
Computer Vision-Based Localization and Mapping of an

Unknown, Uncooperative and Spinning Target for Spacecraft

Proximity Operations
by

Brent Edward Tweddle
B.A.Sc., University of Waterloo (2007)

S.M., Massachusetts Institute of Technology (2010)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

© Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics and Astronautics

September 18, 2013

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David W. Miller

Professor, Aeronautics and Astronautics
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alvar Saenz-Otero

Principal Research Scientist, Aeronautics and Astronautics
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
John J. Leonard

Professor, Mechanical Engineering
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Larry H. Matthies

Senior Research Scientist, NASA Jet Propulsion Laboratory
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Eytan H. Modiano

Professor, Aeronautics and Astronautics
Chairman, Graduate Program Committee



2



Computer Vision-Based Localization and Mapping of an

Unknown, Uncooperative and Spinning Target for Spacecraft

Proximity Operations

by

Brent Edward Tweddle

Submitted to the Department of Aeronautics and Astronautics
on September 18, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Prior studies have estimated that there are over 100 potential target objects near the
Geostationary Orbit belt that are spinning at rates of over 20 rotations per minute.
For a number of reasons, it may be desirable to operate in close proximity to these
objects for the purposes of inspection, docking and repair. Many of them have an
unknown geometric appearance, are uncooperative and non-communicative. These
types of characteristics are also shared by a number of asteroid rendezvous missions.

In order to safely operate in close proximity to an object in space, it is important to
know the target object’s position and orientation relative to the inspector satellite, as
well as to build a three-dimensional geometric map of the object for relative navigation
in future stages of the mission. This type of problem can be solved with many of the
typical Simultaneous Localization and Mapping (SLAM) algorithms that are found
in the literature. However, if the target object is spinning with significant angular
velocity, it is also important to know the linear and angular velocity of the target
object as well as its center of mass, principal axes of inertia and its inertia matrix.
This information is essential to being able to propagate the state of the target object
to a future time, which is a key capability for any type of proximity operations mission.
Most of the typical SLAM algorithms cannot easily provide these types of estimates
for high-speed spinning objects.

This thesis describes a new approach to solving a SLAM problem for unknown
and uncooperative objects that are spinning about an arbitrary axis. It is capable of
estimating a geometric map of the target object, as well as its position, orientation,
linear velocity, angular velocity, center of mass, principal axes and ratios of inertia.
This allows the state of the target object to be propagated to a future time step
using Newton’s Second Law and Euler’s Equation of Rotational Motion, and thereby
allowing this future state to be used by the planning and control algorithms for the
target spacecraft.

In order to properly evaluate this new approach, it is necessary to gather experi-
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mental data from a microgravity environment that can accurately reproduce the types
of complex spinning motions that may be observed in actual space missions. While the
Synchronize Position Hold Engage Reorient Experimental Satellites (SPHERES) can
accurately represent these types of complex spinning motions, they did not previously
have any onboard cameras (or any other similar sensors). This thesis describes an
experimental testbed upgrade to the SPHERES satellites, known as the “Goggles”,
which adds computer vision-based navigation capability by the addition of stereo
cameras and additional onboard computational power. The requirements, design and
operation of this testbed is described in this thesis as well as the results of its first
operations onboard the International Space Station (ISS).

The SPHERES Goggles testbed was used to capture a dataset of an unknown
target object that was spinning at 10 rotations per minute about its unstable in-
termediate axis. This dataset includes reference measurements of both the inspector
spacecraft and the target object with respect to an inertial frame. An implementation
of the above algorithm was evaluated using this dataset and the resulting estimates
were compared to reference metrology measurements. A statistical analysis of the
errors is presented along with a comparison of the geometric and dynamic properties
of the target object with respect to its known values. A covariance analysis on the
convergence of the smoothing algorithm is also provided.
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Chapter 1

Introduction

Autonomous spacecraft proximity operations is a challenging, complicated and multi-

faceted field of study in astronautics. A typical problem is shown in Figures 1-1 and

1-2, where a Inspector Spacecraft is navigating around a Target Object. This field can

be categorized in a number of different “mission applications.” These applications can

be grouped by objective (e.g. inspection, rendezvous or repair) as well as by a priori

target knowledge (e.g. cooperative or uncooperative, known or unknown appearance

or stationary or moving target). This thesis focuses on the problem of how to navigate

around an unknown, uncooperative object that may also be moving or spinning with

high speed.

As a result of the large number of possible mission applications, there is a broad

history of spacecraft proximity operations both in terms of research and develop-

ment as well as on-orbit missions. This chapter will review the current state of the

art in spacecraft navigation, discuss motivating mission applications and provide an

overview of the contributions and outline of this thesis.

1.1 Motivation

Since the primary goal of the proposed thesis is to investigate navigation techniques

for spinning target objects in space, it is important to ask the following question: How

many potential target objects in space can be considered spinning and not stationary

23



Figure 1-1: SPHERES VERTIGO Goggles onboard International Space Station:
Inspector Satellite is Red, Target Satellite is Blue

or tumbling?

This is an important question because many spacecraft that are launched today

are 3-axis stabilized (i.e. have no angular velocity by design). However, in the past

many spacecraft have been spin-stabilized, such as the Hughes Spacecraft 376 [9, 17]

shown in Figure 1-3. This spacecraft is 6.6 meters high by 2.16 meters in diameter

and weights 654 kg at launch. It was spin-stabilized at 50 RPM about its minor axis.

Additionally, a number of interplanetary missions are spin stabilized during the cruise

phase of their mission. For example, DAWN, JUNO and MSL were spin-stabilized at

48, 5 and 2 RPM respectively.

Kaplan et. al. [59] published a study in 2010 to assess the required technologies

to perform space debris capture. Included in this study was an analysis of the dis-

tribution of space objects and their angular velocities. The authors concluded that

in orbits below 500 km, the gravity gradient and atmospheric pressure would provide

enough torque to null the spin rates over long enough periods of time. However, in

Geostationary Orbit (GEO) and near-GEO (i.e. graveyard orbits), the authors state
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Figure 1-2: CAD Visualization of Proximity Operations Mission using the
SPHERES Satellites: Inspector Spacecraft (left) is navigating around the Target

Object (right)

25



Figure 1-3: Hughes Spacecraft HS 376[9, 17]

that “it is reasonable to estimate that there are over 100 large expired satellites that

are still rotating at several 10s of RPM.”[59] The ability to perform proximity op-

erations with spacecraft in GEO will become more important as time goes on since

this is a very important location for the telecommunications and earth-observation

satellite industry.

A number of missions would also be interested in performing proximity operations

about an asteroid. Asteroids have many of the same unknown and uncooperative

characteristics as disabled, or uncooperative spacecraft. In order to plan a mission

to an asteroid, it would be important to understand (and possibly estimate) the

asteroid’s angular velocity. Cotto-Figeuroa’s thesis [25] published a survey of rotation

rates of near earth asteroids, the results of which are shown in Figure 1-4. This shows

that there are a number of asteroids with diameters between 10 and 100 meters, that

are rotating between 0.0167 and 1.67 rotations per minute.
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Figure 1-4: Rotation Rates and Diameters of Near Earth Asteroids from
Cotto-Figueroa [25]

1.2 Tumbling versus Spinning Space Objects and

the Importance of Angular Velocity

The following sections of this chapter will show that typical solutions to the Simulta-

neous Localization and Mapping (SLAM) problem do not provide angular velocities,

which is problematic for the inspection of quickly rotating target objects. This sec-

tion will discuss why the inspection of slowly rotating (i.e. tumbling) targets does

not require angular velocity knowledge, while the inspection of quickly rotating (i.e.

spinning) targets do require angular velocity knowledge. Additionally, a relationship

for calculating the threshold between tumbling and spinning target objects based on

fuel consumption and thruster saturation will be derived and discussed.

During many spacecraft proximity operations missions, it is likely that it would

be necessary to perform closed loop control using relative sensors, such as cameras,

flash LIDAR’s etc., rather than global sensors such as Inertial Measurement Units,

space-based Global Positioning Systems, star trackers, etc. This is especially true

27



if the mission objective requires the inspecting spacecraft to make contact with the

target object for the purpose of docking, repair, sample gathering etc.

If closed loop control of an inspector spacecraft is performed relative to a target

object that is rotating, without any knowledge or control law compensation for this

rotation rate, the inspector will follow a circular trajectory that is synchronized with

the object’s rotation rate, as shown in Figure 1-5. In this situation, the inspector will

perceive this rotational motion as a translational and rotational disturbance and will

apply a force and torque to correct it, thereby expending “valuable” fuel.

Figure 1-5: Circular Inspection Trajectory due to Relative Station-Keeping of a
Rotating Target Object

It is clear that for very small angular velocities, the expended fuel required to

maintain station-keeping about a rotating object is negligible compared to the overall

fuel required for the mission. For the purpose of this thesis, the small rotation rate

is described as a “slow tumble”. However, if the rotation rate is high enough, the
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fuel required to maintain station-keeping may be significant and in some cases, the

thrusters may be saturated and unable to apply the required centripetal acceleration.

This thesis describes the rotation rate in this case as a “fast spin”.

As a result of these definitions, for a “spinning” target object, it would be necessary

to estimate and compensate for the rotational properties of the target object using

methods such as those described in this thesis, in order to avoid expending valuable

fuel. In contrast, for a “tumbling” target object, it would not be necessary to use

methods such as those described in this thesis as the expended fuel is by definition

negligible when compared with the fuel required by the overall mission.

This leads to the question of how to quantify whether a target object is spinning

or tumbling. A target object will be considered tumbling if and only if both of the

following two statements are true.

1. The centripetal force required to maintain station-keeping is less than the max-

imum possible force the inspector can achieve.

2. The fuel required to maintain station-keeping over the required time (∆t) is less

than Mf percent of the inspector’s mass. In other words, Mf is the maximum

mass fraction of fuel that can be expended on the centripetal force.

For example, spending 10% of the fuel on centripetal force for 10 minutes of station

keeping would lead to Mf = 0.1 and ∆t = 10× 60s.

The above definitions depend on a number of variables specific to each mission,

which are shown in Figure 1-5 and discussed below. Since the primary expenditure

of fuel is due to maintaining a centripetal acceleration during station-keeping, the

analysis is simplified by considering only this force. As a result, two possible thresh-

olds on angular velocity (ωThresh F and ωThresh Mf
, corresponding to the above two

conditions) can be defined, as well as ωThresh, which is the minimum of the previous

two thresholds.

Now, in order to derive equations for these thresholds, the following variables are

assumed to be given: a station-keeping radius r, the mass of the inspector space-

craft mInsp and the maximum force that can be applied by the inspectors thrusters,
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FInsp Max. Using these, a relationship can be defined with the maximum angular

velocity of the target object ωThresh F:

FInsp Max ≥ mInsprω
2
Thresh F (1.1)

ωThresh F ≤

√
FInsp Max

rmInsp

(1.2)

The second threshold can be defined by setting a maximum mass ratio Mf of fuel

that is consumed in order to maintain the required centripetal acceleration. This is

the ratio of the fuel that is expended to apply the centripetal force to the mass of the

inspector spacecraft at the beginning of the station-keeping maneuver. To begin, the

change in velocity due to the centripetal acceleration, ∆Vcentripetal, must be calculated:

∆Vcentripetal =

∫
rω2

Thresh Mf
dt (1.3)

Assuming that the radius and angular velocity remain constant over the period of

time, ∆t, that the station-keeping is performed, this integral can be evaluated:

∆Vcentripetal = ∆trω2
Thresh Mf

(1.4)

Using the specific impulse, Isp, standard gravity, g0 = 9.81m/s2, we can impose

a limit on the mass fraction Mf , which is the ratio of propellant mass to wet mass,

using the above equation for ∆Vcentripetal.

Mf ≥ 1− e
−

∆Vcentripetal
g0Isp (1.5)

Mf ≥ 1− e
−

∆trω2
Thresh Mf

g0Isp (1.6)

Using this limit, ωThresh Mf
can be solved for:
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e
∆trω2

Thresh Mf

g0Isp ≤ (1−Mf )
−1 (1.7)

∆trω2
Thresh Mf

g0Isp
≤ − ln(1−Mf ) (1.8)

ω2
Thresh Mf

≤ −g0Isp
r∆t

ln(1−Mf ) (1.9)

ωThresh Mf
≤

√
−g0Isp

r∆t
ln(1−Mf ) (1.10)

Now, the overall threshold to define the cutoff between tumbling and spinning can

be defined as ωThresh. If the angular velocity of the target object is less than this, it

can be considered tumbling rather than spinning:

ωThresh ≤ min
(
ωThresh F, ωThresh Mf

)
(1.11)

ωThresh ≤ min

(√
FInsp Max

rmInsp

,

√
−g0Isp

r∆t
ln(1−Mf )

)
(1.12)

Using the above definitions, two examples are considered to determine the angular

velocity threshold between tumbling and spinning. The first example is based on the

SPHERES satellites, where the centripetal force fuel expenditure is a full tank (0.17

kg) in 5 minutes. The second exampleis based on the Orbital Express Mission’s

Exercise #1, where the fuel expenditure is 5 kg over 120 minutes [143, 97]. The

Matlab code for these examples is presented in Section B.1.
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Table 1.1: Angular Velocity Thresholds between Tumbling and Spinning for Two
Example Missions

Parameter SPHERES Orbital Express

r 0.7 m 12 m

mInsp 5.91 kg 900 kg

FInsp Max 0.22 N 10.8 N

Isp 37.7 s 235 s

Mf 0.029 0.0056

∆t 5 min 120 min

ωThresh F 2.20 RPM 0.3020 RPM

ωThresh Mf
2.17 RPM 0.1164 RPM

ωThresh 2.17 RPM 0.1164 RPM

1.3 Problem Statement

This thesis develops navigation methods that enable the inspection of an uncooper-

ative, unknown spinning target for the purpose of proximity operations. In order to

achieve this, the inspector spacecraft will build a map of the target object and localize

itself within that map. If the target was either stationary or tumbling, this problem

could be considered solvable within the framework of prior research on Simultane-

ous Localization and Mapping (SLAM)[122, 71] and Visual Odometery (VO)[80, 88].

Since most approaches to solving the SLAM and VO problems make the assumption

that the environment in which the vehicle is moving is static, the fact that the tar-

get object is spinning significantly complicates the problem for a number of different

reasons.

The first complication is that the navigation system should be able to propagate

the state of the target object into the future. Since the spinning target object has, by

definition, a high angular velocity, Euler’s Equations of Motion and Newton’s Second

Law must be solved along with the position and attitude kinematics equation in order
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to predict the location and orientation of the target object at some point in the future.

This requires knowledge of not only the position and orientation of the target object,

which are typically provided by SLAM algorithms, but also the linear and angular

velocity as well as the center of mass, principal axes of inertia and the inertia matrix

up to a scale factor.

The second complication that spinning targets introduce is that their motion is

very difficult to replicate in any earth-based laboratory environment that undergoes

1-G of gravitation force. Most approaches to using bearings or fluids to simulate

a spinning and nutating target will add additional friction and gravity-induced pre-

cession forces that would not be present in an orbital environment. A preferable

approach for experimenting on spinning spacecraft is to use the microgravity envi-

ronment that is available inside the International Space Station (ISS), which easily

allows objects to spin and nutate at high speeds in six degrees of freedom (6DOF).

This thesis presents the development a navigation system that will allow a space-

craft to inspect an unknown and uncooperative target object and that is undergoing

complex, but torque-free, spinning motions. This approach estimates the state of the

target object relative to an inertial frame. In addition to the relative position and

orientation that a typical SLAM algorithm will estimate, this approach will concur-

rently estimate the linear and angular velocity, the center of mass and principal axes

of the target object, and its principal inertia matrix (up to a scale factor). This thesis

also presents the development of an experimental testbed and “open research facil-

ity” to evaluate this and other vision-based navigation algorithms in the six degree

of freedom microgravity environment of the International Space Station.

1.4 Literature Review

1.4.1 Spacecraft Proximity Operations Missions

A number of space missions have demonstrated autonomous proximity operations.

The European Space Agency’s Automated Transfer Vehicle (ATV) uses two relative
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Global Positioning System (GPS) receivers for navigation until it is 250 m away from

the ISS. After this point it uses laser retro-reflectors that are located on the ISS to

determine the relative position and orientation[31]. The DARPA Orbital Express

mission also used laser based retro-reflectors for docking with a cooperative target

spacecraft[49].

The XSS-10 [12] and XSS-11 [98] missions both advanced the state of the art

of inspection and proximity operations with a non-cooperative target. XSS-11 per-

formed a visual-inertial circumnavigation and inspection of an un-cooperative target

(similar to that performed on SPHERES in 2013[33]), but did not rendezvous with

it. It additionally did not estimate its geometric model or its state (i.e. position,

orientation, linear velocity, angular velocity and its center of mass, principal axes and

ratios of inertia). A similar mission was performed by the MiTEx micro-satellite that

was launched in 2009 to inspect the failed DSP-23 satellite[139]. The author of this

thesis was unable to find detailed results for any of these three missions and believe

they are not publicly available.

The Near Earth Asteroid Rendezvous (NEAR Shoemaker) mission landed a robotic

probe on the surface of the near earth astroid Eros in 2001. In order to touch down

on the surface, a map of 1624 crater landmarks was assembled manually by a hu-

man analyst (using computer-assisted ellipse fitting software). This map was used to

perform relative pose estimation with one sigma uncertainties of approximately 10

meters[106].

The Japanese Aerospace Exploration Agency (JAXA) Hayabusa mission per-

formed a sample return on 25143 Itokawa asteroid in 2005. The asteroid landing

vehicle, the MUSES-C, was designed to drop a visual fiducial marker onto the surface

of the asteroid[141]. It had planned to use this fiducial marker to regulate the space-

craft’s velocity in the horizontal plane, while a set of laser altimeters would be used to

determine the altitude of the spacecraft during the touchdown maneuver. However,

due to laser altimeter sensor failures, this approach was abandoned during operations

and a vision-based navigation algorithm, which tracked a number of point features

on the asteroid, was selected and developed while the spacecraft was waiting nearby
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the asteroid. A team at JAXA built a map of global map of Guidance Control Points

(similar to typical feature points), that could be used for relative pose estimation.

Since this approach was too computationally expensive to be performed onboard the

spacecraft, data was transmitted to earth, and flight commands were returned with a

30-minute delay. In November 2005, the Hayabusa spacecraft made multiple touch-

downs on the asteroid; however, the navigation system led to a number of errors that

resulted in imperfect touchdowns [141, 142, 67].

In 2009 and 2010 the Canadian Space Agency (CSA) and National Aeronautics

and Space Administration (NASA) demonstrated the TriDAR[111] system for per-

forming relative navigation to an uncooperative (i.e. no fiducials) but known (i.e.

using a geometric model) target. The inspector vehicle was the Space Shuttle, and

the TriDAR hardware was mounted to it while it circumnavigated its target, the

ISS. The algorithms were optimized to use only 100 sparse points from a LIDAR-like

system in an Iterative Closest Point algorithm [15].

In addition to these missions, a theoretical and simulation study was completed

by Bayard and Brugarolas [14] that details a state estimation approach for small body

relative navigation using camera sensors. They describe an Extended Kalman Fil-

ter based approach that incorporates bearing measurements from “Landmark Table

(LMT)” of known feature points in a computationally efficient QR-factorization ap-

proach with delayed state augmentation. Additionally, a second method is discussed

for computing relative orientation based on “Paired Feature Tables (PFT)” and pro-

vide an EKF update method that is similarly based on QR-factorization. It is noted

that this method is equivalent to solving for the relative motion using the epipolar

constraints (i.e. solving for the Fundamental and Essential Matrix using the 8 Point

Algorithm [41], and then using this to solve for the relative translation and rotation

using Horn’s or Hartley’s method [47, 41]). Note that this approach only models the

relative position and linear velocity of the inspector spacecraft relative to the target

object. It does not estimate the attitude or angular velocity of the vehicle in any

form. Additionally, the approaches described in Bayard’s paper makes the assump-

tion that the target object is stationary and integrates onboard accelerometers with
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vision measurements based on this assumption. If the target object is rotating with

enough angular velocity, the process model will believe the inspector is standing still,

while the vision measurements will believe the inspector is following a large circular

trajectory, and the filter may eventually diverge.

The above mentioned missions are good examples of the state of the art in au-

tonomous proximity operations. It is important to note that they computed nav-

igation solutions using some form of known feature points or models and a rela-

tive pose estimation algorithm (e.g. Horn’s absolute orientation[46] or an equivalent

method[8, 15]). In the case where the target was non-cooperative, a map of the fea-

ture points was generated offline and then used for subsequent navigation. A recently

published survey article by Naasz et. al. [98] made a strong point: “...no space-

craft has ever performed autonomous capture of a non-cooperative vehicle, and full

6DOF relative navigation sensing to non-cooperative vehicles has only been shown to

a limited extent.”[98] While this article’s survey did not include asteroid rendezvous

missions, based on the above mentioned publications, the fact that the mapping phase

was performed by ground operators implies that these missions did not demonstrate

a fully autonomous rendezvous.

1.4.2 General Localization and Mapping

The problem of Simultaneous Localization and Mapping has been studied for a num-

ber of years beginning with Smith, Self and Cheeseman’s Kalman Filter formulation

[122]. Early implementations of SLAM systems in Kalman Filter frameworks were

performed by Leonard using ultrasonic scanning sensors on a mobile robot [72] and

Matthies using stereo cameras [87]. There are a number of alternatives to Kalman

Filters that can be used to solve the SLAM problem, most of which focus on ex-

ploiting the intrinsic sparsity in the SLAM problem to develop efficient numerical

methods. One significant example was developed by Montemerlo et. al. who use

an approach based on Rao-Blackwellized particle filters known as FastSLAM[94]. A

detailed treatment of many of the Kalman and particle filter methods for solving the

SLAM problem is available in Thrun’s textbook [131], which describes the state of
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the art up until 2005. However, it focuses on two-dimensional vehicles and does not

cover computer vision techniques in much depth.

One of the main challenges with single-camera (monocular) SLAM algorithms is

how to deal with measurements that do not have sufficient information about the

depth of a feature point. Davison proposed an inverse-depth model that provides a

realistic parameterization of uncertainty within the Gaussian distribution model that

is assumed by an Extended Kalman Filter (EKF)[24].

Recently, researchers have focused on improving methods for integrating inertial

measurement units with vision sensors. This includes approaches where the map of

the environment is known a priori [132, 95], as well as methods to estimate Camera-

IMU calibration parameters [74, 60]. Also, a number of researchers have integrated

line features into the estimation framework[140, 54, 53, 65]. Typically, vertical line

measurements are used to further refine an unmanned aerial vehicle’s attitude.

The computer vision community developed an approach to solve the problem of

localizing cameras and image feature points using a nonlinear least squares optimiza-

tion, which is referred to as bundle adjustment [133]. Triggs provides a historical

perspective of bundle adjustment in Appendix A of [133], which discusses on of the

early implementations of second order bundle adjustment that was solved using least

squares by Brown in 1957 to 1959 for the US Air Force[19, 21]. For SLAM ap-

plications, there has been a recent resurgence in smoothing or batch methods (as

opposed to filtering. This is best highlighted in Davison’s 2010 paper [42]. Recently

Kaess et. al. developed an approach to solve the SLAM problem in the framework

of probabilistic graphical models with sparse linear algebra routines in a system re-

ferred to as incremental Smoothing and Mapping (iSAM) [58]. Additionally, Klein

and Murray implemented a monocular Parallel Tracking and Mapping [63] approach

that introduced a keyframe approach that smooths or batch processes select frames

in a bundle adjustment algorithm in parallel with a mapping thread that estimates

a three-dimensional model of point features. Newcombe extended this method to a

dense reconstruction approach that utilizes graphical processing units to construct a

dense three dimensional model of a static scene [99].
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Visual Odometry is a term for describing the localization-only problem that uses

computer vision methods to determine a pose trajectory for the vehicle [89, 100,

35, 115]. It is important to note that these methods must maintain tracking between

frames since there is no loop closure step. Recent work has combined visual odometry

with map-building techniques [50].

One other approach to solving the SLAM problem is to build a graphical model

whose nodes represent robot poses and edges represent kinematic constraints between

the poses [78]. This is similar to the visual odometry approach; however, it allows

for loop closures to occur. The SLAM problem is typically solved by expressing

the constraints in the graph as a nonlinear cost minimization problem and using

optimization methods that can take advantage of the sparsity of the problem. A

map of the environment is typically computed after the optimization is solved by

re-projecting the sensor measurements into a global frame [40, 105].

1.4.3 Localization and Mapping with Respect to a Moving

Target Object

As was previously mentioned, solutions to the SLAM problem are typically formulated

with a robot moving within an environment that is assumed to be static. Sibley et.

al. pointed out the difficulty of dealing with moving reference frames in real world

earth-bound environments such as elevators, trains and passenger aircraft [120]. It

was pointed out that in many cases this motion is unobservable.

In terms of the specific problem of navigation with respect to tumbling space ob-

jects, numerous papers have presented methods to estimate the angular velocities and

inertial parameters (up to a scale factor) using sensors onboard the tumbling object.

Sheinfeld uses a least squares batch estimator to estimate the inertial properties and

center of mass using gyroscope measurements and tracking of stereo feature points.

Also, the velocity of the center of mass must be known at two instants in time for

this solution to converge[116].

Three separate researchers (Augenstein at Stanford, Aghili at the Canadian Space
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Agency and Lichter at MIT) have recently developed methods to deal with moving

objects with six-degrees of freedom. All of these researchers have specifically focused

on the problem of tumbling objects in space. Only two researchers (Aghili and Lichter)

have tried to solve the same problem, but have used a significantly different approach

that is based on an Extended Kalman Filter. Neither of these works included detailed

experimental evaluation of six degree of freedom high speed spinning and nutating

target objects.

Augenstein’s Stanford doctoral thesis [10] and derived paper [11] focus on solving

the SLAM problem for a tumbling target with a static monocular camera. One

problem Augenstein discusses is that there is additional ambiguity in the orientation

estimate, which has a non-convex cost function, so that the nonlinear minimization

algorithm can converge to an incorrect, local minimum. Another problem that is

discussed is that the center of mass of the target object with respect to the feature

points is unknown. This is a critical element for being able to express the motion

model of the target object, and Augenstein argues that simply adding additional

process noise is not an effective solution to creating a robust estimation scheme.

Augenstein presents a hybrid estimation approach that where the rotational dynamics

are modeled as a Gaussian driven process and are estimated separately in a Rao-

Blackwellized Particle Filter.

Augenstein’s methods[10, 11] are likely unable to be applied to the problem in

the proposed thesis. The main reason is that Augenstein’s motion model does not

include the time derivative of the angular momentum vector in the rotating body’s

frame in Euler’s equation of rotational dynamics. Mathematically, it is assumed that

ω × Jω = 0. This could be due to the fact that the spin axis is aligned with the

angular momentum vector or that the angular velocity is so small that it is not a

major factor in the dynamics. In other words, this assumption is valid if the target

object is tumbling slowly or spinning quickly about a principal axis. However, in the

problem discussed in this thesis, these assumptions may not be valid. Additionally,

it is not a trivial problem add this term to the motion model, since the inertia matrix

is unknown (and must be estimated).
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Aghili [7, 6] at the Canadian Space Agency (CSA) developed an EKF and motion

planning framework to grapple a tumbling space object. The EKF assumes mea-

surements from a camera system that can determine the relative pose to the target

object’s grapple point. It estimates the position, orientation and linear and angular

velocities of the target’s center of mass and principle axis-aligned body frame with

respect to the camera’s inertial frame (note that it is assumed that the spacecraft

and its sensors are stationary). Additionally and most importantly, it estimates the

relative position and orientation of the grapple point (from which the measurements

are taken) with respect to the target’s center of mass and principle axis-aligned body

frame. Aghili estimates a rotation and translation between the geometric and rigid

body reference frame as a set of constant parameters.

In Aghili’s work, the angular velocities in the experimental dataset were less than

0.1 radians per second, which would be categorized as a tumbling target rather than

a spinning target. Given these facts, it is reasonable to believe that an EKF based

approach would not be able to keep up at higher angular velocities unless the sensor

measurements also increased their frequency. In these types of high speed spinning

situations, a smoothing based approach appears preferable because old measurements

are not thrown out even if the estimator has not yet converged. Additionally, Aghili

parameterizes the inertial parameters in the EKF with three variables, even though

there are only two degrees of freedom. This parameterization has inequality con-

straints that are not consistent with a Gaussian distribution. While the presented

dataset does not violate these constraints, no guarantee is provided that other datasets

will have the same behavior.

Lichter’s MIT Ph.D. thesis [75] and related paper [76] solves the problem of esti-

mating the position, orientation, linear and angular velocities, as well as the center of

mass and inertia matrix of an unknown, uncooperative and spinning target. Lichter

uses a Kalman Filter to estimate the pose and dynamic parameters. This filter is

split into two separate filters: a translational Kalman Filter and a rotational Kalman

Filter. The attitude Kalman Filter is linear because the full 4 quaternion parameters

are included in the state, despite the fact that there is only three degrees of freedom.
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One of the main differences between this thesis and Lichter’s approach, is that

the measurement function does not depend on the currently estimated map, which is

based on a voxel grid. While this is useful in reducing the computational requirements,

it does not allow further refinement of previous measurements, which can lead to

“smearing” of the map [75]. Also, this approach does not allow for loop closure,

which would enable significant improvement of the map and reduces the estimation

drift. Lichter’s method of parameterizing the geometric frame relative to the body

frame is similar to Aghili’s. Lichter includes a quaternion in the state vector to

represent the inertia parameters, even though there is only two degrees of freedom.

In order to evaluate the method, a set of simulations is provided, and one dataset

for experimental evaluation. The experimental data only provides two dimensional

motion, so the inertia parameters are not observable.

Another researcher at Stanford, Kimball, published a doctoral thesis and confer-

ence paper [4, 62] on an offline method for solving the SLAM problem with respect to

a moving iceberg. His first main contribution was a method for mapping the iceberg

and estimating its trajectory using a spline representation of position and heading of a

reference frame attached to the iceberg. The least squares estimator optimized for the

location of the geometric center of the iceberg by minimizing the squared two-norm

of the vector locations in the body fixed iceberg frame from the multi-beam sonar.

Kimball found that if a sufficiently detailed spline model was included, this would

estimate the geometric center of the iceberg. Kimball’s second main contribution was

to develop an online particle filter to estimate the underwater vehicle’s state as well

as the iceberg’s state using a prebuilt map of the iceberg. The state includes a six

degree of freedom pose estimate in the iceberg frame as well as the two dimensional

position and one dimensional rotation of the iceberg with respect to an inertial frame.

