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| esson outline

® Review
® Periodic potentials
® Bloch’s theorem

® Energy bands



Review: Next? Helium

(S

'i2 H+vyp = Ev

o
Hy+ Hy+ W|g(71,7) = By (7, 7a)
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[Tl + Vi 4+ 15 4+ Vo + W}?ﬁ(ﬁ, T9) = EY (71, 72)
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cannot be solved analytically prob|em!




Review: [ he Multi-
Electron Hamiltonian

Remember ;2 o2
the good old days of the [ _ M gz ]w(f*) Evy(7)
| -electron H-atom?? 2m 4megr

X Z,Z, a L A
He==p o vk 3 EV =P e
— _1]1 s i1 o1 [R r‘ =1]1r—r‘
] T ]
kinetic energy of ions ] kinetic energy of electrons ]electron-electron interaction
potential energy of ions electron-ion interaction

Multi-Atom-Multi-Electron Schrodinger Equation
HR,,...Ryr,...r,) P(Ry,...Ry;1,..r, ) = EW(R,,...Ry:1y,....1,)




Born-Oppenheimer Approximation

Electrons and nuclei
as ‘‘separate” systems
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Born-Oppenheimer Approximation

Electrons and nuclei
as “‘separate’” systems

H = _h_2§V2 -
2m < ti

... but this is an
approximation!
* electrical resistivity

* superconductivity



Review: Solutions
.

density
functional
theory

"

quantum chemistry

Moller-Plesset

perturbation theory
MP2

coupled cluster
theory CCSD(T)



Review:Why DFT?
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Review: DFT

Walter Kohn
Q DFT, 1964

S
|
S
=
N
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All aspects of the electronic structure of a system
of interacting electrons, in the ground state, in
an “external” potential, are determined by n(r)



Review: DFT

electron density The ground-state energy is a
| functional

of the electron density.
E[n] — T[n] + Vii + Vie [’I’L] + Vee [’I’L]

kinetic ion-electron
ion-ion electron-electron

© source unknown. All rights reserved.

The functional is minimal at the exact
This content is excluded from our Creative
Commons license. For more information, grou N d _State electron den S Ity n(r)

see http://ocw.mit.edu/fairuse.

The functional exists... but it is unknown!


http://ocw.mit.edu/fairuse

Review: DFT

E[n] = T[n] + Vi; + Vie[n]| + Vee[n]

kinetic ion-ion ion-electron electron-electron

electron density n(7) = » |¢;(7)|?

Eground state — min E[n]

Find the wave functions that minimize the
energy using a functional derivative.



Review: DFT

Finding the minimum leads to
Kohn-Sham equations

{ uvel v;m] 6:(F) = exi(P),

2m
e* 77
N /. >
V| !+ Vaelns(7)]
ion potential Hartree potentlal exchange-correlation
potential

equations for non-interacting electrons



Review: DFT

s =V I/(n )"Il\([n(f)]

7 —
Only one problem. Vxc hot known!

approximations necessary

o

local density general gradient

approximation approximation
LDA GGA



Review: Self-consistent cycle

. Construct Vis given atomic numbers and
Kohn-Sham equations positions of ions
4 .2 ) v
> 2 4LV (f)] () = €04(7), Pick a cutoff for the ploneIwove basis set {¢(k+&)r}
m

Pick a trial density n(r)

ooy [ (7_.,) % 4 Violns(), b Sor
7 — 77| _/\ Calculate Vi (n) and Ve (n) /OO
n(i) = 16:(7)|° — »
9 i Solve H‘-"=[ m +Voon"'VH+VXC]q/ &Y
by diagonalization of Hy+6, k+6'
¥ 4

Calculate new n(r)

(IS SOLUTION SELF-CONSISTENT ? )

+ o NO Generate New |
Compute Total Energy Density n(r)

LT




Review: DFT calculations

total energy =
total energy =
total energy =
total energy =
total energy =
total energy =
total energy =

exiting loop;
result precise enough

v/
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At the end we get:
2) total energy



Review: DFT calculations

total energy =
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result precise enough

v/

|) electronic charge density

scf loop
| |
0000 0000000000
e R A S SN S N
0000 0000000000
RO 0
WWWNI—WOWO
NN =~Ju1boun
WINVNJOO~I00~
=00 00UV1000O =
N —LWOooOW N
ONO—ROPDNE
A 000
KL K

At the end we get:
2) total energy

4//\\>

Structure Elastic Vibrational
constants properties



Review: Basis functions

M M . p— C .
Matrix eigenvalue equation: Y Z i Pi
1
H+y = E expansion in
orthonormalized basis

functions

H) cip; =E)» c;¢;
/dfcb;'-‘HZciqbi = E/dff’qb;.‘ > i
ZHjiCi = ECj

Hc = Ec



Review: Plane waves as
basis functions

plane wave expansion: (7) = Z J[ }

plane wave

Cutoff for a maximum G is necessary and results in a f'nlte basis set.

