1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011

Part II – Quantum Mechanical Methods: Lecture 5

Quantum Modeling of Solids: Basic Properties

Jeffrey C. Grossman

Department of Materials Science and Engineering Massachusetts Institute of Technology

Part II Outline

theory & practice

- I. It's A Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
- 3. From Many-Body to Single-Particle; Quantum Modeling of Molecules
- 4. From Atoms to Solids
- Quantum Modeling of Solids: Basic Properties
- **6.** Advanced Prop. of Materials: What else can we do?

example applications

- 7. Nanotechnology
- 8. Solar Photovoltaics: Converting Photons into Electrons
- 9. Thermoelectrics: Converting Heat into Electricity
- 10. Solar Fuels: Pushing Electrons up a Hill
- I . Hydrogen Storage: the Strength of Weak Interactions
- 12. Review

Motivation

Lesson outline

- Review
- structural properties
- Calc. the band structure
- Calc. the DOS
- Metal/insulator
- Magnetization

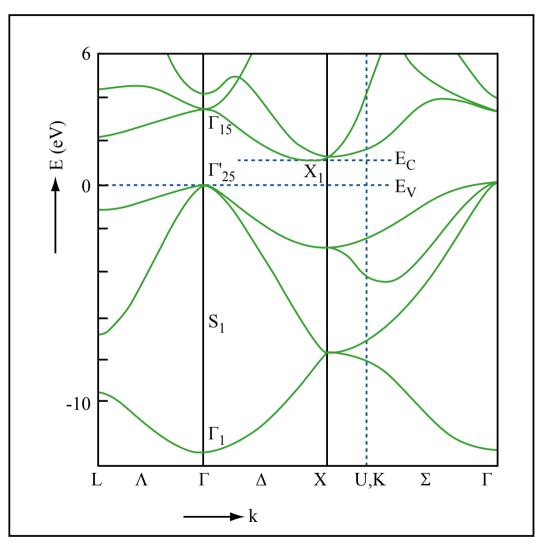
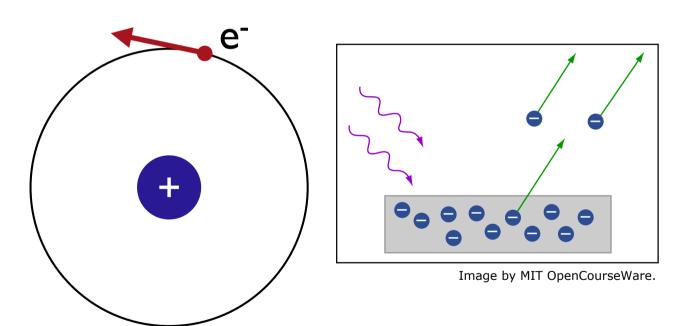


Image by MIT OpenCourseWare.

Let's take a walk through memory lane for a moment...

In the Beginning....

There were some strange observations by some very smart people.



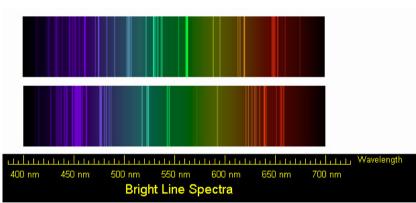


Image courtesy NASA.

In the Beginning....

The weirdness just kept going.

Image removed due to copyright restrictions. See the image here: http://icanhascheezburger.com/2007/06/02/im-in-ur-quantum-box/.

It Became Clear...

...that matter behaved like waves (and vice versa).

And that we had to lose our "classical" concepts of absolute position and momentum.

And instead consider a particle as a wave, whose square is the probability of finding it.

$$\Psi(\mathbf{r},t) = A \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

But how would we describe the behavior of this wave?

Then, F=ma for Quantum Mechanics

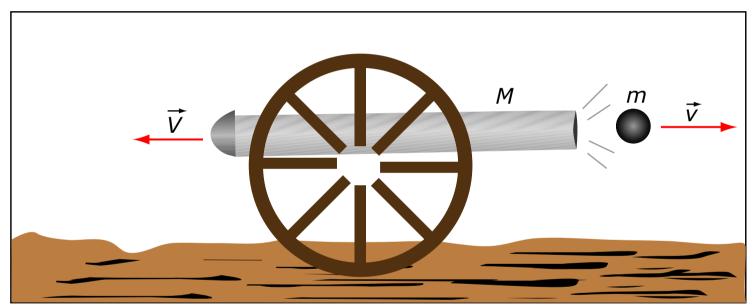
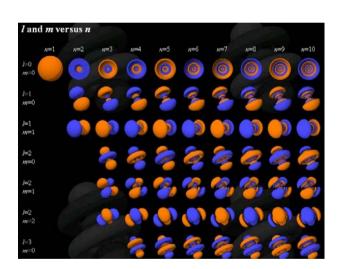


Image by MIT OpenCourseWare.

$$\Big[-rac{\hbar^2}{2m}
abla^2 + V(ec{r},t)\Big]\psi(ec{r},t) = i\hbarrac{\partial}{\partial t}\psi(ec{r},t)$$

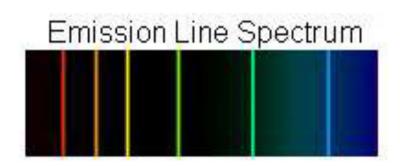
It Was Wonderful

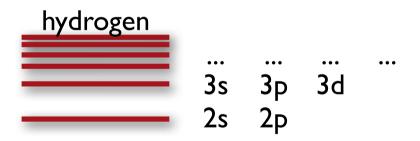
It explained many things.