These two methods were evaluated using two datasets. The first dataset was gathered

by an underwater vehicle while navigating an iceberg (moving less than 10 cm/s and

10 deg/hr, while the second dataset was of a stationary sea floor.

The work by Kimball illustrates a method to estimate the motion of both the

inspector (the underwater vehicle) and the target object (the iceberg). The use of
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splines as a motion model for the target object appears well suited for low speed

icebergs, however it is not clear how to extend this to the toque free solutions of

Euler’s rotational equations of motion of high speed spinning and nutating objects.

Additionally, it is not clear that the assumption of estimating the geometric center of

the object as the center of mass would be generally applicable to objects of varying

density.

Kunz’s doctoral research [68] is closest to the smoothing approach described in this

thesis. Similar to Kimball, Kunz maps a rotating ice flow using an underwater vehicle.

Kunz uses the iSAM optimization engine to build a factor graph of poses for the six

degree-of-freedom position and orientation of the vehicle. Direct measurements of the

vehicle’s kinematics are available using gyroscopes and Doppler velocity logs (relative

to local terrain). Multibeam sonar and visual cameras were used to generate a map

of the ice flow. An interesting part of Kunz’s approach (and the key difference from

Kimball’s) is that he modeled the orientation of the ice flow as a single rotational

degree of freedom parameter in a separate Markov process in the factor graph. This

orientation was added to the terrain relative yaw estimate in the measurement process.

Additionally, inertial space measurements of the orientation were added as factors

based on GPS measurements from a ship moored to the ice flow.

Kunz’s method solves the SLAM problem with respect to a moving object by

modeling the system as a factor graph and using iSAM for optimization. The only

states that model the iceberg with respect to an inertial frame is a single orientation

parameter, which has occasional and noisy corrections applied to it form the GPS of

a ship that is moored (almost a rigid connection) to the iceberg. Kunz’s work did not

discuss whether how well his method would work if there is no sensor attached to the

iceberg. Additionally, how to extend this approach to a full rigid body model is not

immediately clear. Lastly, the rotation rates of the iceberg were less than 5 degrees

per hour, which again is significantly less than a high speed spinning space object.

Indelman, Williams, Kaess and Dellaert recently published a method to include

inertial measurement units (IMUs) in the iSAM factor graph model that has numerous

similarities to the approach presented in this thesis[55, 56]. The state vector in their
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method consists of position, linear velocity and orientation of an object that has

an IMU attached to it. Using a kinematic replacement approach, the accelerometer

and gyroscope measurements are used to propagate the state between nodes in a

factor graph model. There are two main differences between Indelman’s work and

the modelling approach used in this thesis. The first is that the Indelman does not

include the angular velocity as part of the state vector or utilize Euler’s Rotational

Equation of Motion (likely because gyroscope measurements are directly available).

The second and more important difference is that the covariance matrix for the factor

does not appear to be updated. The uncertainty in the state at the next timestep

should be a function of the accelerometer and gyroscope measurements (or in the

case of this thesis, the linear and angular velocity estimates) and will vary with each

factor. If the covariance is not updated, it will need to be set to an unnecessarily high

value that will hurt the overall estimator performance. The approach in this thesis

modified the iSAM system to incorporate varying covariance matrices. Note that

a similar modeling approach was used by Luetenegger et. al., but with a different

optimization approach[73].

Hillenbrand and Lampariello estimated the position, orientation, angular velocity,

center of mass and full inertia tensor using a least squares method[45]. This was based

on three dimensional range measurements of an unknown model that was matched

using Horn’s Absolute Orientation method [46], whose quaternions were differentiated

to estimate angular velocity, which became the input to the least squares method.

Note that there is no feedback from the estimated velocities and inertial parameters

that will smooth out the quaternion estimates to help better match with the no

external force or torque assumption.

1.4.4 Testbeds for Spacecraft Proximity Operations

In order to properly test spinning and nutating targets, it is important to have a

relevant testbed. This would require a six-degree of freedom testbed that is capa-

ble of replicating a micro-gravity environment and performing computer vision-based

navigation. One of the most challenging aspects of the micro-gravity environment
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Figure 1-6: High Speed Spin on Sapphire Jewel Bearing

to replicate is high speed spinning, tumbling and nutating motion that follows Eu-

ler’s Equation of Rotational Motion. The author of this thesis has attempted to

build testbeds that spin in three axes on Sapphire jewel bearings (shown in Figure

1-6, however they are very difficult to exactly balance and always include additional

forces are most similar to “gravity gradient” attitude dynamics along with rotational

friction in the bearing. In addition to this they have a limited range of attitudes and

would not be able to replicate a spin about an unstable minor axis. The ideal place

to test these types of motion is in a micro-gravity environment such as the Inter-

national Space Station. On March 23, 2013, during one of the ISS test sessions for

the SPHERES VERTIGO program, astronaut Kevin Ford demonstrated a number

of spinning motions for a pair of reconfigurable pliers in a micro-gravity environ-

ment. This demonstration illustrated how easy it is to see the dynamics of Euler’s

Rotational Equation of Motion onboard the ISS. An summary and analysis of these

demonstrations is presented in Appendix A.

For this and other reasons, prior to this research, there were no “Open Research
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Facility” for evaluating computer vision-based navigation algorithms against micro-

gravity spinning motions in a six degree-of-freedom environment.

The SPHERES satellites [113, 112, 93] are the best example of a facility that

would be able to have the capability of accurately simulating long duration micro-

gravity in six degrees of freedom for a spinning target. When this research began in

2010, the SPHERES satellites did not yet have the capability to perform vision-based

navigation inside the ISS. However, a prototype of the upgrade that is described in

this thesis had been implemented as a ground prototype [136, 135, 134].

Another very similar research project was begun at the same time this research

began and was performed by NASA Ames Research Center’s Intelligent Robotics

Group, with support from the MIT Space Systems Laboratory. Micire modified a

Samsung Nexus S smartphone to attach to the SPHERES satellites and perform

tele-robotics research [92, 129]. In December 2012, Micire “piloted” the SPHERES

satellites on the ISS from a ground station on earth by receiving video and sending

up actuation commands up to the satellites. The Nexus S could be used to perform

vision-based navigation research, as it has a camera and an onboard CPU, but it has

a number of limitations. The main limitation is that there is only a single camera,

so there is no method for taking stereo measurements. Additionally, the lens and

sensor on the camera are physically small and use a rolling shutter. Therefore taking

photos of objects spinning with significant velocity would be extremely challenging

and require a very brightly lit scene, but it may be impossible to avoid the distortion

effects of the rolling shutter.

The Nexus S runs the Android Gingerbread operating system on an 1 GHz ARM

Cortex A8. While this appears to be a powerful processor, there are a number of

reasons it is not ideal for vision-based navigation research. The first is that this

processor does not have out-of-order execution, which would deliver computational

capability per watt of electricity for vision-based navigation applications that typi-

cally stall waiting for memory. The Nexus has only a 512 kB L2 cache, which is not

quite enough to store two full grayscale 640 by 480 images. Single Instruction Multiple

Data (SIMD) instructions are a common method for accelerating image-processing
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algorithms, and are commonly implemented with the SSE set of instructions on x86

processors. The ARM processors used in Android have an similar “Neon” instruc-

tion set, but this requires specific code optimizations and a number of libraries (e.g.

OpenCV) have not included extensive support for them. Lastly, while the Android

operating system is open source, a number of useful vision-based navigation libraries

would need to be ported to operate on this platform. At the beginning of this research

in 2010; a number of these libraries did not have Android versions, however in 2013,

Android ports of robotics libraries have become much more prevalent.

Other organizations have developed six degree of freedom spacecraft experimental

platforms that operate in Earth’s 1-G environment. Rensselaer Polytechnic Institute

published a good survey of 6DOF testbeds and a description of their design[36]. The

Naval Research Laboratory’s Spacecraft Robotics Laboratory has an excellent testbed

of 6DOF dynamics and on-orbit lighting effects [103] for servicing spacecraft. The Air

Force Institute of Technology has a good example of an air-bearing based attitude

control testbed [90]. The University of Maryland uses a neutral-buoyancy testbed

called SCAMP to perform spacecraft inspection experiments using computer vision

[91].

1.5 List of Contributions

The previous section has summarized the current state of the art on vision-based

navigation for unknown, uncooperative and spinning spacecraft. The author of this

thesis is not aware of any work that has thoroughly and probabilistically integrated

rigid body dynamics (i.e. Newton’s Second Law and Euler’s Equation of Rotational

Motion) with a smoothing based solution to the SLAM problem, in order to estimate

the position, orientation, linear and angular velocities, center of mass, principal axes

of inertia and ratios of inertia. Aghili’s work [7, 6] is the closest comparison, but it is a

filtering approach, which may have more difficulty converging to the correct solution

than a smoothing approach. Additionally, the author of this thesis disagrees with

Aghili’s inertia parameterization and believes it will lead to numerical conditioning
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issues (see Chapter 3 for the analytical proof).

The author of this thesis is not aware of any vision-based navigation experimental

testbed for spacecraft proximity operations that can replicate high speed spinning

motions that are free of external forces and torques in full six degrees of freedom

environment.

The research contributions claimed in this thesis are listed below:

1. The development of an algorithm that solves the Simultaneous Localization

and Mapping problem for a spacecraft proximity operations mission where the

target object may be moving, spinning and nutating.

(a) The development of a probabilistic factor graph process model based on

both rigid body kinematics and rigid body dynamics. This model con-

strains the position, orientation, linear velocity and angular velocity be-

tween two subsequent poses at a defined timestep according to Newton’s

Second Law and Euler’s Equation of Rotational Motion.

(b) The development of a parameterization approach for estimating the center

of mass and principal axes of inertia by incorporating a separate geometric

reference frame in which all three dimensional feature points are estimated.

(c) The development of a two dimensional parameterization approach for es-

timating the natural logarithm of the ratios of inertia as Gaussian random

variables, and a modification of the above process model to incorporate

this.

i. An analysis of the nonlinear observability that confirms the number

of observable degrees of freedom as well as the unobservable modes.

(d) Implementation and evaluation of above algorithm using SPHERES satel-

lites and Goggles with approximately stationary inspector and target spin-

ning at 10 rotations per minute about its unstable minor axis.

i. Comparison of the above algorithm’s performance to the SPHERES

Global Metrology System.
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ii. Covariance and convergence analysis of the above algorithm.

2. Designed, built, tested and operated the first stereo vision-based navigation

open research facility in a micro-gravity environment.

1.6 Outline of Thesis

This thesis begins with Chapter 2, a holistic review of rigid body kinematics and

dynamics as well as computer vision-based navigation techniques. While Chapter

2 does not discuss any new contributions, it introduces the concepts, conventions

and nomenclature that are required to understand the contributions outlined in the

following chapters.

Chapter 3 provides a brief review of nonlinear observability analysis and applies

this method to the inertia estimation problem. It is mathematically proved that the

inertia matrix is only observable up to a scale factor if no known external forces or

torques are applied.

Chapter 4 presents the algorithmic details of how rigid body dynamics are proba-

bilistically incorporated into iSAM’s pose graph optimization algorithm for estimating

all of the desired quantities. It discusses the choices that were made in formulating

the approach as well as outlining alternative approaches that were unsuccessful.

Chapter 5 describes the system requirements, high-level design, testing, operations

and ISS results for the vision-based navigation upgrade to the SPHERES satellites,

known as the Visual Estimation and Relative Tracking for Inspection of Generic

Objects (VERTIGO) Goggles.

Chapter 6 presents the experimental dataset gathered by the VERTIGO Goggles

during operations onboard the ISS, and the results when the SLAM algorithm de-

scribed in Chapter 4 was applied to this dataset. The SPHERES Ultrasonic Global

Metrology system as the reference for comparison which is discussed in detail.

Finally Chapter 7 summarizes the contributions, discusses possibilities for future

work and describes possible extensions to other applications.
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Chapter 2

Review of Rigid Body Kinematics

and Dynamics and Computer

Vision-Based Navigation

The purpose of this chapter is to provide a holistic review of the background material

that is necessary to explain the contributions of this thesis. While this chapter does

not describe any specific contributions itself, it defines the terminology and conven-

tions that will be used in the remainder of this thesis.

2.1 Coordinate Frames and Parameterizations of

Rotation

The location of a point in three dimensional space must be specified with respect to a

reference system. Figure 2-1 defines two three-dimensional Cartesian reference frames

that have a different location and orientation. The location of the point with respect

to reference frame A is pA and the location of the point with respect to reference frame

B is pB. Each of these vectors is described in terms of the right-handed orthonormal
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basis vectors:

pA = pA,xxA + pA,yyA + pA,zzA (2.1)

pB = pB,xxB + pB,yyB + pB,zzB (2.2)

Figure 2-1: Illustration of the Location of a Point in Multiple Coordinate Frames

pB can be written in terms of pA if the translation TA/B and a rotation operator

gA/B() is known:

pB = gA/B(pA) +TA/B (2.3)

Where:

TA/B = TA/B,xxB +TA/B,yyB +TA/B,zzB (2.4)

The rotation operator gA/B() is a known function that rotates a vector from

coordinate frame A to coordinate frame B.

All parameterizations of rotation of three dimensional space have three degrees of
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freedom. However, Stuelpnagel showed that there are no three dimensional param-

eterizations that are both global and non-singular[126]. As a result there is a large

number of approaches for parameterizing rotations. Shuster provides a very detailed

survey of a number of these methods [117]. The following section will highlight a few

of the approaches that are considered in this thesis.

2.1.1 Rotation Matrices

Either of the orthonormal basis vectors shown in Figure 2-1 can be expressed in terms

of the other. For example:

xB = cx1xB + cx2yB + cx3zB (2.5)

yB = cy1xB + cy2yB + cy3zB (2.6)

zB = cz1xB + cz2yB + cz3zB (2.7)

This can be simplified to a matrix notation as follows:


xA

yA

zA

 =


cx1 cx2 cx3

cy1 cy2 cy3

cz1 cz2 cz3



xB

yB

zB

 (2.8)


xA

yA

zA

 = RA/B


xB

yB

zB

 (2.9)

Now equation 2.3 can be rewritten:

pB = RA/BpA +TA/B (2.10)

Note that RA/B is an orthogonal matrix since its rows and columns are unit

vectors. Also, RT
A/B = R−1

A/B and det(RA/B) = +1 which means that it is a member
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of the Special Orthogonal Group SO(3). As a result, even though it requires 9

numbers to represent this parameterization, the above constraints mean that only

three degrees of freedom are free and available. Note that this representation has no

singularities or double coverings that are found in other representations.

2.1.2 Euler Angles

Euler angles parameterize rotation defining a set of three subsequent rotations. For

rotations about the X, Y and Z axis by angles ϕ, θ and γ respectively are:

Rϕ =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 (2.11)

Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.12)

Rγ =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (2.13)

There are a number of conventions to choose from that specify how these rotations

are applied successively. If the rotations are applied about the rotating axes, they are

considered intrinsic rotations. Alternatively if they are applied about the fixed axes,

they are considered extrinsic rotations. When the sequence of rotation is applied to

each of the three axes, this is referred to as Tait-Bryan Euler angles, while if the first

rotation and the last rotation are about the same axes, this is referred to as Classic

Euler angles.

Aircraft commonly use an intrinsic Tait-Bryan representation that is intuitively

named “yaw-pitch-roll” angles, which is “γ-θ-ϕ”. The rotation matrix for this is as

follows[121]:
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Rγθϕ =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (2.14)

As with all three parameter representations, Euler angles contain singularities.

This occurs in the above example when θ = π
2
radians. In this case, if Rγθϕ is given,

it is not possible to solve for γ and ϕ. This physically corresponds to the case where

the first and last rotation axes are aligned; therefore there is a loss in the number of

physical degrees of freedom.

2.1.3 Axis and Angle Representation

Euler’s rotation theorem states that any rotation can be specified as an angle of

rotation θ about an axis of rotation n[138]. Since n is a three parameter vector with

a unit normal constraint (||n|| = n2
x+n2

y+n2
z = 1), there are three degrees of freedom

for this four parameter representation.

An axis angle representation can be converted to a rotation matrix as follows:

R = cos θI+ (1− cos θ)nnT − sin θ[n×] (2.15)

Where the cross product matrix [n×] of a vector n is:

[n×] =


0 −nz ny

nz 0 −nx

−ny nx 0

 (2.16)

Given a rotation matrix R, the axis of rotation can be found by solving Rn = n,

which is an eigenvalue problem. n is the eigenvector corresponding to the eigenvalue

1. The angle can be found using: 1 + 2 cos θ = Tr(R). Note that there are no

singularities or double mappings.
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2.1.4 Unit Quaternions

The quaternion q is a four parameter representation that can be found using the axis

angle representation:

q =


q1

q2

q3

q4

 =

 q̄
q4

 =

n̄ sin θ
2

cos θ
2

 (2.17)

Quaternions have unit norm, ||q|| = 1, and therefore have only three degrees of

freedom. To convert this to a rotation matrix:

R = (q24 − ||q̄||2)I+ 2q̄q̄T − 2q4[q̄×] (2.18)

Note that the same rotation matrix will be found for q as for −q. This implies

that two different values of the quaternion will represent the same rotation and is

why quaternions are referred to as being a double mapping onto the rotation group.

To illustrate why this makes sense, assume that qA(nA, θA) ≡ −qB(nB, θB):

 q̄A

qA4

 ≡

−n̄B sin θB
2

− cos θB
2

 (2.19)

(2.20)

This implies:

θB = 2arccos(−qA4) = 2(π + arccos(qA4)) (2.21)

θB = 2π + θA (2.22)
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Which leads to

nB = −qA
1

sin θB
2

(2.23)

= −qA
1

sin 2π+θA
2

(2.24)

= qA
1

sin θA
2

(2.25)

= nA (2.26)

This illustrates that negating a quaternion is the same as adding 2π radians to

the angle in its axis angle representation, which is intuitively the equivalent rotation.

Also, note that a rotation about n by θ is the same as a rotation about −n by

−θ.

q(−n,−θ) =

−n̄ sin −θ
2

cos −θ
2

 =

n̄ sin θ
2

cos θ
2

 = q(n, θ) (2.27)

The inverse of a quaternion q is defined below:

q−1 =


−q1
−q2
−q3
q4

 =

−q̄
q4

 (2.28)

One of the fundamental operations of quaternions is quaternion multiplication.

If qA is the same rotation as RA and qB is the same rotation as RB, then the

multiplication operator is defined as follows:
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qA ⊗ qB = q (R(qA)R(qB)) (2.29)

=

qB4q̄A + qA4q̄B + q̄A × q̄B

qA4qB4 − q̄A · q̄B

 (2.30)

=


qA4 qA3 −qA2 qA1

−qA3 qA4 qA1 qA2

qA2 −qA1 qA4 qA3

−qA1 −qA2 −qA3 qA4




qB1

qB2

qB3

qB4

 (2.31)

Now the rotation operator can be defined as follows:

gA/B(pA) = qA/B ⊗

pA

0

⊗ q−1
A/B (2.32)

Using this Equation 2.3 can be rewritten as:

pB = qA/B ⊗

pA

0

⊗ q−1
A/B +TA/B (2.33)

2.1.5 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRP) used in this thesis are defined below in

terms of quaternions.

ap(q) =
4

1 + q

[
q1 q2 q3

]T
=

4

1 + q
q̄ (2.34)

Note that the convention here is almost entirely the same as the definition provided

by Markley and Shuster [82, 117], except that the parameterization used in this thesis

is a factor of four larger.
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To determine the equivalent quaternion:

q(ap) =
1

16 + aT
p ap

 8ap

16− aT
p ap

 (2.35)

Note that the singularity in this case occurs when q = −1. In the axis angle

representation, this is when θ = 2π radians.

2.2 Rigid Body Kinematics

Rigid body kinematics describes how the position and orientation of an object change

over time. This is done, in part, by defining the linear and angular velocities of an

object and relating them the the time derivative of the rigid body’s position and

orientation.

2.2.1 Linear and Angular Velocities

Figure 2-2 illustrates a typical method of assigning inertial and body fixed reference

frames. Point A is rigidly attached to the body frame and does not move with respect

to the rest of the body. The rigid body may translate and rotate relative to the inertial

reference frame over time.

A commonly used quantity is the angular velocity vector ω. It specifies the rate

of rotation of the body frame with respect to the inertial frame and is a Euclidean

vector that is expressed in the body frame. An important property of the angular

velocity vector is that it can be added to another angular velocity vector, where the

order of operations doesn’t matter (this is in stark contrast to orientation parameters

where order of operations can make a significant difference).

ω = ωxxB + ωyyB + ωzzB (2.36)

One of the most important relationships is the Coriolis Theorem, which calcu-
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Figure 2-2: Rigid Body Reference Frames

lates the time derivative of a point on a rigid body that is undergoing rotation and

translation.

d

dt

I

pA/B =
d

dt

B

pA/B + ω × pA/B (2.37)

2.2.2 Time Derivatives of Rotation Parameterizations

Now, the time derivative of the parameterizations discussed in Section 2.1 can be

found in terms of the angular velocity vector.

The derivative of the rotation matrix RB/I is as follows (the derivation is given in

[138]):
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ṘB/I = −[ω×]RB/I (2.38)

The derivative of the quaternions can be found as (also derived in [138]):

˙̄q =
1

2
(q4ω − ω × q̄) (2.39)

q̇4 = −1

2
ω · q̄ (2.40)

⇒ q̇ =
1

2

ω
0

⊗ q (2.41)

Note that an interesting issue occurs with the double mapping of the quaternions.

If an object is rotating with a physically smooth and mathematically continuous

angular velocity, the quaternion’s trajectory (i.e. time history) must also be mathe-

matically continuous. This continuous requirement can be violated if the quaternion

jumps between its two double mappings. Differentiating two quaternions with jumps

and solving Equation 2.41 for angular velocity would lead to sharp spikes in ω that do

not actually occur. Care must be taken to ensure that the quaternions are continuous

if they are to be linked to angular velocity.

The derivative of the Modified Rodrigues Parameters is derived here using the vec-

tor and scalar parts of q̇ and the quotient rule. These results match with Shuster[117],
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with the exception of the factor of four.

ȧp =
4

1 + q4
˙̄q− 4

(1 + q4)2
q̇4q̄ (2.42)

=

(
− 4

1 + q4

1

2
[ω×]q̄+

4

1 + q4

1

2
q4ω

)
− 4

(1 + q4)2
(−1

2
ω · q̄)q̄ (2.43)

= −1

2
[ω×]ap +

2q4
1 + q4

ω +
1

2

ω · q̄
1 + q4

ap (2.44)

= −1

2
[ω×]ap +

1

2

ω · q̄
1 + q4

ap +
2q4

1 + q4
ω (2.45)

=
1

2

(
−[ω×] + 1

4
ω · ap

)
ap +

(
2q4

1 + q4

)
ω (2.46)

=

(
−1

2
[ω×] + 1

8
ω · ap

)
ap +

(
1− 1

16
aT
p ap

)
ω (2.47)

2.3 Mass and Inertia Properties

The mass of a rigid body m is an important property. The center of mass of the

object can be found using the density ρ at each point p over the entire volume V :

pcom =
1

m

∫
m

ρ(p)pdm (2.48)

The inertia tensor of an object is represented by a three-by-three symmetric matrix

as follows:

J =


Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 (2.49)

Where the moments of inertia can be found as integrals over mass elements in the
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body fixed frame:

Jxx =

∫
m

(y2 + z2)dm (2.50)

Jyy =

∫
m

(x2 + z2)dm (2.51)

Jzz =

∫
m

(x2 + y2)dm (2.52)

Similar to the products of inertia:

Jxy =

∫
m

xydm (2.53)

Jxz =

∫
m

xzdm (2.54)

Jyz =

∫
m

yzdm (2.55)

Since J is a real symmetric matrix, the coordinate frame can always be adjusted

so that the products of inertia have all zero values. This is known as the principal

axes and can be found by diagonalizing the J matrix using the eigenvalues, which are

Jdiag, and the eigenvectors, which are the rotation matrix Rdiag from the old frame

to the principal axes frame.

Jdiag = RdiagJR
T
diag (2.56)

=


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (2.57)

This is known as the principal axis coordinate frame, and has three planar mo-

ments of inertia. The axis that corresponds to the largest of these values is considered

the major moment of inertia. These axes can typically be thought of a frisbee-like

spinning objects as shown in Figure 2-3.
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Figure 2-3: Frisbee-like Object

The axis that corresponds to the smallest of these values is considered the minor

moment of inertia. These axes can typically be thought of a pencil, rocket or football-

like spinning objects as shown in Figure 2-4.

Figure 2-4: Pencil, Rocket or Football-like Object

The axis that corresponds to the middle of these values is considered the interme-

diate moment of inertia. These axes can typically be thought of spinning a texbook

about the horizontal center of the page as shown in Figure 2-5.
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Figure 2-5: Textbook or Brick Like Object

2.4 Rigid Body Dynamics

Where kinematics describes the linear and angular velocities, dynamics describes

the linear and angular accelerations. This type of motion is described by Newton’s

Second Law (for translation) and Euler’s Equation of Rotational Motion. Both of

these laws are only valid in an inertial reference frame (i.e. a reference frame that is

not accelerating or rotating with respect to inertial space).

2.4.1 Newton’s Second Law

The force F applied on an object is specified in units of kgm
s2

or Newtons (N). The

acceleration of a point is defined as a = d2

dt2
p. Now Newton’s Second Law states that

the total force applied to an object is defined as the change in the momentum mv.

Assuming that the mass of the object is constant, the law can be simplified to a

common form:

F =
d

dt
(mv) (2.58)

= m
dv

dt
(2.59)

= ma (2.60)
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Note that if no force is being applied, there is a constant velocity that may be

non-zero.

2.4.2 Euler’s Equation of Rotational Motion

The torque applied to an object is defined as a force F applied at a fulcrum point at

distance r away from a rotation point. It is defined as M = r × F. If this rotation

point is located at the rigid body’s center of mass, the torque is defined as being

equal to the change in angular momentum h = Jω [138]. Recall the condition this

derivative must be taken in an inertial frame in order for this law to be valid.

M =
d

dt

I

h = ḣ (2.61)

Applying the Coriolis Theorem, Equation 2.37:

M =
d

dt

B

h+ ω × h (2.62)

=
d

dt

B

(Jω) + ω × Jω (2.63)

Since J is assumed fixed to the body axis and therefore constant, a common form of

Euler’s Equation of Rotational Motion is as follows:

M = Jω̇ + ω × Jω (2.64)

This is often used to solve for the angular acceleration:

ω̇ = −J−1ω × Jω + J−1M (2.65)

If the body fixed reference frame is aligned with the Principal Axes of Inertia, a

substition of J = Jdiag can lead to a more simplified expression:
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ω̇x =
Jyy − Jzz

Jxx
ωyωz +

1

Jxx
Mx (2.66)

ω̇y =
Jzz − Jxx

Jyy
ωxωz +

1

Jyy
My (2.67)

ω̇z =
Jxx − Jyy

Jzz
ωyωx +

1

Jzz
Mz (2.68)

2.5 Torque Free Motion and Rotational Stability

Note that even if no external torque is being applied, the angular velocity still may

vary over time. This depends on the initial conditions and which of the principal axes

of inertia the angular velocity is about. This is unlike the translational case and can

lead to some visibly peculiar motions as discussed in Appendix A.

ω̇x =
Jyy − Jzz

Jxx
ωyωz (2.69)

ω̇y =
Jzz − Jxx

Jyy
ωxωz (2.70)

ω̇z =
Jxx − Jyy

Jzz
ωyωx (2.71)

A linear stability analysis can be performed on the above equations if it is assumed

that one of the components of angular velocity is significantly larger than the other

two. That is: ωz = Ω >> ωx, ωy. Therefore, ωyωx ≈ 0. Now:

ω̇x =
Jyy − Jzz

Jxx
Ωωy (2.72)

ω̇y =
Jzz − Jxx

Jyy
Ωωx (2.73)

ω̇z = 0 (2.74)

Therefore we can set up a second order linear model:ω̇x

ω̇y

 =

 0 ΩJyy−Jzz
Jxx

ΩJzz−Jxx
Jyy

0

ωx

ωy

 (2.75)
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This has the characteristic equation:

s2 − Ω2

(
Jyy − Jzz

Jxx

)(
Jzz − Jxx

Jyy

)
= 0 (2.76)

With the following roots:

s = ±Ω

√(
Jyy − Jzz

Jxx

)(
Jzz − Jxx

Jyy

)
(2.77)

Now, using this, if Jzz > Jxx and Jzz > Jyy (i.e. Jzz is a major axis of inertia)

or if Jzz < Jxx and Jzz < Jyy (i.e. Jzz is a minor axis of inertia), then the roots are

imaginary and the system is a second order harmonic oscillator, which is considered

Lyapunov stable (but not Bounded Input, Bounded Output stable). If Jxx > Jzz >

Jyy or Jxx < Jzz < Jyy (i.e. Jzz is an intermediate axis), then the roots are real with

one negative and one positive value. This is considered unstable motion, however it

is important to note that the conservation of rotational kinetic energy still applies so

that the magnitude of the angular velocity vector will not grow without bounds.

2.5.1 Pointsot’s Ellipsoid and Polhode Motion

Also, note that if no external torque is applied, the angular momentum vector is

constant in inertial space: ḣ = M = 0. The squared magnitude of the momentum

vector, H2 = ||h||22 is constant and defined as follows:

H2 = ||h||22 = h · h = (Jxxωx)
2 + (Jyyωy)

2 + (Jzzωz)
2 (2.78)

This can be rewritten in ellipsoidal form:

1 =
ω2
x

(H/Jxx)2
+

ω2
y

(H/Jyy)2
+

ω2
z

(H/Jzz)2
(2.79)

The translational kinetic energy is ET = 1
2
m(v · v), while the rotational kinetic
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energy is ER = 1
2
ωJω. For a principal axes inertia frame:

ER =
1

2

(
Jxxω

2
x + Jyyω

2
y + Jzzω

2
z

)
(2.80)

This can also be rewritten in ellipsoidal form:

1 =
ω2
x

2ER/Jxx

+
ω2
y

2ER/Jyy

+
ω2
z

2ER/Jzz
(2.81)

The solution to to Equations 2.79 and 2.81 is the intersection of these two el-

lipsoids. An example of this intersection is shown in Figure 2-6. The blue ellipsoid

represents Equation 2.81 and the red ellipsoid represents equation 2.79. This inter-

section describes a path over which the angular velocity can vary over time (note that

the angular velocity must follow a smooth trajectory without jumps), and is known as

the polhode. Note that these ellipsoids are fixed to the body frame which rotates in

the inertial frame. Additionally, it is important to note that the angular momentum

vector h is constant in inertial space, and therefore set by the initial conditions of the

rotation and inertia properties.

