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SUMMARY

Clonal evolution is a key feature of cancer progres-
sion and relapse. We studied intratumoral heteroge-
neity in 149 chronic lymphocytic leukemia (CLL)
cases by integrating whole-exome sequence and
copy number to measure the fraction of cancer cells
harboring each somatic mutation. We identified
driver mutations as predominantly clonal (e.g.,
MYD88, trisomy 12, and del(13q)) or subclonal (e.g.,
SF3B1 and TP53), corresponding to earlier and later
events in CLL evolution. We sampled leukemia cells
from 18 patients at two time points. Ten of twelve
CLL cases treated with chemotherapy (but only one
of six without treatment) underwent clonal evolution,
predominantly involving subclones with driver muta-
tions (e.g., SF3B1 and TP53) that expanded over
time. Furthermore, presence of a subclonal driver
mutation was an independent risk factor for rapid
disease progression. Our study thus uncovers
patterns of clonal evolution in CLL, providing insights
into its stepwise transformation, and links the pres-
ence of subclones with adverse clinical outcomes.

INTRODUCTION

Recent genomic studies have revealed that individual cancer

samples are genetically heterogeneous and contain subclonal
714 Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc.
populations (Carter et al., 2012; Ding et al., 2012; Gerlinger

et al., 2012; Mullighan et al., 2008; Navin et al., 2011; Nik-Zainal

et al., 2012; Shah et al., 2012). Indeed, tumors likely evolve

through competition and interactions between genetically

diverse clones (Snuderl et al., 2011). While the existence of intra-

tumoral subclones has long been appreciated, little is known

about the frequency, identity, and evolution of subclonal genetic

alterations or their impact on clinical course.

To examine the evolution and impact of subclonal mutations,

we focused on chronic lymphocytic leukemia (CLL), a slow-

growing B cell malignancy with disease onset in older individ-

uals. CLL shows a highly variable disease course, partly

explained by the diverse combinations of somatic mutations

uncovered by sequencing studies (Quesada et al., 2012; Wang

et al., 2011). We hypothesized that the presence, diversity, and

evolutionary dynamics of subclonal mutations in CLL also

contribute to the variations observed in disease tempo and

response to therapy (Schuh et al., 2012; Stilgenbauer et al.,

2007). Importantly, the slow growth of CLL-B cells (relative to

other malignancies) provides an extended window for observing

the process of clonal evolution, as it may takemonths to years for

a new clone to fully replace previous clones (Schuh et al., 2012;

Wu, 2012).

Subclonal mutations in CLL have been detected by fluores-

cence in situ hybridization (FISH) (Shanafelt et al., 2008) and

microarrays (Grubor et al., 2009), showing that they harbor driver

lesions and evolve over time. Because these methods can only

be used to detect a limited number of genetic alterations, more

recent studies have used whole-genome sequencing to quantify

thousands of somaticmutations per sample and track subclones
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by clustering alterations of similar allelic frequency (Ding et al.,

2012; Egan et al., 2012; Nik-Zainal et al., 2012; Schuh et al.,

2012; Shah et al., 2012; Walter et al., 2012). However, because

genome-wide sequencing is currently not feasibly applied to

large sample collections, the patterns of clonal evolution and

their effects on disease course have not been fully elucidated.

Whole-exome sequencing (WES) (Gnirke et al., 2009) of

tumors is an affordable, rapid, and comprehensive technology

for detecting somatic coding mutations. We sought to refine

and apply a method for analysis of subclonal mutations using

WES because: (1) the high sequencing depth obtained by WES

(typically �1003–1503) enables reliable detection of subclonal

mutations required for defining subclones and tracking them

over time (Cibulskis et al., 2013); (2) coding mutations likely

encompass many of the important driver events that provide

fitness advantage for specific clones, and finally; and (3) the rela-

tively low cost of WES permits studies of large cohorts, which is

key for understanding the relative fitness and temporal order of

drivermutations and for assessing the impact of clonal heteroge-

neity on disease outcome.

To this end, we performed large-scale WES of 160 CLL tumor/

normal pairs that represented the broad clinical spectrum of

CLL. In particular, we examined the roles of CLL subclones

and the mutations that they harbor by integrative analysis of

coding mutations and somatic copy number alterations, which

enabled estimation of the cancer cell fraction. This was per-

formed in samples from 149 CLL patients, including 18 patients

sampled at two time points, for which both exome sequencing

data and copy number data were available. This analysis allowed

us to study mutation frequencies, observe clonal evolution, and

link subclonal mutations to clinical outcome.

RESULTS

Large-Scale WES Analysis of CLL Expands the
Compendium of CLL Drivers and Pathways
We performed WES of 160 matched CLL and germline DNA

samples (including 82 of the 91 samples previously reported

[Wang et al., 2011]). This cohort included patients with both

low- and high-risk features based on established prognostic

risk factors (Table S1 available online). We applied MuTect (a

highly sensitive and specific mutation-calling algorithm; Cibul-

skis et al., 2013) to the WES data to detect somatic single nucle-

otide variations (sSNVs) present in as few as 10%of cancer cells.

Average sequencing depth of WES across samples was �1123

(see Extended Experimental Procedures). In total, we detected

2,444 nonsynonymous and 837 synonymous mutations in

protein-coding sequences, corresponding to a mean (±SD)

somatic mutation rate of 0.6 ± 0.28 per megabase (range,

0.03–2.3) and an average of 15.3 nonsynonymous mutations

per patient (range, 2–53) (Table S2A).

