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Abstract
A new benefit-denial system using RFID technology and inductive heating is under

development by ProTeqt Technologies. During the deactivation process, an enabler

receives electromagnetic waves and turns the energy to heat, causing the polymeric

material inside to expand and create force. An LC circuit in the locking mechanism,

acting as a weakly coupled electromagnetic resonator, is used to improve energy transfer

efficiency. The design of the LC circuit, as well as the measurement of the resulting force

is presented. Due to the manufacturing variability of each component, the force generated

by the enabler in the lock is uncertain. In the thesis, an analysis of the manufacturing

variability and the distribution of the resulting force was conducted. A simulation model

was developed to predict the robustness of the lock system. The test results show that the

force generated is significantly more than the force needed, proving that the unlocking

process is highly reliable. The result generated by the simulation validates the force test

results.
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1 Introduction

1.1 General Research Topic

The foundation of this thesis is centered on ProTeqt Technologies, a company dedicated

to providing anti-theft devices (known as "benefit denial solutions") for the electronics

retail industry. In particular, we are developing a technique that can be used to expand

their product functionality, based upon a mechanical locking mechanism for a Micro

USB port. More explicitly, we are developing components and understanding parameters

that will increase the distance from a disabling device that their technology can be used

by extending a magnetic field via resonant coupling and understanding the interactions

within their product.

1.2 Need for Benefit Denial Solutions against Retail Theft

Global retail theft has increased dramatically in recent years, driven by the expansion of

online marketplaces [1]. Large online market places such as eBay have given rise to

organized retail theft. These online markets make buying and selling stolen items easier

than ever. Despite huge investments from retailers and manufacturers (more than $28

billion in 2011 [2]), this plague has continued to grow steadily. The most common

solution to prevent theft in retail stores is an electronic article surveillance (EAS) system

that will alert a retailer if a product passes through the doors prior to purchase. EAS

systems have the limitation that the retailer still has to respond to the alert, and this

response is often hesitant. In some cases, retailers explicitly tell their employees not to

confront those suspected of theft. Increased shrinkage, coupled with non-effective EAS

systems, has lead retailers to restrict consumer access for high-theft products (e.g. locking

glass or back room cages). It is estimated that these actions reduce sales by at least 25%

[2]. Moreover, these solutions attempt to address theft only at the point of sale. They fail

to address the largest component of shrinkage in the retail industry: organized theft

throughout the supply chain (53% of theft in North America [2]).
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As the result, retailers are looking for solutions that will provide more security than the

current theft prevention methods. They are interested in eliminating the motivation to

steal: the resale or use of the product. ProTeqt Technologies has addressed this solution

by developing a new type of mechanical lock system that temporarily disables the

product, rendering it unusable until it is legally purchased. At the point-of-sale, a

deactivating tablet recognizes the product using a RFID tag embedded in the packaging.

It then emits a certain electromagnetic signal, based on the product, that deactivates the

mechanical lock. If the product is stolen, the lock cannot be removed without damaging

the product. Furthermore, their solution can also be easily integrated with current EAS

systems using the existing RFID tag.

1.3 Product Components and Performance

ProTeqt's system is comprised of three key components: the deactivation tablet, cloud

database and mechanical lock. The research covered by this thesis focuses on two of the

three elements: the deactivation tablet and the mechanical lock. However, to fully

understand ProTeqt's technology and the sequence of events that takes place, we must

briefly consider all three components.

At the point of sale, the sales clerk first scans the product containing ProTeqt's lock. The

RFID is then recognized, allowing the system to look up data corresponding to that

particular product in the ProTeqt database. If the product has not previously been

unlocked, a certain frequency is gathered from the cloud database that coincides with the

product at hand. The clerk then positions the product in such a way that the lock is

directly over the center of the tablet. With the product in position, the tablet creates a

strong electromagnetic field at the appropriate frequency to deactivate the mechanical

lock. The customer takes the product home, and uses his or her product as if the lock was

never there. They are able to simply remove the lock and throw it away.

1.3.1 Deactivation Tablet

The deactivation tablet is a highly integrated computer system. It uses RFID detection to

recognize products, an Internet connection to access the cloud database, LED lights to
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guide the product to the center of the tablet, a function generator to produce certain

frequencies, and finally a large coil to generate an electromagnetic field. The tablet must

be small and unobtrusive to provide easy integration at the point of sale.

ProTeqt has contracted the design and manufacturing of the deactivation tablet to MACK

Technologies, whose expertise is in circuit board and complex system assembly. While

we may not be designing or analyzing the system for manufacturability, we need to

understand the full functionality and design parameters of the deactivation tablet to

further understand the effects it has on other components like the mechanical lock.

1.3.2 Mechanical Lock

The mechanical lock is a small device that is added to a consumer product at the

manufacturing site. The lock is designed to eliminate key features of a product. By

encapsulating and interacting with the consumer product, both internally and externally,

the device is completely protected from use if it's not legally purchased.

The lock design is highly dependent on key product features that can be used to render

the product unusable. At the time of this project, locks have been designed for two

product lines: USB thumb drives and CD-type disks (Figure 1). For the USB thumb drives,

the lock is attached to the male plug. An improper attempt to remove the lock will

permanently damage the plug, rendering the thumb drive useless. For the disks, the lock

secures the disk to its case. Improper removal will break the disk or the packaging.

'27 Carlisle Road, Westford, MA 01886
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Figure 1 The thumb drive lock (Left) and the CD-disk lock (right). Locking mechanisms are

identified by the pad-lock symbol.

For this project, all the work was focused on a newly developed micro-USB lock (Figure

2). It contains a spring, two sheet metal pieces, a plastic component, an enabler, and an

LC circuit. The optimized LC circuit with the enabler sitting directly on top is shown in

the lower portion. Above the LC circuit is a plastic component that is forced upward by

the expanding enabler. The plastic component engages the sheet metal 1. The lock is

attached to the micro-USB port through the teeth of the sheet metal 1 (right end of the

sheet metal 2). The entire locking system relies on the contact surfaces between sheet

metal 1 and 2, especially the vertical frictional contact surface between these two

components (hidden by the left end of metal sheet 2) that latches the two sheet metal

pieces.

The enabler is the component in the lock that expands when inductively heated. The

whole system depends on the enabler expanding enough to fire the unlatching device

when it receives energy from the deactivation tablet. The enabler consists of a polymeric

material that is sandwiched between two sheets of metal foil. At deactivation, the metal

foil on the enabler intersects with lines of flux produced by the deactivation tablet. These

lines of flux generate eddy currents that inherently produce heat. When the parameters

are correct, this heat forces the polymeric material in the enabler to expand, exerting a

force on the other components in the lock.

-14-



Sheet Metal 1
Spring

Plastic Component

Enabler
LC Circuit

F
~r-1

Sheet Metal 2
(Sheath) I

*External Housing
(not shown)

Figure 2 Internal diagram of the micro-USB lock, developed by ProTeqt

When the enabler expands, the plastic component is pushed up and bends the sheet metal

1. Thus, sheet metal 1 and 2 lose their vertical contact surface (Figure 3). The spring

pushes the sheet metal 1 horizontally through the sheath (sheet metal 2). This

displacement releases the teeth from the micro-USB port.

X - Constraints
- Before
-- After

Mheet metal I
Spring Force

Sheet metal 2

Enabler Force
Required Displacement

Figure 3 Schematic diagram of the sheet metal movement during deactivation
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1.3.3 Improving Product Performance

ProTeqt has complete control over their mechanical locking device and deactivation

tablet, but they must be compatible with many types of locking methods (e.g. USB, disk,

etc.) and packaging. In the case of the USB thumb drives and the disks, the packaging is

very slim, allowing the lock to be close to the deactivation tablet. Once the magnetic field

is created, the lock is easily deactivated. Products that are embedded in thicker packaging

(Figure 4) have proven to be more difficult to unlock because the magnetic field degrades

rapidly with distance. ProTeqt has begun to investigate solutions that will permit

deactivation of the mechanical lock at a distance of 1 inch from the tablet.

ProTeqt, having developed two unique applications for their technology (USB thumb

drive, and CD-type disk), is ready to move forward with the development for a, new,

Micro USB lock. This lock will perform similarly to the USB thumb drive lock, in that it

will interface with the consumer product internally. The Micro USB port uses a smaller

profile than the standard USB port, introducing some new design challenges. However,

the Micro USB lock is used far more prevalently and with more expensive products than

the standard USB. Moving forward, ProTeqt would like to achieve the functionality of

the Micro USB lock at 1 inch above the tablet surface.

Figure 4: External hard drive with thick packaging requires a stronger field. This packaging, being

targeted by ProTeqt, leaves the lock at 1 inch above the tablet.
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1.4 Induction Heating

The most important concept of ProTeqt's current design is induction heating. They utilize

this phenomenon to generate heat inside the lock, thereby creating a force that disengages

the lock from the product. The principals of induction heating are applied from the tablet

to the enabler. To simplify things, the tablet can be thought of as an induction cook top,

and the enabler as a pot. The main purpose of the deactivation tablet is to heat the

enabler. More information on induction heating is discussed in Chapter 2.

1.5 Resonant Coupling

As stated above, the objective of ProTeqt is to achieve unlocking at one inch from the

tablet. Among several potential solutions, ProTeqt chose to explore and implement the

effects of resonant inductive coupling. Resonant inductive coupling is a means to transfer

wireless energy through two coils that are tuned to resonate at the same frequency. We

can effectively use resonant inductive coupling to extend the magnetic field created by

the deactivation tablet. In reality we can create a new magnetic field using the energy

transferred wirelessly from the original field created by the tablet. Using a field that is

closer to the mechanical lock will increase the effectiveness, and decrease the decaying

effects of the field at distance. Furthermore, this solution will allow ProTeqt to postpone

a redesign of the deactivation tablet. Instead, a simple component can be designed that

will allow the wireless transfer of energy: an LC circuit.