In order to picture how the body moves in the inertial frame, the kinetic energy

ellipsoid (blue as shown in the figures) will roll without slipping on a plane with

the point of contact being the current location of the angular velocity vector, which

will be a point on the intersection of the blue and red ellipsoids (i.e. the polhode).

This plane will be stationary in inertial space, therefore, it is called the invariant

plane[38]. The invariant plane’s normal is the angular momentum vector, h. The

path that the angular velocity traces on the invariant plane is called the herpolhode

and is not necessarily closed. However, if two of the inertias have the same values,

the herpolhode will be a closed circular path that is commonly called the body cone.

Figure 2-6 shows the path that a spin would take about an intermediate axis (i.e.

a spin beginning at the y axis). Note that the angular velocity vector (and therefore

the contact to the invariant plane) flips over time.

This is because a spin about an intermediate axis is considered unstable and

the angular velocity vector will constantly change direction. More intuitively, the
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angular velocity vector is trying to move to a location where it is spinning about a

major moment of inertia, but must do so without changing the angular momentum.

This leads to some very peculiar looking motions.

One classical example of this type of peculiar motion is spinning (or flipping)

a textbook about its “horizontal” axis (with the pages taped shut). In gymnastics

terminology, the book will add a clear twist to the flipping motion (i.e. a rotation

about the book’s minor axis). The reason for this is that this twisting rotation pushes

the orientation of the textbook towards a spin about its major axis, which is a stable

rotational motion. The problem with this is that there is nothing to slow this twist

down once it reaches this stable spin about a major axis (i.e. there is no mechanical

damping). As a result, the textbook continues this twisting rotation and overshoots

the spin about the major axis. This cycle will repeat itself endlessly as long as no

external forces or torques are applied to the textbook. This type of a spin about an

intermediate axis is very easy to demonstrate in a microgravity environment such as

the International Space Station.

Figure 2-7 shows the polhode intersection for a spin about a major axis of inertia

(i.e. the x-axis). Note that the angular velocity vector will remain on a closed circular

path. This leads to the conclusion that spins about the major axis of inertia are always

Lyapunov stable.

Figure 2-8 illustrates what happens when the spin is about a major axis and the

other two axes have equal values of inertia (i.e. axisymmetric). In this case the

herpolhode on the invariant plane forms a closed circle that is fixed in inertial space.

A “space cone” can be created using this circle and the center of mass. Also, a “body

cone” can be created using the polhode circle (shown as the intersection in Figure

2-7) and center of mass. Now the body cone rolls without slip on the outside of the

body cone, and this is known as retrograde nutation. 1

1Note that there is some confusion in the use of the term nutation. The motion described above is
often called nutation by the “smaller” spacecraft dynamics community (from the nutation angle), and
torque free precession by the “larger” classical mechanics community, who use the term nutation to
describe a torque-induced oscillation about a rotating object. This thesis will use the term nutation
in the sense that the spacecraft dynamics community uses it (i.e. to mean the same as torque free
precession).
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Figure 2-9 shows the polhode intersection for a spin about a minor axis of inertia

(i.e. the z-axis). Note that the angular velocity vector will remain on a closed circular

path. This leads to the conclusion that spins about the major axis of inertia are always

Lyapunov stable.

Conversely, a spin about a minor moment of inertia is considered “marginally” or

just barely stable. If there is a slight loss in kinetic energy or some external torque

applied to it, the spin will change over to a spin about a major axis. An everyday

example of this is spin of an American football when it is thrown with a spiral, which

is a spin about a minor axis. A spiral pass of a football often exhibits a wobble

if it is not thrown perfectly or if it is a very long pass (and the spin slows down

thereby violating the above assumptions). Figure 2-10 illustrates what happens when

the spin is about a minor axis and the other two axes have equal values of inertia

(i.e. axisymmetric). Similar to the major spin, the herpolhode on the invariant plane

forms a closed circle that is fixed in inertial space. A space and body cone are created

in a similar way. However, in this instance the body cone rolls without slipping on

the outside of the space cone. This is known as direct or prograde nutation.
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Figure 2-6: Polhode Diagram for Intermediate Axis Spin:
ω = [0, 2, 0] and Jxx = 3, Jyy = 1, Jzz = 1/3
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Figure 2-7: Polhode Diagram for Major Axis Spin:
ω = [2, 1, 1] and Jxx = 3, Jyy = 1, Jzz = 1/3
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Figure 2-8: Space and Body Cone for Spin about Major Axis: Retrograde Motion

Figure 2-9: Polhode Diagram for Minor Axis Spin:
ω = [0, 0.5, 2] and Jxx = 3, Jyy = 1, Jzz = 1/3
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Figure 2-10: Space and Body Cone for Spin about Minor Axis: Prograde Motion
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2.6 Pinhole Camera Model

The most common mathematical model of a camera is the pinhole camera model,

where it is assumed that all light travels through an infinitely small hole and is

projected onto an image frame (i.e. the sensor) whose plane is perfectly parallel to

the pinhole. This plane is offset by a fixed distance f away from the pinhole, which

is known as the focal length. Figure 2-11 shows the geometry of a pinhole camera

model that leads to a perspective projection. A particular point in the world frame is

shown by the red star and represented by the homogenous coordinates pI . This point

is projected onto the image plane with the x and y coordinates u and v respectively.

The coordinate of this point in terms of the camera frame (centered at the focal point)

is pc. The optical center of the image plane is given by cx and cy. Note that there

is also a rotation and translation between the inertial or world frame and the camera

frame: [RC/I ,TC/I ].

Figure 2-11: Pinhole Camera Perspective Projection Model

The mathematical model for computing the coordinates u and v given pI begins

by a coordinate frame change from the inertial or world frame to the camera frame:
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pC =
[
RC/I TC/I

]
pI (2.82)

=
[
RC/I TC/I

]

xI

yI

zI

1

 (2.83)

=


xC

yC

zC

 (2.84)

The next step is to solve for the image coordinates of the projected point. Note

that s is the unobservable scale factor.

s


u

v

1

 =


f 0 −cx
0 f −cy
0 0 1

pC (2.85)

s


u

v

1

 =


f 0 −cx
0 f −cy
0 0 1

[RC/I TC/I

]
pI (2.86)

Considering only the camera frame projection, it is helpful to write this relationship

as:

u =
fxC

zC
− cx (2.87)

v =
fyC
zC
− cy (2.88)

2.7 Stereo Camera Model and Triangulation

Figure 2-12 shows the geometry of two cameras at arbitrary orientations that are

imaging the same point pI . pL and pR are the location of the points in each of the
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left and right camera frames respectively. OL and OR are the focal points of the left

and right cameras as well as the origins of those cameras’ coordinate frames. The

baseline between the two cameras is TR/L = OR − OL in the left hand camera’s

coordinate frame. The rotation matrix RL/R = RL/WRT
R/W is the rotation from the

left camera to the right camera.

Figure 2-12: Stereo Camera Model

Note that in Figure 2-12 there is a misalignment between the left and right camera

and the projected rays do not perfectly intersect. The closest point between the left

and right projected rays is p′
I . By setting up an equation for the baseline, a method

for solving for p′
I can be found.

Now, with unknown constants a, b and c:

TR/L = apL − bRL/RpR + c(pL ×RL/RpR) (2.89)

TR/L =
[
pL −bRL/RpR (pL ×RL/RpR)

]
a

b

c

 (2.90)

Given a known stereo geometry, the values of TR/L and RL/R are both known. For
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each measured point the projected ray directions are: pL = [uL − cx,L, vL − cy,L, fL]
T

and pR = [uR − cx,R, vR − cy,R, fR]
T . As a result Equation 2.90 is a linear system

with 3 equations and 3 unknowns. Therefore, a, b and c can be solved for using linear

methods and used to compute p′
I in the left camera frame:

p′
I = apL +

1

2
c(pL ×RL/RpR) (2.91)

If the cameras are parallel (i.e. RR/L = I), aligned (i.e. TR/L = [bx, 0, 0]
T , where

bx is the baseline) and the optical center is at the same location on the x-axis (i.e.

cx,L = cx,R), then the rays in Figure 2-12 intersect exactly (i.e. c = 0 in Equation

2.89) and simpler triangulation model can be used:

p′
I = pI =


(uL−cx)bx
uL−uR

(vL−cx)bx
uL−uR

bxf
uL−uR

 (2.92)

2.8 Stereo Camera Calibration

The pinhole model is an idealization of what occurs with real world lenses. One of the

main differences is that the image is actually distorted through the curvature of the

lens’s optics. There are two primary modes of distortion. Radial distortion creates

a pincushion or barrel effect in the images due to imperfections in the lens optics.

Tangential distortion skews the image due to misalignments between the lens and

the imaging sensor. Both of these effects were modeled by Brown[20]. The following

model is based on Brown’s method and used by OpenCV[18] and the remainder of

this thesis. Note that two intermediate variables are defined as:
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x′
c =

xC

zC
(2.93)

y′c =
yC
zC

(2.94)

Next:

r =
√

x′2
C + y′2C (2.95)

x′′
c = x′

c(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′
Cy

′
C + p2(r

2 + 2x′2
C) (2.96)

y′′c = y′c(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y′2C ) + 2p2x
′
CyC (2.97)

The can be substituted back into the equations:

u = fx′′
C + cx (2.98)

v = fx′′
C + cy (2.99)

Practically this transformation is implemented as a lookup table that maps the coor-

dinates (x′′
C , y

′′
C)→ (x′

C , y
′
C), so that the appropriate image values can be “remapped”

from the original image to an undistorted version. Additionally, corrections are also

incorporated in this mapping to remove non-zero values in the y and z components

of TR/L, to ensure that RL/R = I.

If all of the following parameters are known:

Θ = {f, cx, cy, k1, k2, k3, p1, p2,RL/R,TL/R} (2.100)

Then the stereo images can be undistorted and remapped so that the pinhole model

applies, and the images are aligned so that the same points lie along a horizontal line

between the two stereo images regardless of depth. An example of the images taken

by the VERTIGO Goggles prior to undistortion and rectification is shown in the top

half of Figure 2-13, while the same image after undistortion is shown bottom half

of the same figure. The red lines connect a straight line in three dimensional space
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along the bottom of the ISS lights. The red lines top half of Figure 2-13 show a clear

curvature in the image that is due to barrel distortion. The red lines in the corrected

image (i.e. the bottom half) do not show any curvature. Also the green line connects

two of the same points in the left and right image. In the top half, this line has a

noticeable slope, indicating a horizontal misalignment, while in the bottom half of

the figure the green line is now horizontal.

In order to estimate these parameters, a series of Nm images are taken of a checker-

board pattern of known geometry that is assumed to be flat. An example of the photos

taken of this type of checkerboard with the feature correspondences highlighted by

colored circles is shown in Figure 2-14. Each of these Nm image pairs shows Np

checkerboard corners, given by the known location pi (note all of the points pi lie on

the same plane). Now a cost function can be written in terms of the known location

of the points:

Θ̂ = arg min
Θj ,∀0<ȷ<Nm

Np∑
i

Nm∑
j

m (pi,Θ) (2.101)

m (pi,Θ) =

∣∣∣∣∣∣
∣∣∣∣∣∣
uL(pi,Θj)− ûL

vL(pi,Θ)− v̂L

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
uR(pi,Θ)− ûR

vR(pi,Θ)− v̂R

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(2.102)

Using Equation 2.101, a non-linear maximum likelihood problem can be solved

that finds the best parameters Θ̂. This is implemented in this thesis by OpenCV’s

“cv::stereoCalibrate()” function[18].

2.9 Feature Detection and Matching

An important aspect of mapping an unknown object is the ability to detect “feature

points” that can be re-located and matched in images that are taken from different

locations or at different times. One of the biggest challenges for these algorithms

is to match features over large changes in relative position, orientation and scale.

A significant amount of research has gone into developing and analyzing different
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Figure 2-13: Stereo Images Prior to Un-Distortion (top) and After Un-Distortion
(Bottom) with Red and Green Guides to Highlight Curvature and Horizontal

Misalignment

algorithms for detecting and matching feature points in the past 20 years, [125, 128,

28, 110]. Two of the more popular feature types that are invariant to scale and

rotation are the Scale Invariant Feature Transform (SIFT[77]) and Speeded Up Robust

Features (SURF[13]).

OpenCV 2.3.1, the version used by the VERTIGO Goggles, contains implemen-

tations of both SIFT and SURF ([18]), of which the SURF implementation is con-

siderably faster and therefore is used for the remainder of this thesis. SURF feature

descriptors are based on an orientation aligned Haar-wavelet response, that is overlaid

with a local grid. Magnitudes and directions of the response at each element in the

grid are compiled to create a feature vector that can be efficiently compared using an

L2 norm.

Detecting and matching features using only the feature descriptors can lead to a
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Figure 2-14: Stereo Images taken of Checkerboard Target

significant number of correct matches. However, there will typically be a significant

number of incorrect, or “outlier” matches that must be thrown out. To do this, an

outlier rejection method is used between stereo frames that have been calibrated and

rectified. Features matches are accepted if the pixel location in the y-axis is less than

a few pixels (i.e. vL− vR < 1 pixel), and the difference between the x-axis values (i.e.

d = uL − uR implies the depth is within a valid range).

However, when matching images taken at multiple times, the pixels will not be

perfectly aligned. In order to reject the outliers the Random Sample and Consensus

(RANSAC) algorithm[32] is used with Horn’s Absolute Orientation[46] method as a

geometric model.

2.9.1 Absolute Orientation

Horn’s absolute orientation method solves the problem of determining a rotation and

translation (RA/B,TA/B) between two reference frames as shown in Figure 2-15. The

three dimensional locations (i.e. using stereo triangulation) of at least four points

must be known in both reference frames A and B (i.e. pi/A,pi/B). The frames A

and B may be two sets of stereo camera images taken of the same object at separate

times. The mathematical relationship between these sets of points is (s is a scale

factor):
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pi/A = sRA/Bpi/B +TA/B (2.103)

Figure 2-15: Reference Frames for Absolute Orientation

The absolute orientation algorithm begins by subtracting the centroid of the point

sets in both frames:

p′
i/A = pi/A −

∑
j

pj/A (2.104)

p′
i/B = pi/B −

∑
j

pj/B (2.105)

Using this, a few intermediate matrices are computed:
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M =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (2.106)

=
∑
i

p′
i/Ap

′T
i/B (2.107)

And:

N =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxy Syz + Szy −Sxx − Syy + Szz


Now, the eigenvector corresponding to the maximum eigenvalue ofN is the quater-

nion that represents the rotation between frames A and B. That is: RA/B = R(qA/B).

This quaternion minimizes the mean squared error cost function below:

C =
∑
i

||pi/A − sRA/Bpi/B −TA/B||2 (2.108)

The scale can be found from the following equation.

s =

∑
i

||p′
i/A||2∑

i

||p′
i/B

(2.109)

Lastly, the translation can be found by solving for the last remaining variable in

equation 2.103.
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2.9.2 Random Sample and Consensus (RANSAC) Outlier

Rejection

The RANSAC algorithm is an iterative algorithm that utilizes a parametric model

to find a set of points that are inliers. Algorithm 1 shows the pseudocode for this

algorithm that uses the absolute orientation method as a model and returns a set of

indicies M of inlier points. It assumes that the input arguments pi/A,pi/B are ordered

according to correspondences.

Algorithm 1 RANSAC Algorithm

1: procedure RANSAC(pi/A,pi/B,∀i : 0 < i < Ni)
2: S ← {}
3: Mmax ← 0
4: for k = 1→ Nk do
5: i1, i2, i3, i4 ← RAND() ▷ Generates 4 random numbers between 0 and Ni

6: {RA/B,TA/B, s} ← AbsOrientation(p{i1,i2,i3,i4}/A,p{i1,i2,i3,i4}/B)
7: for j = 1→ Ni do
8: M ← {}
9: if ||pj/A − sRA/Bpj/B −TA/B||2 < ϵThreshold then
10: M ← {M, j}
11: end if
12: if Size(M) > S then
13: Mmax ←M
14: S ← Size(M)
15: end if
16: end for
17: end for
18: return M
19: end procedure

Figure 2-16 shows the results of using SURF features matched across rectified

stereo cameras and triangulated and filtered using RANSAC with the Absolute Ori-

entation algorithm. The top two images in Figure 2-16 were taken at one timestep

while the bottom two images were taken 0.5 seconds later while the target object was

spinning. The bright green lines show the matches between the left and right camera,

while the cyan (light blue) lines show where that feature was in the previous frame.

Figure 2-16 shows that all of the green lines are horizontal and correspond to the

same location on the target object. Also, the cyan lines have a slight angle that is in
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the direction of the spinning motion. This indicates that the frame-to-frame tracks

are good.

Figure 2-16: Tracked Features: Stereo (Green) and Frame to Frame (cyan)

2.10 Depth Map Computation

Feature provide correspondences between points in an image, however these points

are sparse and leave considerable voids in the image. In contrast, a depth map is

a single image computed from two aligned and rectified stereo images. An example

depth map is shown in Figure 2-17. The correspondences of depth maps are much

more dense than feature points.

In order to compute a depth map, the value of each pixel specifies the disparity

value d = uL − uR, between that pixel and its corresponding location in the opposite

image. As a result, pixels with higher values indicate that the object viewed by that
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pixel is closer while lower values indicate the object is further away. Notice that the

depth map seems to work well when there is a large amount of texture in a small area

and poorly when there is not enough visual texture to properly register a disparity.

Figure 2-17: Stereo Camera View and Corresponding Depth Map

Typical methods for computing the texture are based on what is known as the sum

of absolute differences. Given an image where at each pixel u, v there is a grayscale

intensity value I(u, v), an error function can be computed for a local window size of

m:

d̂(u, v) = argmin
d

m∑
x=−m

m∑
y=−m

|IL(u+ x+ d, u+ y)− IR(u+ x, u+ y)|(2.110)

Now this is the typical type of approach that is found in libraries such as OpenCV.

However, this is considered a local approach since each value only takes into consider-

ation the m nearest pixel values. The depth map for local algorithms often appear to
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have a large number of unconnected patches. Global registration methods propagate

their results throughout the image, thereby reducing the patch-like appearance, but

are often much more computationally complex. However, new methods have been

developed for computationally efficient global registration methods. An algorithm

published by Geiger [3] illustrates a new method to perform efficient global registra-

tion. The algorithm is based on a set of support Sobel feature points that are filled in

using Delaunay triangulation and belief propagation to estimate all of the pixel level

disparity values. This algorithm is what was used for Figure 2-17 and is used in the

remainder of this thesis.

2.11 Probabilistic Graphical Models and Factor Graphs

Probabilistic graphical models are sets of data structures and algorithms for operat-

ing on complex probabilistic models. The structure of the graph typically describes

factorizations that allow the marginalization operation to be performed in a more

computationally efficient manner. There are three main types of graphical models:

Bayesian Networks, Markov Fields and Factor Graphs[16, 29]. While a comparison

of these three representations is outside the scope of this thesis, factor graphs often

lead to a slightly simpler formulation and more understandable representation for a

number of pragmatic problems. The remainder of this thesis will only discuss factor

graph representations.

Consider the following joint probability distribution p(a, b, c) with its correspond-

ing joint likelihood function f(a, b, c):

p(a, b, c) ∝ f(a, b, c) (2.111)

This likelihood function may be able to be split up and factorized into smaller com-

ponents that make the marginalization process computationally simpler. A simple

example of this is shown in Figure 2-18.

The graph consists of nodes (circles) that represent variables, and rectangles that

87



Figure 2-18: Simple Factor Graph Example

represent factors. Now the factor can be simplified as follows:

f(a, b, c) = f(a)f(a, b)f(b, c) (2.112)

The computational reduction can be seen if the variable c is marginalized out. If a, b

and c can each take on k values, the left hand side of this equation has a summation

that requires O(k3) operations while the right hand side requires O(k2) operations.

f(a, b) =
∑
c

f(a, b, c) = f(a)f(a, b)
∑
c

f(b, c) (2.113)

This type of model generalizes to the following factorization approach and a

generic structure of graphs with variable and factor nodes.

p(s) ∝ f(s) =
∏
si

f(si) (2.114)

A set of distributed “message passing” algorithms can be formulated to compute

the marginal distributions of the node variables (a detailed discussion of these is out-

side of the scope of this thesis, but can be found in [16, 29]). When the node variables

can be represented as Gaussian Random Variables, it has been shown that the compu-

tation of the marginal distributions can be mapped to a linear algebra problem[137].

This approach is the fundamental basis of the incremental Smoothing and Mapping

(iSAM [58]) algorithm that was developed to estimate marginal Gaussian random

variables for SLAM problems, when they are modeled as Factor Graphs. The iSAM

algorithm was developed to take advantage of the inherent conditional independence

structure in many SLAM problems and map it into a sparse linear algebra problem
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that can be solved efficiently[57].
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Chapter 3

Observability Analysis

This chapter presents a non-linear observability analysis of the inertia matrix for

torque free motion about an arbitrary axis. The method for analysis is based on

Hermann and Krener’s method, which is reviewed and applied to a specific problem.

The unobservable mode is found to be a scale factor of the inertia matrix, which is

consistent with intuitive expectations.

3.1 Review of Nonlinear Observability Analysis

The theory of observability for nonlinear systems was first developed by Griffith[39],

Kou [66] and Kostyukovskii [64]. Observability is defined as the ability to recover the

initial state of a system from a sequence of measurements.

Hermann and Krener developed the definitions of local and weak observability

and developed an algebraic test for local weak observability in 1977[44], which is the

approach that will be used here.

Hermann and Krener point out that observability is a global concept. In other

words, a trajectory may need to be arbitrarily long in order for the system to be fully

observable. They introduced a stronger concept of observability called local observ-

ability, that requires to system to be distinguishable for every open neighborhood

of the initial point on the trajectory (i.e. instantly distinguishable). Additionally,

they weakened the concept of observability to only require distinguishability from its
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neighbors, which they called weak observability. This is particularly useful for rota-

tions where 0o and 360o are the same orientation, but are not neighbors. The concept

of local weak observability can be intuitively thought of as the ability to instantly

distinguish a trajectory from its neighbors. Figure 3-1 shows the relationship between

these definitions. Note that for linear systems, all of these concepts and definitions

are equivalent.

Figure 3-1: Observability Diagram [44]

Control Affine Form and Lie Derivatives

The control affine form is a representation of a system:

ẋ(t) = f(x) +
∑
i

fi(x)ui (3.1)

y(t) = h(x(t)) (3.2)

The Lie Derivative is the change of one vector field along the flow of another vector

field, and can be defined recursively n times.

L0
fh = h(x(t)) (3.3)

L1
fh =

∂L0
fh

∂x
· f(x) (3.4)

Ln
fh =

∂Ln−1
f h

∂x
· f(x) (3.5)

They can also be defined with respect to other fields, but do not commute in

general.
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L0
fh = h(x(t)) (3.6)

L1
f1
L1
fh =

∂L1
fh

∂x
· f1(x) (3.7)

3.2 Algebraic Test of Nonlinear Local Weak Ob-

servability

The observability matrix O is created whose rows are defined by the elements of ∇L.

In other words, the space Ω is defined as the space that is closed with respect to Lie

Differentiation on f and fi and the observability matrix O is defined as the gradient

of this space with respect to the state X, (i.e. O = ∇Ω). This has lead to a rank

test of local weak observability. In the case where the observability matrix is not

fully observable, the null space of the observability matrix can identify unobservable

modes (a.k.a. continuous symmetries)[51, 85].

Prior work on nonlinear observability of the SLAM and automatic calibration

problems have been considered by a number of authors [84, 86, 52, 107, 69, 60].

For example, it has been shown that the kidnapped robot problem is not globally

observable[108]. Also, Soatto discussed state representation for the structure from

motion problem [123].

Note that all tests of observability are necessary, but not sufficient, conditions for

estimator convergence. A positive result from an observability test does not specify

what state trajectories are necessary for convergence of all of the observable estimation

variables. In fact there may be a number of trajectories where the estimation system

will never converge on the observable variables. The author of this thesis is not aware

of any methods for testing specific trajectories for their convergence properties aside

from running a variance analysis using the estimator itself.
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3.3 Observability of Inertia Properties

One question of interest is as follows: Given a angular velocity trajectory w(t), is

the inertia matrix observable? To analyze this, Hermann and Krener’s test of local

and weak observability will be applied to Euler’s Equation of Rotational Motion for

torque free input conditions (i.e. Equation 4.86).

ω̇x =
Jyy − Jzz

Jxx
ωyωz (3.8)

ω̇y =
Jzz − Jxx

Jyy
ωxωz (3.9)

ω̇z =
Jxx − Jyy

Jzz
ωyωx (3.10)

The state variables are modeled as follows:

x =



ωx

ωy

ωz

Jxx

Jyy

Jzz


(3.11)

The control affine form of the dynamics is shown below. Note the last three

elements are zero since the inertia matrix is constant.

ẋ(t) = f(x) =



Jyy−Jzz
Jxx

ωyωz

Jzz−Jxx
Jyy

ωxωz

Jxx−Jyy
Jzz

ωyωx

0

0

0


(3.12)
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The measurement model is:

y(t) = h(x(t)) =


wx

wy

wz

 (3.13)

The Lie derivatives were computed symbolically using matlab. The source code

is included in Appendix B.2, and the details of the derivatives will not be included

here for brevity. The observability matrix was found to have its maximum rank when

defined as follows:

O =

∇L0
fh

∇L0
fh

 (3.14)

The number of variables in X is six, while the rank of O is five. This means that

there is one unobservable degree of freedom. In order to compute this the nullspace

vector of O was found as:

Null(O) =



0

0

0

−Jxx/Jzz

−Jyy/Jzz
1


(3.15)

This nullspace confirms that any multiplicative changes that are applied to Jxx,

Jyy and Jzz cannot be estimated. In other words, the inertia matrix is observable

only up to a scale factor for the torque free case. This can be intuitively confirmed

by using an inertia matrix J = sJJ
′, and seeing that the scale factor sJ cancels out.
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ω̇ =
1

sJ
J′−1ω × (sJJ

′)ω (3.16)

=
1

sJ
sJJ

′−1ω × J′ω (3.17)

= J′−1ω × J′ω (3.18)

It was previously mentioned that Hermann and Krener’s test is necessary but not

sufficient. While the analysis in this section has passed the observability test, there are

a number of situations where there would not be enough information to fully estimate

all parameters. One example is if the three principal moments of inertia are equal.

In other words: Jxx = Jyy = Jzz. In this case Equation 3.13 becomes: ẋ(t) = 0, and

the Hermann and Krener test will indicate that the value of the moment of inertia is

an unobservable mode.

This is of particular interest to the experimental analysis in Chapter 6 because it

used a SPHERES satellite as a spinning target object, which has moments of inertia

that are very close in value, because it is a roughly spherically shaped object.

A number of other similarly unobservable cases will occur for observing the inertia

parameters including the center of mass, principal axes and ratios of inertia. One

example is if two of the angular velocity components are close to zero, then it will

be very difficult to estimate the center of mass, principal axes and inertia ratios.

If all three of the angular velocity components are close to zero, inertial properties

estimation would be equally difficult.

In addition to the types of motion, the number and distribution of data samples

will have an effect on the observability, especially when low period rotations and

nutations occur (a good example is the Y-axis angular velocity in Figure 6-14) . This

is theoretically related to the Nyquist Sampling Theorem, which requires the number

of data points to be twice the highest frequency component (a practiced “rule-of-

thumb” is that a factor of 10 is used for good performance).

One question that arises is what to do if parameters are unobservable. This

depends on whether the inertia parameters are only needed for further propagating a
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torque free solution to Euler’s Rotational Equation of Motion, or if they are needed

to predict the motion when forces and torques are applied. If these parameters are

only needed for propagating the motion, and all of the Nyquist Sampling Theorem

requirement on sufficient data has been met, then it is possible to propagate these

equations with the incorrect values, since they by definition of unobservability have

no effect on the outcome.

Alternatively, if these parameters are needed to predict the motion to applied

forces or torques at a later time, it may be necessary to use some additional a priori

information and heuristics to determine these properties. For example, by using the

geometric model of the target object and an assumed density, a number of these

properties could be estimated.
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Chapter 4

Incorporation of Dynamics with

Simultaneous Localization and

Mapping

One of the main contributions of this thesis is a solution of a Simultaneous Localiza-

tion and Mapping (SLAM) problem for an object that is spinning about any of its

axes of inertia, while estimating the linear and angular velocities of the object as well

as its center of mass, principal axes and diagonal inertia matrix (up to a scale factor).

This chapter will provide the details of the approach used. Subsequent chapters in

this thesis will evaluate this approach with experimental results.

One of the first decisions that must be made in developing an estimation approach

is whether to use a filtering or smoothing algorithm. This has recently become an

active topic of discussion, where the prevailing view presented by Davison [42] is that

smoothing should always be used unless computational limitations require filtering

in order to achieve real-time performance. Spacecraft proximity operations are defi-

nitely an application with limited computational resources, and others have selected

a filtering approach for similar work[6, 76]. Despite this, a smoothing approach was

chosen for this work out of concern for estimator convergence. It is entirely possible

that the estimation system may converge to a local minimum for the estimates of the

mass and inertia properties (i.e. center of mass, principal axes and ratios of inertia)
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when the system is first turned on. If the prior states, especially angular velocities,

are marginalized out (as is the case with filtering), the data that the algorithm needs

to get out of that local minimum is no longer available. In contrast, with a smoothing

approach, the position, orientation, linear and angular velocities can be estimated and

converged upon first. Once these sufficiently rich trajectory values are available, the

inertia properties can be fully estimated, which may require hopping in and out of a

number of local minimums. This is shown in Section 6.7 where the inertia properties

didn’t finally converge until after the full angular velocity trajectory that showed a

low period oscillation of Euler’s Equation of Rotational Motion was available.

To date, most approaches for solving a SLAM problem with smoothing techniques

(e.g. iSAM [57, 58] or other pose graph optimization methods[105, 78]) only model

the rigid body kinematic transformations between subsequent time-steps[40]. There

are a small number of exceptions to this generalization, but they typically only model

the linear velocity and use a strap-down gyroscope for kinematic replacement of the

angular velocity[55, 56] and do not update the covariance matrix based on the veloci-

ties. If the rigid body dynamics are not incorporated into the process model, a priori

assumptions about the linear and angular velocity must be made and covariance of

the process noise applied to the position and orientation must be large enough to

accommodate any variations in the velocities. The problem with this is that size of

the process noise sets an upper bound on the estimation accuracy, so it is desirable

to keep the process noise as low as possible.

