw+DomNum)
DomProbMap = reshape (DomProbMap, [sx*sy, sz]);
DomProbMapsum = sum(DomProbMap,2); Indx = find(DomProbMapsum>l);
for ct = Indx'

DomProbMap(ct,:) = DomProbMap(ct,:)/DomProbMapsum(ct);
end
DomProbMap = reshape (DomProbMap, [sx,sy,sz]);
% === morphological processing
% not applied to void domain
sel = strel('disk',l);
se2 = strel('disk',l);%2
DomProbMapPROC = DomProbMap;
for ct = (1+VoidDomSw) :(DomNum+VoidDomSw)

DomProbMapPROC(:,:,ct) = medfilt2(imclose(imreconstruct(imopen(DomProbMap(:,:,ct),sel),...
imclose(DomProbMap(:,:,ct),sel)),se2),[3 3]);

end
DomProbMapPROC = reshape (DomProbMapPROC, [sx*sy, sz]);
DomProbMapPROCsum = sum(DomProbMapPROC,2);
Indx = find(DomProbMapPROCsum>l);
for ct = Indx'

DomProbMapPROC(ct,:) = DomProbMapPROC(ct,:)./DomProbMapPROCsum(ct);
end
DomProbMapPROC = reshape(DomProbMapPROC, [sx,sy,sz]);
fprintf(' Save')
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SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,...
'_DomEvidAsbl_',Padding(ctZ,Dat.Nom.PadNum)];

save(SaveFileDir,'AsblCompConMap','DomProbMapPROC')
if DEBUGMODEsw

SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,...
'_DomProbMapData ',Padding(ctZ,Dat.Nom.PadNum)];

save(SaveFileDir,'DomProbMap')
end
if Dat.ImSegm.SvImgSw

fprintf(' I Print')
SvImgCh = Dat.ImSegm.SvImgCh; SvImgCh(SvImg
SvImgCh2Prnt = SvImgCh; SvImgCh2Del = find(i
ChNames = '';
for ctCH = 1:3

if -isnan(SvImgCh(ctCH))
ChNames = [ChNames,num2str(SvImgCh(ctCH))];

Ch>DomNum+VoidDomSw) = nan;
snan(SvImgCh));

else
ChNames = [ChNames,'-'];
SvImgCh2Prnt(ctCH) = 1;

end
end
SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,'

Dat.ImAsbl.SvName,' z',Padding(ctZ,Dat.Nom.PadNum),' DomProbMaps',ChNames];
SaveFileProcDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname, ...

Dat.ImAsbl.SvName,' _z',Padding(ctZ,Dat.Nom.PadNum),'_DomProbMapsPROC',ChNames];
if (Dat.ImAsbl.ImPrintScale==100)

tmpl = DomProbMap(:,:,SvImgCh2Prnt); tmpl(:,:,SvImgCh2Del) = 0;
imwrite(tmpl, [SaveFileDir,'.png'],'png')

tmpl = DomProbMapPROC(:,:,SvImgCh2Prnt); tmpl(:,:,SvImgCh2Del) = 0;
imwrite(tmpl, [SaveFileProcDir,'.png'],'png')

else
tmpl = DomProbMap(:,:,SvImgCh2Prnt);
tmpl(:,:,SvImgCh2Del) = 0;
imwrite(imresize(tmpl,Dat.ImAsbl.ImPrintScale/100),...

[SaveFileDir,' sc',num2str(Dat.ImAsbl.ImPrintScale),'.png'],'png')
tmpl = DomProbMapPROC(:,:,SvImgCh2Prnt);
tmpl(:,:,SvImgCh2Del) = 0;
imwrite(imresize(tmpl,Dat.ImAsbl.ImPrintScale/100),...

[SaveFileProcDir, 'sc',num2str(Dat.ImAsbl.ImPrintScale), '.png'],'png')

end
end
fprintf('\n')

end % z plane
fprintf('\t\t..... done\n\n')
return

ImageSegm (Local)
function ZPlanes = ImSegmLoc_1_3(Dat)
% local (pixel-wide) Bayesian image segmentation
% Dimitrios Tzeranis, November 2012 - June 2013
fprintf('=== Local Image Segmentation (Bayesian) ===\n')
%% initialization
[unusedlunused2,unused3] = mkdir(Dat.ImAsbl.Dir);
ZPlanes = Dat.ImSegm.ZRangePrint(1):Dat.ImSegm.ZRangePrint(2);
NumEle = [1 Dat.ImDcmp.DomCompNum];
% load ImageExt

LoadFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, '',Dat.ImReg.SvName, 'ImageExt'];
load(LoadFileDir) % load 'ImageExt'
% IndExt = find(-ImageExt); % find which nodes are not really image
for ctZ = ZPlanes %%%

fprintf('\tPlane %s: ',num2str(ctZ)); fprintf('Classify I')
% ===== pre-process data
% load data

OpenFileDir =
[Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,' _DomEvidAsbl ',Padding(ctZ,Dat.Nom.PadNum)];

load(OpenFileDir) % loads 'DomProbMapPROC' 'AsblCompConMap'
clear AsblCompConMap
% normalize pixels of DomProbMapPROC whose sum >0 and <1
[sxsy,sz] = size(DomProbMapPROC);
DomProbMapPROC = reshape(DomProbMapPROC, [sx*sy,sz]);
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DomProbMapPROCsum = sum(DomProbMapPROC,2);
IndxPROCsum = find(DomProbMapPROCsum>0 & DomProbMapPROCsum<l);
IndxPROCzero = find(DomProbMapPROCsum==0);
DomProbMapPROC2Norm = DomProbMapPROC(IndxPROCsum,:);
DomProbMapPROCsum = DomProbMapPROCsum(IndxPROCsum);

parfor ct = 1:length(IndxPROCsum)
DomProbMapPROC2Norm(ct,:) = DomProbMapPROC2Norm(ct,:)/DomProbMapPROCsum(ct);

end
DomProbMapPROC (IndxPROCsum,:) = DomProbMapPROC2Norm;

clear DomProbMapPROCsum IndxPROCsum DomProbMapPROC2Norm DomProbMapPROCsum
% take care of pixels whose sum==0

DomProbMapPROCZero = zeros (length(IndxPROCzero) ,sz, 'single');
parfor ct = 1:length(IndxPROCzero)

[Row,Col] = ind2sub([sx sy],IndxPROCzero(ct));
nghb = IndxPROCzero(ct) + [-sx -1 1 sx]; L T B R
nghb([Col==l Row==l Row==sx Col==sy]) = [];

temp = DomProbMapPROC(nghb,:);
if any(sum(temp,2))

temp = sum(temp);
DomProbMapPROCZero(ct,:) = temp/sum(temp);

end
end
DomProbMapPROC(IndxPROCzero,:) = DomProbMapPROCZero;
DomProbMapPROC = reshape (DomProbMapPROC, [sx, sy, sz])
% ===== initial segmentation
ImSegmLoc = zeros(sx,sy,'uint8');
% define segmentation law

ImSegmLocLaw = 'max';

switch ImSegmLocLaw

case 'max'
[xl,ImSegmLoc] = max(DomProbMapPROC, [],3);

clear xl
case 'thres'

Hierarchy = [4 2 3 1]; SegmThres = [0.1 0.1 0.1 0.1];

DomProbMapPROCtemp = DomProbMapPROC;
for ctD = 1:sz

MaskD = DomProbMapPROCtemp(:,:,Hierarchy(ctD))>=SegmThres(ctD);
ImSegmLoc(MaskD) = Hierarchy(ctD);
for ctDD = setdiff(l:szHierarchy(ctD))

temp = DomProbMapPROCtemp(:,:,ctDD);
temp(MaskD) = 0; DomProbMapPROCtemp(:,:,ctDD) = temp;

end
end
clear DomProbMapPROCtemp

otherwise
disp('3')

end
%% === save data

fprintf(' Save')
SaveFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,

'_ImSegmLoc_ ',Padding(ctZ,Dat.Nom.PadNum)];

save(SaveFileDir,'ImSegmLoc')
%% === print images

if Dat.ImSegm.SvImgSw
fprintf(' I Print')
if isempty(Dat.ImDcmp.VoidDomSw); Dat.ImDcmp.VoidDomSw = 1; end
% generate HSV image to print

ColorBar =
floor (linspace (1, Dat.ImDcmp.DomNum+Dat.ImDcmp.VoidDomSw+l, size (ImSegmLoc, 1) +1));

ColorBar(end) = [];
ImSegmLoc = [ImSegmLocnan(size(ImSegmLoc,1),20),repmat(ColorBar', [1,30])];
szIl = size(ImSegmLoc,l);
if Dat.ImDcmp.VoidDomSw

Im2Print = hsv2rgb((double(ImSegmLoc)-2)/(Dat.ImDcmp.DomNum),...
ones(size(ImSegmLoc)),double([ImageExt,ones(szIl,50)]) .*(ImSegmLoc>l));

else
Im2Print = hsv2rgb((double(ImSegmLoc))/(Dat.ImDcmp.DomNum+l),...

ones(size(ImSegmLoc)),double([ImageExtones(szIl,50)]) .*(ImSegmLoc>l));
end

% domain names
if Dat.ImDcmp.VoidDomSw
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ChNames = 'void_';

else
ChNames =

end
for ctD = 1:Dat.ImDcmp.DomNum

ChNames = [ChNames,Dat.ImDcmp.DomName{ctD},'_'];
end
% file name
SaveFileSegmDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname, ,

Dat.ImAsbl.SvName, '_z' ,Padding(ctZ,Dat.Nom.PadNum), ' ImSegmLoc_',ChNames (1:end-1)];
% save
if (Dat.ImAsbl.ImPrintScale==100)

imwrite(Im2Print, [SaveFileSegmDir,'.png'],'png')
else

imwrite(imresize(Im2Print,Dat.ImAsbl.ImPrintScale/100),...
[SaveFileSegmDir, ' sc',num2str(Dat.ImAsbl.ImPrintScale), '.png'], 'png')

end

end
fprintf('\n')

end % z plane
fprintf('\t\t..... done\n\n')
return

ImageSegm (Global)
function ZPlanes = ImSegmGlob_1_4(Dat)
% global image segmentation by MRF
% Dimitrios Tzeranis, November 2012 - June 2013
fprintf('=== Image Segmentation ===\n')
%% load MRF model parameters
if isempty(Dat.ImDcmp.VoidDomSw); Dat.ImDcmp.VoidDomSw = 1;end
psi = Dat.ImSegm.DomTransMat;psi(psi==0) = eps; % PSI matrix
if isempty(Dat.ImSegm.ImDlSz); Dat.ImSegm.ImDlSz = 2;end
MRFDilSz = Dat.ImSegm.ImDlSz; % dilation size
% Boundary Map
if isempty(Dat.ImSegm.EnableBndr)

Dat.ImSegm.EnableBndr = true(Dat.ImDcmp.VoidDomSw + Dat.ImDcmp.DomNum)
end
BoundaryMap = Dat.ImSegm.EnableBndr;
%% initialization
[unusedl,unused2,unused3] = mkdir(Dat.ImAsbl.Dir);
ZPlanes = Dat.ImSegm.ZRangePrint(l):Dat.ImSegm.ZRangePrint(2);
NumEle = [1 Dat.ImDcmp.DomCompNum];
LoadFileDir = [Dat.ImReg.Dir,Dat.Nom.DASH,Dat.Nom.fname, '',Dat.ImReg.SvName, 'ImageExt'];
load(LoadFileDir)
for ctZ = ZPlanes

fprintf('\tPlane %s: ',num2str(ctZ))
OpenFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,...

'_DomEvidAsbl_ ',Padding(ctZ,Dat.Nom.PadNum)];

load(OpenFileDir) % loads 'DomProbMapPROC' 'AsblCompConMap'
clear AsblCompConMap
% load local segmentation
OpenFileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,...