Courtesy of David Manthey. Used with permission. Source: http://www.orbitals.com/orb/orbtable.htm.

It gave us atomic orbitals.





It predicted the energy levels in hydrogen.

It Was Wonderful

It gave us the means to understand much of chemistry.

Group → ↓ Period 1	1 1 H	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 2 He
2	3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Actinides			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Nature Does > I electron!

It was impossible to solve for more than a single electron.

Enter (stage left) computational quantum mechanics!

But...

We Don't Have The Age of the Universe

Which is how long it would take currently to solve the Schrodinger equation exactly on a computer.

So...we looked at this guy's back.

Screenshot of article removed due to copyright restrictions; see the article online: http://blogs.discovermagazine.com/loom/2009/05/23/sigmas-from-shoulder-to-shoulder-science-tattoos/.

And started making some approximations.

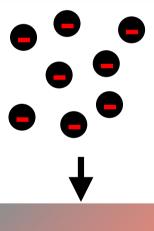
The Two Paths

Ψ is a wave function of all positions & time.

$$\Big[-rac{\hbar^2}{2m}
abla^2 + V(ec{r},t)\Big]\psi(ec{r},t) = i\hbarrac{\partial}{\partial t}\psi(ec{r},t)$$

Chemists (mostly)

Ψ = something simpler



Physicists (mostly)

H = something simpler

"mean field" methods

Working with the Density

$$E[n] = T[n] + V_{ii} + V_{ie}[n] + V_{ee}[n]$$

kinetic

ion-electron

ion-ion

electron-electron

n=#	Ψ(N ³ⁿ)	$\rho(N^3)$				
	8	8				
10	10 ⁹	8				
100	I 0 ⁹⁰	8				
1,000	I 0 ⁹⁰⁰	8				

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V_s(\vec{r}) \right] \phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r}),$$

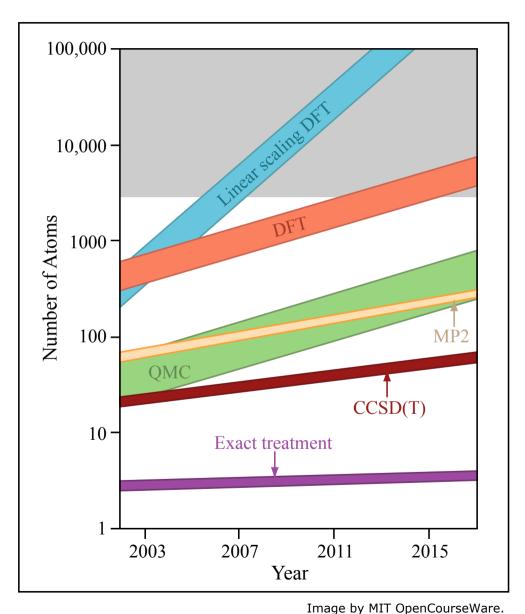
$$V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r' + V_{XC}[n_s(\vec{r})],$$

ion potential

Hartree potential

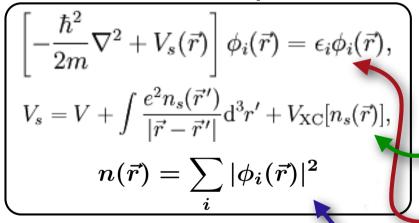
exchange-correlation potential

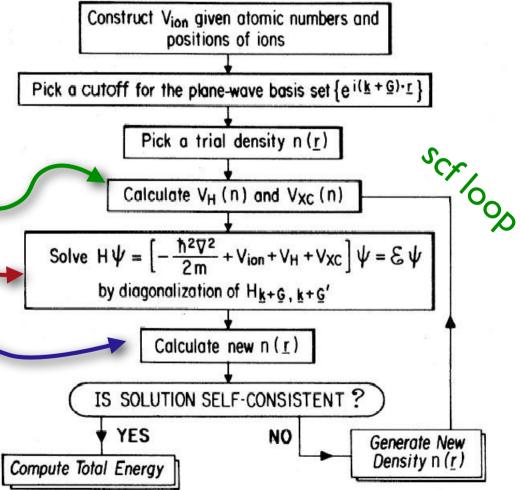
Review: Why DFT?



