1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011

Part I – Continuum and particle methods

How to model chemical interactions II

Lecture 6

Markus J. Buehler

Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology

Massachusetts Institute of Technology

1

шт

Content overview

- 2. Quantum Mechanics: Practice Makes Perfect
- 3. The Many-Body Problem: From Many-Body to Single-Particle
- 4. Quantum modeling of materials
- 5. From Atoms to Solids
- 6. Basic properties of materials
- 7. Advanced properties of materials
- 8. What else can we do?

2

Overview: Material covered so far…

- **Lecture 1: Broad introduction to IM/S**
- **Lecture 2**: **Introduction to atomistic and continuum modeling** (multi-scale modeling paradigm, difference between continuum and atomistic approach, case study: diffusion)
- **Lecture 3**: **Basic statistical mechanics – property calculation I** (property calculation: microscopic states vs. macroscopic properties, ensembles, probability density and partition function)
- \blacksquare **Lecture 4: Property calculation II** (Monte Carlo, advanced property calculation, introduction to chemical interactions)
- **Lecture 5: How to model chemical interactions I** (example: movie of copper deformation/dislocations, etc.)
- Ŧ **Lecture 6: How to model chemical interactions II**

Lecture 6: How to model chemical interactions II

Outline:

- 1. Case study: Deformation of copper wire (cont'd)
- 2. How to model metals: Multi-body potentials
- 3. Brittle versus ductile materials
- 4. Basic deformation mechanism in brittle materials crack extension

Goal of today's lecture:

- п Complete example of copper deformation
- П Learn how to build a model to describe brittle fracture (from scratch)
- ш Learn basics in fracture of brittle materials
- П Apply our tools to model a particular material phenomena – brittle fracture (useful for pset #2)

1. Case study: Deformation of copper wire (cont'd)

A simulation with 1,000,000,000 particles Lennard-Jones - copper

Fig. 1 c from Buehler, M., et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale Molecular Dynamics Simulation." *Acta Mech Sinica* 21 (2005): 103-11. © Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>.

Strengthening mechanisms

Image by MIT OpenCourseWare.

Strengthening caused by hindering dislocation motion

If too difficult, ductile modes break down and material becomes brittle

Fig. 1 c from Buehler, M. et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale Molecular Dynamics Simulation." Acta Mech Sinica 21 (2005): 103-111. © Springer-Verlag. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>.

Parameters for Morse potential

(for reference)

Morse potential parameters for various metals

Adapted from Table I in Girifalco, L. A., and V. G. Weizer. "Application of the Morse Potential Function to Cubic Metals." *Physical Review* 114 (May 1, 1959): 687-690.

Image by MIT OpenCourseWare.

$$
\phi(r_{ij}) = D \exp\left(-2\alpha (r_{ij} - r_0)\right) - 2D \exp\left(-\alpha (r_{ij} - r_0)\right)
$$

Morse potential: application example (nanowire)

See: Komanduri, R., et al. "[Molecular Dynamics \(MD\) Simulation of Uniaxial Tension of Some Single-Crystal](http://dx.doi.org/10.1016/S0020-7403(01)00043-1) [Cubic Metals at Nanolevel.](http://dx.doi.org/10.1016/S0020-7403(01)00043-1)" *International Journal of Mechanical Sciences* 43, no. 10 (2001): 2237-60.

Further Morse potential parameters:

Table 3

Morse potential parameters used in MD simulation of uniaxial tensile loading [24]

Material	Crystal structure	Dissociation energy, D (eV)	Equilibrium radius, r_0 (Å)	α-parameter (A	Lattice constant (A)
Aluminium	FCC	0.2703	3.253	1.1650	4.05
Copper	FCC	0.3429	2.866	1.3590	3.62
Nickel	FCC	0.4205	2.780	1.4199	3.52
Iron	BCC	0.4172	2.845	1.3890	2.87
Chromium	BCC	0.4414	2.754	1.5721	2.89
Tungsten	BCC	0.9906	3.032	1.4116	3.17

Courtesy of Elsevier, Inc., [http://www.sciencedirect.com.](http://www.sciencedirect.com/) Used with permission.