'_ImSegmLoc_',Padding(ctZ,Dat.Nom.PadNum)];

load(OpenFileDir) % loads 'ImSegmLoc'
ImSegm = ImSegmLoc;
clear ImSegmLoc
%% === data tuning
fprintf('. ')
[sx,sy,sz] = size(DomProbMapPROC);

% ===== normalize the pixels of DomProbMapPROC whose sum >0 and <1
DomProbMapPROC = reshape(DomProbMapPROC, [sx*sy,sz]);
DomProbMapPROCsum = sum(DomProbMapPROC,2);
IndxPROCsum = find(DomProbMapPROCsum>0 & DomProbMapPROCsum<l);
IndxPROCzero= find(DomProbMapPROCsum==0);
DomProbMapPROC2Norm = DomProbMapPROC(IndxPROCsum,:);
DomProbMapPROCsum = DomProbMapPROCsum(IndxPROCsum);
parfor ct = 1:length(IndxPROCsum)

DomProbMapPROC2Norm(ct,:) = ..
DomProbMapPROC2Norm(ct,:)/DomProbMapPROCsum(ct);

end
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DomProbMapPROC (IndxPROCsum,:) = DomProbMapPROC2Norm;
clear DomProbMapPROCsum IndxPROCsum DomProbMapPROC2Norm DomProbMapPROCsum
% ===== take care of pixels whose sum==0
fprintf('. ')
DomProbMapPROCZero = zeros(length(IndxPROCzero),sz,'single');
parfor ct = 1:length(IndxPROCzero)

[Row,Col] = ind2sub([sx sy],IndxPROCzero(ct));
nghb = IndxPROCzero(ct) + [-sx -1 1 sx]; L T B R
nghb([Col==l Row==l Row==sx Col==sy]) =

temp = DomProbMapPROC(nghb,:);
if any(sum(temp,2))

temp = sum(temp);
DomProbMapPROCZero(ct,:) = temp/sum(temp);

end
end
DomProbMapPROC (IndxPROCzero,:) = DomProbMapPROCZero;
DomProbMapPROC = reshape(DomProbMapPROC, [sx,sy,sz]);
%% ===== identify boundaries to refine MRF
fprintf('. ')
sel = strel('disk',l);
MaskDi = false(sx,sy,sz);
for ctD = 1:sz

if BoundaryMap(ctD,ctD)
MaskDi(:,:,ctD) = imdilate(ImSegm==ctD,sel);

end
end
MaskDC = false(sx,sy);
for ctDl = 1:sz

BoundaryMapt = BoundaryMap(ctDl,:);
BoundaryMapt(l:ctDl) = false;
for ctD2 = find(BoundaryMapt)

MaskDC = MaskDC I (MaskDi(:,:,ctDl)&MaskDi(:,:,ctD2));
end

end
MaskDC = (imdilate(MaskDC & ImageExt,strel('disk',MRFDilSz)) I (ImSegm==0)) & ImageExt
clear MaskDi
%% === identify areas for MRF
Areas4MRF = bwconncomp(MaskDC,4);
if Areas4MRF.NumObjects

fprintf('%s regions identified.. ',num2str(Areas4MRF.NumObjects))
% organize trees
Areas4MRFSize = cellfun('length',Areas4MRF.PixelIdxList);
% trees of size 1
IndxArealPx = find(Areas4MRFSize==);
Indx4Forest = setdiff(l:Areas4MRF.NumObjects,IndxArealPx);
% group objects into Forrests
ForrestSizeLim = 20000;
PixelCount = cumsum(Areas4MRFSize(Indx4Forest));
PixelCount = PixelCount(:)'/ForrestSizeLim;
ForrestIndx = cell(ceil(PixelCount(end)),l);
SizeForrest = zeros(ceil(PixelCount(end)),l);
for ctG = 1:ceil(PixelCount(end))

ForrestIndx{ctG} = Indx4Forest(find(PixelCount>(ctG-1) & PixelCount<=ctG));
SizeForrest(ctG) = sum(Areas4MRFSize(ForrestIndx{ctG}));

end
ForrestIndx(find(SizeForrest==0)) = [];
SizeForrest(find(SizeForrest==0)) = [];
%% === process single-pixel objects
for ctAREA = IndxArealPx

[RWG,CWG] = ind2sub([sx,sy],Areas4MRF.PixelldxList{ctAREA}); %row-column cords global
% Corners of image

ImCnr = [max([min(RWG)-1,1]);max([min(CWG)-1,1]);min([max(RWG)+1,sx]);min([max(CWG)+1,sy])];
szR = ImCnr(3) - ImCnr(l) + 1; szC = ImCnr(4) - ImCnr(2) + 1;
MaskIndx = sub2ind([szR,szC],RWG - ImCnr(l) + 1,CWG - ImCnr(2) + 1);
MaskL = false(szR,szC); MaskL(MaskIndx) = true;
ImageExtL = ImageExt(ImCnr(l):ImCnr(3),ImCnr(2):ImCnr(4)); % local ImageExt mask
% neighbor pixels
ImSegmL = ImSegm(ImCnr(l):ImCnr(3),ImCnr(2):ImCnr(4));

phiObsIndx = ImSegmL( find(((imdilate(MaskL,strel('disk',)) & (~MaskL)) & ImageExtL)) );
% generate phi
phi = squeeze(DomProbMapPROC(RWG,CWG,:))' + sum(psi(phiObsIndx,:));
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% if the area has a single pixel, solution is trivial
[tmpl,tmp2] = max(phi);
ImSegm(Areas4MRF.PixelIdxList{ctAREA}) = tmp2;

end
clear RWG CWG ImCnr szR szC MaskIndx MaskL ImageExtL ImSegmL phiObsIndx phi tmpl tmp2
DomProbMapPROC = reshape(DomProbMapPROC,[sx*sy,sz]);
%% === MRF SEGMENTATION
fprintf('solving MRF in %s forests',num2str(length(ForrestIndx)))
for ctG = 1:length(ForrestIndx)

fprintf('.')
Obj2Proc = ForrestIndx{ctG}; NumTree = iength(Obj2Proc);
% initialize
MaskIndx = cell(NumTree,l); phi = cell(NumTree,l);
nghb = cell(NumTree,l); Q = cell(NumTree,l);
N = zeros(l,NumTree);
for ctT = 1:NumTree

ctAREA = Obj2Proc(ctT);
% ===== ===== setup MRF Model for each area
MaskIndxG = Areas4MRF.PixelIdxList{ctAREA}; % index in global coords
[RWG,CWG] = ind2sub([sx,sy],MaskIndxG); %row-column cords global
MaskIndx{ctT} = MaskIndxG;
% Corners of image

ImCnr = [max([min(RWG)-1,1]);max([min(CWG)-1,1]);min([max(RWG)+1,sx]);min([max(CWG)+1,sy])];
szR = ImCnr(3) - ImCnr(l) + 1; szC = ImCnr(4) - ImCnr(2) + 1;
RWL = RWG - ImCnr(l) + 1; % rows in local coords
CWL = CWG - ImCnr(2) + 1; % cols in local coords
MaskIndxL = sub2ind([szR,szC],RWL,CWL); % object index in local coords
clear RWG CWG
MaskL = false(szR,szC);
MaskL(MaskIndxL) = true;
ImageExtL = ImageExt(ImCnr(1) :ImCnr(3),ImCnr(2) :ImCnr(4)); local ImageExt mask
NotExtIndx = find(~ImageExtL);
% % % generate phi
DomProbMapPROCL = DomProbMapPROC(MaskIndxG,:); processed image, local
DomProbMapPROCL(DomProbMapPROCL==) = eps;
phi{ctT} = DomProbMapPROCL;
clear DomProbMapPROCL
% % % observables
ObsPx = (imdilate(MaskL,strel('disk',l)) & (~MaskL)) & ImageExtL;
ObsPxIndx = find(ObsPx); % boundary index in local coords
ImSegmL = ImSegm(ImCnr(l):ImCnr(3),ImCnr(2):ImCnr(4));
phiObsIndx = ImSegmL(ObsPxIndx);
N(ctT) = length(MaskIndxL);
No = length(ObsPxIndx);
clear ObsPx ImSegmL
% % % generate nghb, Q
nghb{ctT} = zeros(N(ctT),4);
Q{ctT} = zeros(N(ctT),2,'uint32');
for ct = 1:N(ctT)

[Row,Col] = ind2sub([szR,szC],MaskIndxL(ct)); % [Row,Col]
Q{ctT}(ct,:) = [Row,Col];
Neigb = MaskIndxL(ct) + [-szR -1 1 szR]; % L T B R
Neigb([Col==l,Row==l,Row==szR,Col==szC]) = NaN;
% remove neighbors not included in ImageExtL
[tmpl,tmp2,tmp3] = intersect(Neigb,NotExtIndx);
Neigb(tmp2) = NaN; nghb{ctT}(ct,:) = Neigb([4 1 3 2]); % R L B T

end
clear tmpl tmp2 tmp3
% % % incorporate observed pixels in the model
for ct = 1:No

[Row,Col] = ind2sub([szR,szC],ObsPxIndx(ct));
Neigbo = ObsPxIndx(ct) + [-szR -1 1 szR];
Neigbo([Col==l,Row==l,Row==szR,Col==szc]) =

[Neigbo,iNeigbo,iMaskIndx] = intersect(Neigbo,MaskIndxL);
for ctNE = 1:length(iMaskIndx)

% calculate nghb
nhgbi = nghb{ctT}(iMaskIndx(ctNE),:);
nhgbi(find(nhgbi==ObsPxIndx(ct))) = NaN;
nghb{ctT}(iMaskIndx(ctNE),:) = nhgbi;
% update phi
phi{ctT}(iMaskIndx(ctNE),:) = phi{ctT}(iMaskIndx(ctNE),:) +
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psi(phiObsIndx(ct),:);

end
end

clear nhgbi
nghb{ctT} = changem(nghb{ctT},MaskIndxG,MaskIndxL);

end
% PREPARE FOREST
MaskIndxForrest = cell2mat(MaskIndx);
phiForrest = cell2mat(phi);
nghbForrest = changem(cell2mat(nghb),...

1:length(MaskIndxForrest),MaskIndxForrest);
QForrest = cell2mat(Q);
Forrest = cell(NumTree,l);
ctCur = [0;cumsum(cellfun('length',MaskIndx))];
for ctT = 1:NumTree

Forrest{ctT} = uint32(ctCur(ctT)+l):ctCur(ctT+1);
end
% =-=-- ===== run MRF in forest data
MaxNumIt = 120;
UConv = 5;

PrntDU = false;
ParProcSw = sum(cellfun('length',Forrest))>500; % apply parallel processing if >500 pixels

ImSegm(MaskIndxForrest) = bp map parDT_8_9(phiForrest, psi, ...
nghbForrest, QForrest, MaxNumIt,UConv,PrntDU,ParProcSw,Forrest);

end
else

fprintf('No regions identified. ')
end
%% === save data
fprintf('I Save ')
SaveFileDir =

[Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,' _ImSegm' ,Padding(ctZ,Dat.Nom.PadNum)];
save(SaveFileDir,'ImSegm')
%% === print images
if Dat.ImSegm.SvImgSw

fprintf('I Print')
if isempty(Dat.ImDcmp.VoidDomSw); Dat.ImDcmp.VoidDomSw = 1; end
% generate HSV image to print
ColorBar = floor(linspace(1,Dat.ImDcmp.DomNum+Dat.ImDcmp.VoidDomSw+l,size(ImSegm,1)+1));
ColorBar(end) = [];
ImSegm = [ImSegm,nan(size(ImSegm,1),20),repmat(ColorBar', [1,30])]; szIl size(ImSegml);
if Dat.ImDcmp.VoidDomSw

Im2Print = hsv2rgb((double(ImSegm)-2)/(Dat.ImDcmp.DomNum), ...
ones(size(ImSegm)),double([ImageExt,ones(szIl,50)]).* (ImSegm>l));

else
Im2Print = hsv2rgb((double(ImSegm))/(Dat.ImDcmp.DomNum+l),...

ones(size(ImSegm)),double([ImageExtones(szIl,50)]).* (ImSegm>l));
end
% domain names
if Dat.ImDcmp.VoidDomSw

ChNames = 'void_';
else

ChNames =
end
for ctD = 1:Dat.ImDcmp.DomNum

ChNames = [ChNames,Dat.ImDcmp.DomName{ctD}, '_'];
end
% file name
SaveFileSegmDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname, '

Dat.ImAsbl.SvName,'_z',Padding(ctZ,Dat.Nom.PadNum),'_ImSegmGlob_',ChNames];
save

if (Dat.ImAsbl.ImPrintScale==100)
imwrite(Im2Print, [SaveFileSegmDir,'.png'],'png')

else
imwrite(imresize(Im2Print,Dat.ImAsbl.ImPrintScale/100),...