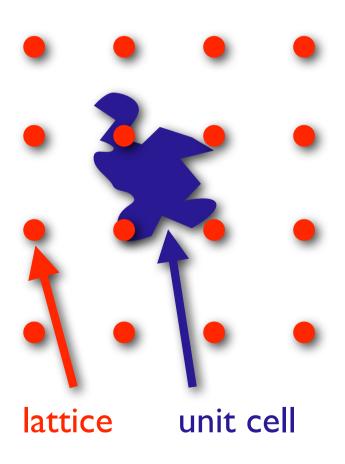
Review: Self-consistent cycle

Kohn-Sham equations





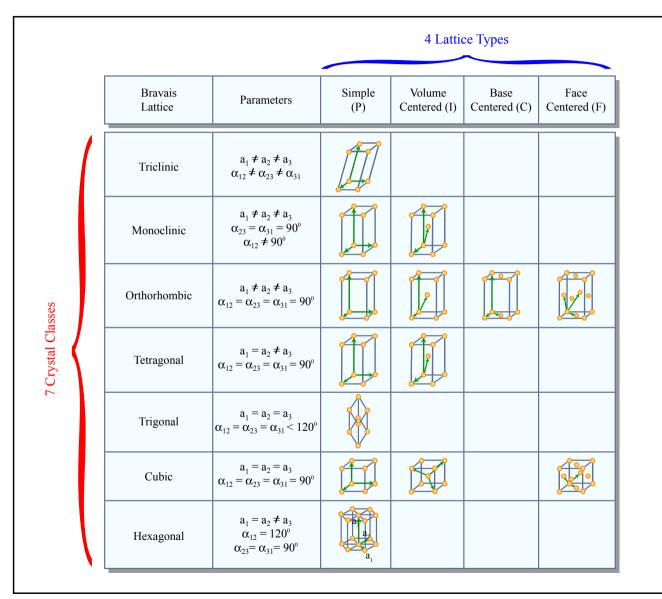
Review: Crystal symmetries



A crystal is built up of a unit cell and periodic replicas thereof.

Image of M. C. Escher's "Mobius with Birds" removed due to copyright restrictions.

Review: Crystal symmetries



Bravais

The most common Bravais lattices are the cubic ones (simple, body-centered, and face-centered) plus the hexagonal close-packed arrangement. ...why?

Image by MIT OpenCourseWare.

Reciprocal Lattice & Brillouin Zone

Associated with each real space lattice, there exists something we call a reciprocal lattice.

The reciprocal lattice is the set of wave-vectors which are commensurate with the real space lattice.

It is defined by a set of vectors a^* , b^* , and c^* such that a^* is perpendicular to b and c of the Bravais lattice, and the product $a^* \times a$ is 1.

Reciprocal Lattice & Brillouin Zone

It is defined by a set of vectors a*, b*, and c* such that a* is perpendicular to b and c of the Bravais lattice, and the

product a* x a is 1.

In particular:
$$\mathbf{a}^* = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$$

Brillouin

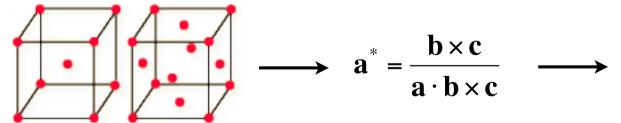
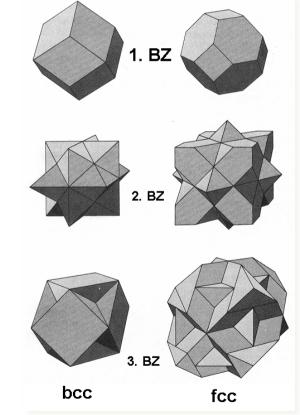


Image from Wikimedia Commons, http://commons.wikimedia.org.

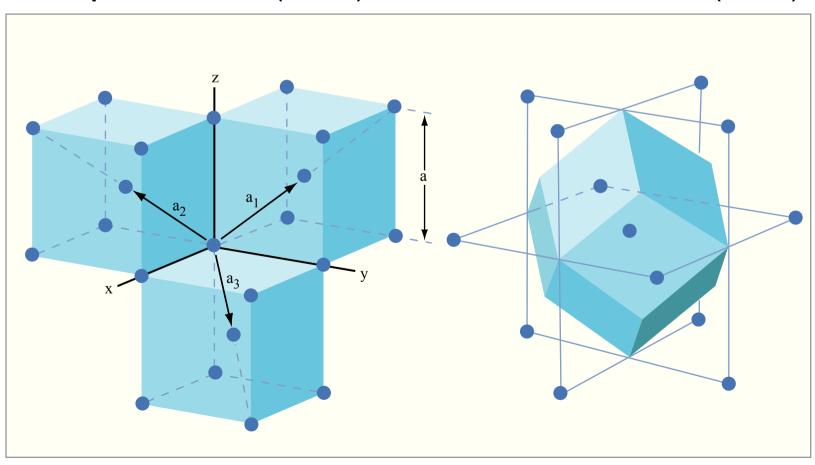


© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Review: The inverse lattice

real space lattice (BCC)

inverse lattice (FCC)



