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4. From Atoms to Solids

Part II Outline

theory & practice example applications

1. It’s A Quantum World:The Theory of 
Quantum Mechanics 

2. Quantum Mechanics: Practice Makes 
Perfect 

3. From Many-Body to 
Single-Particle; Quantum Modeling of 
Molecules 

7.	 Nanotechnology 

8.	 Solar Photovoltaics: Converting 
Photons into Electrons 

9.	 Thermoelectrics: Converting 
Heat into Electricity 

10.	Solar Fuels: Pushing Electrons up 

5. Quantum Modeling of Solids: Basic 	

a Hill 

11.	Hydrogen Storage: the Strength 
of Weak Interactions 

Properties 

6. Advanced Prop. of Materials:What 12. Review 
else can we do? 

4. From Atoms to Solids



Motivation


? 



Lesson outline 

• Review 

• Periodic potentials 

• Bloch’s theorem 

• Energy bands 
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cannot be solved analytically problem!
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Review:The Multi-

Electron Hamiltonian
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Remember
the good old days of the 

1-electron H-atom?? 

They’re 
over! 
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kinetic energy of ions kinetic energy of electrons electron-electron interaction 

potential energy of ions electron-ion interaction 
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Multi-Atom-Multi-Electron Schrödinger Equation 
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Born-Oppenheimer Approximation


Electrons and nuclei

as “separate” systems
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Born-Oppenheimer Approximation


Electrons and nuclei

as “separate” systems
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... but this is an

approximation!


• electrical resistivity 

• superconductivity 

• ....




Review: Solutions


Moller-Plesset
perturbation theory

MP2

coupled cluster
theory CCSD(T)

quantum chemistry
density 

functional
theory

density 
functional

theory



Review:Why DFT?
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Image by MIT OpenCourseWare. 



wave function: 

complicated! 

electron 
densi easy!

ty: 

Review: DFT


ψ = ψ(�r1, �r2, . . . , �rN )


Walter Kohn

DFT, 1964


n = n(�r)


All aspects of the electronic structure of a system

of interacting electrons, in the ground state, in

an “external” potential, are determined by n(r)




Review: DFT


ion 

© source unknown. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, 
see http://ocw.mit.edu/fairuse. 

electron density The ground-state energy is a 
functional 

of the electron density. 

E[n] = T [n] + Vii + Vie[n] + Vee[n] 
kinetic ion-electron 

ion-ion electron-electron 

The functional is minimal at the exact

ground-state electron density n(r)


The functional exists... but it is unknown! 

http://ocw.mit.edu/fairuse


Review: DFT


E[n] = T [n] + Vii + Vie[n] + Vee[n] 
kinetic ion-ion ion-electron electron-electron 

2electron density n(�r) = 
� 

|φi(�r)|
i 

Eground state = min E[n]
φ 

Find the wave functions that minimize the

energy using a functional derivative.




Review: DFT


Finding the minimum leads to

Kohn-Sham equations


ion potential Hartree potential exchange-correlation 
potential 

equations for non-interacting electrons




Review: DFT


Only one problem: vxc not known!

approximations necessary


local density general gradient 
approximation approximation 

LDA GGA 
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Iterations to selfconsistency

Review: Self-consistent cycle

Kohn-Sham equations


-

n(�r) = 
� 
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|φi(�r)|2 

scf loop 



Review: DFT calculations

sc

f l
oo

p
 total energy = -84.80957141 Ry 
total energy = -84.80938034 Ry 
total energy = -84.81157880 Ry 
total energy = -84.81278531 Ry 
total energy = -84.81312816 Ry exiting loop; 
total energy = -84.81322862 Ry result precise enough 
total energy = -84.81323129 Ry 

At the end we get:	 1) electronic charge density 
2) total energy 



Review: DFT calculations

total energy = -84.80957141 Ry 
total energy = -84.80938034 Ry 
total energy = -84.81157880 Ry 
total energy = -84.81278531 Ry 
total energy = -84.81312816 Ry exiting loop; 
total energy = -84.81322862 Ry result precise enough 
total energy = -84.81323129 Ry sc

f l
oo

p


At the end we get: 1) electronic charge density 
2) total energy 

Structure Elastic Vibrational ... 
constants properties 



Review: Basis functions

Matrix eigenvalue equation: ψ = 

� 
ciφi 

i 

expansion in Hψ = Eψ 
orthonormalized basis 

functions 
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Review: Plane waves as

basis functions


plane wave expansion: ψ(�r) = 
� 

cj e Gj ·�ri �

j plane wave 

Cutoff for a maximum G is necessary and results in a finite basis set. 

Plane waves are periodic, 
thus the wave function is periodic! 

periodic crystals: atoms, molecules: 
Perfect!!! (next lecture) be careful!!!


Image by MIT OpenCourseWare. 



