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ABSTRACT
The stretch forming process is used to make structural sheet metal parts in the aerospace
industry. The development of stretch forming tools has long been plagued by significant
challenges. First, the low production volumes within the aerospace industry and the large
numbers of stretch formed parts make the process capital intensive. Second, the
development of stretch forming tooling has long been more of an art than a science. This
results in poorly designed tools, poor quality parts, and lengthy tooling development
cycles.

A stretch forming tool capable of rapid reconfiguration was previously designed to
address these issues. This tool is used in conjunction with a self-tuning shape control
algorithm, which guides the die to the correct shape. There have been many simulations,
and lab scale successes with these algorithms, but production scale implementations have
experienced difficulties. These problems are related to the method of system
identification and process variation. To better understand these issues, analysis and
simulation are performed on the various forms of the algorithm. These investigations led
to a greater understanding of the algorithms and the synthesis of an improved algorithm.

In conclusion, a greater understanding of previously developed algorithms is presented.
The system identification is mapped as a Point Spread Function applied through a cyclic
convolution. This view provides insight into how the system identification is applied and
allows system coupling to be quantified. Furthermore, through improved understanding a
new algorithm is synthesized. This new algorithm offers an implementable solution that
is optimized for performance, robustness to variation, and ease of use.

Thesis Supervisor: David E. Hardt
Title: Professor of Mechanical Engineering

3



4



Acknowledgments

I thank my advisor, Professor David Hardt for his contributions to my graduate school
experience. Much to his credit, I have thoroughly enjoyed the past two years at the
Massachusetts Institute of Technology. In particular, I am thankful to him for providing
answers to many of my questions, and more importantly for urging me to provide
answers as well.

I thank John Papazian and all of his colleagues at Northrop Grumman for the opportunity
to contribute to this project. I am proud to have been involved with this program and
have enjoyed the camaraderie that typified all of our meetings.

I am extremely thankful for the support provided by Northrop Grumman to my research
under the 'Reconfigurable Tooling for Sheet Metal Forming' contract (1 10B24019AK).

I thank Dr. Simona Socrate for her assistance.

I would like to thank all of the friends I have made along the way.

And I would like to thank my wife Kate, for her support.

5



6



Chapter 1: Introduction ................................................................................................. 13
Research Background................................................................................................. 13

Flexible Sheet Form ing System ............................................................................ 14
Self-Tuning Shape Control Algorithm ................................................................. 16

Contribution of This Research ................................................................................... 16
Goals .......................................................................................................................... 16
Thesis Sum m ary ...................................................................................................... 17
Conclusions ............................................................................................................... 18

Chapter 2 : Stretch Form ing O verview .......................................................................... 19
Basic stretch form ing m echanics............................................................................... 19
Surface Geom etry Classifications............................................................................. 28
Sum m ary ....................................................................................................................... 32

Chapter 3 : Research Background................................................................................. 33
Issue # 1: Excessive Capital Costs for Stretch Form ing .......................................... 33
Issue # 2: D ifficulty in Predicting Correct D ie Shape................................................ 36
Issue # 3: Excessive Shape Variation in Stretch Forming ........................................ 38
Sum m ary ....................................................................................................................... 40

Chapter 4 : The G eneric A lgorithm Structure...................................................................41
Stretch form ing process m odel.................................................................................. 41
A lgorithm M odel........................................................................................................... 42
Schem atic Process M odel........................................................................................... 46
Control system view ...................................................................................................... 48

Steady state error.................................................................................................... 49
Response tim e ........................................................................................................ 50
D isturbance Rejection .......................................................................................... 53

Com m on Im plem entation Elem ents........................................................................... 55
Geom etry Param eters ............................................................................................. 55
Surface Fitting ........................................................................................................... 56
Part Registration.................................................................................................... 57
Error M easurem ents ............................................................................................... 58

Sum m ary ....................................................................................................................... 61

Chapter 5 : D iscussion of A lgorithm #1 ........................................................................... 63
Basic Structure .............................................................................................................. 63
Im plem entation..............................................................................................................64
H istorical Experim ental Results................................................................................ 64
A lgorithm Concerns ...................................................................................................... 65

System Coupling ....................................................................................................... 65
System Identification............................................................................................. 66

Sum m ary ....................................................................................................................... 67

Chapter 6 : D iscussion of A lgorithm #2 ........................................................................... 69

7



Basic Structure .............................................................................................................. 69
Linear System s Background.................................................................................. 73

Im plem entation.............................................................................................................. 92
Hstorical Experim ental Results............................................................................... 95

Algorithm Concerns...................................................................................................... 97
Superposition .......at ............................................................................................ 98
System Identification ...................................................................... 98

Sum m ary ..................................................................................................................... 100

Chapter 7 : Presentation and Discussion of Algorithm #3.............................................. 103
Basic Structure ............................................................................................................ 103
Im plem entation............................................................................................................ 105

System Identification.............................................................................................. 105
Part "Referencing .................................................................................................. 106

Algorithm Concerns.................................................................................................... 115
Variation Treated Differently Across the Die......................................................... 115
Coupling Ignored..................................................................................................... 116
System Identification Am biguity ............................................................................ 116

Sum m ary ..................................................................................................................... 116

Chapter 8 : Sim ulation M ethods...................................................................................... 117
Full Part Form ing Simulation...................................................................................... 117

Accuracy of Full Part forming simulation............................................................... 123
Simulating the Effects of Variation on FEA Formed Components ............................ 124
Sum m ary................................................................................... 127

Chapter 9: Sim ulation Results........................................................................................ 129
Com parison with Experim ental Results...................................................................... 129
Algorithm Comparisons with Full Forming Simulations.................... 132
Variation Investigations, Noise included in Identification.......................................... 135
Variation Investigations, Noise Excluded from Identification................ 139
Summ ary ..................................................................................................................... 140

Chapter 10 : Conclusions - Guidelines for Future W ork ................................................ 143
Conclusions................................................................................................................. 143
Future W ork ................................................................................................................ 145

References ....................................................................................................................... 147

8



Figure 1-1: Applications of stretch formed aerospace components.............................. 13
Figure 1-2: Flexible sheet forming system.................................................................... 15
Figure 1-3: Shape control algorithm differences............................................................... 17
Figure 2-1: Cyril Bath stretch forming machine in process .......................................... 20
Figure 2-2: Schematic of stretch forming process ....................................................... 21
Figure 2-3: Description of sheet geometry.................................................................... 22
Figure 2-4: Strains & Stresses after pre-stretch phase ................................................... 22
Figure 2-5: Power law, strain hardening curve for Aluminum 2024-0 ............. 23
Figure 2-6: Representation of sheet bending.................................................................. 24
Figure 2-7: Strains & Stresses after bending phase ..................................................... 25
Figure 2-8: Strains & Stresses after post stretch phase ................................................. 25
Figure 2-9: Strain and Stress state after sheet release ................................................... 26
Figure 2-10: Springback of sheet on a cylindrical die ................................................... 27
Figure 2-11: Representation of surface curvatures ........................................................ 28
Figure 2-12: Shape classifications based on mean & Gaussian curvature.................... 30
Figure 3-1: Typical rigid stretch forming tool .............................................................. 33
Figure 3-2: Forming surface of MIT, lab scale, re-configurable tool [Valjavec, 1999] ... 34
Figure 3-3: Forming surface of Northrop Grumman / MIT, production scale, re-

configurable tool ................................................................................................... 34
Figure 3-4: Interface between die, interpolator and sheet metal.................................... 35
Figure 3-5: Rew ork Procedure ...................................................................................... 36
Figure 3-6: sample output of ABAQUS FEA ............................................................... 37
Figure 3-7: Variation levels associated with different process control strategies.........38
Figure 3-8: Stress - Strain curve sensitivities ............................................................... 40
Figure 4-1: Stretch forming process model.................................................................... 41
Figure 4-2: Some stretch forming process parameters..................................................41
Figure 4-3: Stretch forming process model with feedback .......................................... 42
Figure 4-4: Block diagram of generic algorithm structure................................................ 43
Figure 4-5: Schematic model of algorithm ................................................................... 47
Figure 4-6: Control system view of algorithm.................................................................. 48
Figure 4-7: Root locus of die configuration algorithm ................................................. 51
Figure 4-8: discrete, system responses..............................................................................52
Figure 4-9: Control schematic for evaluating disturbance effects ................................ 53
Figure 4-10: Part and Die shape parameters ................................................................. 56
Figure 4-11: Lab Scale Coordinate Measuring Machine ............................................... 57
Figure 4-12: Reference mark used with MIT stretch forming press ............................. 58
Figure 4-13: Error surface............................................................................................. 59
Figure 4-14: Altering the average error (Je) value by translating along the z-axis.....60
Figure 5-1: Algorithm #1 control schematic ..................................................................... 63
Figure 5-2: Algorithm #1 results from Webb [1987, p. 59] on match die tooling.....65
Figure 5-3: D epiction of system coupling.........................................................................66
Figure 5-4: graphical interpretation of system identification........................................67
Figure 6-1: Algorithm #2 control system schematic

(Note: all variables are Fourier transforms of particular part or die shapes) ...... 70
Figure 6-2: Linear, continuous-time system ................................................................. 73

9



Figure 6-3: System input ................................................................................................... 73
Figure 6-4: Discrete time system ................................................................................... 74
Figure 6-5: graphical depiction of convolution............................................................ 77
Figure 6-6: Assumption of periodicity.......................................................................... 78
Figure 6-7: Convolution of a cyclic input ..................................................................... 79
Figure 6-8: Cyclic convolution ..................................................................................... 80
Figure 6-9: Causal and A-Causal Systems................................................................... 81
Figure 6-10: Centering a 1D Impulse response for easier viewing............................... 81
Figure 6-11: Two-dimensional, cyclic, spatial system................................................. 82
Figure 6-12: Shifting of the 2-D, periodic PSF to assist viewing ................................. 84
Figure 6-13: Schematic of 2-D, PSF shifting ................................................................. 84
Figure 6-14: PSF functions displaying coupling.......................................................... 85
Figure 6-15: Linear system computation methods............................................................87
Figure 6-16: Convolution & De-convolution.................................................................88
Figure 6-17: De-convolution & convolution................................................................. 89
Figure 6-18: Truncated system responses ......................................................................... 91
Figure 6-19: Windowing Function.................................................................................92
Figure 6-20: Windowed Functions............................................................................... 92
Figure 6-21: Common Parameters for Valjavec's [1999] tests of algorithm #2....... 95
Figure 6-22: Reference shapes for Vaijavec's [1999] experiments .............................. 96
Figure 6-23: Valjavec's [1999] experimental results................................................... 97
Figure 6-24: system identification performed with calibration die shapes far apart.........99
Figure 6-25: System identification performed with close calibration dies and noise ..... 100
Figure 7-1: Shape control algorithms.............................................................................. 103
Figure 7-2: Algorithm #3 control schematic

(Note: all variables are spatial coordinates)............................................................ 104
Figure 7-3: Offset z-axis coordinates.............................................................................. 106
Figure 7-4: Stretch forming die with and without added constant ''............................ 107
Figure 7-5: Sensitivity near 'zero' .................................................................................. 111
Figure 7-6: Production scale example of sensitivity near zero ....................................... 112
Figure 7-7: Heuristic for Algorithm #3........................................................................... 113
Figure 7-8: Reducing sensitivity near 'zero'................................................................... 114
Figure 8-1: MIT, lab scale stretch press.......................................................................... 117
Figure 8-2: Full forming simulation process flow .......................................................... 118
Figure 8-3: Pin position and die interaction positions..................................................... 119
Figure 8-4: Equivalent, rigid die surface......................................................................... 119
Figure 8-5: Representation of material blank and die in ABAQUS ............................... 120
Figure 8-6: Boundary conditions..................................................................................... 121
Figure 8-7: Explanation of softened contact ................................................................... 122
Figure 8-8: Dies and Parts for simulation shortcut ......................................................... 125
Figure 8-9: Introducing additive noise............................................................................ 126
Figure 8-10: Introduction of additive noise to reference part ......................................... 127
Figure 9-1: Equations used to define reference parts and initial dies ............................. 130
Figure 9-2: Replication of Valjavec's [1999] cylinder experiment ................................ 130
Figure 9-3: Replication of Valjavec's [1999] saddle experiment ................................... 131
Figure 9-4: Replication of Valjavec's [1999] spheroid experiment................................ 131

10



Figure 9-5: Summary of full simulation results .............................................................. 133
Figure 9-6: Simulations of cylinder forming trial ........................................................... 133
Figure 9-7: Simulations of saddle forming trials ............................................................ 134
Figure 9-8: Simulations of spherical forming trials ........................................................ 134
Figure 9-9: Variation amplification, noise included in identification ............................. 136
Figure 9-10: Error convergence during variation investigation simulation, noise included

in identification ....................................................................................................... 137
Figure 9-11: Die errors for algorithm #2 (no window) and algorithm #3.......... 138
Figure 9-12: Variation amplification, noise excluded from identification.......... 139
Figure 9-13: Error convergence during variation investigation simulation, noise excluded

from identification ................................................................................................... 140
Figure 10-1: A lgorithm Fram ew ork................................................................................143

11



12



Chapter 1 : Introduction

Stretch forming is a manufacturing process in which metal sheets or extrusions are

wrapped around a die to form parts into simple or complex shapes of mild curvature.

This technique is often employed within the aerospace industry to build structural skin

components including nacelles, pressure domes, and wing leading edges, which are

shown in Figure 1-1. Aluminum is the most common material used for such applications,

however other metals are also used including steel and titanium.

Figure 1-1: Applications of stretch formed aerospace components

Research Background
The stretch forming process used to make structural sheet metal parts in the aerospace

industry and the development of stretch forming tools have long been plagued three

significant challenges. First, the low production volumes within the aerospace industry

and the large numbers of stretch formed parts make the process extremely capital

intensive. Second, the development of a stretch forming tooling has long been more of

an art than a science. This often results in poorly designed tools and poor quality parts,

or lengthy, iterative tooling development cycles. Third, poor stretch forming process

control in most aerospace manufacturing settings causes excessive variation in the stretch

formed components.
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The large numbers of tools found within a stretch forming manufacturing process are

costly to develop and often require large warehouses for storage. As a result, time and

labor associated with changing from one tool to another are also excessive. Furthermore,

the designers of stretch forming tools have historically approached tool design by making

their best guess at the die shape that correctly compensates for material springback and

then improving the die iteratively through difficult rework. This approach is expensive,

time consuming, and may result in poor quality parts. In recent years, some finite

element analysis techniques (FEA) have aided engineers and designers in choosing

appropriate die shapes. However, such techniques require excessive engineering time.

These techniques also require engineers to make accurate assumptions regarding material

properties and process parameters.

The conventional methods used to control the stretch forming process are flawed with

excessive variation. Generally, the trajectory of the stretch forming process is controlled

by monitoring hydraulic cylinder pressure, displacement of the hydraulic cylinders, or

even through the machine operator's rough, visual estimates of the process. The inherent

variation associated with these control methods exacerbates the variation seen in parts

formed under such control schemes.

Flexible Sheet Forming System
To address these issues, researchers at Massachusetts Institute of Technology (MIT) and

Northrop Grumman have developed a flexible manufacturing system that consists of a

reconfigurable tool and a self-tuning shape control algorithm. An overview of this

system is shown in Figure 1-2.