The Brillouin zone

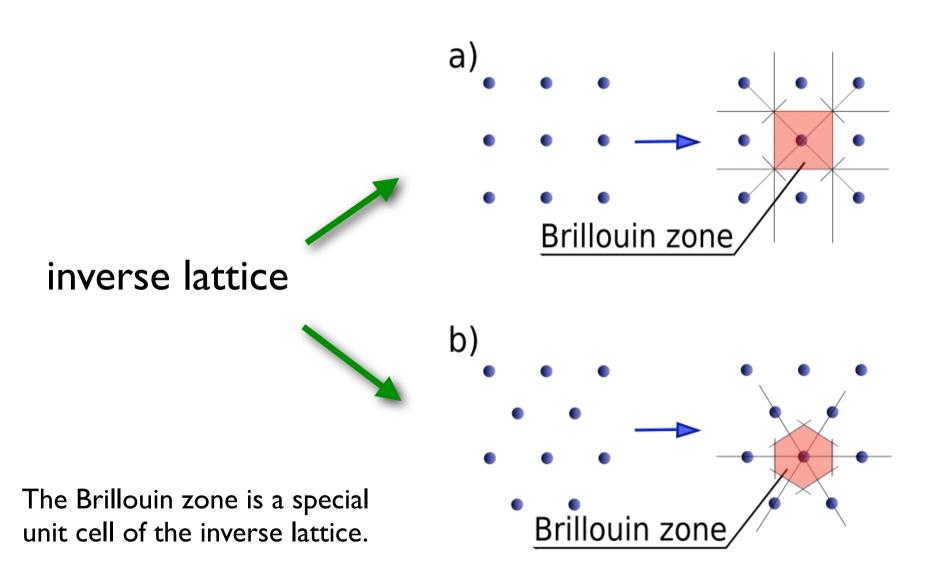
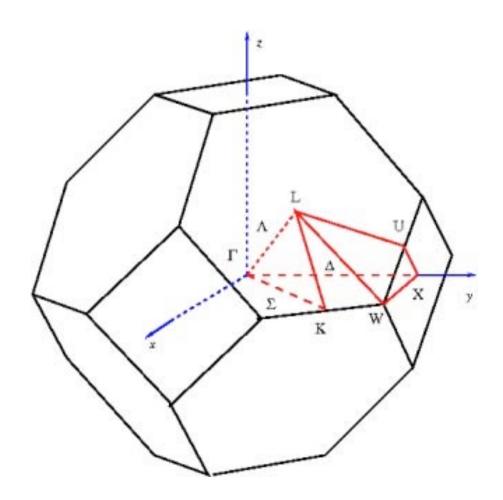


Image by Gang65 on Wikimedia Commons. License: CC-BY. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

The Brillouin zone



Brillouin zone of the FCC lattice

Bloch's Theorem (Take 2)

Reciprocal lattice vectors have special properties of particular value for calculations of solids.

Remember that we write the reciprocal lattice vector:

$$\mathbf{G} = 2\pi n\mathbf{a}^* + 2\pi m\mathbf{b}^* + 2\pi o\mathbf{c}^*$$

We added the 2 simply for convenience, and the n, m, o, are integers.

Now consider the behavior of the function exp(iGr).

Bloch's Theorem (Take 2)

$$\exp(i\mathbf{G}\cdot\mathbf{r}) = \exp\left[i(2\pi n\mathbf{a}^* + 2\pi m\mathbf{b}^* + 2\pi o\mathbf{c}^*)\cdot(\alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c})\right]$$
$$= \exp\left[i(2\pi n\alpha + 2\pi m\beta + 2\pi o\gamma)\right]$$
$$= \cos(2\pi n\alpha + 2\pi m\beta + 2\pi o\gamma) + i\sin(2\pi n\alpha + 2\pi m\beta + 2\pi o\gamma)$$

As \mathbf{r} is varied, lattice vector coefficients (α, β, γ) change between 0 and 1 and the function $\exp(i\mathbf{G}\cdot\mathbf{r})$ changes too.

However, since n, m, and o are integral, $exp(i\mathbf{G} \cdot \mathbf{r})$ will always vary with the periodicity of the real-space lattice.

$$e^{i ec{G} \cdot ec{R}} = 1$$
 $\psi(ec{r}) = \sum_{j} c_{j} e^{i ec{G}_{j} \cdot ec{r}}$ automatically periodic in R!

Bloch's Theorem (Take 2)

The periodicity of the lattice in a solid means that the values of a function (e.g., density) will be identical at equivalent points on the lattice.

The wavefunction, on the other hand, is periodic but only when multiplied by a phase factor.

This is known as Bloch's theorem.

NEW quantum number k that lives in the inverse lattice!

