1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

Applications to biophysics and bionanomechanics

Lecture 10

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Massachusetts Institute of Technology

Content overview

1. It's A Quantum World: The Theory of Quantum Mechanics

- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-**Particle**
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

Overview: Material covered so far…

- \blacksquare **Lecture 1: Broad introduction to IM/S**
- \blacksquare **Lecture 2**: **Introduction to atomistic and continuum modeling** (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- \blacksquare **Lecture 3**: **Basic statistical mechanics – property calculation I** (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- \blacksquare **Lecture 4**: **Property calculation II** (Monte Carlo, advanced property calculation, introduction to chemical interactions)
- \blacksquare **Lecture 5: How to model chemical interactions I (example: movie of copper** deformation/dislocations, etc.)
- \blacksquare **Lecture 6: How to model chemical interactions II (EAM, a bit of ReaxFF—chemical** reactions)
- \blacksquare **Lecture 7: Application to modeling brittle materials I**
- \blacksquare **Lecture 8: Application to modeling brittle materials II**
- \blacksquare **Lecture 9: Application – Applications to materials failure**
- \blacksquare **Lecture 10: Applications to biophysics and bionanomechanics**

Lecture 10: Applications to biophysics and bionanomechanics

Outline:

- 1. Protein force fields
- 2. Single molecule mechanics
- 3. Fracture of protein domains Bell model

Goal of today's lecture:

- ٠ Force fields for organic materials, and specifically proteins
- T Basic introduction into modeling of biological materials
- \blacksquare Fracture model for protein domains

1. Force fields for organic chemistry how to model proteins

Significance of proteins

- \blacksquare Proteins are **basic building blocks of life**
- \blacksquare **Define tissues, organs, cells**
- \blacksquare Provide a **variety of functions and properties**, such as mechanical stability (strength), elasticity, catalytic activity (enzyme), electrochemical properties, optical properties, energy conversion
- \blacksquare Molecular simulation is an **important tool in the analysis of protein structures and protein materials**

Goal here: To train you in the fundamentals of modeling techniques for proteins, to enable you to carry out protein simulations

Explain the significance of proteins (application)

Human body: Composed of diverse array of protein materials

Eye's cornea (collagen material)

Skin (complex composite of collagen, elastin)

Cells (complex material/system based on proteins)

Image removed due to copyright restrictions.

[Human Body 3D View](http://www.humanbody3d.com/)™ image of whole bodies.

Muscle tissue (motor proteins)

Nerve cells

Blood vessels

Tendon(links bone, muscles)

Cartilage (reduce friction in joints)

Bone (structural stability)

7

Image courtesy of NIH.

Cellular structure: Protein networks

Cell nucleus

Actin network

Microtubulus(e.g. cargo)

Vimentin(extensible, flexible, provide strength)

= cytoskeleton Image courtesy of NIH.

Protein structures define the cellular architecture

How protein materials are made – the genetic code

- \blacksquare Proteins: Encoded by DNA (three "letters"), utilize 20 basic building blocks (amino acids) to form polypeptides
- \blacksquare Polypeptides arrange in complex folded 3D structures with specific properties
	- **1D structure transforms into complex 3D folded configuration**

Chemical structure of peptides/proteins

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see<http://ocw.mit.edu/fairuse>.

R = side chain, one of the 20 natural amino acids

20 natural amino acids differ in their side chain chemistry

Chemistry, structure and properties are linked

Chemical structure

Presence of various chemical bonds:

- Covalent bonds (C-C, C-O, C-H, C-N..)
- Electrostatic interactions (charged amino acid side chains)
- H-bonds (e.g. between H and O)
- vdW interactions (uncharged parts of molecules)

Concept: split energy contributions

$$
U_{total} = U_{\text{Elec}} + U_{\text{covalent}} + U_{\text{metallic}} + U_{\text{vdW}} + U_{\text{H-bond}}
$$

Ethane C_2H_6

Covalent bond described as

- 1. Bond stretching part (energy penalty for bond stretching)
- 2. Bending part (energy penalty for bending three atoms)
- 3. Rotation part (energy penalty for bond rotation, *N* ≥ 4)