1.6 Design and Production of LC Circuits

To increase wireless energy transfer efficiency, we need to develop an LC circuit,

comprised of an inductor and a capacitor. This circuit is typically drawn as shown in

Figure 5. By placing the small circuit inside the mechanical lock, we can create a new

magnetic field inside the lock. The LC circuit has to be tuned to operate most efficiently

at a target frequency. However, because the LC circuit will be operating inside the

mechanical lock, we must consider the interaction and effects of the existing components

of the lock.
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I C

_T
Figure 5 A typical diagram for an LC circuit where L is the inductor and C is the capacitor.

Moreover, the performance of the circuit is dependent on the quality of manufacturing.

Thus, the effects of manufacturing variability must be understood, controlled, and

minimized.

Finally, because the circuit is inside the lock, it is disposable and must be manufactured

at low cost. The volume of the circuits is on the order of millions of units per year. The

production rate and cost are two important parameters that must be considered and

accounted for in the beginning stages of the design.

1.7 Problem Statement

The problem statement developed by ProTeqt for our thesis project was to understand the

interactions between the deactivation tablet, LC circuit, and mechanical lock to optimize

and, moreover, recommend a final design of the LC circuit that will be able to excite the

enabler at 1 inch above the tablet, thereby disengaging the lock, at a manufacturing cost

of $0.05.

Building on this problem statement, the goal of the project is to develop an LC circuit

that will effectively extend the application of ProTeqt's benefit denial solution from zero

to one inch using resonant inductive coupling. Furthermore, the forces and interactions

between the LC circuit, enabler, and mechanical lock were understood to provide a better

understanding of ProTeqt's entire benefit denial solution. Finally, the failure rate of the

system due all the factors including manufacturing variability need to be understood and
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assessed. Multiple challenges were addressed, from theoretical physics to manufacturing

issues. This thesis considers the topics we faced while working at ProTeqt. It must be

noted that some tasks were distributed among ProTeqt's partners and are out of the scope

of this thesis.

This project was conducted through three phases. In the first phase we worked to

understand, characterize, and recommend and optimal design for an LC circuit to permit

the transfer of wireless energy. For this phase it was necessary to understand the principle

of induction heating, the physical mechanisms required to create a new magnetic field,

and the parameters for optimizing the design of an LC circuit.

In the second phase, the unlocking mechanism was analyzed to understand the interaction

between the mechanical parts and the circuit. The purpose of this stage is to obtain and

understand data related to the forces required to disengage the locking mechanism.

Finally, in the last phase of the project, the effect of manufacturing variability and the

variability of the components in the lock were analyzed to understand the possibility of

failure and the likely source of these failures.

1.8 Task Division

Based upon the three phases of the approach, tasks were divided among the three group

members: Mitch Krogman, Amaury Rony, and myself. Even though the thesis project at

hand has been completed by the collective group, each team member took the lead on one

of the three phases, and delegated the responsibility for tasks essential for completion as

needed. Theoretical physics and coil design was under the responsibility of Amaury

Rony. Mitch Krogman led the work on the unlocking mechanism and its interaction with

the LC circuit including the forces acting on and required by the lock. Finally, I took

responsibility to analysis the impact of manufacturing variation on the resulting force

generated by the enabler, and the possibility of failure.
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2 Electromagnetism and Inductive Coupling

One key innovation of Proteqt's anti-theft system is that the locking mechanism is

deactivated wirelessly via radio frequency. Electromagnetic phenomena such as induction

heating and resonant coupling are implemented in the system. Understanding the physics

behind the phenomena is critical for design improvement and quality control.

2.1 Principals of Induction Heating

Induction heating is a method to heat an electrically conducting object using

electromagnetic induction. An inductive heater is made of an inductor excited with

alternating current (AC). According to Faraday's Law, such changing current creates a

changing electromagnetic field around the inductor. When the electrically conducting

object is placed inside this electromagnetic field, eddy currents are generated within the

conductor, and lead to Joule heating owing to losses in the conductor. Compared to

traditional heating method, induction heating does not require direct physical contact as

the energy is transferred through electromagnetic waves.

2.1.1 Eddy Currents

When a conductor is placed in a changing magnetic field, circulating eddies of current

will be created inside the conductor. The name eddy current comes from the analogy of

circulating water in fluid dynamics. In a non-zero resistivity conductor, the eddy current

induced will generate Joule heating and electromagnetic forces. The current will become

greater with either a stronger magnetic field or a higher frequency magnetic field.

According Lenz's law, the eddy current will flow in a direction such that the magnetic

field created by the current will oppose the magnetic field that induces the current. In

another word, the eddy current will create a magnetic field to cancel part of the external

field. During the design of the field extender, we need to be aware that adding an enabler

to the field extender will reduce the current and voltage of the field extender.
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2.1.2 Skin Effect

At direct current, current density is uniform through the entire cross section of the

conductor. As the frequency of the alternating current increases, the magnetic field at the

center of the conductor increases accordingly (Figure 6). The magnetic field creates

current in the opposite direct of the current flowing through, making it more difficult for

the current to flow in the center. Such resistance is called reactance. Because of the

reactance at the center, the current density is the lowest there and largest near the surface

of the conductor where the reactance goes to zero. This concentration of current at the

surface is named the "Skin Effect".

t ti t t

Figure 6 Schematics drawing of current and magnetic field in a conductor with alternating current.

"I" is primary current. "H" is magnetic field induced. "Iw" is self-induction current.

The AC current density decreases exponentially with the depth from the surface. The skin

depth is defined as the distance into a conductor at which is current density falls to 37%

of its value along the surface. The skin depth can be expressed as [3]:

1
f (2.1)

where:

f= frequency, pt = absolute magnetic permeability of the conductor = po * Mr,
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[= Permeability of air = 4Tr * 10-7 Q), pr = Permeability of the conductor

-= Conductivity of the material

For a copper wire with AC of 220 kHz, its skin depth will be 0.141mm. 63% of the

current through a copper wire will flow within a distance of 0.141mm to the surface. The

effective resistance can be calculated as current flowing uniformly through a layer of

thickness 6 with the DC resistivity of that material. The cross-sectional area can be

approximately represented by:

Aactive = 6 * 2Trr (2.2)

where:

r = radius of the wire

Then, the AC resistance is:

r
Rac Rdc 2 (2.3)

All the equations shown above are based the assumption that the skin depth is

significantly smaller than the radius. However, the wire used to make the LC circuit is

has diameter about 0.5 mm. The skin depth of such wire is at the same order as the wire

diameter when the frequency of AC is set to 220 kHz. The AC resistance at low

frequency can be calculated using:

Rlow freq Rdc + 48u762 (2.4)

where:

1 = total length of the wire.

Assuming same conductivity, the thinner the skin depth is, the larger the resistance is,

and the stronger the dissipation or heating effectiveness will be. For this reason, in the

inductor design, "skin effect" needs to be minimized by using non-ferromagnetic material

such as copper. However, in the application of enabler, ferromagnetic material is better

for higher heating efficiency.
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2.1.3 Selection of Materials

The selection of material is critical for the effectiveness of heating. Only conductive

materials can be used for induction heating because eddy current needs to flow in the

object to generate heat. Even though Eddy currents can occur in any conductor, iron and

its alloys respond better than aluminum and copper to induction heating owing to their

ferromagnetic nature. With same alternating current, ferromagnetic materials have

significantly smaller skin depth, resulting greater resistance. Therefore, more Joule heat is

created.

For materials that are thinner than their skin depth at the desired frequency, the skin

effect is no longer important. The resistance of the material is only determined by the

thickness and basic material resistivity. In this case, aluminum and copper can perform

just as well as iron.

2.2 Magnetic Field Generated by Current

This section provides an initial background on electromagnetic theory. Based on this

introduction, inductive coupling is introduced. ProTeqt uses a large electromagnet in the

deactivation tablet to unlock their locks. To extend their deactivation distance from the

surface of the tablet to an inch above, resonant inductive coupling has been introduced to

the system to permit efficient wireless energy transfer. For more extensive information,

the reader can refer to a more detailed handbook [4].

2.2.1 Magnetic Field Strength at a Coil Axis

Every current, i.e. a flow of moving charges, is associated with a magnetic field with

magnitude that is represented by the magnetic field strength, B (in Teslas). The magnetic

field generated by a line of current within a wire is derived from Biot-Savart law [5].

That is
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L ,

B, p Id1lxiQg
B =* fd Qp2 (2.5)

0

where:

Q is the point of observation.

P is the center of the elementary element dl.

I indicated the intensity and the direction of the current at P.

ip is an elementary vector from Q to P.

i = Iprpo is the permeability of the medium

From this equation, it is possible to find the magnetic field along a single circular loop of

radius a, carrying a current I. We are especially interested in the magnetic field B, along

the axis of the loop. It is oriented in the axis direction, as shown on Figure 7:

Figure 7 A current-carrying loop and it's associated magnetic field along the central axis.

The magnitude of the field is:

Bz Bz ta23 (2.6)
2(z 2 + a 2 )(

To understand the effect of distance, the magnetic density is plotted as a function of the

distance from the hoop (see Figure 8), which is a plot of Eq. 2.6 with a=] m and 1=1.
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Figure 8: Magnetic Field along the hoop axis vs. the hoop radius (log-log scale). Hoop radius a = 1

mm and current I = IA in Eq. 2.6.

As long as the distance from the conductor is less than the radius, the magnetic field

remains approximately constant. However the magnetic density decreases rapidly as the

measuring point is moved further away from the center of the hoop.

As will be discussed below, a flat spiral coil can be used to increase the magnetic field by

increasing the number of loops. A spiral coil can be seen as a certain number of

concentric hoops with different radii (a,, a2, a3 ... ), and potentially with N layers. In this

case, the total intensity of the magnetic field along the axis of the coil is the superposition

of the magnetic field intensities generated by each single loop [4].

2.2.2 Magnetic Flux and Inductance

The line along which the magnetic strength is constant is called a line of magnetic flux.

We are interested in the total magnetic flux, i.e. the total number of flux lines passing

through a given surface. The magnetic flux cD is proportional to the field density B and

the area:

(P = B. A (2.7)

Going back to the current-carrying hoop, it is now possible to define and calculate its

inductance L.
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L = t (2.8)

where cP is the magnetic flux through the inside surface of the loop.