[SaveFileSegmDir, ' sc',num2str(Dat.ImAsbl.ImPrintScale), '.png'], 'png')
end

end
fprintf('\n')

end % z plane
fprintf('\t\t..... done\n\n')
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return

bpmapparDT_8_9
function [map seq, mapval, m, midx,UH] = bp-map-parDT_8_9(phi, psi, nghb, Q,
MaxNumIt,UConv,PrntDU,ParProcSw,Forest)
% This function performs max-sum algorithmin a tree graph where only
% pairwise cliques exist in a parallel fashion.

% INPUT
phi: Nxcard array
psi: cardxcard array
nghb: Nx4 array

Q: Nx2 array

Forest: Fxl cell array

% OUTPUT
map seq: Nxl matrix

% map val: lxl scalar

% m: Nx4 cell matrix

% midx:Nx4 cell matrix

lxl
lxl

scalar
scalar

- Node potentials
- Pairwise potentials
- Node connectivity. (R L B T)
Assumes 4-connectivity. use NaN if a
neighbor does not exist

- [Column, Row] coords of each node for
asynchronous belief propagation

- each cell contains the nodes of a tree
if empty, then forest contains 1 tree

- MAP sequence
Sequence of variable values corresponding
to the maximum value of this function

- MAP value

Maximum value of this function
- Messages (assume 4-nighborhood)

Rows represent the origin of a message,
and columns the destination of a message.

- argmax(x) of optimal messages (assume 4-nighborhood)
Rows represent the origin of a message,
and columns the destination of a message.

- Number of nodes (variables)
- Cardinality (alphabet) of the variables

(assumed the same for all variables)
Each variable x i takes values in {1, ... , card}

Author: geopapa, edits by Dimitrios Tzeranis

Algorithm:
1. Initialization

for i=l:N
for j=l:N(i)

m_{i->j^{0}(xj) = 0
end

end
2. Apply iteratively until convergence (for a tree N iterations would

suffice, where N is the number of
nodes)

% for t = 1:iter
% for i=l:N
% blf {i}^{t}(x i) = log(phi(x i)) + sum {k \in N(i)} m_ {k->i}^{t}(xi)

for j \in N(i)
m_{i->j}^{t+l}(xj) = max_{xi log(psi(xi,x-j) + blf_ {i}{t}(x_i) -

m_{j->i}^{t}(x_i) }
% idx_ {i->j}^{t+l}(xj) = argmax_{x-i) { log(psi(x-i,x-j) + blf_{i}^{t}(x i) -

m_{j->i}^{t}(xi) }
% end
% end
% end
% 3. Compute the marginals
% for i=1:N
% b -i(xi) = log(phi(x-i)) + sum_{k \in N(i)) m_{k->i}^{t}(xi)
% end
% 4. Backtrack to recover an MAP configuration
% Choose an arbitrary i for a root
% x -i^{map} = argmax_{x_i} { bi(xi) }

for j \in N(i)
xj^{map) = idx_{j->i}(x i^{map})

% end
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% Continue backtracking until all nodes' maximum values have been tracked.

% 5. Log-Likelihood and likelihood of maximum configuration are
% log(p(x_1^{map}, .. , xN^{map})) b i{x i^{map}

% p(x l^{map}, ... , x_N^{map}) = exp(b i{xi^{map})

% respectively.

INITIALIZATION
system dimensions

[N,card] = size(phi); % N: number of nodes, % card: card

% =Process Neighbors
% number of neighbors for each node
% first column : RIGHT neighbor. second column: LEFT neighbor. third column: BOTTOM neighbor

% fourth column: TOP neighbor
% % number of neighbors per node
% nghbNum = uint8(sum(-isnan(nghb),2));
% initialize messages: m(i,j): message sent by pixel i to its j-th neighbor
m = cell(N,4); % messages mij between neighbors
% intialize Orind: m(Orind(cti,ctj)) is the message sent by the j-th
% neighbor of pixel i to i
OriInd = zeros (N,4, 'uint32'); % index coordinate of j-th neighbor of node i in the m matrices
% node i has n neighbors. k = nghb{i} (j) is the node that corresponds to the
% j-th neighbor of i. the message from the j-th neighbor of i to node i is
% located at m(Orind(cti,ctj))

if ParProcSw
parfor cti = 1:N % initialize m and OriInd

nghbL = nghb; phiL = phi;
NzNb = find(-isnan(nghbL(cti,:))); % find neighbor directions for pixel i
mCS = repmat({zeros(card,l,'single')},1,4); % add zeros in non-existing messages

OriCS = zeros(1,4,'uint32'); % index of neighbour j of node i in the i-th line of the m matrix

% directions where i has a neighbor
for ctj = NzNb

temp = phiL(nghbL(cti,ctj),:)'; temp(temp<0.1) = 0.1;
mCS(ctj) = {temp/sum(temp)};
OriCS(ctj) = find(nghbL(nghbL(cti,ctj),:)==cti);

end
OriCS(NzNb) = sub2ind([N,4],uint32(nghbL(cti,NzNb)),OriCS(NzNb));
OriInd(cti,:) = OriCS; m(cti,:) = mCS;

end
else

for cti = 1:N % initialize m and OriInd
nghbL = nghb; phiL = phi;
NzNb = find(~isnan(nghbL(cti,:))); % find neighbor directions for pixel i

mCS = repmat({zeros(card,l,'single') },1,4); % add zeros in non-existing messages

OriCS = zeros(1,4,'uint32'); % index of neighbour j of node i in the i-th line of the m matrix

% directions where i has a neighbor
for ctj = NzNb

temp = phiL(nghbL(cti,ctj),:)';
temp(temp<0.1) = 0.1;
mCS(ctj) = {temp/sum(temp)};
OriCS(ctj) = find(nghbL(nghbL(cti,ctj),:)==cti);

end
OriCS(NzNb) = sub2ind([N,4],uint32 (nghbL(cti,NzNb)),OriCS(NzNb));
OriInd(cti,:) = OriCS;
m(cti,:) = mCS;

end

end
clear OriCS nghbi temp
% initialize argmax of optimal messages
midx = cell (N,4);
% initialize energy calculations
Uhis = zeros(l,MaxNumIt);UhisM = zeros(l,MaxNumIt); Uhisabs = zeros(l,MaxNumIt);
% initialize QQ
QQ =cell(1,2);QQ{l} =unique(Q(:,l)); QQ{2} =unique(Q(:,2));
QQL = [length(QQ{l}) , length(QQ{2})];
Nodes2ProcQ = cell(2,max(QQL));
for ctA = 1:2

Nodes2ProcQA = cell(l, max( length(QQ{1}) length(QQ{2}) ));
for ctS = 1:length(QQ{ctA})

459



{ uint32(find(Q(:,ctA)==(QQ{ctA}(ctS)))) };
end
Nodes2ProcQ(ctA,:) = Nodes2ProcQA;

end
clear QQ Q
%% Iteratively update m estimates
% initialize switches
NextIterSw = true; LastIter = false; ctIt = 0;
if PrntDU; fprintf('Iter#\tdU[k]\tdU[k-1]:\n'); end
while NextIterSw

ctIt = ctIt + 1;
% if this is the last iteration do not do more
if LastIter; NextIterSw = false; end
% initiate dU
dU 0; dUabs = 0;
for ctA = 1:2 % AXIS (1: process rows, 2: process columns) %$8

dirA = (ctA-1)*2 + [1 2];
dirNotA = setdiff(1:4,dirA);
Nghb2A = zeros (2,1,'uint8');
Nghb2A(l) = (ctA-1)*2 + 1; % which neighbor is being processed (RLBT)
Nghb2A(2) = ctA*2 +1 - 1; % which neighbor to add during msg calculation
mNEW = cell(QQL(ctA),l); mmNEW = cell(QQL(ctA),l);
Nodes2ProcQA = Nodes2ProcQ(ctA,:);
if ParProcSw

% parallel processing enabled: each core processes a row/column
parfor ctS = 1:QQL(ctA) % for each row/column

% generate data used in each processor
dirNotAL = dirNotA; Nghb2AL = Nghb2A;
% generate data used in each processor
nghbcs = nghb; nghbcs = nghbcs(Nodes2ProcQA{ctS},:);
blfC = phi; blfC = log(blfC(Nodes2ProcQA{ctS},:));
OriIndL = OriInd; OriIndL = OriIndL(Nodes2ProcQA{ctS},:);
mL = m;
for ctN = 1:2 %ctA=l: B/T, ctA=2: R/L

% which pixels have an appropriate normal neighbor
OriIndC = find(~isnan(nghbcs(:,dirNotAL(ctN))));
% add to phi
if ~isempty(OriIndC)

blfC(OriIndC,:) = blfC(OriIndC,:) + cell2mat(mL(OriIndL(OriIndC,dirNotAL(ctN)))')';
end

end
% prepare zig-zag belief update for each single row/column
OriInd2A = cell(2,1);

OriInd2A{1} = find(~isnan(nghbcs(:,Nghb2AL(1))))'; pixels that have R/B neighbor
OriInd2A{2} = find(~isnan(nghbcs(:,Nghb2AL(2)))) ';% pixels that have L/T neighbor

OriInd2A{2} = OriInd2A{2}(end:-l:1);
% initialize messages

msgUPD = mL(Nodes2ProcQA{ctS},dirA);
if LastIter

mmidx = cell(length(Nodes2ProcQA{ctS}),2);
else

mmidx =
end
% zig-zag belief update for each single row/column
for ctF = 1:2 % 1: back (R (ctA=l) or B(ctA=2)). 2: forth (L (ctA=l) or T(ctA=2))

for ctP = OriInd2A{ctF}
if isnan(nghbcs(ctPNghb2AL(3-ctF)))

blf = blfC(ctP,:)
else

blf = blfC(ctP,:)' + msgUPD{ctP+(-3+2*ctF),ctF};
end
if LastIter

% update m and save midx
[maxval, maxidx] = max(log(psi') + repmat(blf,1,card)', [], 2);
mmidx{ctP,ctF} = maxidx;

else
% update m only
max_val = max(log(psi') + repmat(blf,l,card)', [], 2);

end
% normalize & save message
msgUPD{ctP,ctF}= max val - min(max val);
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end % pixels of this row/column
end %back and forth
% each processor exports its findings
mNEW{ctS} = msgUPD;
if LastIter

mmNEW{ctS} = mmidx;
end
% calculate energy decrease
z2 = cell2mat(msgUPD) - cell2mat(mL(Nodes2ProcQA{ctS},dirA));

dU = dU + sum(z2(:)); dUabs = dUabs + sum(abs(z2(:)));
end

else
% parallel processing not enabled
for ctS = 1:QQL(ctA) % for each row/column