Consider ethane molecule as "**elastic structure**"

$$
U_{\text{Covalent}} = U_{\text{stretch}} + U_{\text{bend}} + U_{\text{rotate}}
$$

Force fields for organics: Basic approach

$$
U_{total} = U_{Elec} + U_{Covalent} + U_{wclulic} + U_{vdw} + U_{H-bond}
$$
\n
$$
U_{Covalent} = U_{stretch} + U_{bend} + U_{H-bond}
$$
\n
$$
\phi_{\text{stretch}} = \frac{1}{2} k_{stretch} (r - r_0)^2
$$
\n
$$
U_{\text{covalent}} = U_{stretch} + U_{bend} + U_{rot}
$$
\n
$$
\phi_{\text{bend}} = \frac{1}{2} k_{bend} (\theta - \theta_0)^2
$$
\n
$$
U_{bend} = \frac{1}{2} k_{bend}
$$
\n
$$
\phi_{\text{rod}} = \frac{1}{2} k_{tot} (1 - \cos(\theta))
$$
\n
$$
U_{\text{rot}} = \frac{1}{2} k_{rot}
$$
\n
$$
U_{\text{rot}} = \sum_{\text{quadruplets}} \phi_{\text{rot}}
$$
\n
$$
U_{\text{rot}} = \sum_{\text{quadruplets}} \phi_{\text{rot}}
$$
\n
$$
U_{\text{mod-recoarse-Ware}}
$$

15

Model for covalent bonds

$$
\phi_{\text{stretch}} = \frac{1}{2} k_{\text{stretch}} (r - r_0)^2
$$
\n
$$
\phi_{\text{bend}} = \frac{1}{2} k_{\text{bend}} (\theta - \theta_0)^2
$$
\n
$$
\phi_{\text{rot}} = \frac{1}{2} k_{\text{rot}} (1 - \cos(\theta))
$$
\n
$$
\phi_{\text{rot}} = \frac{1}{2} k_{\text{rot}} (1 - \cos(\theta))
$$

Courtesy of the EMBnet Education & Training Committee. Used with permission.

Images created for the CHARMM tutorial by Dr. Dmitry Kuznetsov (Swiss Institute of Bioinformatics) for the EMBnet Education & Training committee (http://www.embnet.org)

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html

Force fields for organics: Basic approach

$$
U_{total} = U_{Elec} + U_{Covalent} + U_{Metallic} + U_{vdW} + U_{H-bond}
$$
\n
$$
U_{Elec}
$$
\n
$$
U_{Edc}
$$
\n
$$
U_{Edc}
$$
\n
$$
U_{Edc}
$$
\n
$$
U_{Edc}
$$
\n<math display="block</math>

Force fields for organics: Basic approach

$$
U_{total} = U_{Elec} + U_{Covalent} + U_{metallic} + U_{vdW} + U_{H-bond}
$$
\n
$$
U_{vdW}
$$
\n
$$
U_{vdW}
$$
\n
$$
U_{vdW}
$$
\n
$$
U_{vdW}
$$

$$
U_{\text{vdW}}: \quad \text{LJ potential} \;\; \phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

LJ potential is particularly good model for vdW interactions (Argon)

H-bond model

 $H₂O$

 r_{ii} =

 $\theta_{\rm DHA}$

H-bond

A

Evaluated between acceptor (A) /donor(D) pairs

Between electronegative atom and a H- atom that is bonded to another electronegative atom

Slightly modified LJ, different parameters

$$
U_{\text{H-bond}}: \quad \phi(r_{ij}) = D_{\text{H-bond}} \left[5 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{12} - 6 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{10} \right] \cos^4(\theta_{\text{DHA}})
$$
distance between D-A

Summary

$$
U_{total} = U_{\text{Elec}} + U_{\text{covalent}} + U_{\text{jetallic}} + U_{\text{vdW}} + U_{\text{H-bond}}
$$

\n
$$
U_{\text{Elec}}: \text{ Coulomb potential } \phi(r_{ij}) = \frac{q_i q_j}{\varepsilon_i r_{ij}}
$$