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$

$$u_{ec{k}}(ec{r}) = u_{ec{k}}(ec{r} + ec{R})$$

Periodic potentials

Results of the Bloch theorem:

$$\psi_{\vec{k}}(\vec{r} + \vec{R}) = \psi_{\vec{k}}(\vec{r})e^{i\vec{k}\cdot\vec{R}}$$

$$|\psi_{\vec{k}}(\vec{r} + \vec{R})|^2 = |\psi_{\vec{k}}(\vec{r})|^2$$

charge density is lattice periodic

if solution
$$\psi_{ec{k}}(ec{r}) \longrightarrow \psi_{ec{k}+ec{G}}(ec{r})$$
 also solution

with
$$E_{ec{k}} = E_{ec{k} + ec{G}}$$

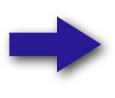
Periodic potentials

Schrödinger equation

certain symmetry

quantum number

hydrogen atom



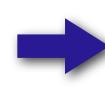
spherical symmetry

$$[H, L^2] = HL^2 - L^2H = 0$$

 $[H, L_z] = 0$

 $\psi_{n,l,m}(ec{r})$

períodic solid



translational symmetry [H,T]=0

 $\psi_{n,\vec{k}}(\vec{r})$

Different wave functions can satisfy the Bloch theorem for the same k: eigenfunctions and eigenvalues labelled with k and the index n

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right] \psi_{\vec{k}}(\vec{r}) = \epsilon_{\vec{k}} \psi_{\vec{k}}(\vec{r}) \qquad \longrightarrow \qquad \psi_{n,\vec{k}}(\vec{r})$$

$$\epsilon_{n,\vec{k}}$$
 energy bands

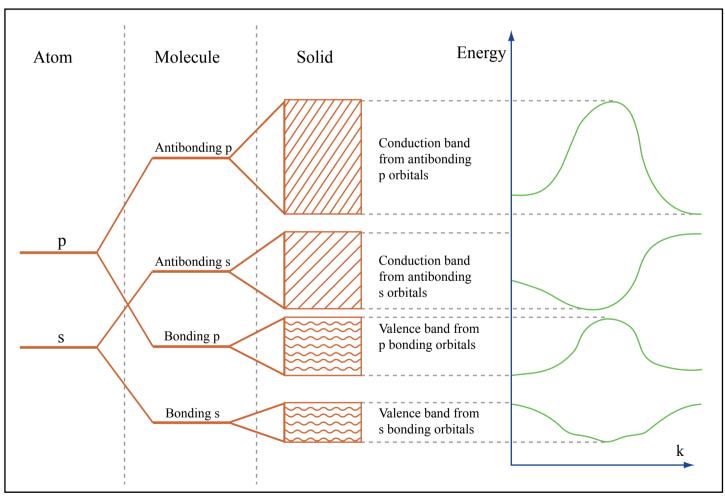
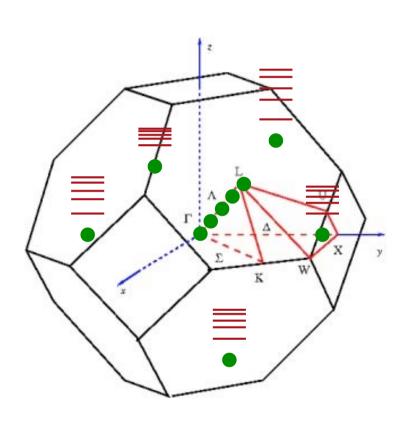
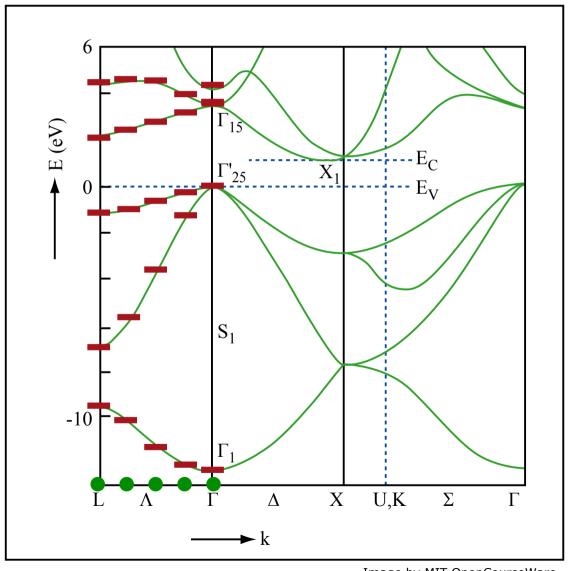


Image by MIT OpenCourseWare.