% generate data used in each processor
dirNotAL = dirNotA;
Nghb2AL = Nghb2A;

% generate data used in each processor
nghbcs = nghb; nghbcs = nghb
blfC = phi; blfC = log
OriIndL = OriInd; OriIndL = Ori

blfC(OriIndC,

cs(Nodes2ProcQA{ctS},:);
(blfC(Nodes2ProcQA{ctS},:));
IndL(Nodes2ProcQA{ctS},:);

mL =m;
for ctN = 1:2 %ctA=l: B/T, ctA=2: R/L

% which pixels have an appropriate normal neighbor
OriIndC = find(~isnan(nghbcs(:,dirNotAL(ctN))));
% add to phi
if ~isempty(OriIndC)

= blfC(OriIndC,:) + cell2mat(mL(OriIndL(OriIndC,dirNotAL(ctN)))')';
end

end
% prepare zig-zag belief update for each single row/column
OriInd2A = cell(2,1);

OriInd2A{l} = find(-isnan(nghbcs(:,Nghb2AL(1)))) '; % pixels that have R/B neighbor
OriInd2A{2} = find(~isnan(nghbcs(:,Nghb2AL(2)))) '; % pixels that have L/T neighbor

OriInd2A{2} = OriInd2A{2}(end:-l:1);
% initialize messages

msgUPD = mL(Nodes2ProcQA{ctS},dirA);
if LastIter

mmidx = cell(length(Nodes2ProcQA{ctS}),2);
else

mmidx = [];
end
% zig-zag belief update for each single row/column
for ctF = 1:2 % 1: back (R (ctA=l) or B(ctA=2)). 2: forth (L (ctA=l) or T(ctA=2))

for ctP = OriInd2A{ctF}
if isnan(nghbcs(ctP,Nghb2AL(3-ctF)))

blf = blfC(ctP,:)
else

blf = blfC(ctP,:)' + msgUPD{ctP+(-3+2*ctF),ctF};
end
if LastIter

% update m and save midx
[maxval, maxidx] max(log(psi') + repmat(blf,l,card)', [], 2);

mmidx{ctP,ctF} = max idx;
else

% update m only
maxval = max(log(psi') + repmat(blf,l,card)', [], 2);

end
% normalize & save message
msgUPD{ctP,ctF}= maxval - min(max val);

end % pixels of this row/column
end %back and forth
% each processor exports its findings
mNEW{ctS} = msgUPD;
if LastIter

mmNEW{ctS} = mmidx;
end
% calculate energy decrease
z2 = cell2mat(msgUPD) - cell2mat(mL(Nodes2ProcQA{ctS},dirA));
dU = dU + sum(z2(:)); dUabs = dUabs + sum(abs(z2(:)));

end
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end
% assemble updates & calculate errors
for ctS = 1:QQL(ctA) % for each row/column

% nodes that belong to this row/column
m(Nodes2ProcQA{ctS},dirA) = mNEW{ctS};
if LastIter

midx(Nodes2ProcQA{ctS},dirA) = mmNEW{ctS};
end

end

end % axis
% save energy history
Uhis(ctIt) = dU;
UhisM(ctIt) = sum(Uhis(max(l,ctIt-5):ctIt))/(ctIt+l-max(l,ctIt-5));
Uhisabs(ctIt) = dUabs;
% one more last iteration?
if ctIt>2

if (ctIt >= MaxNumIt) 11 all(abs(UhisM((ctIt-2):ctIt))<UConv)
LastIter = true;

end

end
% print energy history
if -rem(ctIt,3) && PrntDU

disp([num2str(ctIt),' ',num2str(UhisM(ctIt),3),' ',num2str(UhisM(ctIt-l),3)])
end
% if this is last iteration store energy history
if LastIter

Uhis = Uhis(1:ctIt); UhisM = UhisM(l:ctIt); Uhisabs = Uhisabs(l:ctIt);
end

end
UH = cell(1,3); UH{1} = Uhis; UH{2} = UhisM; UH{3} = Uhisabs;
clear prev m blf mmidx mm
% calculate roots
if isempty(Forest)

% Choose a root randomly
root = unidrnd(N); Treeroot = root;
% find marginal for root
broot = log(phi(root,:))' + sum(cell2mat(m(OriInd(root,-isnan(nghb(root,:))))),2);

else
NumTrees = size(Forest,l);
root = zeros(l,NumTrees); Treeroot= zeros(l,NumTrees); broot = zeros (card,NumTrees);
for ctF = 1:NumTrees % loop over trees

% Choose a root randomly
SzTree = length(Forest{ctF});
Treeroot(ctF) = unidrnd(SzTree);
root(ctF) = Forest{ctF}(Treeroot(ctF));
% find marginal for root
broot(:,ctF) = log(phi(root(ctF),:))' +

sum(cell2mat(m(OriInd(root(ctF),-isnan(nghb(root(ctF), :))))),2);
end

end
[tmp, idxmroot] = max(broot); % Find x_{root}^{map}

clear tmp
% Backtracking
map seq = btrack9(root, idxmroot, nghb, OriInd, midx, Forest);
%% Evaluate MAP log-likelihood
lg map val = sum(log(phi(sub2ind([N,card], (l:N)',mapseq))));
for cti = 1:N

NzNb = find(~isnan(nghb(cti,:)));
lg map val = lg map val + 0.5*sum(log(psi(sub2ind([card

card] ,map seq(cti) *ones (length (NzNb) ,1) ,map seq(nghb(cti,NzNb))))))
end
map val = exp(lg map val); % Evaluate MAP likelihood
return

function map seq = btrack9(root, idxmroot, nghb, OriInd, midx, Forest)
% This function recovers the maximum sequence of values by backtracking.
% INPUT
% N: lxl scalar - Number of nodes (variables)
% root: lxl scalar - Root
% map idx root: lxl scalar - Index corresponding to the maximum value of
% the chosen root
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% nghb: Nxl cell array - Neighbors

% Each element lists the neighbors of the
% corresponding variable

% midx: Nx4 cell matrix - Message maximum indices
% Each element corresponds to the index
% of the origin node that maximizes the
% value of the message of the target node
% OUTPUT
% map seq: Nxl matrix - Sequence of variable (node) values

% corresponding to the optimal value
% Original Author: geopapa, Modifications by Dimitris Tzeranis

N = size(nghb,l);map seq = zeros(N,1);stack = zeros(l,N);
if isempty(Forest)

NumTrees = 1;
else

NumTrees = length(Forest);
end
% loop over trees
for ctF = 1:NumTrees

map seq(root(ctF)) = idxmroot(ctF);
stack(l) = root(ctF); stackLoc = 1;
while stackLoc

cti = stack(stackLoc);
stack(stackLoc) = 0; stackLoc = stackLoc - 1;
nghbi = nghb(cti,:); NzNb = find(~isnan(nghbi));
for ctj = NzNb

map seq(nghbi(ctj)) = midx{OriInd(cti,ctj)}(map seq(cti));
nghb(nghbi(ctj),nghb(nghbi(ctj),:)==cti) NaN;

end
temp = setdiff(nghb(cti, :),stack(1:stackLoc)
temp(isnan(temp)) = [];
tempL = length(temp);
stack((stackLoc+l):(stackLoc+tempL)) = temp;
stackLoc = stackLoc + tempL;

end
end
return

CeIlScObj
function ZPlanes = CellScObj_1_8(Dat)
% identify cell objects in segmented images of cells
% Dimitrios Tzeranis, September 2012 - Jan 2013
% ======-=====================--------------------

% CODE OVERVIEW
% parameter input
% loop over Z planes
% read plane data
% generate cytoplasm, cell, nuclei,matrix masks
% initialize cell objects
% probe user to add/remove cells or stop
% update & display cell-scaffold image w highlighted chosen cells

% user picks to add/remove cells

% if input==add
% process local image

% identify nuclei objects

% identify peaks via hmin calculation
% edit seeds
% segment cytoplasm using min(grayscale-weighted distance)

store segmented cytoplasms that contain nuclei
elseif input==remove

pick an area to process
identify & save nucleus

% else
% exit while loop

% end
% end
% for [process each cell object]
% identify nucleus pixels

% identify cell pixels
% identify cytoplasm pixels
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% nucleus centroid
% identify cell-matrix & cell-void boundaries
% end
% end
fprintf('\tProcessing segmenting cell-scaffold images')

(unusedl,unused2,unused3] = mkdir(Dat.CellScObj.Dir);
VoidDomain = 1;

NuclDomain = Dat.CellScObj.NuclDom; %2
CytoDomain = Dat.CellScObj.CytoDom; %3
MatrixDomain = Dat.CellScObj.ScafDom; %4
CellTrkComp = 2; % fluorescent component that contains cell-tracker
NucStainComp = 1; % fluorescent component that contains nuclei
PxSzIm = Dat.Img.PxSz*(40/Dat.Img.Magn)*(Dat.Img.Res/32);
diskl = strel('disk',l); % disk for dilation operations

ZPlanes = Dat.CellScObj.ZRange(l):Dat.CellScObj.ZRange(2);
fprintf('\n\tPlane:')

%% main loop
for ctZZ = 1:length(ZPlanes);

ctZ = ZPlanes(ctZZ); fprintf(' %s',num2str(ctZ))
===== read and process plane data

FileDir [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname,...
'ImSegm_ ',Padding(ctZ,Dat.Nom.PadNum)];

load(FileDir) % reads 'ImSegm'
FileDir = [Dat.ImAsbl.Dir,Dat.Nom.DASH,Dat.Nom.fname, ,...

Dat.ImAsbl.SvName, ' ',Padding(ctZ,Dat.Nom.PadNum)];
load(FileDir) % reads 'AsblCompConMap' (full unmixing)
AsblCompConMap = AsblCompConMap{1};
NumRowsG = size(ImSegm,l); NumColsG = size(ImSegm,2);

% ===== generate cytoplasm, cell, nuclei, matrix, void masks
MaskCytoG = ImSegm == CytoDomain; MaskNuclG = ImSegm == NuclDomain;
MaskCellG = MaskCytoG I MaskNuclG; MaskMatrG = ImSegm == MatrixDomain;
MaskVoidG = ImSegm == VoidDomain;

% ===== initialize temporary cell objects
CellOBJupd = struct('PxNcl', [],'PxCyto', [],'PxMatrixBnd', [],'PxVoidBnd', [],...

'PxCellBnd', [],'Centroid', []);
NumCellOBJupd = 0;

%% ===== probe user to add/remove cells or stop (done)
figl = figure; ContinueProc = true;
while ContinueProc

% ===== create & display cell-scaffold image with highlighted chosen cells
% create
Im4Pick = single(1/2*cat(3,MaskCytoG,MaskMatrG,MaskNuclG));
Im4Pick = reshape(Im4Pick, [NumRowsG*NumColsG 3]);
for ctCELL = 1:NumCellOBJupd

NumCellPxNcl = length(CellOBJupd(ctCELL).PxNcl);
Im4Pick(CellOBJupd(ctCELL).PxNcl,l) = zeros(NumCellPxNcl,l,'single');

Im4Pick(CellOBJupd(ctCELL).PxNcl,2) = ones(NumCellPxNcll,,'single')*(rand*0.1+0.05);
Im4Pick(CellOBJupd(ctCELL).PxNcl,3) = ones(NumCellPxNcl,l,'single')*(rand*0.4+0.6);

NumCellPxCyto = length(CellOBJupd(ctCELL).PxCyto);
Im4Pick(CellOBJupd(ctCELL).PxCyto,l) = ones(NumCellPxCyto,l,'single')* (rand*0.4+0.6);
Im4Pick(CellOBJupd(ctCELL).PxCyto,2) = ones(NumCellPxCyto,l,'single')*(rand*0.2+0.05);

Im4Pick(CellOBJupd(ctCELL).PxCyto,3) = zeros(NumCellPxCyto,l,'single');
end
Im4Pick = reshape(Im4Pick, [NumRowsG NumColsG 3]);
figure(figl)
imshow(Im4Pick)
for ctCELL = 1:NumCellOBJupd

text(round(CellOBJupd(ctCELL).Centroid(2)),...
round(CellOBJupd(ctCELL).Centroid(l)),num2str(ctCELL),'Color', [l 1 1])

end
% ===== user input (add/remove/done)
title ('"a": add cells (mono-nuclei), "b": add cells (nuclei split), "r": remove cells,

"s": done','FontSize',16,'Color', [1 0 0])

AcceptCell = input('type "a" to add cells (mono-nuclei), "b" to add cells (nuclei split),
"r" to remove cells, or "s" if done ','s'); title('')

if strcmpi(AcceptCell,'a') I strcmpi(AcceptCell,'b')
title('pick a new cell and press enter. press enter without clicking to finish',...