14



desired shape finished

Measurement

Part Error
New Part

Shape

Discrete Die Stretch Forming Press

Controller

Part Error Shape Measurement

Figure 1-2: Flexible sheet forming system

The reconfigurable tool can rapidly change shape. It can thus replace the majority of the

fixed structure dies that exist within the manufacturing process. The reconfigurable tool

also improves the die development process by allowing changes to dies shape to be made

in-process. A self-tuning shape control algorithm is used to predict a die shape that is

correctly compensated for springback.
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Self-Tuning Shape Control Algorithm
Over the past years, several different shape control algorithms have been used in different

incarnations of the flexible forming system. The first algorithm (called algorithm #1 in

this thesis) was implemented by Webb [1981] on a lab scale stretch forming system. This

algorithm produced positive results but did not converge quickly enough. It did not have

a means to model coupling nor did it use system identification. A later version of the

algorithm (called algorithm #2 here) was implemented by Webb [1987] on an axis-

symmetric metal stamping operation. Algorithm #2 added coupling to the system by

using the Fourier transform of the shape data. It also contained additional system steps

that identified nature of the nature of the springback that occurs during formation and

then used this information to improve its predictions. Algorithm #2 was also

implemented by Osterhout [1991] on a matched die sheet forming system, Valjavec

[1999] on a stretch forming system and more recently by Northrop Grumman on

production scale stretch forming equipment. This algorithm improved greatly on the

performance of algorithm #1, but at the cost of increased complexity and sensitivity to

noise.

Contribution of This Research

Goals
The work in this thesis addresses questions that have been asked about algorithms #1 and

#2. These question include the following:

- How does algorithm #2 work?

- Can it be understood more fundamentally?

- Can it be improved?

The need to answer these questions has recently been emphasized by issues raised from

recent productions scale implementations of the flexible sheet forming system at

Northrop Grumman. Initial forming trials have uncovered the following problems and

corresponding questions.

16



- System identification takes two iterations of the forming system. Is it

necessary?

- Algorithm #2 is not robust to variability. Can its robustness be improved?

- The quality of the system identification is difficult to evaluate. Can it be

understood better?

Thesis Summary
Investigations performed through analysis and simulation have led to a greater

understanding of the mathematical mechanisms associated with algorithm #2. The

system identification of algorithm #2 is now understood to be an estimate of the system

Point Spread Function (PSF), which is applied through a two-dimensional, cyclic

convolution. This perspective quantifies the coupling inherent in algorithm #2. It also

makes measuring the quality of the system identification much easier.

Investigations of algorithm #1 and #2 led to the development of a new form of the

algorithm that uses system identification without the convolution interval to introduce

system coupling. The new 'algorithm #3' is also charted with algorithms #1 and #2 in

Figure 1-3.

U
0z

U

No Identification Identification

Figure 1-3: Shape control algorithm differences
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Several useful simulations were developed to allow deterministic and controlled

stochastic investigations of the algorithms. These simulations have been archived for use

by future researchers.

The above mentioned simulations were also used to rate the performance of algorithms

#1, #2, and #3, with respect to the following criteria.

- Ease of implementation and use

- Part error reduction rate

- Robustness to process variation

Conclusions
Through new perspectives of previously developed algorithms, an algorithm has been

developed with performance comparable to algorithm #2. However, this algorithm is

however more robust to variation and simpler to implement.

A greater understanding of the previously developed algorithms has also been attained

through this new perspective. This understanding makes troubleshooting the prior

algorithms much easier.
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Chapter 2 : Stretch Forming Overview
In this chapter, an overview of the stretch forming process is presented. First, the

machinery used to stretch form components and the steps of the stretch forming process

are defined. Next, the mechanics of sheet metal deformation are analyzed for bending

and stretching a sheet about a die of constant curvature. Finally, shape classifications are

defined to help understand the limitation of such analysis techniques.

Basic stretch forming mechanics

The stretch forming of sheet metal parts involves imposing both bending and stretching

strains to achieve the desired part shapes and to strain-harden the material. The

stretching strains minimize the curvature relaxation, or shape springback, that occurs

after the deformation process. They also insure that regions of compression will not

buckle during the forming process. The stretch forming process is comprised of several

stages, including the pre-stretch phase, the forming phase and the post-stretch phase. It

should be noted that either the pre-stretch or post-stretch phase may be omitted from the

process, or they may be used in conjunction with one another. The process is called

"drape forming" when the pre-stretch phase is omitted. The objective of this process is to

achieve a part of a desired contour. As with any deformation process, the challenge is to

compensate for the curvature springback of the material and to do so consistently, even

when material and machine variations occur.
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Figure 2-1: Cyril Bath stretch forming machine in process

A stretch forming press is shown in the process of manufacturing an aerospace skin in

Figure 2-1. The schematics shown in Figure 2-2 provide a depiction of the phases of the

stretch forming process. After the sheet metal blank has been loaded into the machine,

an initial strain (EPre), is imparted to the material in the pre-stretch phase. As previously

noted, the trajectory of the machine and thus the level of strain in the part can be

controlled by one of many different methods. In practice, stretch cylinder forces or

cylinder displacements are often the control variables. Next, the die is pressed into the

sheet metal during the wrap phase of the process. Generally, the net level of strain in the

sheet is kept constant during this phase, although it does not need to be. During the next

phase, an additional strain (epost) is induced into the sheet metal by extending the stretch

cylinders further.

20



Pre-Stretch

Wrap

Post-Stretch

Figure 2-2: Schematic of stretch forming process

A simplified, two-dimensional analysis of constant radius stretch forming is helpful in

understanding the mechanics of the forming process. Figure 2-3 details the variables

used to describe the geometry of the sheet metal in this analysis.
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y TZ--------------------------------------------------- ----

x

Figure 2-3: Description of sheet geometry

During the pre-stretch phase, the sheet is stretched uniformly in a direction parallel with

the length (1) dimension until the desired amount of pre-strain (epre) is achieved. Ignoring

edge effects, the strain state throughout the material thickness (E(z)) is defined through

any cross section of the material by Equation 2-1. The corresponding stress state is found

through the power law strain-hardening model in Equation 2-2, Equation 2-3, and

Equation 2-4. This power law strain-hardening model provides an accurate model for the

aluminum materials used in the aerospace industry [Parris, 1996]. Its relationship is also

shown graphically in Figure 2-5. Figure 2-4 plots the strain and stress states through a

cross section of the sheet metal during the pre-stretch phase.

6(Z) = Epre

Equation 2-1

A, z

F

E(Z)0!i E(Z)=Fpre (Y(Z)=0 cT(Z)=Gpre

Figure 2-4: Strains & Stresses after pre-stretch phase
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E < 6yield

Equation 2-2

Where:
a

Eyield

a = KEn

= stress state
= strain state
= yield strain

E > eyield

Equation 2-3

Where:
n=strain hardening coefficient
K= strength coefficient

K = Enos-nK ~ayield

Equation 2-4

120-

100-

80-

60 -

40-

20-

0
0
0

0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Strain

Figure 2-5: Power law, strain hardening curve for Aluminum 2024-0
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Next, bending strains are imposed throughout the material thickness by bringing the die

into contact with the sheet. The resulting strain distribution is defined by Equation 2-5

and is dependent solely on die and sheet geometry if the sheet is brought into proper

contact with the die as shown in Figure 2-6. For this analysis, we are assuming a

cylindrical die of constant curvature (K), which is equivalent to the inverse of the die

radius (1/RI). The subscript '' is associated with the die as it represents the shape of the

part when it is loaded against the die. The vertical distance from the midline of the sheet,

is 'z' as shown in Figure 2-3. The power law strain-hardening model defined by

Equation 2-2 and Equation 2-3 are again used to define the corresponding stress state'.

I/KI

Figure 2-6: Representation of sheet bending

E(z) = Epre + K z

Equation 2-5

A work hardening model is also needed in cases where the combined level of pre-stress and die curvature
allow plastic, compressive stresses to occur.
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M

E=+Z(

E(Z)=Epre + Kiz

Z

- ( + -------------r

OY(Z)=Cpre + Gbending

Figure 2-7: Strains & Stresses after bending phase

Next, the stretch cylinders impose additional, uniform tensile strain (Fpost) throughout the

cross section by displacing their jaws further. This leaves the sheet in the final strain

state, defined by Equation 2-6 and shown schematically in Figure 2-8.

E(Z) = Epre + Kz + e,
Equation 2-6

. Z

F - ---- -----

E(Z)=Epre + Kiz + Epost

F

(/ a(z)

Y()Yp,+ GYbending + pt

Figure 2-8: Strains & Stresses after post stretch phase

The final loaded axial force in the sheet can be found through Equation 2-7 and the final

loaded moment about the mid-plane of the sheet is found through Equation 2-8. Once the

part has been released the sheet will "springback" to an equilibrium point where the axial

force and the moment about the mid-plane are zero. Figure 2-9 depicts these changes as

stress levels reduce until their net value is zero and their net moment is zero. This is also

represented in the strain schematic of Figure 2-9 as the strain line moves to the left,

which suggests axial relaxation. The strain line also rotates closer to vertical, which

indicates a relaxation in curvature.
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F1 = a (z) wdz

Equation 2-7

h/2

Mi = fo(z)zwdz
-h 12

Equation 2-8

4\ z

E(Z)=Epre + Kiz + Epost

/. ....

Figure 2-9: Strain and Stress state after sheet release

It is this curvature relaxation that is termed springback. It represents a shape difference

between the curvature associated with a sheet loaded onto the die (Kj) and the curvature

of the sheet when it is unloaded (K,,) as is shown in Figure 2-10. The springback ratio

(AK) is the relationship between the loaded and unloaded curvature and is defined by

Equation 2-9. The springback ratio will take on values between zero and unity. A zero

%

------------- 
--- ------- >

..... .......... ................ \-
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value indicates that there is no springback after the part is released, while a value of unity

means the sheet springs back to its original shape after the forming process.

**N
.4

Figure 2-10: Springback of sheet on a cylindrical die

AK =1-
K,

Equation 2-9

The overview of the constant radius, cylindrical die scenario emphasizes the key concept

of stretch forming: the idea that springback can be minimized by the introduction of

additional strains. These additional strains serve to create a more consistent level of

stress throughout the cross section of the material. This in turn minimizes the moment

about the mid-plane of the sheet before the sheet is released and therefore minimizes the

shape springback.

Analytic methods to approximate the springback ratio for simple shapes, including

developable arcs of constant curvature, are relatively straightforward to prove and use.

Equation 2-10, developed by Parris [1996] is the result of such an analysis for the

springback of constant curvature arcs following the power law strain-hardening model.
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A K = K 3( /) 3 [ K yil)3 + (K , . hI n+2 yield )n+2

Kj(h1/2) 3 EK, E(N + 2) 2) EKI

Equation 2-10

Surface Geometry Classifications
The prior analysis applies only to die shapes with curvature along only one dimension.

Classifications of geometry changes are quantified in this section to define when such

analysis techniques can be used and when more complex methods are required. These

classifications may also be used by further research proposed in this report.

Consider the surface normal vector on the point of any surface as shown in Figure 2-11.

Two orthogonal surface curves can be oriented such that they contain the maximum and

minimum surface curvatures at that point. These curvatures are known as the principal

curvatures (Kmi, and Kmax). It is noted that 'concave down' curvatures are considered

positive curvatures throughout this research.

~~1.~
61.-

4 ...
IA

10

Figure 2-11: Representation of surface curvatures
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The average of the two principal curvatures is known as mean curvature and is defined by

Equation 2-11 while their product is known as Gaussian curvature and is defined by

Equation 2-12.

KMean - 2

Equation 2-11

KGaussian = K, Kmax

Equation 2-12

Mean and Gaussian curvature can be used to classify the various general forms that are

manufactured in the stretch forming process. Figure 2-12 details the various

classifications that are possible for the stretch forming process
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Curvature Curvature Shape
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-8
30
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30--- -
- --20
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0 0

Elliptical

Positive, Zero, or
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Negative
30 ~ 7~/~

10 10
5

0 0

Toroidal

Figure 2-12: Shape classifications based on mean & Gaussian curvature

It is observed that mean curvature generally describes the magnitude of the surface's

curvature while Gaussian curvature is more indicative of the general shape classification

of the surface (developable, Elliptical, or toroidal). The previous analysis of the stretch

forming process only considered beginning with a flat piece of sheet metal (KMean=O,
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KGaussian=0) and developing it around a cylindrical die (KMean=positive, KGaussian=O).

Where 'developing' a surface indicates the process of modifying a surface's mean

curvature while leaving its Gaussian curvature unchanged. When a surface is developed,

all strains are imparted uniformly to the cross of the material except for the bending 2

strains as shown in Figure 2-6. However, when a sheet's Gaussian curvature is modified

during the forming process, there are additional, in-plane strain modifications that occur

in the sheet. These additional deformations can be visualized in Figure 2-14. Here, a

grid is drawn over a flat sheet, which represents a material blank in the forming process.

In the case where the blank is developed around a die of zero Gaussian curvature, the grid

pattern remains un-altered with respect to the surface (ignoring pre-stretch and post-

stretch portions of the process). However, when the Gaussian curvature of the sheet is

altered, the grid pattern is grossly deformed in relation to the surface. These additional

deformations were not included in the previous analysis of the stretch forming process.

They are very difficult to account for analytically without the assistance of a complex

finite element analysis (FEA).

0.

0..1.5

0 6 0.2..

0 0

Developed Surface Deformed Surface

Figure 2-14: An example showing in-plane strain

Mean curvature is often referred to as an extrinsic characteristic of a surface while

Guassian curvature is considered an intrinsic surface characteristic. This makes intuitive

sense when one considers a surface to have infinitesimal thickness. In such a case, the

forces (or moments) associated with bending or altering the mean curvature of a surface
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are non-existent. A surface that has only undergone a change in mean curvature is

identical when viewed from a point on the surface. That is, the relationship between any

two points on the surface has not changed if they are defined in terms of surface

coordinates. In other words, the internal or intrinsic properties of the sheet remain

unaltered. However, if the surface is defined from an external reference, the

representation of the sheet has changed, indicating an extrinsic property change. In the

case of changes in Gaussian curvature, the surface representation is altered from both an

internal (intrinsic) and external (extrinsic) point of view.

Summary
This chapter has provided an overview of stretch forming basics. This includes the

machinery used in stretch forming and the various stages involved in stretch forming

sheet metal components. It also included an analysis of the basics mechanics of stretch

forming. Furthermore, surface geometry classifications have been presented which may

provide useful for future research.

The following chapter provides more details on the specific problems that have been

addressed by prior research at MIT. The topics covered in the next chapter include those

that are peripheral, but pertinent to the shape control algorithms researched in this thesis.
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Chapter 3 : Research Background
Stretch forming in the aerospace industry has been plagued by three primary problems.

First, the process is extremely capital intensive, which adds significant costs and delays

to operations. Second, the development of stretch forming dies has long been more of an

art than a science. This generally leads to poorly quality parts and lengthy product

development cycles. Finally, the conventional methods used to control the stretch

forming process lead to excessive process variation. This chapter provides details of how

prior research has addressed these issues.

Issue # 1: Excessive Capital Costs for Stretch Forming
The stretch forming process is extremely capital intensive. One can see from Figure 1-1,

that it takes many different types of skins to cover the average airplane. Traditionally,

each of these skins has been associated with at least one rigid tool as shown in Figure 3-1.

Low production volumes and extremely large product variety mean that large amounts of

storage space are required to contain many costly dies. This also suggests that excessive

amounts of non-value added time is spent retrieving dies and changing the stretch press

from one die to another whenever a different part is required.