\n
$$
U_{\text{covalent}} = U_{\text{stretch}} + U_{\text{bend}} + U_{\text{rot}} \begin{cases} \phi_{\text{stretch}} = \frac{1}{2} k_{\text{stretch}} (r - r_0)^2 \\ \phi_{\text{bend}} = \frac{1}{2} k_{\text{bend}} (\theta - \theta_0)^2 \\ \phi_{\text{rot}} = \frac{1}{2} k_{\text{rot}} (1 - \cos(\theta)) \end{cases}
$$

\n
$$
U_{\text{vdW}}: \text{ LJ potential } \phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

\n
$$
U_{\text{H-bond}}: \phi(r_{ij}) = D_{\text{H-bond}} \left[5 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{12} - 6 \left(\frac{R_{\text{H-bond}}}{r_{ij}} \right)^{10} \right] \cos^4(\theta_{\text{dA}})
$$

20

The need for atom typing

- \blacksquare **Limited transferability** of potential expressions: Must use different potential for different chemistry
- \blacksquare Different chemistry is captured in **different "tags"** for atoms: **Element type** is expanded by **additional information** on particular chemical state
- ٠ ■ Tags specify if a C-atom is in **sp³, sp², sp** or in aromatic state (that is, to capture resonance effects)
- \blacksquare **Example atom tags: CA, C_1, C_2, C_3, C…, HN, HO, HC, …**

Atom typing in CHARMM

VMD analysis of protein structure

Common empirical force fields for organics and proteins

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html

Harmonic terms; Derived from vibrational spectroscopy, gasphase molecular structuresVery systemspecific

Include anharmonic termsDerived from QM, more general

CHARMM force field

- \blacksquare Widely used and accepted model for protein structures
- \blacksquare Programs such as NAMD have implemented the CHARMM force field

Problem set #3, nanoHUB stretchmol module, study of a protein domain that is part of human vimentin intermediate filaments

Application – protein folding

Combinationof 3 DNA letters equals a amino acid

ACGT

Four letter

code "DNA"

E.g.: Proline – CCT, CCC, CCA, CCG

.. - Proline - Serine –Proline - Alanine - ..

Folding

Transcription/ translation

Sequence of amino acids "polypeptide" (1D structure)

(3D structure)

Goal of protein folding simulations:

Predict folded 3D structure based on polypeptide sequence

Movie: protein folding with CHARMM

 \blacksquare *de novo* Folding of a *Transmembrane fd Coat Protein* <http://www.charmm-gui.org/?doc=gallery&id=23>

Polypeptide chain

Images removed due to copyright restrictions.

Screenshots from protein folding video, which can be found here: <http://www.charmm-gui.org/?doc=gallery&id=23>.

Quality of predicted structures quite good

Confirmed by comparison of the **MSD deviations** of a room temperature ensemble of conformations from the replica-exchange simulations and **experimental structures** from both **solid-state NMR** in lipid bilayers and solution-phase NMR on the protein in micelles)

Movies in equilibrium (temperature 300 K)

Tetramer (increased effective bending stiffness, interaction via overlap & head/tail domain)

Source: Qin, Z., L. Kreplak, and M. Buehler. "Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments." *PLoS ONE* (2009). License CC BY.

2. Single molecule mechanics

Structure and mechanics of protein, DNA, etc. molecules

Cooking spaghetti

Photo courtesy of [HatM](http://www.flickr.com/photos/hatm/3360500785/sizes/m/in/photostream/) on Flickr.

Public domain image.

Photo courtesy of [HatM](http://www.flickr.com/photos/hatm/4076523848/sizes/m/in/photostream/) on Flickr.

stiff rods

 cooking soft, flexible rods (like many protein molecules)

Single molecule tensile test – "optical tweezer"

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Tskhovrebova, L., J. Trinick, et al. "Elasticity and Unfolding of Single Molecules of the Giant Muscle Protein Titin." *Nature* 387, no. 6630 (1997): 308- 12. © 1997.

Example 1: Elasticity of tropocollagen molecules

300 nm length

Entropic elasticity leads to strongly nonlinear elasticity

Photo courtesy of [HatM](http://www.flickr.com/photos/hatm/4076523848/sizes/m/in/photostream/) on Flickr.