Combining Eq. (2.6) (2.7) and (2.8), the inductance of the loop can be expressed as:

piwa
L = 2a (2.9)

It is noticed that inductance does not depend on the current. It only depends on the

material properties and the geometry layout. The inductance of a spiral coil is the sum of

the inductances of each single hoop.

2.3 Inductive Coupling

If a second conductor hoop is located closed to the first one, a portion of the magnetic

flux (D2 1 from the first hoop passes through the second. The two conductors are now

inductively coupled. As for inductance (also known as self-inductance), we define the

mutual inductance M21 of conductor hoop 2 in relation with conductor hoop 1 as:

(D21
M 2 1 - (2.10)

I1

In a similar way, the mutual inductance of conductor hoop I in relation with conductor

hoop 2 is:

_ 12
M12 = P(2.11)

12

It has been shown that both mutual inductances are equal [4] i.e.

M1 2 = M2 1 = M (2.12)

Continuing with these two coils, we consider the case where the first inductor carries a

high frequency coil, producing a varying magnetic field at the same frequency. With the

secondary coil located in the surrounding area so that the two are coupled, Faraday's law
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states that any change to the magnetic flux generates an electric field, which induces a

voltage in the secondary coil. It's this induced voltage that can be used to supply power

to another application (RFID chip, transformer, etc.).

2.4 Resonant Coupling

Experience and analysis [6] show that coupling decreases very quickly as the distance

between two coils increases. However, if the receiving coil is paired with a capacitor, a

resonance phenomenon will increase the coupling efficiency at its natural frequency. At

this frequency, the power transmission is much more efficient. Thus, the distance

between the coils can be substantially increased.

2.5 Applications

The physical phenomena discussed in this chapter can be advantageously used for

contactless electronic application. Two of the most important and applicable applications

are RFID tags and wireless power.

2.5.1 RFID

Today many companies, large and small, use automatic identification systems, or Auto-

ID, for a large range of applications; including inventory management, sales and

purchase, payment, safety controls, communication, and other means. The most widely

used technologies in this field are the barcode and the smartcard scanning. Among all

other available solutions, RFID systems (Radio Frequency Identification) have three

major advantages: identification is passive, contactless, and reconfigurable. Like smart

cards, data is stored on an electronic data-carrying device, called the chip. However,

RFID devices do not require physical contact between the chip and the reader. Instead,

data is exchanged with an electromagnetic field. Electromagnetic waves are emitted and

received through two coils, or antennas. One is connected to the chip and the other one in

the reader. The chip, when accompanied by the coil, is called the transponder.
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To maximize the power transmission, and the working distance between the transponder

and the reader, the resonant frequency of the system is used to convey information. Two

types of transponders exist today: passive and active transponders. A passive transponder

does not provide energy and, instead, receives it from the reader's magnetic field. This

energy causes an impedance change of the transponder: shifting the initial natural

frequency of the system, which is detected by the reader. Active transponders carry a

battery that allows them to transmit their ID signal using their own energy source. The

signal is sent either periodically or in the presence of an RFID reader. Passive

transponders are more widely used because they are less expensive, whereas active

transponders are used in long distance applications [4].

2.5.2 Wireless Power Transfer

Wireless energy transfer is as old as alternating current [7]. The transformers that are

ubiquitous in most electronic devices and indeed in all electricity distribution network

transfer energy by using mutual inductance. In recent years wireless energy transfer for

an array of application is quickly becoming an important use of resonant inductive

coupling. A team of MIT physicists, and many others have been working on this subject

[8,9]. They realized that resonant objects tend to couple, as opposed to off-resonant

interaction, where their interaction remains extremely weak. Thus, energy transfer

efficiency between two resonators increases based on the coupling level between them.

This phenomenon is called non-radiative wireless energy transfer. Non-radiative energy

transfer is much more interesting than other solutions, such as radiative transfer or

directed radiation modes because, respectively, they produce a huge energy loss or

require line of sight between transmitter and receiver. Some foreseen applications for

non-radiative wireless energy are:

e Charging portable electronic devices by placing it within the source field

e Supplying power to mobile robots and machines in a factory

e Supplying power to internal medical device (pacemaker, medicine delivering

devices, etc.)
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Several designs have been tested and refined. Currently, the highest efficiency is

achieved with a four-coil apparatus: the power supply with an inductor, first resonator,

second resonator, and the receiver with the device to power (light bulb). A schematic of

the system is given in Figure 9.

L 4 I [ L

R2

TX Helix RX Helix

Source(AC)

Figure 9: Typical strongly coupled magnetic resonance (SCMR) system.

TX is the transmitting helix. RX is the receiving helix. 161

In this configuration resonant inductive coupling only takes place between the two

resonators. The transmitting helix is inductively coupled with the source loop. Similarly,

the receiving helix is inductively coupled with the load loop. With this system, several

promising achievements have been made including more than 90% efficiency at 15 cm

distance, 40% efficiency with a single receiver at 2 m, and 60% efficiency with multiple

receivers at 2 m. Recently, the research team, now an MIT spin-off company called

Witricity, introduced a repeater to further increase the effective distance of the magnetic

field, and thus increase the transfer distance even further by inserting another set of

resonators between the two previous ones (transmitting and receiving helices). [9-11]

The success of Witricity gives us theoretical foundation to develop future applications

that require deactivation distance more than one inch.
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3 LC Circuit Manufacturing

ProTeqt had previously determined that an LC circuit with a resonant frequency in the

range of 220kHz would be necessary for wireless deactivation. This circuit would be part

of each device, and therefore must be compact enough to fit in the locking device and

inexpensive enough to keep the device cost low. These requirements make the design and

manufacture of this circuit critical to the success of this product. In this chapter, a variety

of manufacturing methods are examined for making such a device.

ProTeqt had done preliminary research to explore the design space, and found that the

performance achieved by the LC circuit could prove feasible for extending the working

distance of their locks to one inch. The LC Circuit can be thought of as a passive

receiver. That is, the LC circuit does not contain a battery or any other power source, nor

does it require its own power source to receive a signal. LC circuits can be manufactured

at a very low cost because they do not contain a power source.

An LC circuit only contains an inductor (L) and a capacitor (C). Thus, manufacturing is

rudimentary. One must simply join an inductor and capacitor to complete the circuit.

Based on the inductance and capacitance of the two components, the natural frequency of

the circuit can be predicted with the following equation:

1

f 2ndVL- (3.1)

This leaves two variables that can be changed with respect to each other, in order to

achieve a certain natural frequency. The most efficient transfer of wireless energy occurs

when the transmitter, or deactivation tablet, emits an electromagnetic field at the natural

frequency of the LC circuit. It's here that ProTeqt would like to be in the design space.
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3.1 Inductor Manufacturing

An inductor, in its simplest form, is a coil of wire used to resist a non-constant current

flow [12]. It stores energy in a magnetic field created by current flowing through a coil.

Inductors come in many shapes and sizes. These parameters often affect inductor

performance [13]. The magnetic field created by an inductor is dependent on inductor

shape, whereas the intensity of the field is determined by the number of turns within the

coil. For our application we are interested in designs that will permit an electromagnetic

field extension through resonant coupling. Materials are especially important in

inductors. The time required to establish a magnetic field is proportional to the coil

resistance. High current is desirable to quickly set up a magnetic field. Changing the

linear length of the coil, or the coil's material properties can alter resistance, and

therefore the field [13]. High coil resistance will also result in heating, and therefore

promotes energy loss. For this project, three possible inductor-manufacturing methods

were: coil winding, chemical etching and screen printing.

3.1.1 Chemical Etching

Chemical etching is a controlled material removal process that uses a resist to prevent

portions of a material from being removed by a chemical etchant. Once the resist is

removed, a desired pattern remains (Figure 10). The process at hand uses copper and a

resist to etch a copper pattern.

Before Etch After Etch

Resist

Copper

Laminate

Figure 10 Schematic of a typical etching process.

Resist

Copper Copper

Laminate
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Figure 10 explains how chemical etching works [14]. You will notice that the etchant

removes material in both horizontal and vertical directions. That is, a slight angle is

apparent in the final product because the etchant is in contact with that portion of the

material after it passes beyond the resist. Finally, it's important to note that this is a

chemical material removal process. Meaning the copper that is removed cannot be easily

recycled, making the process as a whole, inefficient.

Etching allows for batch processing of inductors. However, it restricts coil designs to

single layer, flat spiral coils. Economical etching is usually done in large batches of very

thin materials. These materials are often on the order of 0.03mm thick [14]. As material

thickness increases, time to etch and removed material both increase. This property is

inefficient in terms of processing energy and material usage. It directly impacts the

production cost.

As material thickness decreases, resistance increases. This resistance restricts current

flow through the material, and therefore increases the amount of voltage needed to create

an electromagnetic field. The time requirement to etch thick pieces of copper (0.5mm) is

about 5 minutes [15]. This however is not what limits the chemical etching process in

terms of this application. The limiting factor is in the material costs. Copper is very

expensive, and is only one of the materials used in the process. Resist and the chemical

etchant also need to be purchased, along with the many cleaning solutions used to remove

the etchant.

3.1.2 Coil Winding

Coil winding is a process that bends a wire (usually radially) into a desired shape. This

can be done manually or automatically, and many different winding patterns can be

achieved. This process bodes well for inductor manufacturing because an inductor, in its

most basic form, is a wound coil. Size and shape of the coil, and wire used to create the

coil can impact the inductor performance. Wound coils can be formed into almost any

desired shape including flat spiral, cylindrical, rectangular, etc. Wire geometry is often

limited by market availability. Rectangular and circular cross sectional wire are most

common. Wires are found most commonly in certain AWG gage sizes, which have a
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circular cross section. Diameters are fully customizable depending on the type of winding

machine. Usually machines can operate using a range of wires. Automatic machines often

integrate several functions including dispensing, winding, and cutting the wire. Machines

can accommodate simultaneous coil winding, providing a batch process. Batch

processing allows the machines to produce coils at a high rate. The cost of copper wire is

relatively low compared to silver ink [16]. Wire is packaged as a large spool that is fed

into the coil-winding machine. Because the wire is continuous, there is almost no waste

of copper compared to chemical etching. The two ends of each coil are left exposed,

ready to be soldered to the remaining capacitor.