Figure 3-1: Typical rigid stretch forming tool

To address this issue, prior research by MIT [Olsen, 1980], [Walczyk,1981, 1999, 1999],

[Goh, 1984], [Robinson, 1987], [Knapke, 1988], [Eigen, 1992], [Boas, 1997] and

Northrop Grumman [Papazian, 1999] produced a flexible tool capable of replacing
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numerous rigid tools. In part, this was done to reduce the cost associated with die

manufacturing, die changeovers, part proliferation, and die storage. The traditional,

smooth, rigid die like the one shown in Figure 3-1 is replaced with a re-configurable die

created from a grid of spherical tipped, square pins as shown in Figure 3-2 and Figure

3-3. The individual pins that make these dies can be moved independently, which allows

this die to change shape.

Figure 3-2: Forming surface of MIT, lab scale, re-configurable tool [Valjavec, 1999]

Die Surface Movable Pins
(Comprised of all pins) (Controlled by individual motors)

Figure 3-3: Forming surface of Northrop Grumman / MIT, production scale, re-configurable tool
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To prevent the discrete, die surface of the re-configurable tool from creating 'dimples' in

the sheet metal surface, an interpolator is placed between the die and the sheet. The

interpolator is an elastomeric material that is used to distribute the contact pressure

evenly about the sheet metal to die interface. This prevents the sheet metal parts from

taking on a dimpled surface like the die. A drawing representing the placement of the

interpolator over spherical capped pins is shown in Figure 3-4. A lubricant, or Teflon

sheets are also placed between the interpolator and the sheet metal to reduce the effects of

friction.

STRETCH
FORCE

SHEET METAL

+
STRETCH

FORCE

Figure 3-4: Interface between die, interpolator and sheet metal

There are several benefits to using a re-configurable tool. The most visible benefits are

reductions in the number of required dies, storage space, and die changeover time.

However, the re-configurable tool creates avenues for addressing other problems that

have plagued the stretch forming process within the aerospace industry. Die shape can

now be adjusted in a much shorter time frame, therefore an iterative approach to defining

springback compensated die geometry may be used to replace or assist resource intensive

analytic methods.
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Issue # 2: Difficulty in Predicting Correct Die Shape
For developable part geometries, the mechanics of springback can be evaluated with

relative ease. However, uncertainties about exact material properties and process

parameters limit the usefulness of such approaches in predicting springback compensated

die shapes. These situations are complicated further when non-developable shapes are

desired. In lieu of analytical methods, die designers have traditionally used experience

and guesswork to determine what shape to make a given die. This means that the die

development process is typified by time-consuming die rework procedures as shown in

Figure 3-5 or poor quality parts when designers are imperfect.

Initial Die Design
(FEA, Net Shape,
or Guesswork)

Rework Die

Die Manufacture & q
Qualification 4

Is IDie No

Acceptable?

Yes

Die Development
Complete I

Figure 3-5: Rework Procedure

In recent years, die design has improved through the use of finite element analysis, which

aids design engineers in predicting the correct, compensated die shape. The output plot

shown in Figure 3-6 is from ABAQUS, one such finite element analysis program. The
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Spring Forward Algorithm developed at MIT [Socrate, 1996] is an approach to die design

that relies heavily on the use of FEA. In the Spring Forward Algorithm, a part is formed

over a die with the reference part shape in simulation. The elastic springback of the part

is measured and then subtracted from the reference part shape. This springback

compensated shape is then used as the die shape in a real forming trial. While these

approaches are a great improvement over guesswork, they do require significant

engineering resources for the design of every die. Their success is also directly tied to

the how well the design engineer estimates the specific stretch forming process

parameters and material properties that will be used with a given die. Such estimates are

difficult to make accurately.

TIRE COMPLETED IN TRI$ ST'EP I .6 D TIME 3.00
ABAQVS VERSrlNh 5.8-12 DATE: 31-JAN-2001 TINE: 12:5Ic29

Figure 3-6: sample output of ABAQUS FEA

An in-process algorithmic approach to defining die shapes is made very attractive by the

uncertainty of material and process parameters, and the amount engineering resource

required to use FEA techniques effectively. The availability of a re-configurable tool

also makes such an approach feasible and relatively easy to implement. It was these
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factors that led Webb [1981,1987], Osterhout [1991], and Vaijavec [1999] to the

development of the algorithms detailed in this thesis.

Issue # 3: Excessive Shape Variation in Stretch Forming
The third problem is excessive variation in the geometries of produced parts. A lack of

standard operating procedures (SOP's) and the choice of methods used to control the

stretch forming process create excessive variation in practice [Parris, 1996]. The

trajectory of the stretch forming process is often controlled by monitoring the pressure in

the machine's hydraulic cylinders, the displacement of the hydraulic cylinder's, or even

through the operator's rough, visual estimates of the process. The inherent variation

associated with these control methods exacerbates the variation seen in parts formed

under such control schemes. Work performed at MIT by Parris [1996] and Valentin

[1999] has shown that implementing standard operating procedures and monitoring

material strain levels can reduce process variation significantly.

1.2

1

SOP
Displacement Control

SOP
Strain Control

E

0

0

0.

0

.

0

0z

0.8 -

0.6 -

0.4 -

0.2 -

0-
No SOP

Force Control
SOP

Force Control

Figure 3-7: Variation levels associated with different process control strategies
(SOP: Standard Operating Procedure)
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The results of research performed by Andrew Parris [1996] on the variation levels

associated with different control schemes are shown in Figure 3-7. The basic argument

for using strain control can be explained by viewing the stress strain curve shown in

Figure 3-8 [Hardt et al. 2001]. The stretch forming process generally requires all of the

sheet metal to be stressed well into the plastic region. The figure depicts how slight

variations in stress are associated with much larger variations in strain at these points of

the stress-strain curve. When the stretch forming process is operated under force control,

it is effectively measuring an integrated stress value over the cross section of the sheet.

Minor variations in the measured force level are associated with much greater variations

in the corresponding strain state of the material. The opposite is true when strain is

measured.

Displacement is sometimes controlled during stretch forming as it is linked to the strain

value of the sheet. Controlling displacement can be problematic as it is difficult to

discern what portion of measured displacements are associated with the elongation of the

sheet metal, and which portions are associated with the flexing of the stretch forming

machine structure. Approaches that use displacement control also require significant

engineering resources to define trajectories of all of the axes involved with the stretch

forming process.
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A

Stress
variation

Strain variation

Figure 3-8: Stress - Strain curve sensitivities

Summary
The problems associated with stretch forming are classified into three categories. These

categories include the large number of dies required, the difficulty associated with die

design and the process variation associated with conventional stretch forming control

modes. Prior research performed by MIT and Northrop Grumman has addressed these

issues through the development of a reconfigurable die that can replace numerous fixed

dies. This reconfigurable tool made possible the use of closed loop shape control

algorithms for die design, based on an in-process, cycle-to-cycle shape measurement.

This research builds on these shape control algorithms. Prior research has also identified

control modes that minimize process variation [Parris, 1991; Valentin, 1999]. This

becomes critical to the shape control algorithms as it they can sometime amplify process

variation [Siu, 2001].
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Chapter 4 : The Generic Algorithm Structure

In this chapter, a general framework for all of the closed loop shape control algorithms is

presented. This framework is presented graphically, through recursive equations, and

through the context of a discrete control system. These frameworks provide a means to

quantify the expected performance of the algorithm. Additionally, some implementation

issues common to all forms of the algorithm are presented.

Stretch forming process model

A model of the stretch forming process is first developed to help understand how the

algorithm attempts to find the appropriate die shape. The stretch forming process is

decomposed into the following categories: input, equipment, material, and output. These

categories are shown in Figure 4-1. The equipment is further broken down into

equipment properties and states, which collectively represent how the stretch forming

process applies energy to the material. The material is also defined by its various

properties and states, which quantify how material is affected by the energy applied to it.

Some of the various equipment and material properties and states are provided in Figure

4-2.

propetes Ma perties OTU
states P- states - Geometry

- Properties

Figure 4-1: Stretch forming process model

Properties Die Geometry Yield Stress
Structural Geometry Elastic modulus
Structural Stiffness Strain Hardening Coefficient

States Hyd. Cylinder Pressure Net Stress or Strain
Hyd. Cylinder Positions Bending Moment

Figure 4-2: Some stretch forming process parameters
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Controlling the geometry output of this process has been the historical problem and is

thus the primary concern of the algorithm. Die geometry is the equipment property with

the most impact on the output part geometry. It is also the one property that can be

readily controlled through the discrete die. For these reasons, it is chosen as the variable

to feedback and modulate in attempts to achieve a desired output geometry. Attempts are

made to keep all other equipment/material properties and states constant from one

forming cycle to the next in the algorithm. Figure 4-3 depicts errors in the process

output geometry (part shape) being fed back to change the equipment property (die

shape) in effort to correct the output geometry.

INPUTS Equipment ENERGY Material OTU
- properties - properties -OTry

- -states -states - Peopere
- Properties

Geometry

Figure 4-3: Stretch forming process model with feedback

Algorithm Model
Over the past 15 years, the general form of the die prediction algorithm has maintained

the same basic structure. However, the algorithm has been applied to different processes

by Webb [1981, 1987], Osterhout [1991] and Valjavec [1999]. The goal of the algorithm

has always been to find the correct compensated die shape required to form a given part

shape. Here, die and part shape are mentioned in generic terms, meaning they can reflect

any parameter that is used to define a die or part shape in its entirety, or a collection of

parameters used to define the die or part shape.

A flowchart depicting the general concept of the algorithm is shown in Figure 4-4. The

process begins by taking the best guess at the appropriate die shape. The best guess can

be made with finite element analysis, an evaluation of historical data, intuition or simply

by choosing a net shape die as a starting shape. A part is then formed on this die and then
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compared to the desired part. If the difference between the desired part and the first

formed part (the part error) is within acceptable bounds, the process is terminated and the

algorithm is not used. However, if the errors are not acceptable, the die shape is adjusted

by a scaled factor of the previous part errors. The scaling factor that is used can be

arbitrarily set to a value of unity, or can be defined by knowledge of the appropriate

process physics, by historical data, or by system identification techniques performed on

similar die and part shapes. A second part is then formed with the updated die shape and

differences between the second part and the desired part are measured. The algorithm

repeats in this manner until an acceptable part is made.

Make Prediction of
Springback

Compensated Die
Shape

Stretch Form a Part Predict the
on the Current Compensated Die

Prediction of the with Shape Control
Correct Die Shape Algorithm

no

Compare Formed
Part to the Desired Is Part Terminate
Part by Calculating Acceptable yes Algorithm

Errors

Figure 4-4: Block diagram of generic algorithm structure

A recursive equation is constructed to represent this form of the algorithm. It is shown in

Equation 4-1. The difference between the target part and a formed part is the part error

(e) as shown by Equation 4-2. This equation can be substituted into Equation 4-1, which

produces Equation 4-3.
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di = di- _+ g c (Pref - Pi-1 )

Equation 4-1

Or

Idi 1di-1 1, 9C 1,2 9C 1,MN9C 1 Pref I1Ei-1

+ 2i-1 2,1 gC 2,2 C 2 Pref 2 i-1

MNd_ MNd-1 MN,1 9c MNMNgC _ MNPref _ MNPi-1_
(MN,1) (MN,1) (MN,MN) (MN,1) (MN,1)

Where:
di = vector representing die shape for the i iteration
p = vector representing part shape for the ith iteration
i = iteration counter
Pref = vector representing reference part shape
gc = matrix of controller gain

It is helpful to view Equation 4-1 in vector / matrix format as shown below it. Here, each

collection of die and part variables are contained in a column vector. For example, a die

that consists of a grid of M by N pins is sometimes defined by the position of each of its

pins. In this case there are M x N pins. While these pins are in a matrix form in the tool,

there are shown as a column vector in Equation 4-1. The coefficients of the part and die

values define which specific points of the part or they represent.

However, the controller gains are contained in matrix that has dimensions MN by MN.

This is because a gain value is needed to relate every part data point to every die data

point. The coefficients for these gain values indicate which particular part and die data

points that are being related. The primary diagonal of this matrix contains gain values

that relate a data point in a part to the corresponding point in the die. The off-diagonal

terms related part data points to different die data points. These terms couple the action

of one part data point to another die data point.
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e = Pef - P

Equation 4-2

Or

2 i

.MNei
(MN,1)

1 Pref

2 Pref

MN Pref
(MN,1)

lpi

2 P

_MN Pi
(MN,1)

Where:
e = variable(s) representing error of the i part

di = d _1 + gcei-1

Equation 4-3

Or

2 9C 1,MNgC

2 9C

MNMN gC

(MN,MN)

+

Idi

_MNdi_
(MN,1)

1 i-1

2di-I

MNdi-1
(MN,1)

_MN,1 C

x

MNei-1
(MN,1)
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Or alternatively, the change in die can simply be represented by Equation 4-4.

Ad- =gee

Equation 4-4

Or

1Ad

2 Ad

_MN i_
(MN,1)

1,MNgC1MIC

2,1 9C

_MN,1 9C MN,MNgC
(MN,MN)

x

1 i-I

2 ei-1

_MN ei-1
(MN,1)

Where:
Adi = vector representing change to the i' die

This recursive equation represents the feedback of part geometry information shown in

Figure 4-3.

Schematic Process Model
Graphical models can be constructed for cases where one parameter is used to define the

geometry of an entire part. Cylindrical parts of constant curvature are examples of this as

they can be characterized by their curvature alone. Such a model is shown in Figure 4-5

when the assumption is made that other material and process characteristics remain

constant, such as the final strain state or the material properties.
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d*
"d2 " is the algorithm

predicted die

Die
Geometry

-- Ad,

Figure 4-5: Schematic model of algorithm

Here the physical relationship between die geometry (d) and part geometry (p) is

represented by the thick curve shown in the graph. While this relationship can be

determined analytically for developable sheets of constant curvature, it is treated as

unknown in this example. The goal is to find the correct die shape (d*) that will create

the target part geometry (pre). Because of springback, the line in Figure 4-5 will

generally lie below the line with unity slope that crosses through the origin. The first

guess at die shape is represented by (dl) and the corresponding part is shown by (p]). The

difference between the target part and the first formed part is calculated (el) and then

these errors are multiplied by weighting factors (gc) to define how much the die should

be adjusted. In this example, the weighting factor(s) are arbitrarily set to unity. The

weighting factor (gp) can be interpreted as a guess at the local slope of the physical

relationship between part and die geometry. The resulting die prediction is the

intersection between the assumed plant gains (gp) and the reference part (pref). This is

denoted in the figure by (d2). This figure suggests that an approach that identifies the
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slope of the physical part/die relationship may provide a more accurate prediction (one

closer to d*) and converge in fewer trials.

Control system view
The algorithm is now placed into the context of a discrete control system. The discrete

control system framework is chosen because it allows us to apply established system

analysis tools to the algorithm. This allows algorithm performance to be more easily

quantified and also provides some insight as to how the algorithm functions. The

framework of this system is shown in Figure 4-6.

prei ei-1 -di_ di pi

Controller d- -1 Plant

Unit Delay

pi-I z-1I

Unit Delay

Figure 4-6: Control system view of algorithm

Here the process again begins with (di) being the initial 'best guess' at the die shape.

This die is used to create the first part (pi). The stretch forming process is represented by

gain factors associated with the 'plant' (gp). With the first part formed, the first cycle of

the process is complete. The index is thus changed from (i=1) to (i=2) making the first

part (pi.1 ). This is represented in the schematic by the z-transform unit delay (z-1). Errors

(ei.u) are then calculated for (pi.j), and multiplied by the controller gain factors (gc). The

controller uses the errors and its gain factors to define what changes should be made to

the die (Adi). These changes are then added to the previous die shape (dt.1) to form the

next die shape (di). The additional unit delay in this portion of the schematic represents
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the memory the system has of the prior die shape. A new part is formed and the cycle

continues.