From atoms to solids


The ground state electron configuration of a system is constructed by putting the 
available electrons, two at a time (Pauli principle), into the states of lowest energy 

Solid Energy Atom Molecule 

Antibonding p 

p 
Antibonding s 

Bonding p s 

Bonding s 

Conduction band 
from antibonding 
p orbitals 

Conduction band 
from antibonding 
s orbitals 

Valence band from 
p bonding orbitals 

Valence band from 
s bonding orbitals 

k 

Image by MIT OpenCourseWare. 



En
er

gy

Energy bands


Metal Insulator Semiconductor 

occupied 

empty 

energy 
gap 

NB: boxes = allowed energy regions




Crystal symmetries


A crystal is built up

of a unit cell and


periodic replicas thereof.


lattice unit cell

Image of M. C. Escher's "Mobius with Birds" removed due to copyright restrictions. 



Crystal symmetries


1023 particles

per cm3


Since a crystal is periodic, maybe we can get away 

with modeling only the unit cell?




Crystal symmetries


Bravais
Lattice

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Trigonal

Cubic

Hexagonal

Parameters Simple
(P)

Volume
Centered (I)

Base
Centered (C)

Face
Centered (F)

a1 = a2 = a3
α12 = α23 = α31

a1 = a2 = a3
α23 = α31 = 900

α12 = 900 

a1 = a2 = a3
α12 = α23 = α31 = 900

a1 = a2 = a3
α12 = α23 = α31 = 900

a1 = a2 = a3
α12 = 1200

α23= α31= 900

a1 = a2 = a3
α12 = α23 = α31 = 900

a1 = a2 = a3
α12 = α23 = α31 < 1200

a3

a1

a2

4 Lattice Types
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Lattice and basis


simple

cubic


face

centered


cubic


basis 



The inverse lattice

The real space lattice is described by three basis vectors:


R� = n1�a1 + n2�a2 + n3�a3


The inverse lattice is described by three basis vectors:

G� = m1

�b1 + m2
�b2 + m3

�b3


i � � Gj ·ψ(�r) = 
� 

cj e i � �r 
e G·R = 1 

j 
automatically periodic in R! 



The inverse lattice

real space lattice (BCC) inverse lattice (FCC)


x 
y 

a 

z 

a1a2 

a3 

Image by MIT OpenCourseWare. 



The Brillouin zone


inverse lattice


The Brillouin zone is a special

unit cell of the inverse lattice.


Image by Gang65 on Wikimedia Commons. License: CC-BY. 
This content is excluded from our Creative Commons license. 
For more information, see http://ocw.mit.edu/fairuse. 

http://en.wikipedia.org/wiki/File:Brillouin_zone.svg
http://ocw.mit.edu/fairuse


The Brillouin zone


Brillouin zone of the FCC lattice




Periodic potentials

metallic sodium 

V (�r) 

© Dr. Helmut Foll. All rights reserved. This content is 
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Periodic potentials


It becomes much easier if you use the

periodicity of the potential!


V (�r) = V (�r + R�) 

attice vector 

Bloch’s theorem ψ�k r) = e i
�k·�r u�k(�r)(�

NEW quantum number k that 
lives in the inverse lattice! 

u�k(�r) = u�k(�r + R�) 



Periodic potentials


Bloch’s theorem


ψ�k(�r) = e i
�k·�r u�k(�r) 

u�k(�r) = u�k(�r + R�) 

λ = 2π/k

ψk (r) = eik.r

k = 0

u(r)

k = π/a

a

Image by MIT OpenCourseWare.



Periodic potentials 
Results of the Bloch theorem: 

ψ�k(�r + R�) = ψ�k(�r)e i
�k·�r 

2 2 charge density |ψ�k(�r + R�)| = |ψ�k(�r)| is lattice periodic 

ψ�k(�r) −→ ψ�k+ �G(�r) 

E�k = E�k+ �G 

if solution also solution 

with 



Periodic potentials

Schrödinger certain quantum

equation symmetry number


hydrogen spherical 
ψn,l,m(�r)

atom symmetry 
[H, L2] = HL

2 − L2
H = 0 

[H, Lz] = 0 

periodic translational 
ψ n, (�k �r)

solid symmetry 
[H, T ] = 0




The band structure


Different wave functions can satisfy the Bloch theorem for the same k: 
eigenfunctions and eigenvalues labelled with k and the index n 

energy bands




The band structure


energy levels

in the Brillouin zone


Figure by MIT OpenCourseWare.
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The band structure


energy levels 
in the Brillouin zone 

Figure by MIT OpenCourseWare.
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Energy bands

simple example: infinitesimal small potential


solutions: plane waves with quadratic energies


E�k = E�k+ �G 

g-1 g1 g2 g3

k

1. BZ

E

Image by MIT OpenCourseWare.



The band structure


folding of the band structure
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The band structure


real band structure
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Review 

• Review 

• Periodic potentials 

• Bloch’s theorem 

• Energy bands 



Literature


• Charles Kittel, Introduction to Solid State 
Physics 

• Richard M. Martin, Electronic Structure 

• wikipedia,“solid state physics”,“condensed 
matter physics”, ... 

• Simple band structure simulations: http:// 
phet.colorado.edu/simulations/sims.php? 
sim=Band_Structure 

http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
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