1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011 Part II – Quantum Mechanical Methods : Lecture 4

From atoms to solids

Jeffrey C. Grossman

Department of Materials Science and Engineering Massachusetts Institute of Technology

Part II Outline

- 1. It's A Quantum World:The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes **Perfect**
- 3. From Many-Body to Single-Particle; Quantum Modeling of **Molecules**
- 4. From Atoms to Solids 4. From Atoms to Solids
- 5. Quantum Modeling of Solids: Basic Properties
- **6.** Advanced Prop. of Materials: What 12. Review else can we do?

theory & practice **theory** & practice **example applications**

- **Nanotechnology**
- 8. Solar Photovoltaics: Converting Photons into Electrons
- 9. Thermoelectrics: Converting Heat into Electricity
- **10.** Solar Fuels: Pushing Electrons up a Hill
- 11. Hydrogen Storage: the Strength of Weak Interactions

Motivation

Lesson outline

- **Review**
- Periodic potentials
- Bloch's theorem
- **Energy bands**

Born-Oppenheimer Approximation

Electrons and nuclei as "separate" systems

$$
H = -\frac{h^2}{2m} \sum_{i=1}^{n} \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{Z_i e^2}{|\mathbf{R}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{j=1 \ i \neq j}}^{n} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}
$$

Born-Oppenheimer Approximation

Electrons and nuclei as "separate" systems

$$
H = -\frac{\hbar^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{|\mathbf{R}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1 \ i \neq j}}^n \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}
$$

... but this is an approximation!

•

- electrical resistivity
- superconductivity

Review: Solutions

Review:Why DFT?

Image by MIT OpenCourseWare.

$$
\psi = \psi(\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_N) \quad \substack{\text{wave function:} \\ \text{complied!}}
$$

Walter Kohn DFT, 1964

All aspects of the electronic structure of a system of interacting electrons, in the ground state, in an "external" potential, are determined by *n(r)*

electron density The ground-state energy is a functional of the electron density.

$$
E[n] = T[n] + V_{ii} + V_{ie}[n] + V_{ee}[n]
$$

kinetic ion-electron ion-ion electron-electron

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>.

The functional is minimal at the exact ground-state electron density *n(r)*

The functional exists... but it is unknown!

$$
E[n] = T[n] + V_{ii} + V_{ie}[n] + V_{ee}[n]
$$

kinetic ion-ion ion-electron electron-electron

$$
\begin{aligned} \text{electron density} \quad n(\vec{r}) = \sum_i |\phi_i(\vec{r})|^2 \\ E_{\text{ground state}} = \min_{\phi} E[n] \end{aligned}
$$

Find the wave functions that minimize the energy using a functional derivative.

Finding the minimum leads to Kohn-Sham equations

$$
\left[-\frac{\hbar^2}{2m}\nabla^2 + V_s(\vec{r})\right]\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r}),
$$

$$
V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r' + V_{\text{XC}}[n_s(\vec{r})],
$$

ion potential Hartree potential exchange-correlation potential

equations for non-interacting electrons

$$
V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r' + V_{\text{XC}}[n_s(\vec{r})],
$$

Only one problem: v_{xc} not known!

approximations necessary

local density by general gradient approximation approximation LDA GGA

Review: Self-consistent cycle

Review: DFT calculations

Review: DFT calculations

Review: Basis functions

Review: Plane waves as basis functions

plane wave expansion:

$$
\psi(\vec{r}) = \sum_{j} c_{j} \underbrace{e^{i \vec{G}_{j} \cdot \vec{r}}}_{\text{plane wave}}
$$

Cutoff for a maximum G is necessary and results in a finite basis set.

From atoms to solids

Image by MIT OpenCourseWare.

The ground state electron configuration of a system is constructed by putting the available electrons, two at a time (Pauli principle), into the states of lowest energy

Crystal symmetries

A crystal is built up of a unit cell and periodic replicas thereof.

Image of M. C. Escher's "Mobius with Birds" removed due to copyright restrictions.

Crystal symmetries

Since a crystal is periodic, maybe we can get away with modeling only the unit cell?

Crystal symmetries

Image by MIT OpenCourseWare.

