1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

How to model chemical interactionsLecture 5

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

шт 1

Massachusetts Institute of Technology

Content overview

II. Quantum mechanical methods

- 1. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-**Particle**
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

Overview: Material covered so far…

- **Lecture 1: Broad introduction to IM/S**
- **Lecture 2**: **Introduction to atomistic and continuum modeling** (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- **Lecture 3**: **Basic statistical mechanics – property calculation I** (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- **Lecture 4**: **Property calculation II** (advanced property calculation, introduction to chemical interactions, Monte Carlo method)

Lecture 5: How to model chemical interactions

Lecture 5: How to model chemical interactions

Outline:

- 1. Monte-Carlo (MC) approach: Metropolis-Hastings algorithm
- 2. How to model chemical interactions
	- 2.1 Pair potentials
	- 2.2 How to model metals: Multi-body potentials

Goals of today's lecture:

- ٠ Get to know basic methods to model chemical bonds (starting with simple "pair potentials")
- \blacksquare Learn how to identify parameters for models of chemical bonds (for pair potentials)
- \blacksquare Limitations of pair potentials – and other, alternative methods

1. Monte-Carlo (MC) approach: Metropolis-Hastings algorithm

Averaging over the ensemble

Averaging over the ensemble

Instead, we must average with proper weights that represent the probability of a system in a particular microscopic state!

(I.e., not all microscopic states are equal)

$$
A_{\text{macro}} = \rho_1 A_1 + \rho_2 A_2 + \rho_3 A_3 =
$$

\n
$$
\rho_1(r_1, p_1) A_1(r_1, p_1) + \rho_2(r_2, p_2) A_2(r_2, p_2) + \rho_3(r_3, p_3) A_3(r_3, p_3)
$$

Probability to find system in state *C*1

How to solve…

$$
\langle A \rangle = \iint_{p} A(p, r) \rho(p, r) dr dp
$$

Probability density distribution
E.g.: $T(p) = \frac{1}{3} \frac{1}{N k_B} \sum_{i=1}^{N} \frac{m_i^2 \vec{v}_i^2}{m_i} = A(p)$

Virtually impossible to carry out analytically

Must know all possible configurations

Therefore: Require numerical simulation **Molecular dynamics OR Monte Carlo**

Monte Carlo scheme

Method to carry out integration over "domain"

Want:

$$
A = \int_{\Omega} f(\vec{x}) d\Omega
$$

E.g.: Area of circle $(=\pi/4)$ exact solution)

$$
A_C = \frac{\pi d^2}{4} \qquad A_C = \frac{\pi}{4}
$$

$$
\pi = 4A_C
$$

$$
d = 1
$$

$$
f(\vec{x}) = \begin{cases} 1 & \text{inside} \\ 0 & \text{outside} \end{cases}
$$

Monte Carlo scheme for integration

- ■ Step 1: Pick random point \vec{x}_i in Ω
- \blacksquare . **Step 2**: Accept/reject point based on criterion (e.g. if inside or outside of circle and if in area not yet counted)
- **Step 3**: If accepted, add $f(\vec{x}_i) = 1$ to the total sum

Courtesy of John H. Mathews. Used with permission.

How to apply to ensemble average?

Similar method can be used to apply to integrate the ensemble average

$$
\langle A \rangle = \iint_{p} A(p, r) \rho(p, r) dr dp
$$

$$
\rho(p, r) = \frac{1}{Q} \exp\left[-\frac{H(p, r)}{k_B T}\right]
$$

$$
\langle A \rangle = \sum_{i=1}^{N_A} \frac{A \exp\left(-H(r_A, p_A)/(k_B T)\right)}{\sum_{i=1}^{N_A} \exp\left(-H(r_A, p_A)/(k_B T)\right)}
$$

"discrete"

$$
\langle A \rangle = \sum_{i=1}^{N_A} \frac{A \exp(-H(r_A, p_A)/(k_B T))}{\sum_{i=1}^{N_A} \exp(-H(r_A, p_A)/(k_B T))}
$$

Computationally inefficient: If states are created "randomly" that have low probability….