Expansion of our sample cohort provided us with the sensi-

tivity to detect 20 putative CLL cancer genes (q < 0.1), which

was accomplished through recurrence analysis to detect genes

enriched with mutations beyond the background mutation rate

(Figures 1A, top, and Figure S1) or genes with mutations that

overlap with previously reported mutated sites (from COSMIC

[Forbes et al., 2010]; Figure 1A, middle; Experimental Proce-
dures). These included eight of the nine genes identified in our

initial report (TP53, ATM, MYD88, SF3B1, NOTCH1, DDX3X,

ZMYM3, and FBXW7) (Wang et al., 2011). The missing gene,

MAPK1, did not harbor additional mutations in the increased

sample set, and therefore its overall mutation frequency now

fell below our significance threshold. The 12 genesweremutated

at lower frequencies and, hence, were not detected in the previ-

ously reported subset of samples. Three of the twelve additional

candidate driver genes were identified in recent CLL sequencing

efforts (XPO1, CHD2, and POT1) (Fabbri et al., 2011; Puente

et al., 2011). The nine remaining genes represent candidate

CLL drivers, with mutations occurring at highly conserved sites

(Figure S2). These included six genes with known roles in cancer

biology (NRAS, KRAS [Bos, 1989], BCOR [Grossmann et al.,

2011], EGR2 [Unoki and Nakamura, 2003], MED12 [Mäkinen

et al., 2011], and RIPK1 [Hosgood et al., 2009]), two genes that

affect immune pathways (SAMHD1 [Rice et al., 2009] and ITPKB

[Maréchal et al., 2011]), and a histone gene (HIST1H1E [Alami

et al., 2003]).

Together, the 20 candidate CLL driver genes appeared to fall

into seven core signaling pathways, in which the genes play

well-established roles. These include all five pathways that we

previously reported to play a role in CLL (DNA repair and cell-

cycle control, Notch signaling, inflammatory pathways, Wnt

signaling, RNA splicing, and processing). Two pathways were

implicated by our analysis: B cell receptor signaling and chro-

matin modification (Figure 1B). We also noted that the CLL

samples contained additional mutations in the genes that form

these pathways, some of which are known drivers in other

malignancies.

Because recurrent chromosomal abnormalities have defined

roles in CLL biology (Döhner et al., 2000; Klein et al., 2010), we

further searched for loci that were significantly amplified or

deleted by analyzing somatic copy-number alterations (sCNAs).

We applied GISTIC2.0 (Mermel et al., 2011) to 111 matched

tumor and normal samples, which were analyzed by SNP6.0

arrays (Brown et al., 2012). Through this analysis, we identified

deletions in chromosomes 8p, 13q, 11q, and 17p and trisomy

of chromosome 12 as significantly recurrent events (Figure 1A,

bottom). Thus, based on WES and copy number analysis, we

altogether identified 20 mutated genes and five cytogenetic

alterations as putative CLL driver events.

Inference of Genetic Evolution with Whole-Exome
Sequencing Data
In order to study clonal evolution in CLL, we performed integra-

tive analysis of sCNAs and sSNVs using a recently reported algo-

rithm ABSOLUTE (Carter et al., 2012), which jointly estimated the

purity of the sample (fraction of cancer nuclei) and the average

ploidy of the cancer cells. All samples were estimated to have

near-diploid DNA content; these estimates were confirmed by

fluorescence-activated cell sorting (FACS) analysis of seven

CLL samples (Figure S3A). Our data were sufficient for resolution

of these quantities in 149 of the 160 samples (Table S2B), allow-

ing for discrimination of subclonal from clonal alterations,

including sCNAs, sSNVs, and selected indels (see Extended

Experimental Procedures). Our analysis approach is outlined in

Figure 2A. For each sSNV, we estimated its allelic fraction by
Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc. 715



Figure 1. Significantly Mutated Genes and Associated Gene Pathways in 160 CLL Samples

(A) Mutation significance analysis using the MutSig2.0 and GISTIC2.0 algorithms identifies recurrently mutated genes and recurrent sCNAs in CLL, respectively.

Bold: significantly mutated genes identified in a previous CLL sequencing effort (Wang et al., 2011); *, novel CLL genes identified in the present analysis (Figures

S1 and S2); n, number of samples out of 160CLLs harboring amutation in a specific gene; n_cosmic, number of samples harboring amutation in a specific gene at

a site previously observed in the COSMIC database.

(B) The significantly mutated genes fall into seven core signaling pathways, in which the genes play well-established roles. Red: genes with significant mutation

frequencies; pink: additional pathway genes with mutations.

See also Figures S1, S2, and Table S2A.
calculating the ratio of alternate to total number of reads

covering the mutation site in the WES data. These estimates

were consistent with independent deeper sequencing and RNA

sequencing (Figures S3B and S3C; Tables S3 and S4). Next,

we used ABSOLUTE to estimate the cancer cell fraction (CCF)

harboring the mutation by correcting for sample purity and local

copy-number at the sSNV sites (Experimental Procedures;

Table S2C; Figure 2B). We classified a mutation as clonal if the

CCF harboring it was >0.95 with probability >0.5 and subclonal

otherwise (Figure 2A, inset). The results remained unchanged

when more stringent cutoffs were used (Extended Experimental

Procedures). For sSNVs designated as subclonal, median CCF

was 0.49 with a range of 0.11–0.89.