Cutoff-radius: saving time

Cutoff radius = considering interactions only to a certain distance Basis: Force contribution negligible (slope)

Derivative of LJ potential \sim force

Image by MIT OpenCourseWare.

Beyond cutoff: Changes in energy (and thus forces) small

Putting it all together…

MD updating scheme: Complete

(1) Updating method (integration scheme)

Positions

$$
r_i(t_0 + \Delta t) = -r_i(t_0 - \Delta t) + 2r_i(t_0)\Delta t + a_i(t_0)(\Delta t)^2 + ...
$$

⎟ $\overline{}$

⎞

⎠

Positions

at *t 0*at t_o -∆ t (2) Obtain accelerations from forces

$$
f_i = ma_i \qquad a_i = f_i / m
$$

rx $f_i = F \frac{\lambda_i}{\lambda_i}$ (3) Obtain forces from potential **Potential** $\overline{}$ $\overline{}$ ⎝ \int $\overline{}$ $\overline{}$ $\left\lceil \frac{\sigma}{r} \right\rceil$ $\overline{}$ $\begin{bmatrix} 12 \\ - \end{bmatrix}$ $\overline{}$ $\left\lceil \frac{\sigma}{r} \right\rceil$ $\overline{\mathsf{L}}$ $=4\varepsilon$ 12 6 $(r)=4$ *rr r* σ | σ $\phi(r) = 4\varepsilon$ | *r* $F = -\frac{d \varphi(r)}{dr}$ $=-\frac{\mathrm{d}\phi(r)}{r}$

(4) Crystal (initial conditions) Positions at *t 0*

Accelerations

at *t 0*

2.2 How to model metals: Multi-body potentials

Courtesy of the Center for Polymer Studies at Boston University. Used with permission.

Pair potential: Total energy sum of all pairs of bonds Individual bond contribution does not depend on other atoms **"all bonds are the same"**

$$
U_{\text{total}} = \tfrac{1}{2} \sum_{i=1, i\neq j}^{N} \sum_{j=1}^{N} \phi(r_{ij})
$$

Is this a good assumption?

Are all bonds the same? - valency in hydrocarbons

Are all bonds the same? – metallic systems

Pair potentials: All bonds are equal! Reality: Have environment effects; it matter that there is a free surface!

Bonds depend on the environment!

Are all bonds the same?

Bonding energy of red atom in $\frac{1}{\sqrt{2}}$ is six times bonding energy in \bullet

This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

N

j

Bonding energy of atom
$$
i
$$
 $U_i = \sum_{j=1}^{N} \phi(r_{ij})$

$$
\mathcal{L}_{i} = \sum_{j=1}^{6} \phi(r_{ij}) \qquad \longrightarrow \qquad U_{i} = \phi(r_{ij})
$$

After: G. Ceder

Are all bonds the same?

Bonding energy of red atom in $\frac{1}{\sqrt{2}}$ is six times bonding energy in \bullet

This is in contradiction with both experiments and more accurate quantum mechanical calculations on many materials

For pair potentials
$$
\sim Z
$$
 Z : Coordinate neighbors an atom has
For metals $\sim \sqrt{Z}$

Bonds get "weaker" as more atoms are added to central atom

Bond strength depends on coordination

Daw, Foiles, Baskes, *Mat. Science Reports*, 1993

Transferability of pair potentials

Pair potentials have limited **transferability:**

Parameters determined for molecules can not be used for crystals, parameters for specific types of crystals can not be used to describe range of crystal structures

■ E.g. difference between FCC and BCC can not be captured using a pair potential

Metallic bonding: multi-body effects

 Need to consider more details of chemical bonding to understand environmental effects

Delocalized valence electrons moving between nuclei generate a binding force to hold the atoms together: **Electron gas model (***positive ions in a sea of electrons***)**

Mostly non-directional bonding, but the bond strength indeed depends on the environment of an atom, precisely the electron density imposed by other atoms

Concept: include electron density effects

Each atom features a particular distribution of electron density

Concept: include electron density effects

Contribution to electron density at site i due to electron density of atom j evaluated at distance rij