11■ To be computationally more effective, need more complex iteration scheme (replace "*random sampling*" by "*importance sampling*")

Challenge: sampling specific types of distributions

- ٠ We want to
	- \blacksquare Integrate a sharply-peaked function
	- Use Monte Carlo with uniformly-distributed random numbers (e.g. here from -1 to 1)

Challenge: sampling specific types of distributions

- We want to
	- ٠ Integrate a sharply-peaked function
	- \blacksquare Use Monte Carlo with uniformly-distributed random numbers (e.g. here from -1 to 1)
- What happens?
	- ٠ Very few points contribute to the integral $(-9%)$
	- Poor computational efficiency/convergence
- **Solution: use a different** distribution of random numbers to sample "*importance sampling*"

Importance sampling

 \blacksquare **Core concept:** Picking states with a biased probability: Importance sampling (sampling the "correct" way…)

$$
= \iint_{p} A\(p,r\) \rho\(p,r\) dr dp
$$
 $\rho(p,r) = \frac{1}{Q} \exp \left[-\frac{H(p,r)}{k_B T} \right]$

Importance sampling

 \blacksquare **Core concept:** Picking states with a biased probability: Importance sampling (sampling the "correct" way…)

$$
\langle A \rangle = \iint_{p \ r} A(p, r) \rho(p, r) dr dp \qquad \rho(p, r) = \frac{1}{Q} \exp\left[-\frac{H(p, r)}{k_B T}\right]
$$

Notice: Probability (and thus importance)

related to energy of state

Importance sampling: Metropolis algorithm

- \blacksquare Leads to an appropriate "chain" of states, visiting each state with **correct probability**
- \blacksquare Concept:
	- Pick random initial state
	- Move to trial states
	- Accept trial state with certain probability (based on knowledge about behavior of system, *i.e*., energy states)

Original reference: *J. Chem. Phys.* **21**,1087, 1953

Concept: Generate set of random microscopic configurations Accept or reject with certain scheme

Have: State *A* **(initial state) + energy function** *H(A)*

Step 1: Generate new state *B* **(random move)**

Have: State *A* **(initial state) + energy function** *H(A)*

Step 1: Generate new state *B* **(random move)**

Step 2: if $H(B) < H(A)$ then $a = 1$ **else**

a = true[1]/false[0] for acceptance

Draw random number *0 < p < 1*

"Downhill" moves always accepted

Have: State *A* **(initial state) + energy function** *H(A)*

Step 1: Generate new state *B* **(random move)**

Step 2: if $H(B) < H(A)$ then $a =$

else

a = true[1]/false[0] for acceptance

"Downhill" moves always accepted, uphill moves with finite ("thermal") probability

if
$$
p < \exp\left[-\frac{H(B) - H(A)}{k_B T}\right]
$$
 $\underbrace{(a=1)}_{a=\text{variable either 0 or 1}}$

Draw random number *0 < p < 1*

Have: State *A* **(initial state) + energy function** *H(A)*

Step 1: Generate new state *B* **(random move)**

Step 2: if $H(B) < H(A)$ then $a = 1$ **else***a =* true[1]/false[0] for acceptance

Draw random number *0 < p < 1* **if** $p < exp$ – $\frac{a}{a}$ – $\frac{a}{a}$ – $\frac{a}{a}$ **else***a = 0***endifendifStep 3: if** $(a = I)$ **then accept state** *B* **endif** $p < \exp\left[-\frac{H(B) - H(A)}{k_B T}\right]$ *a*=variable either 0 or 1(used to detect acceptance of state *B* when *a*=1)

Arrhenius law - explanation

Consider two states, *A* and *B*

State B has higher energy than state A

Otherwise accepted anyway!