The force-extension curve for stretching a single type II collagen molecule. The data were fitted to Marko-Siggia entropic elasticity model. The molecul e length and persistence length of this sample is 300 and 7.6 nm, respectively.

Image by MIT OpenCourseWare.

Example 2: Single protein molecule mechanics

titin molecule $AB2$ stage
movement

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Tskhovrebova, L., J. Trinick, et al. "Elasticity and Unfolding of Single Molecules of the Giant Muscle Protein Titin." *Nature* 387, no. 6630 (1997): 308- 12. © 1997.

Protein structure (I27 multidomain titin in muscle)

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Marszalek, P., H. Lu, et al. "Mechanical Unfolding Intermediates in Titin Modules." *Nature* 402, no. 6757 (1999): 100-3. © 1999.

<http://www.nature.com/nature/journal/v387/n6630/pdf/387308a0.pdf> <http://www.nature.com/nature/journal/v402/n6757/pdf/402100a0.pdf>

Example 3: Single DNA molecule mechanics

plateau regime (breaking of bonds)

Plots of stretching force against relative extension of the single DNA molecule (experimental results)

Structural makeup of protein materials

Although very diverse, all protein materials have universal "protocols" of how they are made

How protein materials are made–the genetic code

- \blacksquare Proteins: Encoded by DNA (three "letters"), utilize 20 basic building blocks (amino acids) to form polypeptides
- \blacksquare Polypeptides arrange in complex folded 3D structures with specific properties

1D structure transforms into complex 3D folded configuration

Alpha-helix (abbreviated as AH)

Concept: hydrogen bonding (H-bonding)

e.g. between O and H in $\rm H_2O$ Between N and O in proteins Drives formation of helical structures

AHs found in: hair, cells, wool, skin, etc.

Source: Qin, Z., L. Kreplak, and M. Buehler. "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments." *PLoS ONE* (2009). License CC BY.

Primary, secondary, tertiary structure

Adapted from Ball, D., Hill, J., and R. Scott. *[The Basics of General, Organic,](http://www.flatworldknowledge.com/pub/basics-general-organic-and-bio/429852) [and Biological Chemistry.](http://www.flatworldknowledge.com/pub/basics-general-organic-and-bio/429852)* Flatworld Knowledge, 2011. Courtesy of Flatworld Knowledge.

Beta-sheets (abbreviated as BS)

Beta-sheet

Images removed due to copyright restrictions.

39Found in many mechanically relevant proteins Spider silk **Fibronectin** Titin (muscle tissue) Amyloids (Alzheimer's disease)

Amyloid proteins (Alzheimer's disease)

Please see Fig. 8 from http://web.mit.edu/mbuehler/www/papers/final_JCTN_preprint.pdf.

3. Fracture of protein domains – Bell model

How to apply load to a molecule

(in molecular dynamics simulations)

Steered molecular dynamics (SMD)

Steered molecular dynamics used to apply forces to protein structures

Steered molecular dynamics (SMD)

SMD mimics AFM single molecule experiments

Atomic force microscope

45

SMD is a useful approach to probe the nanomechanics of proteins (elastic deformation, "plastic" – permanent deformation, etc.)

Example: titin unfolding (CHARMM force field)

Unfolding of titin molecule

Titin I27 domain: Very resistant to unfolding due to parallel H-bonded strands

Keten and Buehler, 2007

Force (pN)

[Buehler, M. "Hierarchical Chemo-nanomechanics of Proteins: Entropic Elasticity, Protein Unfolding](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf) [and Molecular Fracture](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf)." Journal of Mechanics and Materials and Structures 2, no. 6 (2007).

Protein unfolding - CHARMM

CHARMM modeling

Buehler, M. "[Hierarchical Chemo-nanomechanics of Proteins: Entropic Elasticity, Protein](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf) [Unfolding and Molecular Fracture](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf)." Journal of Mechanics and Materials and Structures 2, no. 6 (2007).