Concept: include electron density effects

$$
\phi_i = \frac{1}{2} \sum_{j=1..N_{neigh}} \phi(r_{ij}) + \overbrace{(F(\rho_i))}_{\text{embedding term } F \text{ (how localelectron density contributes to potential energy)}}
$$

Electron density at atom *i*

$$
\rho_i = \sum_{j=1..N_{neigh}} \pi_{\rho,j}(r_{ij}) \qquad r_{ij} = x_j - x_i
$$
\nAtomic electron density contribution of atom *j i*

\n

Embedded-atom method (EAM)

 $\rho_{\scriptscriptstyle i}$ Electron density at atom *i* based on a "pair potential":

$$
\rho_i = \sum_{j=1..N_{neigh}} \pi_{\rho,j}(r_{ij})
$$

28**First proposed by Finnis, Sinclair, Daw, Baskes** *et al.* **(1980s)**

Embedding term: example

Pair potential term: example

Effective pair interactions

Image by MIT OpenCourseWare.

Can describe differences between bulk and surface

Comparison with experiment

Diffusion: Activation energies

(in eV)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Comparison EAM model vs. experiment

Melting temperature (in K)

Summary: EAM method

- **State of the art approach to model metals**
- Very good potentials available for Ni, Cu, Al since late 1990s, 2000s
- Numerically efficient, can treat billions of particles
- Not much more expensive than pair potential (approximately three times), but describes physics much better
- \blacksquare *Strongly recommended for use!*

3. Brittle versus ductile materials
Tensile test of a wire

Image by MIT OpenCourseWare. **Image by MIT OpenCourseWare.** Image by MIT OpenCourseWare.

Ductile versus brittle materials

Deformation of materials: Nothing is perfect, and flaws or cracks matter

Failure of materials initiates at cracks

grain boundaries with reduced traction, nano-voids, other imperfections $\,$ $^{\rm 39}$ *Griffith, Irwine* and others: Failure initiates at defects, such as cracks, or

SEM picture of material: nothing is perfect

Significance of material flaws *"global"* σ *"local"* \mathcal{X}

Fig. 1.3 in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008. © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see<http://ocw.mit.edu/fairuse>.

Stress concentrators: local stress >> global stress

41

Deformation of materials: Nothing is perfect, and flaws or cracks matter

"Micro (nano), local"

Failure of materials initiates at cracks

grain boundaries with reduced traction, nano-voids, other imperfections $\,$ 42 $\,$ *Griffith, Irwine* and others: Failure initiates at defects, such as cracks, or

Cracks feature a singular stress field, with singularity at the tip of the crack

 $K_{_I}$: $\,$ Stress intensity factor (function of geometry)

Crack extension: brittle response

Image by MIT OpenCourseWare.

Lattice shearing: ductile response

Image by MIT OpenCourseWare.

- \blacksquare Instead of crack extension, induce shearing of atomic lattice
- \blacksquare Due to large shear stresses at crack tip
- \blacksquare Lecture 5

Image by MIT OpenCourseWare.

Brittle vs. ductile material behavior

- \blacksquare Whether a material is ductile or brittle depends on the material's propensity to undergo **shear at the crack tip**, or to **break atomic bonds that leads to crack extension**
- \blacksquare Intimately linked to the **atomic structure and atomic bonding**
- \blacksquare **Related to temperature (activated process)**; some mechanism are easier accessible under higher/lower temperature
- \blacksquare Many materials show a **propensity towards brittleness at low temperature**
- \blacksquare *Molecular dynamics is a quite suitable tool to study these mechanisms, that is, to find out what makes materials brittle or ductile*

Historical example: significance of brittle vs. ductile fracture

- ш **Liberty ships**: cargo ships built in the U.S. during World War II (during 1930s and 40s)
- Eighteen U.S. shipyards built 2,751 Liberties between 1941 and 1945
- Early Liberty ships suffered hull and deck cracks, and several were lost to such structural defects
- Twelve ships, including three of the 2710 Liberties built, broke in half without warning, including the **SS John P. Gaines (sank 24 November 1943)**
- **Constance Tipper** of Cambridge University demonstrated that the fractures were initiated by the grade of steel used which suffered from **embrittlement**.
- She discovered that the ships in the North Atlantic were exposed to **temperatures** that could fall below a critical point when the **mechanism of failure changed from ductile to brittle**, and thus the hull could fracture relatively easily.