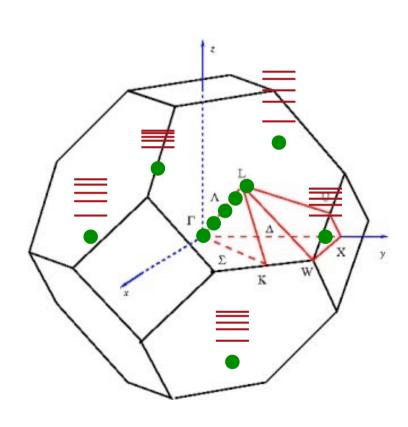
Silicon



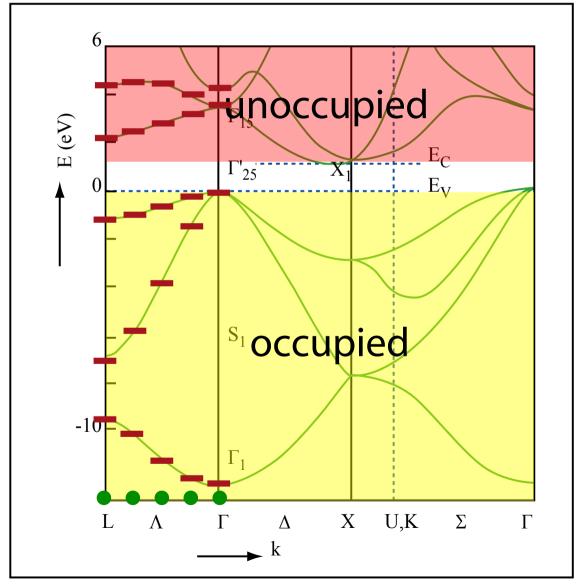
energy levels in the Brillouin zone



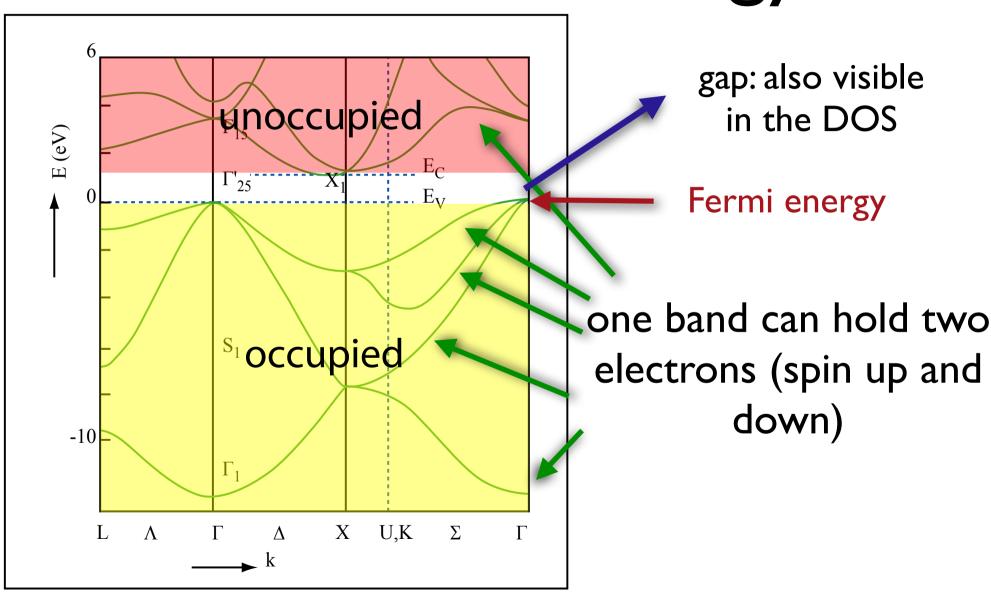
Silicon



energy levels in the Brillouin zone

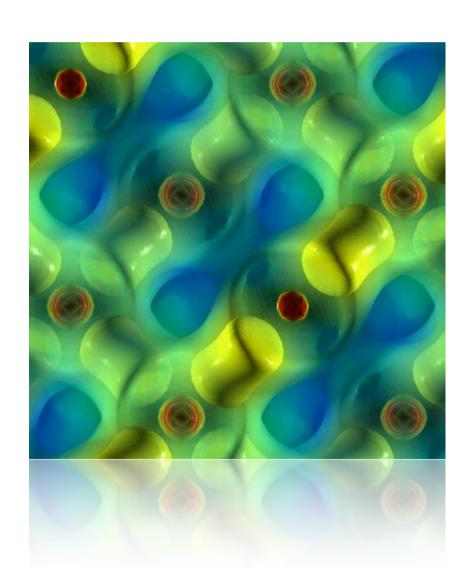


The Fermi energy



The electron density

electron density of silicon



Structural properties

Forces on the atoms can be calculated with the Hellmann–Feynman theorem:

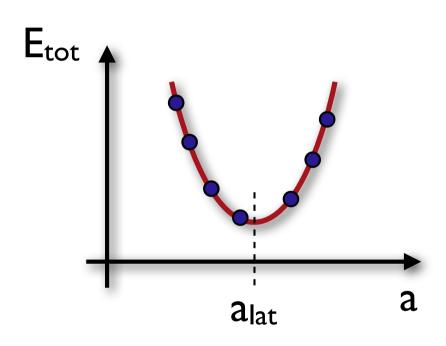
$$\frac{\partial E_n}{\partial \lambda} = \int \psi_n^* \frac{\partial \hat{H}}{\partial \lambda} \psi_n d\tau$$

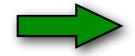
For λ =atomic position, we get the force on that atom.

Forces automatically in most codes.

