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Characterization of the Peak Value Behavior
of the Hilbert Transform of Bounded

Bandlimited Signals
Holger Boche∗ and Ullrich J. Mönich†

Abstract

The peak value of a signal is a characteristic that has to be controlled in many applications. In this paper we
analyze the peak value of the Hilbert transform for the space B∞π of bounded bandlimited signals. It is known that
for this space the Hilbert transform cannot be calculated by the common principal value integral, because there are
signals for which it diverges everywhere. Although the classical definition fails for B∞π , there is a more general
definition of the Hilbert transform, which is based on the abstract H1-BMO(R) duality. It was recently shown in the
paper “On the Hilbert Transform of Bounded Bandlimited Signals,” Problems of Information Transmission, vol. 48,
2012 [1] that, in addition to this abstract definition, there exists an explicit formula for the calculation of the Hilbert
transform. Based on this formula we study the properties of the Hilbert transform for the space B∞π of bounded
bandlimited signals. We analyze its asymptotic growth behavior, and thereby solve the peak value problem of the
Hilbert transform for this space. Further, we obtain results for the growth behavior of the Hilbert transform for
the subspace B∞π,0 of bounded bandlimited signals that vanish at infinity. By studying the properties of the Hilbert
transform, we continue the work of Korzhik “The extended Hilbert transformation and its application in signal
theory,” Problems of Information Transmission, vol. 5, 1969 [2].

Index Terms

Hilbert transform, peak value, bounded bandlimited signal, growth

I. INTRODUCTION

The peak value is a basic characteristic of signals. In many applications it is crucial to control the peak value. For
example, in wireless communication systems high peak-to-average power ratios (PAPRs) are problematic because
high peak values can overload the power amplifiers, which in turn leads to undesired out-of-band radiation [3], [4],
[5]. In this paper we analyze the asymptotic growth behavior of the Hilbert transform for the space of bounded
bandlimited signals, and thereby solve the peak value problem of the Hilbert transform for this space.

The Hilbert transform is an important operation in numerous fields, in particular in communication theory and
signal processing. For example the “analytic signal” [6], which was used by Dennis Gabor in his “Theory of
Communication” [7], is based on the Hilbert transform. Further concepts and theories in which the Hilbert transform
is an integral part are the instantaneous amplitude, phase, and frequency of a signal [6], [8], [9], [10], [11], [12],
[13] and the theory of modulation [6], [14], [15], [16].

In an analytic signal ψ(t) = u(t) + iv(t) the imaginary part v is the Hilbert transform of the real part u, i.e.,
v = Hu. Based on the analytic signal it is possible to define the instantaneous amplitude and frequency of a signal
[8], [9]. The instantaneous amplitude Au(t) of a signal u is then defined by

Au(t) :=
√
u2(t) + v2(t),

the instantaneous phase φu(t) by

φu(t) = arctan

(
v(t)

u(t)

)
,
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and the instantaneous frequency, which is the derivative of the instantaneous phase, by

φ′u(t) = arctan

(
v(t)

u(t)

)
=
v′(t)u(t)− v(t)u′(t)

u2(t) + v2(t)
.

Although there are other possibilities to define the instantaneous amplitude and frequency [9], [17], it was shown
in [9] that the only definition that satisfies certain physical requirements is the definition based on the Hilbert
transform and the analytic signal. In [12] and [13] interesting approaches are developed to find generalizations of
the amplitude-phase representation to non-smooth functions. In these papers the application of the Hilbert transform
and the use of techniques from the theory of analytic functions are central. Our approach in this paper is different,
because we consider smooth signals, more precisely, the practically important class of bandlimited signals.

A further interesting application of the Hilbert transform is presented in [18], where the classical Hardy spaces
are characterized as Lp(R) functions with non-negative spectrum, and an Lp(R) extension of the Bedrosian theorem
is developed.

Classically, the Hilbert transform of a smooth signal f with compact support is defined as the principal value
integral

(Hf)(t) =
1

π
V.P.
∫ ∞
−∞

f(τ)

t− τ dτ =
1

π
lim
ε→0

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ

=
1

π
lim
ε→0

(∫ t−ε

t− 1

ε

f(τ)

t− τ dτ +

∫ t+ 1

ε

t+ε

f(τ)

t− τ dτ

)
. (1)

The above integral (1) can be used to define the Hilbert transform for more general spaces only if the integral
converges for all signals from this space. There are cases where the integral converges only for almost all t, but
where the Hilbert transform can be defined in the Lp-sense. However, the convergence of the integral is delicate and
has to be checked from case to case. For bounded bandpass signals, the Hilbert transform exists and is bounded. If f
is a bandpass signals, the distributional Fourier transform of which vanishes outside [−π,−επ]∪ [επ, π], 0 < ε < 1,
then f has a bounded Hilbert transform satisfying

‖Hf‖∞ ≤
(
C1 +

2

π
log

(
1

ε

))
‖f‖∞,

where C1 < 4/π is a constant [19], [16]. That is, the upper bound on the peak value of the Hilbert transform
diverges as ε tends to zero. Probably, observations of this kind led to the conclusion “that an arbitrary bounded
bandlimited function does not have a Hilbert transform. . . ” [16]. Such a non-existence of the Hilbert transform for
certain bounded bandlimited signals would have far-reaching consequences.

In this paper we use a new representation of the Hilbert transform for bounded bandlimited signals, which was
recently found in [1]. With this representation we can explicitly calculate the Hilbert transform of such signals
using a mixed signal system. Based on this new mixed signal representation we are able to characterize the peak
value behavior of the Hilbert transform and to understand the problems in the evaluation of the standard Hilbert
transform integral that probably led to the above cited statement about the non-existence of the Hilbert transform
for arbitrary bounded bandlimited functions. Our approach is restricted to bandlimited signals. In the literature other
methods for the calculation of the Hilbert transform and the treatment of related applications have been developed
for non-smooth functions. For example, the approaches in [18], [12], [13] use Hardy spaces and techniques from
complex integration.

The paper is structured as follows. In Section II we introduce some notation. In Sections III and IV we define
the Hilbert transform for general bounded bandlimited signals and present the new constructive formula for its
calculation. The material in this two sections is a summary of the most important facts from [1], which are
necessary for the further understanding of this paper. However, the proofs are omitted because they can be found in
[1]. In Section V the peak value problem of the Hilbert transform is solved and in Section VI further results about
the peak value of the Hilbert transform for the important subspace of bounded bandlimited signals that vanish at
infinity are presented. In Section VII a sufficient condition for the boundedness of the Hilbert transform is derived,
and in Section VIII an example of a bounded bandlimited signal that vanishes at infinity with unbounded Hilbert
transform is given. Finally, in Section IX we characterize a subset of the bounded bandlimited signals for which
the common Hilbert transform integral (1) converges.
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II. NOTATION

Let f̂ denote the Fourier transform of a function f . Lp(R), 1 ≤ p <∞, is the space of all pth-power Lebesgue
integrable functions on R, with the usual norm ‖ · ‖p, and L∞(R) is the space of all functions for which the essential
supremum norm ‖ · ‖∞ is finite. A function that is defined and holomorphic over the whole complex plane is called
entire function. For 0 < σ <∞, let Bσ be the set of all entire functions f with the property that for all ε > 0 there
exists a constant C(ε) with |f(z)| ≤ C(ε) exp((σ + ε)|z|) for all z ∈ C. The Bernstein space Bpσ, 1 ≤ p ≤ ∞,
consists of all functions in Bσ, whose restriction to the real line is in Lp(R). The norm for Bpσ is given by the
Lp-norm on the real line, i.e., ‖ · ‖Bpσ = ‖ · ‖p. A signal in Bpσ, 1 ≤ p ≤ ∞, is called bandlimited to σ, and B∞σ is the
space of bandlimited signals that are bounded on the real axis. We call a signal in B∞π bounded bandlimited signal.
By the Paley–Wiener–Schwartz theorem [20], the Fourier transform of a signal bandlimited to σ is supported in
[−σ, σ]. For 1 ≤ p ≤ 2 the Fourier transformation is defined in the classical and for p > 2 in the distributional
sense.