'FontSize',16,'Color', [1 0 0])
[ColcM,RowcM] = getpts;
if ~isempty(RowcM)

for ctPP = 1:length(RowcM) % loop over all points chosen
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Colc = round(ColcM(ctPP)); Rowc = round(RowcM(ctPP));

if ~MaskCellG(Rowc,Colc)

continue

disp('invalid location identified. need to click on a cell')
end

-===== identify local window
temp = false([NumRowsG,NumColsG]); temp(Rowc,Colc) = true;

CellCytoD = imreconstruct(temp, MaskCellG); % identify nuclei-cytoplasm region
clear temp

[CellCytoRowG,CellCytoColG] = ind2sub( [NumRowsG,NumColsG] ,find(CellCytoD));
CellCytoRowLim = [min(CellCytoRowG),max(CellCytoRowG)];

CellCytoColLim = [min(CellCytoColG),max(CellCytoColG)];
sRL = CellCytoRowLim(2) - CellCytoRowLim(l) + 1;

sCL = CellCytoColLim(2) - CellCytoColLim(l) + 1;

CellCytoD = CellCytoD(CellCytoRowLim(1) :CellCytoRowLim(2) ,CellCytoColLim(1) :CellCytoColLim(2));

CytoD = CellCytoD &
MaskCytoG(CellCytoRowLim(1) :CellCytoRowLim(2) ,CellCytoColLim(1) :CellCytoColLim(2));
NucD = CellCytoD & ...
MaskNuclG(CellCytoRowLim(1) :CellCytoRowLim(2) ,CellCytoColLim(1) :CellCytoColLim(2));
ScafD = MaskMatrG(CellCytoRowLim(1) :CellCytoRowLim(2) ,CellCytoColLim(1) :CellCytoColLim(2));

clear CellCytoRowG CellCytoColG
% ===== process local image
% (low-pass filter cell-tracker sugnal)

FltCellTrkImage =
filter2 (fspecial('gaussian',20,10) ,double(AsblCompConMap(CellCytoRowLim(1) :CellCytoRowLim(2),
CellCytoColLim(1) :CellCytoColLim(2) ,CellTrkComp)));

ImGradAbsLLim = 0.1;
ImInt = filter2 (fspecial('gaussian',5,3)
double (AsblCompConMap (CellCytoRowLim(1) :CellCytoRowLim(2),
CellCytoColLim(1) :CellCytoColLim(2) ,CellTrkComp)) );
ImGradAbs = cat(3,0.5*(-[zeros(sRL,1),ImInt(:,1:end-1)] + [ImInt(:,2:end),zeros(sRL,1)]),0.5*(-
[zeros(1,sCL);ImInt(1:end-1,:)] + [ImInt(2:end,:);zeros(1,sCL)]));
ImGradAbs = sqrt(sum(ImGradAbs.^2,3)); ImGradAbs(ImGradAbs<=ImGradAbsLLim) = 0;

clear ImInt
% ===== identify nucleus objects
MinNucDiam = 4; % lower limit of nucleus diameter [um]

MinNucAreaPx = round(pi/4* (MinNucDiam/PxSzIm)^2);
NucObj = bwconncomp(NucD,4); NucIndx = cell(0); NucNum = 0;
for ctC = 1:NucObj.NumObjects

if length(NucObj.PixelIdxList{ctC})>MinNucAreaPx
if strcmpi(AcceptCell,'b') % split nuclei

hminNUCLim = 8; % hmin limit for nuclei peaks inned dist

minPeakInDist = 5; % min distance of a nucleus peak from nucleus border
MinNucPkDist = 10; % min distance between neighboring cytoplasm peaks [Px]
identify cell possible cell objects based on peak of outer distance function

NucIm = false(sRL,sCL); NucIm(NucObj.PixelIdxList{ctC}) = true;
NucIm = imfill(NucIm,4,'holes'); % fill small holes
DistN = bwdist(~NucIm,'Quasi-Euclidean');
% find peaks based on outer distance

PeaksNuc = imregionalmax(imhmin(DistN,min([hminNUCLim,0.75*max(DistN(:))])));
NucSeedIndx = find(PeaksNuc);
% sort peaks by inner distance
[xl,NucPeakSort] = sort(DistN(NucSeedIndx));
NucSeedIndx = NucSeedIndx(NucPeakSort);
% keep peaks located enough inside nucleus
Peak2Del = DistN(NucSeedIndx)<minPeakInDist;
if all(Peak2Del),Peak2Del(end) = false;end

NucSeedIndx(Peak2Del) = [];
% coordinates of initial estimates

[PeakNucRowPeakNucCol] = ind2sub([sRL,sCL],NucSeedIndx);
PeaksNucRT = [PeakNucRow,PeakNucCol]';

% check if peaks are close to each other
checkV = false(llength(NucSeedIndx));
for ctP = 1:(length(NucSeedIndx)-1)

disti = sqrt(sum( (repmat(PeaksNucRT(:,ctP) ,1,length(NucSeedIndx)-ctP) -
PeaksNucRT(:,ctP+l:end)).^2));

if any(disti<MinNucPkDist)

closepeak = [ctP,ctP + find(disti<MinNucPkDist)];
checkV(ctP) = true;

PeaksNucRT(:,closepeak) = repmat(round(mean(PeaksNucRT(:,closepeak) ,2)) 1,length(closepeak))
end
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end
NucSeedIndx(checkV) = []; PeaksNucRT(:,checkV)= [];

NumNucFnd = length(NucSeedIndx);
% ===== display to user and ask feedback
if NumNucFnd>l

FigPickNuc = figure;
[NucIR,NucIC] = ind2sub([sRL,sCL],NucObj.PixelIdxList{ctC});
subplot(1,2,1) ,imshow(NucIm(min(NucIR) :max(NucIR),min(NucIC) :max(NucIC)))

tmp = DistN; tmp(NucSeedIndx) = 0;
subplot(1,2,2) ,imshow(tmp(min(NucIR) :max(NucIR) ,min(NucIC) :max(NucIC)))

caxis([0 20]),colormap hot
for ctP = 1:NumNucFnd

text(PeaksNucRT(2,ctP)-min(NucIC),PeaksNucRT(l,ctP)-min(NucIR)+2,num2str(ctP))

end
clear tmp NucIR NucIC

title('provide nuclei peaks to keep'), KeepPeakChek = true;
while KeepPeakChek

Peaks2Keep = input('Provide numbers of nuclei peaks to keep ',

if isempty(Peaks2Keep)

Peaks2Keep = [];
KeepPeakChek = false;

else
if isempty(str2num(Peaks2Keep))

Peaks2Keep = round(str2num(Peaks2Keep));
Peaks2Keep = Peaks2Keep(Peaks2Keep<=NumNucFnd);

KeepPeakChek = false;
end

end
end
close(FigPickNuc)
NucSeedIndx = NucSeedIndx(Peaks2Keep);
PeaksNucRT = PeaksNucRT(:,Peaks2Keep);
NumNucFnd = length(NucSeedIndx);

end
if NumNucFnd>l

% ===== segment nuclei region based on seeds
DistNLIM = 10; LoopChk = true; LoopNum = 0;
while LoopChk & LoopNum<5

LoopNum = LoopNum + 1;
DistN(DistN>DistNLIM) = DistNLIM;
DistN = DistNLIM - DistN;
NucIm = false(sRL,sCL);
NucIm(NucObj.PixelIdxList{ctC}) = true;
Dist = zeros(sRL,sCL,NumNucFnd);
for ctS = 1:NumNucFnd

% calculate gray-weighted distance
Dist(:, :,ctS) = graydist(double(DistN) ,PeaksNucRT(2,ctS) ,PeaksNucRT(1,ctS) , 'quasi-
euclidean').*double(NucIm);

end
[xl,NucSegm] = min(reshape(Dist, [sRL*sCL,NumNucFnd]), [],2);

NucSegm = reshape (NucSegm, [sRL,sCL]) .*NucIm;
CheckV = zeros(NumNucFnd,l);
for ctSS = 1:NumNucFnd

CheckV(ctSS) = sum(sum( NucSegm == ctSS ))>0;
end
if all(CheckV)

LoopChk = false;
else

DistNLIM = DistNLIM + 5;
end

end
Nuc2Use = find(CheckV>0);
NucSeedIndx = NucSeedIndx(Nuc2Use);
PeaksNucRT = PeaksNucRT(:,Nuc2Use);
NumNucFnd = length(NucSeedIndx);
NucPxFnd = cell(NumNucFnd,l);

for ctN = 1:NumNucFnd
NucPxFnd{ctN} = find(NucSegm == Nuc2Use(ctN));

end
disp(['cell split into ',num2str(NumNucFnd),' parts'])

elseif NumNucFnd==l
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NumNucFnd = 1;
else

NucPxFnd = {NucObj.PixelldxList{ctC}};

NumNucFnd = 0; NucPxFnd

end
else % do not split nuclei.. single nucleus

NumNucFnd = 1; NucPxFnd = {NucObj.PixelIdxList{ctC}};
end
for ctNUc = 1:NumNucFnd

NucNum = NucNum + 1;
NucIndx{NucNum} = NucPxFnd{ctNUc};

end
end

end
clear FltNucImage NucIm NucSegm Dist DistN xl NucPxFnd
% generate Peak indices
PeaksInNuc = zeros(2,NucNum);
for ctC = 1:NucNum

[rr,cc] = ind2sub([sRL,sCLI,NucIndx{ctC));
PeaksInNuc(:,ctC) = round([mean(rr);mean(cc)]);

end
clear rr cc
if NucNum>l

NucPix = zeros(sRL,sCL);
for ctC = 1:NucNum

NucPix(NucIndx{ctC}) = 0.4+0.6*rand;
end
NucPix2Ev = cat(3,CytoD,CytoD*0,NucPix);
figN2c = figure; imshow(NucPix2Ev)
for ctC = 1:NucNum

text(PeaksInNuc(2,ctC),PeaksInNuc(1,ctC),num2str(ctC),'Color', [1 1 1])

end
title('provide nuclei to keep')
KeepPeakChek = true;
while KeepPeakChek

Peaks2Keep = input('Provide numbers of nuclei peaks to keep ("a" for all) ','s');

if isempty(Peaks2Keep)
Peaks2Keep

else
if strcmpi(Peaks2Keep,'a')

Peaks2Keep = 1:NucNum;
KeepPeakChek = false;

elseif ~isempty(str2num(Peaks2Keep))
Peaks2Keep = str2num(Peaks2Keep);
Peaks2Keep = Peaks2Keep(Peaks2Keep<=NucNum);
KeepPeakChek = false;

end
end

end
NucIndx = NucIndx(Peaks2Keep); NucNum = length(NucIndx);
PeaksInNuc = PeaksInNuc(:,Peaks2Keep);
close (figN2c)
clear NucPix2Ev NucPix

end
PeaksInNucIndx = sub2ind([sRL,sCLI,PeaksInNuc(l,:),PeaksInNuc(2,:));

if NucNum>0
% ===== identify & process non-nuclei peaks

hminCytoLim = 5; hmin limit for cyto peaks (grayscale values)
MinCytoPkDist 20; % min distance between neighboring cytoplasm peaks [Px]

minPeakONucDist 10; % minimum distance of non-nuclei peaks from nuclei
PeaksIm = imregionalmax(imhmin(FltCellTrkImage,hminCytoLim).*CellCytoD);