3.1.3 Screen Printing

Screen printing is a highly integrated manufacturing process that can provide an entire

LC circuit in one process. The process uses a mask that contains the circuit pattern.

Conductive ink is then deposited on the mask, and the circuit is printed on the areas not

protected. Silver and Aluminum are the most popular conductive inks used in this

process. Dielectric materials can also be used to print capacitors. This is done in layers.

First a silver layer is deposited, followed by a dielectric, and finally another silver layer.

[17]

The flexibility of screen printing is similar to that of chemical etching. It is commonly

used for making flat, flexible circuits. The deposited layers are very thin (40 micron), but

can be built up in layers. Building layers requires more processing time, and is therefore

less economical. The thin nature of screen printing causes inherently high resistance

values. Capacitors are printed as large flat surfaces, requiring a large amount of surface

area. Spacing is also critical in screen printing. The silver ink does not have an insulating

coating, so line spacing also requires more space. Like chemical etching, large batches

can be printed at once. However, screen printing requires no post processing because the

capacitor can be printed as part of the circuit. [17]

The screen printing process is relatively new when compared to processes like etching or

winding. While the added flexibility and integrated components are great for circuit

board design and manufacture, it is still a new processes, and therefore costly. Even at the
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materials level, silver ink is much more expensive than copper for a given volume.

While this process isn't right at this time, future developments could lead to significant

cost reduction, leaving it as a potential process for future manufacturing. [17]

3.2 Capacitors

Capacitors are common electrical components used in many types of circuits. They

consist of two conductive plates that are separated by a dielectric layer. This

configuration allows capacitors to hold a charge. Capacitors come in many shapes and

sizes due to their simple design (Figure 11). Capacitors are made in extremely high

volumes by expert manufactures. With their cost at $0.0074/capacitor2 , ProTeqt will be

purchasing capacitors to use within their circuit.

-- m A W

Figure 11: Typical shapes and sizes of capacitors.

Capacitor specifications usually include three key pieces of information: nominal

capacitance and rated voltage. A capacitor will likely have these values printed on its

side. A capacitor reading 1if, 20% at 1OOV, for example, will have a nominal

capacitance of 1 microfarad with a tolerance of ± 20% (0.8p1 f - 1.2pf). Throughout the

life of the capacitor, it should not handle more than 100 volts, as that is the rated voltage.

2 Fenghua Electronics, Part number 0805M for quantities of 10,000 pieces
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3.3 Soldering Techniques

Soldering is a method of joining two thin metals using a filler material. This filler

material has a lower melting temperature than the two thin metal pieces, allowing the

filler material to flow between, and bond to each of the thin metal pieces. The filler

material is often made of tin and lead. Conductive properties allow soldering techniques

to be prevalent in the electronics manufacturing industry, and especially circuit board

manufacturing. Two common soldering methods are used in manufacturing today:

robotic soldering and dip soldering.

Robotic soldering often uses a robot or other automation to control temperature and the

feed rate of the filler material. Sophisticated control systems are used to gain a high level

of precision over soldering processes. Robotic soldering often requires auxiliary tooling

or methods of positioning and orienting components before they can be soldered.

Dip soldering is used more extensively for circuit board manufacturing. This process is

used to solder several components simultaneously. Leads from electrical components

protrude through the bottom of the printed circuit board. These are dipped into a lead-tin

bath, where the solder then solidifies upon removal. [18]

3.4 Preliminary Comparison of Processes

Coil winding was the manufacturing process chosen to perform design optimization and

manufacturing variability analysis in this project. Three manufacturing methods:

winding, etching and screen printing were chosen to conduct a preliminary comparison.

The comparison is based on three criteria: design feasibility, cost, and manufacturing

feasibility.

Based on the testing done by the engineers at ProTeqt, a hand made winding coil had

proved to be working. The coil was made of AWG 24 copper wire, with 9 turns. It had an

oval shape to maximize its surface area. The detailed dimension of the coil is shown in

Figure 12.
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TO BE FREE OF COATING

Figure 12 Drawing of a Machine Wound Coil

The Q factor is the inverse of the damping ratio of the resonant circuit, and thus a

measure of the amplification of the input that occurs at the resonant frequency. It is a key

metric to evaluate the energy transfer efficiency of an LC circuit, and can be expressed in

equation:

R
Q= 2wf(3.2)

where:

R = resistor, f = natural frequency, and L = inductance.

The Q factor of this circuit at 200kHz is about 35. Among the three potential

manufacturing methods, winding is the only process that can produce a coil with

comparable Q factor while being highly manufacturable and low cost. For etching and
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screen printing, however, the resistance of the coil is significantly higher due to the small

thickness. Metal foil used in etching is normally on the order of 0.03mm thick [14].

Thicker foil will increase cost and the manufacturing time. Thickness of screen printing

pattern is normally below 1 00ptm [19]. Multiple-layer is feasible, but just as increasing

the thickness of foil in etching, it will raise both cost and process time. If we reduce the

number of turns to achieve low resistance, inductance will decrease as it is positively

related to the number of turns.

In addition to the design challenge, the manufacturing cost of etching and screen printing

is significantly higher than winding. Etching being a fairly complicated process requires

higher equipment investment and complex procedure. Material waste of etching is much

higher than coil winding as it is a material removal process, while coil winding being a

continuous process has very little material waste. Silver price was about $800/kg

comparing to $7/kg for copper during this project3 . Therefore, for screen printing, even

the cost of ink alone is much higher that the 5-cent cost constraint.

Taking all the factors into consideration, coil winding was the manufacturing process

chosen to perform design optimization and manufacturability analysis in this project.

3.5 Wound Coil Cost Analysis

Cost is the major constraint for selecting a manufacturing method. The cost estimate of

manufacturing a wound coil can be broken down into three components: machine cost,

labor cost and material cost. A baseline analysis of cost can help ProTeqt choose a

manufacturing method and negotiate price with vendors.

According the quote from winding machine manufacturer Wey Hwang Co., the price of a

fully automatic coil-winding machine is $20,000. The depreciation of the machine is

amortized into five years. One machine can manufacture 500 coils per hour based on the

specification. Labor cost is estimated at $5/hour using shifts that cover 16hours per day at

300 days per year. We assume that one laborer can take care of 5 machines. The material

3 Commodity futures price (COMEX) from nasdaq.com
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is comprised of wire, solder and capacitors. The price of copper wire is highly dependent

on the market price of copper. The wire price is set to $1 0/kg [16]. Based on the

assumptions made, each coil costs 0.46 cents in material, 0.2 cents in labor, 0.16 cents in

machine and 0.82 cents total. According to the electronic component manufacture

Fenghua, a 20% ceramic capacitor rated at 1 pF, I OOV is priced at 0.74 cent. Assuming 1

cent for the soldering process, the total manufacturing cost is 2.56 cents.

Other cost such as administration, facility and distribution were not included in this

model. Given the fact that material is the major cost in this industry, we expect the total

cost to be within the target of 5 cents.
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4 Coil and Circuit Design

By the time this project started, ProTeqt had developed coil design that works at one-inch

distance above the deactivator tablet. However, the physics behind the success was not

well understood, and whether or not a better design exists remained unknown. The

objective of this section is to provide design recommendation of the coil, which

maximizes the energy transfer between the tablet coil and the LC circuit. Preliminary

experiments were first been conducted to identify the significance and the interaction

between the parameters of the system, especially between the two coils (distance, number

of turns, wire gage...). Then a theoretical analysis was performed, using the information

from Chapter 2. The result of this analysis was then compared to a series of experiments

done at ProTeqt. In order to extend this work to other manufacturing processes, an

alternative design in the case of thin wires (when cross section area is below typical

copper wires) is described in Appendix A.

The final design is subject to some geometric constraints as the design of the micro-USB

lock housing has already been done. Thus, the size of the LC circuit has to be within the

interior space of the housing in order to fit inside the lock. The space for the circuit

consists of two empty parallelepipeds: one for the coil and one for the capacitor (see

Figure 13).

For more detailed design process, please refer to Amaury Rony's thesis. [20]
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4.1 LC Circuit Experimentation

The inductor and capacitor share a relationship that can be optimized in order to create

the most effective field, thereby heating and expanding the enabler. The most important

design component is the inductor because it must act as an antenna and generate it own

field. The inductance depends on the geometry of the coil, such as the wire gage size and

number of turns in the coil. Once the inductor geometry is optimized, a capacitor can be

chosen to target a certain natural frequency for the c itcircuit.

To find the optimal inductor geometry, a design of experiments was conducted to

generate a response surface based on the wire gage and number of turns in the coil. The

measured output of this test was voltage, which was converted to current based on the

known resistance of the coils using equation:

8-(R2 + (27Tf L)2)(-)

where:
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Vpp = the peak-to-peak voltage measured, R = resistance of the coil, f= frequency,

L = inductance of the coil.

To conduct the experiment, a primary coil was connected to a function generator and

amplifier, and placed below a surface representing the deactivation tablet. Above this

setup, six different circuits with different inductor geometries were connected to an

oscilloscope in order to measure the peak-to-peak voltage. From here the values were

converted into current. The current in the coil should be maximized in order to create the

strongest magnetic field, and therefore generate the maximum amount of eddy currents to

heat the enabler.

The deactivation tablet has been optimized to operate around 220 kHz. To keep the

natural frequency at this target, we measured the inductance of each coil, and then paired

it with the proper capacitor. After generating the response surface, the inductor geometry

was optimized based on the geometric lock constraints. The capacitor was selected based

on the inductor. The pairing of the two components led to the optimal circuit design of

the LC circuit.