Overall, we identified 1,543 clonal mutations (54% of all

detectedmutations, average of 10.3 ± 5.5mutations per sample;

Table S1). These mutations were likely acquired either before or

during themost recent complete selective sweep. This set there-
716 Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc.
fore includes both neutral somatic mutations that preceded

transformation and the driver and passenger event(s) present

in each complete clonal sweep. A total of 1,266 subclonal sSNVs

were detected in 146 of 149 samples called by ABSOLUTE

(46%; average of 8.5 ± 5.8 subclonal mutations per sample).

These subclonal sSNVs exist in only a fraction of leukemic cells

and, hence, occurred after the emergence of the ‘‘most recent

common ancestor’’ and, by definition, also after disease initia-

tion. The mutational spectra were similar in clonal and subclonal

sSNVs (Figure S3D), consistent with a common set of mutational

processes, giving rise to both groups.

Age and Mutated IGHV Status Are Associated with
an Increased Number of Clonal Somatic Mutations
The identification of subclones enabled us to analyze several

aspects of leukemia progression. We first addressed how

clonal and subclonal mutations relate to the salient clinical



Figure 2. Subclonal and Clonal sSNVs Are Detected in CLL in Varying Quantities Based on Age at Diagnosis, IGHV Mutation Status, and

Treatment Status

(A) The analysis workflow: ‘‘CLL driver events’’ (red box) were identified by mutation significance analysis usingWES and SNP array data collected frommatched

germline and tumor DNA. For the 149 samples that hadmatchedWES and copy number data, ABSOLUTE was applied to estimate the cancer cell fraction (CCF).

Mutations were classified as subclonal (blue) or clonal (orange), based on the probability that their CCF is greater than 0.95 (clonal). Inset: histogram of the

probability of being clonal for all sSNVs across 149 CLL samples.

(B) A representative example of the transformations generated by ABSOLUTE (for sample CLL088). First, probability density distributions of allelic fractions for

each mutation are plotted (representative peaks for sSNVs a, b, and c shown). Second, these data are converted to CCF (right), incorporating purity and local

copy number information. The probability of the event being clonal (i.e., affecting >0.95 of cells) is represented by a color spectrum: orange is high probability and

blue is low probability. *, allelic fraction of a clonal mutation at multiplicity of one (for example, a heterozygous mutation in a diploid region).

(C) Comparison of the number of subclonal and clonal sSNVs/sample based on patient age at diagnosis and IGHV mutation status (error bars represent

standard error of mean).

(D) Comparison of the number of subclonal and clonal sSNVs/sample based on treatment status at time of sample collection (top, error bars represent

standard error of mean). Cumulative distribution of the sSNVs by CCF is shown for samples from treated and untreated patients for all (middle) and only driver

sSNVs (bottom).

See also Figure S3 and Tables S1, S2B, and S2C.
characteristics of CLL. CLL is generally a disease of the elderly

with established prognostic factors, such as the IGHV mutation

(Döhner, 2005) and ZAP70 expression. Patients with a high

number of IGHV mutations (mutated IGHV) tend to have better

prognosis than those with a low number (unmutated IGHV)

(Döhner, 2005). This marker distinguishes between leukemias

originating from B cells that have or have not yet, respectively,

undergone the process of somatic hypermutation that occurs

as part of normal B cell development. We examined the associ-

ation of these factors, as well as patient age at diagnosis, with

the prevalence of clonal and subclonal mutations. Age and

mutated IGHV status (but not ZAP70 expression) were found

to associate with greater numbers of clonal (but not subclonal)

mutations (age, p < 0.001; mutated versus unmutated IGHV,

p = 0.05; Figure 2C; Table S1). Because CLL samples with

mutated IGHV derive from B cells that have experienced a burst

of mutagenesis as part of normal B cell somatic hypermutation,

the increased number of clonal somatic mutations is likely

related to aberrant mutagenesis that preceded clonal transfor-
mation (Deutsch et al., 2007; McCarthy et al., 2003). Further-

more, the higher number of clonal sSNVs in older individuals is

consistent with the expectation that more neutral somatic muta-

tions accumulate over the patient’s lifetime prior to the onset of

cancer later in life (Stephens et al., 2012; Welch et al., 2012).

Subclonal Mutations Are Increased with Treatment
The effect of treatment on subclonal heterogeneity in CLL is

unknown. In samples from 29 patients treated with chemo-

therapy prior to sample collection, we observed a significantly

higher number of subclonal (but not clonal) sSNVs per sample

than in the 120 patients who were chemotherapy-naive at the

time of sample (Figure 2D, top and middle). Using an analysis

of covariance model, we observed that receipt of treatment prior

to sample among the 149 patients was statistically significant

(p = 0.048) but time from diagnosis to sample was not (p =

0.31). Because patients that do not require treatment in the

long-termmay have a distinct subtype of CLL, we also restricted

the comparison of the 29 pretreated CLLs to only the 42 that
Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc. 717



Figure 3. Identification of Earlier and Later CLL Driver Mutations

(A) Distribution of estimated CCF with median and interquartile range shown in black (bottom) and percent of the mutations classified as clonal (orange) or

subclonal (blue) for CLL drivers (top). *, drivers with q-values <0.1 for a higher proportion of clonal mutations compared with the entire CLL drivers set. Het,

heterozygous deletion; Hom, homozygous deletion. The analysis includes all recurrently mutated genes (Figure 1A) with three or more events in the 149 samples,

excluding sSNVs affecting the X chromosome currently not analyzable by ABSOLUTE and also excluding indels in genes other than NOTCH1.