Steady state error
It is possible to determine whether a steady state error is to be expected from the structure

of the control loop. The first step in understanding this is to calculate the closed loop

transfer function. This is performed in Equation 4-5 through Equation 4-7.

gcgp
P _ 1- Z-1

Pef 1+ gCgP'
1 - z

Equation 4-5

Pref 1-z-1 +g cz 1

Equation 4-6

_ _ cgPz

Pref z-1+g cP

Equation 4-7

The limit of the closed loop transfer function, multiplied by z and the unit step input is

then taken as z approaches unity (this is represented by Equation 4-8). The value

produced is unity, which means the desired output will match the input and no steady

state error is expected. This is possible because the algorithm is adding the errors of the

last part formed to those from all previous parts formed. This "integrating" effect allows

convergence to a zero, steady state error. It should be noted that the algorithm takes the

general form of a proportional - integrating controller (PI).
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limZ(Z-1(Z t c;PZ Z
Z -1+ ggP )Z

Equation 4-8

Response time
The root locus method can be used to understand the effect of system controller gains on

the response of the closed loop system. To perform a root locus analysis, the open loop

transfer function must first be calculated to create the root locus plot. Equation 4-9

reflects this transfer function.

A- gCgPZ

Equation 4-9

This open loop transfer function has two poles, one located at one and the other at zero on

the real axis. However, the pole located at zero is cancelled by the zero in the transfer

function, also located at zero on the real axis. This effectively leaves one pole located at

one on the real axis. The root locus for all closed loop gain values is thus a line

extending toward negative infinity on the real axis as shown in Figure 4-7. This model

assumes that gc and gp are system gains without their own dynamics.
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Figure 4-7: Root locus of die configuration algorithm

For loop gains ranging between zero and unity, the root locus suggest the response will

exhibit an over damped behavior as depicted in Figure 4-8. These points lie on the real

axis of the root locus plot between Z=1 and Z=O. The response time will be shorter for

closed loop gains closer to unity, which represents points closer to the center of the unit

circle.
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Output (GcGp=1.75)

Figure 4-8: discrete, system responses

A closed loop gain value of unity provides the desired system dynamics of a dead-beat

controller as shown in Figure 4-8. A controller is known as a 'dead beat' controller if it

converges in a single iteration. This point lies in the center of the unit circle on the root

locus plot.
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Closed loop gains between values of one and two will cause the system to respond in the

manner of an under damped system as shown in Figure 4-8. Closed loop gain values

closer to unity one will converge faster and exhibit less overshoot. These points lie on

the real axis of the root locus between z=-1 and z=O.

The system is conditionally stable at closed loop gain values of two, and the system is

unstable beyond this value.

Disturbance Rejection
Another measure of system performance is how well it can reject unwanted disturbances.

To better understand this, disturbances are modeled in the system as additive inputs. This

is shown in Figure 4-9.

disturbance

pref ei-I Ac + di + t A

Controller di.1 ~ z_1 Plant

Unit Delay

pi- 
t zDela

Unit Delay

Figure 4-9: Control schematic for evaluating disturbance effects

First, the case of a constant disturbance is considered. Consistent, unexpected events in

the forming process can act as constant disturbances. A physical example of a constant

disturbance is a consistently mis-aligned forming tooling. To calculate the steady state

effect of a constant disturbance, the limit of the closed loop disturbance transfer function

is calculated as z goes to unity. The result defines the ratio between the output and the

disturbance. This is performed in Equation 4-10 through Equation 4-13.
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1
dist 1+ gcgpz

1--

Equation 4-10

Where:
dist = value of disturbance

Pi _ 1z
p1 - - -

dist 1-z +gc gpz1

Equation 4-11

p, z-1
dist z-1+gcgp

Equation 4-12

lim+ 1 (z- ( I z-1 z-1 =
z-1+gcgp) Z-1=O

Equation 4-13

The resulting value of zero indicates that a constant disturbance will have no effect on the

steady state outcome of the algorithm. However, the outcome is different when a varying

disturbance is considered. If the varying disturbance is an un-correlated, random process

then each value is independent of previous values. The system output will at best

represent the error from the previous cycle of the algorithm. This is best understood by

examining the recursive form of the algorithm in Equation 4-1. This equation can be

modified to the form shown in Equation 4-14 when the error is comprised only of the

disturbance.
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Adi = g C * disti_

Equation 4-14

Where:
Disti-I = value of disturbance at previous cycle

In the case of un-correlated, random disturbances, each successive value of the

disturbance sequence is probably different and knowing prior values of the disturbance

will not help in predicting the proper outcome. In many cases, high controller gains can

have the adverse effect of increasing the variability of such uncorrelated disturbances

[Siu, 2001].

In summary, the feedback structure of the algorithm provides a very effective mechanism

for eliminating unwanted trends in the stretch forming process. However, this same

mechanism amplifies the random, un-correlated noise that is found within the stretch

forming process.

Common Implementation Elements
All of the forms of the algorithms face some common issues associated with

implementation. These primarily include the way which the part and die are represented

mathematically and what means are used to insure that these representations are accurate.

Geometry Parameters
In the simplest manifestations of the algorithm for constant curvature parts and dies, the

die and part shape parameters di and pi are simply the curvature of the ith die and part.

For more complex part shapes, the vertical displacements of points on a surface similar to

the part are used to represent the component as represented in Figure 4-10. The surface

shown in this figure represents a formed sheet that has been aligned with the tool it was

formed on. The stem points in the figure represent discrete 'z' coordinate measurements

of the surface. These points can be measured on a grid identical to that of the grid of the

re-configurable tool or they may be taken on much finer grids. The dies are similarly

represented by the spatial, vertical displacements of the individual pins that make up the

shape of the die.
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Figure 4-10: Part and Die shape parameters

Surface Fitting
Formed parts are generally measured using a coordinate measurement machine (CMM)

similar to that shown in Figure 4-11. In this case, the output of the measurement process

is a cloud of Cartesian points that represent the formed part. The CMM may be directed

to measure a part on a grid that is spaced identically to the re-configurable tool, or any

other desired grid of data points. It is however highly unlikely that the grid of measured

points will coincide with the corresponding location of the tool on which it was formed.

There thus exists a need to interpolate between the points measured by the CMM such

that the part can be registered to the tool. Different approaches have been used to

interpolate these data points. Bi-cubic spline interpolation techniques are however the

techniques that have been employed most recently and are also the techniques used in this

research. Most of various surface-fitting techniques used have the added benefit of

smoothing the output data by acting as a low pass filter. This helps reduce some the noise

associated with the measurement process. Some recent applications of the algorithm
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have attempted to utilize Accordion Fringe Interferometry 3 (AFI) for part measurement.

AFI can produce much denser point clouds and may allow great improvements in the

surface fitting routines.

Figure 4-11: Lab Scale Coordinate Measuring Machine

Part Registration
Part registration is the process through which a formed, measured part is aligned with

respect to the die it was formed on. In laboratory practice, each formed part is marked

with a registration mark during the forming process. This mark orients the part relative to

the die on which it was formed. The mark also serves as a common reference point for

different parts, including the reference part. For prior lab scale implementations of the

algorithm performed by Valjavec [1999], one reference point has been used for each part

as shown in Figure 4-12. Using one reference point fixes each part in only two of the six

3AFI technology is currently under development by Dimensional Photonics Incorporated; Bedford, MA
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possible degrees of freedom. Each part is still free to rotate about the x, y, and z-axis and

also to translate along the z-axis. In order to fix the remaining four axes, the parts are

generally fit to the reference part by iteratively adjusting the z-axis translation and the x,

y, z-axis rotations until the root mean square (RMS) error between the part and the

reference shape has been minimized. A grid of points coincident with the grid of pins in

the re-configurable tool can now be created since the part has been registered to the

reference shape. This grid of points is then used to define the formed part.

Figure 4-12: Reference mark used with MIT stretch forming press

Error Measurements
Error calculations can be made when formed parts and the target part shape have been

registered in an identical manner. These calculations are performed by taking the

difference between the z-coordinate component of the tih part and the target reference part

as reflected in Equation 4-15.

e= Pe - A

Equation 4-15

1,Nei 1,1 Pref

2,1 Pref
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The error for each part is thus comprised of an entire grid of points that is the same size

as the grid used to define the parts and dies. It is most useful to view these grids of points

as an error surface, as shown in Figure 4-13. The matrix form shown above should only

be used for viewing. It is critical that errors are in column vector form as shown in

Equation 4-2 when they are multiplied by system gains.

0.3,.. -

0.2,.. -

-0.1 ---

4.... .....-.....-.. 860

20 -- 40
20

n 0 0
m

Figure 4-13: Error surface

It is also useful to condense the error of one part into a single scalar value that can be

monitored for part quality. Past experiments and recent experiments documented in this

thesis use the minimum Root Mean Square (RMS) error value, and maximum error value

for this purpose. The value for RMS error is defined by Equation 4-16.
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M N)2

11 ((m,n)2

RMS Error = ' ="

MN

Equation 4-16

Where:
M = number of measured points in the x-direction
N = number of measured points in the y-direction
m = counter for the x-direction
n = counter for the y-direction
er,,n) = error at the point x=m, y=n

It is noted that the RMS error value can change if the error surface, or equivalently the

formed part or reference part, is translated along the z-axis as shown in Figure 4-14. In

this case the average value of the error (F) has changed. Such a change in the average

value of the error will also change the RMS error value.

0.1
Z -axis

0 translation
resulting in a

-0.1 ,. -different
average error

60

40 40
20 0 20 406

n m

Figure 4-14: Altering the average error (2) value by translating along the z-axis
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The minimum RMS error does not depend on the average error and will always be the

same value for a given part. It thus proves to be a good indicator of how well a part

conforms to the reference part. The minimum RMS error is calculated with Equation

4-17, and is effectively the standard deviation of the error. It is noted that the previously

mentioned registration procedure should orient the part such that the average error (e) is

equal to zero.

M N

Minimum RMS Error = - -
MN

Equation 4-17

Maximum error is calculated by finding the difference between the maximum error value

and the minimum error value. This is reflected in Equation 4-18. This value is also

insensitive to the average error value.

Maximum _ Error = Max(e) - Min(e)

Equation 4-18

Summary
This chapter has provided frameworks that all shape control algorithms can be placed

into. These frameworks include graphical models, recursive equations and discrete

control system schematics. The expected performance of the algorithms is also measured

through the tools of discrete control theory. The algorithms are shown to have no

expected steady state error, even to constant disturbances. However, random

disturbances are shown to affect the algorithm adversely.

Some implementation issues common to all forms of the algorithm were also discussed in

this chapter. These issues include the choice of geometry parameters, surface fitting, part

registration and error measurement.
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In the next three chapters, the different forms of the algorithms are evaluated in the

context of the frameworks presented in this chapter.
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Chapter 5 : Discussion of Algorithm #1
In this chapter, the first shape control algorithm developed by Webb [1981] is presented4.

This algorithm is termed algorithm #1 in this research. It is placed into the general

algorithm frameworks of chapter 4. Algorithm #1 is shown to be a relatively simple

algorithm to implement. However, historical performances of algorithm #1 are reviewed

and shown to have less than desirable performance. This sub-optimal performance is

attributed to a lack of system identification and system coupling in the algorithm.

Basic Structure

Webb [1981] is responsible for the initial implementation of the die prediction algorithm.

It was first used for pure stretch formed parts made on a reconfigurable tool. In this

implementation, the generic algorithm defined by Equation 4-1 can be simplified as

shown in Equation 5-1. The control system previously detailed in Figure 4-6 schematic

can also be simplified to that shown in Figure 5-1, where the controller gain matrix is the

identity matrix.

Pref ei-I Ac= d di Ai

Controller -1Plant

d Unit Dea

Unit Delay

pi-1 
z- I

Unit Delay

Figure 5-1: Algorithm #1 control schematic
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di = Idj_, + ea or di =di_1 + e

Equation 5-1

Or

ldi Idi-I 1 0 0 0 lei_,

2d 2di_1 +0 1 0 0 2 ei-l
= + x

' ' 0 0 ' 0 '

_MNdi _MNdi-_ _0 0 0 1_ _MNei-1_
(MN,1) (MN,1) (MNMN) (MN,1)

This is the simplest implementation of the algorithm. Component errors are calculated

once formed parts are measured and registered. If the errors are not below an acceptable

level, they are added to the prior die shape and a new part is formed. Note that the matrix

of controller gains (gc) equal to the identity matrix implies no coupling and no attempt to

understand the true 'process gain' as shown in Figure 4-5.

Implementation
Implementation issues associated with algorithm #1 are limited to the standard surface

fitting and part registration issues which are discussed in Chapter 4.

Historical Experimental Results
Experiments performed by Webb [1981] on stretch formed parts with positive Gaussian

and mean curvature provided positive results as shown in Figure 5-2. Here, the absolute

value of the error, the root mean square error (RMS), and the error at the part center

decreased with each iteration of the algorithm. However, the algorithm generally takes

too many iterations to reach an acceptable error level.
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Figure 5-2: Algorithm #1 results from Webb [1987, p. 59] on match die tooling

Algorithm Concerns

The sluggish response of the algorithm was primarily attributed to two shortcomings of

this approach. First, this approach treats each pin in the tool and the corresponding

portion of the part above it as independent, Single Input - Single Output (SISO) systems.

These systems are coupled to one another. Second, no attempts are made to identify the

relationship between the input and output of the stretch forming plant.

System Coupling
This algorithm treats each pin within the re-configurable tool and the section of the part

that lies directly above it as an independent part of the entire system. This is a reasonable

assumption when the view is limited to the tool. However, a basic understanding of the

forming process suggests this assumption is invalid. Figure 5-3 is a schematic

representing the movement of one pin within a re-configurable tool. It also shows how
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the movement of this one pin might effect both the position of the part directly above the

pin and the neighboring pins. This implies that treating each pin within the tool, and the

part directly above it as a SISO system is a poor assumption because parts can be affected

by moving other pins in their vicinity. The next form of the algorithm includes a means

to accommodate the coupling that occurs between the individual components of the

system.

SHEET MIETAL

INTERPOLATOR

PINS

Figure 5-3: Depiction of system coupling

System Identification
The first algorithm makes no attempt to identify the nature of the system that it is

controlling. From the discrete control system perspective, it sets the controller gains for

each of the independent SISO systems to unity. The system response is entirely up to the

nature of the forming system as no attempts are made to compensate for it. The graphical

example of a system shown in Figure 5-4 helps make this point. Here, the part and die

geometry parameter consist of one element that can define an entire part or die, like

curvature for cylindrical parts. The dark line in Figure 5-4 represents the relationship

between these two parameters.
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Figure 5-4: graphical interpretation of system identification

Without a-priori knowledge of the relationship between the system input (die shape) and

output (part shape), it is assumed that a change in one parameter is equivalent to the

change in the other. This is represented in Figure 5-4, by the dashed line that has a unity

slope value. This assumption leads to the sub-optimal performance experienced with

Algorithm #1. However, if an additional calibration part is formed (P2) on a different die

(d2), the relationship between the change in die parameter and change in part parameter

can be estimated. This concept is shown in by the linear estimation of the lines slope

between the two calibration parts and dies.

Summary
Algorithm #1 is shown to be a relatively simple algorithm to implement. However, it

requires too many iterations to arrive at an acceptable part. Algorithm #1 is believed to

perform slowly because it makes no attempt to identify the system it is controlling and

also makes no attempt to accommodate the coupling in the system it is controlling.