Using the optimal design, experiments were conducted to understand the coupling

efficiency between the two coils. We defined efficiency as the ratio of output current in

the LC circuit (Iload) over the input current to the primary coil (Isource):

_ load
Eff = 'souc (4.2)

Isource

To obtain the current, voltage was measured in both the primary circuit and the LC

circuit, and then converted to current using Eq.(4. 1). The efficiency of each coil then was

calculated accordingly. Finally, same test was conducted with full-sized and half-sized

enabler placed on the LC circuits. The goal is to understand the effects of placing the

circuit inside the lock on the efficiency of the coupling between the primary coil and the

LC circuit.
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4.2 LC Circuit Optimization Results

4.2.1 Optimal Secondary Coil Design

By testing six coils with varying gage size and number of turns, we gathered data and generated a response

surface that would help us to predict the performance of any other combination of gage sizes or number of

turns. According to the response surface in

Figure 14, the wire gage and number of turns in the coil should be maximized to generate

the most current. Larger gage size wire has lower resistance and thereby higher resulting

current. Also, increasing the wire gage corresponds to a shorter wire. Two coils that have

the same outer diameter but different gage sizes, the larger gage size coil would have a

shorter unwound wire, which again decreases resistance and increases current flow.

With a general understanding of how current corresponds to a coil design, other

constraints were considered in order to fully optimize the circuit. It was found that the

largest gage size fit within the given volume of the lock was AWG 24. This wire

diameter is around 0.5 mm. This is the maximum gage size because the wire must be

routed in and out of the flat spiral coil, effectively requiring us to cut the allowable height

in half. With the wire gage in place, the maximum number of turns was 9, when leaving

an appropriate inside diameter for the manufacturing of the coils.

Surface Plot of Current vs Turns, Diameter on Coil

0.06

0.04
Comr.t

0.02 
445

0.00.

0.2 is em

03 0.4 .5 0
Diameter 0.5

Figure 14: Response surface in current for various coil characteristics.
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A theoretical model was created to confirm this design. Table 1 shows the optimal coil

using the theoretical model. The output of the model is current (A). For more on the

theoretical model, please see Amaury Rony's thesis. [20] From the table we again gather

that optimal design for the inductor coil uses 24 AWG wire for a coil with 9 turns.

Table 1 Circuit design optimization result from a theatrical model. The grey area is the ones that

exceed the space constraint. The optimal combination is highlighted with solid border (AWG 24 and

9 turns). Highlighted in dash-line borders are two possible combinations with slightly larger interior

space.

AWG T6 7 _s6_78 9 10 11 12 13

22 4.76 5.29 5.82 6.36 6.90 7.45 7.99 8.54
23 3.56 3.94 4.311 4.691 5.07 5.45 5.83 6.21

24 2.68 2.94 3.20 7 3.731 4.00 4.27 4.54

25 2.03 2.21 2.39 2.58 2.76 2.95 3.14 3.33
26 1.53 1.66 1.78 1.91 2.04 2.17 2.30 2.43
27 1.17 1.26 1.35 1.441 1.54 1.63 1.72 1.81
28 0.89 0.95 1.011 1.07 1.141 1.20 1.27 1.33

Moving forward, a capacitor had to be joined to the coil to complete the LC circuit. The

capacitance was calculated using Eq.(3. 1) using the inductance and target frequency of an

LC circuit. With the tablet being optimized to operate around 220 kHz, we could back

calculate a capacitance value for the inductor so that the natural frequency of the LC

circuit would be 220 kHz. A 1 pF capacitor was included in the final specifications for

the circuit, because it's the most common capacitance value near the theoretical value

calculated using the formula.

4.2.2 The Quality of Coupling and the Effect of Enabler

With the final specifications of the circuit design in place, the circuit was analyzed to

understand the coupling efficiency. Using the methods discussed above, we were able to

obtain plots of the ratio of current out of the secondary coil vs. the primary coil, or

efficiency, and understand how that changed with the frequency. Figure 15 shows a
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coupling efficiency plot of the optimal circuit (AWG24, 9 turn, 1pF) at one-inch

distance.

Efficiency vs. Frequency
0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0 - - ------------ --

200 250 300 350 400 450 500

Frequency (kHz)

Figure 15: Efficiency vs. Frequency plot for the optimal LC circuit.

Notice the large spike in efficiency around 200 kHz. It is the natural frequency the LC

circuit is tuned to. At this frequency, the circuit has the highest effective wireless energy

transfer.

The next step was to test the circuit to understand the effects of the other metal

components in the lock. The concern was that other conductive materials inside the lock

could shift the natural frequency of the circuit if within a close proximity. It was found

that the enabler had an extreme dampening effect on the coupling efficiency of the

circuit. This meant that, while the enabler did expand, it did so using much less wireless

energy than expected. Figure 16 is a plot comparing the efficiency of the LC circuit with

and without the enabler.
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Effect of Enabler on Efficiency
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Figure 16: Efficiency vs. Frequency plot for an LC circuit with and without a full sized enabler.

Figure 16 shows that the enabler dampens the efficiency of the wireless energy transfer by

about five times. The natural frequency is also shifted from 200kHz to 235kHz. To

further understand the effects, a half sized enabler was analyzed using the same method.

It was found that the efficiency was still dampened, however the extent was significantly

less. This effect can be seen in Figure 17.

Some deactivation tests were done using the optimal circuit, and the lock was disengaged

successfully most of the time. It can be concluded from the circuit design modeling and

testing that the optimal coil design is feasible for the application at one inch.
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Figure 17: Efficiency vs. Frequency plot for an LC circuit with and without a full and half sized enabler.
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5 Mechanical Lock Analysis

The success of the lock system requires the force generated by the enabler to be greater

than the force required to disengage the mechanical lock system. The mechanical lock

system analyzed throughout this thesis is a micro USB lock system, which has been

identified as a critical mechanism that will facilitate growth and opportunities for

ProTeqt. The objective of the analysis on the mechanical lock is separated into two parts.

First the forces required to disengage the lock should be understood, followed by the

forces that can be achieved by the enabler at a distance of zero and one inch. The optimal

circuit (AWG 24, 9 turns, 1pF capacitor) developed in the coil design phase was used

in this force test. For more detailed about the test, please refer to Mitchell Krogman's

thesis. [21]

5.1 Mechanical Lock Force Analysis

To better understand the forces required by the lock to disengage, three analyses were

completed: analytical calculation, finite element analysis (FEA), and empirical data

collection. The analytical model and FEA model are simplified model of the real lock

based the CAD drawing. Analytical model can provide a theoretical baseline to validate

the result from FEA model. However, only the measurement data can represent the actual

force needed to disengage the lock. Knowing the results from all three methods could

help us understand the manufacturing precision of the parts.

5.1.1 Analytical Calculations

An analytical calculation was used to understand the forces required to disengage the

lock. This analysis used a typical beam-bending model (Figure 18) and a sliding friction

model to calculate the forces required by the lock:

FTotal = FFriction + FBending (5.1)

Foc.itiof can be defined as:

FFriction = /IFspring (5.2)
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where p = the coefficient of friction between the two stainless steel components.

FBending can be defined using the following model:

F x

Figure 18 Beam Bending Model used for Analytical Calculations

6EI
FBending = (x)X2( 3 L - x) (5.3)

where 6(x)= displacement at point x, E = Young's modulus of the sheet metal,

I = inertia, 1 = length of the beam, and x = position at which the force is applied.

5.1.2 Finite Element Analysis (FEA)

In order to fully understand the interactions and forces required inside the lock, an FEA

was conducted to gather numerical result of the bending force required. The FEA was

completed using 3D data of the most current lock design. Solidworks Cosmos was used

to conduct the analysis.

The model is simplified, focusing on the force required to bend the sheet metal

component shown in Figure 19.
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Figure 19 Image of the First Sheet Metal Component.

The majority of this component is housed inside of the other sheet metal component

(sheet metal 2). Stainless steel was used for both sheet metal parts. For detailed

description about the interface between the two sheet-metal parts, please refer to Chapter

1.3.2.

Constraint

Force fConstraint

Figure 20 Constraints and Loads as Applied in the FEA

To obtain the results of the FEA, we applied varying levels of force until we reached

0.5mm of displacement. At 0.5mm the two pieces clear each other, allowing the first

metal piece to be forced through the sheath by the spring. Figure 20 is the model prepared

for the analysis. The small arrows signify points of fixation whereas the larger arrows on

the left represent the force.
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5.1.3 Empirical Test

The first two analyses used to obtain the force required to disengage the lock provide an
initialli] level of understanding. To gain a true perspective of the force required, a test
procedure was implemented to capture the force required to disengage the lock.

To facilitate testing, one side of the external housing was removed, leaving the internal

components exposed. The plastic component, LC circuit, and enabler were removed for
testing. This allowed enough space to access the sheet metal components using a probe

fastened the end of a force gage. The spring remained inside the lock throughout testing

to provide results that were similar to real situation. The measurements are a sum of the

forces due to friction and bending.

To facilitate repeatability, the force gage was fixed and set to zero before each test. The

lock was then positioned so that the probe on the end of the force gage was directly on

the sheet metal, as to mimic the plastic component. As the lock is brought closer to the

force gage the force increases until, finally, the lock disengages. When the lock is

disengaged the force drops back to zero. The force gage is able to record the peak force

throughout the unlocking process, which is the recorded measurement for the empirical

test. In total, 30 data points were measured.

5.2 Enabler Force Analysis

The force required to disengage the lock in turn determines the minimum force required

from the enabler. If the force produced by the enabler does not exceed the force required

by the lock, it will fail to disengage. The shear number of products that could eventually

be facilitated by ProTeqt's technology leaves little to no room for error. Accordingly,
experiments with full-size (9mm x 12mm) and half -size (9mm x 6mm) enablers placed

on both the surface of the tablet and one inch above were conducted to gain a better

understanding of the forces produced by the enabler.

5.2.1 Experimental Apparatus

The experimental apparatus was designed to reliably measure the force created by the

enabler while maintaining a level of flexibility to change various parameters. The force
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gage for resulting force measurement was attached to a rigid wood frame (Figure 21). The

horizontal beam of frame could move vertically if needed to facilitate experiment at

different height.