% do not consider peaks located inside or very close to nuclei
PeaksIm = PeaksIm.* (-imdilate(NucD,strel('disk',minPeakONucDist)));

PeaksOutNucIndx = find(PeaksIm);
[PeakRow,PeakCol] = ind2sub([sRL,sCL],PeaksOutNucIndx);

PeaksR = [PeakRow,PeakCol]';
% treat peaks very close to each other as one
checkV = false(l,length(PeakRow));
for ctP = 1:(length(PeakRow)-1)

disti = sqrt(sum((repmat(PeaksR(:,ctP),1,length(PeakRow)-ctP) - PeaksR(:,ctP+l:end)) .^2));

if any(disti<MinCytoPkDist)
closepeak = [ctP,ctP + find(disti<MinCytoPkDist)];
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checkV(ctP) = true;
PeaksR(:,closepeak) = repmat(round(mean(PeaksR(:,closepeak) ,2) )1,length(closepeak));

end
end
PeaksOutNucIndx(checkV)
NumSdONuc = length(PeaksOutNucIndx);
clear PeaksR PeaksIm
if NumSdONuc

% ===== user picks which seeds to keep
fUfbk = figure; subplot(2,1,1)
imshow(single(cat(3,CytoD,ScafD,NucD)))
subplot(2,1,2), tmp = FltCellTrkImage.*CytoD;
tmp = tmp(end:-1:1,:); contour3(tmp,10)
hold on
for ctP = l:NumSdONuc

[pkr,pkc] = ind2sub([sRL,sCL],PeaksOutNucIndx(ctP));
plot3(pkc,sRL-pkr+l,tmp(sRL-pkr+l,pkc)+0.l, 'bo','LineWidth',2)

text(pkc+3,sRL-pkr+3,num2str(ctP))
end
view([0 90]), grid off, clear pkr pkc tmp
title(' Provide numbers of non-nuclei peaks to keep')
PeakChek = true;
while PeakChek

Peak2Keep = input(['Provide numbers of non-nuclei peaks to keep ("a" for all) ','
if isempty(Peak2Keep)

Peak2Keep = [; PeakChek = false;
else

if strcmpi(Peak2Keep,'a')
Peak2Keep = 1:NumSdONuc; PeakChek = false;

elseif ~isempty(str2num(Peak2Keep))
Peak2Keep = round(str2num(Peak2Keep));
Peak2Keep = Peak2Keep(Peak2Keep<=NumSdONuc);
PeakChek = false;

end
end

end
close (fUfbk)
PeaksOutNucIndx = PeaksOutNucIndx(Peak2Keep);
NumSdONuc = length(PeaksOutNucIndx);

else
PeaksOutNucIndx = [];
NumSdONuc = 0;

end
% ===== prepare seeds

% number of seeds
NumSeed = NucNum + NumSdONuc; % first nuclei-seed, then non-nuclei seed

PeaksIndxT = [PeaksInNucIndx(:)',PeaksOutNucIndx(:)'];
[PeakRowTPeakColT] = ind2sub([sRL,sCL],PeaksIndxT);
PeaksRT = [PeakRowT(:),PeakColT(:)]';
% ===== cytoplasm segmentation
DistPLIM = 20; % distance transform pixel distance
lambdaDi = 0.4; % contribution of distance function
lambdaDe = 0.3; % contribution of derivative function
lambdaCa = l-lambdaDi - lambdaDe;
if lambdaCa<0

lambdaDi = lambdaDi/(l-lambdaCa);
lambdaDe = lambdaDe/(l-lambdaCa); lambdaCa = 0;

end
% generate distance transform
DistP = bwdist(~CellCytoD,'cityblock');
DistP(DistP>DistPLIM) = DistPLIM; DistP = DistPLIM - DistP;
% ===== calculate distance function for all seeds
Dist = zeros(sRL,sCL,NumSeed);
for ctC = 1:NumSeed

% function contributions
% eucledian distance contribution
DelayM = lambdaCa*single(CellCytoD);
% outer distance contribution
DelayM = DelayM + lambdaDi*DistP;
% derivative magnitude contribution
DelayM = DelayM + lambdaDe*ImGradAbs;
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% nuclei corrections
for ctCC = 1:NucNum

if ctC == ctCC
DelayM(NucIndx{ctCC}) = eps;

else
DelayM(NucIndx{ctCC}) = inf;

end
end
% non-cell area correction
DelayM(CellCytoD==O) = inf;
% calculate gray-weighted distance

Dist(:, :,ctC) = graydist(DelayM,PeaksRT(2,ctC) ,PeaksRT(1,ctC) , 'quasi-euclidean')
end
clear DelayM
% at each pixel, find corresponding seed for min distance

[xl,NucCytoSegm] = min(reshape(Dist, [sRL*sCLNumSeed]), [],2);
NucCytoSegm = reshape(NucCytoSegm, [sRL,sCL]).*CellCytoD;
clear xl
% ===== store segmented cytoplasm that correspond to nuclei

for ctCELL = 1:NucNum
NumCellOBJupd = NumCellOBJupd + 1;

[RowL, ColL] = ind2sub ([sRL, sCL] , find( (NucCytoSegm==ctCELL) . *NucD))
rCi = RowL - 1 + CellCytoRowLim(l);
cCi = ColL - 1 + CellCytoColLim(l);

CellOBJupd(NumCellOBJupd) .PxNcl = sub2ind( [NumRowsG,NumColsG] ,rCi,cCi)
CellOBJupd(NumCellOBJupd) .Centroid = [round(mean(rCi)) ,round (mean (cCi))];
[RowL,ColL] = ind2sub([sRL,sCL],find((NucCytoSegm==ctCELL).*CytoD));

CellOBJupd(NumCellOBJupd).PxCyto = sub2ind([NumRowsG,NumColsG],...
RowL - 1 + CellCytoRowLim(l),ColL - 1 + CellCytoColLim(l));

end
end

end
end
clear RowL ColL rCi cCi CytoD ScafD NucD CellCytoD NucCytoSegm
clear ImGradAbs FltCellTrkImage DistP Dist

elseif strcmpi(AcceptCell,'r')
title('type the cells to remove in format [n m l]','FontSize',16,'Color', [1 0 0])

DelPeakChek = true;
while DelPeakChek

Nuc2Rem = input('provide numbers of cells to remove (e.g. 1 5 9) ', s');
if isempty(Nuc2Rem)

Nuc2Rem = [];
DelPeakChek = false;

else
if -isempty(str2num(Nuc2Rem))

Nuc2Rem = round(str2num(Nuc2Rem)); Nuc2Rem
DelPeakChek = false;

end
end

end
title(''); CellOBJupd(Nuc2Rem)
NumCellOBJupd = length(CellOBJupd);
clear Nuc2Rem

elseif strcmpi(AcceptCell,'s')
ContinueProc = false;

else
ContinueProc = true;

end

end
close (figl)

Nuc2Rem(Nuc2Rem<=NumCellOBJupd);

[];

clear AcceptCell AsblCompConMap

%% process cell objects to identify cell-matrix, cell-cell, cell-void interfaces
% check cell objects
NumCellOBJupd = length(CellOBJupd); CheckCell = false(l,NumCellOBJupd);
for ctCELL = 1:NumCellOBJupd

CheckCell(ctCELL) = (~isempty(CellOBJupd(ctCELL).PxNcl)) &

(~isempty(CellOBJupd(ctCELL).PxCyto));
end
CellOBJupd = CellOBJupd(find(CheckCell)); NumCellOBJupd = length(CellOBJupd);

clear CheckCell
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CellsOBJ = struct('Connectivity',4,'ImageSize', [NumRowsG NumColsG],...
'NumObj', 0,'Cell',struct(...

'PxNcl', [], 'PxCyto', [, 'PxMatrixBnd' [], 'PxVoidBnd', [], 'PxCellBnd', [], 'Centroid', []));
CelisOBJ.Cell = CellOBJupd; CellsOBJ.NumObj = length(CellsOBJ.Ceil);
Im4Pick = single(1/3*cat(3,MaskCytoG,MaskMatrG,MaskNuclG));
Im4Pick = reshape(Im4Pick, [NumRowsG*NumColsG 3]);
for ctCELL = 1:CellsOBJ.NumObj % for each cell object

CellPxNcl = CellsOBJ.Cell(ctCELL).PxNcl;
NumCellPxNcl = length(CellPxNcl);
CellPxCyto = CellsOBJ.Cell(ctCELL).PxCyto;
NumCellPxCyto= length(CellPxCyto);
CytoIm = false(NumRowsG,NumColsG);
CytoIm(CellPxCyto) = true;

CellsOBJ.Cell(ctCELL).PxMatrixBnd = find(CytoIm &imdilate(MaskMatrG,strel('disk',l)));
CellsOBJ.Cell(ctCELL).PxVoidBnd = find(CytoIm & imdilate(MaskVoidG,strel('disk',l)));
CellsOBJ.Cell(ctCELL) .PxCellBnd = find(CytoIm & imdilate(MaskCytoG & (~CytoIm),strel('disk',l)));

Im4Pick(CellPxNcl,l) = zeros(NumCellPxNcll,,'single');
Im4Pick(CellPxNcl,2) = ones(NumCellPxNcl,l,'single')*(rand*0.l+0.05);
Im4Pick(CellPxNcl,3) = ones(NumCellPxNcl,l,'single')*(rand*0.4+0.6);
Im4Pick(CellPxCyto,l) = ones(NumCellPxCyto,l,'single')*(rand*0.4+0.6);
Im4Pick(CellPxCyto,2) = ones(NumCellPxCyto,l,'single')*(rand*0.l+0.05);
Im4Pick(CellPxCyto,3) = zeros(NumCellPxCyto,l,'single');

end

Im4Pick = reshape(Im4Pick, [NumRowsG NumColsG 3]);
if Dat.CellScObj.SvImgSw I Dat.CellScObj.SaveSw

SaveFileDir = [Dat.CellScObj.DirDat.Nom.DASH,Dat.Nom.fname,...
' CellScObj-z',Padding(ctZ,Dat.Nom.PadNum)];

end
if Dat.CellScObj.SvImgSw

ImPickedCells = reshape(1/3*cat(3,MaskCytoGMaskMatrGMaskNuclG),...
[NumRowsG*NumColsG,3]);

ImPickedCells = rgb2hsv(ImPickedCells);
ImPickedCells(:,3) = ImPickedCells(:,3)/2;
ImPickedCells = hsv2rgb(ImPickedCells);
for ctCELL = 1:CellsOBJ.NumObj

ImPickedCells(CellsOBJ.Cell(ctCELL).PxNcl,3) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxCyto,l) = rand*0.5+0.5;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxMatrixBnd,l) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxMatrixBnd,2) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxMatrixBnd,3) = 0;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxVoidBnd,l) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxVoidBnd,2) = 0;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxVoidBnd,3) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxCellBnd,l) = 0;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxCellBnd,2) = 1;
ImPickedCells(CellsOBJ.Cell(ctCELL).PxCellBnd,3) = 1;

end
ImPickedCells = reshape(ImPickedCells, [NumRowsG,NumColsG,3]);
fig2 = figure; imshow(ImPickedCells)
for ctCELL = 1:CellsOBJ.NumObj

text (CellsOBJ.Cell (ctCELL) .Centroid(2) ,CellsOBJ.Cell(ctCELL) .Centroid(1) ,num2str(ctCELL),'FontSiz
e',48, 'Color', [l 1 1])

end
saveas(fig2, [SaveFileDir,'.png'],'png')
close (fig2)

end
if Dat.CellScObj.SaveSw; save(SaveFileDir,'CellsOBJ'); end

end
fprintf('\n\t\t..... done\n\n')
return

CeIlScMetr
function ZPlanes = CellScMetr_1 2(Dat)
% calculate cell metrics of cell objects in cell-matrix mages
% Dimitrios Tzeranis, Sep 2012 - Jan 2013
fprintf('=== Calculate metrics of cell objects in cell-scaffold images ===\n')
[unusedl,unused2,unused3] = mkdir(Dat.CellScObj.Dir);
clear unusedl unused2 unused3