III. THE OPERATOR Q

Consider the linear time-invariant (LTI) system Q = DH , which consists of the concatenation of the Hilbert
transform H and the differential operator D, as an operator acting on B2π. Since both operators H : B2π → B2π and
D : B2π → B2π are stable LTI systems, Q : B2π → B2π, as the concatenation of two stable LTI systems, is a stable
LTI system. The system Q : B2π → B2π has the frequency domain representation

(Qf)(t) = (DHf)(t) =
1

2π

∫ π

−π
ĥQ(ω)f̂(ω) eiωt dω, (2)

where

ĥQ(ω) =

{
|ω|, |ω| ≤ π
0, |ω| > π.

It is easy to show (for details see [1]) that the system Q : B2π → B2π has also the mixed signal representation

(Qf)(t) =

∞∑
k=−∞

a−kf(t− k), (3)

where the coefficients ak, k ∈ Z, are given by

ak =

{
π
2 , k = 0,
(−1)k−1
πk2 , k 6= 0.

(4)

We call this representation mixed signal representation, because for a fixed t ∈ R we need the signal values on the
discrete grid {t − k}k∈Z in order to calculate (Qf)(t). However, for different t ∈ R we need other signal values
in general. As t ranges over [0, 1] we need all the signal values f(τ), τ ∈ R. The mixed signal representation (3)
will be important for Section IV, where the Hilbert transform is extended to B∞π .

A. Extension of Q to B∞π
So far, we have considered the LTI system Q only acting on signals in B2π. Next, we extend Q to a bounded

operator QE acting on the larger space B∞π of bandlimited signals that are bounded on the real axis. For the
operator Q : B2π → B2π we had the representations (2) and (3). However, the frequency domain representations
which involves the Fourier transform of the signal makes no sense for signals in B∞π . The next theorem shows that
the mixed signal representation (3) is still meaningful for signals in B∞π , because it is also a valid representation
of the extension QE.

Theorem 1. The mapping

QEf =

∞∑
k=−∞

a−kf( · − k), (5)

where the coefficients ak are defined as in (4), defines a bounded linear operator QE : B∞π → B∞π with norm
‖QE‖ = π that coincides with Q on B2π, i.e., that satisfies QEf = Qf for all f ∈ B2π.

The proof of Theorem 1 can be found in [1].
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IV. THE HILBERT TRANSFORM FOR B∞π
Despite the convergence problems of the principal value integral, there is a way to define the Hilbert transform for

signals in B∞π . This definition uses Fefferman’s duality theorem, which states that the dual space of H1 is BMO(R)
[21]. In addition to this rather abstract definition, we will also give a constructive procedure for the calculation of
the Hilbert transform. We briefly review some definitions.

Definition 1. The space H1 denotes the Hardy space of all signals f ∈ L1(R) for which Hf ∈ L1(R). It is a
Banach space endowed with the norm ‖f‖H1 := ‖f‖L1(R) + ‖Hf‖L1(R).

Definition 2. A function f : R → C is said to belong to BMO(R), provided that it is locally in L1(R) and
1

µ(I)

∫
I |f(t) −mI(f)|dt ≤ C2 for all bounded intervals I , where mI(f) := 1

µ(I)

∫
I f(t)dt and the constant C2 is

independent of I . µ denotes the Lebesgue measure.

For our further examinations, we need the important fact that the dual space of H1 is BMO(R) [22, p. 245]. In
order to state this duality, we use the space H1

D = H1∩S, which is dense in H1. By S we denote the usual Schwartz
space of functions φ : R → C that have continuous derivatives of all orders and fulfill supt∈R|taφ(b)(t)| < ∞ for
all a, b ∈ N ∪ {0}.
Theorem 2 (Fefferman). Suppose f ∈ BMO(R). Then the linear functional H1

D → C, φ 7→
∫∞
−∞ f(t)φ(t)dt has

a bounded extension to H1. Conversely, every continuous linear functional L on H1 is created in this way by a
function f ∈ BMO(R), which is unique up to an additive constant.

The function f ∈ BMO(R) in Theorem 2 is only unique up to an additive constant, because φ ∈ H1 implies∫∞
−∞ φ(t)dt = 0. Therefore, it will be beneficial to identify two functions in BMO(R) that differ only by a

constant. We do this by introducing the equivalence relation ∼ on BMO(R). We write f ∼ g if and only if
f(t) = g(t) + CBMO for almost all t ∈ R, where CBMO is a constant. By [f ] we denote the equivalence class
[f ] = {g ∈ BMO(R) : g ∼ f}, and BMO(R)/C is the set of all equivalence classes in BMO(R).

A possible extension of the Hilbert transform, which is based on the H1-BMO(R) duality is given in the next
definition [23].

Definition 3. We define the Hilbert transform Hf of f ∈ L∞(R) to be the function in BMO(R)/C that generates
the linear continuous functional

〈Hf, φ〉 =

∫ ∞
−∞

f(t)(Hφ)(t)dt, φ ∈ H1.

Note that this definition is very abstract, because it gives no information how to calculate the Hilbert transform
Hf . However, in [24] it was shown that for bounded signals that are additionally bandlimited, i.e. for signals
f ∈ B∞π , it is possible to explicitly calculate the Hilbert transform Hf . Next, we will give this formula, which is
based on the QE-operator from Section III.

Since QEf is continuous, for every f ∈ B∞π , the operator I given by

(If)(t) =

∫ t

0
(QEf)(τ)dτ, t ∈ R, (6)

is well defined. Since the operator Q : B2π → B2π, as an operator on B2π, was defined to be the concatenation of
the Hilbert transform H and the differential operator D, it is clear that, for g ∈ B2π, the integral of Qg as in (6)
gives—up to a constant—the Hilbert transform Hg of g. Note that for g ∈ B2π we have Hg ∈ B2π, which implies
that Hg is continuously differentiable. Hence, the fundamental theorem of calculus can be applied in the next
equation without problems. For g ∈ B2π we have

(Ig)(t) =

∫ t

0
(QEg)(τ)dτ =

∫ t

0
(Qg)(τ)dτ

=

∫ t

0
(DHg)(τ)dτ = (Hg)(t)− (Hg)(0), (7)

i.e., for every signal g ∈ B2π, we have (Hg)(t) = (Ig)(t) + C3(g), t ∈ R, where C3(g) is a constant that depends
on g.
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Fig. 1. Plot of the signal f1.

Based on this observation one could conjecture that, for signals f ∈ B∞π , the integral If is somehow connected
to the Hilbert transform Hf of f . In [1] it was shown that such a connection exists in the sense that If is a
representative of the equivalence class Hf .

Theorem 3. Let f ∈ B∞π . Then we have Hf = [If ].

Note that according to Definition 3, the Hilbert transform Hf of a signal f ∈ B∞π is only defined up to
an arbitrary additive constant. This is a consequence of the H1-BMO(R) duality, which was employed for the
definition. However, the mapping I does not have this ambiguity, it maps every input signal f ∈ B∞π uniquely to
an output signal If ∈ BMO(R).

Theorem 3 is very useful, because it enables us to compute the Hilbert transform of bounded bandlimited signals
in B∞π by using the constructive formula (6), instead of using the abstract Definition 3. This result is also the key
for solving the peak vale problem of the Hilbert transform.