At a high level, the approach used in this thesis is to redo the probabilistic process

model so that the state variables and likelihoods in the factor graph incorporate

rigid body dynamics (i.e. Newton’s Second Law and Euler’s Equation of Rotational

Motion). The majority of this chapter is devoted to the description and discussion of

how this probabilistic modeling was developed, along with some of the design decisions

that produced the models. While this approach should be generic to any methods for

estimating the marginal distributions of a Gaussian factor graph formulation, a few

steps were specifically tailored to the iSAM system.

This chapter begins with a brief review of how factor graphs are applied to the
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SLAM problem as per iSAM’s assumptions. Next is a simple one-dimensional ex-

ample to illustrate the dynamics modeling method, in contrast with with the typical

kinematics only approach. This is followed by the details of a generic non-linear model

and the approach for calculating the process noise covariance. Using this generic non-

linear model, the specifics of the six degree of freedom dynamic model are described.

A discussion is provided of the approach for modeling the overall center of mass, prin-

cipal axes of inertia and ratios of inertia. The overall graphical model representation

of the entire solution is presented. Lastly some of the complication and conditioning

issues that arise with time-step and velocity unit selection will be discussed.

4.1 Review of Factor Graph Formulation and In-

cremental Smoothing andMapping (iSAM) Al-

gorithm

The overall modeling approach merges discrete-time state space representations of

rigid body kinematics and dynamics with pose graph representations. A generic pose

graph model is shown as a factor graph in Figure 4-1. In this generic Simultaneous

Localization and Mapping example, the states at two instants in time are represented

by x[1] and x[2], and two landmarks are represented by l1 and l2. The nodes of

the graph are shown as circles, which contain state variables that must be estimated

(such as x[k] and li), while the rectangles represent factors, which model the joint

probability distribution between some number of nodes. These factors are denoted

by f(a, b) which describes a Gaussian probability distribution between the random

variables a and b. This probability distribution often represents some type of error

between the variables in two nodes that must be minimized.

In order to solve this pose-graph optimization problem, the methods in this thesis

utilize the Incremental Smoothing and Mapping (iSAM) system [58], which is avail-

able online as open source software. The iSAM algorithm assumes that the means of

the factors, f(), are zero (note that non-zero means can be handled by augmenting
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Figure 4-1: Generic Pose Graph Model

the state variables), and optimizes over all of the state variables in all of the nodes

to minimize a cost function of the errors, which are specified by each of the factors.

iSAM performs this optimization by converting the factor-graph problem to an equiv-

alent linear algebra problem. This is beneficial due to the inherent sparsity of the

SLAM problem in the Information form [130], which directly causes the linear algebra

problem to be inherently sparse. This allows the optimization problem to be solved

in a computationally efficient manner using sparse linear algebra routines.

4.2 A One Dimensional Example

It is helpful to begin with a simple, but typical, system model. Consider a one-

dimensional linear position model. The state variable rk represents the position of

the vehicle along a line at timestep k, while landmark i is located at position li also

along the same one-dimensional line. With reference to Figure 4-1, the discrete time

state and landmark variables are defined simply as follows:

x[k] = rk (4.1)

li = li (4.2)

This system is described by the following continuous time process and discrete

102



time measurement model:

ṙ(t) = wr(t) (4.3)

zi[k] = li − rk + wz[k] (4.4)

Where wr is white noise and and wz[k] is the discrete time measurement error.

E[wr(t)] = 0 (4.5)

E[wr(t1)wr(t2)] = a2wr
δ(t1 − t2) (4.6)

E[wz[k]] = 0 (4.7)

E[wz[k]wz[l]] =

σ2
wz
, k = l

0, k ̸= l

(4.8)

After converting this model to a discrete time form, the factors shown in Figure

4-1 are specified as shown below. Each of the factors is formulated so that its error

has a mean of zero and a covariance that can be specified.

f(x[1]) = r1 − rorigin ∼ N(0, σ2
origin) (4.9)

f(x[k − 1],x[k]) = rk − rk−1 ∼ N(0, a2wr
(tk − tk−1)) (4.10)

f(x[k], l[i]) = rk − li + zi[k] ∼ N(0, σ2
wz
) (4.11)

Note that rorigin is the location of the origin and zi[k] is a range measurement from

the vehicle at time k to landmark i. Also, both rorigin and zi[k] are constants (i.e. a

prior and a measurement respectively) and not states to be estimated.

Now, using the simple model described above, a few key facts can be observed.

It is important to note that the process model described in Equation 4.3 models

only the system’s kinematics and not the dynamics. This is evident since there is no

estimate of the vehicle’s velocity. As a result, the velocity is assumed to be a zero

mean white Gaussian noise with strength a2wr
. Therefore, this implies that Equation

4.10 describes a Wiener process[22] for the one-dimensional position of the vehicle.
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In practice, this requires the process noise to be large enough to account for the

vehicle’s range of possible velocities. The problem with this approach is that the

value of awr , the strength of the process noise, sets a lower bound on the covariance

of the estimated state variables. If it needs to be very large to account for a large

range of velocities, this will lead to state estimates that have poor accuracy. Since the

system is estimated in discrete time, the discrete time variance of f(x[k−1],x[k]) will

increase proportionally to the time-step between measurements tk − tk−1 as shown in

Equation 4.10.

Alternatively, if it is known that the system will obey certain dynamics, for exam-

ple Newton’s Second Law (F = ma), these dynamics can be used to further constrain

the estimate as shown below.

Note that vk is the vehicle’s velocity at time k. The new state space model is

specified below and includes the velocity as a state to be estimated. The landmark

and measurement equations remain the same as described above.

x[k] =

rk
vk

 (4.12)

The continuous time model is shown below (m is the vehicle mass):

ṙ(t)
v̇(t)

 =

0 1

0 0

r(t)
v(t)

+

 0

1
m

wF (t) (4.13)

We can discretize the system and replace the factor for the process model with the

two dimensional factor model below

f(x[k − 1],x[k]) =

rk
vk

−
1 ∆t

0 1

rk−1

vk−1

 ∼ N(02×1,Λprocess) (4.14)

The first effect of this model is that the velocity will become part of the state space

that is estimated at each time-step. Additionally, the relationship between velocity,

position and the timestep (i.e. vk =
rk−rk−1

∆t
) is a constraint that must be satisfied (or
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at least the error is part of the cost function that is minimized). An estimate of the

velocity is often very useful for control and state propagation purposes.

The second effect is that the noise in the process model is now the force that is

applied to the system. For typical space robotics applications, the applied forces are

usually known to much higher accuracy than the velocities, because robotic space

vehicles often have accelerometers, well calibrated actuators and few external distur-

bance forces; whereas the velocities are the result of integration of a long history of

forces that are generally unknown.

The discussion of how to compute Λprocess based on wF (t) and ∆t will be postponed

until Section 4.4.

For the kinematics and dynamics model, the measurement factor is exactly the

same as Equation 4.11. However, the origin factor is slightly different due to the fact

that a prior must be placed on the velocity. This is shown below:

f(x[1]) =

r1 − rorigin

v1 − vorigin

 ∼ N
0

0

 ,

σ2
rorigin

0

0 σ2
vorigin

 (4.15)

4.3 General Nonlinear Model

The next step is to generalize from the specific one-dimensional model described in

the previous section. This general pose graph model is needed so that the specific

non-linear rigid body dynamics can be included (described in Section 4.5). Note

that a number of ”less exact” methods were attempted during this research and were

unsuccessful. These are described in the next two sections as a number of alternatives,

which includes using zero-order hold process noise, using the matrix exponential for

the state transition, using a constant process noise covariance matrix and using the

matrix exponential for the process covariance matrix. Sections 4.3 to 4.5 present one

of the main contributions, which is how to incorporate nonlinear rigid body dynamics

into probabilistic factor graphs.

The concepts discussed in the previous section on one-dimensional models can be

105



generalized to a nonlinear process model with a state vector of arbitrary size, as well

as a discrete time measurement model as follows:

ẋ(t) = f (x(t)) +Bww(t) (4.16)

zi[k] = h (x[k], li) + v[k] (4.17)

Where the process variables are defined with the following properties:

x(t) ∈ Rn×1 (4.18)

w(t) ∈ Rm×1 (4.19)

E[w(t)] = 0m×1 (4.20)

E[w(t1)w(t2)
T ] = Qδ(t1 − t2) (4.21)

Q > 0 (4.22)

This shows that w(t) is a Gaussian white noise process. Additionally, the measure-

ment variables are defined with the properties below. Note that in this case the

measurement noise has the same size as the measurement vector.

zi[k] ∈ Ru×1 (4.23)

v[k] ∈ Ru×1 (4.24)

E[v[k]] = 0u×1 (4.25)

E[v[k]v[l]T ] =

R, k = l

0, k ̸= l

(4.26)

R ∈ Ru×u (4.27)

R > 0 (4.28)

li ∈ Rl×1 (4.29)

From above, the measurement error process v[k] is also assured to be Gaussian. As

before, the process and measurement noise are set as the error function in the iSAM
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factors that are the inputs to the cost function that is minimized. The measurement

model is straightforward to transform to discrete time and incorporate into a factor:

f (x[k], l[i]) = v[k] = zi[k]− h (x[k], li) ∼ N(0u×1,R) (4.30)

However, the process dynamics equation can be discretized in one of two ways:

The first approach is to assume the noise is constant during the integration (i.e.

a zero-order-hold [34]), where tk+1 = tk +∆t.

x[k + 1] = x[k] +

∫ tk

tk−1

f (x(τ)) dτ + Γ1w1[k] (4.31)

Note that the discussion of the specific method for evaluating
∫ tk
tk−1

f (x(τ)) dτ will be

deferred until sub-section 4.4. This leads to the factor below. The implication of this

is that w1[k] ∈ Rm×1 and therefore the dimension of the factor is m.

f1(x[k],x[k + 1]) = w1[k] (4.32)

Where:

w1[k] = (ΓT
1Γ1)

−1ΓT
1

(
x[k + 1]− x[k]−

∫ tk

tk−1

f (x(τ)) dτ

)
(4.33)

E[w1[k]] = 0 (4.34)

E[w1[k]w1[l]
T ] =

Λ1, k = l

0, k ̸= l

(4.35)

=

∆tQ, k = l

0, k ̸= l

(4.36)

As will be discussed below, this first approach causes certain problems (i.e. insuf-

ficient constraints) when used with optimization systems such as iSAM. The second,

and preferred, approach would be to integrate the noise throughout the timestep (this
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is described in Section 3.6 of[37] and in Section 5.3 of [22]).

x[k + 1] = x[k] +

∫ tk

tk−1

f (x(τ)) dτ +w2[k] (4.37)

f2(x[k + 1],x[k]) = w2[k] (4.38)

w2[k] = x[k + 1]− x[k]−
∫ tk

tk−1

f (x(τ)) dτ (4.39)

E[w2[k]] = 0 (4.40)

E[w2[k]w2[l]
T ] =

Λ2, k = l

0, k ̸= l

(4.41)

Note that the discussion of the method for evaluating Λ2 will also be deferred until

section 4.4.

In this second case: w2[k] ∈ Rn×1 and the dimension of the factor is n. Therefore,

the number of rows ofw1, (m) will be smaller than the number of rows ofw2, (n), since

m ≤ n for most systems. This lower dimensionality (and hence lower computational

cost) is why the first approach is typically considered for Extended Kalman Filters

or graph-based message passing algorithms (see [134] for an EKF example).

However, pose graph optimizations algorithms, such as iSAM, solve a system of

equations using weighted least squares minimization algorithm. Specifically, iSAM

minimizes the Mahalanobis distance of the factors’ error functions as shown below.

x∗ = argmin
x
||w(x)||2Λ(x) (4.42)

= argmin
x

w(x)TΛ−1(x)w(x) (4.43)

Note that the covariance Λ will also be a function of the state. This is not typical

for standard kinematics-only models of pose-graph problems. This required a few

minor software modifications to be made to the iSAM software to support this, which

are shown in Listings B.18 and B.19.

As an aside, note that this requires the computation of the Jacobian of the error:

J(x) = ∂
∂x
w(x). The iSAM software system will compute the Jacobian (J) numeri-

cally, which will allow a numerical integration method to be used for evaluating the
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error w(x) in Section 4.4. Note that for the weighted least squares problem, the

Jacobian is only the partial derivative of the error, and does not require a partial on

the Information matrix Λ−1(x).

To decide whether w1[k] or w2[k] should be used, the number of variables and

constraints in the optimization problem must be considered. Note that the variables

are generated by the nodes while the constraints are generated by the factors. The

total number of variables is equal to the total number of rows in all of the nodes.

Similarly, the total number of constraints in a pose graph is equal to the total number

of rows in all of the factors’ error functions. The weighted least squares minimization

for each of the nodes is as follows:

When the first approach is used, w1, the total number of constraints will be less

than the total number of variables. This is because when time derivatives of states

are also included as state vectors, this leads to more states in the state vector that

are driven by the same noise. As a result, the number of constraints m < n. and the

pose graph optimization algorithm will fail to find a solution if the first method (w1)

is used, since the problem is under-constrained. The second approach, w2, will not

have this problem, since there will be an equal number of constraints and variables.

Admittedly, this conclusion seems counter-intuitive, and asks the question: Does

the second approach just add combinations of other constraints (so that the problem

remains ill-posed), or does it actually add new independent constraints that allow for

the problem to be solved?

The answer to this question depends on the covariance matrix Λ2. If Λ2 is rank

deficient, Equation 4.42 definitely can not be solved, and the pose-graph optimization

will fail. If the matrix Λ2 is full rank, but poorly conditioned, a solution to the system

of equations exists, but not all solution methods will find the correct solution[48].

Practically speaking, this conclusion aligns with the implementation of iSAM: the

first step in constructing a factor is to find a Cholesky factorization of Λ−1
2 . If Λ−1

2

is poorly conditioned, the factorization will be inaccurate, and hence iSAM will find

an inaccurate solution.

The following section discusses the evaluation of Λ2, while Section 4.9 looks at the
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conditioning of Λ−1
2 , and under what conditions it will allow the least squares model

to be solved.

4.4 Evaluation of Process Noise

As discussed in the previous section, for a general nonlinear process model as described

above, there is an equivalent factor that can be created:

ẋ(t) = f (x(t)) +Bww(t) (4.44)

f(x[k + 1],x[k]) = x[k + 1]− x[k]−
∫ tk

tk−1

f (x(τ)) dτ (4.45)

∼ N(0,Λ(∆t,x[k])) (4.46)

One option is to use the fact that nonlinear systems can be linearized about the

point x(tk) as follows. Also, A(x(t)) =
∂f(x(t))
∂x(t)

|x(t)=x(tk) and may be a function of the

state vector:

ẋ(t) = f (x(t)) +Bww(t) (4.47)

≈ A (x(tk))x(t) +Bww(t) (4.48)

Applying a discretization to transform the system from continuous to discrete

time with a time step of ∆t leads to:

x[k + 1] = Φ(∆t,x[k])x[k] +

∫ tk+1

tk

eA(x[k])(tk+1−τ)Bww(τ)dτ (4.49)

= Φ(∆t,x[k])x[k] +w[k] (4.50)

Φ(∆t,x[k]) = eA(x[k])∆t = L−1(sI−A(x[k])∆t)−1 (4.51)

The properties of w[k], the factors’ error function, are found using the same approach
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as in Equation 4.39 (i.e. Section 3.6 of[37] and in Section 5.3 of [22]):

w[k] = x[k + 1]− Φ(∆t,x[k])x[k] (4.52)

E[w[k]] = 0 (4.53)

Λ(∆t,x[k]) = E[w[k]w[k]T ] (4.54)

=

∫ tk+1

tk

Φ(τ,x[k])BwQBT
wΦ(τ,x[k])

Tdτ (4.55)

Equation 4.55 has a very important property: Whenever the transition matrix Φ

explicitly depends on x[k], then the covariance of the factors’ error Λ will also depend

on x[k]. This will occur in the section 4.5, for the attitude kinematics and dynamics.

This dependency has the practical implementation that the transition matrix, Φ, and

factor covariance Λ must be recalculated whenever the value of the estimate x[k] (i.e.

the vehicle’s state) changes, which can add significant computation to the overall

system. If the dynamic models are not included and only the kinematic models are

used, this will typically not be required and Φ and Λ can be pre-programmed ahead

of operations.

While the linearization seems like a perfectly valid approach, there are two inherent

problems with using: A(x(t)) = ∂f(x(t))
∂x(t)

|x(t)=x(tk). The first is a theoretical problem:

This linearization, and its use in computingΦ(∆t,x[k]) andΛ(∆t,x[k]), assumes that

x[k] remains constant over the time step ∆t. However, if ∆t is sufficiently large, such

that the linearization point from the previous time step is no longer “close enough”

to the linearization point at the next time step, additional errors will be introduced

to the estimation system.

The second problem is due to the software implementation of Equation 4.51 and

4.55. If the system is sufficiently complex, and this includes a 6 Degree of Freedom

rigid body as described in section 4.5, then the symbolic evaluations of the inverse

Laplace Transform and definite integral can be prohibitively complicated, even when

using automatic code generation from symbolic representations such as Matlab’s Sym-

bolic and Coder Toolkit.

An alternative and preferable method, which was used in this thesis, is to compute
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the process model and noise covariance numerically, despite the fact that this adds

additional computational steps to the estimation scheme. This method uses a custom

fourth-order Runge-Kutta (RK4) integration, with adaptive step sizes. The custom

method to adapt the step size initially evaluates the RK4 integration with ∆t as the

first step size and ∆t/2 as the second step size. It compares the two results, and

if the root mean squared (RMS) error is greater than a predetermined threshold, it

reduces the step size by a factor of two until the RMS error is below the threshold

(or if the step size is smaller than an absolute minimum). The source code for the

RK4 integration is shown in Listing B.14 and B.15.

In order to compute the process model, Equation 4.16 is used, along with the fact

that E [w(t)] = 0, and the RK4 can be applied in the usual manner.

ẋ(t) = f (x(t)) (4.56)

x(t) = x0 (4.57)

Now to compute the process covariance, we do not use Equation 4.55, due to the above

mentioned problems, but rather use the fact that Λ, from Equation 4.21, follows a

Lyapunov equation[22, 37]:

Λ̇(∆t,x(t)) = A(x(t))Λ(∆t,x(t)) +Λ(∆t,x(t))AT (x(t)) +BwQBT
w (4.58)

Λ(0,x(t)) = 0 (4.59)

Note that if A depends on x(t), then Λ also depends on x(t), and both must be solved

simultaneously. As a result Equations 4.56 through 4.59 are solved simultaneously

using the RK4 method described above. Note that the positive definite matrix Λ can

be vectorized to integrate with the software functions. The model for the Lyapunov

equation must be linearized, using A(x(t)), otherwise the Gaussian process noise

would not remain Gaussian. As a result the RK4 step size must be able to be

adjusted to be small enough that the linearization is valid between integration steps.

This is taken care of by the adaptive step size method described above.
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4.5 Six Degree of Freedom Rigid Body Model

The next step is to apply the previously generic mode to the specific problem at

hand.The stochastic, continuous-time, nonlinear dynamics are specified by the fol-

lowing equations. This is a constant linear and angular acceleration model with zero

mean white Gaussian noise as the only disturbance forces and torques. Wv,Wω

are process noise models that incorporate disturbance forces that are applied to the

vehicle. Note that no assumptions are made that the angles or angular velocity is

small.

ṙ = v (4.60)

v̇ =
1

m
Wv (4.61)

q̇ =
1

2
Ω(ω)q (4.62)

=
1

2

ω
0

⊗ q (4.63)

=
1

2

ω
0

⊗
 q̄
q4

 (4.64)

ω̇ = J−1(−ω × Jω +Wω) (4.65)

= −J−1ω × Jω + J−1Wω (4.66)

Where the J is the inertia matrix, and:

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 [ω×] =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 (4.67)

It is clear that any representations of attitude include nonlinear transformations

and kinematics. This causes a problem for modelling and propagating probability
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distribution functions with Gaussian random variables, such as those typically used

in Extended Kalman Filters or the iSAM system. It is well understood that the

covariance matrix of a quaternion is rank deficient due to its normalization constraint.

While there is active research in a number of estimation systems that do not use

Gaussian random variables [83, 109, 127, 118, 119], a typical approach for dealing

with this is to use three vector error parameterization and reset the quaternion (see

[26, 70, 82, 134]), which is what will be used here since it fits well with the iSAM

system for Gaussian random variables and has a history of good performance.

This error vector and reference quaternion approach can be applied to pose graph

optimization methods such as iSAM. For each of the nodes that specify the vehicle’s

6DOF trajectory, the reference quaternion approach is mirrored. This means that at

the vehicle’s state nodes for each timestep, both a four parameter reference quaternion

and a three parameter attitude error is stored. Each time the optimization problem

is re-linearized, a reset step is performed. This reset step transfers all of the attitude

error into the reference quaterion.

A three parameter representation was chosen so that the actual state vector is 12

by 1. Modified Rodriguez Parameters (MRP), ap, were chosen so that the singularity

is at a 360o rotation.

x =
[
r v ap ω

]T
(4.68)

Where:

ap(q) =
4

1 + q4

[
q1 q2 q3

]T
=

4

1 + q4
q̄ (4.69)

And, inversely:

q(ap) =
1

16 + aT
p ap

 8ap

16− aT
p ap

 (4.70)

In the Multiplicative Extended Kalman Filtering (MEKF) approaches referenced
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above, a reference quaternion qref is stored separately from the state vector and its

covariance matrix. Periodically, a MEKF will apply the reset step below based on the

error represented by the Modified Rodrigues Parameters. This idea is mirrored in the

iSAM implementation described in this paper. Each of the nodes that contains the

vehicle’s state vector includes a three-parameter MRP that is part of the state vector

and covariance matrix for that node. Additionally, each node includes a reference

quaternion that is not part of the state vector. With a few simple modifications, the

publicly available iSAM implementation can be modified to apply the reset step as

part of its re-linearization routine.

q[k] = δq(ap[k])⊗ qref [k] (4.71)

ap[k] = 03×1 (4.72)

It is important to note that any error functions that make use of the full attitude,

must include the full attitude function and do so in a way that avoids the singularities

associated with the MRP. The method is used as part of the error function (Equation

4.39) is listed below. Note that q−1 is the inverse of a quaternion, where the three

direction components are multiplied by −1. The details of ȧp(t) are derived below.

a[k + 1]− a[k] =

∫ tk+1

tk

ȧp(τ)dτ + ap

(
q[k + 1]⊗ q[k]−1

)
(4.73)

In order to model the state transitions using ap, the time derivative ȧp = dap

dt
must

be found. The two definitions below are used in the derivation:

˙̄q =
1

2
(q4ω − ω × q̄) (4.74)

q̇4 = −1

2
ω · q̄ (4.75)

Now, ȧp was derived in Equation 2.47.

dap(t)

dt
= ȧp(ap(t), ω(t)) =

(
−1

2
[ω×] + 1

8
ω · ap

)
ap +

(
1− 1

16
aT
p ap

)
ω(4.76)
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Also, ȧp is only a function of ap and w. To summarize, the full nonlinear dynamics

are as follows:
ṙ

v̇

ȧ

ẇ

 =


v

0(
−1

2
[ω×] + 1

8
ω · ap

)
ap +

(
1− 1

16
aT
p ap

)
ω

−J−1ω × Jω

+ (4.77)


03×3 03×3

1
m
I3×3 03×3

03×3 03×3

03×3 J−1


Wv

Wω

 (4.78)

Equation 4.58 requires that a linearized model be computed to propagate through

the Lyapunov equation to ensure the process noise remains Gaussian.

ẋ = Ax+BWW (4.79)
ṙ

v̇

ȧp

ω̇

 =


03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −1
2
[ω×] + 1

8
ω · apI3×3

(
1− 1

16
aT
p ap

)
I3×3

03×3 03×3 03×3 −J−1[ω×]J




r

v

ap

ω

(4.80)

+


03×3 03×3

1
m
I3×3 03×3

03×3 03×3

03×3 J−1


Wv

Wω

 (4.81)

The only assumption in the linear model is that the state remains constant during the

integration step, which is accommodated by the adaptive step size RK4 algorithm.

Neither the linear or nonlinear model make any assumptions about small angles or

positions or small linear or angular velocities. The source code for the dynamics

model is shown in Listing B.16 and B.17. Note that it assumes the inertia ratios

will be estimated (as discussed in Section 4.7) and therefore uses Equation 4.101 and
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4.103.

The singularity in the three parameter rotation representation is handled by the

reset step in Equation 4.71. This was added to the standard open source iSAM

implementation.

4.6 Modeling of Center of Mass and Principal Axes

of Inertia

This section outlines one of the main contributions of this thesis: how to parameterize

and estimate the center of mass and principal axes of inertia. All of the equations

representing the process model have been written with the assumption that the body

fixed frame is located at the center of mass and (optionally) aligned with the principal

axes. The approach taken in this thesis is to enforce this assumption, by minimizing

the external forces and torques as part of the factors’ errors, while introducing another

reference frame that all of the feature points are attached to. The translation and

rotation between the first, body-fixed frame and the second, geometric frame is a

constant parameter that must be estimated.

The reason for taking this approach is due to the following issue with the more

conventional approach: As the estimates for the center of mass and principal axes

are refined, there is a “common mode” adjustment that must be made to all of the

feature points. Adding these translation and rotation parameters between the rigid

body frame and the geometric frame moves these common mode adjustments from

the feature points to these new parameters, and thereby minimizing the number of

variables that must be updated.

This is different than the traditional SLAM approach where the feature points

would be estimated within the body fixed reference frame. This approach is concep-

tually similar to a single, three-dimensional anchor node as proposed by Kim [61],

where the measurements are triangulated SURF features rather than kinematic trans-

formations. The biggest difference is where Kim’s anchor nodes are used to “align”
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two robot trajectories with each other, the geometric frame transformation described

here is used to “align” the body frame trajectory into the center of mass and prin-

cipal axes. Aghili [7, 6] and Lichter [75, 76] both specify a very similar model, but

neither of the two authors estimate feature positions with respect to the geometric

frame as part of the state vector. This would allow for loop closure and future re-

finement (which are both possible with the methods described by this thesis), but it

introduces additional observability issues. With the appropriate prior models for the

feature points (as described later in this section), this thesis shows how to handle this

observability issue.

This approach is illustrated in Figure 4-2. The state variables include a large

number three dimensional vectors pi/G, which are the location of each matched and

tracked SURF feature (green and purple stars in the figure) with respect to the geo-

metric frame. The fact that the features are estimated with respect to the geometric

frame and not the body frame is the first key to this approach. The second key to

this approach is that the parameters for the coordinate frame transformation between

the body and geometric frame are state variables estimated by a single node iSAM

system. The fact that the parameters of this transformation are constant and do not

vary over the time-steps k is the main reason for choosing this approach. This means

that while the relative positions of the feature points, with respect to other feature

points, may have converged to very accurate estimates, the transformation between

the geometric and the body frame may not converge until a much later time, when

the motion is rich enough to enforce the zero force and torque constraints.

Note that the parameters are shown in the diagram as RG/B,TG/B for simplicity

but the rotation is actually represented as the reference quaternion, qG/B,ref, and

MRP error vector, ap,G/B,ref, as in Equation 4.71.

Figure 4-3 illustrates the factor graph relationship between the geometric frame,

the sensor factors and the body frame state variables. Again, note that there is only

one instance of the RG/B,TG/B node for all of the time k. This parameter “collects”

all of the common-mode adjustments to the geometric feature points. These rotation

and translation parameters are able to coverge at a later time when the trajectory is
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Figure 4-2: Geometric, Body, Camera and Inertial Reference Frames

rich enough that the center of mass and principal axes of inertia become observable.

Using these reference frames, the feature points can be transformed into the iner-

tial frame to find pi/I , by adding the second transformation matrix in the equation

below.

pi/I

1

 =

R′
B/I [k] TG/B[k]

0 1

R′
B/G TG/B

0 1

pi/G

1

 (4.82)

Once these features are known in the inertial frame, they can be projected into

the camera frame, which for this thesis is assumed to be stationary (removing this

assumption is planned as future work and is described in Section 7.2).
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Figure 4-3: Factor Graph Model of Sensor and Process Model using Geometric
Frame

sL


ui/L

vi/L

1

 =


f 0 −cx,L
0 f −cy,L
0 0 1


RCL/I −RCL/ITCL/I

0 1

pi/I

1

 (4.83)

sR


ui/R

vi/R

1

 =


f 0 −cx,R
0 f −cy,R
0 0 1


RCR/I −RCR/ITCR/I

0 1

pi/I

1

 (4.84)

Using these image frame coordinates, the error vector of the factor can be com-

puted using the measured image coordinates of the SURF feature (uL,measured, vL,measured, uR,measured).
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fstereo(pi/G,x[k + 1],RG/B,TG/B) =


ui/L,measured

vi/L,measured

ui/R,measured

−

ui/L

vi/L

ui/R

 (4.85)

Another important point is that the model shown in Figure 4-3 includes two prior

factors. The first prior is fprior(RG/B,TG/B), which is required to allow the number

of constraints to equal the number of degrees of freedom. However, this prior does

not introduce a significant amount of information due to the fact that the covariance

of this factor is very high.

The second prior is slightly more complicated as it is only applied to the first

point feature in the entire geometric map (i.e. the green star in figure 4-2). Note that

there is an unobservable mode between the feature point locations in the geometric

frame and RG/B,TG/B. For example if the geometric frame is translated by 10 cen-

timeters with respect to the body frame, and all of the features are translated by 10

centimeters in the opposite direction, the same stereo vision measurements will result

(note that a similar situation applies for rotation). In order to deal with this and

help the system converge faster, a single prior is placed on one of the feature points,

fprior(pi/G) that has very low covariance. An offset is computed based on the coordi-

nate frames’ locations when this feature is first measured in order to maintain a zero

mean factor. This in effect “locks down” the position and orientation of the features

within the geometric frame. Note that because this procedure does not introduce any

information in the body or inertial frame, it does not add any a priori information to

the problem.

The initialized value of this first low covariance feature is computed by triangulat-

ing the feature measurement to obtain pi/I and then solving for pi/G with Equation

4.82 using the current estimated location of the body frame and the current (likely

initial) value of RB/G and TG/B . The initial values for RB/G and TG/B are the

identity rotation matrix and the zero vector for translation.