VoidDomain = 1;NuclDomain = Dat.CellScObj.NuclDom; %2
CytoDomain = Dat.CellScObj.CytoDom; %3
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MatrixDomain
CellTrkComp
NucStainComp

Dat.CellScObj.ScafDom; %4

2; fluorescent component that contains cell-tracker

1; fluorescent component that contains nuclei

ZPlanes = Dat.CellScObj .CellMtrZRange (1) :Dat.CellScObj .CellMtrZRange (2);

PxSzA = Dat.Img.PxSz* (40/Dat.Img.Magn)* (Dat.Img.Res/32);
% === metric description
% nucleus
NumMtNuc = 12;
IDNU = cell(l,NumMtNuc);DescrNU = cell(l,NumMtNuc);

IDNU{l} = 'NA';DescrNU{l}='Nucleus Area [um2]';

IDNU{2} = 'NP';DescrNU{2}='Nucleus Perimeter [um]';

IDNU{3} = 'NSF';DescrNU{3}='Nucleus Shape Factor';

IDNU{4} = 'NE';DescrNU{4}='Nucleus Eccentricity';
IDNU{5} = 'NTIA';DescrNU{5}='Nucleus Total Intensity Average (P.C.]';

IDNU{6} = 'NTIS';DescrNU{6}='Nucleus Total Intensity Std [P.C.]';
IDNU{7} = 'NHIA';DescrNU{7}='Nucleus Hoechst Intensity Average [P.C.]';

IDNU{8} = 'NHIS';DescrNU{8}='Nucleus Hoechst Intensity Std [P.C.]';
IDNU{9} = 'NCIA';DescrNU{9}='Nucleus CMTMR Intensity Average [P.C.]';

IDNU{10} = 'NCIS';DescrNU{10}='Nucleus CMTMR Intensity Std [P.C.]';

IDNU{11} = 'NGCO';DescrNU{11}='Nucleus Grayscale Centroid Offset [um]';

IDNU{12} = 'NCO';DescrNU{12}='Nucleus Cell Centroids Offset [um]';
% cytoplasm
NumMtCyto = 15;
IDCY = cell(l,NumMtCyto);DescrCY = cell(l,NumMtCyto);
IDCY{l} = 'CA';DescrCY{l}='Cytoplasm Area [um2]';

IDCY{2} = 'CP';DescrCY{2}='Cell Perimeter [um]';
IDCY{3} = 'CSF';DescrCY{3}='Cell Shape Factor';
IDCY{4} = 'CE';DescrCY{4}='Cell Eccentricity';
IDCY{5} = 'CPNPR'DescrCY{5}= 'Cell Perimeter to Nucleus Perimeter Ratio';

IDCY{6} = 'CTIA';DescrCY{6}='Cytoplasm Total Intensity Average [P.C.]';

IDCY{7} = 'CTIS';DescrCY{7}='Cytoplasm Total Intensity Std [P.C.]';

IDCY{8} = 'CAIA';DescrCY{8}='Cytoplasm Alexa488 Intensity Average [P.C.]';
IDCY{9} = 'CAIS';DescrCY{9}='Cytoplasm Alexa488 Intensity Std [P.C.]';

IDCY{10} = 'CCIA';DescrCY{l0}='Cytoplasm CMTMR Intensity Average [P.C.]';

IDCY{ll} = 'CCIS';DescrCY{ll}='Cytoplasm CMTMR Intensity Std [P.C.]';

IDCY{12} = 'CNIAR';DescrCY{12}='Cytoplasm to Nucleus Intensity Average Ratio';

IDCY{13} = 'CNCAR';DescrCY{13}='Cytoplasm to Nucleus CMTMR Average Ratio';

IDCY{l4} = 'CGCO';DescrCY{14}='Cytoplasm Grayscale Centroid Offset [um]';

IDCY{15} = 'CCO';DescrCY{15}='Cytoplasm Cell Centroids Offset [um]';

% cell interface metrics
NumMtIntrf = 18;
IDCM = cell(l,NumMtIntrf);DescrCM = cell(l,NumMtIntrf);
IDCM{ 1
IDCM{2}
IDCM{3}
IDCM{ 4)
IDCM{5}
IDCM{6}
IDCM{7}
IDCM{8}
IDCM{9}
IDCM{ 10}
IDCM{ 11
IDCM{ 12)
IDCM{13)
IDCM{14}
IDCM{ 115
IDCM{ 116
IDCM{ 17)
IDCM{ 18)

= 'CMPA';DescrCM{l} = 'Cell-Matrix Proximity Area [um2]';

= 'CMPAF';DescrCM{2} = 'Cell-Matrix Proximity Area Fraction';
= 'CMPAIA';DescrCM{3) = 'Cell-Matrix Proximity Alexa488 Intensity Average';

= 'CMPAIS';DescrCM{4} = 'Cell-Matrix Proximity Alexa488 Intensity Std';
= 'CMCCO';DescrCM{5} = 'Cell-Matrix Proximity Cell Centroids Offset

= 'CVPA';DescrCM{6) = 'Cell-Void Proximity Area [um2]';

= 'CVPAF';DescrCM{7} = 'Cell-Void Proximity Area Fraction';
= 'CVPAIA';DescrCM{8} = 'Cell-Void Proximity Alexa488 Intensity Average';

= 'CVPAIS';DescrCM{9} = 'Cell-Void Proximity Alexa488 Intensity Std';

= 'CVCCO';DescrCM{l0}= 'Cell-Void Proximity Cell Centroids Offset

= 'CCPA';DescrCM{ll)= 'Cell-Cell Proximity Area [um2]';
= 'CCPAF';DescrCM{12}= 'Cell-Cell Proximity Area Fraction';

= 'CCPAIA';DescrCM{13}= 'Cell-Cell Proximity Alexa488 Intensity Average';

= 'CCPAIS';DescrCM{14}= 'Cell-Cell Proximity Alexa488 Intensity Std';
= 'CCCCO';DescrCM{15}= 'Cell-Cell Proximity Cell Centroids Offset';
= 'CMPF';DescrCM{16)= 'Cell-Matrix Interface / Perimeter Fraction

= 'CVPF';DescrCM{17}= 'Cell-Void Interface / Perimeter Fraction
= 'CCPF';DescrCM{18}= 'Cell-Cell Interface / Perimeter Fraction

Metr = struct('ID', [IDNU,IDCY,IDCM], 'Description', [DescrNU,DescrCY,DescrCM]);
CellMetrics = [];
for ctZZ = 1:length(ZPlanes)

ctZ = ZPlanes(ctZZ);
fprintf('\t\tPlane: %s: ',num2str(ctZ))

CellObjFileDir =
[Dat.CellScObj .Dir,Dat.Nom.DASH,Dat.Nom.fname,' CellScObj z',Padding(ctZ,Dat.Nom.PadNum)];

load(CellObjFileDir) % loads CellsOBJ & ImPickedCells
clear ImPickedCells
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DecompFileDir = [Dat.ImAsbl.Dir,
Dat.Nom.DASH,Dat.Nom.fname,'_DomEvidAsbl_',Padding(ctZ,Dat.Nom.PadNum)];

load(DecompFileDir)
clear DomProbMap DomProbMapPROC ImSegm
for ctD = 1:(l+Dat.ImDcmp.DomNum)

[sx,sy,sz] = size(AsblCompConMap{ctD});
AsblCompConMap{ctD} = reshape(AsblCompConMap{ctD}, [sx*sy,sz]);

end
NumRow = CellsOBJ.ImageSize(l); NumCol = CellsOBJ.ImageSize(2);
CellMetrPlane = zeros(NumMtNuc + NumMtCyto + NumMtIntrf , CellsOBJ.NumObj);
fprintf('Cell: ')
for ctCL = 1:CellsOBJ.NumObj

% === === === === === === === --- === PRE-PROCESSING
fprintf('%s ',num2str(ctCL))
% === === === LOCAL COORDINATES
PxCL = unique([CellsOBJ.Cell(ctCL).PxCyto;CellsOBJ.Cell(ctCL).PxNcl]);
[RowCL,ColCL] = ind2sub([NumRow,NumCol],PxCL);
minRowCL = min(RowCL); maxRowCL = max(RowCL);
minColCL = min(ColCL); maxColCL = max(ColCL);
NumRowCLl = maxRowCL-minRowCL + 5; NumColCLl = maxColCL-minColCL + 5;
% === === PROCESSING NUCLEUS DATA
[RowNU,ColNU] = ind2sub([NumRow,NumCol],CellsOBJ.Cell(ctCL).PxNcl);
RowNUl = RowNU - minRowCL + 3; ColNUl = ColNU - minColCL + 3;
PxNUl = sub2ind([NumRowCL1,NumColCLl],RowNUl,ColNUl);
ImNU = false(NumRowCLl,NumColCLl); ImNU(PxNUl) = true;
[RowNUpColNUp] = ind2sub([NumRowCL1,NumColCLl],find(bwperim(ImNU)));
EliNU = FitEllipse(RowNUp,ColNUp);
NucInt = AsblCompConMap{NuclDomain}(CellsOBJ.Cell(ctCL).PxNcl,:);
NucBWCntr = [mean(RowNUl);mean(ColNUl)];

NucINCntr = sum([RowNUl.*sum(NucInt,2),ColNU1.*sum(NucInt,2)])'/sum(sum(NucInt));
% === === PROCESSING CYTOPLASM DATA
[RowCY,ColCY] = ind2sub([NumRow,NumCol],CellsOBJ.Cell(ctCL).PxCyto);
RowCYl = RowCY - minRowCL + 3 ColCYl = ColCY - minColCL + 3;
PxCYl = sub2ind([NumRowCLl,NumColCLl],RowCY1,ColCYl);
CYInt = AsblCompConMap{CytoDomain}(CellsOBJ.Cell(ctCL).PxCyto,:);
CYBWCntr = [mean(RowCYl);mean(ColCYl)];
CYINCntr = sum([RowCYl.*sum(CYInt,2),ColCYl.*sum(CYInt,2)])'/sum(sum(CYInt));
RowCLl RowCL - minRowCL + 3; ColCLl = ColCL - minColCL + 3;
PxCLl = sub2ind([NumRowCLl,NumColCLl],RowCLl,ColCLl);
ImCL = false(NumRowCLl,NumColCLl) ImCL(PxCLl) = true;
[RowCEp,ColCEp] = ind2sub([NumRowCLl,NumColCLl],find(bwperim(ImCL)));
EliCE = FitEllipse(RowCEpColCEp);
partNU = AsblCompConMap{NuclDomain}(CellsOBJ.Cell(ctCL).PxNcl,:);
partNU = [partNU,zeros(size(partNU,1),1)];
partCY = AsblCompConMap{CytoDomain}(CellsOBJ.Cell(ctCL).PxCyto,:);
partCY = [zeros(size(partCY,1),l),partCY];
CLInt = [partNU;partCY];
CLBWCntr = [mean(RowCLl);mean(ColCLl)];
clear CLInt partCY partNU
% === === PROCESSING CELL-MATRIX BOUNDARY DATA
[RowCM,ColCM] ind2sub([NumRow,NumCol],CellsOBJ.Cell(ctCL).PxMatrixBnd);
RowCMl = RowCM - minRowCL + 3; ColCMl = ColCM - minColCL + 3;
CMInt = AsblCompConMap{CytoDomain}(CellsOBJ.Cell(ctCL).PxMatrixBnd,:);
CMBWCntr = [mean(RowCMl);mean(ColCMl)];
clear RowCM ColCM RowCMl ColCMl
% === === PROCESSING CELL-VOID BOUNDARY DATA
[RowCV,ColCV] = ind2sub([NumRow,NumCol],CellsOBJ.Cell(ctCL).PxVoidBnd);
RowCVl = RowCV - minRowCL + 3; ColCVl = ColCV - minColCL + 3;
CVInt = AsblCompConMap{CytoDomain}(CellsOBJ.Cell(ctCL).PxVoidBnd,:);
CVBWCntr = [mean(RowCVl);mean(ColCV1)];
clear RowCV ColCV RowCVl ColCVl
% === === PROCESSING CELL-CELL BOUNDARY DATA