(B) All CLL samples withMYD88 (left) or trisomy 12 (right) and at least one additional defined CLL driver (i.e., 9 of 12 samples with mutatedMYD88 and 14 of 16

tumors with trisomy 12) are depicted. Each dot color denotes separate individual CLL samples.

See also Figure S4 and Table S2C.
were eventually treated after sample collection and again

confirmed this finding (p = 0.02). In these 42 patients, a higher

number of subclonal mutations was not correlated with a shorter

time to treatment (correlation coefficient = 0.03; p = 0.87). Thus,

therapy prior to sample was associated with a higher number of

subclonal mutations, and furthermore, the number of subclonal

sSNVs detected increased with the number of prior therapies

(p = 0.011, Table S1).

Cancer therapy has been theorized to be an evolutionary

bottleneck, in which a massive reduction in malignant cell

numbers results in reduced genetic variation in the cell popula-

tion (Gerlinger and Swanton, 2010). It is likely that the overall

diversity in CLL is diminished after therapeutic bottlenecks as

well. Because most of the genetic heterogeneity within a cancer

is present at very low frequencies (Gerstung et al., 2012)—below

the level of detection afforded by the�1123 sequence coverage

we generated—we were unable to directly assess reduction in

overall genetic variation.

However, in the range of larger subclones that were observ-

able by our methods (>10% of malignant cells), we witnessed

increased diversity after therapy (Figure 2D). Although the avail-

able data cannot definitively rule out extensive diversification

following therapy, this increase likely results, at least in part,

from outgrowth of pre-existing minor subclones (Schuh et al.,

2012; Wu, 2012). This may result from the removal of dominant

clones by cytotoxic treatment, eliminating competition for

growth and allowing the expansion of one or more fit subclones

to frequencies above our detection threshold. Further supporting

our interpretation that fitter clones grow more effectively and

become detectable after treatment, we observed an increased
718 Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc.
frequency of subclonal driver events (which are presumably

fitter) in treated relative to untreated patients (Figure 2D, bottom)

(note that driver events include CLL driver mutations [Figure 1A]

and sSNVs in highly conserved sites of genes in the Cancer Gene

Census [Futreal et al., 2004]).

Inferring the Order of Genetic Changes Underlying CLL
While general aspects of temporal evolution could not be

completely resolved in single time point WES samples, the order

of driver mutation acquisition could be partially inferred from the

aggregate frequencies at which they are found to be clonal or

subclonal. We considered the 149 samples as a series of ‘‘snap-

shots’’ taken along a temporal axis. Clonal status in all or most

mutations affecting a specific gene or chromosomal lesion

would suggest that this alteration was acquired at or prior to

the most recent selective sweep before sampling and hence

could be defined as a stereotypically early event. Conversely,

predominantly subclonal status in a specific genetic alteration

implies a likely later event that is tolerated and selected for

only in the presence of an additional mutation.

This strategy was used to infer temporal ordering of the recur-

rent sSNVs and sCNAs (Figures 3A andS4).We focused on alter-

ations found in at least three samples within the cohort of 149

CLL samples. We found that three driver mutations—MYD88

(n = 12), trisomy 12 (n = 24), and hemizygous del(13q) (n =

70)—were clonal in 80%–100% of samples harboring these

alterations, a significantly higher level than for other driver events

(q < 0.1, Fisher exact test with Benjamini-Hochberg FDR [Benja-

mini and Hochberg, 1995]), implying that they arise earlier in

typical CLL development. Mutations in HIST1H1E, although



clonal in five of five affected samples, did not reach statistical

significance. Other recurrent CLL drivers—for example, ATM,

TP53, and SF3B1 (9, 19, and 19 mutations in 6, 17, and 19

samples, respectively)—were more often subclonal, indicating

that they tend to arise later in leukemic development and

contribute to disease progression. We note that the above

approach assumed that different CLL samples evolve along a

common temporal progression axis. We therefore examined

specifically CLL samples that harbored one ‘‘early’’ driver muta-

tion and any additional driver alteration(s). As expected, the early

events had either similar or a higher CCF compared to ‘‘later’’

events (examples for trisomy 12 andMYD88 given in Figure 3B).

Direct Observation of Clonal Evolution by Longitudinal
Data Analysis of Chemotherapy-Treated CLL
To directly assess the evolution of somatic mutations in a subset

of patients, we compared CCF for each alteration across two

clinical time points in 18 of the 149 samples (median years

between time points was 3.5; range 3.1–4.5). Six patients

(‘‘untreated’’) did not receive treatment throughout the time of

study. The remaining 12 patients (‘‘treated’’) received intervening

chemotherapy (primarily fludarabine and/or rituxan-based)

(Table S3). The two patient groupswere not significantly different

in terms of elapsed time between first and second sample

(median 3.7 years for the six untreated patients compared to

3.5 years for the 12 treated patients, p = 0.62; exact Wilcoxon

rank-sum test), nor did it differ between time of diagnosis to first

sample (p = 0.29).