One important potential issue is that location of this low covariance point must
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be far enough away from the origin of the geometric frame so that it can properly

constrain the rotation. In other words, solving for pi/G must not lead to a value that

is very close to zero and if this occurs a different feature should be selected. A good

“rule-of-thumb” would be that the value cannot be within 6 standard deviations of

origin. Since the prior standard deviation is 1.0E−6 meters, this feature has to be at

least 6 nano-meters away from the origin. This is sufficiently small that it is unlikely

to occur. As a result, the implementation of this algorithm did not include this check,

but it could easily be modified to include this for robustness.

4.7 Parameterizing the Ratios of Inertia

This section describes another of the main contributions of this thesis: How to pa-

rameterize and estimate the observable modes of the principal inertia matrix. Given

an angular velocity trajectory, ω(t), it is desirable to find the inertia properties that

solve Euler’s Equation of Rotation Motion for torque free input. This is Equation

4.86, which is repeated below:

ω̇x =
Jyy − Jzz

Jxx
ωyωz (4.86)

ω̇y =
Jzz − Jxx

Jyy
ωxωz (4.87)

ω̇z =
Jxx − Jyy

Jzz
ωyωx (4.88)

The observability of the ratios of inertia is discussed in Section 3.3, where it was

shown that only two degrees of freedom are observable. Therefore it is desirable to

parameterize the inertia matrix as two “ratios of inertia”.

As a comparison, Aghili [7] described an Extended Kalman Filter based approach

where the inertias were parameterized as three variables as follows:
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px =
Iy − Iz
Ix

> −1 (4.89)

py =
Iz − Ix
Iy

> −1 (4.90)

pz =
Ix − Iy
Iz

> −1 (4.91)

It is clear that these three parameters only have two degrees of freedom, since any

of the parameters can be found as a function of the other two. An example of this is:

px = − py + pz
1 + pypz

(4.92)

Although a single set of experimental results were presented in [7] showing good

convergence of an EKF, the author of this thesis does not believe that it is good

practice to parameterize a problem with more variables than degrees of freedom.

Additionally, px, py and pz must be greater than −1 in order for Euler’s equations to

generate physically realistic results. This does not seem compatible with Gaussian

random variables that are defined for all real numbers between infinity and negative

infinity. These two reasons are why the author of this thesis believes that Aghili’s

parametrization is not ideal.

Lichter proposed a parameterization of the inertia properties in his doctoral thesis

[76] that are implemented as an Unscented Kalman Filter[1]. His parameterization is

as defined as:

Ixx = |z2|+ |z3| (4.93)

Iyy = |z1|+ |z3| (4.94)

Izz = |z1|+ |z2| (4.95)
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Where the four values of the quaternion
[
q0 q1 q2 q3

]T
are estimated by the UKF:


z1

z2

z3

 = R(qI)


0

0

1

 =


2(q1q3 + q2q0)

2(q2q3 + q1q0)

q20 − q21 − q22 − q23

 (4.96)

This method is problematic since it uses four variables to represent two degrees of

freedom. Additionally, there are a number quaternions that do not correspond to

physical situations. For example, the quaternion
[
0 0 0 1

]T
would imply that

Izz = 0, which does not make physical sense.

In contrast to Aghili’s and Lichter’s methods, this thesis proposes a parameteri-

zation that is the natural logarithm of the ratios of inertia. This approach has only

two random variables for two degrees of freedom: k1 and k2,

k1 = ln

(
Jxx
Jyy

)
(4.97)

k2 = ln

(
Jyy
Jzz

)
(4.98)

These parameters are assumed to be Gaussian random variables. Using this approach,

the diagonal inertia matrix can be computed up to a scale factor:

Jdiag =


ek1 0 0

0 1 0

0 0 e−k2

 =


Jxx
Jyy

0 0

0 1 0

0 0 Jzz
Jyy

 (4.99)

Additionally, this parameterization is an appropriate selection for a Gaussian random

variable. This is due to the fact that 0 < Jxx
Jyy

, Jyy
Jzz

< ∞, which is the same as the

input domain for the natural logarithm, ln.

If k1, k2 = 0, which maximizes the probability distribution function for a zero

mean normal random variable, thenJxx = Jyy = Jzz, which means that the object

has a spherical inertia ellipsoid. Also, as k1, k2 → ±∞ the Gaussian distribution

approaches zero, implying that one of the inertials is infinitesimally small. Such an
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occurrance is highly unlikely from a physical perspective, so the probabilistic model

is consistent with the physical model.

This approach was used in this thesis by adding a new node for k1 and k2 and

augmenting the dynamics factor fdynamics as shown in Figure 4-4.

Figure 4-4: Factor Graph Process Model with Inertia Ratios

The dynamics model from Equation 4.61 and 4.66 is adjusted using W′
v and W′

ω

so that the process noise incorporates the mass and inertia matrix, since these are

not observable.

v̇ =
1

m
Wv (4.100)

= Wv
′ (4.101)

ω̇ = −J−1ω × Jω + J−1Wω (4.102)

= −J−1ω × Jω +Wω
′ (4.103)

This required an adjustment to the full six degree of freedom dynamic model
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(Equation 4.79 and 4.78) as follows:


ṙ

v̇

ȧ

ẇ

 =


v

0(
−1

2
[ω×] + 1

8
ω · ap

)
ap +

(
1− 1

16
aT
p ap

)
ω

−J−1ω × Jω

+ (4.104)


03×3 03×3

I3×3 03×3

03×3 03×3

03×3 I3×3


Wv

′

Wω
′

 (4.105)

And:

ẋ = Ax+BWW (4.106)
ṙ

v̇

ȧp

ω̇

 =


03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −1
2
[ω×] + 1

8
ω · apI3×3

(
1− 1

16
aT
p ap

)
I3×3

03×3 03×3 03×3 −J−1[ω×]J




r

v

ap

ω

(4.107)

+


03×3 03×3

I3×3 03×3

03×3 03×3

03×3 I3×3


Wv

′

Wω
′

 (4.108)
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4.8 Full Factor Graph Model

Figure 4-5 summarizes the full factor graph model for this approach, and brings

together all of the elements of one of the major contributions of this thesis: the

development of a stereo visual SLAM algorithm that can handle moving and spinning

objects. It illustrates how the full factor graph diagram is constructed to estimate

the geometric frame, body frame and ratios of inertia for three timesteps and two

features. Note that there is a prior placed on state x[0] with a very high covariance;

therefore, very little a priori information is introduced. This allows for the number

of variables to equal the number of constraints and is related to the un-observability

of the “kidnapped robot” problem.

The source code for this model is shown in Listings B.20, B.21, B.22, B.23, B.24

and B.25.
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Figure 4-5: Full Factor Graph Model for Three Time-Steps

128



4.9 Implications of Time-Step Selection on Condi-

tioning

The approach described in the previous sections allows for variable timesteps to be

used between measurements. This has the potential to improve computational per-

formance by allowing fewer measurements to be made per unit time while propa-

gating their motion for future data association more accurately. However there is

one potential issue that limits the extent of the variability of the timestep between

measurements.

This issue arises from the fact that iSAM minimizes the Mahalanobis Distance

of the factor error (Equation 4.42). As was previously discussed, the optimization

is sensitive to the covariance matrix being ill-conditioned. This is due to both the

inverse and the Cholesky factorization that is taken when computing the square root

Information Matrix, which is required to compute the Mahalanobis distance cost

function. If Λ is rank deficient, Equation 4.42 definitely can not be solved, and the

pose-graph optimization will fail. If the matrix Λ is full rank, but poorly conditioned,

a solution to the system of equations exists, but not all solution methods will find

the correct solution[48].

It will be shown here that when double integrators are included in the factors’

error function, as previously discussed (i.e. Newton’s Second Law or Euler’s Equation

of Motion), this can lead to ill-conditioning if care is not taken in parameterizing the

state space to appropriately match the time step, ∆t.

To illustrate this problem, consider the second order system in Equation 4.13. It

can be discretized using Equation 4.51 as follows:r[k + 1]

v[k + 1]

 =

1 ∆t

0 1

r[k]
v[k]

+ wF [k] (4.109)
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With the following assumptions:

E[wF (t)] = 0 (4.110)

E[wF (t1)wF (t2)] =

σ2, t1 = t2

0, t1 ̸= t2

(4.111)

The covariance of wF [k] can be computed using Equation 4.55:

Λ = σ2

m2

1
3
∆t3 1

2
∆t2

1
2
∆t2 ∆t

 (4.112)

As was previously discussed, if Λ is rank deficient or poorly conditioned, any

pose graph optimization algorithm will either fail or converge to an incorrect solution

respectively. Obviously if ∆t = 0 then Λ looses rank (but this is an impractical case).

However, Figure 4-6 shows the condition number of Λ as a function of the timestep

∆t. Figure 4-6 clearly illustrates that the covariance becomes more ill-conditiononed

as the timestep tends towards very small or very large values.

Figure 4-6: Condition Number vs. Timestep ∆t in seconds
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Figure 4-7 visually illustrates the uncertainty distribution as the time step changes.

This shows that at small time steps, there is more uncertainty in the velocity than

the position, while at large time steps there is more uncertainty in the position than

the velocity.

Figure 4-7: Two-Dimensional One-Sigma Uncertainty for Covariance with Differing
Time Steps

The physical intuition behind this issue is as follows: Assume that zero mean

white Gaussian noise is applied as a force to a mass that is moving in a straight line

(i.e. Equation 4.13). Also assume that the initial position and velocity is non-zero,

but known perfectly. Over a relatively short time step, the random forces may have

an effect on the velocity, but since not much time has elapsed, the position will still

be relatively accurately known. This corresponds to the blue circles in Figure 4-7.

Now, when the timestep is relatively long, the random forces will change velocity,

which will have relatively more time to propagate into position. In other words, the

random forces are passed through a single integrator for velocity, and a double inte-
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grator for position. Over a long enough time, the position will be affected relatively

more than the velocity due to the fact that a double integrator will “drift” relatively

more than a single integrator. This corresponds to the red circles in Figure 4-7.

The minimum point on the curve shown in Figure 4-6 indicates that there is a

timestep that is slightly larger than one second, which provides the best conditioning

possible. This timestep can be computed by by calculating the condition number

as the ratio of eigenvalues of Equation 4.112, and finding the minimum point by

differentiating with respect to ∆t and solving for the point with the derivative equal

to zero. When this is done, the best conditioned timestep is ∆t =
√
3 seconds. This

can be considered the best ratio between the position and velocity uncertainty is

obtained when the covariance matrix has its best conditioning. This corresponds to

the green circle in Figure 4-7, which has its major axis at exactly a 45o angle.

This result may initially seem very surprising. It appears to imply that there is

something “special” about a time step of
√
3 seconds. In actuality, there is nothing

particularly special about this time step. This is because the time step that provides

the best conditioning is a function of the way the state variables are defined. For

example, changing the units of velocity (e.g. to meters per millisecond) will change

the best time step. More generally, the state vector can be redefined using a scaling

factor α, to adjust what velocity represents in terms of the position element of the

state vector:

x1(t) = r(t) (4.113)

x2(t) =
1

α
v(t) (4.114)

This leads to the following continuous time model:ẋ1(t)

ẋ2(t)

 =

0 α

0 0

x1(t)

x2(t)

+

 0

1
αm

w(t) (4.115)
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Performing a discretization with time step ∆t:x1[k]

x2[k]

 =

1 α∆t

0 1

x1[k − 1]

x2[k − 1]

+ w[k] (4.116)

w[k] ∼ N

0
0

 ,Λ

 (4.117)

Λ =
σ2

m2

 1
3
∆t3 1

2
1
α
∆t2

1
2
1
α
∆t2 1

α2∆t

 (4.118)

Now the condition number of this new covariance matrix is shown in Figure 4-8

for three different values of α.

An intuitive explanation for this behaviour can be seen using the following exam-

ple: Consider a state estimation system for a commerical automobile. If the units of

a position and velocity state estimate are meters and millimeters per day respectively

(i.e. α = 10−9), the conditioning at a time step of 1 second would be very poor,

because the numerical value of the uncertainty in velocity would be much larger than

the position uncertainty. However, if a timestep of 11 nano-seconds (the best condi-

tioning point) were used the numerical values of uncertainty in position and velocity

would be similar.

From Figure 4-8, it is evident that the parameterization can be adjusted to better

condition a particularly desirable time-step. In this example, the equation ∆t = α
√
3,

can be used to solve for α for a given ∆t. Using the car example, if a time-step of

1 hour and position units of meters was required (α = 2078), the velocity should be

in units of approximately kilometers per second since over the period of an hour, the

uncertainty on kilometers per second should be numerically similar to the uncertainty

in meters of position.
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Figure 4-8: Condition Number vs Timestep for Different Values of α
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Chapter 5

Systems Design of the SPHERES

Goggles

The main issue for any Earth-based spacecraft proximity operations testbed is that it

would be very hard to perform high speed spinning and nutating maneuvers. The first

reason is that most of these systems are limited in their range of motions; therefore,

an unstable spin about an intermediate axis of inertia would be very challenging to

simulate. Also, it is very difficult to avoid the mechanical friction caused by Earth’s

gravity in any of these types of testbeds, whether it be from motors and gears or fluids.

Additionally, if a testbed is based on a spherical air bearing that is not precisely

balanced, additional precession modes caused by external torques will be visible at

high spin rates. The best method to test spinning and nutating spacecraft is onboard

the International Space Station [23]. The only testbed that can accurately reproduce

and measure 6DOF spinning and nutating motion between multiple spacecraft is

the SPHERES satellites. Prior to February 2013, the SPHERES satellites did not

have the capability to perform vision-based navigation in a microgravity environment.

One of the main contributions of this thesis is the design, build, test and operations

of a stereo-vision based navigation testbed for a micro-gravity environment and is

described in this chapter.

In order to test the previously mentioned algorithmic contributions, a vision-based

navigation upgrade to the SPHERES satellite is needed for testing in the micro-
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gravity environment of the ISS. A “flight-ready” set of Goggles was developed in the

author’s Master’s thesis [136, 135] (referred to as the LIIVe Goggles). When compared

against Saenz-Otero’s seven Microgravity Laboratory Design Principles[113], the LI-

IVE Goggles meet the Principle of Iterative Research, the Principle of Enabling a

Field of Study, the Principle of Optimized Utilization, the Principle of Focused Mod-

ularity, the Principle of Incremental Technology Maturation and the Principle of Re-

quirements Balance. The one principle they do not meet is the Principle of Remote

Operation and Usability.

An essential element of this contribution is that this testbed is an “open research

facility.” The openness of this testbed allows other researchers to easily develop

new software and hardware based experiments to perform on this testbed. This is

an important element of the Goggles primary objective and drives a number of the

requirements of the design.

5.1 SPHERES Satellite Overview

The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES

[93, 102, 113], shown in Figure 5-1) are a set of volleyball sized micro-satellites that

have been operating inside the International Space Station (ISS) since 2006. The

SPHERES satellites are considered a research and development testbed for guid-

ance, navigation and control algorithms for formation flying satellites. In the past 6

years, MIT has held 36 test sessions onboard the ISS covering research topics such

as rendezvous and docking, formation flight, decentralized control, satellite reconfig-

uration, inertial navigation and other research areas. Additionally, the SPHERES

satellites have been used for national and international STEM programming com-

petitions where middle and high school students have programmed the SPHERES

satellites that are on-orbit[114].

The SPHERES satellites are designed as a small satellite bus. Some of the detailed

features are shown in Figure 5-2. They weigh 4.16 kg and are 21.3 cm in diameter.

They utilize a carbon dioxide (CO2) cold gas propulsion system to produce both forces
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Figure 5-1: The SPHERES Satellites inside the ISS

and torques. A “pseudo-GPS” ultrasonic time-of-flight sensing system is used with

onboard gyroscopes to estimate the position, orientation, linear and angular velocity

with respect to the interior of the ISS. A Texas Instruments C6701 Digital Signal

Processor is used to perform onboard computations and a 900 MHz low bandwidth

modem is used for communication with the laptop that is used by the ISS astronaut.

The entire SPHERES satellite is powered by 16 AA non-rechargeable batteries.

Figure 5-2: Details of the SPHERES Satellite
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5.2 Goggles Mission Objective, Systems Design Con-

straints, Budget and Schedule

The principal mission objective of the Goggles system is defined below:

Mission Objective: The Goggles must enable the representative, experimen-

tal testing and evaluation of new algorithms and approaches for computer vision-

based navigation for spacecraft proximity operations using the SPHERES satellites

and the microgravity environment of the International Space Station. The SPHERES

Goggles system must abide by Saenz-Otero’s seven Microgravity Laboratory Design

Principles[113]. Additionally, this system must become an “open research facility”

and therefore provide an open and expandable interface for incorporation with follow-

on software and hardware that is developed in the future for research in other fields

of study.

Note that while the objective places significant priority on developing a testbed

for spacecraft proximity operations, there is an explicit constraint on utilizing the

SPHERES satellites that were already operating on-orbit. Using the SPHERES satel-

lite as a platform to be upgraded provides a number of advantages and disadvantages.

The main advantage is that it provides a actuation platform and reference sensor sys-

tem that is available for use immediately and with no required development time.

This was the principal motivating factor for selecting the SPHERES satellites as a

starting point for the Goggles system design.

The biggest disadvantage for using the SPHERES satellites inside the ISS is that

the appearance of the interior of the ISS cannot exactly replicate the types of lighting

conditions, materials and distances that will likely be encountered on-orbit in a “real”

spacecraft proximity operations mission. Despite this, the Goggles system design must

be able to make a reasonable and representative approximation for the types of sensor

input that would be gathered by a “real” proximity operations mission.

Another disadvantage is that the design of the SPHERES satellites cannot be

changed and may not be the ideal match for any possible new design. Additionally,

since the SPHERES satellites are already operated by astronauts onboard the ISS,
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the design of the Goggles must match as closely as possible to the existing operational

model.

The development of the SPHERES Goggles was initially funded by the Naval

Research Laboratory as a ground prototype, the LIIVe Goggles [135, 136], between

2008 and 2009. In 2010, the Defense Advanced Research Projects Agency (DARPA)

funded the development of a flight version of the Goggles under the International

Space Station SPHERES Integrated Research Experiments (InSPIRE). The MIT

Space Systems Laboratory with their industry partner Aurora Flight Sciences re-

ceived $1 Million to develop the Goggles into a flight version. This was known as the

Visual Estimation and Relative Tracking for Inspection of Generic Objects (VER-

TIGO) Program, which had 8 months from contract start (January 2011) to the

Critical Design/Testbed Review (September 2011). This was followed by 8 months

from Critical Design/Testbed Review to software delivery (May 2012) and 11 months

from Critical Design/Testbed Review to flight hardware delivery (August 2012). The

hardware was launched to the ISS in October 2012 and was first operated in February

2013.

In addition to the design and development of the hardware and software, a sig-

nificant amount of effort was devoted to ensuring compliance with the environmental

and safety requirements of the International Space Station. This placed constraints

on the types of materials and manufacturing processes that could be used. Addi-

tionally, there was a safety testing process and series of reviews to ensure that the

hardware does not pose a safety risk to the crew. The Goggles were also required to

undergo electro-magnetic interference testing (EMI), off-gass and vibration testing.

Additionally, human factors and usability requirements were placed on the design of

the hardware and software.

Given the limitations of this schedule and budget, the overall design approach was

to use as much commercial off the shelf (COTS) hardware and software as possible.

The in-house design and build of a number of the electrical, mechanical hardware and

software components was required to properly interface many of the COTS subsystem

components. One common question is why not use the manufacturing techniques that
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are now common-place in the smartphone industry to reduce the mass and volume of

the Goggles, which are relatively large for a similar set of capabilities. Most modern

smartphones use very expensive electro-mechanical manufacturing techniques, such

as Flexible Printed Circuits (FPC) and 10+ layer Printed Circuit Boards (PCB).

These are prohibitively cost expensive in low volumes and very difficult to debug if

incorrectly manufactured.

The development of the requirements of these components and high level design

for the “open research testbed” is detailed in this chapter as a contribution of this

thesis. The detailed design of the LIIVe Goggles prototype was presented in the

author’s master’s thesis [135]. This prototype design was used as a starting point

for Aurora Flight Sciences who lead the fabrication and testing of the VERTIGO

Goggles.

140



5.3 Optical Requirements and Design

The main objective of the Goggles is to add a new type of sensor to the SPHERES

satellites that is representative and appropriate for evaluating computer vision-based

navigation techniques. In the design of a spacecraft proximity operations mission

there are a number of types of “computer vision” sensors that may be used. Visible

wavelength cameras are the most obvious option, however in on-orbit lighting con-

ditions there will be sensitivity to a number of specular reflections that commonly

occur with reflective materials such as multi-layer insulation (MLI). Additionally, vis-

ible wavelength cameras will capture images that are high in contrast due to solar

illumination.

An alternative type of sensor is a long wavelength infrared camera that detects

the black body radiation of an object. Since this radiation is relatively stable with

changing lighting conditions, it can reduce the specular reflections that typically cause

problems for feature detection and matching algorithms. Figure 5-3 shows the visible

and infrared images taken by SpaceX’s DragonEye. Figure 5-4 shows a number of

images of the ISS taken by Neptec’s infrared camera. The bottom left image was

taken when the ISS was in the night-time shadow of the earth, all of the other images

were taken during the day-time.

Both of the two types of cameras that have been discussed so far can only measure

bearing angles (i.e. two dimensional pixel locations). The third dimension is depth,

which is not detectable with a monocular camera. The first option for measuring

range or depth is to use two cameras in a stereo configuration. If relative position

and orientation between the cameras (i.e. the baseline in a calibrated camera system)

is known, the depth can be triangulated using the methods in Section 2.7. It is

important to note that the accuracy of the triangulation improves as the baseline

increases, but causes objects that are close in to be observed only in one of the two

cameras. As a result, baseline selection in stereo cameras is an important design

parameter.

An alternative method for detecting range is to use a flash Light Detection and
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Figure 5-3: Images from DragonEye Visible Wavelength Sensor (left) and Long
Wavelength Infrared [124]

Ranging (Lidar), which illuminates a target with laser and measures the time of flight

to detect range and the reflectance intensity to create a greyscale map. This method

is robust to varying lighting conditions, but the return intensity can be affected by

specular reflections. Figure 5-5 shows results from Neptec’s TriDAR imaging the ISS

(red colors are closer).

Lastly, systems that are based on projecting known patterns onto the scene (i.e.

structured light similar to the Microsoft Kinect) are often considered for ground based

applications, but are not applicable to on-orbit lighting conditions.

Since the SPHERES Goggles should be able to perform representative experiments

for any of the above types of sensors, it should be able to collect range and intensity

images. This means that either a lidar or stereo camera system should be used. A

stereo camera system was selected for the Goggles since it will have lower mass and

power consumption, while costing significantly less.

The disadvantage of choosing a stereo camera system is that it may be sensitive

to lighting conditions and specular reflections and will require sufficient texture to
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Figure 5-4: Images from Neptec Infrared Camera [79]

perform proper feature tracking and matching. For these reasons it should be realized

the SPHERES VERTIGO Goggles will not be a photo-realistic representation of on-

orbit imaging systems. If this type of photo-realism is required, alternative testbeds

should be investigated [27, 43, 103].

However, the VERTIGO Goggles is a unique testbed to gather experimental data

that is exactly representative of the 6DOF dynamics that occur in a microgravity

environment, and can easily gather imaging data of objects that have complicated

spinning motions.

When building a stereo imaging system for photographing an object that is moving

or spinning with high speed, care must be taken to ensure that there is no motion

blur and that all of the pixels are captured at the exact same time in both cameras.

This leads to the requirement that the cameras must have a global electronic shutter

(i.e. all the pixels are simultaneously exposed) and have a method for synchronization

between the two cameras.

Additionally, it is important to ensure that the exposure time of the camera can be

controlled, in software, and that there will be sufficient light gathered by the imager.
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Figure 5-5: Images from Neptec TriDAR [79]

This means that the camera sensor and lens size must be sufficiently large for the

lighting conditions. Given that the lighting conditions were somewhat unknown and

variable onboard the ISS, an additional requirement was added to include onboard

“flash” lights that will illuminate the environment.

One approach to designing the optics system could have involved a detailed math-

ematical analysis. However, given that the optics would be assembled entirely from

COTS parts, a more emperical approach was taken. The experience of developing

the LIIVe goggles provided a good starting point for a trial and error evaluation of

different lenses, cameras, stereo baselines and illuminating lights.

The results of this evaluation led to the selection of the components listed in Table

5.1.

With the above components, a number of theoretical properties can be calculated.

The sensor on the imager is 4.51 mm wide by 2.88 mm high, with a diagonal of 5.4

mm. Note that when only 640 pixels are used for width the sensor imager is 3.84

mm. The field of view of the system is computed using the formula below for the

angle of view α, where dsensor is the sensor size and f is the focal length. Using this
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Table 5.1: Optics Component Specifications

Cameras IDS-Imaging uEye LE 1225-M-HQ
Camera Sensor 1/3” Monochrome (10 bits per pixel) CMOS with Global Shutter, HQ Filter
Camera Configuration 9.0cm Stereo baseline, HW exposure timer and sync
Camera Resolution 752 x 480 pixels at 6 µm per square pixel
Camera Power Consumption 5V, 100-130 mA
Lens Mount CS-Mount
Lens Type Fujinon 2.8mm, f/1.3 (CCTV Lens for 1/3“ and 1/4“ Imager)
Frame Rate 87 FPS (Camera Max), 10 FPS (Typical)
Exposure 80 µ s - 5.5 s
Lights 2× Phillips Rebel Star LED Red-Orange
Lights Dominant Wavelength 617 nm
Lights Intensity 134 lm @ 700mA (per LED)

equation the horizontal angle of view is αhorz = 68.9o, while the vertical angle of view

is αvert = 54.4o. This is a fairly wide field of view that allows a large range of motion

of an object to be visible in frame.

α = 2 tan−1

(
d

2f

)
(5.1)

The distance to a stereo object based on the angle can be found with Equation 5.2.

If α is set to the maximum angle of view for the lens, αhorz, the minimum distance to

an object that can be seen in both cameras is found to be 6.56cm. If α is set to the

angle of one pixel (at the optical center), then α1 pix = tan−1(6×E−6
f

) = 0.123o and

the maximum distance is 42.0 meters.

dstereo =
b/2

tan (α/2)
(5.2)

It is useful to determine the expected accuracy of triangulation. An analytical

calculation was performed using Equation 2.7 for the baseline and focal length listed

in Table 5.1, with an object located 0.5 meters away (the nominal distance for the

experimental results in Chapter 6) that is directly centered between the two cameras.
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An error of 1 pixel in the horizontal location of either image leads to a change in the

triangulated location of [0.5, 0.0,−5.9] millimeters. An error of 1 pixel in the vertical

location of the feature leads to a change in the triangulated location of [0.0, 1.1, 0.0]

millimeters.

The last major requirement is based on the fact that the intrinsic and extrinsic

parameters described in Sections 2.6 and 2.7, must be known with very high accuracy

in order to properly triangulate points. These parameters are estimated through the

camera calibration procedure described in Section 2.8. If the lenses or imagers ever

change their position relative to the rest of the optics setup the extrinsics may need to

be recalculated. This may occur if the system is subjected to vibration, impact shock,

temperature changes or other reasons. Given that re-calibration is a procedure that

involves a significant amount of crew time, the optics system should be designed to

minimize the frequency of required re-calibrations. Since the optics assembly is made

of many connected COTS parts, a large aluminum shell with mechanical supports

for the lenses was designed to ensure that recalibration was needed as infrequently as

possible.

Figure 5-6 illustrates the key components of the Goggles Optics Mount, and Figure

5-7 illustrates its assembly.

146



Figure 5-6: Goggles Optics Mount

Figure 5-7: Assembly of Goggles Optics Mount
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5.4 Computer and Software Requirements and De-

sign

Typical spacecraft avionics systems often include radiation hardening or tolerance

and real time operating systems. Since the SPHERES Goggles are operated inside

the crew volume of the ISS, radiation hardening is not required. Additionally, since

the Goggles are not a mission critical system, and can be reset by a crew member if

an error occurs, real time requirements are not intrinsically required.

Instead, the primary objective of the Goggles is to be an experimental research

testbed for new vision-based navigation algorithms. This implies the following re-

quirement: Implementing new algorithms for guidance, navigation and control or any

other function, should be as quick and easy as possible.

This is an important and fundamentally defining requirement, because software

programming and testing for embedded systems can often be a challenging and time-

consuming endeavor. Typically the process involves the mixing and matching of pro-

gramming interfaces, device drivers, library dependencies and compiler optimizations

to get the best possible functionality and performance. Although this type of software

engineering effort is usually time consuming and requires very specific expertise, it is

usually secondary and independent of the fundamental research questions that are to

be evaluated by the micro-gravity experiment. The final software implementations

are often hardware dependent and do not carry over between multiple flight hardware

or programs.

Therefore, it is important to minimize the time involved in the embedded system

implementation details by maximizing software reuse. In other words, the computer

and software architecture of the Goggles should support as many existing libraries as

possible and require as little porting effort as possible.

This requirement leads to the design decision that the computer hardware and

software system should be as similar as possible to the most common computer archi-

tectures that are used by robotics researchers. Computer vision and robotics libraries

such as OpenCV, Eigen, iSAM, PCL and others, typically offer the best and most
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up to date support for x86 Linux systems. OpenCV is an industry standard image

processing library, which in 2010 only offered hardware acceleration for processors

that supported the SSE set of SIMD instructions, which are only available on x86

based processors. Since the speedup of these functions is so significant, and these

functions are so critical to vision-based navigation for spacecraft, it was decided to

make x86 and SSE acceleration a requirement.

At the time the Goggles design was finalized, the most popular linux distribution

for robotics research was 32bit Ubuntu 10.04, Lucid Lynx. For the reasons mentioned

above, it became a requirement that the Goggles use a version of the Lucid Lynx

Ubuntu operating system.

The next major requirement was based on the power requirements described in

Section 4 and required battery lifetime. The Goggles embedded computer should

consume 15 watts of electricity or less, averaged over typical ISS operational scenarios.

Table 5.2 shows the two primary options for the Goggles computer, an Intel Atom

and a Via Nano. While the Atom has a higher clock speed, it has significantly lower

real-world performance on computer vision tasks due to its In-Order execution and

smaller L2 cache. For these performance reasons the Via Nano was selected for the

Goggles.