Liberty ships: brittle failure

4. Basic deformation mechanism in brittle materials - crack extension

Introduction: brittle fracture

- \blacksquare Materials: **glass, silicon, many ceramics, rocks**
- \blacksquare At large loads, rather than accommodating a shape change, materials break

Image courtesy of [quinn.anya](http://www.flickr.com/photos/quinnanya/). License: CC-BY.

Science of fracture: model geometry

- \blacksquare Typically consider a single crack in a crystal
- \blacksquare Remotely applied mechanical load
- \blacksquare Following discussion focused on single cracks and their behavior

Brittle fracture loading conditions

 \blacksquare Commonly consider a single crack in a material geometry, under three types of loading: mode I, mode II and mode III

Tensile load, focus of this lecture

Brittle fracture mechanisms: fracture is a multiscale phenomenon, from nano to macro

Image removed due to copyright restrictions. See Fig. 6.2 in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008.

Focus of this part

- \blacksquare **Basic fracture process**: dissipation of elastic energy
- \blacksquare **Fracture initiation**, that is, at what applied load to fractures initiate
- \blacksquare **Fracture dynamics**, that is, how fast can fracture propagate in material

Basic fracture process: dissipation of elastic energy

Elasticity = reversible deformation

Stress?

Force per unit area

Elasticity = reversible deformation

Stress?

Force per unit area

Elasticity = reversible deformation

- \blacksquare Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, $\rm Nm/m^2$)

- \blacksquare Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, $\rm Nm/m^2$)

 $W_p(2) = 0$

- \blacksquare Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, $\rm Nm/m^2$)

- \blacksquare Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, $\rm Nm/m^2$)

- \blacksquare Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, Nm/m2)

- Fracture is a dissipative process in which elastic energy is dissipated to break bonds (and to heat at large crack speeds)
- \blacksquare **E** Energy to break bonds = surface energy γ_s (energy necessary to create new surface, dimensions: energy/area, $\rm Nm/m^2$)

Griffith condition for fracture initiation

 \blacksquare **Energy release rate** G, that is, the elastic energy released per unit crack advance must be equal or larger than the energy necessary to create new surfaces

$$
G := \frac{1}{2} \frac{\sigma^2}{E} \xi = 2 y_s \qquad G = 2 \gamma_s
$$

- \blacksquare Provides **criterion to predict failure initiation**
- \blacksquare \blacksquare Calculation of G can be complex, but straightforward for thin strips as shown above
- \blacksquare Approach to calculate *G* based on "**stress intensity factor**" (see further literature, e.g. Broberg, Anderson, Freund, Tada)

Brittle fracture mechanisms

- \blacksquare Once nucleated, cracks in brittle materials spread rapidly, on the order of sound speeds
- \blacksquare Sound speeds in materials (=wave speeds):
	- **•** Rayleigh-wave speed c_R (speed of surface waves)
	- $\textcolor{red}{\bullet}$ shear wave speed $c_{\scriptscriptstyle S}$ (speed of shear waves)
	- $\textcolor{red}{\bullet}$ longitudinal wave speed c_l (speed of longitudinal waves)
- \blacksquare *Maximum speeds of cracks is given by sound speeds, depending on mode of loading (mode I, II, III)*

Linear elastic continuum theory

Sound speeds in materials: overview

Wave speeds are calculated based on elastic properties of material

$$
c_l = \sqrt{\frac{3\mu}{\rho}} \qquad \qquad c_s = \sqrt{\frac{\mu}{\rho}} \qquad \qquad c_R \approx \beta c_s \qquad \qquad \beta \approx 0.923
$$

 μ = shear modulus $E = 8/3 \mu$ $\mu = 3/8E$

67

Limiting speeds of cracks: linear elastic continuum theory

Image by MIT OpenCourseWare.