Analysis of the 18 sets of data revealed that 11% of mutations

increased (34 sSNVs, 15 sCNAs), 2% decreased (six sSNVs, two

sCNAs), and 87% did not change their CCF over time (q < 0.1 for

significant change in CCF, Table S5C). As suggested by our

single time point analysis, we observed a shift of subclonal driver

mutations (e.g., del(11q), SF3B1, and TP53) toward clonality

over time. Changes in the genetic composition of CLL cells

with clonal evolution were associated with network level

changes in gene expression related to emergence of specific

subclonal populations (e.g., changes in signatures associated

with SF3B1 or NRAS mutation [Figures S5D and S5E; Table

S6]). Finally, expanding sSNVs were enriched in genes included

in theCancer GeneCensus (Futreal et al., 2004) (p = 0.021) and in

CLL drivers (p = 0.028), consistent with the expected positive

selection for the subclones harboring them.

Clustering analysis of CCF distributions of individual genetic

events over the two time points (Extended Experimental Proce-

dures) revealed clear clonal evolution in 11 of 18 CLL sample

pairs. We observed clonal evolution in 10 of 12 sample pairs

that had undergone intervening treatment between time points

1 and 2 (Figures 4B and S5A–S5C). This was contrasted with

the six untreated CLLs, five of which demonstrated equilibrium

between subpopulations that was maintained over several years

(Figure 4A; p = 0.012, Fisher exact test). Of the 11 patients with

subclonal evolution across the sampling interval, five followed

a branched evolution pattern, as indicated by the disappearance

of mutations with high CCF co-occurring with the expansion of

other subclones (Figure 4B). This finding demonstrates that co-

existing sibling subclones are at least as common in CLL as

are linear nested subclones, as demonstrated in other hemato-
logical malignancies (Ding et al., 2012; Egan et al., 2012). We

conclude that chemotherapy-treated CLLs often undergo clonal

evolution, resulting in the expansion of previously minor sub-

clones. Thus, these longitudinal data validate the insights

obtained in the cross-sectional analysis, namely that (1) later

driver events expand over time (Figure 3A), and (2) treatment

results in the expansion of subclones enriched with drivers

(and thus presumably have higher fitness) (Figure 2D).

Presence of Subclonal Drivers Adversely Impacts
Clinical Outcome
We observed treatment-associated clonal evolution to lead to

the replacement of the incumbent clone by a fitter pre-existing

subclone (Figure 4B). Therefore, we would expect a shorter

time to relapse in individuals with evidence of clonal evolution

following treatment. As a measure of relapse, we assessed

failure-free survival from time of sample (‘‘FFS_Sample’’) and

failure-free survival from time of next therapy (‘‘FFS_Rx’’)

(Figure 5A), where failure is defined as retreatment (a recognized

endpoint in slow growing lymphomas [Cheson et al., 2007]) or

death. For the study of clonal evolution in CLL, retreatment as

an endpoint is preferable to othermeasures, such as progression

alone, as this is a well-defined event that reflects CLL disease

aggressiveness. For example, disease progression alone in

CLL may be asymptomatic without necessitating treatment;

conversely, treatment is administered only in the setting of

symptomatic disease or active disease relapse (Hallek et al.,

2008).

Within the 12 of 18 longitudinally analyzed samples that

received intervening treatment, we observed that the ten

samples with clonal evolution exhibited shortened FFS_Rx

(log-rank test; p = 0.015, Figure 5B). Importantly, the somatic

driver mutations that expanded to take over the entire population

upon relapse (‘‘time point-2’’) were often already detectable in

the pretreatment (‘‘time point-1’’) sample (Figures 4B and S5B).

Our results thus suggested that presence of detectable subclo-

nal drivers in pretreatment samples can anticipate clonal evolu-

tion in association with treatment. Indeed, the 8 of 12 samples

with presence of subclonal drivers in pretreatment samples

exhibited shorter FFS_Rx than the four samples with subclonal

drivers absent (p = 0.041, Figure 5C). Together, the results of

our longitudinally studied patient samples suggested that the

presence of driver events within subclones may impact prog-

nosis and clinical outcome.

We tested this hypothesis in the set of 149 patient samples, of

which subclonal driver mutations were detected in 46% (Fig-

ure 6A; Extended Experimental Procedures; Table S4). Indeed,

we found that CLL samples with subclonal driver mutations

were associated with a shorter time from sample collection to

treatment or death (FFS_Sample, p < 0.001, Figure 6B; Tables

S7A and S7C), which seemed to be independent of established

markers of poor prognosis (i.e., unmutated IGHV or presence of

del(11q) or del(17p), Figure S6). Moreover, we tested specifically

whether the presence of pretreatment subclonal drivers was

associated with a shorter FFS_Rx, as we observed in the longi-

tudinal data. Therefore, we focused on the 67 patients who

were treated after sample collection (median time to first therapy

from time of sample was 11months [range 1–45]). These patients
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Figure 4. Longitudinal Analysis of Subclonal Evolution in CLL and Its Relation to Therapy

(A and B) Joint distributions of cancer cell fraction (CCF) values across two time points were estimated using clustering analysis (see Extended Experimental

Procedures). Red: a mutation with an increase in CCF of greater than 0.2 (with probability >0.5). The dotted diagonal line represents y = x or where identical CCF

values across the two time points fall; the dotted parallel lines denote the 0.2 CCF interval on either side. Likely driver mutations were labeled. Six CLLs with no

intervening treatment (A) and 12 CLLs with intervening treatment (B) were classified according to clonal evolution status, based on the presence of mutations with

an increase of CCF > 0.2.