67



68



Chapter 6 : Discussion of Algorithm #2

In this chapter, algorithm #2 is presented. This algorithm addresses the two previously

mentioned areas of concern with algorithm #1. Prior to this research, the operations

involved with algorithm #2 have only been viewed from the frequency domain

perspective. Alternative, spatial domain views are now presented which add insight into

the algorithm. These views allow the coupling introduced by algorithm #2 to be

quantified, and a thus a means to quality check the algorithm. Algorithm #2 is shown to

improve on the performance of algorithm #1, but at the cost of increasing complexity and

sensitivity to noise.

Basic Structure

In order to improve on the algorithm, Webb [1987], Osterhout [1991] and Valjavec

[1999] address two primary areas of concern with algorithm #1. First, steps are taken to

quantify the physical relationship between the part and the die through system

identification techniques. This system identification is then used to calculate appropriate

controller gains to achieve the most desirable system response. This is reflected in the

Figure 6-1 system schematic by the controller block with controller gains (gc) which are

determined by monitoring the plant (Gp). Second, the stretch forming process is modeled

as a coupled system. This is accomplished through the introduction of the Fourier

transform. The algorithm is applied to the part and die representations in the frequency

domain. This provides coupling to the system as a change to a single frequency of a part

or die can affect multiple points about the respective die or part. Figure 6-1 reflects the

addition of coupling by inclusion of the Fourier transform and inverse Fourier transform

blocks to the control schematic.
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Figure 6-1: Algorithm #2 control system schematic
(Note: all variables are Fourier transforms of particular part or die shapes)

This implementation of the algorithm is also described by Equation 6-1 through Equation

6-3, which reflect operations made in the frequency domain, or by Equation 6-4 and

Equation 6-5, where key operations are performed in the spatial domain. In both of these

cases, a full view of the equation is included to help view the differences. The part and

die parameters shown in capital letters reflect frequency domain representations.
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Di = Di_1 + GC(Prf - P_1)

Equation 6-1

Or

D
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P2 i-1

2 'i-

- 9(pi)

- -(Pref)

P2 -P
GP=D2 - D,

Equation 6-2

Gc =6;

Equation 6-3

In the view suggested by Equation 6-1, the multiplication operation of the algorithm is

the same as in the general formula, but the spatial geometry parameters are replaced with

their frequency domain equivalents via the Fourier transform. In this form, the matrix of

controller gains (Gc) shows no off-diagonal values and thus suggests no coupling in this

domain. These controller gains are calculated by taking the inverse of the estimated

'plant' gains as shown by Equation 6-2 and Equation 6-3. This is the view of the

algorithm presented by Webb [1987], Osterhout [1991] and Valjavec [1999].
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As suggested by Equation 6-4, algorithm #2 can be viewed in two different but

equivalent manners. In Equation 6-4, the geometry parameters used to describe the part

are identical to the spatial parameters used in the previous algorithm. However, the

multiplication operation has been replaced with a cyclic convolution. The cyclic

convolution can be calculated through matrix multiplications if the controller gain matrix

(gc) is replaced with an equivalent full, circulant matrix. A full circulant matrix is shown

in the last view of the 'full' equation. This MNxMN matrix is fully populated by

repeating a single MNx1 column vector of information throughout the matrix. This full

circulant matrix thus provides coupling through the non-zero, off-diagonal values

[Strang, 1986].

d i = di_ + gc (D (pre - pi-)

Equation 6-4

Or

Idi dj_ gC 0 0 0 1Pref I P-1
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-I - -1 3(d2 - di)
g =3(P

2 - P1))

Equation 6-5

Linear Systems Background
A review of some linear system principles lays the foundation for investigations into the

system identification and coupling of algorithm #2. Consider the linear, continuous time

system of Figure 6-2. Here, u(t) represents the system input and y(t) is the system output.

u(t) y(t)-- -- - h(t) _

System Input System Output

Linear System

Figure 6-2: Linear, continuous-time system

Now consider the arbitrary input to the system as shown in Figure 6-3. Here the input is

represented as a smooth, continuous-time function (u(t)) as well as a staircase function of

a (N) piecewise constant sections of fixed duration T (denoted u(nT)).

u(t)
u(nT)

1 2 3 n

- T A-

Figure 6-3: System input

It is clear that the representations of the input are identical in the limit, as the period T

approaches zero. Through the staircase representation, the same input is viewed in
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discrete time as a sum of non-overlapping pulses with duration T and each with a specific

time delay (nT) into the system. Thus, the continuous time system of Figure 6-2 can be

represented by the discrete time system shown in Figure 6-4.

u(nT) 10 hT(nT) y(nT)

System Input System Output

Discrete
Linear System

Figure 6-4: Discrete time system

The Superposition principle of linear systems states that the total system response to the

staircase input can be written as the sum of the responses to the individual pulses that

comprise the input. This is expressed in Equation 6-6 where hT is the response to the unit

impulse.

N-1

y(nT) = u(kT)hT [(n - k)T]
k=O

Equation 6-6

Where:
y(nT) = discrete time system output
u(nT) = discrete time system input
h1(nT) = discrete time impulse response
N = # of points in system input, output and impulse response
T = time duration of each point in discrete system
n = counter defining which output point is being computed
k = counter used during summation

This summation suggests the response for a time less than zero will be zero and that

future components of the input cannot contribute to the sum. In other words, time

responses must be causal; the output cannot anticipate the input.
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The operation defined in Equation 6-6 is alternately known as a discrete convolution and

can be represented more conveniently by the 0 symbol show in Equation 6-7. These

summations state that a system can be entirely characterized by its response to an impulse

function.

N-1

y(nT) I= u(kT)hT [(n - k)T] = u 0 h
k=O

Equation 6-7

It is helpful to view the process of convolution graphically, as is shown in Figure 6-5.

The process begins with a known impulse response and a system input for which the

corresponding system output is desired. To perform the convolution and compute the

output, the impulse response of the system is first folded about the time=O axis and then

laid over the system input. The reversed impulse response is then shifted to the right

until its beginning point (now the point of the response that is furthest to the right) is

located at time ti (t=l). The folded impulse response is then multiplied by the system

input and the total product is summed. This summation represents the system output

value at the corresponding time. The process of shifting, multiplying and summing is

repeated. The resulting values represent the total system response.
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Convolution for n=2 System Output for n=1 through n=2

- y(nT) -------- 1
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2T
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Convolution for n=3 System Output for n=1 through n=3

NO y(nT)1

123

-* 3T -42-3-

Complete System Output

y(nT)|

1 2 3 4 5

Figure 6-5: graphical depiction of convolution

Periodic System
The parts and dies used in the algorithm are of identical finite length and width. The

impulse response used by the algorithm is also the size of die and part. However, the

convolution produces an output that is twice the number of finite units comprising die or

part minus one. This presents a problem, as the algorithm requires input and output of

identical size. To handle this all dies, parts, and impulse responses are treated as cyclic

events. This means that each shape or response is treated as though it repeats at a period

equal to the size of the part / die. This is shown graphically in Figure 6-6.

77

Convolution for n=3 |I System Output for n=1 through n=3



*II*II m ~ *'." - -, -, -. - - -

Repeated
-+N "Periodic" 4-

Signal

-- N Signal 4-

Figure 6-6: Assumption of periodicity

The process of convolution for a periodic system is similar to that of the standard

convolution. However, the cyclic nature allows us to make some shortcuts. The process

of convolution is again shown graphically in Figure 6-7, but this time a cyclical input is

used in the evaluation. The output of the system also displays a cyclic response of a

period identical to the input. The system output can thus be characterized entirely without

actually convolving the system response over a stream of repeated, identical system

inputs. Wrapping the impulse response of the system around the system input during the

convolution performs this shortcut. This is shown graphically in Figure 6-8, and the

result is the same cyclic response found if a standard convolution is performed on a

stream of repeated system inputs.

Input (treated as periodic) Impulse Response

u(nT) 1 hT(nT) I

1 2 3 n 1 2 3 n
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Convolution for n=1 (time=nT)

77 ' -----

1 2

I T 4-

3

1

n

Convolution for n=2

I _ _ _ -- - -

n1 2 3

-- 2T 4-

Convolution for n=3

1 2 3

3T 4-

.~~~1

n

Folded Impulse Response

1

y(nT)

Output at n=1

1

1 23 n

OutDut at n=2

y(nTI)

1 2 3F

Output at n=3

1 2 3 n

Figure 6-7: Convolution of a cyclic input
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Convolution for n=1 (time=nT)
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-- 2T 4-

Convolution for n=3
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Cyclic Convolution for n=1

y(nT) LJ1

1 1 2

-- o T 4-

3 n

Cyclic Convolution for n=2

y(nT) 1

1 2 3 n

2T 4-

Cyclic Convolution for n=3

y(nT) 1

1 2
3T

3 n
4-

Figure 6-8: Cyclic convolution

Time based system vs. Spatial based system
Through the idea of the convolution, linear system theory provides a means to introduce

coupling into the algorithm. Linear systems are most typically applied when the

independent variable is time. However, the system here is spatial. This changes little
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except that spatial systems can have a-causal responses, where time based systems

cannot. In other words, a time system cannot anticipate the outcome of an event that will

occur at a later time. However, the output of a spatial system at one point can be affected

by what occurs at points to either side. The cyclic convolution creates an avenue to allow

a-causal responses into the system model. Examples of both types of systems are

provided in Figure 6-9.

impulse response . impulse response
impulse i impulse i

I t I

Causal System A-Causal System

Figure 6-9: Causal and A-Causal Systems

It should be noted that an a-causal response is implicitly introduced to a system when it is

treated as periodic. The final value of an impulse response is effectively next to the first

value in the periodic assumption. Periodic impulse responses are often centered about

zero for easier viewing. An example of this is shown in Figure 6-10.

Original Shifted
Impulse Impulse
Response Response

I I

0 NT 0

Figure 6-10: Centering a 1D Impulse response for easier viewing
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2-Dimensional Convolution
We now have an explanation of the convolution process in the context of a one-

dimensional, cyclic, spatial system. The parts and dies in the stretch forming process

exist as functions of two, independent variables as show in Figure 6-11. We thus need to

extend the convolution to handle cyclic, two-dimensional, spatial systems.

u(mXnY) hx,y(mX,nY) z(mXnY)

System Input System Output

Discrete, 2D,
Spatial,

Linear System

Figure 6-11: Two-dimensional, cyclic, spatial system

The processing is similar to one-dimensional systems. Again, the response of the system

to a unit impulse is needed. When dealing with two-dimensional systems, this impulse

response is often called a Point Spread Function (PSF) [Karu, 1999]. Once the PSF is

known, it is then folded across both of its own axes. The folded PSF is then placed such

that its origin is coincident with the origin of the input. Any portion of the PSF not

directly over a corresponding portion of the input are then wrapped around the edges of

the input. The values of the folded PSF and the system are then multiplied together. The

sum of these multiplications constitutes the system output for this position (m=1,n=1).

The folded PSF is then shifted in one direction such that the origin of the folded PSF now

lies over position (m=l,n=2) of the system input. The product of the two signals is

computed and then summed to define the value of the output signal at position

(m=1,n=2). This process is repeated until the system output is defined for all 'M'

positions in the x-direction and all 'N' positions in the y-direction. This process is

represented by Equation 6-8.
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N-i M-1

z(mX,nY ) = I u(iX, jY)hT I(m -i)X,n - j)Y] = u 0 h
i=0 j=0

Equation 6-8

Where:
X = distance between points in the X direction
Y = distance between points in the Y direction
M = number of points in the x direction
N = number of points in the y direction
m = counter in the x direction
n = counter in the y direction
i = counter in the x direction
j = counter in the y direction

Viewing the Point Spread Function
Viewing the PSF for 2-dimensional, periodic systems can be confusing. The point at the

origin of the 2-dimensional PSF represents the contribution of a point over which it is

placed during the convolution process. The points adjacent to the origin represent the

contributions that those adjacent points will have during the convolution. However, for

periodic systems the points on opposite corners are effectively adjacent to the point at the

origin. Points on any edge are adjacent to the points on opposing edges as well. It is

difficult to visually connect all of the boundaries of the PSF plot. It is difficult to view

how a PSF represent the system response as it is challenging to visually connect all of the

boundaries of the PSF plot. To address this the origin, which typically has the largest

value of the PSF, is shifted to the center for viewing purposes alone. An example of this

is shown in Figure 6-12. A schematic depicting the shifting process is shown in Figure

6-13.
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Figure 6-12: Shifting of the 2-D, periodic PSF to assist viewing
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Figure 6-13: Schematic of 2-D, PSF shifting
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Quantifying Coupling
The system coupling represented in a given PSF is easily seen once the PSF has been

shifted. The center point of the PSF represents the output contribution made by at the

same point in time (space) as the input. The magnitudes of adjacent points represent their

respective contributions to the system output. The PSF's of various systems are shown in

Figure 6-14.

-_ ~System with , 5

- very little
coupling

0..- - -0

10

50 610 a 10

System with
moderate

10- - 'coupling

10

- System with
cyclic coupling

0 0

Figure 6-14: PSF functions displaying coupling
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Benefits of the Fourier Transform
Historically, linear system computation techniques have been performed through

convolutions, although a simpler technique does exist. In this simpler method, system

inputs and impulse response or PSF functions are converted to the frequency domain

through the Fourier transform. Properties of the Fourier transform, primarily the

superposition principle (Equation 6-9) and the convolution identity (Equation 6-10) allow

for computationally simpler work once signals are in their frequency domain

representation. Through the convolution identity, we can see that the computationally

intensive process of convolution is replaced by simple multiplication.

af (x, y) + bh(x, y) <-4 aF (u,v) + bH (u, v)

Equation 6-9

Where:
a & b = constants
f & h = 2 dimensional signals
x &y = spatial, x & y coordinates
F & H = frequency domain representations off & h
u & v =frequencies of F & H

5

f(x, y) ( h(x, y)<->F(u,v)H(u,v)

Equation 6-10
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System Input Convolution System Output

u) h(y(t)
h(t)

Linear System

U(s) H(s) Y(s)

Multiplication

Figure 6-15: Linear system computation methods

The equivalent methods for computing the system output are shown in Figure 6-15.

Today, approaches that compute the convolutions directly are seldom used. Prior to the

1960's, computing the Fourier transform of a signal and the inverse Fourier transform of a

signal cost more computationally than performing a convolution. However, the advent of

the fast Fourier transform by Cooley and Tukey in the 1960's drastically reduced the

computation associated with the Fourier transform. This made the frequency domain

approaches more expedient than direct convolution methods.

System Identification / De-Convolution
System identification is the process of estimating a system h(t) when given its input u(t)

and output y(t). The Fourier transform is extremely useful in performing this task. Once

the input and output of a system are transformed into the frequency domain, they can be

used to define the system that relates them through Equation 6-11. This frequency

domain representation of the system can then be converted back to the spatial domain

where it can serve as an estimate of the system impulse response or PSF as suggested by

Equation 6-12.

87



= Y(s)

U(s)

Equation 6-11

Where:
s =frequency
H = frequency domain representation of system identification
U = frequency domain representation of system input
Y = frequency domain representation of system output

h(t) =!7 1H(s)

Equation 6-12

There is often interest in defining a system that will reproduce the system input x(t) when

it is convolved with the system output y(t). Such a system is said to "de-convolve" the

output from the system. Placing such a de-convolution operation into our system allows

the output to precisely follow the system input as shown in Figure 6-16.

System Convolution System De-convolution System
npu Output Input

u(t) h(t) y(t) f(t) u(t)

Linear Linear
System System

Figure 6-16: Convolution & De-convolution

The same effect is observed if the de-convolution is performed before the system acts on

the input, as shown in Figure 6-17.
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System De-convolution Convolution System
Input Input

U~t) u(t)
u 1)--.- M~) pop- h(t) a ut

Linear Linear
System System

Figure 6-17: De-convolution & convolution

It is noted that convolving any signal with a unit impulse leaves the initial signal intact.