Remark 1. The formula (6) for the calculation of the Hilbert transform is based on the mixed signal representation
of the operator QE. It is an interesting question whether the Hilbert transform of a signal in B∞π can be calculated
by using only the samples of the signal. In [25] we have shown that a Nyquist rate sampling based representation
of the Hilbert that is based on the Shannon sampling series is not possible even for the subspace PW1

π of B∞π . We
conjecture that this negative result holds even in more generality, as long as no oversampling is used. However, if
oversampling is used, then a sampling based representation of the Hilbert transform is possible for B∞π .

An important fact about the Hilbert transform of bounded bandlimited signals is stated in the next theorem.

Theorem 4. Let f ∈ B∞π . Then we have If ∈ Bπ.

Theorem 4, the proof of which can be found in [1], shows that the Hilbert transform of a bounded bandlimited
signal is again bandlimited.

V. PEAK VALUE PROBLEM

The peak value of signals is important for many applications, e.g., for the hardware design in mobile communi-
cations [3], [4]. In the peak value problem we are interested in sup|t|≤T |f(t)|, i.e., in the peak value of a signal f
on the interval [−T, T ]. Next, we study the Hilbert transform of signals in B∞π , in particular its growth behavior
on the real axis, and thereby solve the peak value problem for the Hilbert transform.

For all f ∈ B∞π , we have the upper bound

|(If)(t)| ≤
∫ t

0
|(QEf)(τ)|dτ ≤ ‖QEf‖∞|t| ≤ π‖f‖∞|t|, t ∈ R, (8)

which shows that the asymptotic growth of the Hilbert transform Hf of signals f ∈ B∞π is at most linear. More
precisely, for all f ∈ B∞π there exists a signal g ∈ BMO(R) such that Hf = [g] and g(t) = O(t).
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Fig. 2. Plot of the signal If1.

On the other hand, using the identity (6), it has been shown in [1] that for the B∞π -signal

f1(t) =
2

π

∫ π

0

sin(ωt)

ω
dω (9)

we have

|(If1)(t)| ≥
2

π

(
log(|t|)− π2

4
− 1− 1

π

)
(10)

for all t ∈ R with |t| ≥ 1. The signals f1 and If1 are visualized in Fig. 1 and Fig. 2, respectively. Thus, there are
signals f ∈ B∞π , such that the growth of the Hilbert transform Hf is logarithmic, in the sense that there exists a
signal g ∈ BMO(R) such that Hf = [g] and g(t) = Ω(log(t)).

From this the question arises whether the asymptotically logarithmic growth is actually the maximum possible
growth, i.e., whether the upper bound (8) can be improved. The next theorem gives a positive answer.

Theorem 5. There exist two positive constants C4 and C5 such that for all f ∈ B∞π and all t ∈ R we have

|(If)(t)| ≤ C4 log(1 + |t|)‖f‖∞ + C5‖f‖∞.

For the proof we need the following lemma, the proof of which can be found in [1].

Lemma 1. Let f ∈ B∞π and, for 0 < ε < 1,

fε(t) = f((1− ε)t)sin(επt)

επt
, t ∈ R. (11)

Then we have (If)(t) = limε→0(Ifε)(t) for all t ∈ R.

Now, we are in the position to proof Theorem 5.
Proof of Theorem 5: Let f ∈ B∞π be arbitrary but fixed. For 0 < ε < 1 consider the functions fε that were

defined in (11). We have fε ∈ B2π and ‖fε‖∞ ≤ ‖f‖∞ for all 1 < ε < 1, as well as limε→0 fε(t) = f(t) for all
t ∈ R, where the convergence is locally uniform. Lemma 1 is a key observation. Due to the representation (6) and
the properties of the operator Q, we can work with B2π-functions in the following. Next, we analyze

(Ifε)(t) =

∫ t

0
(Qfε)(τ)dτ.

We have to distinguish two cases: |t| < 2 and |t| ≥ 2. For |t| < 2 we have∣∣∣∣∫ t

0
(Qfε)(τ)dτ

∣∣∣∣ ≤ ‖Qfε‖∞|t| ≤ 2π‖f‖∞, (12)
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where we used ‖Qfε‖∞ = ‖QEfε‖∞ ≤ ‖QE‖ ‖fε‖∞ ≤ π‖f‖∞ in the second inequality. Now, we come to the
second case |t| ≥ 2. We can restrict ourselves to the case t ≥ 2, because the case t ≤ 2 is treated analogously. Let
t ≥ 2 be arbitrary but fixed. Using (2), i.e., the frequency domain representation of Q, we obtain∫ t

0
(Qfε)(τ)dτ =

∫ t

0

1

2π

∫ π

−π
|ω|f̂ε(ω) eiωτ dωdτ

=
1

2π

∫ π

−π
|ω|f̂ε(ω)

∫ t

0

eiωτ dτdω

=
1

2π

∫ π

−π
|ω|f̂ε(ω)

eiωt−1

iω
dω. (13)

The order of integration was exchanged according to Fubini’s theorem, which can be applied because∫ t

0

1

2π

∫ π

−π
|ω||f̂ε(ω)|dωdτ ≤ |t|π‖f‖B2

π
<∞.

Furthermore, we have

1

2π

∫ π

−π
|ω|f̂ε(ω)

eiωt−1

iω
dω =

1

2π

∫ π

−π
−i sgn(ω)φ̂(ω)︸ ︷︷ ︸

=û(ω)

f̂ε(ω) eiωt dω

− 1

2π

∫ π

−π
−i sgn(ω)φ̂(ω)f̂ε(ω)dω, (14)

where the function

φ̂(ω) =


1, |ω| ≤ π,
2− |ω|/π, π < |ω| < 2π,

0, |ω| ≥ 2π,

was inserted without altering the integrals, because φ̂(ω) = 1 for ω ∈ [−π, π]. Using the abbreviation û(ω) =
−i sgn(ω)φ̂(ω) and applying the generalized Parseval equality, we obtain from (13) and (14) that∫ t

0
(Qfε)(τ)dτ =

∫ ∞
−∞

fε(τ)u(t− τ)dτ −
∫ ∞
−∞

fε(τ)u(−τ)dτ

=

∫ ∞
−∞

fε(τ)u(t− τ)dτ +

∫ ∞
−∞

fε(τ)u(τ)dτ, (15)

where u is given by

u(τ) =
1

πτ
+

sin(πτ)− sin(2πτ)

(πτ)2
, τ ∈ R.

Dividing the integration range of the first and the second integral in (15) into three parts gives

∫ t

0
(Qfε)(τ)dτ =

=(A1)︷ ︸︸ ︷∫
|τ |≤1

fε(τ)u(t− τ)dτ +

=(A2)︷ ︸︸ ︷∫
|τ−t|≤1

. . . dτ +

=(A3)︷ ︸︸ ︷∫
|τ−t|≥1
|τ |≥1

. . . dτ

+

∫
|τ |≤1

fε(τ)u(τ)dτ

︸ ︷︷ ︸
=(B1)

+

∫
|τ−t|≤1

. . . dτ

︸ ︷︷ ︸
=(B2)

+

∫
|τ−t|≥1
|τ |≥1

. . . dτ

︸ ︷︷ ︸
=(B3)

.