• Cracks **can not exceed** the limiting speed given by the corresponding wave speeds **unless material behavior is nonlinear**

• Cracks that exceed limiting speed would produce energy (physically impossible - *linear elastic continuum theory*)

Physical reason for crack limiting speed

- ٠ Physical (mathematical) reason for the limiting speed is that it becomes increasingly difficult to increase the speed of the crack by adding a larger load
- \blacksquare When the crack approaches the limiting speed, the **resistance to fracture diverges to infinity (=dynamic fracture toughness)**

Image removed due to copyright restrictions. Please see: Fig. 6.15 in Buehler, Markus J. *Atomistic Modeling of Materials Failure*. Springer, 2008.

Linear versus nonlinear elasticity=hyperelasticity

Image by MIT OpenCourseWare.

Linear elasticity: Young's modulus (stiffness) does not change with deformation

Nonlinear elasticity = hyperelasticity: Young's modulus (stiffness) changes with deformation

Subsonic and supersonic fracture

- \blacksquare Under certain conditions, material nonlinearities (that is, the behavior of materials under large deformation = hyperelasticity) becomes important
- ٠ This can lead to different limiting speeds than described by the model introduced above

Deformation field near a crack

Limiting speeds of cracks

Image by MIT OpenCourseWare.

- Under presence of hyperelastic effects, cracks can exceed the conventional barrier given by the wave speeds
- This is a "local" effect due to enhancement of energy flux
- Subsonic fracture due to local softening, that is, reduction of energy flux
Stiffening vs. softening behavior

Image by MIT OpenCourseWare.

Increased/decreased wave speed

$$
c_l = \sqrt{\frac{3\mu}{\rho}} \qquad c_s = \sqrt{\frac{\mu}{\rho}}
$$

$$
c_R \approx \beta c_s
$$

 $\beta\approx0.923$

Energy flux reduction/enhancement

Image by MIT OpenCourseWare.

Energy flux related to wave speed: high local wave speed, high energy flux, crack can move faster (and reverse for low local wave speed)

Physical basis for subsonic/supersonic fracture

- \blacksquare Changes in energy flow at the crack tip due to changes in local wave speed (energy flux higher in materials with higher wave speed)
- \blacksquare **•** Controlled by a characteristic length scale χ

LI Hyperelastic region

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Buehler, M., F. Abraham, and H. Gao. "Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale." *Nature* 426 (2003): 141-6. © 2003.

 AP

Summary: atomistic mechanisms of brittle fracture

- \blacksquare Brittle fracture – **rapid spreading** of a small initial crack
- \blacksquare Cracks initiate based on **Griffith condition** *G =* 2γ*s*
- \blacksquare Cracks spread on the order of **sound speeds** (km/sec for many brittle materials)
- \blacksquare Cracks have a **maximum speed**, which is given by characteristic sound speeds for different loading conditions)
- \blacksquare Maximum speed can be altered if material is strongly nonlinear, leading to **supersonic or subsonic fracture**

Supersonic fracture: mode II (shear)

Please see: Buehler, Markus J., Farid F. Abraham, and Huajian Gao. "Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale." *Nature* 426 (November 13, 2003): 141-146.

Appendix: Notes for pset #1

Notes regarding pset #1 (question 1.)

Plot data extracted from RMSD graph, then fit equation above and identify parameters

Mechanism and energy barrier

⎟ $\overline{}$ \int ⎞ \setminus $\bigg($ $= D_0 \exp \left(-\frac{k_B T}{k_B T}\right)$ *E* $D=D_0 \exp \left(-\frac{1}{2}\right)$ *B* \log_{10} exp $\left|-\frac{E_b}{1.5}\right|$

 $D_{\!0}$: Rate of attempt

"transition state"

Courtesy of [Runningamok19](http://en.wikipedia.org/wiki/File:Chemical_surface_diffusion_slow.gif). License: CC-BY.

MIT OpenCourseWare http://ocw.mit.edu

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and Simulation Spring 2011

For information about citing these materials or our Terms of use, visit<http://ocw.mit.edu/terms>.