The inverse lattice

The real space lattice is described by three basis vectors: $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

The inverse lattice is described by three basis vectors: $\vec{G} = m_{1} \vec{b}_{1} + m_{2} \vec{b}_{2} + m_{3} \vec{b}_{3}$ $\mathbf{b_1} = 2\pi \frac{\mathbf{a_2} \times \mathbf{a_3}}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})}$ $\mathbf{b_2} = 2\pi \frac{\mathbf{a_3} \times \mathbf{a_1}}{\mathbf{a_2} \cdot (\mathbf{a_3} \times \mathbf{a_1})}$ $\mathbf{b_3} = 2\pi \frac{\mathbf{a_1} \times \mathbf{a_2}}{\mathbf{a_3} \cdot (\mathbf{a_1} \times \mathbf{a_2})}$ $e^{i\vec{G}\cdot\vec{R}}=1$ *rightharrow* $\psi(\vec{r})=\sum c_j e^{i\vec{G}_j\cdot\vec{r}}$ **...** *j* automatically periodic in R!

The inverse lattice

real space lattice (BCC) inverse lattice (FCC)

Image by MIT OpenCourseWare.

Image by [Gang65](http://en.wikipedia.org/wiki/File:Brillouin_zone.svg) on Wikimedia Commons. License: CC-BY. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

The Brillouin zone

Brillouin zone of the FCC lattice

metallic sodium

It becomes much easier if you use the periodicity of the potential!

$$
V(\vec{r})=V(\vec{r}+\vec{R})
$$
attice vector

Bloch's theorem $\frac{1}{2}$

$$
\psi_{\vec{k}}(\vec{r})=e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})
$$

NEW quantum number k that

lives in the inverse lattice!

$$
u_{\vec{k}}(\vec{r})=u_{\vec{k}}(\vec{r}+\vec{R})
$$

Bloch's theorem

$$
\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})
$$

$$
u_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r} + \vec{R})
$$

Image by MIT OpenCourseWare.

Results of the Bloch theorem:

$$
\psi_{\vec{k}}(\vec{r}+\vec{R})=\psi_{\vec{k}}(\vec{r})e^{i\vec{k}\cdot\vec{r}}
$$

$$
|\psi_{\vec{k}}(\vec{r}+\vec{R})|^2=|\psi_{\vec{k}}(\vec{r})|^2 \quad \ \ \text{charge density} \quad \ \ \text{is lattice periodic}
$$

if solution
$$
\psi_{\vec{k}}(\vec{r}) \longrightarrow \psi_{\vec{k}+\vec{G}}(\vec{r})
$$
 also solution
with $E_{\vec{k}} = E_{\vec{k}+\vec{G}}$

Different wave functions can satisfy the Bloch theorem for the same *k*: eigenfunctions and eigenvalues labelled with *k* and the index n

$$
\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi_{\vec{k}}(\vec{r}) = \epsilon_{\vec{k}}\psi_{\vec{k}}(\vec{r}) \longrightarrow \psi_{n,\vec{k}}(\vec{r})
$$
\n
$$
\downarrow \qquad \qquad \epsilon_{n,\vec{k}}
$$
\nenergy bands

Silicon

Image by MIT OpenCourseWare.

 $-E_{C}$

 E_V

Silicon

Image by MIT OpenCourseWare.

Energy bands

simple example: infinitesimal small potential solutions: plane waves with quadratic energies

Image by MIT OpenCourseWare.

folding of the band structure

Image by MIT OpenCourseWare.

real band structure

Image by MIT OpenCourseWare.

Review

- **•** Review
- Periodic potentials
- Bloch's theorem
- **Energy bands**

Literature

- Charles Kittel, Introduction to Solid State **Physics**
- Richard M. Martin, Electronic Structure
- wikipedia,"solid state physics","condensed matter physics", ...
- Simple band structure simulations: [http://](http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure) [phet.colorado.edu/simulations/sims.php?](http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure) [sim=Band_Structure](http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure)

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modeling and Simulation Spring 2011

For information about citing these materials or our Terms of use, visit:<http://ocw.mit.edu/terms>.