Arrhenius law - explanation

Arrhenius law - explanation

Random number *0 < p < 1*

(equal probability to draw any number between 0 and 1)

Acceptance if:

Play "1D darts"

Summary: Metropolis-Hastings Algorithm

Summary: MC scheme

Have achieved:

$$
= \iint_{p} A\(p,r\) \rho\(p,r\) dr dp
$$
 $\frac{1}{N_A} \sum_{i=1..N_A} A_i$

Note:

- Do not need forces between atoms (for accelerations)
- Only valid for equilibrium processes

Property calculation with MC: example

Iteration "MC time"

Complex moves

 Move sets can be adapted for other cases, e.g. not just move of particles but also **rotations of side chains** (=rotamers), **torsions**, etc.

E.g. application in protein folding problem when we'd like to determine the 3D folded structure of a protein in thermal equilibrium

Possible Monte Carlo moves

- Trial moves
	- П Rigid body translation
	- \blacksquare Rigid body rotation
	- \blacksquare Internal conformational changes (soft vs. stiff modes)
	- \blacksquare Titration/electronic states

 \blacksquare …

- Questions:
	- How "big" a move should we take?
	- \blacksquare Move one particle or many?

Image by MIT OpenCourseWare.

Monte Carlo moves

- ٠ How "big" a move should we take?
	- **Smaller moves:** better acceptance rate, slower sampling
	- **Bigger moves**: faster sampling, poorer acceptance rate
- Move one particle or many?
	- Possible to achieve more efficient sampling with *correct* multiparticle moves
	- One-particle moves must choose particles at random and the state of the state of the state of the state particles at random image by MIT OpenCourseWare.

2. How to model chemical interactions

Atomic interactions – different types of chemical bonds

- \blacksquare **Primary bonds ("strong")**
	- \blacksquare Ionic (ceramics, quartz, feldspar - **rocks**)
	- Covalent (**silicon**)
	- \blacksquare Metallic (copper, nickel, **gold**, silver) (high melting point, 1000-5,000K)
- \blacksquare **Secondary bonds ("weak")**
	- Van der Waals (**wax**, low melting point)
	- п Hydrogen bonds (proteins, **spider silk**) (melting point 100-500K)

Atomic interactions – different types of chemical bonds

- \blacksquare **Primary bonds ("strong")**
	- \blacksquare Ionic (ceramics, quartz, feldspar - **rocks**)
	- Covalent (**silicon**)
	- \blacksquare Metallic (copper, nickel, **gold**, silver) (high melting point, 1000-5,000K)
- \blacksquare **Secondary bonds ("weak")**
	- Van der Waals (**wax**, low melting point)
	- \blacksquare . Hydrogen bonds (proteins, **spider silk**) (melting point 100-500K)
- \blacksquare Ionic: Non-directional (point charges interacting)
- \blacksquare Covalent: Directional (bond angles, torsions matter)
- \blacksquare Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic interactions

Types of bonding (illustrations)

Ionic bonding Hydrogen bonding Covalent bonding Hydrogen bonding

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see<http://ocw.mit.edu/fairuse>.

electrondensity (localized!)

Wax

Courtesy of Ruth Ruane, [http://www.whitewitch.ie.](http://www.whitewitch.ie/) Used with permission.

Soft, deformable, does not break under deformation
Rocks

Image courtesy of Wikimedia Commons.

Quite brittle (breaks e.g. during earthquake)

Rocks and sand on Mars

Image courtesy of NASA. What are the properties and composition of extraterrestrial rocks?

Gold

Image courtesy of Wikimedia Commons.

Very "soft" metal, deformable, high density

Silicon

Image courtesy of NASA.

Rather brittle – shatters into many pieces if dropped

Spider web

Image courtesy of U.S. Fish and Wildlife Service.

Very extensible, deformation, yet very strong (similar to steel)

Tree's leaf

42 Image courtesy of Wikimedia Commons.

Very deformable under bending (wind loads), but breaks easily under tear

Particularly intriguing…brittle or ductile?

Image by MIT OpenCourseWare.

Image courtesy of [quinn.anya](http://www.flickr.com/photos/quinnanya/). License: CC-BY.