For (A1) we have

|(A1)| =
∣∣∣∣∣
∫
|τ |≤1

fε(τ)u(t− τ)dτ

∣∣∣∣∣ ≤
∫
|τ |≤1
|fε(τ)| |u(t− τ)|dτ ≤ 2‖fε‖∞‖u‖∞.
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The same calculation shows that |(A2)| ≤ 2‖fε‖∞‖u‖∞, |(B1)| ≤ 2‖fε‖∞‖u‖∞, and |(B2)| ≤ 2‖fε‖∞‖u‖∞. It
remains to analyze (A3) + (B3). We have

|(A3) + (B3)| =

∣∣∣∣∣∣
∫
|τ−t|≥1
|τ |≥1

fε(τ)(u(t− τ) + u(τ))dτ

∣∣∣∣∣∣
≤ ‖fε‖∞

∫
|τ−t|≥1
|τ |≥1

∣∣∣∣ 1

π(t− τ)
+

1

πτ

∣∣∣∣ dτ +

∫
|τ−t|≥1
|τ |≥1

(
2

π(t− τ)2
+

2

πτ2

)
dτ


≤ ‖fε‖∞

 1

π

∫
|τ−t|≥1
|τ |≥1

|t|
|t− τ | |τ |dτ +

8

π

 ,

because ∫
|τ−t|≥1
|τ |≥1

(
2

π(t− τ)2
+

2

πτ2

)
dτ ≤ 8

π
.

As for the remaining integral, we have∫
|τ−t|≥1
|τ |≥1

|t|
|t− τ | |τ |dτ =

∫ −1
−∞

t

(τ − t)τ dτ +

∫ t−1

1

t

(t− τ)τ
dτ +

∫ ∞
t+1

t

(τ − t)τ dτ

=

∫ t−1

1

t

(t− τ)τ
dτ + 2

∫ ∞
t+1

t

(τ − t)τ dτ.

Since ∫ ∞
t+1

t

(τ − t)τ dτ = lim
M→∞

∫ M

t+1

(
1

τ − t −
1

τ

)
dτ

= lim
M→∞

(
log

(
M − t
M

)
+ log(t+ 1)

)
= log(t+ 1)

and ∫ t−1

1

t

(t− τ)τ
dτ =

∫ t−1

1

1

t− τ +
1

τ
dτ = 2 log(t− 1),

we obtain
|(A3) + (B3)| ≤ ‖fε‖∞

4

π
(log(1 + t) + 2).

Combining the partial results gives∣∣∣∣∫ t

0
(Qfε)(τ)dτ

∣∣∣∣ ≤ 8‖fε‖∞‖u‖∞+ ‖fε‖∞
4

π
(log(1 + t) + 2)

= C4 log(1 + t)‖fε‖∞ + C6‖fε‖∞
≤ C4 log(1 + t)‖f‖∞ + C6‖f‖∞. (16)

Finally, the assertion follows from Lemma 1, (12), and (16).

Remark 2. The growth result in Theorem 5 implies that∫ ∞
−∞

|(If)(t)|2
(1 + t2)α

dt <∞

for all α > 1/2. This shows that, for all f ∈ B∞π , the Hilbert transform Hf is in the Zakai class, in the sense that
there exists a signal g in the Zakai class, satisfying Hf = [g].

A direct consequence of Theorem 5 is the following corollary concerning the peak value problem of the Hilbert
transform.
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Corollary 1. For all f ∈ B∞π and all g ∈ BMO(R) satisfying Hf = [g] there exists a constant C7 = C7(g) such
that for all T > 2 we have

max
|t|≤T
|g(t)| ≤ C7 log(1 + T ).

Remark 3. The signal f1 is also a good example where commonly used formal substitution rules fail. The Hilbert
transform of f1 cannot be obtained by replacing sin with − cos because the resulting integral

2

π

∫ π

0

− cos(ωt)

ω
dω

diverges for all t ∈ R.

VI. ASYMPTOTIC BEHAVIOR FOR B∞π,0
Next, we present two further results about the peak value of the Hilbert transform for signals in the space B∞π,0,

which is the subspace consisting of B∞π -signals f that vanish on the real axis at infinity, i.e., satisfy lim|t|→∞|f(t)| =
0.

Theorem 6. For all f ∈ B∞π,0 we have

lim
T→∞

1

log(1 + T )
max
|t|≤T
|(If)(t)| = 0.

Proof: Let f ∈ B∞π,0 and ε > 0 be arbitrary but fixed. Since B2π is dense in B∞π,0, there exists a function g ∈ B2π
such that ‖f − g‖∞ < ε. Thus, for all t ∈ R, we have

|(If)(t)| = |(If)(t)− (Ig)(t) + (Ig)(t)|
≤ |(I(f − g))(t)|+ |(Ig)(t)|
≤ C4 log(1 + |t|)‖f − g‖∞ + C5‖f − g‖∞ + |(Hg)(t)|+ |(Hg)(0)|
≤ C4 log(1 + |t|)ε+ C5ε+ 2‖Hg‖∞,

where we used Theorem 5 and equation (7) in the second to last line. It follows, for T > 0, that

1

log(1 + T )
max
|t|≤T
|(If)(t)| ≤ C4ε+

C5ε

log(1 + T )
+

2‖Hg‖∞
log(1 + T )

.

Choosing T0 = exp(max{2‖Hg‖∞, 1}/ε)− 1, we obtain

1

log(1 + T )
max
|t|≤T
|(If)(t)| ≤ (C4 + C5 + 1)ε

for all T ≥ T0. Since ε > 0 was arbitrary, the proof is complete.
Due to Theorem 3, we immediately obtain the following corollary about the asymptotic growth behavior of the

Hilbert transform Hf for f ∈ B∞π,0.

Corollary 2. For all f ∈ B∞π,0 we have

lim
T→∞

1

log(1 + T )
max
|t|≤T
|(Hf)(t)| = 0.

A further result about the asymptotic growth is the following.

Theorem 7. Let φ be an arbitrary positive function with limt→∞ φ(t) = 0. Then there exists a signal f2 ∈ B∞π,0
such that

lim sup
T→∞

1

φ(T ) log(1 + T )
max
|t|≤T
|(If2)(t)| =∞. (17)

Proof: For t ≥ 1 consider the family of bounded linear functionals Ut : B∞π,0 → C, defined by

Utf =
(If)(t)

φ(t) log(1 + t)
.
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Further, for 0 < ε < 1, let

f1,ε(t) =
f1((1− ε)t)
‖f1‖∞

sin(επt)

επt
,

where f1 is the function defined in (9). Then, we have ‖f1,ε‖∞ ≤ 1 and it follows that

‖Ut‖ = sup
f∈B∞

π,0

‖f‖∞≤1

|Utf | ≥ |Utf1,ε|.

Since

lim
ε→0
|Utf1,ε| =

limε→0|(If1,ε)(t)|
φ(t) log(1 + t)

=
|(If1)(t)|

‖f1‖∞φ(t) log(1 + t)
≥

2
π

(
log(t)− π2

4 − 1− 1
π

)
‖f1‖∞φ(t) log(1 + t)

,

where we used Lemma 1 in the second equality and (10) in the last inequality, we obtain

‖Ut‖ ≥
2

π‖f‖∞φ(t)

(
log(t)

log(1 + t)
−
(
π2

4
+ 1 +

1

π

)
1

log(1 + t)

)
.

From this we see that limt→∞‖Ut‖∞ = ∞. Thus, the Banach–Steinhaus Theorem [26, p. 68] implies that there
exists a signal f2 ∈ B∞π,0 such that

lim sup
t→∞

|Utf2| = lim sup
t→∞

|(If)(t)|
φ(t) log(1 + t)

=∞,

which completes the proof.
Again, we obtain, as a corollary, the analogous result for the asymptotic growth of the Hilbert transform.

Corollary 3. Let φ be an arbitrary positive function with limt→∞ φ(t) = 0. Then there exists a signal f2 ∈ B∞π,0
such that

lim sup
T→∞

1

φ(T ) log(1 + T )
max
|t|≤T
|(Hf2)(t)| =∞. (18)

Corollaries 2 and 3 show that, for signals in the space B∞π,0, the peak value of the Hilbert transform grows not
as fast as log(1 + T ) but not “substantially” slower.