(1)

0
LL

Frame

Enabler
Deactivation Tablet

Table

Figure 21: Diagram Explaining the Enabler Force Test Setup.

In order to accurately represent the constrained space inside the lock, a Lexan fixture was

used to constrain the enabler (Figure 22). It was laser cut with pockets of various sizes in

which enablers with different sizes were placed. Thin cardboard pieces were placed in the

pocket. By changing the number of cardboard pieces, the vertical space inside the pocket

could be adjusted. Another piece of Lexan was placed on top of the constraining fixture

for consistent measurement and protection of the force gage.
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Figure 22: Model of an Enabler Constraint Fixture

5.2.2 Preliminary Analysis

A number of tests were conducted to understand the different parameters and components

that ultimately lead to the resulting enabler force at zero and one inch.

Optimal Processing Time

An analysis of processing time (time duration that the deactivation tablet produced the

desired field) was conducted to find the optimal processing time to process all proceeding

experiments. Disengagement of the lock should use less than one second. This constraint

has been set as per request from ProTeqt's potential customers. To understand the effect

of deactivation time on force, five samples were taken at intervals of 0.1 seconds from

0.1 to 1 second. For full-size enabler on the tablet, the data was shown in Figure 23. The

instrumentation could not detect a change in force from 0.5 to I second, so only data

from 0.1 to 0.5 seconds were shown. The force generated reaches its peak with

processing time of 0.3 seconds. However, this force has a high standard deviation, which

continues to be a trend through 0.4 seconds. In the test, we observed that for duration

longer than 0.3 seconds, some of the test enablers were burned randomly, resulting much

smaller forces. 0.2 seconds was chosen as the optimal processing time on the tablet

because it provided sufficient force for measurement with small variation.
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Force vs. Activation Time (Full_0)
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Figure 23: Individual Value Plot of Force vs. Activation Time Using a Full Enabler with Zero

Distance from the Surface of the Deactivation Tablet.

Force vs. Deactivation Time at 1 Inch
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Figure 24: Force vs. Deactivation Time at 1 Inch Above the Deactivation Tablet.
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At the one-inch distance, the same tests were conducted. As shown in Figure 24, both sizes

of enablers needed much longer processing time when far away from the surface even

with the help of the LC circuit. Maximum force was reached at around one second for

both types of enablers, and they were just large enough for measurement. Therefore, the

processing time for test at one-inch distance was set to one second. Processing time for

all the tests is shown in Table 2.

Table 2 Optimal Processing Time for Enabler Force Experiment

Space Constraint

With a fixed time, the effects of constraining the enabler both vertically and with respect

to its perimeter were analyzed to predict performance within the lock, given certain

dimensional constraints and tolerances inherent in the manufacturing processes. By

adding cardboard pieces, vertical constraint was controlled. Two lateral constraints were

achieved by using different size pockets. One had the exact size as the enabler, and the

other one has Imm clearance on each edge. The test result of full-size enabler on the

tablet is given in Table 3.

Table 3 Average force for different levels of confinement (full-size enabler, on tablet)

I piece (0.43mm) 2 piece (0.86mm)

Exact 6.2N 11.LN
Imm of clearance N/A 6.IN

Ideally the enabler should be under full confinement to generate the maximum force.

However, to push the locking mechanism, the enabler has to have about 0.5mm of
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Half 0.2

1 inch above Full 1
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vertical displacement. Therefore, in the enabler force test, only one piece of cardboard

was inserted to give 0.5mm of vertical clearance, while the lateral space was fully

constrained.

Size of the Enabler

Tests on the tablet and at one inch were conducted to understand the effects of using a

half-size enable comparing to a full-size one, as recommended to increase the coupling

efficiency between the primary coil and the LC circuit. The test on the tablet was used as

a baseline to explore the difference between the forces generated by enablers of different

sizes under the same condition. Thirty data points were taken for each enabler size. Then,

a comparison test was done at one-inch distance with five data points for each enabler

size. The LC circuit with optimal design was implemented in this test.

The test result is exhibited in Table 4. The data suggests that the full enabler produces

more force than the half sized enabler when expanded directly on the surface of the

deactivation tablet. The force generated is about proportional to the size of the enabler.

This model can be applied to ProTeqt's current USB lock design, which uses the full size

enabler directly on the surface of the deactivation tablet.

However, when deactivation is performed at one-inch distance, the half-size enabler has

better performance with 90% confidence. As explained in Chapter 4.2, larger size enabler

has more damping effect on the LC circuit resulting a worse coupling.

Table 4 Force test result of full-size and half-size enabler

Mean Std. Dev.

On tablet Full 11.1N 1.88N

Half 4.45N 1.16N

1 in. above Full 4.12N 1.10N

Half 6.56N 1.11N

-55-



Based on the experimental results shown, we learned that there is an optimal enabler size.

When enabler is small, the size effect is dominant, and therefore larger enabler is better.

When enabler is large, the damping effect becomes dominant, and therefore smaller size

is better. Limited by the time constraint, the size of enabler was not optimized during the

project. For system scale analysis of the Micro-USB lock, the half-size enabler was used

thanks to its superior performance to the full-size enabler.

5.3 Force Test Results

5.3.1 Mechanical Lock Force

The analytical model gives force of 7 and 20N for the respective frictional and bending

forces. The total force required using this analysis is 27N. After stepping through several

iterations of the FEA using different forces, we found that a force of 15N would give a

reasonable amount of displacement. In contrary, the force data collected resulted with a

mean of only 1.844N with a standard deviation of 0.3048N. This is significantly lower

than the either of the two previous force analyses.

The analysis assumes that the two sheet metal pieces have zero deviation from their

dimensions. That is, the components mesh together in a perfect manner. Realistically, the

clearance between parts in the y-axis can significantly reduce the amount of force

required to disengage the two sheet metal components. For the calculation of frictional

force, the assumption is that the two surfaces that will be sliding past each other are

perfectly parallel, making solid contact. In reality, the components are very small, and

prone to burrs, inherent in stamped parts. The burrs provide and even smaller interface

between the two components, which would lessen the frictional force. Because of the

assumptions made, the calculations and FEA model can be used as a tool to understand

the extreme maximum values for both the frictional and bending forces, but they cannot

show the actual force needed.

5.3.2 Force Generated by Enabler

The force generated by enabler is shown in Table 4. The half-size enabler can generate

mean force of 6.56N at one-inch distance, which is significantly larger than the 1.844N
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force needed to disengage the lock. If we assume that the measured data are normally

distributed, and put the distribution of the two forces on one probability plot (Figure 25), it

is obvious that the probability of enabler force smaller than required force is negligible.

In other words, the chance of failure for this locking mechanism is very small. Detailed

statistical analysis about the failure rate can be found in Krogman's thesis [21].
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6 System Performance Analysis

6.1 Objective

The objective is to provide ProTeqt with a tool, which can be used to predict the failure

rate from a system standpoint. In addition, it will be helpful when defining the

manufacturing quality control limit in the future. This section introduces a statistical

method to assess the possibility of failure. The variability of the LC circuit due to

manufacturing variation was measured via natural frequency (W") using the sample coils

and capacitors. Then, the relationship between the w, of a circuit with its corresponding

efficiency at 220kHz and the relationship between efficiency and force generated by

enabler at one-inch distance. With this information, the force generated by an enabler

when paired to LC circuit can be predicted. Since the force needed to disengage the sheet

metal lock is known from the force analysis in Chapter 5, the failure rate can then be

evaluated. Due to the lack of data, a simulation model was developed to generate data,

and help process the calculation.

6.2 LC Circuit Variation

LC Circuit design and optimization for the application at 1 inch uses an assumption that

each LC circuit manufactured will be made to the nominal natural frequency. However,

due to the inherent variability found in manufacturing processes, the actual natural

frequency will vary. To have a better perspective on the performance of the circuit when

manufactured at volume, we can obtain variance estimation for the inductor and

capacitor. Using these values we can calculate any variation associated with the

manufacturing of the circuit, and therefore complete an analysis of the frequency

distribution based upon the process variation of the LC circuit.

6.2.1 Data Collection

The process of determining variation in the LC circuit began by randomly selecting 10

coils of each type that were produced by a contract manufacturer. Each type of coil was

produced to the same specification, using techniques that mimic large-scale production.
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In total, there were 6 types of coils with same inner diameter, but various gage sizes and

number of turns. The variation of the coil is measure by inductance at 1kHz and 0.2V

using an LCR meter. Measuring at different frequency or voltage will give different

inductance value, but the overall distribution should not be different. The data was first

compared between different types of coil to analyze the variation between groups. Then,

all the data was pulled together and normalized to form the overall inductance

distribution.

The test result of inductance shows that the coil winding process is well controlled. The

coefficients of variation (CV) 4 are all below 3%, and most of them are well below 1%.

Detailed data can be found in Appendix B. The manufacturing variation of the capacitor

is also promising. With mean of 0.961iH and standard deviation of 0.0045, the CV of the

16 sample capacitors is only 0.47%. This very low variation contrasts with the

manufacturer specification of 20%. After consulting the capacitor manufacturer, we were

told that variation from batch to batch does exist, and they could not guarantee that the

variation will always be similar to what we observed. To be conservative, we will rely on

the specification and assume that the tolerance given is six standard deviations, or an

effective CV of 3%. [Note: If 6 sigma/mean = 20%, then CV = 1 sigma/mean, so we get

20%/6 ~ 3%.]

Fifteen circuits were assembled to measure natural frequency with the half-size enabler at

one-inch distance. The mean natural frequency is 218kHz, which is close to the optimal

220kHz. The CV of natural frequency was calculated at 3.70%, which is higher than the

one of inductance and capacitance owing to the stack-up variation of inductance and

capacitance. Detailed data is exhibited in Appendix C.