Structural properties

finding the equilibrium lattice constant



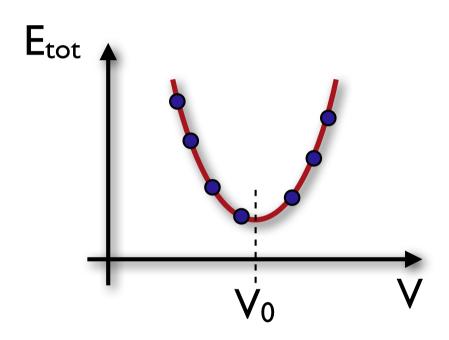


mass density

 m_u =1.66054 10⁻²⁷ Kg

Structural properties

finding the stress/pressure and the bulk modulus



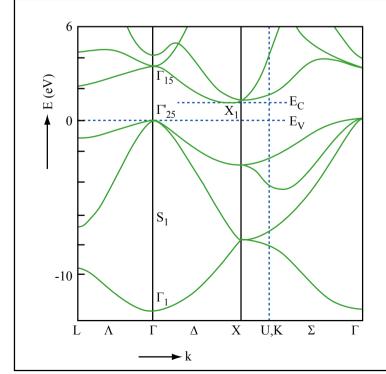
$$p = -rac{\partial E}{\partial V} \qquad \sigma_{
m bulk} = -Vrac{\partial p}{\partial V} = Vrac{\partial^2 E}{\partial V^2}.$$

Calculating the band structure

- 1. Find the converged ground state density and potential.
- 3-step procedure 2. For the converged potential calculate the energies at k-points along lines.
 - 3. Use some software to plot the band structure.

Kohn-Sham equations

$$egin{align} egin{align} \phi_i(ec{r}) &= \epsilon_i \phi_i(ec{r}), \ V_s &= V + \int rac{e^2 n_s(ec{r}')}{|ec{r} - ec{r}'|} \mathrm{d}^3 r' + V_{\mathrm{XC}}[n_s(ec{r})], \ egin{align} egin{align} n(ec{r}) &= \sum_i |\phi_i(ec{r})|^2 \ \end{pmatrix} \end{aligned}$$



Calculating the DOS

3-step procedure

- 1. Find the converged ground state density and potential.
- 2. For the converged potential calculate energies at a VERY dense k-mesh.
- 3. Use some software to plot the DOS.

Kohn-Sham equations
$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_s(\vec{r}) \end{bmatrix} \phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r}),$$

$$V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}^3 r' + V_{\mathrm{XC}}[n_s(\vec{r})],$$

$$n(\vec{r}) = \sum_i |\phi_i(\vec{r})|^2$$

Image removed due to copyright restrictions. Please see Fig. 3 in Yu, R., and X. F. Zhang. "Platinum Nitride with Fluorite Structure." Applied Physics Letters 86 (2005): 121913.