Therefore, the convolution of f(t) and h(t) can be equivalently represented by a unit

impulse at time=O as indicated by Equation 6-13. Once again, frequency domain

techniques are extremely helpful in finding this new signalf(t). Equation 6-13 is easier to

solve when it is viewed in the frequency domain as in Equation 6-14.

f(t) 0 h(t) = (0)
Equation 6-13

Where:

(0)= unit impulse at time zero

F(s)H(s) = 1

Equation 6-14

Equation 6-14 is solved for F(s), represented by Equation 6-15. This F(s) can then be

converted back from the frequency domain through an inverse Fourier transform as

shown in Equation 6-16.
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F(s) =1/H(s)

Equation 6-15

f(t) = T-F(s)

Equation 6-16

Blind De-Convolution
The process of inverting a frequency domain system identification (Equation 6-15) and

converting it back to the time or space domain (Equation 6-16) is alternatively known as

de-convolution. De-convolution is extremely useful in signal and image processing. It

can be used to remove the linear streaking that occurs when an image is captured of an

object moving at a known speed. De-convolution can also be used to decrypt messages

that have been deliberately convolved with a known encryption signal. However, in both

of these cases there is exact knowledge of the system h(t) that initially convolves the

signal. This is not the case with most situations, including the algorithms discussed in

this research. The technique of identifying an impulse response or PSF to de-convolve a

system without exact knowledge of the initial convolving system is known as blind de-

convolution [Karu, 1999]. Blind de-convolution handles additive noise poorly. The

sharp transitions associated with additive noise are amplified greatly through blind de-

convolution [Karu, 1999]. The process of convolution can be viewed as an averaging, or

smoothing process. The process of blind de-convolution then performs an opposite

'sharpening' process. Any sharp transitions already present in the data will be amplified

by the de-convolution 'sharpening' process.

Windowing
In signal or image processing, it is often the case that system identification is made on

finite data sets from systems that are being excited throughout the duration of the data set.

When this is the case, the system response does not always return to its initial value by
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the end of the data set. Figure 6-18 shows examples where a system response truncated

in this manner.

u(nT)

Truncation introduces a
large 'step' when the

signal is treated as
periodic

n

u(nT)

n

Figure 6-18: Truncated system responses

In order to allow processing, finite data sets are treated as periodic signals. The periodic

assumption suggests that the output repeats itself just after the signal terminates. This

can introduce sharp transitions between the end and the beginning of each of the signals

in Figure 6-18. These sharp transitions are amplified like noise through the de-

convolution process. To reduce the effect of this sharp transition, the system outputs are

often multiplied by a 'windowing' function. Such windowing functions remove these

sharp transitions but also change the actual signals being used. An example of a

windowing function is shown in Figure 6-19. Figure 6-20 displays the results of applying

this windowing function to the signals in Figure 6-18.
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function -

Figure 6-19: Windowing Function

u(nT)

n

Figure 6-20: Windowed Functions

Implementation
In practice, the first step to implementing the DTF algorithm is to define the best guess at

the target die geometry. Once this is complete, the calibration dies are chosen. Several

different approaches have been used to define the calibration dies. Valjavec [1999]

utilized a backward difference approach that 'brackets' the first two dies around the best

guess at the target die shape. The calibration dies are then defined by multiplying the

target die shape by constant factor (like 5%) which is reflected in Equation 6-17.
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di = 1.05(d*)

d 2 = 0.95(d,)

Equation 6-17

Where:

d* = initial estimate of springback compensated die

di = die used to form first part

d 2 = die used to form second part

In other implementations, and in the tests performed within this research the first die

shape is set to the best guess target die shape. The second die shape is then identified by

applying algorithm #1, as shown by Equation 6-18.

di = d*
d2 = di + Pre - P

Equation 6-18

Parts are then formed and the resulting components are measured and registered in the

normal manner. The part and die representations are then placed into Equation 6-19 to

form an estimate of the PSF that defines how parts respond to a unit impulse in the die. It

should be noted that several methods to smooth the part representations are sometimes

used before Equation 6-19 is applied. Such smoothing techniques include windowing
5and Welch's method .

5 Welch's method is a technique used to smooth the periodogram representation of a signal
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_31 -3(p2 - P1 )
gp (-3(d2 - di))

Equation 6-19

Where:

gp = estimate of the system PSF

The estimated system PSF is then inverted in the frequency domain and converted back

to the spatial domain to identify a PSF for the controller (gc). This is the process of de-

convolution, which results in a new PSF that will allow part errors to be compensated for.

Equation 6-20 represents the process of blind de-convolution. It is critical to note that the

controller PSF is not simply the inverse of the system PSF. This is emphasized by

Equation 6-21.

- 3(d 2 - d1)

3(P2 - P1 )

Equation 6-20

5-1 (G-1

Equation 6-21

Equation 6-20 provides the frequency domain controller gains (Gc), or equivalently, the

de-convolving PSF (gc) that are used by Equation 6-1 or Equation 6-4, which govern

Algorithm #2. Valjavec [1999] has determined that using the same (gc) value for all

subsequent iterations of algorithm #2 reduces its sensitivity to variation.
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Historical Experimental Results
Valjavec [1999] performed experiments of algorithm #2 on MIT's lab scale stretch

forming press. The common parameters used in these experiments are detailed in Figure

6-21.

Pin size U.5 inch

Stretch Force 6125 lbs.

Blank Material Al 2024-0, 19.5 x 5.5 x 0.063 inches

Final part footprint 5.0 x 5.0 inches

Force trajectory Pre-stretch, wrap, no post stretch

Control mode Force control

Interpolator Elvax 360 (0.535 in. thick) covered with two layers of Teflon

Figure 6-21: Common Parameters for Vaijavec's [1999] tests of algorithm #2

Experiments were carried out on four different target part geometries. These include a

cylinder, a sphere, a saddle, and an ellipsoid. Plots of these target shapes are shown in

Figure 6-22.
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Figure 6-22: Reference shapes for Vaijavec's [1999] experiments

In these experiments, the initial die shape is set equal to the target part shape and then

adjusted for the '/2 inch thick interpolator layer. Algorithm #1 is used to identify the

second die shape. Algorithm #2 is then used to define the geometry of the third and

fourth die. The results of the experiments are shown in Figure 6-23.
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Figure 6-23: Valjavec's [1999] experimental results

It is noted that experiments were carried out until the maximum error fell below the

0.0100 inch level. This was defined as an acceptable error level for this experiment.

However, the sphere experiment was terminated because it failed to converge. This

shape was later determined incapable of being formed on the MIT lab scale machine.

Algorithm Concerns
The results detailed in Figure 6-23 are an improvement over results from similar tests

performed with algorithm #1. However, experiences in the production scale environment

have not been able to replicate this performance. Northrop Grumman has performed a

limited number of forming trials on a production scale reconfigurable tool. The die

shapes predicted by data collected in these trials have been flawed. Excessive variation

levels are believed to have caused these problems.
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Superposition
Linear system theory requires the system being modeled to obey the superposition

principle. Superposition states that the system input can be modeled as a set of offset,

scaled impulses. These impulses each produce a response defined by the impulse

response or PSF of the system. The output of the system will be the sum of the responses

to each delayed and scaled input. In the context of stretch forming on a discrete die, this

implies that each pin, when raised alone, will cause a response that is a linear function of

the system PSF.

However, the interpolating layer used in stretch forming is known to introduce non-

linearity into the system through a region of dead band. This dead band means that a

system input has to reach a certain level before it is recognized in the output.

Experiments performed by Valjavec [1999] on MIT's strech-forming press show that the

affect of raising a single pin is not apparent in system output until it is raised above 0.01

inches. However, Valjavec's [1999] experiment also shows changes in the displacement

of the part above the moved pin is roughly linear once the dead band threshold has been

passed. Experiments have not been performed to identify the shape of the responses seen

from raising a single pin by different amounts. Superposition implies that the responses

should have similar shapes, regardless of how much an individual pin is raised, or at what

portion of the part it is raised in.

System Identification
There are some general difficulties associated with system identification. The accuracy

of the system identification depends on several variables, including the linearity of the

relationship between the die and part, how close the calibration dies are to the target die,

and how distant the calibration dies are from one another.

Figure 6-24 displays a case where the calibration dies are spread far apart in a region

where the relationship between part and die display non-linearity. In this case, the system

identification will predict a die shape that is less accurate than one made in a more linear

range.
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Figure 6-24: system identification performed with calibration die shapes far apart

Figure 6-25 depicts a system identification performed on the same system but with

calibration dies that are closer to the target die shape. Error bars have been added to the

figure to represent variation in the part forming and measuring process. The dotted lines

represent the different system identifications that could result from the same system. It is

apparent that the closer the calibration dies, the greater the effect noise will have on the

accuracy of the system identification and subsequent die predictions.
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Figure 6-25: System identification performed with close calibration dies and noise

In the absence of variation, calibration dies closer to each other and to the target die will

produce a better system identification. However, the presence of variation can

contaminate die guesses that are close to one another. Thus there exists trade-offs in

choosing the best location for calibration dies. One of these tradeoffs is the adjustment of

the spread between the two initial calibration die shapes. Another tradeoff is the relative

position of these calibration dies to the apparent location of the target die. Research

performed by Marko Valjavek [1999] has shown that the optimal choice is calibration

dies centered about the apparent location of the correct die shape. These calibration dies

are offset from the apparent location of the correct die shape by 5% or 10% in either

direction.

Summary
This chapter has presented algorithm #2 in the context of the frameworks presented in

chapter 4. New insights are provided into algorithm #2 by viewing its operations as

convolutions in the spatial domain instead of multiplications in the frequency domain.

These insights allow the system coupling modeled by algorithm #2 to be quantified and

thus quality checked. Algorithm #2 is shown through historical results to have improved
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on the performance of algorithm #1. However, it also increases the complexity of the

algorithm and its sensitivity to noise.
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Chapter 7: Presentation and Discussion of Algorithm #3

In this chapter, a new algorithm is presented that uses system identification in a less

complex manner than algorithm #2. This algorithm is placed into the frameworks

presented in chapter 4 where it is analyzed. It is shown to have sensitivity to how parts

and dies are referenced. Neither algorithm #1 nor #2 have this concern. However, a

heuristic is developed that eliminates this issue. In summary, algorithm #3 addresses the

concerns of algorithm #1 in a simpler manner than algorithm #2 without sacrificing

performance.

Basic Structure
Algorithm #2 introduces the concept of system identification and system coupling to

improve the convergence of algorithm #1. It also adds a great deal of complexity to the

algorithm and increases the sensitivity to variation. The difficulties that high variation

levels present to the process of blind de-convolution are believed to be responsible for

problems experienced during implementation of algorithm #2 into production. For these

reasons, algorithm #3 was developed to have the benefits of system identification without

the difficulties associated with convolution and de-convolution. Algorithm #3 is charted

along with algorithms #1 and #2 in Figure 7-1 where the differences can be noted. The

basic control schematic of algorithm #3 is also shown in Figure 7-2.

0

0

0

Algorithm #1 Algorithm #3

- No System ID - System ID

- No Coupling - No Coupling

Algorithm #2
"Deformation Transfer

Function"

- System ID

- Coupling via
Convolution

No Identification Identification

Figure 7-1: Shape control algorithms
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pref ei72 Adi d Pi

Controller iale a -1 Plant

Unit Delay

Pi-I z~1

Unit Delay

Figure 7-2: Algorithm #3 control schematic
(Note: all variables are spatial coordinates)

Algorithm #3 is governed by Equation 7-1, which has a form identical to the general

Equation 4-1. Once again, the full view of the equation is provided to help with

understanding. It is critical to note that the off-diagonal values of the gain matrix are all

zero. However, each diagonal values each represent a gain value that is identified with

Equation 7-2.

di = di_1 + g c (Pref Pi-1)

Equation 7-1

Or

Sig 0 0 0 1 Pref 1 Pi-1

2 di 2d_+ 0 2 gC 0 0 2Pref _ 2-
I ' 0 0 ' 0 ' '

_MNdi_ _MNdll_ 0 0 0 MNgC_ MNPref_ _MNPi-_
(MN,1) (MN,1) (MNMN) (MN,1) (MN,1)
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C -- d2 -d,
P2 1P2~-P1

Equation 7-2

Implementation

System Identification
System identification generally refers to the linear system techniques used by algorithm

#2. These techniques add coupling through convolution, but they also add significant

complexity and sensitivity to variation. The premise behind algorithm #3 is to use a

much simpler form of system identification to avoid the complexities and sensitivities of

algorithm #2.

Algorithm #3, like algorithm #1 treats each individual pin and the corresponding part that

lies directly above it as a SISO system. However, algorithm #3 tunes the gains for each

of these SISO systems by evaluating the behavior of the entire system. It views the

surfaces of the dies and parts as if they represent a collection of SISO systems. The

characteristics of these collective SISO systems are calculated through Equation 7-3 and

represented by a gain values (gp) associated with the forming process

P2-P1

d2 -d1

Equation 7-3

The controller gains are then calculated by inverting the identified plant gains as shown

in Equation 7-4.
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- -- U.- - .I~.

-1 - d 2 -d
9 C -.:: P

P2-PI

Equation 7-4

Controller gains (gc) are set in this manner to compensate for the effects of the stretch

forming 'plant' and to allow the system output to follow the system input.

Part "Referencing"
Parts and dies are defined for use in all of the algorithms as a collection of z-axis

coordinates on a Cartesian grid. A z-coordinate value helps define a surface by its

relation to other z-coordinate values. In a similar fashion, the magnitudes of the z-

coordinate values that define a part can be collectively offset by a constant without

altering the surfaces they represent. This is shown in Figure 7-3. The average z-

coordinates value of parts and dies are of little concern for algorithms #1 or #2.

However, algorithm #3 is very sensitive to the average z-coordinate position of dies and

parts. For this reason, attention is placed on how a part or die is referenced to the z=O

coordinate plane.

0. 15

0.05--
Shift in 'z' direction

0

1 0

-2 -2

Figure 7-3: Offset z-axis coordinates
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Adding a constant to the z-coordinate value of a die poses no problem to the definition of

a surface. This is because in practice, only net changes are actually applied to the die. If

this were not the case, the trajectories of the stretch forming process would still

accommodate the die shift as shown in Figure 7-4. Here the pre-stretch phase of the

stretch forming process ends when the die contacts the sheet. This happens at different

die table positions when the constant (a) is added to the die. This difference is noted

automatically if the press is operated in strain, or force control modes. The shape of the

die remains identical if the constant is added. This proves that average z-axis location of

the die is not important to the stretch forming process, unless the press is operated in

open-loop displacement control mode.

Die with constant
shift 'x' makes
contact earlier

Die shapes are
identical

Figure 7-4: Stretch forming die with and without added constant 'a'

Effect of Z-coordinate Shift on Algorithm #1
In the case of algorithm #1, a constant added to every z-axis coordinate will result in the

same constant being added to the z position of every pin in the next die. This can be seen

in Equation 7-5 where a constant variable (a) is added to the previous formed part in the
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governing equation of algorithm #1. This constant is reflected identically in the die

change (Adi).

Ad, + a = e,_,+ a

Equation 7-5

Effect of Z-coordinate Shift on Algorithm #2
Three different cases will be investigated to understand how shifting a part or die

representation along the z-axis effects algorithm #2. These include shifting a part not

involved with system identification, shifting a part only involved with system

identification, and shifting a die involved with system identification. These three

scenarios are represented by the modified forms of Equation 6-1 that are shown in

Equation 7-6 through Equation 7-8.