Table 5.2: Processor Comparison

Feature Intel Atom (N455) Via Nano (U3300)

Clock Frequency 1.66 GHz 1.2 GHz
Execution In-Order Out-of-Order
L2 Cache 512 kB 1 MB
Electrical Power (Watts TDP) 6.5 W 6.8 W
SIMD Instructions SSE1 to SSE3 SSE1 to SSE3

At the time the Goggles was developed, the smallest available form factor for an

embedded single board computer that hosted the Via Nano U3300 was the Via Pico-

ITX P830. This board is 10 cm by 7.2 cm and provides up to 4GB of DDR3 RAM,

2 SATA connectors, 1 Gbps Ethernet, USB 2.0, two TTL UARTs, an SPI bus, and

a number of other standard features (i.e. PS2 keyboard, mouse and VGA). At the
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time the Goggles were designed, the largest capacity SATA FLASH Disk-on-Modules

were 64GB. Two of these were selected and used in each of the Goggles. Note that

the hard drives are partitioned (using ext4) and mounted to three different locations:

The first 16GB partition is mapped to the “/” directory and is the primary boot

partition with all of the operating system functions. The second partition is the 48

GB (minus swap space) that immediately follows the first partition and is mapped

to the “/home2” directory. The third partition is the entire 64GB of the second

flash drive and is mapped to the “/home” directory. This approach was selected to

separate the operating system software from the goggles test program software and

data.

5.5 Operational Requirements and Design

The VERTIGO Goggles are required to be operated by astronauts onboard the In-

ternational Space Station. When designing an experiment to be operated by crew

members, it is important to recognize that they are not necessarily experts in the area

research being performed. This is simply due to the diversity of their backgrounds

(e.g. pilots, medical doctors, engineers, scientists and teachers), the number and

variety of tasks they are expected to perform and the scheduling constraints prior

to operations, which limits the time they can spend learning about any one experi-

ment. This is discussed in detail by Saenz-Otero’s “Principal of Remote Operation

& Usability”[113].

Additionally, the mission objective of the VERTIGO Goggles includes the broad

requirement that the system must be able to evaluate any type of vision-based naviga-

tion algorithm. In order to achieve this, a significant amount of flexibility in software

architecture is required. The previous method of operating the SPHERES satellites

is that new software is developed prior to each test session and uploaded to the ISS

a few weeks prior to operations. Since this type of operation provides the required

flexibility and was already approved, it was mirrored in the Goggles approach.

The astronauts use a laptop Graphical User Interface (GUI) that allows them
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to upload new code to SPHERES, start and stop tests and save data that will be

downloaded to the Earth. It is again desirable to continue this type of operation due

to familiarity and the fact that it is already approved by NASA. Therefore, all of the

required software interactions that are required by the VERTIGO Goggles must be

performed through a modification to the SPHERES GUI. This is possible through

the “software plug-in” interface that the SPHERES GUI provides.

In order to keep the Goggles operational system as simple as possible, there should

be a method to run research software on the Goggles whenever a SPHERES test is

run. In order to simplify operations, this should not require any additional interaction

by the crew member. In other words, the software should be set up to run a test on

both the SPHERES and the Goggles hardware when it is required. However, there

are situations where it is required to run code on the Goggles without running code

on the SPHERES satellites. This type of capability enables the required level of

flexibility, so that a variety of “software maintenance” can be performed.

These requirements lead to the design of two types of software that must be run

on the Goggles: “Tests” and “Maintenance Scripts”. In order to maintain the most

software flexibility, both of these are implemented as a single Linux Bash command

that does not require user input. Tests are run whenever a SPHERES test is started,

while Maintenance Scripts are preprogrammed on the ground and run or executed by

the astronaut from within the upgraded GUI.

Astronauts may also interact directly with the hardware, however this should be

limited as much as possible, and should only be required during set-up, clean-up,

consumables (i.e. battery changing) and checking status indicators. A simple set of

indicators and switches should be easily visible and intrinsically understandable for

crew members.

To summarize, the following operations are basic nominal requirements that must

be easily performed by an astronaut:

• Attachment and Removal of Goggles from SPHERES Satellites

• Powering On and Shutting Down the Goggles and SPHERES Satellites
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• Uploading New Test and Maintenance Software to the Goggles

• Running a Test with code on both SPHERES and Goggles

• Running a Maintenance Script on the Goggles

• Viewing Live Video feeds from the Goggles

• Checking Goggles Battery Charge and Battery Changing

• Download data from Goggles and SPHERES satellites to be stored on the ELC

(for later download to Earth)

It is good design practice to include several off-nominal situations that can be han-

dled during operations. This is especially true given the level of software complexity

of the Goggles.

• Determine Goggles Status

• Reset Goggles CPU

• Attach a Virtual Keyboard, Mouse and Monitor to the Goggles Onboard Com-

puter for debugging.

These requirements lead to an operational architecture as shown in Figure 5-8.

This design includes test program research code that runs on both the SPHERES

and the VERTIGO Goggles as discussed, as well as a SPHERES-VERTIGO GUI

that runs on the ELC.

Additionally, the Goggles Daemon is a software program that is always running

and managing all operational aspects of the Goggles. The Daemon primarily com-

municates with the GUI on the ELC and executes the instructions that it has been

sent. The Daemon monitors and logs the regulated and unregulated battery votages,

the battery current, the temperature at a number of physical locations, if the Goggles

is attached to a SPHERES satellite and the flash disk status. The Goggles Daemon

handles the receiving and unpacking of new code, known as a Goggles Program File

or (GPF). It will execute any “run test” or “run script” commands that are received.
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The Daemon will perform a soft/safe shutdown of the Goggles if it receives a message

requesting a shutdown, if the temperature rises above a threshold, or if the voltage

drops below a threshold.

Figure 5-8: SPHERES Goggles Operational System Architecture

Note that Figure 5-8 illustrates three possible modes for the Goggles to communi-

cate with the ELC. The first is through an ethernet connection between the ELC and

Goggles. The second is an 802.11n wireless connection, using the wireless card on-

board the Goggles. Both of these options are high-speed data connections. However,

it is not desirable to have the Goggles tethered to an ELC, and in 2013, MIT had

not yet been given approval to use the WiFi system on the ISS. In order to deal with

this constraint, the Goggles Daemon was developed to have the capability to route

all messages through the Expansion Port and the SPHERES satellite, so that these

messages can be sent to the VERTIGO GUI using the 900 MHz low-speed wireless

system, which is known as back-door communication. This is a very low speed sys-

tem that is only suitable for status messages and basic commands. Uploading code or

downloading large amounts of data is not possible using back-door communications.
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Figure 5-9 shows the SPHERES Flight GUI with the VERTIGO GUI plug-in

activated. At the top of the VERTIGO section of the GUI (highlighted in green),

there are two tabs that can be selected with the “Video View” being selected.

Figure 5-9: SPHERES VERTIGO Flight GUI in Video View

This view contains a simplified status panel for the Goggles according to which

Satellite the Goggles are attached to (Red, Orange or Blue). A ready indicator that

determines if a test is ready to begin, a battery indicator with a percentage of charge

remaining and the Program Name for the currently loaded Goggles Program File

(GPF). A display selection picks which video mode is being received from the Goggles

and displays it in the GUI. This can include raw video from the Goggles cameras or

post-processed images that are streamed to the ELC Laptops GUI. Any key-presses

and mouse-clicks (along with coordinates) can be sent back to the Goggles for event

handling by the research code. This allows for the development of an interactive

astronaut interface, which was used for the re-calibration procedures.

Figure 5-10 shows the Maintenance View of the VERTIGO GUI. It has similar

control buttons on the right hand side and a similar, but more detailed, status panel

for each of the Goggles. The main difference is a Maintenance Script selection drop
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down box. Here the astronaut can select the script and the Goggles that the script

should run on. When the “Select” button is pushed, the script runs and sends its

standard output to the Output Window that the crew member can see and is logged

for later download.

Figure 5-10: SPHERES VERTIGO Flight GUI in Maintenance View

Figure 5-11 shows a top-down view of the Goggles highlighting the hardware

control panel. The Power Switch is the main switch that connects power from the

batteries. The Goggles are set up to automatically begin the booting process when

power is connected via this switch. It has an embedded LED that illuminates when

there is power. The CPU Reset button causes a reset interrupt to be issued to the

onboard processor and triggers a reboot of the operating system. The low battery

LED is an “early warning” that the battery is getting close to low. The CPU PWR

LED indicates that the CPU is getting the required power and should be running.

The CPU RDY LED is activated by the Goggles Daemon once it has been started

within the Linux operating system and indicates that the Goggles has completed the

boot-up process.

Also in Figure 5-11, there is also a mechanical switch for the illuminating LED
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lights. A thumb-screw panel hides the CMOS battery that retains the bios settings

and clock, as well as a connector for a dongle that includes a PS2 keyboard and mouse,

VGA output and two USB 2.0 ports. Also, the hard power button is contained under

this panel.

Since the Goggles may create up to 24 GB of data that must be downloaded

to the ground, a process is needed to download and manage this data. Note that

compressing the data as a whole is very memory and computationally intensive. It

is actually more time consuming to compress this data on the Goggles then to just

download it uncompressed. Also, NASA requires files to be no larger than 50 MB in

size, so these files must be split.

In order to do this correctly, a number of conventions must be set up. The first

is that the “/home/GPF DIR” directory is a symbolic link to the directory of the

current program. In this directory, there must be a “Results” folder that contains

all of the data that must be downloaded. The first step that happens when the

crew member pushes the download data button, the current Goggles Daemon logs

are copied to the results directory. Next the Goggles uses the Linux tar program to

create an archive file in the “/home2/TempResults” directory. The Linux program

then splits this tar file into 50MB chunks in “/home/TempResults”. Following this,

an MD5 sum is computed for all of these files. The next step is that an ftp client on

the ELC laptop logs into the ftp server on the Goggles (over a high speed ethernet

connection) and gets each of the split files. This whole process takes approximately

two minutes per gigabyte.

Once the files are on the ELC, NASA uses the ISS network to downlink these

files to Earth. The above mentioned steps are implemented in reconfigurable “.ini”

files that are able to be easily upgraded at a later date. The implementation of these

scripts is shown in Listing B.4 and B.5. Once these are on the ground Listing B.6 can

be used to verify that no data corruption occurred and B.7 can be used to rebuild

the original directory. Once this data has been successfully downloaded, maintenance

scripts can be used to delete the data.
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Figure 5-11: VERTIGO Goggles Astronaut Control Panel
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5.6 Expansion Requirements and Design

One of the key requirements of an experimental testbed onboard the ISS is flexibility

in research applications. An important element of achieving this is to ensure that

the payload is expandable. This philosophy led to the requirement that the Goggles

should be divided into a computational component and a sensing component. This

led to the creation of the Goggles Avionics Stack and the Goggles Optics Mount. The

Avionics Stack includes the onboard computer, battery, power electronics, astronaut

interface. The Optics Mount includes the cameras, illuminating LED lights, global

metrology replacement sensors and other components.

This allows the Avionics Stack to be reused as a computational platform by a

future experiment that may choose to build and launch a different sensing system.

Alternative, an experiment may choose to build something completely different to at-

tach in place of the optics mount. The interconnection between this system is required

to be a simple electro-mechanical interface that can be attached by an astronaut. It

must also provide access to data and battery power so that future hardware designs

are not un-necessarily restricted.

Figure 5-12 shows the connecting faces of the Goggles Avionics Stack and Optics

Mount. The “POWER/DATA P1” connector contains regulated 5 and 12 volt power,

USB 2.0 data connections, RS232 serial data, a single 1Gbps Ethernet connection and

signal lines for the global metrology replacement sensors. Four thumbscrews surround

the connector and are used to mechanically attach the two components by the crew

member.

The second main element of expandability is to allow the Goggles to communi-

cate with other hardware wirelessly. While the SPHERES has a 900MHz wireless

connection, this does not have sufficient bandwidth to transmit video data in real

time. For example, sending two 640 by 480 images at 5 Hz requires 3 megabits per

second (Mbps), without compression (note that real time compression is often too

computationally expensive to run on an embedded platform). As a result, the addi-

tion of an 802.11 wireless system was required to allow the Goggles to communicate
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with each and to stream live video to the SPHERES VERTIGO GUI.

In 2010, when the Goggles hardware was designed, 802.11n was the fastest com-

mercially available standard wireless connection. A USB 2.0 wireless card was selected

to be included in the Goggles that could operate in both of 802.11n’s frequency ranges

(2.4 GHz and 5GHz), while having Linux device drivers that gave good performance.

The DLink DWA-160, rev A2 was selected and is based on an Atheros chipset.

The third main element of expandability is to allow the Flash hard disks to be

entirely replaced by an astronaut onboard the ISS. This allows entirely new operating

systems and software to be updated with very little up-mass requirements. Figure

5-13 shows the astronaut removable “Flash Hard Drive Cover”, underneath which

there is a spring-loaded tray containing the SATA drives that can be replaced.
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Figure 5-12: Goggles Avionics Stack and Optics Mount Connection
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Figure 5-13: Removable Flash Drives
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5.7 Power System Requirements and Design

The power consumption of the main components are shown in Table 5.3

Table 5.3: Components Power Consumption

Minimum (W) Typical (W) Maximum (W)

Pico-ITX P830 10.5 13.0 17.7
2 Cameras 1.0 1.0 1.3
WiFi 1.18 2.50 2.50
Illuminating LEDs 0.0 0.322 3.22
Flash Drives 1.25 1.25 3.4
Miscellaneous Items and Margin 0.5 0.5 0.75

Components Total 14.4 18.1 28.9
10% Regulator Inefficiency 1.44 1.81 2.89

Grand Total 15.87 19.88 31.76

Given the power budget, it is important to select a battery that provides enough

operational duration so that the crew member does not spend an unnecessary amount

of time changing batteries, while keeping the overall system mass down. The highest

energy density for commercially available batteries comes from Lithium batteries.

However, the requirements to certify these batteries for use on the ISS are extremely

time consuming and costly. Therefore, it was desirable to select a battery that is

already certified and onboard the ISS. Since the power consumption is similar to the

LIIVe Goggles[135, 136], a similar size battery is desirable.

The Nikon EN-EL4A battery, see Figure 5-14 has similar specifications and is

already onboard the ISS since it is used for the Nikon D2X cameras the crew members

use. It is a three cell lithium-ion battery that outputs 11.1 Volts nominally and has

2.5 ampere hours of capacity. This battery has a mass of 162 grams. This battery

should last 104 minutes, 84 minutes and 52 minutes respectively for the minimum,

typical and maximum power consumption in Table 5.3.

162



Figure 5-14: Nikon EN-EL4A Battery with US Penny for Reference
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5.8 Electro-Mechanical Requirements and Design

The functionality that is required for the VERTIGO Goggles to meet their mission

objective along with the selected high level design has been described in the previous

sections. In addition to this, there were significant requirements placed on the electro-

mechanical design by NASA in order to operate safely within the crew volume of the

International Space Station (it is outside of the scope of this thesis to review these

requirements).

The objective of the electrical and mechanical design is to integrate all of the

required functionality into a single package that minimizes the system mass. Ad-

ditionally, the development was under a tight schedule and budget, which must be

managed against the risk of failure. A small five-person team of developers from Au-

rora Flight Sciences led the detailed design and fabrication, with day-to-day assistance

and management by two people from the MIT Space Systems Laboratory.

While delivering four copies of VERTIGO Goggles within the time and budget

was a significant challenge (see O’Connor for details [104]), it did not involve any

new or novel approaches in design or manufacturing. For all of these reasons, the

electro-mechanical design of the Goggles is not claimed as a contribution in this

thesis. However, its final design will be reviewed in this section.

The high level electrical connection diagram is shown in Figure 5-15 and the

mechanical layout of the printed circuit boards is shown in Figure 5-16. Figure 5-17

shows the mechanical layout for the Goggles system. The final version of the Goggles

is shown in Figure 5-18 and 5-19 at the MIT Space Systems Laboratory. Figure 5-20

and 5-21 are photos of the flight hardware taken on the day it was delivered to NASA

for launch.
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Figure 5-15: High Level Electrical Diagram for VERTIGO Goggles (Image Courtesy
of Aurora Flight Sciences)

Figure 5-16: Printed Circuit Board Mechanical Layout for VERTIGO Goggles
(Image Courtesy of Aurora Flight Sciences)
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Figure 5-17: VERTIGO Goggles Mechanical Layout (Image Courtesy of Aurora
Flight Sciences)
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Figure 5-18: VERTIGO Goggles Major System Components
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Figure 5-19: VERTIGO Goggles attached to SPHERES Satellite in the MIT Space
Systems Laboratory

168



Figure 5-20: VERTIGO Goggles Flight Hardware Prior to Delivery

Figure 5-21: VERTIGO Goggles Flight Hardware attached to SPHERES Satellite
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5.9 Specifications Summary of SPHERES VER-

TIGO Goggles

Table 5.4 summarizes the specifications and capabilities of the VERTIGO Goggles.

Table 5.4: VERTIGO Goggles Complete Specifications

Processor 1.2 GHz Via Nano U3300 (Single Core, OOE, 1MB L2 Cache)
Chipset VIA VX900 (Via Pico-ITX P830 SBC)
RAM 4GB DDR3 1066 MHz
Flash Disk Two 64 GB SATA (128 GB Total)
Operating System Ubuntu Linux 10.04 Server
Cameras IDS-Imaging uEye LE 1225-M-HQ
Camera Sensor 1/3” Monochrome CMOS with Global Shutter, HQ Filter
Camera Configuration 9.0cm Stereo baseline, HW exposure timer and sync
Camera Resolution 640 x 480 pixels at 6 µm per square pixel
Lens Mount CS-Mount
Lens Type Fujinon 2.8mm, f/1.3 (CCTV Lens for 1/3“ and 1/4“ Imager)
Frame Rate 87 FPS (Camera Max), 10 FPS (Typical)
Exposure 80 µ s - 5.5 s
Lights 2× Phillips Rebel Star LED Red-Orange
Lights Dominant Wavelength 617 nm
Lights Intensity 134 lm @ 700mA (per LED)
Wireless Communications 802.11n, 2.4 and 5 GHZ (DLink DWA-160, rev A2, Atheros Chipset)
Battery Nikon EN-EL4a Rechargeable Li-ion: 11.1V, 2500mAh, 162 g
Power Consumption 16 W (Idle), 20 W (Typical), 32 W (Max)
External Ports 2 × USB 2.0, Gigabit Ethernet
Optics Mount Connector Unreg PWR (2.0A), RS232 SPH, RS232 Pico, US/IR Met Beacons,

Gigabit ETH, 2 × USB
Dongle Connector Keyboard, Mouse and VGA, 2× USB 2.0
Total Mass 1.326 kg (without battery)
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5.10 Camera Calibration Approach

Despite the fact that there are mechanical supports designed for the lenses to help

lock them into position, it was still considered a possibility that the cameras may

be vibrated or knocked out of calibration during transportation to the launch site

in Khazakstan. The Goggles were shipped via FedEx to Houston, repackaged and

sent via United Airlines Cargo to Moscow, were loaded onto a train to Baikonur

Cosmodrome, where they were packaged into a Soyuz crew compartment and launched

to the International Space Station. Additionally, during operations, there could be

some kind of collision that knocks the lenses out of calibration.

As a result, there was a need for the crew members to be able to evaluate whether

or not the calibration values (i.e. the intrinsic and extrinsic parameters) correctly

matched the current physical set up of the cameras, and if not, to be able to perform

a re-calibration using the methods described in Section 2.8.

One of the important aspects of using typical camera calibration methods (in-

cluding the ones provided by OpenCV), is that the calibration target must provide

a checkerboard with a number of corners for correspondences which lie on a “per-

fectly” flat plane. Variations of more than a few millimeters will be detectable by the

cameras and will likely affect the final results. Therefore, a rigid camera calibration

target was built out of aluminum that is 0.25 inches thick. The target is shown in

Figure 5-22 and is 9 inches by 15.5 inches and weighs a hefty 1.6 kg. Each square on

the checkerboard is exactly one inch by one inch.

A second important issue is to have good visual texture on any object so that the

stereo depth maps and feature points have strong signatures to match against. A set

of textured stickers was designed by Makowka [81] to have a strong response to both

stereo disparity algorithms and feature points. The resulting stickers were designed to

fit on the SPHERES satellites and are shown in Figure 5-23 with astronaut Thomas

Marshburn.

Prior to each session, the astronaut is required to perform a camera checkout. This

evaluates whether the parameters correctly match the current camera configuration.
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Figure 5-22: Camera Calibration Target

This is implemented as a maintenance script that calls a program which streams

video the Flight GUI over a TCP connection (i.e. ethernet or possibly WiFi). This

maintenance script runs a program (source code is shown in Section B.4) that guides

the crew member through a checkout and a recalibration if necessary.

The first screen that is shown to the astronaut during the Camera Checkout is

Figure 5-24. This checks a number of parameters against preprogrammed ranges to

ensure that the parameters are close to what is expected. If the value is in range, a

green light is shown next to it, if the value is out of range an orange circle is shown

next to it, and the crew member should perform a re-calibration by pushing the “r”

button. 5-24 shows a good example on the top with all green circles, while a bad

example is shown on the bottom with a few orange circles.

The second screen that is shown to the astronaut is Figure 5-25. This figure shows

a view from the left camera with a set of green horizontal lines overlaid. Additionally,

when the calibration target is in view of both of the cameras, it draws a blue line

between the corresponding checkerboard corners. This line should be horizontal and

aligned with the green lines. Additionally, the checkerboard corners are triangulated
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Figure 5-23: Textured Stickers Design and Use on the International Space Station
by Astronaut Thomas Marshburn

and it is checked whether or not they are close enough to one inch, and draws an

orange circle if it is not. The astronaut must make a judgement call on how close the

blue lines are to horizontal, if they deem they are not horizontal, they are instructed

to perform a recalibration.

The third screen that is shown to the astronaut is Figure 5-26. This shows a live

image on the left hand side and the computed depth map using OpenCV’s sum of

absolute differences method on the right hand side. The crew members are told to

hold a target SPHERE (with textured stickers) approximately 0.5 to 1.0 meters away

from the camera so that it is visible on the screen. The crew member then checks that

the satellite is mostly filled in gray in the right hand depth map. Next they move the

target away from the camera to verify that the target turns darker and remains filled

in. Finally, they move the target closer to the camera to verify that the target turns

lighter and remains filled in (up to approximately 20 cm away from the camera where

it will be too close to be detectable). If any of these steps fail, the crew member is

told to perform a recalibration.
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Figure 5-24: Camera Checkout Screen #1: Calibration Values

In order to redo the calibration, the astronaut must capture a set of 30 photos

that illustrate good correspondences between the left and right camera to be used by

the methods in Section 2.8. The crew members are instructed to hold the calibration

target approximately 0.5 meters away so that there is multi-colored circles that appear

in both the left and right images. An example of this is shown in Figure 5-27. The

astronaut must push the space bar to capture an image, which will increment the

counter in the lower left of the screen and store that image only if the correspondences

are good in both images. They are then instructed to place the target in each of the

four corners of the images, taking six captures in each location for a total of 30 images.

Once this is done, pushing the “f” key runs the optimization algorithm to solve for
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Figure 5-25: Camera Checkout Screen #2: Stereo Camera Verification

the intrinsic and extrinsic parameters. This optimization takes approximately five

minutes to run on the Goggles, after which they are required to perform a full checkout

of the calibration to ensure the new solution is correct. If it is correct, they will press

the “a” key to accept the values and store them permanently to the flash drives. If

they are not correct, they will press the “r” key to perform another recalibration.
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Figure 5-26: Camera Checkout Screen #3: Stereo Depth Map

Figure 5-27: Camera Recalibration Screen
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5.11 Results of Checkout on the International Space

Station

Four VERTIGO Goggles were built and tested at Aurora Flight Sciences and MIT

Space Systems Laboratory. The best two were selected to go to space and given

the designation Goggles A and Goggles B. On August 1, 2012, both Goggles, and the

associated hardware, were delivered to NASA and shipped to Houston, Texas. There,

they were repackaged and shipped by air and train to Baikonur Cosmodrome, where

they were packaged into Soyuz TMA-06M and were launched along with Astronauts

Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin on October 23, 2012. On February

26, 2013, Astronaut Thomas Marshburn performed the first checkout of Goggles B.

Photos from this checkout are shown in Figure 5-28.

The checkout on February 26, 2013 involved running a set of scripts and tests that

were developed as part of a SPHERES Program File (SPF) and Goggles Program

File (GPF). In order to do this, the new SPHERES Flight GUI with the VERTIGO

plugin was installed. During most of the operations, the author of this thesis, Brent

Tweddle, was enabled to speak directly with the crew member Thomas Marshburn

on the space-to-ground audio communications link.

The VERTIGO Goggles and SPHERES hardware functioned as it was supposed

to. The hardware was able to be installed correctly, booted when powered on, and

the Goggles Daemon was able to successfully communicate with the Flight GUI. A

few issues due to IP address configuration arose and were handled in real time. A

new SPF and GPF was loaded to the SPHERES satellite and Goggles respectively.

The checkout began with the running of two maintenance scripts. The first set-

up a new directory structure to be compatible with a few download changes that

were made after the hardware was shipped. The second script recorded the “software

status” by checking a number of linux system configurations (i.e. running processes,

hard disk mountings, network configurations, USB devices, etc.). Both of these scripts

ran successfully and recorded the required data.

The third script was the camera checkout and calibration. Using the procedures
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Thomas Marshburn correctly concluded that a new calibration needed to be per-

formed, since the Goggles were slightly out of calibration. The images in Figure 5-29

show the screens that lead to a failing evaluation. After recalibration, the images

in Figure 5-30 show the results. The differences in parameters are summarized in

Table 5.5 (note that the rotation is a change in rotation between Delivery and ISS

Recalibration specified using axis angle parameters). Note that the main difference

appears to be the translation parameters (mainly X and Z axis) which moved less

than half a millimeter. This indicates that the camera lens had moved slightly during

shipping, but had not rotated, which is likely due to the fact that the optics mount

is manufactured with screws and not press fits.

Table 5.5: Parameter Changes Between Delivery and ISS Recalibration on Test
Session 37

Parameter Delivery Recalibration

Left Focal Length 2.8979 mm 2.8007 mm
Left Optical Center [280.8 282.3] pix [280.7 281.0] pix
Right Focal Length 2.8778 mm 2.7923 mm
Right Optical Center [302.3 230.8] pix [301.3 233.5] pix
Translation [-9.0443 -0.1159 -0.0358] cm [-9.0321 -0.1121 -0.0074] cm
Rotation Change N/A 0.3791o about [0.3449 0.9372 0.0521]

The remainder of the checkout session involved running tests that confirmed that

the Goggles could communicate with the SPHERES satellites. This is required for op-

erational purposes as well as scientific purposes. These tests proved that the Goggles

could indeed provide information to the SPHERES satellites for use in their control

algorithm. A VERTIGO “Quick Checkout” similar to the typical SPHERES “Quick

Checkout”, whose main difference was that the cameras captured videos during the

test. Two tests were preformed to estimate the gyro biases and determine the new

inertia properties with the Goggles attached[30]. Lastly, a visual-inertial test proved

that vision from the Goggles could be integrated with inertial measurements from the

SPHERES to perform a low computational visual inspection algorithm [33]. Once the

test was complete, 13 GB of data was downloaded from the Goggles to the ELC where

it was transferred down to the ground over the next few days.
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Three issues occurred during this test session that. The first and most significant

issue is that it was discovered that the Goggles were occasionally dropping frames

during the image-saving process. This is due to Linux’s non-real-time nature and the

method of interactions with the virtual memory file system. This problem was fixed

in later test sessions by adding a buffer for the images that would not loose data if a

there was a delay in processing the write to disk operation.

The second issue was a file corruption during the data download. NASA required

the multiple giga-bytes of files to be split into 50 MB files in order to be compatible

with the space to ground link. During the first test session, it was found that three

of the files were corrupted (this was confirmed by the MD5 checksum and the Linux

tar program). It was determined that the error occurred between the ELC and the

ground system, and the three files were re-downloaded successfully a few days later.

The third issue was that the gains on the inertial navigation algorithm were in-

correct. While the system worked well in simulation, the dynamics onboard the ISS

were different enough to cause the algorithm to be underdamped. By lowering the

gains, it was possible to get stable performance.

Other minor operational and procedural questions and issues arose during the

operations that were easily corrected by talking directly with the astronaut. Notes

were taken to further improve the procedures and operations for future sessions.

A second test session was performed by Kevin Ford on March 12, 2013, that

mainly gathered science data, including the data set used in Chapter 6. A third test

session occurred on April 16, 2013, where Thomas Marshburn performed a checkout

on Goggles A. This session had similar results and required a recalibration for a minor

failure of the camera checkout.

179



Figure 5-28: First Goggles B Checkout by Astronaut Thomas Marshburn on
February 26, 2013

180



Figure 5-29: Failed Camera Checkout Results for Test Session 37

181



Figure 5-30: Recalibrated and Passed Camera Checkout Results for Test Session 37
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5.11.1 Astronaut Feedback on VERTIGO Goggles Opera-

tions

After operations were completed and the crew members returned to Earth, Kevin

Ford and Thomas Marshburn responded to feedback questions that were prepared by

the author of this thesis. The questions and responses for Kevin Ford (summarized

by NASA Ames Research Center) are shown in Table 5.6. Thomas Marshburn’s

responses are shown in Table 5.7. These comments prove that the Goggles were able

to be operated by non-experts, however there were some minor areas that could be

improved in terms of operations and procedures.
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Table 5.6: Crew Feedback: Kevin Ford

Question Response

Was having the PI enabled helpful dur-
ing the VERTIGO session? Do you
think this direct line of communication
is advantageous? Would you recom-
mend this for future SPHERES test ses-
sions (not necessarily just VERTIGO
sessions)?

Fantastic. Yes, should be enabled dur-
ing the run, when we are in the nighty-
gritty.

Do you think having the PI enabled for
the Work Area Setup procedure would
have been helpful (the PI was not en-
abled during that time)? Would you
have preferred to have him enabled for
the setup procedures?

Stick with PAYCOM for setup. Battery
insertion is technique sensitive. Strap
order and technique matters. I can ex-
plain it during my visit (MIT?). Maybe
a short video on board would be appro-
priate. I showed Tom and he agreed. If
we do it wrong, it can cause the doors
to pop open.

Any suggestions to make overall opera-
tions go smoother?

Procedure, GUI, Test Plan are a lot to
manage. We talked about this while I
was on board. I made my own cheat
sheet on my iPad. Try to consoli-
date each run into one page with all
the parameters. I recommend a 1-page
overview for every run with all the pa-
rameters in 1 place. I never read the
Test Overview except for deployment
position and orientation info.

During this last test session you used
a new SPHERES GUI. Did you like
the additional information available un-
der test control, such as the status, run
time and maneuver? Is there other in-
formation youd like to see in the GUI,
as an operator? How long do you feel
it took you to get comfortable with the
SPHERES and VERTIGO GUIs? Any
suggestions to improve the usability of
the GUIs?