(C) Hypothesized sequence of evolution, inferred from the patients’ WBC counts, treatment dates, and changes in CCF for three representative examples.

See also Figure S5 and Table S5C.
could be divided into two groups based on the presence (n = 39)

or absence (n = 29) of a subclonal driver (62% and 64%, respec-

tively, were treated with fludarabine-based immunochemother-

apy, p = 0.4). The 39 of these patients in which subclonal CLL

drivers were detected required earlier retreatment or died

(shorter FFS_Rx; log-rank test, p = 0.006, Figure 6C; Table

S7A), indicative of a more rapid disease course.

Regression models adjusting for multiple CLL prognostic

factors (IGHV status, prior therapy, and high-risk cytogenetics)

supported the presence of a subclonal driver as an independent

risk factor for earlier retreatment (adjusted hazard ratio [HR] of

3.61 [CI 1.42–9.18], Cox p = 0.007; unadjusted HR, 3.20 [CI
720 Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc.
1.35–7.60], Figure 6D), comparable to the strongest known

CLL risk factors. In similar modeling within a subset of 62

patients who had at least one driver (clonal or subclonal), the

association of the presence of a subclonal driver with a shorter

time to retreatment or death was also significant (p = 0.012,

Table S7B), reflecting that this difference is not merely attribut-

able to the presence of a driver. Additionally, an increased

number of subclonal driver mutations per sample (but not clonal

drivers) was also associated with a stronger HR for shorter

FFS_Rx (Table S7D). Finally, this association retained signifi-

cance (Cox p = 0.033, Table S7E) after adjusting for the presence

of mutations previously associated with poor prognosis (ATM,



Figure 5. Genetic Evolution and Clonal Heterogeneity Result in

Altered Clinical Outcome

(A) Schema of the main clinical outcomemeasures that were analyzed: failure-

free survival from time of sample (FFS_Sample) and from initiation of first

treatment after sampling (FFS_Rx). Within the longitudinally followed CLLs that

received intervening treatment (12 of 18), shorter FFS_Rxwas observed in CLL

samples that (B) had evidence of genetic evolution (n = 10) compared to

samples with absent or minimal evolution (n = 2; Fisher exact test) and that (C)

harbored a detectable subclonal driver in the pretreatment sample (n = 8)

compared to samples with absent subclonal driver (n = 4).

See also Table S3.
TP53, and SF3B1), suggesting that, in addition to the driver’s

identity, its subclonal status also affects clinical outcome.

DISCUSSION

While intertumoral (Quesada et al., 2012; Wang et al., 2011) and

intratumoral (Schuh et al., 2012; Stilgenbauer et al., 2007)

genetic heterogeneity had been previously demonstrated in

CLL, our use of WES-based algorithms enabled a more compre-

hensive study of clonal evolution and its clinical impact. We

propose the existence of distinct periods in CLL progression.

In the first period prior to transformation, passenger events

accumulate in the cell that will eventually be the founder of the

leukemia (in proportion to the age of the patient, Figure 2C),

and are thus clonal mutations (Figure 7A). In the second period,

the founding CLL mutation appears in a single cell and leads to

transformation (Figure 7B); these are also clonal mutations, but

unlike passenger mutations, these are recurrent across patients.

We identified driver mutations that were consistently clonal

(del(13q), MYD88, and trisomy 12 (Figure 3A), which appear to

be relatively specific drivers of CLL or B cell malignancies (Ber-

oukhim et al., 2010; Döhner et al., 2000; Ngo et al., 2010). In

the third period of disease progression, subclonal mutations

expand over time as a function of their fitness-integrating

intrinsic factors (e.g., proliferation and apoptosis) and extrinsic
pressures (e.g., interclonal competition and therapy) (Figures

7C and 7D). The subclonal drivers include ubiquitous cancer

genes, such as ATM, TP53, or RASmutations (Figure 3A). These

data suggest that mutations that selectively affect B cells may

contributemore to the initiation of disease and precede selection

of more generic cancer drivers that underlie disease progres-

sion—providing predictions that can be tested in human B cells

or animal models of CLL.

An important question addressed here is how treatment

affects clonal evolution in CLL. In the 18 patients monitored at

two time points, we observed two general patterns—clonal

equilibrium, in which the relative sizes of each subclone were

maintained, and clonal evolution, in which some subclones

emerge as dominant (Figure 4). We propose that, in untreated

samples, more time is needed for a new fit clone to take over

the population in the presence of existing dominant clones (Fig-

ure 7D, top). In contrast, in treated samples, cytotoxic therapy

typically removes the incumbent clones (Jablonski, 2001)—

acting like a ‘‘mass extinction’’ event (Jablonski, 2001)—and

shifts the evolutionary landscape (Nowak and Sigmund, 2004;

Vincent and Gatenby, 2008) in favor of one or more aggressive

subclones (Maley et al., 2006; Figure 7D, bottom). Thus, highly

fit subclones likely benefit from treatment and exhibit rapid

outgrowth (Greaves and Maley, 2012).

CLL is an incurable disease with a prolonged course of remis-

sions and relapses. It has been long recognized that relapsed

disease responds increasingly less well to therapy over time.