[RowCC,ColCC] = ind2sub([NumRow,NumCol],CellsOBJ.Cell(ctCL).PxCellBnd);
RowCCl = RowCC - minRowCL + 3; ColCCl = ColCC - minColCL + 3;
CCInt = AsblCompConMap{CytoDomain}(CellsOBJ.Cell(ctCL).PxCellBnd,:);
CCBWCntr = [mean(RowCCl);mean(ColCCl)];
clear RowCC ColCC RowCCl ColCCl
%% === === === === === ==- ==- =- === CALCULATE METRICS
% === === NUCLEUS METRICS
NUMetrics = zeros(NumMtNuc,l);
% NA: Nucleus Area
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NUMetrics(l) = length(CellsOBJ.Cell(ctCL).PxNcl)* (PxSzA)^2;
% NP: Nucleus Perimeter
NUMetrics(2) = sum(sum(bwperim(ImNU)))*PxSzA;
% NSF: Nucleus Shape Factor
NUMetrics(3) = 4*pi*NUMetrics(l)/(NUMetrics(2))^2;
% NE: Nucleus Eccentricity
NUMetrics(4) = EliNU(1)/EliNU(2);
% NTIA: Nucleus Total Intensity Average
NUMetrics(5) = mean(sum(NucInt,2));
% NTIS: Nucleus Total Intensity Std
NUMetrics(6) = std(sum(NucInt,2));
% NHIA: Nucleus Hoechst Intensity Average
NUMetrics(7) = mean(NucInt(:,l));
% NHIS: Nucleus Hoechst Intensity Std
NUMetrics(8) = std(NucInt(:,l));
% NCIA: Nucleus CMTMR Intensity Average
NUMetrics(9) = mean(NucInt(:,2));
% NCIS: Nucleus CMTMR Intensity Std
NUMetrics(10) = std(NucInt(:,2));
% NGCO: Nucleus Grayscale Centroid Offset [um]
NUMetrics(ll) = norm((NucBWCntr - NucINCntr))*PxSzA;
% NCO: Nucleus Cell Centroids Offset [um]
NUMetrics(12) = norm((NucBWCntr - CLBWCntr))*PxSzA;
clear ImNU NucInt NucBWCntr NucINCntr
% === === CYTOPLASM METRICS

CYMetrics = zeros(NumMtCyto,l);
% CA: Cytoplasm Area
CYMetrics(l) = length(CellsOBJ.Cell(ctCL).PxCyto)* (PxSzA)^2;
% CP: Cell Perimeter
CYMetrics(2) = sum(sum(bwperim(ImCL)))*PxSzA;
% CSF: Cell Shape Factor
CYMetrics(3) = 4*pi* (NUMetrics(l) + CYMetrics(l))/(CYMetrics(2))^2;
% CE: Cell Eccentricity
CYMetrics(4) = EliCE(1)/EliCE(2);
% CPNPR: Cell Perimeter to Nucleus Perimeter Ratio
CYMetrics(5) = CYMetrics(2)/NUMetrics(2);
% CTIA: Cytoplasm Total Intensity Average
CYMetrics(6) = mean(sum(CYInt,2));
% CTIS: Cytoplasm Total Intensity Std
CYMetrics(7) = std(sum(CYInt,2));
% CAIA: Cytoplasm Alexa488 Intensity Average
CYMetrics(8) = mean(CYInt(:,2));
% CAIS: Cytoplasm Alexa488 Intensity Std
CYMetrics(9) = std(CYInt(:,2));
% CCIA: Cytoplasm CMTMR Intensity Average
CYMetrics(10) = mean(CYInt(:,l));
% CCIS: Cytoplasm CMTMR Intensity Std
CYMetrics(ll) = std(CYInt(:,l));
% CNIAR: Cytoplasm to Nucleus Intensity Average Ratio
CYMetrics(12) = CYMetrics(6)/NUMetrics(5);
% CNCAR: Cytoplasm to Nucleus CMTMR Average Ratio
CYMetrics(13) = CYMetrics(10)/NUMetrics(9);
% CGCO: Cytoplasm Grayscale Centroid Offset [um]
CYMetrics(14) = norm((CYBWCntr - CYINCntr))*PxSzA;
% CCO: Cytoplasm Cell Centroids Offset [um]

CYMetrics(15) = norm((CYBWCntr - CLBWCntr))*PxSzA;
clear CYInt CYBWCntr CYINCntr ImCL

% === === CELL INTERFACE METRICS
CIMetrics = zeros(NumMtIntrf,l);

% CMPA: Cell-Matrix Proximity Area [um2]
CIMetrics(l) = length(CellsOBJ.Cell(ctCL).PxMatrixBnd)* (PxSzA)^2;
% CMPAF: Cell-Matrix Proximity Area Fraction
CIMetrics(2) = CIMetrics(l)/(CYMetrics(l) + NUMetrics(l));
% CMPAIA: Cell-Matrix Proximity Alexa488 Intensity Average
CIMetrics(3) = mean(CMInt(:,2));
% CMPAIS: Cell-Matrix Proximity Alexa488 Intensity Std
CIMetrics(4) = std(CMInt(:,2));
% CMCCO: Cell-Matrix Proximity Cell Centroids Offset
CIMetrics(5) = norm((CMBWCntr - CLBWCntr))*PxSzA;
% CVPA: Cell-Void Proximity Area [um2]
CIMetrics(6) = length(CellsOBJ.Cell(ctCL).PxVoidBnd)* (PxSzA)^2;

473



% CVPAF: Cell-Void Proximity Area Fraction
CIMetrics(7) = CIMetrics(6)/(CYMetrics(l) + NUMetrics(l));
% CVPAIA: Cell-Void Proximity Alexa488 Intensity Average
CIMetrics(8) = mean(CVInt(:,2));
% CVPAIS: Cell-Void Proximity Alexa488 Intensity Std
CIMetrics(9) = std(CVInt(:,2));
% CVCCO: Cell-Void Proximity Cell Centroids Offset
CIMetrics(10) = norm((CVBWCntr - CLBWCntr))*PxSzA;
% CCPA: Cell-Cell Proximity Area [um2]
CIMetrics(ll) = length(CellsOBJ.Cell(ctCL).PxCellBnd)*(PxSzA)^ 2;
if CIMetrics(ll)>0

% CCPAF: Cell-Cell Proximity Area Fraction
CIMetrics(12) = CIMetrics(ll)/(CYMetrics(l) + NUMetrics(l));
% CCPAIA: Cell-Cell Proximity Alexa488 Intensity Average
CIMetrics(13) = mean(CCInt(:,2));
% CCPAIS: Cell-Cell Proximity Alexa488 Intensity Std
CIMetrics(14) = std(CCInt(:,2));
% CCCCO: Cell-Cell Proximity Cell Centroids Offset
CIMetrics(15) = norm((CCBWCntr - CLBWCntr))*PxSzA;

else
% CCPAF: Cell-Cell Proximity Area Fraction
CIMetrics(12) = 0;
% CCPAIA: Cell-Cell Proximity Alexa488 Intensity Average
CIMetrics(13) = 0;
% CCPAIS: Cell-Cell Proximity Alexa488 Intensity Std
CIMetrics(14) = 0;
% CCCCO: Cell-Cell Proximity Cell Centroids Offset
CIMetrics(15) = 0;

end
% CMPF: Cell-Matrix Interface / Perimeter Fraction
CIMetrics(16) = CIMetrics(l)/(CIMetrics(l) + CIMetrics(6) + CIMetrics(ll));
% CVPF: Cell-Void Interface / Perimeter Fraction
CIMetrics(17) = CIMetrics(6)/(CIMetrics(l) + CIMetrics(6) + CIMetrics(ll));
% CCPF: Cell-Cell Interface / Perimeter Fraction
CIMetrics(18) = CIMetrics(ll)/(CIMetrics(l) + CIMetrics(6) + CIMetrics(ll));
clear CLBWCntr CMInt CVInt CCBWCntr
% === === assemble
CellMetrPlane(:,ctCL) = [NUMetrics ; CYMetrics ; CIMetrics];

end
fprintf('\n')
CellMetrics = [CellMetrics,CellMetrPlane];

end

if Dat.CellScObj.SaveSw
SaveFileDir = [Dat.CellScObj.Dir,Dat.Nom.DASH,Dat.Nom.fname,' CellMetrics'];

save(SaveFileDir,'CellMetrics','Metr')
end
fprintf('\t\t..... done\n\n')
return

function ELI = FitEllipse(x,y)
% fitting data into ellipsoid using the algorithm described in the paper
% 'NUMERICALLY STABLE DIRECT LEAST SQUARES FITTING OF ELLIPSES' by Halir
% and Flusser, 1998
% ----------------------------
% INPUTS
% x,y: vectors that contain data

OUTPUTS
%ELI = [Rx;Ry;fi;ro(:)];
% Rx: long axis radius
% Ry: small axis radius
% fi: angle
% ro: offset position
% ----------------------------
% Dimitrios Tzeranis Sept 2012
% ===-======= Step 1: calculate a polynomial a
Dl = [x.^2, x.*y, y.^2]; % quadratic part of the design matrix
D2 = [x, y, ones(size(x))]; % linear part of the design matrix
T = -(D2'*D2)\(Dl'*D2)'; % for getting a2 from al
M = Dl'*Dl + (Dl'*D2)*T; % reduced scatter matrix
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M = [M(3, :) ./2; -M(2, :) ; M(1, :) ./2] ; % premultiply by inv(Cl)
[evec, eval] = eig(M); % solve eigensystem
cond = 4*evec(1, :).*evec(3,:) - evec(2,:).^2; % evaluate ai sCa
al = evec(:, find(cond > 0)); % eigenvector for min. pos. eigenvalue
a = [al; T*al]; % ellipse coefficients
if a(l)<O; a=-a; end
% Step 2: calculate parameters
fi = atan(a(2)/(a(l)-a(3)))/2;
ro = -0.5* ([a(1),a(2)/2;a(2)/2,a(3)]\[a(4);a(5)]);
Lx = ((a(1)-a(3))+(a(1)+a(3))*cos(2*fi))/(2*cos(2*fi));
Ly = (-(a(1) -a(3))+(a(1)+a(3))*cos(2*fi))/(2*cos(2*fi));
Re = [cos(fi),-sin(fi);sin(fi),cos(fi)];
G = ro'*Re*diag([Lx,Ly])*Re'*ro-a(6);
if Lx>Ly

temp = [Lx,Ly]; Lx = temp(2);
Ly = temp(l); fi = fi + pi/2;

end
if fi>pi/2

fi = fi - pi;
elseif fi<-pi/2

fi = fi + pi;
end
Rx = sqrt(G/Lx);
Ry = sqrt(G/Ly);
ELI = [Rx;Ry;fi;ro(:)];
return
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