Outline

- **Goal: model chemical bonds with the objective to enable force** calculation (see lecture 2, basic MD algorithm) or energy calculation (see lecture 4/5, MC)
- \blacksquare **Two-step approach**:

1. Define energy landscape, *i.e.* defines how distance between particles controls the energy stored in the bond

2. Then take derivatives to obtain forces, to be used in the MD algorithm

"Modeling and simulation" paradigm:

- F First, develop mathematical expressions (modeling)
- 44F Second, use model in numerical solution (simulation, =MD)

Models for atomic interactions

 \blacksquare Define interatomic potentials that describe the energy of a set of atoms as a function of their coordinates *r*:

$$
U_{total} = U_{total}(r)
$$

Depends on position of all other atoms

$$
\vec{r} = \{\vec{r}_j\} \quad j = 1..N
$$

Models for atomic interactions

 \blacksquare Define interatomic potentials that describe the energy of a set of atoms as a function of their coordinates *r*:

$$
r = {\overline{r}_j} \qquad j = 1..N
$$

\n
$$
U_{total} = U_{total}(r)
$$
Depends on position of
\nall other atoms
\n
$$
\vec{F}_i = -\nabla_{\vec{r}_i} U_{total}(r)
$$
 $i = 1..N$
\n
$$
\nabla_{\vec{r}_i} = \left(\frac{\partial}{\partial r_{1,i}}, \frac{\partial}{\partial r_{2,i}}, \frac{\partial}{\partial r_{3,i}}\right)
$$
 Change of potential energy due to change of position of particle *i* ("gradient")

2.1 Pair potentials

Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy of all pairs of atoms in the system

$$
r_{ij} = \text{distance between} \n\text{particles } i \text{ and } j
$$

Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy of all pairs of atoms in the system

Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy of all pairs of atoms in the system

Overview - pair potentials: total energy calculation

Simple approximation: Total energy is sum over the energy of all pairs of atoms in the system

Pair wiseinteraction potential

Example: calculation of total energy

two "loops" over pairs of all particles

$$
U_{\text{total}} = \tfrac{1}{2} \sum_{i=1, i\neq j}^{N} \sum_{j=1}^{N} \phi(r_{ij})
$$

with
$$
\phi_{ij} = \phi(r_{ij})
$$

$$
U_{total} = \frac{1}{2} (\phi_{12} + \phi_{13} + \phi_{14} + \phi_{1N} ... + \phi_{21} + \phi_{23} + ... + \phi_{2N} + ... + \phi_{N-1,N})
$$

Interatomic pair potentials: examples

$$
\phi(r_{ij}) = D \exp\left(-2\alpha (r_{ij} - r_0)\right) - 2D \exp\left(-\alpha (r_{ij} - r_0)\right)
$$
 Morse potential

$$
\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

$$
\phi(r_{ij}) = A \exp\left(-\frac{r_{ij}}{\sigma}\right) - C\left(\frac{\sigma}{r_{ij}}\right)^6
$$

$$
\phi(r_{ij}) = a_0 + \frac{1}{2}k(r_{ij} - r_0)^2
$$

Lennard-Jones 12:6 potential (excellent model for noble Gases, Ar, Ne, Xe..)

Buckingham potential

Harmonic approximation (no bond breaking)

How to use a pair potential, e.g. LJ

Force calculation – pair potential

Forces on particles can be calculated by taking derivatives from the potential function & by considering all pairs of atoms

Start with **force magnitude (STEP 1):** Negative derivative of potential energy with respect to atomic distance

Force calculation – pair potential

Forces on particles can be calculated by taking derivatives from the potential function & by considering all pairs of atoms

Start with **force magnitude (STEP 1):** Negative derivative of potential energy with respect to atomic distance

$$
F=-\frac{\mathrm{d}\,\phi(r)}{\mathrm{d}\,r}\bigg|_{r=r_{ij}}=-\frac{\mathrm{d}\,\phi(r_{ij})}{\mathrm{d}\,r_{ij}}=-\phi'(r_{ij})
$$

Calculate **force vector (STEP 2)**:

What can we do with this potential?