VII. A CONDITION FOR THE BOUNDEDNESS OF THE HILBERT TRANSFORM

Thanks to Theorem 3, we can use the simple formula (6) to compute the Hilbert transform of bounded bandlimited
signal. In Section V we have seen that there exists a signal f1 ∈ B∞π such that If1 is unbounded on the real axis.
Thus, the Hilbert transform of a bounded bandlimited signal is again a bandlimited but not necessarily a bounded
signal.

Remark 4. It is well-known that there exist discontinuous signals the Hilbert transforms of which have singularities
[27], [28]. However, those signals are not bandlimited, and the divergence effects are consequences of the non-
smoothness of the signals. This is in contrast to this paper where we treat bandlimited, smooth signals.

For practical applications is important to know when the Hilbert transform is bounded. Theorem 8 gives a
necessary and sufficient condition for the boundedness of the Hilbert transform. The proof of Theorem 8 is given
in Appendix A.

Theorem 8. Let f ∈ B∞π be real-valued. We have If ∈ B∞π if and only if there exists a constant C8 such that∣∣∣∣∣ 1π
∫

ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ

∣∣∣∣∣ ≤ C8 (19)

for all 0 < ε < 1 and all t ∈ R.

Thanks to Theorem 8 we have a complete characterization of the signals in B∞π that have a bounded Hilbert
transform.
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Fig. 3. Plot of the signal f3.
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Fig. 4. Plot of the signal If3.

Remark 5. Note that condition (19) in Theorem 8 does not imply that the principal value integral of the Hilbert
transform converges, i.e., that the limit in (1) exists. The convergence of the principal value integral is the content
of Theorem 10.

Remark 6. Theorem 8 shows that the unbounded divergence of the principal value integral for a signal f ∈ B∞π
implies that the Hilbert transform of f (which is nevertheless well-defined) is not a signal in B∞π .

VIII. A SIGNAL IN B∞π,0 WITH UNBOUNDED HILBERT TRANSFORM

In Section V we have seen that there exists a signal f1 ∈ B∞π , the Hilbert transform of which is unbounded. Next,
we strengthen this result by showing that there even exists a signal f3 ∈ B∞π,0 with unbounded Hilbert transform.

Theorem 9. There exists a signal f3 ∈ B∞π,0 such that ‖Hf3‖∞ =∞.

We do not prove Theorem 9 here, but sketch the proof idea only. Theorem 9 can be proved by showing that the
Hilbert transform of the signal

f3(t) =
2

π

∫ π

0

1

log
(
2π
ω

) sin(ωt)

ω
dω,

which is plotted in Fig. 3, is unbounded. Using integration by parts it is easy to show that f3 satisfies lim|t|→∞ f3(t) =
0, i.e., that f3 is a signal in B∞π,0. The plot of If3 in Fig. 4 indicated the unboundedness of the Hilbert transform
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of f3. The actual proof of Theorem 9 can be done indirectly by using Theorem 8 and showing that

lim
ε→0

∫
ε≤|τ |≤ 1

ε

f3(τ)

τ
dτ =∞.

IX. CONVERGENCE OF THE HILBERT TRANSFORM INTEGRAL

Theorem 8 characterizes when If is bounded. It links the boundedness of If to the boundedness of the principal
value integral (1). In Theorem 10 we characterize a subset of the bounded bandlimited signals, for which the
Hilbert transform integral (1) converges, and thus give a sufficient condition for being able to calculate the Hilbert
transformation by the integral (1).

Theorem 10. Let f ∈ B∞π,0 be real-valued. If If − CI ∈ B∞π,0 for some constant CI, then we have

lim
ε→0

1

π

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ = (If)(t)− CI

and
lim
ε→0

1

π

∫
ε≤|t−τ |≤ 1

ε

(If)(τ)

t− τ dτ = −f(t)

for all t ∈ R.

The proof of Theorem 10 is given in Appendix B.

X. CONCLUSION

In this paper we solved the peak value problem of the Hilbert transform for bounded bandlimited signals. By
analyzing the problem we also clarified the causes which, in the classical literature, led to the misbelief that general
bounded bandlimited signals do not have a Hilbert transform. For general bounded bandlimited signals, the Hilbert
transform cannot be calculated by the principal value integral (1), and formal substitution rules, like the one where,
in certain expressions, “sin” is simply replaced by “− cos” can no longer be used. The necessary theory to define
to Hilbert transform for bounded signals is build on the abstract and nonconstructive H1-BMO(R) duality. Because
the duality approach gives no constructive procedure for the calculation of the Hilbert transform, its usefulness
for practical applications is limited. However, in this paper we considered bounded signals that are additionally
bandlimited and thus could use a simple formula, which was recently found, for calculating the Hilbert transform,
avoiding the abstract duality theory. Based on this novel formula, we were able to solve the peak value problem
of the Hilbert transform and to provide growth estimates.

APPENDIX

A. Proof of Theorem 8

For the proof of Theorem 8 we need Lemma 2.

Lemma 2. Let f ∈ B∞π and If ∈ B∞π . Then, for F = f + iIf , we have

|F (t+ iy)| ≤ ‖F‖∞
for all t ∈ R and y ≥ 0.

Proof: Let t ∈ R and y > 0 be arbitrary but fixed. Since f ∈ B∞π and If ∈ B∞π , we have F ∈ B∞π and
therefore the integral

G(t, y) =
1

π

∫ ∞
−∞

F (τ)
y

y2 + (t− τ)2
dτ

is absolutely convergent.
Next, we show that

G(t, y) = F (t+ iy). (20)



BOCHE AND MÖNICH: CHARACTERIZATION OF THE PEAK VALUE BEHAVIOR OF THE HILBERT TRANSFORM 13

For 0 < ε < 1 consider the functions

fε(z) = f((1− ε)z)sin(επz)

επz
, z ∈ C,

which are in B2π and set
Fε(z) = fε(z) + i(Ifε)(z), z ∈ C.

Thus, according to (7), we have
1

π

∫ ∞
−∞

Fε(τ)
y

y2 + (t− τ)2
dτ

=
1

π

∫ ∞
−∞

(fε(τ) + i(Hfε)(τ))
y

y2 + (t− τ)2
dτ − 1

π

∫ ∞
−∞

i(Hfε)(0)
y

y2 + (t− τ)2
dτ. (21)

Since fε ∈ B2π, we obtain
1

π

∫ ∞
−∞

(fε(τ) + i(Hfε)(τ))
y

y2 + (t− τ)2
dτ =

1

2π

∫ π

−π
(f̂ε(ω) + i(−i sgn(ω))f̂ε(ω)) e−y|ω| eiωt dω

=
1

2π

∫ π

0
2f̂ε(ω) eiω(t+iy) dω

= fε(t+ iy) + i(Hfε)(t+ iy)

for the first integral on the right hand side of (21). For the second integral we have
1

π

∫ ∞
−∞

i(Hfε)(0)
y

y2 + (t− τ)2
dτ = i(Hfε)(0),

because (Hfε)(0) is a constant and
1

π

∫ ∞
−∞

y

y2 + (t− τ)2
dτ = 1.

Thus, it follows that
1

π

∫ ∞
−∞

Fε(τ)
y

y2 + (t− τ)2
dτ = fε(t+ iy) + i((Hfε)(t+ iy)− (Hfε)(0))

= fε(t+ iy) + i(Ifε)(t+ iy)

= Fε(t+ iy). (22)

Let δ > 0 be arbitrary but fixed. Then there exists a τ0 = τ0(δ) > 0 such that∫ −τ0
−∞

log(1 + |τ |) y

y2 + (t− τ)2
dτ < δ (23)

and ∫ ∞
τ0

log(1 + τ)
y

y2 + (t− τ)2
dτ < δ.