Plane waves are periodic, . P
thus the wave function is periodic! | ¢ % O
T W

™ ™\ o8

periodic crystals: atoms, molecules:
Perfect!!! (next lecture) be careful!!!

Image by MIT OpenCourseWare.



From atoms to solids

»

(N2

Atom Molecule Solid Energy

Antibonding p Conduction band
from antibonding
p orbitals

p
Antibonding s Conduction band
from antibonding
s orbitals

Valence band from
p bonding orbitals

S Bonding p

Bonding s 2] Valence band from
T sbonding orbitals

Image by MIT OpenCourseWare.

The ground state electron configuration of a system is constructed by putting the
available electrons, two at a time (Pauli principle), into the states of lowest energy



Energy bands

empty

energy
gap

ol L
Il

|
[oceed |

Metal Insulator Semiconductor

NB: boxes = allowed energy regions



Crystal symmetries

A crystal is built up
of a unit cell and
periodic replicas thereof.

lattice unit cell

Image of M. C. Escher's "Mobius with Birds" removed due to copyright restrictions.



Crystal symmetries

1023 particles
per cm’

Since a crystal is periodic, maybe we can get away
with modeling only the unit cell?



Crystal symmetries
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Lattice and basis
o s © O

simple
cubic

e \o /@ @ oo
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The inverse lattice

The real space lattice is described by three basis vectors:

—

R = niai + n2d2 + nzas

The inverse lattice is described by three basis vectors:
G = m1b; + moby + mgbs

ag X a ay X as

by =27 b, = 27 _ bs = 27
! ap - (a2 X 83) 2 as - (a3 X al) 3 ag - (al X ag)

automatically periodic in R!



The inverse lattice

real space lattice (BCC) inverse lattice (FCC)

eeeeeeeeeeeeeeeeeeeeeeeee



The Brillouin zone

inverse lattice

P
N

The Brillouin zone is a special
unit cell of the inverse lattice.

@
Brillouin zone/
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Image by Gang65 on Wikimedia Commons. License: CC-BY.
This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/fairuse.



http://en.wikipedia.org/wiki/File:Brillouin_zone.svg
http://ocw.mit.edu/fairuse

The Brillouin zone

Brillouin zone of the FCC lattice



Periodic potentials

metallic sodium

V(7)

3l
band

—
R R
© Dr. Helmut Foll. All rights reserved. This content is Vz _I_ V (F) ¢ E?’b

excluded from our Creative Commons license. 2

For more information, see http://ocw.mit.edu/fairuse.
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Periodic potentials

It becomes much easier if you use the
periodicity of the potential!

F—V attice vector

V(¥) = V(¥ + R)
NEW quantum number k that
{/> lives in the inverse lattice!
Bloch’s theorem  z(7) = e uz(7)

ug(7) = ug(¥+ R)



Periodic potentials

Bloch’s theorem

P (7) = e* Tz (7)

ug(7) = ug(7¥ + R)

Image by MIT OpenCourseWare.




Periodic potentials

Results of the Bloch theorem:

(74 R) = ¢p(7)et™T

— ~> — h densi
Y+ B)° = [95(F)° e periodic

(7 N

if solution ,(p’;;(,f’) — ¢E+é(7?) also solution

with EE — El_é—l—ér”




Periodic potentials

Schrddinger certain quantum
equation symmetry number

hydrogen spherical L
‘ ‘ n T
atom sY mme’crg ¥ @( )
[H,L?*| = HL? — L*H =0
[H,L.,] =0

Period LC translational
solid . symmetry

[H,T] =0

s AR




The band structure

Different wave functions can satisfy the Bloch theorem for the same k:
eigenfunctions and eigenvalues labelled with k and the index n

- V@A) = e — ¥, ()

2m
€n.k

/

energy bands



The band structure

Silicon

energy levels
in the Brillouin zone




The band structure

Silicon

1
energy levels .~

in the Brillouin zone




Energy bands

simple example: infinitesimal small potential
solutions: plane waves with quadratic energies

E FE-=F

Image by MIT OpenCourseWare.



The band structure

folding of the band structure

eeeeeeeeeeeeeeeeeeeeeeeee




The band structure

real band structure
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Review

® Review
® Periodic potentials
® Bloch’s theorem

® Energy bands



Literature

® Charles Kittel, Introduction to Solid State
Physics

® Richard M. Martin, Electronic Structure

’” ¢¢

® wikipedia,“solid state physics”, “condensed
matter physics’, ...

® Simple band structure simulations: http://
phet.colorado.edu/simulations/sims.php?
sim=Band_Structure



http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
http://phet.colorado.edu/simulations/sims.php?sim=Band_Structure
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