Bending a copper wire until it breaks

A closer look

Courtesy of Goran Drazic. Used with permission.

<http://www2.ijs.si/~goran/sd96/e6sem1y.gif>

Case study: plasticity in a micrometer crystal of copper

Simulation details

- 1,000,000,000 atoms (0.3 micrometer side length)
- 12:6 Lennard-Jones ductile material, for copper
- - Visualization using energy filtering method (only show high energy atoms)

Generic features of atomic bonding: "repulsion vs. attraction"

60Image by MIT OpenCourseWare. After Buehler, et al., 2005.

A simulation with 1,000,000,000 particles Lennard-Jones - copper

Fig. 1 c from Buehler, M., et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale Molecular Dynamics Simulation." *Acta Mech Sinica* 21 (2005): 103-11. © Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see [http://ocw.mit.edu/fairuse.](http://ocw.mit.edu/fairuse)

Strengthening mechanisms

Image by MIT OpenCourseWare.

Strengthening caused by hindering dislocation motion

If too difficult, ductile modes break down and material becomes brittle

Parameters for Morse potential

(for reference)

Morse potential parameters for various metals

Adapted from Table I in Girifalco, L. A., and V. G. Weizer. "Application of the Morse Potential Function to Cubic Metals." *Physical Review* 114 (May 1, 1959): 687-690.

Image by MIT OpenCourseWare.

$$
\phi(r_{ij}) = D \exp\left(-2\alpha (r_{ij} - r_0)\right) - 2D \exp\left(-\alpha (r_{ij} - r_0)\right)
$$

Morse potential: application example (nanowire)

Source: Komanduri, R., et al. "[Molecular Dynamics \(MD\) Simulation of Uniaxial Tension of Some Single-](http://dx.doi.org/10.1016/S0020-7403(01)00043-1)[Crystal Cubic Metals at Nanolevel](http://dx.doi.org/10.1016/S0020-7403(01)00043-1)." *International Journal of Mechanical Sciences* 43, no. 10 (2001): 2237-60.

Further Morse potential parameters:

Table 3 Morse potential parameters used in MD simulation of uniaxial tensile loading [24]

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Cutoff-radius: saving time

Cutoff radius = considering interactions only to a certain distance Basis: Force contribution negligible (slope)

Derivative of LJ potential \sim force

Image by MIT OpenCourseWare.

Beyond cutoff: Changes in energy (and thus forces) small

Putting it all together…

MD updating scheme: Complete

(1) Updating method (integration scheme)

Positions

$$
r_i(t_0 + \Delta t) = -r_i(t_0 - \Delta t) + 2r_i(t_0)\Delta t + a_i(t_0)(\Delta t)^2 + ...
$$

⎟ $\overline{}$

⎞

⎠

Positions

at *t 0*at t_o -∆ t (2) Obtain accelerations from forces

$$
f_i = ma_i \qquad a_i = f_i / m
$$

rx $f_i = F \frac{\lambda_i}{\lambda_i}$ (3) Obtain forces from potential **Potential** $\overline{}$ $\overline{}$ ⎝ \int $\overline{}$ $\overline{}$ $\left\lceil \frac{\sigma}{r} \right\rceil$ $\overline{}$ $\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ $\overline{}$ $\left\lceil \frac{\sigma}{r} \right\rceil$ $\overline{\mathsf{L}}$ $=4\varepsilon$ 12 6 $(r)=4$ *rr r* σ | σ $\phi(r) = 4\varepsilon$ || *r* $F = -\frac{d \varphi(r)}{dr}$ $=-\frac{\mathrm{d}\,\phi(r)}{r}$

(4) Crystal (initial conditions) Positions at *t 0*

Accelerations

at *t 0*

2.2 How to model metals: Multi-body potentials

Courtesy of the Center for Polymer Studies at Boston University. Used with permission.

Pair potential: Total energy sum of all pairs of bonds Individual bond contribution does not depend on other atoms **"all bonds are the same"**

$$
U_{\text{total}} = \frac{1}{2} \sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} \phi(r_{ij})
$$

Is this a good assumption?