Further, it can be shown, that there exists a ε0 = ε0(τ) > 0 such that

max
|τ |≤τ0

|Fε(τ)− F (τ)| < δ (24)

for all 0 < ε ≤ ε0. Using (22), we have

|Fε(t+ iy)−G(t, y)| =
∣∣∣∣ 1π
∫ ∞
−∞

(Fε(τ)− F (τ))
y

y2 + (t− τ)2
dτ

∣∣∣∣
≤ 1

π

∫ −τ0
−∞
|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ

+
1

π

∫ τ0

−τ0
|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ

+
1

π

∫ ∞
τ0

|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ. (25)
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Next, we analyze the three integrals on the right hand side of (25). In order to bound the first and third integral
from above, we need an auxiliary result. According to Theorem 5 there exist two constants C4 and C5 such that

|(If)(τ)| ≤ (C5 + C4 log(1 + |τ |))‖f‖∞
for all τ ∈ R. Hence, we have

|F (τ)| = |f(τ) + i(If)(τ)| ≤ |f(τ)|+ |(If)(τ)|
≤ ‖f‖∞ + (C5 + C4 log(1 + |τ |))‖f‖∞
= (1 + C5 + C4 log(1 + |τ |))‖f‖∞

and

|Fε(τ)| ≤ (1 + C5 + C4 log(1 + |τ |))‖fε‖∞ ≤ (1 + C5 + C4 log(1 + |τ |))‖f‖∞
for all τ ∈ R. This implies that

|Fε(τ)− F (τ)| ≤ 2(1 + C5 + C4 log(1 + |τ |))‖f‖∞ (26)

for all τ ∈ R. Thus, for the first integral on the right hand side of (25), we obtain

1

π

∫ −τ0
−∞
|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ ≤ C9‖f‖∞

∫ −τ0
−∞

log(1 + |τ |) y

y2 + (t− τ)2
dτ

< C9‖f‖∞δ, (27)

where we used (26) in the first inequality and (23) in the second, and C9 is a constant. By the same arguments,
we obtain

1

π

∫ ∞
τ0

|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ < C9‖f‖∞δ. (28)

For the second integral on the right hand side of (25), we have for all 0 < ε ≤ ε0 that

1

π

∫ τ0

−τ0
|Fε(τ)− F (τ)| y

y2 + (t− τ)2
dτ

≤ max
|τ |≤τ0

|Fε(τ)− F (τ)| 1
π

∫ τ0

−τ0

y

y2 + (t− τ)2
dτ

< δ, (29)

where we used (24) in the last inequality. Combining (25), (27), (28), and (29), it follows that

|Fε(t+ iy)−G(t, y)| < (1 + 2C9‖f‖∞)δ

for all 0 < ε ≤ ε0, which shows that
lim
ε→0

Fε(t+ iy) = G(t, y).

Further, a short calculation gives
lim
ε→0

Fε(t+ iy) = F (t+ iy).

Hence, we have (20), i.e.,

F (t+ iy) =
1

π

∫ ∞
−∞

F (τ)
y

y2 + (t− τ)2
dτ.

It follows that

|F (t+ iy)| ≤ 1

π

∫ ∞
−∞
|F (τ)| y

y2 + (t− τ)2
dτ ≤ ‖F‖∞

1

π

∫ ∞
−∞

y

y2 + (t− τ)2
dτ = ‖F‖∞,

which completes the proof.
Proof of Theorem 8:
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t t+εt−ε t+ 1
εt− 1

ε

Pε,t

z-plane

Fig. 5. Integration path Pε,t in the complex plane.

We start with the proof of the “⇒” direction. Let f ∈ B∞π be real-valued, such that If ∈ B∞π . Further, let ε
with 0 < ε < 1 and t ∈ R be arbitrary but fixed, and consider the complex contour that is depicted in Fig. 5. Since
F = f + iIf is an entire function, we have according to Cauchy’s integral theorem that∫

Pε,t

F (ξ)

t− ξdξ = 0.

Further, we have ∫
Pε,t

F (ξ)

t− ξdξ =

∫
F (ξ)

t− ξdξ +

∫
F (ξ)

t− ξdξ +

∫
F (ξ)

t− ξdξ.

Thus, it follows that ∫
F (ξ)

t− ξdξ = −
∫
F (ξ)

t− ξdξ −
∫
F (ξ)

t− ξdξ. (30)

Next, we analyze the two integrals on the right hand side of (30). For the first integral we have∫
F (ξ)

t− ξdξ =

∫ 0

−π

F (t+ ε eiφ)

ε eiφ
iε eiφ dφ = i

∫ 0

−π
F (t+ ε eiφ)dφ, (31)

and consequently ∣∣∣∣∣
∫
F (ξ)

t− ξdξ

∣∣∣∣∣ ≤ π sup
Im(z)≥0

F (z) ≤ π‖F‖∞, (32)

where we used Lemma 2 in the last inequality. For the second integral, a similar calculation yields∣∣∣∣∣
∫
F (ξ)

t− ξdξ

∣∣∣∣∣ ≤ π‖F‖∞. (33)

Combining (30), (32), and (33), we obtain ∣∣∣∣∣ 1π
∫
F (ξ)

t− ξdξ

∣∣∣∣∣ ≤ 2‖F‖∞.

Since |Re z| ≤ |z| for all z ∈ C and f is real-valued, this implies that∣∣∣∣∣ 1π
∫

ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ

∣∣∣∣∣ =

∣∣∣∣∣ 1π
∫

f(ξ)

t− ξdξ

∣∣∣∣∣ ≤ 2‖F‖∞,

which completes the proof of the “⇒” direction, because 1 < ε < 1, and t ∈ R were arbitrary.
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Next, we prove the “⇐” direction. Consider the operator J defined by

(Jf)(t) = lim
ε→0

((Hεf)(t)− (Hεf)(0)) , t ∈ R,

where

(Hεf)(t) =
1

π

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ.

We first show that J is a well-defined operator on B∞π . Let t > 0 be arbitrary but fixed. Without loss of generality
we can assume that t > 0. The case t < 0 is treated analogously. Set t0 = t/2. For ε, satisfying 0 < ε < t0 and
1/ε > t+ t0, we obtain, by splitting and rearranging integrals, that

((Hεf)(t)− (Hεf)(0))π =

∫
ε≤|t−τ |≤t0

f(τ)

t− τ dτ +

∫
ε≤|τ |≤t0

f(τ)

τ
dτ

+

∫ t+ 1

ε

1

ε

f(τ)

t− τ dτ +

∫ t− 1

ε

− 1

ε

f(τ)

τ
dτ

+

∫ t0

−t0

f(τ)

t− τ dτ +

∫ t+t0

t−t0

f(τ)

τ
dτ

+

∫ −t0
t− 1

ε

f(τ)t

(t− τ)τ
dτ +

∫ 1

ε

t+t0

f(τ)t

(t− τ)τ
dτ. (34)

For the first integral in (34) we have∫
ε≤|t−τ |≤t0

f(τ)

t− τ dτ =

∫
ε≤|t−τ |≤t0

f(τ)− f(t)

t− τ dτ. (35)

Since |f(τ) − f(t)| ≤ |t − τ |π‖f‖∞, we see that the integrand of the integral on the right hand side of (35) is
continuous on [t− t0, t+ t0]. Thus, it follows that

lim
ε→0

∫
ε≤|t−τ |≤t0

f(τ)

t− τ dτ =

∫ t+t0

t−t0

f(τ)− f(t)

t− τ dτ.

The same consideration for the second integral in (34) shows that

lim
ε→0

∫
ε≤|τ |≤t0

f(τ)

τ
dτ =

∫ t0

−t0

f(τ)− f(0)

τ
dτ.