Comparison – CHARMM vs. ReaxFF

[Buehler, M. "Hierarchical Chemo-nanomechanics of Proteins: Entropic Elasticity, Protein](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf) [Unfolding and Molecular Fracture](http://msp.berkeley.edu/jomms/2007/2-6/jomms-v2-n6-p04-s.pdf)." Journal of Mechanics and Materials and Structures 2, no. 6 (2007).

Application to alpha-helical proteins

Vimentin intermediate filaments

52

Vimentinintermediatefilament

Source: Qin, Z., L. Kreplak, et al. "Hierarchical Structure Controls
Nanomechanical Properties of Vimentin Intermediate Filaments."
PLoS ONE (2009). License CC BY. *PLoS ONE* Nanomechanical Properties of Vimentin Intermediate Filaments." Source: Qin, Z., L. Kreplak, et al. "Hierarchical Structure Controls (2009). License CC BY.

Intermediate filaments – occurrence

Image of neuron and cell nucleus © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>.

Alpha-helical protein: stretching

A: First H-bonds break (turns open)

- B: Stretch covalent backbone
- C: Backbone breaks

M. Buehler, JoMMS, 2007

What about varying pulling speeds?

Variation of pulling speed

Image by MIT OpenCourseWare. After Ackbarow and Buehler, 2007.

Force at angular point $f_{\rm AP}$ =fracture force

General results…

Rupture force vs. pulling speed

Reprinted by permission from Macmillan Publishers Ltd: Nature Materials. Source: Buehler, M., and Y. Yung. "Chemomechanical Behaviour of Protein Constituents." *Nature Materials* 8, no. 3 (2009): 175-88. © 2009.

Buehler *et al*., *Nature Materials*, 2009

How to make sense of these results?

A few fundamental properties of bonds

- \blacksquare Bonds have a "bond energy" (energy barrier to break)
- **EXTHERIANG PROXIMUS** Telationship gives probability for energy barrier to be overcome, given a temperature

$$
p = \exp\left(-\frac{E_b}{k_B T}\right)
$$

 \blacksquare All bonds vibrate at frequency ω

Probability for bond rupture (Arrhenius relation)

Probability for bond rupture (Arrhenius relation) $f=f_{\sf AP}$

Probability for bond rupture (Arrhenius relation)

$$
p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)
$$

Off-rate = probability times vibrational frequency

$$
\chi = \omega_0 \cdot p
$$

 $\omega_0 = 1 \times 10^{13}$ 1/sec

bond vibrations

Probability for bond rupture (Arrhenius relation)

$$
p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)
$$

Off-rate = probability times vibrational frequency

$$
\chi = \omega_0 \cdot p = \omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right)
$$

"How often bond breaks per unit time"

 $\omega_0 = 1 \times 10^{13}$ 1/sec

bond vibrations

Probability for bond rupture (Arrhenius relation)

$$
p = \exp\left(-\frac{E_b - f \cdot x_B}{k_B T}\right)
$$

Off-rate = probability times vibrational frequency

$$
\chi = \omega_0 \cdot p = \omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) = \frac{1}{\tau} \qquad \omega_0 = 1 \times 10^{13} \text{ 1/sec}
$$

 $\tau =$ bond lifetime (inverse of off-rate)

 \mathcal{X}_h

 $f x_h$

 $E_{_h}$

$\Delta x\,/\,\Delta t = v \quad$ pulling speed (at end of molecule)

 $\Delta x\,/\,\Delta t = v \quad$ pulling speed (at end of molecule)

Structure-energy landscape link

$$
\Delta x = x_b
$$

\n
$$
\Delta t = \tau \qquad \tau = \left[\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \right]^{-1}
$$

Bond breaking at $\ x_{b}$ (lateral applied displacement):

$$
\chi \cdot x_b = \omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = \Delta x / \Delta t = v
$$

= 1/ τ pulling speed

Bell model

$$
\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v
$$

Solve this expression for *f* :
Bell model

$$
\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v
$$

Solve this expression for *f* :

$$
-\frac{(E_b - f \cdot x_b)}{k_b \cdot T} + \ln(\omega_0 \cdot x_b) = \ln v \longleftarrow \ln(.)
$$