6.3 Relating Efficiency to Natural Frequency

The efficiency of a magnetically coupled circuit is defined by Eq. (4.2). Based on

experiment, we found that the shape of the efficiency curve of an LC circuit is

independent of its natural frequency, but the peak of the curve does shift with natural

4 CV is defined as the ratio of the standard deviation to the mean of a random variable
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frequency. As shown in Figure 26, the two LC circuit with natural frequency 5% below

and 15% above 220KHz have similar efficiency curves as the one of the 220KHz circuit.

Thanks to this character, if the natural frequency of an LC circuit is known, its efficiency

on the deactivator is predictable without any testing. The efficiency of any circuit at

220kHz {Eff 2 20 (fh)} can be obtained using a translation of the efficiency plot of a

220kHz circuit {Eff(fo)}. The transition can be expressed as:

Eff 2 2 0 (fh) = Eff (220 kHz - (fo - 220 kHz)) (6.1)

where fo is the natural frequency of a circuit.
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Figure 26 Comparison of efficiency plots at three different resonant frequencies: 220 kHz, 210 kHz (-

5%) and 250 kHz (+15%)

A non-linear regression model converting natural frequency to efficiency was fitted using

the following function:

1
Ef20 1 ± 82(fO - 03)2

where 61, 62, 83 are constant.
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This model assumes that the curve is symmetric about the peak (63). It is true in theory,

and based on the efficiency plot, the assumption is valid. For this project the peak

frequency is set to 220kHz.

With mean square error of only 2.01e-5, the regression model obtained with Minitab is a

good representation of the data. The summary of the model is listed in Table 5. The fitted

line plot and the regression model are shown in Figure 27.

Table 5 Efficiency vs. Frequency Regression Model Summaries

Holiday Regression

01 9.70087

02 2.73731x10-9 Hz-2

03 (fixed) 220,000 Hz

Degrees of Freedom 14

Mean Square Error 2.01x10- 5

.t

0.121

0.10-

0.08-

0.06-

0.04-

0.02-

0.00-

Fitted Line Plot
efficiency = 1 / (9.70087 + 2.73731e-009 * (frequency - 220000) A 2)

asU

eU

350000 400000 450000150000 200000 250000 300000
frequency

Figure 27 Plot of Regression Model Fit
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6.3.1 Probability Distribution of the Force Generated by Enabler

The force generated by the enabler varies depending on the natural frequency of the LC

circuit and the property of the enabler such as the size and the uniformity of the epoxy in

the enabler. Three coils with natural frequency of 220kHz, 15% higher than 220kHz and

5% lower than 220kHz were made to represent the variability of the LC circuit. Ideally,

the size, uniformity and other parameter of the enabler should also be set as controlled

effects to test the output. However, limited by the resources we had, none of the effects

could be quantitatively controlled. Therefore, the error caused by enabler's variation to

the output was combined with measurement error.

The deactivator was designed to run at 220kHz. Based on the test result from previous

section, on the deactivator the coil with natural frequency of 220kHz had the highest

efficiency, which in theory means that it should have the best performance. In order to

understand how the efficiency figure corresponding to the actual force generated from the

enabler, an experiment need to be performed.

The experiment is identical to the one used for the enabler force test. According to the

test result from the enabler force analysis, a half-size enabler in general has better

performance at one-inch distance [20]. For this reason, the focus will be only put on the

half-size enabler. Each of the three coils will be used to activate 10 half-size enablers.

The force generated will be recorded, and the mean will be used as the corresponding

force of each coil. The three data points of the mean force will be enough for us to fit a

regression model of force with respect to natural frequency. Since the efficiency plot is

about symmetric about 220kHz, and the force should be positively corresponding to the

efficiency, we are expecting to see the force plot to have a similar shape as the efficiency

plot.

6.3.2 Quality Control Limit

Combining the force plot with the natural frequency distribution, the distribution of the

force generated by the enabler (Fgen) can be created. The distribution of the force

required to open the lock (Flock) was developed through the mechanical lock force

analysis. If we take the difference between these two random variables, we can obtain a
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new random variable Y = Fgen - Flock, with mean of Y = (Fgen - Flock) and variance of

2=2 +2ae t
U =Fen + aFlock. The failure rate due to the variability of all the components is the

probability of Y 5; 0. For the same lock design, using components with smaller

manufacturing variability will reduce deviation of Fgen, and therefore reduce probability

of failure. In order to achieve the target failure rate, the quality control limit can be

calculated backwards using the model we obtained.

6.4 Simulation Model

In order to process the calculation needed such as combining two distributions, a

simulation model is needed. It can also be used to generate critical data, which were not

able to be collected during the span of this project. Taking both the data measured and

simulated, the simulation model can stack up the variations in the whole system, and

output the failure rate. The result can help us to access the robustness of the current

design. In addition, a sensitivity test was performed to demonstrate how this program

could be used to choose the capacitor with proper accuracy (typically 5%, 10% or 20%).

6.4.1 Assumptions

Based on the measurement data collected (Appendix C), we assumed that the distribution

of inductance L and capacitance C were normal. In the model, the value of inductance and

capacitance were generated using the mean (PL, pUc) and standard deviation (aL, ac)

measured from samples. The variation of the capacitance is based on the manufacturer

specification of 20%. We assume that +20% is equivalent to ±six-sigma level.

The relationship between efficiency ( Eff) and force generated by enabler (fgen) could

not be obtained owing to the lack of a working deactivator. In the simulation, we

assumed a linear relationship between the efficiency and mean force, which can be

represented as:

Eff (6.3)
fgen = fgen,max Effmax
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As we observed from the result of force analysis, even with the same circuit, due to the

inherent variation of the enabler, the force generated is random. In the model, for every

circuit, we use the same CV obtained from force test data (half-size pillow, natural

frequency at 220kHz) to calculate the standard deviation (rgen) of the force. Using the

mean force and the standard deviation, we can generate normal distribution for fgen-

6.4.2 Conditions

According to the result from coil design and force analysis, the lock design with best

performance at one-inch distance is the one with AWG24, 9-turn coil, 1pF capacitor, and

a half-size enabler [20]. The simulation was run based on this setup. In the coil design

phase, we observed that with half-size enabler, the resonance frequency of an LC circuit

is about 19kHz higher at one-inch distance than its natural frequency with no standoff. In

the simulation, this shift is added to all the data points.

6.4.3 Inputs

The simulation program requires the following inputs listed in Table 5 to perform the

calculation:

Table 6 Input Parameters for Simulation

pL Mean Inductance 0.63pH

UL Standard Deviation of Inductance 0.00665pH

PC Mean Capacitance 0.1pF

UC Standard Deviation of Capacitance 0.033 p F

fo Natural Frequency of LC Circuit

fgen,max Mean Force Generated by the Optimal Circuit 6.56N
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07f,gen Standard Deviation of the Force Generated by 1.108

the Enabler with the Optimal Circuit

Flock Mean Force Needed to Disengage the Lock 1.844

cYF,lock Standard Deviation of the Force Needed to 0.3048

Disengage the Lock

6.4.4 Operation

The program first took the sample mean and standard deviation to generate a normal

distribution of inductance and capacitance with 100 data points each. Then the

distribution of natural frequency was calculated by randomly combining an inductor with

a capacitor. This operation generated the natural frequency of 100 coils. Each coil was

assigned to a corresponding efficiency value based on the efficiency plot equation (Figure

27). Using the efficiency-force Equation (6.3) and 0 f,gen, the force distribution of each

coil was obtained. The simulation program is able to sum up the force distribution

associated with each coil, and calculate the overall force distribution (Fen). Because the

force distribution of each coil was assumed to be normal, the overall force distribution

was expected to be normal as well. Ultimately, the program can calculate the probability

of failure by comparing the two distributions of force generated and force required.

6.4.5 Output

Table 7 Summaries of the Output from Simulation

Fgen Force Generated by the Enabler

CF, gen Standard Deviation of Force Generated

Pfail Failure Rate
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6.4.6 System Sensitivity Analysis

This entire simulation was run three times, with three different levels of capacitance

quality: 5%, 10% and 20%5. The objective of this test was to understand how the quality

of capacitor would affect the performance of the system, more specifically the

distribution of force generated.

6.5 Simulation Results

6.5.1 LC Circuit Variation

The distribution of Natural Frequency is well simulated by MATLAB. The data is

normally distributed with Skewness of -0.0177 and Kurtosis of -0.488. As we can see in

Figure 28, the natural frequency is normally distributed with mean around 220kHz.

Histogram of frequency 20%
Normal

12- Mean 219242
StDev 3544
N 100

10-

8-

6-a.

-4-

2-

0
210000 213000 216000 219000 222000 225000

frequency 20%

Figure 28 Histogram of Natural Frequency (20% Capacitor)

5 Where this range is assumed to represent ±6 sigma
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The distribution of efficiency, however, is not normally distributed. It is exactly how the

distribution ought to be because circuits with either higher or lower natural frequency

will have efficiency smaller than the peak efficiency. The histogram of efficiency (20%

capacitor) is presented in Figure 29. The distribution has high density around maximum

efficiency and a long tail toward the left end.

Figure 29 Histogram of Efficiency (20% Capacitor)

6.5.2 Force Distribution

The histogram of the force distribution (20% capacitor) presented in Figure 30 is normally

distributed as expected.
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Histogram of force 20%
Normal

800- Mean 6.529
StDev 1.091

700- N 10000

600-

500-

400-

300-

200-

100-

0
2.8 4.2 5.6 7.0 8.4 9.8 11.2

force 20%

Figure 30 Histogram of the Force Generated by Half-size Enabler

The characteristics of the distribution are summarized in Table 8.