As for the third integral in (34), we have ∫ t+ 1

ε

1

ε

∣∣∣∣ f(τ)

t− τ

∣∣∣∣ dτ ≤ ‖f‖∞t1
ε − t

,

and consequently

lim
ε→0

∫ t+ 1

ε

1

ε

f(τ)

t− τ dτ = 0.

The same holds for the fourth integral

lim
ε→0

∫ t− 1

ε

− 1

ε

f(τ)

τ
dτ = 0.
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It remains to analyze the seventh and eighth integral in (34). Since∫ −t0
t− 1

ε

∣∣∣∣ f(τ)t

(t− τ)τ

∣∣∣∣ dτ ≤ ‖f‖∞ ∫ 1

ε
−t

t0

t

(t+ τ)τ
dτ

= ‖f‖∞
∫ 1

ε
−t

t0

1

τ
− 1

(t+ τ)
dτ

= ‖f‖∞
(

log(1− εt) + log

(
t+ t0
t0

))
≤ ‖f‖∞ log

(
t+ t0
t0

)
≤ C10,

with a constant C10 <∞ that is independent of ε, we see that the limit

lim
ε→0

∫ −t0
t− 1

ε

f(τ)t

(t− τ)τ
dτ

exists and is finite. By a similar calculation we see that

lim
ε→0

∫ 1

ε

t+t0

f(τ)t

(t− τ)τ
dτ

exists and is finite. Thus, the operator J is well-defined on B∞π and we have

(Jf)(t) =
1

π

∫ t+t0

t−t0

f(τ)− f(t)

t− τ dτ +
1

π

∫ t0

−t0

f(τ)− f(0)

τ
dτ

+
1

π

∫ t0

−t0

f(τ)

t− τ dτ +
1

π

∫ t+t0

t−t0

f(τ)

τ
dτ

+
1

π

∫ −t0
−∞

f(τ)t

(t− τ)τ
dτ +

1

π

∫ ∞
t+t0

f(τ)t

(t− τ)τ
dτ (36)

for all f ∈ B∞π and t ∈ R.
Next, let f ∈ B∞π be real-valued and arbitrary but fixed. For n ∈ N, consider the B2π-functions

fn(τ) = f
(
(1− 1

n)τ
) sin

(
1
nπτ

)
1
nπτ

. τ ∈ R,

We will show that (Jf)(t) = limn→∞(Jfn)(t) for all t ∈ R. Again, we can restrict ourselves to the case t > 0,
because the case t < 0 is treated analogously. Therefore, let t > 0 be arbitrary but fixed. We need some additional
preliminary considerations. First, note that ‖fn‖∞ ≤ ‖f‖∞, n ∈ N. Moreover, fn converges locally uniformly to f ,
and f ′n converges locally uniformly to f ′. Let δ > 0 be arbitrary but fixed. Then, there exists a τ0 = τ0(δ) ≥ t+ t0
such that ∫ −τ0

−∞

t

(τ − t)τ dτ < δ (37)

and ∫ ∞
τ0

t

(τ − t)τ dτ < δ. (38)

Due to the local uniform convergence of fn, there exists a natural number n0 = n0(δ), such that

max
τ∈[−τ0,τ0]

|f(τ)− fn(τ)| < δ (39)

for all n ≥ n0. Since

f(τ)− f(τ1)− fn(τ)− fn(τ1)

τ1 − τ
=

1

τ1 − τ

∫ τ

τ1

f ′(u)− f ′n(u)du,
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it follows that ∣∣∣∣f(τ)− f(τ1)− fn(τ)− fn(τ1)

τ1 − τ

∣∣∣∣ ≤ 1

|τ1 − τ |

∫ τ

τ1

|f ′(u)− f ′n(u)|du

≤ max
u∈[min{τ1,τ},max{τ1,τ}]

|f ′(u)− f ′n(u)|

for all τ, τ1 ∈ R. Hence, by the local uniform convergence of f ′n, it follows that there exists a natural number
n1 = n1(δ), such that ∣∣∣∣f(τ)− f(t)− fn(τ)− fn(t)

t− τ

∣∣∣∣ < δ (40)

and ∣∣∣∣f(τ)− f(0)− fn(τ)− fn(0)

τ

∣∣∣∣ < δ (41)

for all τ ∈ [−t0, t+ t0] and all n ≥ n1. Now, we have all preliminary considerations and can return to the proof.
From (36) we obtain

|(J(f − fn))(t)| ≤ 1

π

∫ t+t0

t−t0

∣∣∣∣f(τ)− fn(τ)− f(t) + fn(t)

t− τ

∣∣∣∣ dτ +
1

π

∫ t0

−t0

∣∣∣∣f(τ)− fn(τ)− f(0) + fn(0)

τ

∣∣∣∣ dτ
+

1

π

∫ t0

−t0

|f(τ)− fn(τ)|
t− τ dτ +

1

π

∫ t+t0

t−t0

|f(τ)− fn(τ)|
τ

dτ

+
1

π

∫ −t0
−∞

|f(τ)− fn(τ)|t
(τ − t)τ dτ +

1

π

∫ ∞
t+t0

|f(τ)− fn(τ)|t
(τ − t)τ dτ. (42)

We treat the integrals in (42) separately. For the first and second integral we easily obtain

1

π

∫ t+t0

t−t0

∣∣∣∣f(τ)− fn(τ)− f(t) + fn(t)

t− τ

∣∣∣∣ dτ < δ2t0

and
1

π

∫ t0

−t0

∣∣∣∣f(τ)− fn(τ)− f(0) + fn(0)

τ

∣∣∣∣ dτ < δ2t0

for all n ≥ n1, by using (40) and (41), respectively. For the third integral we have∫ t0

−t0

|f(τ)− fn(τ)|
t− τ dτ ≤ max

τ∈[−t0,t0]
|f(τ)− fn(τ)|

∫ t0

−t0

1

t− τ dτ︸ ︷︷ ︸
=:C11

< δC11

for all n ≥ n0, where we used (39) in the last inequality. Equally, we obtain∫ t+t0

t−t0

|f(τ)− fn(τ)|
t− τ dτ ≤ max

τ∈[t−t0,t+t0]
|f(τ)− fn(τ)|

∫ t+t0

t−t0

1

t− τ dτ︸ ︷︷ ︸
=:C12

< δC12

for all n ≥ n0. The fifth integral can be upper bounded according to∫ −t0
−∞

|f(τ)− fn(τ)|t
(τ − t)τ dτ =

∫ −τ0
−∞

|f(τ)− fn(τ)|t
(τ − t)τ dτ +

∫ −t0
−τ0

|f(τ)− fn(τ)|t
(τ − t)τ dτ

≤ 2‖f‖∞
∫ −τ0
−∞

t

(τ − t)τ dτ + max
τ∈[−τ0,−t0]

|f(τ)− fn(τ)|
∫ −t0
−∞

t

(τ − t)τ dτ︸ ︷︷ ︸
=:C13

< δ(2‖f‖∞ + C13)
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for all n ≥ n0, where we used (37) and (39) in the last inequality. For the last integral in (42), the same considerations
together with (38) and (39) give∫ ∞

t+t0

|f(τ)− fn(τ)|t
(τ − t)τ dτ =

∫ τ0

t+t0

|f(τ)− fn(τ)|t
(τ − t)τ dτ +

∫ ∞
τ0

|f(τ)− fn(τ)|t
(τ − t)τ dτ

≤ max
τ∈[t+t0,τ0]

|f(τ)− fn(τ)|
∫ −t0
−∞

t

(τ − t)τ dτ︸ ︷︷ ︸
=:C14

+2‖f‖∞
∫ ∞
τ0

t

(τ − t)τ dτ

< δ(2‖f‖∞ + C14)

for all n ≥ n0. Combining all partial results yields

|(Jf)(t)− (Jfn)(t)| = |(J(f − fn))(t)| < δ(4t0 + 4‖f‖∞ + C11 + C12 + C13 + C14)

for all for all n ≥ max{n0, n1}. Since δ > 0 was arbitrary, this shows that

(Jf)(t) = lim
n→∞

(Jfn)(t). (43)