Adi =(d 2 -d 1)® (P 2 - P1V ) (Pref Pi- +a)

Equation 7-6

Adi =(d 2 -d 1)0(p 2 -p, +a)-' 0(pf - PiI)

Equation 7-7

Adi = (d 2 - d1 + a) 0 (P 2 - P1 )~ 0 (Prej - pi-1)

Equation 7-8

In each of these cases, the Fourier transform is applied to the algorithm to simplify the

convolution process. The resulting equations are shown in Equation 7-9 through

Equation 7-11. In every case, the constant (x) is represented in the frequency domain by

(A). Since (A) is the Fourier representation of a constant waveform, only its first term

has a non-zero value. This first term is also known as the 'DC' term of the frequency
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domain representation. It represents the sum of all points in the corresponding spatial

domain representation of the respective waveform.

AD 2 D1)(Pf P + A)
(P2 - P)

Equation 7-9

A -(D2 - DO Tf) i1
(P2 - P + A)

Equation 7-10

AD -(D 2 D +A)
(P2 - P1) (rf -

Equation 7-11

Because the only non-zero term in (A) is its first term, its inclusion can only alter the first

terms in the frequency domain representation of any part, die, or change in die. Changes

to these frequency domain 'DC' values only result in z-axis shifts in the spatial domain.

Such shifts do not affect the shape of dies or parts. The reference location of parts and

dies thus does not matter to algorithm #2.

Effect of Z-coordinate Shift on Algorithm #3
The shape of the die predicted by algorithm #3 is sensitive to the average z-axis position

of all dies and parts used in the algorithm calculations. The importance of part and die z-

coordinates is evaluated by observing the effects of adding a constant to a die and a part

that are used in system identification, and a then to the reference part. These situations

are represented in Equation 7-13 through Equation 7-15 when the governing equation of

algorithm #3 is placed into the form of Equation 7-12.
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Adi Ad
AP 2

Equation 7-12

Ad2+a
Ad, = e_

AP 2

Equation 7-13

Ad 2
Ad =P 2+a

Equation 7-14

Ad
Ad = 2 (e+ + a)

Ap 2

Equation 7-15

In each of these situations, the change to die variable (Adi) is altered differently at every

data point. The addition of a constant, or inconsistent referencing of any part or die thus

changes the shape of the die predicted by the algorithm.

Increased Sensitivity Near Zero
The shape changes introduced by shifting part and die positions are amplified when there

are small differences between the parts used for system identification. The denominator

of the equation used to define the controller gains (gc) is the change in part position (Ap).

When change in part position (Ap) is small, variation can overwhelm the controller gain

equation. Figure 7-5 provides an illustration of this situation. Here, a Gaussian

distribution drawn along the ordinate represents normal variation in formed parts. The

resulting variation in the predicted dies lies along the abscissa. Variation has been

increases significantly in this situation.
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Figure 7-5: Sensitivity near 'zero'

Figure 7-6 provides a production scale example 6 of the problem associated with a change

in part value being near zero. Here a surface representing the change in the calibration

parts is allowed to approach and cross the zero value position. The resulting system

identifications, or gain values at the corresponding points are extremely high. These high

gain values will most likely predict inaccurate die positions.
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Figure 7-6: Production scale example of sensitivity near zero

Optimal Part Referencing for Algorithm #3
The datum chosen for any given part or die is arbitrary when one is only interested in the

surface description. There is no correct position along the z-axis for a given part or die.

However, algorithm #3 is sensitive to the z-axis position of parts and dies, which

complicates matters.

To address this issue, a heuristic is devised that consistently references parts and dies

along the z-axis. It does this in a manner that reduces the sensitivity the algorithm

experiences near 'zero' values while maintaining optimal performance. This referencing

heuristic is explained by the steps in Figure 7-7.
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Calculate change in part 'Ap' with
part shapes arbitrarily referenced.

Ap = p2-pi

Find the point (xref,yref) in 'Ap'
with the minimum value.

This point is termed the
'reference point'

Shift all part and die
representations such that they
have value 'zero' at this point

pi=pi-pi(xref,yref)
dj=dj-dj(xef,yref)

pref=prefpref(xref,yref)

Calculate gain values using
Equation 7-25, where a is an

estimate of the system noise level

= d 2 
-di +3o

P 2 -P 1 +3u
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Figure 7-7: Heuristic for Algorithm #3

This heuristic safely translates all of the parts and dies away from zero and reduces the

high sensitivity that occurs near the reference point. This concept is shown by Figure 7-8

where an identical minimum value is set for both the change in die (Ad) and change in

part (Ap). In practice, this value is set to a 3R, where a represents the standard deviation

of the process variation. This is reflected in Equation 7-16.
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Figure 7-8: Reducing sensitivity near 'zero'

_ d 2 -di +3a

P2 -p + 3-

Equation 7-16

For high levels of process variation (a), Equation 7-16 approaches a value of unity as

reflected in Equation 7-17. This reduces the benefit of system identification by biasing

all gain values toward unity. This eventually makes algorithm #3 identical to algorithm

#1. Lower system variation levels therefore should improve algorithm performance.
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limgC =1

Equation 7-17

Estimating Process Variation
An estimate of the process variation is found by first forming multiple parts (pI, P2, P3, ...

PK) on a single die shape. The minimum RMS errors associated with these parts should

be calculated with Equation 4-17 after they are registered in the normal manner. These

errors (el, e2, e 3, --- eK) and the average of these minimum RMS errors (e) are then

used in conjunction with Equation 7-18 to define the process standard deviation.

K 2

k=1

K

Equation 7-18

Algorithm Concerns

Variation Treated Differently Across the Die
For any common change in surface, some change in part and change in die pin positions

are closer than others to the z-axis value of zero in the system identification calculations.

Those values closer are more sensitive to noise in the z-direction. The heuristic

developed in this research addresses this concern by biasing all of such values away from

zero. This has caused two concerns. First, all gain values have been biased away from

their ideal value. Second, those values closer to zero remain more sensitive to noise.

This uneven treatment of noise has raised concerns as it may cause some areas of the part

to converge faster than others.
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Coupling Ignored
Algorithm #3 treats each pin as a SISO system. However, coupling does exist in the

system as was shown in Figure 5-3. The model used by algorithm #3 ignores this

coupling, but tunes the SISO system gains based on the behavior of the coupled system.

Nonetheless, algorithm #3 ignores the fact that a movement in one die pin affects the

outcome of multiple part positions.

System Identification Ambiguity
It has been pointed out by researchers at Northrop Grumman that system identification

(gc) values are dependent on which calibration part and die are defined as the first part

and die and which are defined as the second part and die. Changing the order of these

parameters will change which portion of the part and die that coincide with controller

gain values which are more sensitive to noise. To address this concern, a strategy that

places these more sensitive portions of the part nearer to the physical tools reference

locations is suggested. System noise is likely to have less effect on portions of the part

nearer to the physical reference points.

Summary
In summary, a new algorithm was presented in this chapter. This algorithm addresses the

concerns of algorithm #1 in a much simpler manner than algorithm #2 without

compromising performance. The new algorithm does have a sensitivity to how parts are

references, which is addressed through a simple heuristic. The next chapter provides an

overview of the tools used to evaluate all of the algorithms.
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Chapter 8 : Simulation Methods

Throughout this research, various simulation techniques are employed to assist in

understanding the behavior of the different forms of the algorithm. The simulations are

presented and discussed within this chapter.

Full Part Forming Simulation
Dr. Simona Socrate and Dr. Mary Boyce [2000] have performed extensive investigations

into FEA techniques that accurately represent the mechanics of stretch forming over a

discrete die. Dr. Socrate and Dr. Boyce created the full forming simulation presented

herein to mimic the specifics of MIT's lab scale stretch press shown in Figure 8-1. Only

die and sheet geometry parameters have been modified by the author to match specifics

of Valjavec's [1999] experiments.

Figure 8-1: MIT, lab scale stretch press
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The full part simulation is used so that algorithm performance can be evaluated in a

deterministic environment. The part forming simulation consists of several programs,

including an ABAQUS finite element model and several companion Matlab programs.

The flow of the simulation process is documented in Figure 8-2.

Matlab ABAQUS
"Equivalent Die Program"' Symmetry Forming Model

Define Die Define:
interaction Equiv. Die surface___

points Wrap angle P

Die Pre-stretch freFormed Part
Pin positions (point cloud)

, r Formed Part

Shape Control Algorithm Surface Fitting

Figure 8-2: Full forming simulation process flow

The process begins by defining the pin positions of the die. This includes the pins that

are beneath the portion of the part that is eventually used, also known as the active pins

and the pins under support sections of the die, or passive pins. These pin positions are

input into the Matlab* 'equivalent die' program.

Next, the interaction point of every pin is calculated. Figure 8-3 shows how the tip of a

given pin may not actually be the first point to make contact with a sheet that is laid over

the die. This portion of the program identifies which point on the spherical tip of every

pin will make first contact. A smooth surface is then created from the interaction points

of every pin. This surface is formatted such that it will be recognized as a surface mesh

by ABAQUS. An example of a mesh is shown in Figure 8-4. The Matlab program

additionally defines the average pull off angle at the edge of the equivalent die shape.
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Interaction Points Pin Tips

Pin Centers

Figure 8-3: Pin position and die interaction positions

0 ---
01-0.05 --

-0.1 .---- 0.16

0.150 ..10
0.2 -0.05

Figure 8-4: Equivalent, rigid die surface
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The rigid die surface and the pull off angle are then passed into an ABAQUS model.

These are the only equipment states and parameters that are changed in the course of

simulating how an algorithm converges for a particular part. The ABAQUS model

however has numerous other parameters that must be defined.

Material properties that must be defined include the stress-strain behavior of the material,

and the material thickness. These properties are applied to the shell element mesh that is

representing the sheet metal blank in the forming process. This blank is shown along

with a rigid die in Figure 8-5.

3

Figure 8-5: Representation of material blank and die in ABAQUS

As previously mentioned, the ABAQUS program only simulates of the actual part.

The simulation is thus only valid for parts that are symmetric in nature. The assumption

of symmetry allows the ABAQUS program to compute solutions in much shorter time.

To represent symmetric parts, boundary conditions are applied to the mesh that

represents the sheet metal blank. These boundary conditions are shown Figure 8-6. It

should be noted that the material is assumed to have no initial stresses or strain history.
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1

Figure 8-6: Boundary conditions

The primary equipment property is the geometry of the equivalent rigid die, which is

provided by the Matlab program. The properties of the interpolator do however need to

be accommodated in the model. This is performed through the use of a softened contact

interaction between the sheet metal mesh and the rigid die mesh. Figure 8-7 depicts the

concept of softened contact. With the softened contact model, the pressure at the sheet to

die interface is a function of the clearance between the two surfaces. The softened

contact begins when the clearance between the die and the sheet is 1/2 of the interpolator

thickness. For clearances less than this, the pressure exerted across the sheet to die

interface is defined by a function like the one shown in Figure 8-7.
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Figure 8-7: Explanation of softened contact

The process states are also pre-defined. These primarily include the pre-stretch force and

the wrap angle (which was defined by the Matlab program). This simulation does not

currently include a post-stretch segment. The pre-stretch portion of the process consists

of applying the pre-stretch force to the material until an equilibrium point is reached. To

begin the wrapping phase, the sheet is translated down until it makes initial contact with

the die. Once an initial contact force is witnessed, the sheet is incrementally wrapped

about the die while the stretch force is maintained constant. The sheet is wrapped around

the part until the final wrap angle is obtained.

The part is now is now released from the stretch forming process by relaxing the

constraints on the stretch forming jaw end of the sheet. The sheet is first allowed to relax

axially, and then it is allowed to spring back to eliminate any residual moments

throughout its cross section.

The ABAQUS portion of the simulation is now complete. A cloud of points that

represent the nodal positions part in the sprung back position are now exported to an

additional Matlab program that fits the data with a smooth surface. Points are then
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interpolated from this surface at points coincident with the pin positions used to define

the die surface.

Data now exists for a part and the die that it was formed on. This data is input into one of

the algorithms along with the reference part information. This information is used to

compute the next die shape, which is then passed along to the Matlab equivalent die

program where the entire process is repeated. It should be noted that algorithm #2 cannot

be replicated accurately on information from only of a die or part. For this reason, part

and die data is quadrupled to create an full die and part representation before it is input

into algorithm #2.

Accuracy of Full Part forming simulation
The equivalent die program and the symmetry ABAQUS simulation were created by

Dr. Simona Socrate and Dr. Mary Boyce [2000] and subsequently provided to the author.

The programs used in this research were only modified to make the sheet metal blank

size consistent with the blank size used in Valjavec's [1999] experiments. Further details

of these programs are available in the RTFF Annual and quarterly reports from 1996.

These reports provide evidence that the modeling methodology used in this simulation

provides comparable results to simulations that model the entire discrete die surface

explicitly instead of with the equivalent die and softened contact. These reports also

provide comparisons between cylindrical shapes formed on MIT's lab scale stretch

forming press and parts formed in a simulation that has been calibrated to the specifics of

that forming process. The results of this comparison suggest that the simulation provides

a very accurate representation of the MIT stretch press.

However, the simulation is not used in this research to replicate experimental results. It

is used to provide a deformation model similar to that found in the stretch forming

process. The algorithms are then rated on how well they can accommodate this

deformation process and predict a die that forms a desired part shape with the provided

deformation model. For this reason, while the accuracy of the deformation model is

good, it is not crucial to this research.
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Simulating the Effects of Variation on FEA Formed Components
There is desire to understand how variation affects the algorithms. To understand this,

numerous simulations or experiments must be run to evaluate how variation is amplified

or attenuated through each algorithm and how variation affects the convergence of each

algorithm. However, the time required to provide a statistically significant sample of

simulations is excessive. To achieve results in a much shorter time span, the algorithm

performance can be measured on how well it predicts the die that is used to make a part

of a known shape.

The equations of each algorithm are typically used to predict a die shape that will form a

desired part. The performance of the algorithms is measured on how well these parts

conform to the desired parts. However, measuring algorithm performance by how well

they predict a die that forms a known part can allow simulations to be performed in much

less time. This is because no additional parts need to be formed through simulation,

which normally takes a considerable amount of time.

First, an initial die shape is chosen and then a part is formed over it in simulation. Next,

two additional dies are defined by multiplying the initial, spatial die z-coordinate by 1.1

and 0.9 respectively as indicated in Equation 8-1. Parts are then formed on these dies as

well. There is now knowledge of three similar die shapes and the parts that have been

formed on them as shown by Figure 8-8.

d 2 =1.1di

d 3 = 0.9di

Equation 8-1

Where:
di= initial die shape (array of vertical z-coordinates)
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Part
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Correct
Die

Figure 8-8: Dies and Parts for simulation shortcut

To perform the shortcut, the third part shape is arbitrarily considered the reference part

shape. Treating the third part in this manner provides exact knowledge of the die that

will form the reference part. The information in the first two die and part shapes is now

used by the various algorithms to estimate a die shape that will create the reference part

(or alternatively, the third part). Algorithm performance can be measured by how close

the die predicted by each algorithm is to the correct die shape. The die error associated

with each algorithm is calculated with Equation 8-2.

die _ error = d, - d3

Equation 8-2

= die shape used to form the reference part

= estimate of correct die shape

(made from di, d2, pi, P2, & Pref)

125

Part I

Die I

Part 2

Die 2

Where:
d

d3



This 'shortcut' provides a means to evaluate variation effects without making numerous

parts, through simulations or experimentation. Representations of any part can be altered

by additive noise as shown in Figure 8-9 to introduce variation into an otherwise

deterministic system.

noise

pref ei-I 8 Adi di + pi

Controller -1 Plant

Unit Delay

Pi-1 I z~1 I

Unit Delay

Figure 8-9: Introducing additive noise

The scenario shown in Figure 8-9 is most indicative of how noise exists in an

experimental or production environment. Noise in this case is not added to part 3, which

now represents a pre-defined reference shape. The noise is, however, included in the

calculations performed to arrive at controller gain values (gc).
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noise

Pref e _I Adi di pi

Controller Z-1 Plant

Unit Delay

pi.1 - Z

Unit Delay

Figure 8-10: Introduction of additive noise to reference part

Alternatively, noise can be added to the reference part as shown in Figure 8-10. Adding

noise to the reference part is not indicative of an actual forming scenario. It however

introduces noise into the representation of each part without corrupting the part

representations used to define the controller gains (gc). Such simulations help define

how sensitive the system identification is to variation.