Metal/insulator

silicon

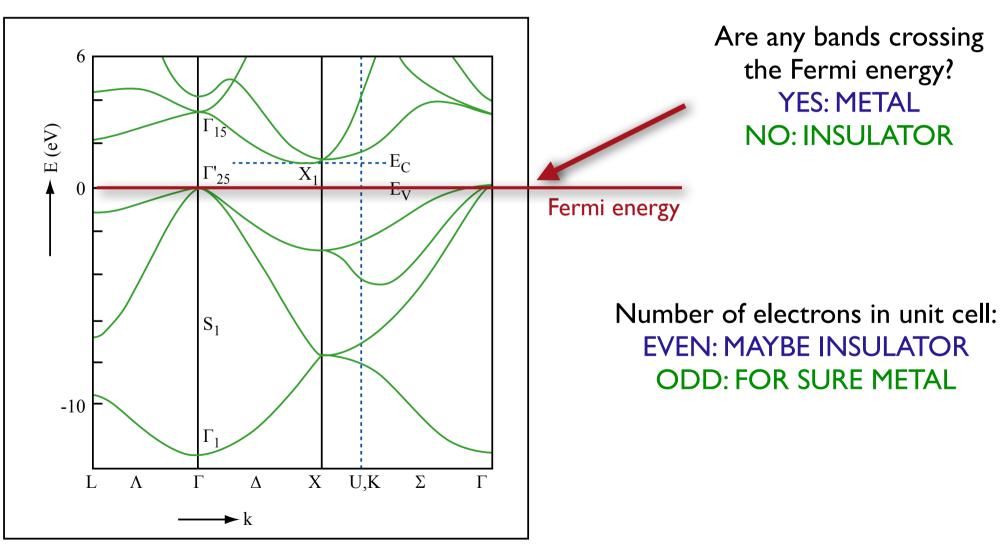
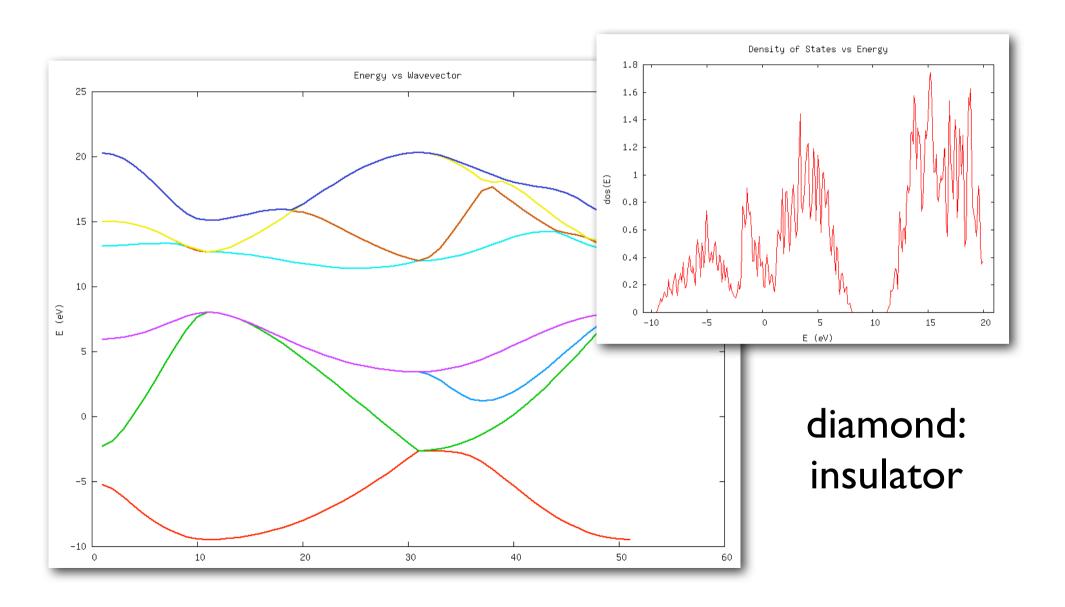
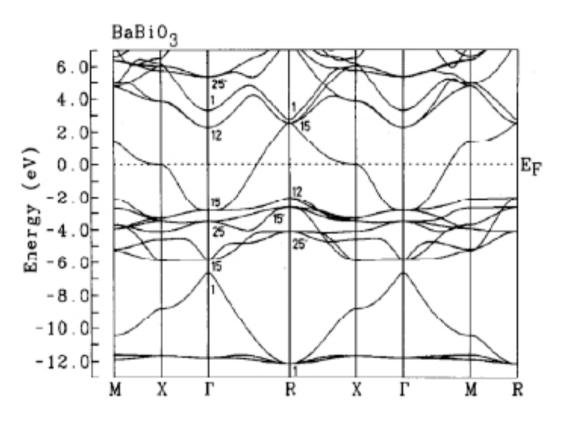


Image by MIT OpenCourseWare.

Metal/insulator



Metal/insulator



BaBiO₃: metal

Fig. 3. Self-consistent APW energy band structure for BaBiO₃.

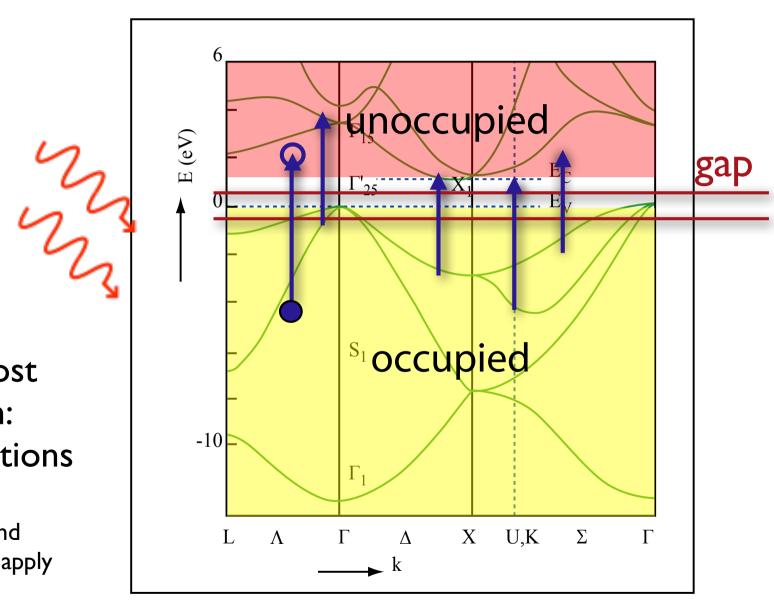
Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Simple optical properties

E=hv ¿

photon has almost no momentum: only vertical transitions possible

energy conversation and momentum conversation apply



Silicon Solar Cells Have to Be Thick (\$\$\$)

It's all in the band-structure!

Please see graph at http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/illustr/si_banddiagram.gif.

Literature

- Charles Kittel, Introduction to Solid State Physics
- Ashcroft and Mermin, Solid State Physics
- wikipedia, "solid state physics", "condensed matter physics", ...

MIT OpenCourseWare http://ocw.mit.edu

 $3.021 J\,/\,1.021 J\,/\,10.333 J\,/\,18.361 J\,/\,22.00 J$ Introduction to Modeling and Simulation Spring 2011

For information about citing these materials or our Terms of use, visit: http://ocw.mit.edu/terms.