\n
$$
-E_b + f \cdot x_b = k_b \cdot T (\ln v - \ln(\omega_0 \cdot x_b))
$$

\n
$$
f = \frac{E_b + k_b \cdot T (\ln v - \ln(\omega_0 \cdot x_b))}{x_b} = \frac{k_b \cdot T}{x_b} \ln v + \frac{k_b \cdot T}{x_b} \left(\frac{E_b}{k_b \cdot T} - \ln(\omega_0 \cdot x_b)\right)
$$

\n
$$
f = \frac{k_b \cdot T}{x_b} \ln v - \frac{k_b \cdot T}{x_b} \left(\ln(\omega_0 \cdot x_b) - \frac{E_b}{k_b \cdot T}\right)
$$

\n
$$
f = \frac{k_b \cdot T}{x_b} \ln v - \frac{k_b \cdot T}{x_b} \ln\left(\omega_0 \cdot x_b \cdot \exp\left(-\frac{E_b}{k_b \cdot T}\right)\right)
$$

Simplification and grouping of variables

Only system parameters, [distance/length]

$$
f(v; x_b, E_b) = \frac{k_b \cdot T}{x_b} \cdot \ln v - \frac{k_b \cdot T}{x_b} \cdot \ln \left(\omega_0 \cdot x_b \cdot \exp \left(- \frac{E_b}{k_b \cdot T} \right) \right)
$$

$$
=: v_0 = \omega_0 \cdot x_b \cdot \exp \left(- \frac{E_b}{k_b \cdot T} \right)
$$

Bell model

$$
\omega_0 \cdot \exp\left(-\frac{(E_b - f \cdot x_b)}{k_b \cdot T}\right) \cdot x_b = v
$$

Results in:

$$
f(v; x_b, E_b) = \frac{k_b \cdot T}{x_b} \cdot \ln v - \frac{k_b \cdot T}{x_b} \cdot \ln v_0 = a \cdot \ln v + b
$$

$$
a = \frac{k_B \cdot T}{x_b}
$$

$$
b = -\frac{k_B \cdot T}{x_b} \cdot \ln v_0
$$

$f\sim \ln v~$ behavior of strength

 E_b = 5.6 kcal/mol and x_b = 0.17 $\rm \AA$ (results obtained from fitting to the simulation data)

Scaling with E_b : shifts curve

Scaling with x_b : changes slope

Simulation results

Courtesy of IOP Publishing, Inc. Used with permission. Source: Fig. 3 from Bertaud, J., Hester, J. et al. "Energy Landscape, Structure and Rate Effects on Strength Properties of Alpha-helical Proteins." *J Phys.: Condens. Matter* 22 (2010): 035102. doi:10.1088/0953-8984/22/3/035102.

Bertaud, Hester, Jimenez, and Buehler, *J. Phys. Cond. Matt.,* 2010

Mechanisms associated with protein fracture

Change in fracture mechanism

Simulation span: 250 ns Reaches deformation speed O(cm/sec)

81Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ackbarow, Theodor, et al. "Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-5. Copyright 2007 National Academy of Sciences, U.S.A.

Analysis of energy landscape parameters

Table 1. Summary of the differences between the SDM and FDM, for AH1, AH2, and BS

The values in parentheses in the AH columns represent the results for AH2.

Energy single H-bond: [≈]3-4 kcal/mol

What does this mean???

Courtesy of National Academy of Sciences, U. S. A. Used with permissi on. Source: Ackbarow, Theodor, et al. " Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein D omains." *PN AS* 104 (October 16, 2007): 16410-5. Copyright 2007 National Academy of Sciences, U.S.A.

H-bond rupture dynamics: mechanism

H-bond rupture dynamics: mechanism

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ackbarow, Theodor, et al. "Hierarchies, Multiple Energy Barriers, and Robustness Govern the Fracture Mechanics of Alpha-helical and Betasheet Protein Domains." *PNAS* 104 (October 16, 2007): 16410-15. Copyright 2007 National Academy of Sciences, U.S.A.

- I: All HBs are intact
- II: Rupture of 3 HBs simultaneously; **within** τ [≈] **20 ps**
- III: Rest of the AH relaxes slower deformation…

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and Simulation Spring 2011

For information about citing these materials or our Terms of use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)