This 'short cut' approach does have some drawbacks. It does not model any effects the

actual forming process may have on the variation level. For instance, the interpolating

layer has been shown by Valjavec [1999] to act as a low pass filter. The shortcut does

not model this effect. This suggests that the simulation will overstate the variation

amplification.

Summary
In summary, a process has been developed that allows stretch forming on the MIT press

to be simulated through ABAQUS and MATLAB code. Additionally, a shortcut has

been developed which allows the effects of noise to be evaluated in a controlled manner

without forming numerous components.
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Chapter 9 : Simulation Results

In this chapter, the simulations discussed in Chapter 8 are used to evaluate the

performance of all of the algorithms. These simulations are capable of quantifying

performance with respect to algorithm rate of convergence, and robustness to variation.

Comparison with Experimental Results
Before the algorithms are evaluated in simulation, attempts are made to replicate

Valjavec's [1999] lab scale experiments. This is done to understand how closely the full

forming simulation represents the lab scale stretch forming process.

There exist several differences between the experimental situation and the simulation.

The primary differences include the absence of noise and the greater level of control over

process trajectories in the simulation environment. The simulation environment also

eliminates the need for a registration routine to orient the parts to their respective dies.

There are additional differences in the algorithms being used in the simulation and in

Valjavec's [1999] experiments. The algorithm used in the simulation operates on parts

and dies that are defined by a grid of points spaced consistently with the pins in the MIT

reconfigurable tool. The experiments performed by Valjavec [1999] use a grid of points

that is much more dense. The simulation algorithm uses a two-dimensional hanning

window to smooth the part representations used in system identification. The

experiments used the Welch method instead to smooth the part representations.

All process parameters are set to values consistent with the experimental parameters.

These values are shown in Figure 6-21. Reference parts are defined in an identical

manner. These reference parts are shown in Figure 6-22. Initial dies are defined by

offsetting the reference die shape by an amount equal to the interpolator thickness plus

the pin tip radius. The equations used for the reference parts and first dies are shown in

Figure 9-1. The second die shape in the simulation and the experiment is defined by

applying algorithm #1. All equations in Figure 9-1 are based on a coordinate system

defined in inches.
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Cylinder Z (10.652 _X Y 2  z = (102 _X2 ) 2

Saddle Z 52_2(208Y2 112 z=42_X+33Y2 1/2
Sadle z= 452-x2+C3 y ~j z= 452-x2+C yJj

45 (45))

Spheroid 2 1/2 2 1/2
r (22 (20 Y) z = 190482 2 _ 19.048

_____z = 20 -x y tzj=O19.048.048y,)
80 E79.048

Figure 9-1: Equations used to define reference parts and initial dies

Comparisons between the experimental results and the simulated results are shown in

Figure 9-2 through Figure 9-4. Maximum part errors are presented in these figures for

each of four simulated forming iterations. All available experimental data is also shown.

Figure 9-2: Replication of Valjavec's [1999] cylinder experiment

The results from the cylinder experiment are close to the simulated results. Improved

results could most likely be obtained if time were spent calibrating the model to the
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specifics of the forming situation used to create VaIjavec's parts, or if VaIjavec's exact

algorithm were used.

(0
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Figure 9-3: Replication of Vaijavec's [1999] saddle experiment

The saddle experiment and simulation display significant differences in the first formed

part. These differences diminish as the algorithms progress toward a zero error part.
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Figure 9-4: Replication of VaIjavec's [1999] spheroid experiment
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Results from spheroid experiments compare closely to one another. It should be noted

that the experiment was terminated after three iterations as an acceptable part was

achieved. Maximum error values below 0.010 inches were defined as an acceptable error

levels for the lab scale process.

In summary, the cylinder and the spheroid simulations replicate the values and trends of

Valjavec's [1999] forming experiments within the expected range of uncertainty. While

the trend of the saddle experiment and simulation are similar, the absolute values of the

errors are not. This disparity may be explained by any of the previously mentioned

differences. The difference in absolute value is however not of great concern for this

research as the ABAQUS model is used to provide a deformation model with properties

similar to an actual stretch forming process, not to explicitly model the MIT lab scale

stretch forming process.

Algorithm Comparisons with Full Forming Simulations
The various algorithms are now tested on three of the reference shapes used in Valjavec's

[1999] experiments. Again, the test shapes are shown in Figure 6-22.

These experiments begin with the pin positions adjusted to create a net shape die at the

interpolator to sheet metal interface. The equations used to define these initial dies and

the reference parts are shown in Figure 9-1. The second part shapes are defined by

applying algorithm #1 to the first die and part shape. The third and fourth die are each

defined by four different methods, including algorithm #1, algorithm #2 with a hanning

window used on parts in system identification, algorithm #2 without windowing, and

algorithm #3.

The minimum RMS errors for each simulation are shown in Figure 9-6 through Figure

9-8. Figure 9-5 provides a summary of the forming trials in tabular form. Valjavec's

[1999] experimental results are included for reference. The algorithm with the best

performance in every category is highlighted in the table.
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% of Initial Min RMS Error
Cylinder Saddle Spheroid

Iteration #3 Iteration #4 Iteration #3 Iteration #4 Iteration #3 Iteration #4
AIg #1 12% 6% 25% 19% 12% 6%
Alg #2 (no window) 4% 27% 116% 17% 35%
Alg #2 (window) 7% 3% 27% 26% 16% 22%
Alg #3 4% 2% 22% 18% 6% 4%
Experiment 28% 13% 24% 17% 31%

Figure 9-5: Summary of full simulation results

The unequivocal best performer in this simulation is algorithm #3. Its error convergence

outperforms all other algorithms in every shape classification. It should be noted that a

fourth iteration of the saddle was not attempted for algorithm #2 (no window) as the

predicted die was determined to be invalid.

Figure 9-6: Simulations of cylinder forming trial
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Figure 9-7: Simulations of saddle forming trials

Figure 9-8: Simulations of spherical forming trials
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Variation Investigations, Noise included in Identification
The techniques mentioned in Chapter 8 are now used to evaluate algorithm robustness to

variation. Noise is input to the system by adding a normally distributed value to each z-

coordinate data point for both part 1 and part 2 as suggested by Figure 8-9. A predicted

die is calculated for each algorithm and then the die error is measured. This is repeated

fifty times to complete each simulation.

To calculate how variation is amplified through the algorithm, the minimum RMS error

associated with part 2 is first calculated for each of the fifty trials to establish a baseline.

This baseline is calculated with Equation 7-18. This value serves as the denominator for

Equation 9-1.

Equation 7-18 is then used to calculate the noise level of the predicted die shape errors.

This value serves as the numerator of Equation 9-1.

Amplification =stdev(ed)
stdev(e2)

Equation 9-1

Where:
ed = error between each predicted die and the correct die
e2 = error between the reference part and part 2

The variation amplification experienced by the three different test shapes in fifty different

simulated forming trials is presented in Figure 9-9. The amplification is mapped for three

different process variation levels.
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Figure 9-9: Variation amplification, noise included in identification

The lowest level of variation amplification is shown by algorithm #1. This is expected,

as it makes no attempt at system identification and thus has less chance of amplifying the

system noise. Algorithm #3 has the next consistently lower amplification level, which

exceeds algorithm #2 (no window) only at very low noise levels. Algorithm #2 (window)

experiences excessive variation amplification at low noise levels. Its performance does

improve at the higher levels.

The average error value over the fifty simulations is also of interest. It provides insight

into how noise affects the convergence of each algorithm. This value is calculated with

Equation 9-2. It is the average of the minimum RMS error values produced by the 150

trials of any given algorithm (50 trials per shape). The resulting values are shown in

Figure 9-10.

136



average -error = average(ed )

Equation 9-2

Where:
ed = error between each predicted die and the correct die
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Figure 9-10: Error convergence during variation investigation simulation, noise included in
identification

Algorithm #2 (no window) consistently outperforms the other algorithms with respect to

error convergence in this test. Algorithm #3 performs the next best. Algorithm #2

(window) is the consistent poor performer, and is even outperformed by algorithm #1 at

low variation levels.

The results for both forms of algorithm #2 contradict results from the full forming

simulation. There, algorithm #3 consistently converged in the fewest iterations.

Algorithm #2 (window) also performed better than algorithm #2 (no window) in some

situations. These discrepancies likely result from measuring algorithm performance on

how well a known die shape is predicted. The full forming simulation measures

performance on how well the reference part is formed. Many of the dies predicted by
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algorithm #3 have random variation that will be filtered out by the interpolator during the

forming process. The errors witnessed by the algorithm #2 dies are often periodic in

nature and are less likely to be eliminated by the interpolator during forming. Figure

9-11 provides some examples of these die errors.

IT -t

JL *

24

Error from00
Alg #3 X 10-

Random in
Nature

10

Error from
Alg #2

Cyclic in
Nature

10
8

0 0

Figure 9-11: Die errors for algorithm #2 (no window) and algorithm #3

In summary, algorithm #1 is affected least by noise. This is expected, as it does not

employ system identification. Algorithm #3 proves to amplify noise less than either form

of algorithm #2 except at very low noise levels. The error convergence rates seen in this

simulation contradict the outcome of the full forming simulations. The full forming

simulation proved algorithm #3 consistently converged to a lower error value in the same

amount of iterations. This simulation suggests that algorithm #2 without windowing

surpasses algorithm #3 in this regard. This discrepancy may result from comparing

algorithm performance on how well die shapes are predicted instead of part shapes.

Comparing die shapes excludes the low-pass filtering effects of the interpolator from the

simulation.
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Variation Investigations, Noise Excluded from Identification
The simulation is then repeated with noise excluded from the system identification

process. This is done by computing a controller gains (gc) on noise free parts and dies

and then adding noise to the part 2 error term. The schematic in Figure 8-10 shows how

this is performed. The noise amplification and error convergence rate are computed in

the same way as the previous experiment
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Figure 9-12: Variation amplification, noise excluded from identification

Figure 9-12 provides the variation amplification results and Figure 9-13 details the error

convergence rates for this simulation.

Algorithm #1 obtains the lowest variation amplification level as expected. Again, in this

scenario algorithm #3 achieves the next lowest variation amplification at all levels except

the smallest process noise level. The trends for both forms of algorithm #2 are similar to

results from the prior simulation, except that algorithm #2 (no window) always performs

better than algorithm #2 (window). The noise amplification values are generally lower
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than those associated with noise included in the system identification. This suggests that

a noisy system identification may worsen algorithm performance.
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Figure 9-13: Error convergence during variation investigation simulation, noise excluded from
identification

The error convergence trends for all algorithms displayed in Figure 9-13 are similar to

those from simulations with noise included in identification. Again, algorithm #2 (no

window) achieves the highest convergence for all noise levels. This is inconsistent with

the full simulation results. This discrepancy is believed to result from comparing

predicted dies to know dies versus comparing formed parts to desired parts. It is

surprising to note that the values in Figure 9-13 are very close to those in Figure 9-10,

which represents error values when noise is included in system identification. The close

proximity of these values suggests that a noisy system identification may not affect the

error convergence rate significantly.

Summary
In summary, this chapter presents simulations results that show algorithm #3 to converge

to the lowest error value in a fixed number of trials. It also shows algorithm #3 to
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amplify the effects of variation less than any other algorithm except #1, which has poor

converges very slowly. The Monte-Carlo simulations did, however, provide some

conflicting results for algorithm #2. These conflicts are most likely the result of the

comparing dies to measure algorithm performance instead of comparing parts.
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Chapter 10 : Conclusions - Guidelines for Future Work

Conclusions
This research has provided a greater

shape in the stretch forming process.

performance of all algorithms has been

U
0z

0
U

understanding of the algorithms used to control

A new algorithm has been synthesized and the

quantified.

No Identification Identification

Figure 10-1: Algorithm Framework

Greater understanding is achieved by viewing the algorithms through the principles of

control theory and linear system theory. This analysis leads to a common framework

under which all algorithms can be categorized. This framework is summarized in Figure

10-1. Here each of the three algorithms are described by whether they employ system

identification and coupling via a convolution.

Algorithm #2 was previously viewed as a process with operations solely in the frequency

domain. It is analyzed in this research from the spatial domain perspective. The
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algorithm's operations are much easier to interpret from this perspective. This provides

greater insight, which allows users of the algorithm to quantify the system coupling

modeled by the algorithm. This also allows users to quality check the algorithm before

resources are spent forming parts on dies improperly predicted by the algorithm.

Analysis and simulation of algorithms #1 and #2 also led to the synthesis of algorithm #3.

This algorithm has the benefits of system identification without the difficulties associated

with the convolution and blind de-convolution process of algorithm #2. Some difficulties

are encountered with algorithm #2, specifically the issue of choosing reference points for

dies and parts. However, a heuristic is developed which successfully addresses this issue.

Several ABAQUS and Matlab programs were developed to help quantify algorithm

performance through simulation. Simulations were run of the lab scale stretch forming

trials to investigate how close each algorithm converges to the desired shape in the first

four forming iterations. Additional Matlab, Monte-Carlo simulations provide insight into

how process variation affects the performance of each algorithm.

The simulations conclude that algorithm #3 has the best all-around performance. It most

often produces parts that are closer to the desired part shape. It amplifies the effects of

process variation less than algorithm #2 and is much easier to implement as well.

Algorithm #1 is arguably simpler than algorithm #3, and it does actually amplify

variation effects less. However, its performance lags significantly behind that of

algorithm #3. To achieve the benefits of both, a strategy that uses algorithm #1 to predict

the second die and algorithm #3 to predict the third and fourth die is suggested.
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Future Work
The fact that average z-coordinates are arbitrary in defining the surface of a shape poses

some difficulties to Algorithm #3. A heuristic has been developed to accommodate this

issue. However, other improved methods may exist. One concept involves characterizing

parts and dies by the mean and/or Gaussian curvature they posses at discrete locations

about their surfaces. Algorithm #3 could then be applied to iterate on one or both of

these quantities instead of z-coordinate values. In addition to addressing the referencing

issue of algorithm #3, Gaussian curvature may prove to be a better indicator of shape

quality than z-coordinate positions. In practice, having to deform a part (change its

Gaussian curvature) so that it conforms to a surface may prove to be the cause of most

production problems. Developing a part about a die surface (change its mean curvature)

is arguably easier to do.

Algorithm #3 may also be improved by eliminating the biasing that is introduced during

the current referencing heuristic. Some alternate approaches may include smoothing

techniques applied to the surface that represents controller gain values. Such techniques

could be used to eliminate 'spikes' in the surface that represents controller gains.

Blind de-convolution performed in algorithm #2 is highly sensitive to noise. However,

de-convolution of a system that is known specifically does not have the same problems.

A strategy could be pursued that fits the empirical response of the stretch forming system

to that of a pre-defined system for which there exists a closed form solution. This may

allow a de-convolution process with less sensitivity to noise.
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