Table 8 Force Histogram Summaries

Mean 6.5295 N Skewness -0.0157

Standard Deviation 1.0909 N Kurtosis 0.0101

95% C.I. for mean [6.5081 ; 6.5509]

95% C.I. for standard deviation [1.0760 ; 1.1062]

According to the simulation result, we found that the force generated by the enabler is

significantly higher than the 1.844N force needed to disengage the lock even with the

20% capacitor.
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6.5.3 System Sensitivity Analysis with Various Capacitors

As expected, the standard deviation of the frequency distribution increases as the

capacitor quality decreases (Table 9). However, as shown in Table 10, the capacitor

quality does not affect the standard deviation of the enabler force distribution as the 95%

confidence intervals of all three standard deviations overlap. In the particular case of this

realization, the estimate of the standard deviation for 20%-capacitor is even smaller than

the 5% and 10%-capacitors. This phenomenon is ascribed to the rather large

manufacturing variability of the enablers. Thus, the force distribution that can be

generated has a significantly higher variance than the electrical components. From this

simulation, it appears that the use of 20%-capacitor would not damage the performance

of the lock. However, the manufacturing variability of the enabler should be kept under

control. At the time of this thesis, the enabler was made by hand in small quantities

(several thousands). Manufacturing control of this part was not a priority for ProTeqt yet.

Table 9: Resonant frequency distributions

Cap. Quality 5% 10% 20%

Standard Deviation 1,018 Hz 2,095 Hz 3,544 Hz

95% CI for std. dev. [894; 1,183] [1,840 ; 2,434] [3,112; 4,117]

Table 10: Force distributions

Cap. Quality 5% 10% 20%

Standard Deviation 1.1005 N 1.1015 N 1.0909 N

95% CI for std. dev. [1.0854; 1.1159] [1.0864; 1.1170] [1.0760 ; 1.1062]

A1
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Because assumptions such as a linear relationship between efficiency and force were

made in the simulation model due to the lack of data, getting a quantitative failure rate or

a quality control limit is not meaningful. The simulation model qualitatively draws the

conclusion that the lock system is very robust. Based on the actual testing we performed

with the lock, we did experience a high rate of success when disengaging the lock, which

is coinciding with the simulation result.
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7 Conclusion and Future Work

7.1 Conclusion

By the end of this project, we have proved that the solution of adding a resonantly

coupled LC circuit to the system will enable the lock to be deactivated at the distance of

one inch above the deactivation tablet. Working in the field of deactivation at distance,

we have drawn other conclusions.

7.1.1 LC circuit design

Given the existing design of the lock, the most effective wound coil is a 9-turn coil with a

wire gage of 0.5mm (AWG 24). In addition, we recommend decreasing the size of

current enabler (9mm by 12mm) to increase the loss of coupling efficiency due to the

enabler. Based on our tests, using a rectangular piece of 9mm by 6mm provides much

better results.

For more general considerations:

e The loss of coupling efficiency is largely determined by the ratio of the enabler

size over the coil size. We recommend keeping the enabler smaller than the coil.

- In order to optimize the design of the circuit, one must primarily maximize the

induced current through it.

e Up to a certain point that is not studied in this thesis, an efficient coil has a large

gage size and a high number of turns.

A coil winding process should be used to manufacture the inductor component of the

circuit, as it is a well-established process that can produce quality coils at a very low

price. If other manufacturing techniques are considered, a design change may be

necessary for the coil, especially if the thickness of the conductive material is small

(printing, etching, etc.). In this case, we recommend considering the design proposed on

Appendix A. In this design, the coil consists of several parallel lines. This design
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decreases the resistance of the coil without sacrifice inductance. However, the exact

design has not been optimized yet (number of parallel lines, number of turns, thickness,

etc.). The design will also depend on the manufacturing method.

7.1.2 Lock Mechanism

At one inch above the deactivator, half-sized enabler (9mm x 6mm) can generate more

force than the full-sized enabler (12mm x 9mm), providing more reliable deactivation

results. Thus, the smaller enabler is recommended for this application. On average, the

lock requires 1.8N force to disengage, which is significantly less than the average 6.56N

a half-sized enabler can generate. As the result, the deactivation process has very low

failure rate. Now, it is crucial to have a more reliable tablet.

7.1.3 Effect of LC Circuit Variability on Lock Reliability

Due to the availability of the deactivation tablet, several crucial tests could not be

performed to obtain quantitative analysis about the overall force distribution of enabler.

A numerical simulation with strong assumptions was implemented to create the

distribution. At the end, it appears that the quality of the capacitance does not

significantly affect the performance of the lock. The use of 20%-capacitance should be

sufficient for this application. Instead, the simulation exhibits the predominance of the

enabler manufacturing variability. Currently, enablers are made by hand in small batches.

If this method is pursued for full-scale production, it is recommended that the process is

performed with the help of machinery to ensure consistency.

7.2 Future Work

7.2.1 Micro-USB Lock

In regards to the LC circuit design, other manufacturing methods could be considered,

such as etching or inkjet printing. This thesis proposes the alternative design (Appendix

A), but it is not totally defined, and substantial future research is required.
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More data are required to accurately evaluate the failure rate of the lock at deactivation,

especially at one inch above the tablet. The relationship between efficiency and force

generated (Eq. 6.3) was assumed to be linear. More force tests needs to be done with

circuits that have various natural frequency.

Finally, we find that the size of the enabler is important in terms of lock reliability and

should be optimized. The shape of the enabler may also be a critical parameter. Some

preliminary experiments conducted at ProTeqt show that the corner of the rectangular

shaped enabler might be redundant thermal mass. Thus, further investigation should be

done on other shapes, especially circular. In addition, the conductive material laminated

on the enabler for heat generation need further study as well. The thickness and the

material used are both significant parameters.

7.3 Theft Denial System

The current generation theft denial system transfers strong energy wirelessly to the lock

via radiofrequency for deactivation. It requires a robust design of the deactivation tablet

to handle the intense power. More work is needed to develop a reliable tablet. The

radiofrequency intensity degrades significantly with distance. To achieve deactivation

distance of more than one inch, ProTeqt has to develop either a tablet with higher power

output, or a method that can transfer power more efficiently.

At present, the retail industry is seeking for a completely new experience at the point-of-

sale. Thanks to the progress of non-contact technology, it will be possible to checkout the

products without physical touch. It is worthwhile for ProTeqt to take a completely

different approach that uses weak signal instead of intense energy transfer for

deactivation. An active lock with energy storage, such as battery, might be able to

achieve this task. Thus, the next distance objective of ProTeqt might be several feet

instead of one inch only.
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Appendix A: The Case of Thin Wire Coil

All the previous analysis has been conducted with winding copper coils. They are indeed

easy to make in small quantity and very flexible. However, we may want to consider

other manufacturing methods for full-size production, especially etching or inkjet. Beside

their costs, with these methods, only coil with a very thin copper layer can be produce.

As a consequence, their resistance will be significantly higher). In this application,

efficiency of a coil is measured by the intensity of current that can be induced. Thus, it is

important to achieve low resistance. So, the actual optimized design has to be reviewed

for the case of thin wires.

In order to decrease the resistance of the coil, we propose a new design, inspired by the

litz-wire solution. The printed coil consists of three parallel lines in spiral (see Figure 31

right). In order to get a coil with the same size as the regular design, the new design has

only three full turns.

Figure 31: Regular coil design (left) and thin wire coil design (right)

This design is expected to significantly decrease the resistance of the coil. However,

further tests have to be conducted to verify if this design effectively increases the

magnitude of the secondary magnetic field.
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Appendix B: Coil Inventory from Manufacturer

-77-

1 2 3 4 5 6

Layer one two one three one one

OD in 0.35*0.47 0.35*0.47 0.35*0.47 0.35*0.47 0.35*0.47 0.35*0.47
(mm) (8.9*12) (8.9*12) (8.9*12) (8.9*12) (8.9*12) (8.9*12)

Wire Gauge f#0.32mm #0.32mm #0.5mm #0.2mm #0.5mm #0.2mm

Number of turns 9 16 6 47 9 9

Inductance (IZ H) 0.61 1.7 0.25 14.25 0.63 0.61
1KHZ 0.25V

STDEV of Inductance 0.00665 0.00326 0.00264 0.01984 0.01888 0.00679
from Samples

Resistance (mn) 46.1 79.1 13.4 586 23.7 96



Appendix C: Natural Frequency Variability Measurement Data

Natural Frequency f - Directly
of sample LC circuits Driven (@RT) f, 1.0", half enabler

1 200900 205000
2 219900 224000
3 214000 223100

4 216000 225600

5 218700 209800

6 219000 227900

7 216900 225900

8 214500 221900

9 220000 228400

10 219500 228300

11 206300 214500

12 204400 211000

13 205000 212500
14 204300 210500

15 207300 212600

Mean 212446.6667 218733.3333
Std 6905.780877 8083.19833
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Appendix D: Matlab Code

nl = 100; % sample size of frequency
f_tab = 220E3; %tablet frequency
%----- frequency ---------------------------------------------------------
muL = 0.63E-6; sigL = 0.008828905*muL; % inductance
muC = 1E-6; q = 0.2; sigC = q*muC/6; %capacitance; q is the quality
shift = 19E3; % frequency shift due to the enabler
L = muL + sigL.*randn(nl,1);
C = muC + sigC.*randn(nl,1);
f = shift + 1./(2*3.14.*sqrt(L.*C));
xlswrite('freqPDF.xlsx', L, 'MatlabExport', 'K2');
xlswrite('freqPDF.xlsx', C, 'MatlabExport', 'L2');
xlswrite('freqPDF.xlsx', f, 'MatlabExport', 'M2');
%----- efficiency --------------------------------------------------------
thetal = 9.70087; theta2 = 2.73731E-9; theta3 = f_tab;
eff = 1./(thetal + theta2.*(f-theta3).^2);
xlswrite('freqPDF.xlsx', eff, 'MatlabExport', 'N2');
%----- force -------------------------------------------------------------
% linear
n2 = 100; % sample size of force
effmax = 1/thetal; Fmeanmax = 6.56;
Fdevmax = 1.108; cv = Fdevmax/Fmeanmax;
F = zeros(nl*n2,1);
A = randn(n2,1);
for i = 1:nl;

Fmean = Fmeanmax*eff(i)*thetal;
F((n2*(i-1)+1):i*n2) = Fmean*(1 + cv.*A);

end;
xlswrite('freqPDF.xlsx', F , 'MatlabExport', '02');
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