We now show an association between increased clinical aggres-

siveness and genetic evolution, which has therapeutic implica-

tions. We found that the presence of pretreatment subclonal

driver mutations anticipated the dominant genetic composition

of the relapsing tumor. Such information may eventually guide

the selection of therapies to prevent the expansion of highly fit

subclones. In addition, the potential hastening of the evolu-

tionary process with treatment provides a mechanistic justifica-

tion for the empirical practice of ‘‘watch and wait’’ as the CLL

treatment paradigm (CLL Trialists Collaborative Group, 1999).

The detection of driver mutations in subclones (a testimony to

an active evolutionary process) may thus provide a prognostic

approach in CLL, which can now be rigorously tested in larger

clinical trials.

In conclusion, we demonstrate the ability to study tumor

heterogeneity and clonal evolution with standard WES. These

innovations will allow characterization of the subclonal mutation

spectrum in large, publicly available data sets (Masica and

Karchin, 2011). The implementation described here may also

be readily adopted for clinical applications. Even more impor-

tantly, our studies underscore the importance of evolutionary

development as the engine driving cancer relapse. This knowl-

edge challenges us to develop therapeutic paradigms that not

only target specific drivers (i.e., ‘‘targeted therapy’’) but also

the evolutionary landscape (Nowak and Sigmund, 2004) of these

drivers.
EXPERIMENTAL PROCEDURES

One hundred forty-nine patients with CLL provided tumor and normal DNA for

exome-sequencing and copy number assessment in this study. Sample
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Figure 6. Presence of Subclonal Drivers Mutations Adversely Impacts Clinical Outcome

(A) Analysis of genetic evolution and clonal heterogeneity in 149 CLL samples. Top: total number (red) and the number of subclonal (blue) mutations per sample.

Bottom: co-occurring CLL or cancer drivers (sSNVs in highly conserved sites in Cancer Gene Census genes) detected in the 149 samples. Color spectrum (light

yellow to black) corresponds to estimated CCF; white boxes: not detected; gray: CCF not estimated (genes on the X chromosome and indels other than in

NOTCH1).

(B and C) Subclonal drivers are associated with adverse clinical outcome. (B) CLL samples containing a detectable subclonal driver (n = 68) exhibited shorter

FFS_Sample compared to samples with absent subclonal drivers (n = 81) (also see Figure S6). (C) Subclonal drivers were associated with shorter FFS_Rx in 67

samples, which were treated after sampling.

(D) A Cox multivariable regression model designed to test for prognostic factors contributing to shorter FFS_Rx showed that presence of a subclonal driver was

an independent predictor of outcome.

See also Figure S6 and Tables S4 and S7.
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Figure 7. A Model for the Stepwise Transformation of CLL

(A–D) Our data suggest distinct periods in the history of CLL.We observed an increase in clonal mutations in older patients and in the IGHVmutated subtype, likely

corresponding to pretransformation mutagenesis (A). We identified earlier and later mutations in CLL, consistent with B cell-specific (B) and ubiquitous cancer

events (C and D), respectively. Finally, clonal evolution and treatment show a complex relationship. Most untreated CLLs and a minority of treated CLLs maintain

stable clonal equilibrium over years (C). However, in the presence of a subclone containing a strong driver, treatment may disrupt interclonal equilibrium and

hasten clonal evolution (D).
material was obtained from patients enrolled in clinical research protocols at

the Dana-Farber Harvard Cancer Center (DFHCC), approved by the DFHCC

Human Subjects Protection Committee. Tumor and normal DNA from 11 addi-

tional patients were also analyzed by DNA sequencing alone (a total of 160 CLL

samples). Eighty-two CLL samples were previously reported (Wang et al.,

2011), and the raw BAM files for these samples were reprocessed and reana-

lyzed together with the new data to ensure the consistency of the results and to

enable the detection of smaller subclones made possible with a newer version

of the mutation caller. Written informed consent was obtained prior to sample

collection according to the Declaration of Helsinki. DNA was extracted from

blood- or marrow-derived lymphocytes (tumor) and autologous epithelial cells

(saliva), fibroblasts, or granulocytes (normal).
Libraries for WES were constructed and sequenced on either an Illumina

HiSeq 2000 or GA-IIX using 76 bp paired-end reads (Berger et al., 2011;

Chapman et al., 2011). Output from Illumina software was processed by the

Picard data processing pipeline to yield BAM files containing well-calibrated,

aligned reads (Chapman et al., 2011; DePristo et al., 2011). sSNVs and indels

were identified using MuTect (V119, [Cibulskis et al., 2013]) and indelocator

(V61, [Wang et al., 2011]), respectively. Recurrent sSNV and indels in 160

CLLs were identified using MutSig2.0 (Lohr et al., 2012). For 111 of 149

matched CLL-normal DNA samples, copy number profiles were obtained

using the Affymetrix Genome-wide Human SNP Array 6.0, with allele-specific

analysis (HAPSEG [Carter et al., 2011]). Recurrent sCNAswere identified using

the GISTIC2.0 algorithm (Mermel et al., 2011), after excluding germline copy
Cell 152, 714–726, February 14, 2013 ª2013 Elsevier Inc. 723