Are all bonds the same? - valency in hydrocarbons

Are all bonds the same? – metallic systems

Pair potentials: All bonds are equal! Reality: Have environment effects; it matter that there is a free surface!

Bonds depend on the environment!

Are all bonds the same?

Bonding energy of red atom in $\frac{1}{\sqrt{2}}$ is six times bonding energy in \bullet

This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

N

$$
\text{Bonding energy of atom } i \qquad U_{i} = \sum_{j=1}^{N} \phi(r_{ij})
$$

$$
\mathcal{S}_{\zeta}^{\mathcal{C}}\left\{\n\begin{array}{ccc}\nU_i = \sum_{j=1}^6 \phi(r_{ij}) & \longleftrightarrow & U_i = \phi(r_{ij}) \\
\end{array}\n\right\}
$$

After: G. Ceder

Are all bonds the same?

Bonding energy of red atom in $\frac{1}{\sqrt{2}}$ is six times bonding energy in \bullet

This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

For pair potentials
$$
\sim Z
$$
 Z : Coordinate neighbors an atom has
For metals $\sim \sqrt{Z}$

Bonds get "weaker" as more atoms are added to central atom

Bond strength depends on coordination

Transferability of pair potentials

 \blacksquare Pair potentials have limited **transferability:**

Parameters determined for molecules can not be used for crystals, parameters for specific types of crystals can not be used to describe range of crystal structures

■ E.g. difference between FCC and BCC can not be captured using a pair potential

Metallic bonding: multi-body effects

 Need to consider more details of chemical bonding to understand environmental effects

Delocalized valence electrons moving between nuclei generate a binding force to hold the atoms together: **Electron gas model (***positive ions in a sea of electrons***)**

Mostly non-directional bonding, but the bond strength indeed depends on the environment of an atom, precisely the electron density imposed by other atoms

Concept: include electron density effects

Each atom features a particular distribution of electron density

Concept: include electron density effects

Contribution to electron density at site i due to electron density of atom j evaluated at correct distance (*rij*)

Concept: include electron density effects

$$
\phi_i = \sum_{j=1..N_{neigh}} \frac{1}{2} \phi(r_{ij}) + F(\rho_i)
$$

Embedding term *F* (how local electron density contributes to potential energy)

r

Electron density at atom *i*

$$
\rho_{_{i}=\sum_{j=1..N_{neigh}\,\uparrow}\!\!\pi_{\rho,j}(r_{_{ij}})
$$

$$
\pi_{\rho,j}(r_{ij})\sum_{j}\dots\sum_{i}
$$

81 *Atomic electron density of atom j*

Embedded-atom method (EAM)

 $\sum_{i=1}$ = *N i* $U_{total} = \sum \phi_i$ 1

Total energy

Pair potential energy Embedding energy

as a function of electron density

 ρ_i^- Electron density at atom *i* based on a "pair potential":

$$
\rho_i = \sum_{j=1..N_{neigh}} \pi_{\rho,j}(r_{ij})
$$

82**First proposed by Finnis, Sinclair, Daw, Baskes** *et al.* **(1980s)**

Physical concept: EAM potential

 $\qquad \qquad \blacksquare$ Describes bonding energy due to electron delocalization

As electrons get more states to spread out over their kinetic energy decreases

- \blacksquare When an impurity is put into a metal its energy is lowered because the electrons from the impurity can delocalize into the solid.
- \blacksquare The embedding density (electron density at the embedding site) is a measure of the number of states available to delocalize onto.
- \blacksquare **Inherently MANY BODY effect!**

Effective pair interactions

Can describe differences between bulk and surface

+

+++++

Summary: EAM method

- **State of the art approach to model metals**
- Very good potentials available for Ni, Cu, Al since late 1990s, 2000s
- Numerically efficient, can treat billions of particles
- Not much more expensive than pair potential (approximately three times), but describes physics much better
- \blacksquare *Strongly recommended for use!*

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and Simulation Spring 2011

For information about citing these materials or our Terms of use, visit [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)