It didnt make much difference. I never
read the text (Test Overview). I never
really used the GUI except to push the
required buttons.

Do you feel you understood well the
camera checkout and calibration pro-
cedure? Any suggestions to make this
procedure clearer?

It was trained well on the ground and
good refresher on board. I think it
worked well for us on orbit.

Do you feel the training, review mate-
rial, and crew conference were adequate
to prepare you for the operations? Any
suggestions to improve these elements?

Everything was good. No changes.
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Table 5.7: Crew Feedback: Thomas Marshburn

Question Response

You did an excellent job with the cam-
era re-calibration in both VERTIGO
sessions. There was some concern
amongst the VERTIGO team as to
whether or not this procedure would be
too operationally challenging for a crew
member to perform. Can you comment
on what helped you figure this out the
best (i.e. the procedures, PI enable-
ment, videos, briefing slides, etc.).

The calibration was not the most chal-
lenging. Its fine. Procedures were well
written, photos, software, etc. was fine.
Good products to support it.

Did you feel more familiar with VER-
TIGO on your second operation, and if
so in what ways?

Yes. Mostly because I knew the pit-
fallscamera caps. Major reconfigura-
tions should be on test plan. Test
overview in GUI not used much by me
or Kevin.

Was having the PI enabled helpful dur-
ing the VERTIGO session? Do you
think this direct line of communication
is advantageous? Would you recom-
mend this for future SPHERES test ses-
sions (not necessarily just VERTIGO
sessions)?

It is essential. It was just great. I en-
joyed that interaction. Recommend for
all SPHERES sessions.

Any suggestions to make overall VER-
TIGO operations go smoother?

Give the crew a heads up on Test
Session expectations.How far to get
through the test plan. We feel bad
when cant get through all the tests

During the test sessions you used a new
SPHERES GUI. Did you like the addi-
tional information available under test
control, such as the status, run time
and maneuver? Is there other infor-
mation youd like to see in the GUI, as
an operator? How long do you feel it
took you to get comfortable with the
SPHERES and VERTIGO GUIs? Any
suggestions to improve the usability of
the GUIs?

I didnt notice the GUI was new. Mak-
ing the CO2 and battery info real/ac-
curate, would be helpful. We would
want to change them out before a run,
if needed, so we wouldnt have to repeat
the test. Touch screens are great. Cur-
sors are tough in micro-g.

Do you feel the training, review mate-
rial, and crew conference were adequate
to prepare you for the operations? Any
suggestions to improve these elements?

The prep was great. Level of prep was
greatuse of videos during training was
nice. Interested in more info on what
software we are testing. Please send
me a link. Improvements: need battery
doors to stay closed. Velcro on satellites
could be improved for temp stowing. It
is difficult on the soft rack fronts in the
JEM.
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5.12 Evaluation of Goggles by Microgravity De-

sign Principles

A set of design principals for microgravity laboratories have been developed by Saenz-

Otero and described in his doctoral thesis[113]. The objective of these principals is to:

“guide towards the development of a laboratory environment, supported by facilities,

to allow multiple scientists the conduct of research under microgravity conditions,

correctly utilizing the resources provided by the ISS, such that they cover a field of

study to accomplish technology maturation.” These can be considered requirements

for a scientific payload that is operated onboard the International Space Station. In

the following subsections, the methods for which the Goggles meet the principles

or requirements is discussed. As will be shown, the VERTIGO Goggles meet all of

Saenz-Otero’s principles.

5.12.1 Principal of Iterative Research

The Goggles copies the SPHERES approach for iterative research. New science al-

gorithms can be uploaded to both the SPHERES satellites and VERTIGO Goggles

through the SPF file, which has a GPF file embedded within it. This is typically

uploaded to the ISS two weeks prior to operations, however for the first VERTIGO

test session, this was uploaded the day before it was run.

5.12.2 Principle of Enabling a Field of Study

The Goggles science algorithms enables the field of computer vision for robotic space-

craft navigation. It does this by providing a significant amount of software flexibility.

Any non-interactive test program that runs as a bash shell command can be executed

as a test, which provides for an incredibly large amount of software that can be exe-

cuted. Since the Goggles runs x86 Ubuntu 10.04 this allows for a significant amount

of code reuse (i.e. through third party libraries), which is a key enabler for robotic

and computer vision software. The additional capability of installing new software
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through maintenance scripts (or simply swapping out the Flash Drives on orbit) al-

lows the Goggles software to be upgraded to stay up-to-date with the current state

of the art.

5.12.3 Principle of Optimized Utilization

The Goggles use the resources onboard the ISS in an efficient and effective manner.

The crew time is one of the most valuable resources onboard the ISS. While it would

be more efficient to have the SPHERES and Goggles operate without crew interaction,

this interaction is what allows it to be such a flexible payload that enables iterative

research. While the SPHERES and Goggles operations and procedures have been

refined to minimize the impact on crew time, there are still improvements that can

be made. One example is to improve the clarity and intuitiveness of the SPHERES

Goggles procedures to further reduce the time for a new astronaut to become proficient

in operating the hardware. Another example is to restructure the procedures so

that the crew does not need to supervise data downloads. Both of these items are

considered for future work.

Power sources are another scarce resource onboard the ISS that must be carefully

optimized. The Goggles use batteries that were already onboard the ISS in order to

minimize the development and certification time of a new set of batteries. Since the

Goggles do not use more than 120 Watt-hours per test session, it is not a significant

burden on the ISS resources.

Another scarce resource is data downlink bandwidth. While the Goggles signifi-

cantly increase the quantity of data that is created during a SPHERES test session,

this data is very valuable to the researchers to understand the results of each test.

While significant effort has gone into minimizing the data transfer requirements, the

Goggles still produce more than 10 GB of data per typical test session. Despite this

large volume of data that must be transferred to the Earth, the timing requirements

are quite low. It may take weeks for this data to get to the researcher and it will not

impact the science results.

The wireless network on the ISS is a resource provided that must be optimized.

187



The Goggles were initially intended to use wireless 802.11n networking to stream

real-time views from the Goggles to the ELC, however this was cancelled due to lack

of availability of this network onboard the ISS for payloads to use. During the first

run of the visual-inertial navigation algorithm, the lens caps were not removed and

the algorithm did not perform as expected. This would have been easily visible in

the GUI if wireless networking was enabled and video was streaming to the Flight

GUI, however since this was not available it took a number of runs before it was

determined that this was the cause of the problems. Since the wireless networking

capability onboard the ISS has recently become available, the certification of the

VERTIGO Goggles will begin in the near future. It is hoped that the first 802.11n

operations will occur in early 2014.

5.12.4 Principle of Focused Modularity

The VERTIGO Goggles allow both the software and hardware to be upgraded through

a number of methods. The hardware can be modified by removing the optics mount

and optionally replacing it with a different system that interfaces through a electro-

mechanical connector providing power and data in common interfaces.

The software can be updated with new GPFs that may include maintenance scripts

that install new software. Alternatively, new flash disks can be installed with a com-

pletely new operating system. The Goggles can also be networked over the 802.11n

network with other science payloads to provide additional functionality.

5.12.5 Principle of Remote Operation and Usability

This was the only principal that was not achieved with the LIIVe Goggles. With the

VERTIGO Goggles, a Flight GUI and a set of procedures have been developed so

that it can be operated at a remote location by a non-expert. This was achieved on

the first three of the VERTIGO test sessions in 2013. The evidence supporting this is

that the Goggles were successfully operated three times by two different astronauts.

This includes two camera calibrations that were successfully performed by Thomas
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Marshburn, who is not an engineer by training, but rather a medical doctor. The fact

that a medical doctor was able to perform these tasks, and provided mostly positive

feedback in Table 5.7 indicates that the VERTIGO Goggles achieves this principle.

5.12.6 Principle of Incremental Technology Maturation

The VERTIGO Goggles provides a relevant environment to test computer vision-

based spacecraft navigation technologies within a micro-gravity environment. While

it is acknowledged that the interior of the ISS is not a relevant for in-space lighting

and reflectance properties, the full process of incremental technology maturation is

now possible through the use of both ground testbeds for realistic lighting conditions

along with the ISS laboratory for microgravity and dynamics research.

5.12.7 Principle of Requirements Balance

While there is no hard metric to determine whether or not the requirements are per-

fectly balanced, the previous discussions in this chapter highlight the rationale for

each of the Goggles design. Due to the generality and flexibility of the software im-

plementation, it provides the ability to investigate a field of research with significant

depth as well as the breadth to span multiple research fields. This methodical ap-

proach leads to a balanced approach to the Goggles design. In addition, there was no

single requirement that overly impacted the design more than any others.

189



190



Chapter 6

Experimental Results from the

International Space Station’s

Microgravity Environment

This chapter presents the results of the algorithm described in Chapter 4 being ap-

plied to a dataset gathered by the SPHERES VERTIGO Goggles. The SPHERES

Ultrasonic and Gyroscope based Global Metrology System is used as a reference refer-

ence for comparison with the new algorithm’s estimated values. This chapter presents

one of the primary contributions of this thesis: the implementation and evaluation of

the algorithm previously described in this thesis with a dataset that was obtained in a

micro-gravity environment using the SPHERES and the Goggles. This chapter begins

with a description of the test and a review of the reference measurements. It discusses

the specific approach for data association, and describes the selected gain values. The

estimated values are compared with the reference measurements and statistics of the

differences are presented. The dynamics and inertia properties as well as the three di-

mensional geometric model are compared against the known values of the SPHERES

target satellite. Lastly a discussion of the convergence and computational properties

of the dynamic iSAM algorithm is presented.
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6.1 Data Collection of Open Loop Intermediate

Axis Spin from SPHERES ISS Test Session 38

On March 12, 2013 the SPHERES satellites with the VERTIGO Goggles were op-

erated by NASA Astronaut Dr. Kevin A. Ford, and a dataset was collected that is

used for validating the algorithms described in this thesis.

The setup of the this test is shown in Figure 6-1. A view from the port camera

looking in the starboard direction is shown in Figure 6-2, with an inlaid view of

the starboard camera looking towards port. The Primary SPHERE has the Goggles

(B) attached and is the inspector satellite. The secondary SPHERE is acting as the

unknown, uncooperative and spinning target. Both SPHERES have the textured

stickers applied to their surfaces.

Figure 6-1: SPHERES and Goggles Initial Setup and Configuration

The purpose of this test (SPHERES Test #2 in Test Session #38) was to record

video data of an unstable spin about an intermediate axis. The inspector SPHERE

used the global metrology system to maintain a fixed position and orientation with the

cameras pointing towards the target object. The target object performed closed loop
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Figure 6-2: SPHERES and Goggles Initial Setup and Configuration

control to spin itself up to 10 rotations per minute (RPM) about the axis that was

believed to be the intermediate axis. Based on prior data [30] it was concluded that

the SPHERES y-axis (the axis through the battery doors of the satellite) would be

the intermediate axis. After actively maintaining this angular velocity for 30 seconds,

the satellite stops all thrusting and actuation and enters a free spin for the remainder

of the test.

During this time, there should be an instability in the angular velocity vector

with respect to the body fixed frame and the satellite should start flipping in order

to maintain the conservation of angular momentum as described in Section 2.5 and

shown in Figure 2-6.

Throughout the entire test the Goggles on the primary SPHERES satellite was

capturing and storing video at 10 frames per second, which was later sent via a

downlink to Earth, along with other telemetry and data logs that occurred during

this test.

As was discussed in Section 3.3, there are a number of cases where it is difficult

to observe the inertial properties such as the center of mass, principal axes and ratios
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of inertia. The SPHERES satellites are a challenging case due to the fact that their

principal moments of inertia are quite close. However, the spin about the unstable,

minor moment of inertia was chosen to make the inertia properties as observable as

possible, by allowing the exact time constants of the unstable “flip” to be visible.

6.2 SPHERES Metrology Motion Estimates

The SPHERES Global Metrology system was used as the reference measurement

system[102, 101]. It uses an ultrasonic time of flight system to measure position,

linear velocity and orientation. A process model in incorporated into the estima-

tion process using an Extended Kalman Filter. The onboard gyroscopes are used

to measure angular velocity, but are not fused with the ultrasonic measurement sys-

tem. The SPHERES Global Metrology system is known to produce estimates that

are repeatable within two millimeters for position and one degree for orientation.

A detailed study on the accuracy has not been performed, but experience indicates

that the accuracy is likely within 10 millimeters for position and three degrees for

orientation[101, 102]. Note that global metrology system estimates states in a right-

handed reference frame fixed to the interior of the International Space Station where

the Forward direction is positive X, the Starboard direction is positive Y and the

Deck direction is positive Z (see Figure 6-1).

6.2.1 Target Object Reference Metrology: Secondary SPHERES

The Global Metrology data for the secondary SPHERES satellite (i.e. the spinning

target object) is shown in the following figures. Figures 6-3, 6-4, 6-5 and 6-6 show

the position, linear velocity, quaternion and angular velocity of the target SPHERES

satellite with respect to the Global Metrology reference frame.
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Figure 6-3: Global Metrology (Ultrasonic) Measurement of Target SPHERES’
Position
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Figure 6-4: Global Metrology (Ultrasonic) Measurement of Target SPHERES’
Linear Velocity
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Figure 6-5: Global Metrology (Ultrasonic) Measurement of Target SPHERES’
Orientation
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Figure 6-6: Global Metrology (Gyroscope) Measurement of Target SPHERES’
Angular Velocity
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The different phases or “maneuvers” in the test can be seen best by looking at the

angular velocity in Figure 6-6. For the first 10 seconds of the test, no actuation occurs

while the global metrology estimator is allowed to converge. Between 10 seconds and

40 seconds the satellites move into their initial positions and orientations. Starting

at 40 seconds the target object begins to spin up to a desired angular velocity vector

of ω = [0.5, 10, 0.5] RPM. It finishes its initial spin up at 75 seconds and begins

freely spinning with no applied forces or torques. Note that the control to achieve the

initial angular velocity has significant overshoot on the y-axis and does not actually

achieve the desired value on the x and y axis. Despite this, the unstable, periodic

spinning motion about an intermediate axis is clearly apparent between 75 seconds

and 175 seconds. Figure 6-5 shows the quaternions that were estimated by the global

metrology ultrasonic system. It shows that despite being measured by an independent

sensor, the quaternion estimate did not diverge at such high angular velocities. One

adjustment was made to the raw quaternion data: Since the SPHERES satellites

always store quaternions with the four (scalar) element positive, there are frequently

discontinuous jumps in the quaternions. In Figure 6-5 this was corrected in post-

processing. Figure 6-3 and 6-4 show the position in the global metrology frame.

Note that beginning at approximately 100 seconds into the test the target SPHERES

satellite begins drifting and moves approximately 20 centimeters over a one minute

period. This is approximately 3 millimeters per second, which is confirmed in Figure

6-4.

6.2.2 Mass, Inertia and Kinetic Energy

Previous studies on the SPHERES satellites have undertaken considerable effort to

estimate the mass and inertia properties of the SPHERES satellites. These properties

changed recently in 2012 when new expansion ports were launched and attached to

the SPHERES satellites. Eslinger’s Masters’ thesis provides an analysis and charac-

terization of the new mass properties based on previous data and new results that

were taken on February 26, 2013[30].

Eslinger estimates the mass of the target sphere to be 4.487 kg with a standard
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deviation of 0.0567 kg. Additionally, Eslinger estimates the following inertia matrix

for the target satellite:

J =


2.41× 10−2 −1.30× 10−4 −1.42× 10−4

−1.30× 10−4 2.34× 10−2 5.74× 10−5

−1.42× 10−4 5.74× 10−5 2.01× 10−2

 kg m2 (6.1)

The diagonalization of this inertia matrix is (dropping the units for convenience):

J = RJdiagR
T (6.2)

= R


0.0241 0 0

0 0.0234 0

0 0 0.0201

RT (6.3)

R =


0.9833 0.1787 0.0349

−0.1783 0.9838 −0.0160

−0.0372 0.0095 0.9993

 (6.4)

The axis angle representation of this inertia matrix is given in Equation 6.5 and

6.6. Note that this is roughly negative ten degrees about the z-axis (the CO2 tank

axis).

n = [−0.0697,−0.1975, 0.9778]T (6.5)

θ = 10.52 degrees (6.6)

Additionally, the center of mass, TPA/SPH, was estimated by Eslinger, and the

entire transformation from the principal axes (PA) to the SPHERES Geometric frame

(SPH) can be summarized as follows:
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pSPH = RSPH/PApPA +TPA/SPH (6.7)

RSPH/PA =


0.9833 0.1787 0.0349

−0.1783 0.9838 −0.0160

−0.0372 0.0095 0.9993

 (6.8)

TPA/SPH =


3.883.00× 10−3

−1.49

1.923.00× 10−3

meters (6.9)

Now, using these properties, the translational and rotational kinetic energy can

be computed and graphed over time. Figure 6-7 shows the rotational energy of the

target object over time. The dashed blue line shows that the value of the rotational

kinetic energy that was computed at 75 seconds and is plotted as a reference for

going forward in time. This can be compared to the red line that shows the actual

measured rotational kinetic energy. This figure shows that after 75 seconds, the

rotational kinetic energy remains almost constant over time. However, there is a

slight decrease that begins just before the 150 second mark. By the end of the test,

the kinetic energy is approximately 7.8% less than at the 75 seconds into the test.

This is likely due to effects such as wind and air resistance inside the crew volume of

the ISS as well as fluid slosh within the SPHERES fuel tanks.

Figure 6-8 shows an equivalent plot of the translational kinetic energy. Again,

note that after 75 seconds, the kinetic energy remains virtually constant but has an

ever-so-slight increase starting at approximately 120 seconds. This again is likely due

to aerodynamic effects such as air currents within the ISS.
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Figure 6-7: Rotational Kinetic Energy of Target SPHERES Satellite
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Figure 6-8: Translational Kinetic Energy of Target SPHERES Satellite
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6.2.3 Inspector Reference Metrology: Primary SPHERES

Figure 6-9, 6-10, 6-11 and 6-12 respectively show the reference measurements for

position, linear velocity, orientation and angular velocity with respect to the global

metrology frame. Note that the estimator has been adjusted to provide estimates

at the center of mass with the VERTIGO Goggles attached to the satellite. Note

that from Figure 6-11 and 6-12, it is clear that the attitude of the satellite was dead-

banding (i.e. performing slight oscillations within the minimum impulse bit of the

estimation and control system). This is evident in the video data that is shown in

Section 6.2.5. This is an important fact to note, because this motion is not accounted

for in the algorithm evaluated in this thesis. This algorithm assumes the inspector is

perfectly stationary.
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Figure 6-9: Global Metrology (Ultrasonic) Measurement of Inspector SPHERES’
Position
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Figure 6-10: Global Metrology (Ultrasonic) Measurement of Inspector SPHERES’
Linear Velocity
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Figure 6-11: Global Metrology (Ultrasonic) Measurement of Inspector SPHERES’
Orientation
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Figure 6-12: Global Metrology (Gyroscope) Measurement of Inspector SPHERES’
Angular Velocity
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6.2.4 Relative Reference Metrology

The reference motion estimates of the primary and secondary SPHERES satellites

with respect to the global or inertial reference frame were described in Section 6.2.3

and 6.2.1 respectively. Since the algorithm described in this thesis assumes the camera

frame is stationary, any actual motions of the camera frame as measured by the

reference system must be appropriately accounted for to determine the correct relative

position and orientation. The relative position and velocity of the target object with

respect to the camera frame is rT/C and is computed as follows:

rT/C = RC/I(rT/I − rC/I) (6.10)

The SPHERES reference angular velocity is ωC and is measured by the inspector

SPHERES satellite’s onboard gyroscopes. It is used to compute the relative velocity

vT/C as follows. Both rT/C and vT/C are plotted in Figure 6-13.

vT/C = RC/I(vT/I − vC/I)− ωC × rT/C (6.11)

It is interesting to see that there is distinct oscillations in the Y and Z axis position

and velocity in Figure 6-13, despite the fact that the position and orientation in each

satellites Global Metrology estimates do not have these oscillations. This is due to

the dead-banding in the control of the inspector satellite’s position and attitude as

discussed in Section 6.2.3, which is evident in both the Global Metrology estimates

and the onboard video taken by the Goggles.

Since the dynamic iSAM algorithm presented in this thesis makes the assumption

that the inspector is stationary, there were four options for how to deal with this.

The first option is to modify the images using “image stabilization” techniques so that

they appear to be taken from a perfectly still location. This was considered outside

the scope of this thesis. The second option is to assume the inspector’s body frame is

static, and any motion will appear as disturbance forces applied to the target object.

This is what was done in this thesis, since the disturbances are small and it helps
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determine how robust the algorithm presented in this thesis is to disturbances. The

third option is to modify the camera frame measurements so that they were taken in

the inertial (or Global Metrology) reference frame. Although this may be a preferable

engineering approach, it was not chosen so that the reference metrology estimate was

not coupled to the estimator presented in this algorithm, and could thereby allow a

completely independent comparison. A fourth option is to add a Markov chain of

poses for the Inspector trajectory to the factor graph and estimate these with either

the Global Metrology system or the IMUs.

The SPHERES satellite provides estimates with respect to its geometric coordi-

nate frame while the dynamic localization and mapping method provides estimates

with respect to the principal axis frame. In order to provide an equivalent basis for

comparison, all of the quaternions from the global metrology estimate of the target

satellite had the initial quaternion subtracted.

qT (t) = qT/I(t)⊗ qT/I(0)
−1 (6.12)

Now the reference angular velocity of the target is ωT which is taken directly from

the global metrology gyro measurements. For an additional point of verification, a

first order difference of the quaternion was computed to verify that the quaternion

and angular velocity were in fact related by Equation 2.41.

wDiff

0

 = 2


q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3
q1 q2 q3 q4


q[k]− q[k − 1]

∆t
(6.13)

The orientation, qT (t), its numerical derivative, and the angular velocity ωT as

measured by the gyroscopes are shown in Figure 6-14.
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Figure 6-13: Relative Global Metrology Reference Position and Linear Velocity with
repsect to the Camera Frame
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Figure 6-14: Relative Global Metrology Reference Orientation and Angular Velocity
with respect to the Camera Frame
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6.2.5 Stereo Image Data of Tumbling Satellite from SPHERES

VERTIGO Goggles

Figure 6-15 shows four stereo pairs of images from the data set taken during Test #2

of SPHERES ISS Test Session #38. It shows the stereo images taken by the Goggles

mounted to the Primary SPHERES and illustrates the evolution of the unstable spin

over time. In the left hand images, the SPHERES body frame axes are labelled with

red vectors. These axes are the coordinate frame for the angular velocity vector of

the target object shown in Figure 6-6.

Figure 6-15 clearly shows a flipping motion due to the spin about an intermediate

axis. Note that in the top figure at T = 39s the y axis is pointing up in the image.

At time T = 75s and T = 91s it is clear that the y axis is starting to flip down in the

image. By time T = 111s the y axis has completed nearly a 180 degree flip. Again,

this is confirmed by the flip in the angular velocity vector in Figure 6-6.
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Figure 6-15: Time Lapsed Images Illustrating Unstable Spin about Intermediate
Axis
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6.3 Data Association and Feature Matching

Data association in the context of perception is a very important aspect of the local-

ization and mapping problem. This involves ensuring that the two dimensional image

location in multiple images corresponds to the same three dimensional feature point.

If this is done incorrectly it can have a significant adverse affect on the output of the

estimation system.

While it makes sense that utilizing the linear and angular velocities of a spinning

target would help match features between stereo images of a spinning object taken at

different time-steps, this was not implemented for this thesis since it would inherently

couple the data association and estimation system. In other words, if there was a bad

state estimate, it could lead to a bad data association, which in turn could lead to

even more bad state estimates.

Since one of the main purposes of this thesis is to evaluate a new approach for

incorporating dynamics into the iSAM optimization system, it was decided to use

a known and understood data association system that was previously tested and

developed in Muggler’s thesis[96].

The first step of the data association process is match features between the left

and right stereo images. This is done using OpenCV SURF features as described

in Section 2.9. The following step matches features between two frames (pairs of

stereo images) taken at two instances in time. The same OpenCV SURF features

are triangulated and used with RANSAC and Absolute Orientation as described in

Section 2.7, Section 2.9 and illustrated in Figure 2-16. Both of these steps were

originally implemented by Muggler and modified slightly for this thesis.

The last step is to compute a table of “global” features. For every feature that

was detected by the system, there is a list of frames in which it was visible along with

its image coordinates in the left and right stereo image frames (i.e. uL, vL, uR, vR).

This final step was implemented by Muggler as follows: The relative pose computed

by the Absolute Orientation algorithm is added to the trajectory to create a visual

odometry trajectory over time. This trajectory is optimized in a pose-graph frame-
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work with the iSAM engine (and no feature points). Next an iSAM based bundle

adjustment approach is run using the visual odometry estimate as its initial condi-

tions. Finally all of the frames are matched to all of the frames, again using the SURF

and RANSAC approach previously described, and a global database of features and

their corresponding frames and stereo image coordinates is built up. This approach

along with the subsequent steps of implementing the estimation system are shown in

Algorithm 2.

Figure 2-16 shows a few images that are representative of the entire dataset. The

dataset shows excellent matches between the left and right images. Additionally,

the frame to frame matches appear to be visually consistent and indicate the correct

motion.

Algorithm 2 Overall Data Association and Estimation Process

1: for Image Pair k do
2: Raw Left Features ← DetectSURF(Left Image)
3: Raw Right Features ← DetectSURF(Right Image)
4: Tri Features(k) ← TriangulateFeatures(Raw Left Features, Raw Right Features)
5: {Rk, Tk, RANSAC Features} ← RANSAC AbsOrient(Tri Features(k),Tri Features(k-1))
6: {R,T} ← {R,T,Rk,Tk}
7: end for
8: {R,T} ← iSAM Smooth(R,T)
9: for Image Pair i do
10: for Image Pair j do
11: {Rk, Tk, Global Features} ← RANSAC AbsOrient(Tri Features(i),Tri Features(j))
12: end for
13: end for
14: Factor Graph ← AddInitializationNodesFactors()
15: for Image Pair c do
16: Curr Pose ← NewPoseNodeAndFactor()
17: Factor Graph ← Curr Pose
18: for Curr Feature ← NextFeature(Tri Features(c)) do
19: if IsNew(Curr Feature) then
20: Factor Graph ← NewMeasurementFactorAndNode(Curr Pose, Curr Feature)
21: else
22: Factor Graph ← NewMeasurementFactor(Curr Pose, Curr Feature)
23: end if
24: end for
25: Factor Graph ← iSAM Update(Factor Graph)
26: end for
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6.4 Gain and Weight Selection and Tuning Param-

eters

The algorithm described in this thesis has a number of parameters, gains and weights

that must be selected for proper estimation. The values described in this section

were selected based on hand tuning to achieve good estimation performance while

minimizing computational time as much as possible

Note that the time-step is ∆t = 0.5 seconds. This is because every fifth frame

captured was used in order to keep the size of the factor graph small. The iSAM sys-

tem used a pseudo-huber cost function with Powell’s DOG-LEG optimization engine.

After each new frame was added at a time-step, an iSAM step was run seven times

with full relinearization (i.e. the iSAM “mod-batch” setting was 1).

The covariance matrices used in Equation 4.100 have the values:

W′
v = (0.001m/s2)I3×3 (6.14)

W′
ω = (0.001rad/s2)I3×3 (6.15)

The standard deviation for the pixel error in Equation 4.85 is 1 pixel in the x and y

directions.

A prior was placed on the first (origin) pose of the principal inertia axis frames.

This prior is zero mean with a number of very large standard deviations. The position

standard deviation is 1.34 m (almost the entire field of view of the cameras at the

operating distance). The velocity standard deviation is 0.1 meters per second. The

angular velocity standard deviation is 3.16 radians per second (or 30 RPM). The

error function on the prior for the orientation was found by computing the total

quaternion according to Equation 4.71, and converting it to a MRP representation

using Equation 2.34. Therefore, this is expected to have zero mean error and the

standard deviation of all elements is set as 4.0.

Next, the translation and rotation between the geometric frame have a prior as-

sociated with them. The position has a standard deviation of 0.5 meters, while the
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orientation (computed the same as above) has a MRP standard deviation of 10.0.

The first of the feature points has a very low uncertainty prior associated with it.

This feature has a prior applied to its point estimate with the value 1.0E− 6 meters.

Lastly, the inertia ratios k1 and k2 are assumed to have zero mean and a standard

deviation of 3.0 in order to imply very high uncertainty in the knowledge of the ratios

of inertia. In other words, one standard deviation of the value of one moment of

inertia with respect to another is e3.0 ≈ 20.

6.5 Experimental Localization Results and Com-

parison to SPHERES Metrology

Chapter 4 described the new algorithmic approach that is being evaluated, while

Sections 6.1 through 6.4 described the experimental approach for evaluating this

algorithm. The output estimation results of the new algorithm are presented in this

section and compared to reference metrology dataset that was described previously

in this chapter. This compairison is one of the primary contributions of this thesis.

One important point to note is that the SPHERES satellites global metrology is

measured in the reference frame of the geometric body, which does not necessarily

coincide with the principal axes or center of mass, but should be close. Additionally,

it has arbitrarily assigned reference axes, which the dynamic SLAM algorithm has no

knowledge of. A flip of the reference frames to align with the SPHERES convention

was performed on the estimated results in post-processing.

6.5.1 Position, Orientation, Linear and Angular Velocity

Figure 6-16 shows the position and velocity of the center of mass in the camera

reference frame for both the estimated values and the reference measurements. Figure

6-17 shows the position and velocity difference between the Dynamic iSAM estimated

values and the SPHERES Global Metrology estimates.

Figure 6-18 shows the orientation and angular velocity estimates and reference
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measurements. Figure 6-19 shows the angle difference (note that the closest or small-

est angle between the two reference frames is the angle of the axis-angle representation

of the difference) that is found by performing subtraction between the Dynamic iSAM

estimated quaternion and the SPHERES Global Metrology quaternion. The mean

and standard deviation of the differences are shown in Table 6.1.