number variants. For CLL samples with no available SNP arrays (38 of

149 CLLs), sCNAs were estimated directly from the WES data based on the

ratio of CLL sample read-depth to the average read-depth observed in

normal samples for that region. We applied ABSOLUTE to estimate sample

purity, ploidy, and absolute somatic copy numbers. These were used to infer

the CCFs of point mutations from the WES data. Following the framework

previously described (Carter et al., 2012), we computed the posterior

probability distribution over CCF c as follows. Consider a somatic mutation

observed in a of N sequencing reads on a locus of absolute somatic

copy number q in a sample of purity a. The expected allele-fraction f of amuta-

tion present in one copy in a fraction c of cancer cells is calculated by

fðcÞ=ac=ð2ð1� aÞ+aqÞ, with c˛½0:01; 1�. Then, PðcÞfBinomðajN; fðcÞÞ,
assuming a uniform prior on c. The distribution over CCF was then obtained

by calculating these values over a regular grid of 100 c values and normalizing

by dividing them by their sum, which is the constant of proportionality in

the above equation. Mutations were thereafter classified as clonal based

on the posterior probability that the CCF exceeded 0.95 and subclonal other-

wise. Validation of allelic fraction was performed by using deep sequencing

with indexed libraries recovered on a Fluidigm chip. Resulting normalized

libraries were loaded on a MiSeq instrument (Illumina) and sequenced

using paired-end 150 bp sequencing reads to an average coverage depth of

4,2003.

Associations betweenmutation rates and clinical features were assessed by

the Wilcoxon rank-sum test, Fisher exact test, or the Kruskal–Wallis test, as

appropriate. Time to event data were estimated by the method of Kaplan

and Meier, and differences between groups were assessed using the log-

rank test. Unadjusted and adjusted Cox modeling was performed to assess

the impact of the presence of a subclonal driver on clinical outcome measures

alone and in the presence of clinical features known to impact outcome. A chi-

square test with 1 degree of freedom and the �2 Log-likelihood statistic were

used to test the prognostic independence of subclonal status in Coxmodeling.

A complete description of the materials and methods is provided in the

Extended Experimental Procedures.
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Döhner, K., Bentz, M., and Lichter, P. (2000). Genomic aberrations and survival

in chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1910–1916.

Egan, J.B., Shi, C.X., Tembe, W., Christoforides, A., Kurdoglu, A., Sinari, S.,

Middha, S., Asmann, Y., Schmidt, J., Braggio, E., et al. (2012). Whole-genome

sequencing of multiple myeloma from diagnosis to plasma cell leukemia

reveals genomic initiating events, evolution, and clonal tides. Blood 120,

1060–1066.

Fabbri, G., Rasi, S., Rossi, D., Trifonov, V., Khiabanian, H., Ma, J., Grunn, A.,

Fangazio, M., Capello, D., Monti, S., et al. (2011). Analysis of the chronic

lymphocytic leukemia coding genome: role of NOTCH1 mutational activation.

J. Exp. Med. 208, 1389–1401.

Forbes, S.A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., Kok,

C.Y., Jia, M., Ewing, R., Menzies, A., et al. (2010). COSMIC (the Catalogue

of Somatic Mutations in Cancer): a resource to investigate acquired muta-

tions in human cancer. Nucleic Acids Res. 38(Database issue), D652–

D657.

Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rah-

man, N., and Stratton,M.R. (2004). A census of human cancer genes. Nat. Rev.

Cancer 4, 177–183.

Gerlinger, M., and Swanton, C. (2010). How Darwinian models inform thera-

peutic failure initiated by clonal heterogeneity in cancer medicine. Br. J.

Cancer 103, 1139–1143.

Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos,

E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., et al. (2012). Intratumor

heterogeneity and branched evolution revealed by multiregion sequencing. N.

Engl. J. Med. 366, 883–892.

Gerstung, M., Beisel, C., Rechsteiner, M., Wild, P., Schraml, P., Moch, H., and

Beerenwinkel, N. (2012). Reliable detection of subclonal single-nucleotide

variants in tumour cell populations. Nat. Commun. 3, 811.

Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E.M., Brockman,

W., Fennell, T., Giannoukos, G., Fisher, S., Russ, C., et al. (2009). Solution

hybrid selection with ultra-long oligonucleotides for massively parallel targeted

sequencing. Nat. Biotechnol. 27, 182–189.

Greaves, M., and Maley, C.C. (2012). Clonal evolution in cancer. Nature 481,

306–313.

Grossmann, V., Tiacci, E., Holmes, A.B., Kohlmann, A., Martelli, M.P., Kern,

W., Spanhol-Rosseto, A., Klein, H.U., Dugas, M., Schindela, S., et al. (2011).

Whole-exome sequencing identifies somatic mutations of BCOR in acute

myeloid leukemia with normal karyotype. Blood 118, 6153–6163.

Grubor, V., Krasnitz, A., Troge, J.E., Meth, J.L., Lakshmi, B., Kendall, J.T.,

Yamrom, B., Alex, G., Pai, D., Navin, N., et al. (2009). Novel genomic

alterations and clonal evolution in chronic lymphocytic leukemia revealed by

representational oligonucleotide microarray analysis (ROMA). Blood 113,

1294–1303.

Hallek, M., Cheson, B.D., Catovsky, D., Caligaris-Cappio, F., Dighiero, G.,
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Kröber, A., Kienle, D., Lichter, P., and Döhner, H. (2007). Clonal evolution in
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