The equality (43) is true for all t ∈ R, because t > 0 was arbitrary, and the case t < 0 is treated analogously. Thus,
we have

(If)(t) = lim
n→∞

(Ifn)(t) = lim
n→∞

((Hfn)(t)− (Hfn)(0))

= lim
n→∞

lim
ε→0

((Hεfn)(t)− (Hεfn)(0)) = lim
n→∞

(Jfn)(t)

= (Jf)(t) = lim
ε→0

((Hεf)(t)− (Hεf)(0))

for all t ∈ R, where we used Lemma 1 in the first equality and (43) in the fifth. It follows from the assumption of
the theorem that

|(If)(t)| = |lim
ε→0

((Hεf)(t)− (Hεf)(0))| ≤ lim sup
ε→0

(|(Hεf)(t)|+ |(Hεf)(0)|) ≤ 2C8,

for all t ∈ R, which implies that If ∈ B∞π , because of Theorem 4.

B. Proof of Theorem 10

For the proof of Theorem 10 we need the following lemma.

Lemma 3. Let f ∈ B∞π,0 such that If − CI ∈ B∞π,0 for some constant CI, and let

FCI(t+ iy) = f(t+ iy) + i((If)(t+ iy)− CI).

Then, for all ε > 0 there exists a natural number R0 = R0(ε) such that

|FCI(t+ iy)| < ε

for all t ∈ R and y ≥ 0, satisfying
√
t2 + y2 ≥ R0.

Proof: Consider the Möbius transformation

φ(z) =
z − i
z + i

,

which maps the upper half plane to the unit disk. The inverse mapping is given by

φ−1(z) = i
1 + z

1− z .

Since FCI is analytic in C and |FCI(t+ iy)| ≤ ‖FCI‖∞ for all t ∈ R and y ≥ 0, according to Lemma 2, it follows
that

G(z) = FCI(φ−1(z)) = FCI

(
i
1 + z

1− z

)
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φ−1

1ρ0

ω0

D

R0

φ−1(D)

Fig. 6. Visualization of the set φ−1(D).

is analytic for |z| < 1 and that
sup
|z|<1
|G(z)| <∞.

Further, G is continuous on the unit circle, because FCI is continuous on the real axis,

lim
ω↘0

G(eiω) = lim
t→−∞

FCI(t) = 0, (44)

and
lim
ω↗0

G(eiω) = lim
t→∞

FCI(t) = 0. (45)

Hence, by [29, p. 340, Theorem 17.11], we have

G(ρ eiθ) =
1

2π

∫ π

−π
G(eiω)

1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω

for all 0 ≤ ρ < 1 and −π < θ < π.
Let ε > 0 be arbitrary but fixed. Equations (44) and (45) imply that there exits a ω0 = ω0(ε), 0 < ω0 < π, such

that
|G(eiω)| < ε

2
(46)

for all |ω| ≤ ω0. Further, there exists a ρ0 = ρ0(ε), 0 < ρ0 < 1, such that

‖FCI‖∞(1− ρ)

ρ
(
1− cos

(
ω0

2

)) < ε

2
(47)

for all ρ0 ≤ ρ < 1.
Next, let ρ satisfying ρ0 ≤ ρ < 1, and θ satisfying −ω0/2 ≤ θ ≤ ω0/2, be arbitrary but fixed. Then, we have

|G(ρ eiθ)| ≤ 1

2π

∫ ω0

−ω0

|G(eiω)| 1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω +
1

2π

∫
ω0≤|ω|≤π

|G(eiω)| 1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω

<
ε

2
+
‖FCI‖∞

2π

∫
ω0≤|ω|≤π

1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω,

where we used (46) and the fact [29, p. 233] that

1

2π

∫ π

−π

1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω = 1.

Further, we have

‖FCI‖∞
2π

∫
ω0≤|ω|≤π

1− ρ2
1− 2ρ cos(ω − θ) + ρ2

dω ≤ ‖F
CI‖∞
2π

∫
ω0≤|ω|≤π

1− ρ2
1− 2ρ cos

(
ω0

2

)
+ ρ2

dω

<
‖FCI‖∞(1− ρ2)

1− 2ρ cos
(
ω0

2

)
+ ρ2

=
‖FCI‖∞(1− ρ)(1 + ρ)

(1− ρ)2 + 2ρ
(
1− cos

(
ω0

2

)) < ‖FCI‖∞(1− ρ)

ρ
(
1− cos

(
ω0

2

)) < ε

2
,
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where we used (47) in the last inequality. Hence, it follows that |G(ρ eiθ)| < ε for all ρ0 ≤ ρ < 1 and −ω0/2 ≤ θ ≤
ω0/2. Let D = {ρ eiθ : ρ0 ≤ ρ < 1,−ω0/2 ≤ θ ≤ ω0/2}. Thus, for z ∈ φ−1(D), we have FCI(z) < ε. The image
of D under the mapping φ−1 is depicted in Figure 6. Finally, let R0 be the radius of the smallest circle around the
origin, whose restriction to the upper half plane lies completely in φ−1(D). Then, we have |FCI(t + iy)| < ε for
all t ∈ R and y ≥ 0, satisfying

√
t2 + x2 ≥ R0.

Now we are in the position to prove Theorem 10
Proof of Theorem 10: Let f ∈ B∞π,0 be real-valued, such that If − CI ∈ B∞π,0 for some constant CI. Further,

let t ∈ R be arbitrary but fixed. Since FCI = f + i(If − CI) ∈ Bπ is an entire function, we can use the same
argumentation as in the proof of Theorem 8 to obtain∫

FCI(ξ)

t− ξ dξ = −
∫
FCI(ξ)

t− ξ dξ −
∫
FCI(ξ)

t− ξ dξ.

From (31) we see that

lim
ε→0

∫
FCI(ξ)

t− ξ dξ = πiFCI(t).

Let δ > 0 be arbitrary but fixed. Then, according to Lemma 3, there exists a natural number R0 = R0(δ) such that
|FCI(t+ iy)| < δ for all t ∈ R and y ≥ 0, satisfying

√
t2 + y2 ≥ R0. Let ε0 = 1/(R0 + |t|). Then it follows that∣∣t+ 1

ε
eiφ
∣∣ ≥ R0 for all 0 < ε ≤ ε0 and consequently that

∣∣FCI
(
t+ 1

ε
eiφ
)∣∣ < δ for all 0 < ε ≤ ε0 and 0 ≤ φ ≤ π.

Thus, we have ∣∣∣∣∣
∫
FCI(ξ)

t− ξ dξ

∣∣∣∣∣ ≤
∫ π

0

∣∣∣∣FCI

(
t+

1

ε
eiφ
)∣∣∣∣ dφ ≤ πδ

for all 0 < ε ≤ ε0, which shows that

lim
ε→0

∫
FCI(ξ)

t− ξ dξ = 0.

Hence, it follows that

lim
ε→0

1

π

∫
FCI(ξ)

t− ξ dξ = −iFCI(t), (48)

which in turn implies that the real part of the left hand side of (48) converges to the real part of the right hand
side of (48), i.e., that

lim
ε→0

1

π

∫
f(ξ)

t− ξdξ = (If)(t)− CI,

and that the imaginary part of the left hand side of (48) converges to the imaginary part of the right hand side of
(48), i.e., that

lim
ε→0

1

π

∫
(If)(ξ)− CI

t− ξ dξ = lim
ε→0

1

π

∫
(If)(ξ)

t− ξ dξ = −f(t).
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