Table 6.1: Statistics for Difference between the Estimated and SPHERES Position,
Velocity, Orientation and Angular Velocity

Mean Standard Deviation
X Position 1.59 cm 0.920 cm
Y Position -6.27 cm 3.13 cm
Z Position 4.91 cm 1.36 cm
X Velocity -0.00369 cm/s 0.134 cm/s
Y Velocity 0.0828 cm/s 0.229 cm/s
Z Velocity -0.236 cm/s 0.158 cm/s
Closest Angle 17.69 deg 3.59 deg
X Angular Velocity -3.16 deg/s 1.80 deg/s
Y Angular Velocity -1.29 deg/s 0.930 deg/s
Z Angular Velocity -5.44 deg/s 2.20 deg/s

The position difference along the X-axis (i.e. the range measurement) is approxi-

mately 1.5 cm, however the Y and Z-axis differences are significantly larger. Note that

the reference metrology is a relative measurement between the two SPHERES global

metrology estimates. If the SPHERES reference attitude for the inspector orientation

is off by a small amount, the relative position may be off a significant distance (i.e.

it is magnified by the distance between the inspector and the target). The fact that

there may be an error in the Global Metrology estimate of the orientation about the

X-axis provides an acceptable explanation for the apparent bias in in the relative Y

and Z positions. This hypothesis is further supported by the fact that the velocities

between the dynamic SLAM approach match very closely with the global metrology

reference. Table 6.1 shows that these are typically less than 1 millimeter per second,

which is quite good. The smoothness of the velocities is due to the fact that the

iSAM algorithm enforces the no external forces or torques constraint. An alternative
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differencing approach that does not enforce these constraints would lead to a much

noisier velocity signal.

Table 6.1 and Figure 6-19 shows that the orientation estimates are close, but there

are differences that vary between 10 and 15 degrees. It is not immediately obvious

from this data which of the Global Metrology or Dynamic iSAM estimates are more

representative of the physical motion (this will be further analyzed and discussed

in Section 6.6 ). Additionally, it appears that the orientation difference is growing

in Figure 6-18. Lastly, while the Y-axis angular velocity is very close to the global

metrology measurements, the X and Z axis have a significant bias. This may be due

to the fact that the Global Metrology gyroscope measurements are made with respect

to the geometric frame and not the principal axis frame.

Now, if a correction is applied according to the results in Section 6.5.2, which is

a 9.094o rotation about the Y-axis so that the angular velocities are all measured in

terms of the same SPHERES axis frame, the angular velocities comparison is now

apples-to-apples. The attitude estimates, reference measurements and differences are

shown in Figure 6-20 and 6-21. This shows that the attitude difference no longer

grows with time and the X and Z axis of angular velocity now matches as well as the

Y axis. The statistics of these results are shown in Table 6.2. These results now have

lower mean and standard deviations which further validates the attitude and angular

estimates, but not the inertia properties estimates.

Table 6.2: Statistics for Difference between the Corrected Estimated and SPHERES
Orientation and Angular Velocity

Mean Standard Deviation
Closest Angle 13.48 deg 2.91 deg
X Angular Velocity -0.30 deg/s 1.50 deg/s
Y Angular Velocity -1.29 deg/s 0.930 deg/s
Z Angular Velocity -0.25 deg/s 0.868 deg/s
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Figure 6-16: Position and Linear Velocity: Dynamic iSAM Estimate vs SPHERES
Global Metrology
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Figure 6-17: Position and Linear Velocity Difference: Dynamic iSAM Estimate
minus SPHERES Global Metrology
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Figure 6-18: Quaternion and Angular Velocity: Dynamic iSAM Estimate vs
SPHERES Global Metrology
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Figure 6-19: Angle and Angular Velocity Difference: Dynamic iSAM Estimate
minus SPHERES Global Metrology
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Figure 6-20: Quaternion and Angular Velocity: Dynamic iSAM Estimate vs
SPHERES Global Metrology
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Figure 6-21: Angle and Angular Velocity Difference: Dynamic iSAM Estimate
minus SPHERES Global Metrology
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6.5.2 Inertial Properties

This section describes the estimates of the inertial properties including the center of

mass, principal axes and inertia ratios and compares them to the reference values.

This is a challenging comparison due to the fact that there is no high accuracy “ground

truth” values for these parameters. This is partly due to the fact that in 2012, the

SPHERES were upgraded with a new expansion port that was attached on its side,

and there is limited amounts of data collected to establish the inertia properties with

this new configuration. As a result, the results in this section do not present a clear

consensus or exact match to prior values, but rather seem equally plausible. The

values estimated by the methods in this thesis could in fact be the most accurate

estimates to date, however there is not a sufficient quantity of data to make that

determination.

This section presents the inertia values that were estimated and compares them

primarily to Eslinger’s values [30], which is the only other dataset available with the

new expansion port.

The estimated values of the natural logarithm of the inertia ratios is k1 and k2:

k1 = 0.0517 (6.16)

k2 = 0.0971 (6.17)

This implies that the estimated inertia matrix (up to a scale factor) is:

J =


ek1 0 0

0 1 0

0 0 e−k2

 (6.18)

=


1.0530 0 0

0 1 0

0 0 0.9074

 (6.19)

Compare this to the Jdiag matrix from Equation 6.2, which is normalized so that
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the intermediate axis is 1.0 and shown below:

Jdiag, ref =


1.0322 0 0

0 1.0 0

0 0 0.8596

 (6.20)

Note that the global metrology reference measurements are made relative to the

SPHERES satellites geometric reference frame. The locations of the ultrasonic sensors

and gyroscopes are what determine this reference frame. The satellites were designed

so that these would be conveniently aligned with the symmetrical axes of the satellites.

From the perspective of the algorithm in this thesis, this axis is arbitrary and, most

importantly, unobservable. However, in order to make an accurate comparison, the

transformation between the principal axis frame and the conventional SPHERES

geometric frame must be determined. In Section 6.6, a dense three dimensional model

that was estimated by the dynamic localization and mapping algorithm is presented.

Using this model and a three dimensional computer aided design model with the

MeshLab program [5], a manual alignment was calculated as shown in Figure 6-22.

Figure 6-22: Final Alignment of SPHERES Engineering Model and Estimated
Dense Map

The transformation between the SPHERES geometric axes and the estimated

principal axes has the rotation and transformation shown below.
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pSPH = RSPH/PApPA +TPA/SPH (6.21)

RSPH/PA =


0.987 0.00 0.158

0 1.00 0.00

−0.158 0.00 0.987;

 (6.22)

TPA/SPH =


3.00× 10−3

0.00

0.9663.00× 10−3

meters (6.23)

Note that in comparing this to the value in Equation 6.9, the location of the center

of mass estimates differ from Eslinger’s estimates by -0.88 mm, 1.49 mm and 0.95

mm for the X, Y and Z axes respectively.

The axis angle representation of this rotation matrix is as follows.

n = [0.00, 1.00, 0.00]T (6.24)

θ = 9.094 degrees (6.25)

Note that this is the same magnitude of rotation, but it is about the positive Y

axis rather than the negative Z axis. While this difference in terms of angles seems sig-

nificant, it is practically difficult to determine which is correct. The following sections

will investigate how well each of these inertia matrices can be used for propagating

attitude states, and how closely these results match experimental measurements.

Applying the rotation transformation to the estimated inertia matrix, the inertia

matrix in the conventional SPHERES geometric frame can be computed:

J =


1.0494 0 0.0227

0 1.0000 0

0.0227 0 0.9110

 (6.26)
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Scaling this matrix to match the reference matrix using s = 2.34 × 10−2, we can

directly compare the estimated inertia matrix in the SPHERES geometric frame to

previous estimates and the reference in Equation 6.1.

sJ =


2.46× 10−2 0.00 5.31× 10−4

0.00 2.34× 10−2 0.00

5.31× 10−4 0.00 2.13× 10−2

 kg m2 (6.27)

An important method for validating the inertia matrix is to begin with a set of known

initial conditions, and to propagate the orientation and angular velocity using Euler’s

Rotational Dynamics equation and the quaternion kinematics equation. The more

accurate the estimate of the inertia matrix, the less this propagation will drift over

time.

The figures below shows the results of propagating the kinematics and dynamics

with the estimated inertia matrices (Equation 6.27 as “DISAM”) versus Eslinger’s

reference inertia matrix (Equation 6.1 for “truth”) and compares this to the global

metrology measurements.

Figure 6-23 shows the propagation for the same dataset that has been used in

previous sections, where the initial conditions at time t = 75.0 seconds and propagated

until t = 155. Figure 6-24 shows the difference between both the two propagations

when subtracted from the global metrology measurements.

These two figures show that the propagation between both the reference inertia

and estimated inertia are very close. During the first 50 seconds, the propagation

using the reference inertia has lower error compared to the global metrology measure-

ments, while during the last 40 seconds the propagation using the DISAM estimated

inertia has the lower error.

A second set of similar data was gathered during Test Session # 37. It performed

a high speed spin about the intermediate axis of SPHERES and let this spin un-

controlled for 12 seconds. The same comparison for propagating inertia is shown in

Figure 6-25 and 6-26. In this short timespan the reference inertia has lower error in
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both the orientation and angular velocity, however the difference is only 16 degrees

and 6 degrees per second.

Some of this error may be due to errors in the reference (i.e. the gyros not being

aligned with the principal axes) and with the loss in kinetic energy due to slosh and

aerodynamic drag (note that the drift in the propagation appears to be correlated

with knees in the kinetic energy curve in Figure 6-7.
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Figure 6-23: Attitude Propagation compared to Reference Measurements using
DISAM Estimated Inertia vs Reference Inertia during Test Session # 38
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Figure 6-24: Attitude Propagation Error using DISAM Estimated Inertia vs
Reference Inertia during Test Session # 38
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Figure 6-25: Attitude Propagation compared to Reference Measurements using
DISAM Estimated Inertia vs Reference Inertia during Test Session # 37
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Figure 6-26: Attitude Propagation Error using DISAM Estimated Inertia vs
Reference Inertia during Test Session # 37
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6.6 Experimental Three Dimensional Mapping Re-

sults

Figure 6-27 shows three screen captures from a three dimensional visualization of the

estimation process. The purple dots represent the location of the SURF features.

The images on the left and right show the stereo images at that time. The closely

spaced red, green and blue (RGB) arrows correspond to the X, Y and Z axes of the

body frame trajectory. The RGB arrows far from the feature points is the camera

frame location. The single RGB arrow close to the SURF features is the geometric

frame location.

Figure 6-28 visualizes the mapped SURF feature points. This figure shows the

feature points orthographically projected into the x-y, y-z and x-z planes. Note that

the object is split in half with the points with the positive coordinates being projected

in the left hand column while the negative coordinates are projected in the right hand

column.

These points were estimated in the geometric frame and then rotated to the body

frame using RG/B,TG/B from Figure 4-3. Therefore the (0, 0) coordinates in all of

the images in Figure 6-28 correspond to the estimated center of mass location and the

axes of these figures corresponds to the estimated principal axes. In other words, if a

cube with perfectly even mass distribution was projected in this manner, its geometric

center should be at all of the centers of the figure and it should be perfectly aligned

with the figure axes.

Note that Figure 6-28 clearly looks to be the shape of a SPHERE facing the correct

directions. Also, it appears that the center of the SPHERE is very close to the center

of the figure, indicating a good center of mass estimate. Lastly, the geometry appears

to be somewhat well aligned with the axes, indicating that the estimated principal

axes are very close to the geometric axes (as expected).

In order to build a detailed geometric model, the depth map was computed and

triangulated for each stereo image pair using the methods discussed in Section 2.10.

Next using the estimated position and orientation of the body fixed (principal axes)
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reference frame, the pixels were projected into the body frame. Figure 6-29 illustrates

a three dimensional rendering of this dense reconstruction. This figure shows a vi-

sually acceptable model that could be used for planning and control purposes. Note

that there are holes in the model where there was not enough texture for the stereo

depth map algorithm to determine a disparity. The source code for this method is

shown in Listings B.26 and B.27.

The dense reconstructed model was animated using the position and orientation

state that was estimated. Three frames from this animation are shown in Figure

6-30. The animation is done from the same camera location as the left hand image

captured by the Goggles (shown on the left of the figure). Note that the field of

view and focal length is not an exact match. Figure 6-30 shows that the animated

motion is “visually similar”, and provides a high level verification that the position

and orientation estimates appear correct to the human eye.

This figure shows that there are no detectable alignment seams, which would occur

if the Dynamic iSAM position and orientation estimates had time varying errors.

This is an significant observation. It provides strong validation of the Dynamic iSAM

estimates of the position and orientation. In Section 6.5 there was some discrepancy

and error between the estimated values and the reference measurements. The fact

that there are no alignment seams strongly supports the hypothesis that the Dynamic

iSAM estimated values are in fact the best estimate of the physical motion.

The dimensions of the estimated satellite were measured using the open source

program Meshlab (see Figure 6-31). Additionally, measurements of the SPHERES

satellites were made by hand and compared with the Meshlab results. For comparison

purposes, the size of the SPHERE based on the CAD model is 22.5 cm, 21.3 cm and

21.4 cm for the maximum X, Y and Z axes respectively (the difference is 0.4, 0.3 and

0.2 cm). These results are summarized in Table 6.3. The absolute errors between the

estimated and hand measured size has a mean of 0.183 cm and a standard deviation of

0.113 cm. This shows that the estimated model is extremely close to the actual target

object and therefore could be used for very precise planning and control purposes.
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Table 6.3: SPHERES Geometric Size Comparison

Hand Measured Estimated Size Difference
Maximum X-Axis (Figure 6-31) 22.9 cm 23.0 cm 0.1 cm
Maximum Y-Axis 21.6 cm 21.7 cm 0.1 cm
Maximum Z-Axis 21.2 cm 21.6 cm 0.4 cm
Sticker Width 13.0 cm 13.3 cm 0.3 cm
Sticker Height 7.50 cm 7.70 cm 0.2 cm
Sticker Line (Figure 6-32) 5.88 cm 6.02 cm 0.14 cm
Battery Door Width 7.07 cm 7.21 cm 0.14 cm
Battery Door Height 6.23 cm 6.15 cm -0.08 cm
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Figure 6-27: Three Dimensional Map of SURF Point Features, Body Frame
Trajectory, Geometric Reference Frame and Camera Frame
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Figure 6-28: SURF Point Features in Principal Axes Body Frame with Reference
Geometric Axes
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Figure 6-29: Dense Three Dimensional Reconstruction in Principal Axes Body
Frame
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Figure 6-30: Animation of Dense Model Reconstruction
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Figure 6-31: X-Axis Size: Hand Measurements and Meshlab Measurements

Figure 6-32: Size of Line on Sticker: Hand Measurements and Meshlab
Measurements
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6.7 Covariance and Convergence Analysis

The iSAM system is a smoothing estimator that models its parameters as Gaussian

random variables. Each time a new image is added (or iteration as it is referred to in

this section), the entire joint distribution is updated to minimize the cost function.

The previous sections have only examined the mean of the individual variables at the

final iteration. It is important to investigate how the uncertainty evolves over the

iterations of the algorithm (i.e. as new images are added).

Each of the three-dimensional plots in this section look at the convergence of the

estimates, while trying to follow a standard pattern so that they are simpler to read.

Figure 6-33 is an example of this for the position of the target object. The top row

of plots shows the uncertainty as a surface plot. The Z value shows the standard

deviation on a log10 scale. The X-axis shows the iterations, where 115 images were

used and the Y-axis shows the location over time (i.e. the trajectory in the smoothing

framework). Note that this leads to a triangular structure for all of the plots, since

there is no estimate for the position at a point in time until the iteration where that

image was added. Since iSAM is a smoothing system, that estimate will never be

marginalized out and will be updated at all subsequent iterations, which is what leads

to the triangular structure.

The bottom row of plots shows the mean values for these estimates. Note that the

previous sections slices of this figure at the final iteration (e.g. Figure 6-16 shows a

slice containing only the final iteration of the bottom row of Figure 6-33). Note that

this data was taken from a separate data association run that resulted in a different

set permutation of the principal axes.

An alternative way of visualizing the convergence data is to animate the mean

and standard deviation of the estimated trajectory as it evolves over the iteration

axis in the previously discussed figures. Images from this animation are shown in

Figure 6-40 and 6-41. Each image shows the SPHERES metrology estimate in red,

the dynamic iSAM mean estimate in solid blue and the plus or minus one standard

deviation in dashed blue.
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Figure 6-40 and 6-41 show the initial estimate is very far from the SPHERES

Metrology value, but after 5 to 10 seconds, the velocities closely track the SPHERES

metrology values, but with less high frequency content. Note that the standard

deviation shrinks over time and that previous values of the trajectory are updated as

new measurements become available, thereby confirming the full trajectory smoothing

aspect of this system.

The first time that the target object completes a revolution and thereby closes a

loop is at time 79.25 in Figure 6-14. This is exactly 6 seconds and 12 images after the

first frame. Note that in all of the plots in this section, the uncertainty significantly

reduces and the means become much closer to the reference values at this point in

time, which is exactly what is expected. Prior to this loop closure, the means and

covariances of the estimate are not consistent due to the fact that the estimate is

biased and the range of values within the standard deviation does not include the

values that were converged to after the loop closure.

Note that for the position and velocity shown in Figure 6-33 and 6-34, it takes

approximately 30 iterations for the algorithm to converge to its final value. However,

it takes closer to 100 iterations for the algorithm to converge on the X-axis orientation

and angular velocity shown in Figure 6-35 and 6-36, but only 40 iterations for the Y

and Z axis. The center of mass in Figure 6-37 required approximately 50 iterations,

the principal axes in Figure 6-38 required approximately 40 iterations and the inertia

ratios in Figure 6-39 required approximately 100 iterations.

Table 6.4 documents the estimated marginal covariance once the algorithm had

completely incorporated and estimated all 115 images. The averages for the pose

values were taken as the mean of all 115 values. Given that the accuracy of the

triangulated feature points are approximately a few millimeters, and the number

of measurements that were made, the values of the estimated marginal standard

deviations seem plausible. The values almost appear too low (or good) to be true,

which could indicate the possibility of inconsistent covariance estimation, however

the reference metrology is insufficient to absolutely determine whether this estimator

is consistent.
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Table 6.4: Final Estimated Marginal Standard Deviations

Quantity Standard Deviation 1

Average X Position 0.343 mm
Average Y Position 0.287 mm
Average Z Position 0.329 mm
Average X Velocity 0.509 mm/s
Average Y Velocity 0.566 mm/s
Average Z Velocity 0.457 mm/s
Average X MRP 0.0074
Average Y MRP 0.0063
Average Z MRP 0.0030
Average X Angular Velocity 0.228 deg/s
Average Y Angular Velocity 0.254 deg/s
Average Z Angular Velocity 0.296 deg/s
X Center of Mass 3.72 mm
Y Center of Mass 4.34 mm
Z Center of Mass 3.57 mm
Principal Axis X MRP 0.0074
Principal Axis Y MRP 0.0063
Principal Axis Z MRP 0.0030
Inertia Ratio 1 0.0025
Inertia Ratio 1 0.0019
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Figure 6-33: Uncertainty and Value of Position over Iterations

247



Figure 6-34: Uncertainty and Value of Velocity over Iterations
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Figure 6-35: Uncertainty and Value of Attitude over Iterations
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Figure 6-36: Uncertainty and Value of Angular Velocity over Iterations
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Figure 6-37: Uncertainty and Value of Center of Mass Location over Iterations
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Figure 6-38: Uncertainty and Value of Principal Axes Orientation over Iterations
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Figure 6-39: Uncertainty and Value of Inertia Ratios over Iterations
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Figure 6-40: Progression of Y Velocity Trajectory Mean and Covariance over Time
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Figure 6-41: Progression of Y Angular Velocity Trajectory Mean and Covariance
over Time
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6.8 Computational Performance

This section provides a brief review of the computational performance of the algo-

rithm presented in this thesis. The algorithm was implemented in the same software

environment as the Goggles (i.e. Ubuntu Linux 10.04 with OpenCV and IPP), but

was run on a MacBook Pro (2.3 GHz i7) under VMWare Fusion 5.3. It was writ-

ten primarily in C/C++ and compiled with GCC version 4.4.3 using the -O3 flags.

While the algorithm implementation was not heavily optimized and still contained

debugging code, it is useful to provide the running time of the algorithm for reference

purposes.

The initial stage data association step is broken into three stages, and is applied

to all 115 of the stereo image pairs that were taken 0.5 seconds apart. The first stage

detects features, extracts descriptors, matches features between left and right stereo

frames and triangulates their location. The second step matches the features between

two subsequent frames and computes the relative kinematic transformation using

RANSAC and Absolute Orientation. Both of these first two steps together required

3 minutes and 16 seconds to run. The third step computes the global features as

described in Muggler’s thesis and in Section 6.3. This third step required 1 minute

and 14 seconds to complete.

Once all of the global features were computed, the algorithm in this thesis was

run by building up a factor graph model incrementally in the iSAM system. For each

new pair of stereo images a new pose node was added, along with factors between

the nodes and to the features. If any new features were seen for the first time they

would be added to the graph as well.

Figure 6-42 shows the computational performance characteristics of the algorithm.

Each of the four figures shows the number of poses along the X-axis. The upper left

image shows the computational time in minutes as the number of poses grows. Note

that the overall time to complete all 115 stereo pairs is just over 35 minutes, however

almost all of the estimates (including the inertia parameters) had converged by the

80th image, which occurred after 15 minutes.
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The upper right diagram of Figure 6-42 shows the computational time per pose

that is required, which is steadily growing with each new node. This is because the

batch optimization method with full relinearization is run after a set of new nodes

(pose and features) is added at each timestep. The number of features and the number

of overall factors is shown at each timestep in the lower two plots of Figure 6-42. There

is a total of 2447 landmarks and 24723 factors at the end of the algorithm.

Since the batch optimization has to recompute all of the jacobians and covariances

at each time step, it is expected that the incremental run time (i.e. the delta time)

should be proportional to the number of factors in the graph. The incremental time is

plotted against the number of factors in the graph in Figure 6-43. This clearly shows

a that there is a linear relationship between the number of factors or poses and the

computational time, which is consistent with the performance of iSAM running in

batch mode[57]. As a result, any way to systematically reduce the number of factors

would help the computational performance.

The results in this section do not illustrate a real time system, but rather a

system whose computational time grows with the size of the problem that is better

suited to offline applications. While the iSAM system can perform constant time

updates, further research is needed to make sure that the incremental updates do

not hurt the convergence properties. Note that if another method to solve the factor

graph problem more efficiently is available (e.g. loopy belief propagation for non-

linear systems), the methods in this thesis should be able to take advantage of those

computational performance improvements.
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Figure 6-42: Computational Run Time of Algorithm
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Figure 6-43: Incremental Computational Time versus Number of Factors and Poses
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Chapter 7

Conclusions

In conclusion, this thesis has presented a new algorithm and approach for performing

localization and mapping of an unknown, uncooperative and spinning target object

that is relevant and applicable to a number of proximity operations missions. The

main difference between the approach described in this thesis and other approaches

available in the literature is that this thesis mathematically integrates rigid body

dynamics into the probabilistic model so that dynamic quantities such as the linear

and angular velocities, as well as the center of mass, principal axes of inertia and

ratios of inertia can be estimated simultaneously and in a smoothing fashion with the

geometric map and kinematic pose.

Additionally, this thesis presented the VERTIGO Goggles, which is an upgrade to

the SPHERES satellite testbed that was designed, built, tested and operated onboard

the International Space Station (ISS). It provides the capability to perform exper-

imental evaluation of a wide range of computer vision-based navigation algorithms

within the micro-gravity environment of the ISS. This testbed was used to gather a

dataset for the evaluation of the new algorithm presented in this thesis. A detailed

statistical comparison of this algorithm was made with respect to the SPHERES refer-

ence measurements and properties, along with a covariance analysis of the algorithm’s

convergence properties.
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7.1 Review of Contributions

The research contributions claimed in this thesis are listed below:

1. The development of an algorithm that solves the Simultaneous Localization

and Mapping problem for a spacecraft proximity operations mission where the

target object may be moving, spinning and nutating.

(a) The development of a probabilistic factor graph process model based on

both rigid body kinematics and rigid body dynamics. This model con-

strains the position, orientation, linear velocity and angular velocity be-

tween two subsequent poses at a defined timestep according to Newton’s

Second Law and Euler’s Equation of Rotational Motion.

(b) The development of a parameterization approach for estimating the center

of mass and principal axes of inertia by incorporating a separate geometric

reference frame in which all three dimensional feature points are estimated.

(c) The development of a two dimensional parameterization approach for es-

timating the natural logarithm of the ratios of inertia as Gaussian random

variables, and a modification of the above process model to incorporate

this.

i. An analysis of the nonlinear observability that confirms the number

of observable degrees of freedom as well as the unobservable modes.

(d) Implementation and evaluation of above algorithm using SPHERES satel-

lites and Goggles with approximately stationary inspector and target spin-

ning at 10 rotations per minute about its unstable minor axis.

i. Comparison of the above algorithm’s performance to the SPHERES

Global Metrology System.

ii. Covariance and convergence analysis of the above algorithm.

2. Designed, built, tested and operated the first stereo vision-based navigation

open research facility in a micro-gravity environment.
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7.2 Future Work

There are a number of areas of future follow-on work that can be considered for

this thesis. The first step would be to modify the algorithm to handle a moving

inspector spacecraft. The implementation of the algorithm in this thesis assumed the

inspector spacecraft was stationary, but this is not a representative assumption. This

is not expected to be a challenging endeavor provided enough sensor measurements

are available, but it should be performed in order to more fully verify this approach.

The second area of future work is to perform a detailed, comparative analysis of

computational performance onboard the VERTIGO Goggles. While a brief analysis

of the current research implementation was presented in this thesis, a more com-

prehensive analysis requires a significant amount of optimization of the source code

presented in this thesis as well as further research to investigate the difference in per-

formance using iSAM’s incremental, and constant time updates. It is also important

to make considerations to ensure that the evaluation is representative for real-work

mission hardware applications.

The third area of future work is to implement online data association methods.

The author of this thesis hypothesizes that the incorporation of linear and angular

velocities will help make the data association methods more accurate, but this must

be evaluated using a variety of different datasets. Since the processing time of the

iSAM algorithm is known to grow with the square of the number of factors, care

must be taken so that an analysis is performed that is both representative and widely

applicable.

In order to perform a full comparison of the algorithms in this thesis, two com-

parative analyses could be performed. The first comparative analysis would be to

evaluate whether or not the same parameters could be estimated by a more straight-

forward method. For instance if a typical SLAM algorithm was used to estimate the

map and the location of inspector spacecraft, it would determine that the inspector

was orbiting around the target object (when in fact the target object was spinning

while the inspector was static). If the kinematics were inverted, it may be possible
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to estimate the equivalent properties; however, the author of this thesis hypothesizes

that these estimates will not be as robust or as accurate since they do not inherently

constrain the rigid body dynamics.

The second comparative analysis would be to run the above algorithm on different

types of spinning motions, including those for which all of the parameters may not

be observable, and compare the estimated means and covariances. It is anticipated

that in situations where the full state is not observable, the incorrect value of those

parameters will not have a significant impact on state propagation.

A fourth area of future work is to gather more micro-gravity datasets of spinning,

tumbling and nutating motion of the all of the SPHERES satellites so that high accu-

racy estimates of the inertia properties (i.e. center of mass, principal axis and inertia

tensor) can be obtained. This should include multiple measurements of the same

satellite on different days with different tank fill levels to determine what variation

this may cause.

The last area of future work for the algorithm, would be to replace the iSAM esti-

mation engine with a message passing-based algorithm[29], in a way that is similar to

Ranganathan’s work [2]. This type of algorithm would likely help with computational

performance as the state vector grows as well as being more suitable to optimizations

using parallel-processing computational hardware. The author is not aware of any

off-the-shelf implementations of these algorithms, especially those that handle non-

linearities in the probabilistic model.

An area of future work for the VERTIGO Goggles is to further update and refine

the operational procedures to make even more efficient use of crew time and ISS

resources. This will involve reformulating the procedures for increased clarity as well

as partitioning the operations to ensure crew time is only used for critical tasks.

Once the above items have been addressed, the algorithm should be implemented

to run online on the VERTIGO Goggles for performing an inspection as well as

localization and mapping in space. Once this is completed, it is believed that this

will be the first time a Simultaneous Localization and Mapping algorithm has been

run on a computer that is in space (i.e. over 100 km above sea level).
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As this thesis mentioned, the VERTIGO Goggles are not a representative envi-

ronment for on-orbit lighting conditions and spacecraft surface materials. This means

that the image processing and feature detection and matching algorithms will likely

not carry over to real world space missions. This is definitely an area of research that

needs to be investigated more fully, but it does not need to be done in a micro-gravity

environment. The author of this thesis believes that there is significant potential in

performing matching on range images or depth maps that are gathered from either

stereo, long-wavelength infrared cameras, or from Flash LIDAR sensors.

7.3 Extensions to Other Applications

The VERTIGO Goggles system was designed so that it can be extended and expanded

to perform research on a number of other areas that include fluid slosh, robotic

manipulation, supervised autonomy for inspection. Some of these research areas can

be achieved with new software, while others may require a hardware upgrade.

One of the principal assumptions of the algorithms in this thesis is that no external

forces and torques are applied to the spacecraft. Over moderately short periods of

time, this is highly representative for a number of spacecraft proximity operations

missions. However, most Earth-bound applications of interest and any in-space target

objects that are actuating would violate this assumption. The method presented in

this thesis should be able to easily extend to handling external forces and torques by

adding a force and torque node and prior factor on each of the process factors shown

at the bottom of Figure 4-3. If the forces and torques are unknown, a high uncertainty

prior would be needed, however if measurements of the applied forces and torques

are known, the prior factor could have a low uncertainty and a bias added. If force

and torque measurements are available, the full inertia matrix would be observable

and should have a three degree of freedom parameterization. This may be possible

by added the natural logarithm of the scale factor as a Gaussian random variable.

If the above approach allows the estimation of applied forces and torques, as well

the incorporation of known measurements of some of the forces and torques, this
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would allow for a widely applicable dynamic localization and mapping algorithm.

This could handle a number of automotive, ground, underwater and aerial robotic

perception applications. If some of these force and torque values were known, even

with low accuracy, this could provide the basis for estimating the scale factor of the

inertia matrix as well as the mass of the target object. This could provide tremendous

assistance in robotic planning and manipulation of unknown objects.
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Appendix A

Spinning Pliers on the

International Space Station

On March 12, 2013, astronaut Kevin Ford performed a demonstration of rotational

dynamics by spinning a set of diagonal pliers in the microgravity environment of the

International Space Station. Since there is no gravity, the pliers “hang” in space

for a long period of time where the full three-dimensional rotational motion can be

accurately observed. It is very difficult to build an apparatus on earth to simulate

the equivelant motion. An image from this demonstration is shown in Figure A-1.
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Figure A-1: Kevin Ford Spinning a Set of Diagonal Pliers on the ISS

The reason for using the diagonal pliers to demonstrate this motion is that by

changing the angle of the pliers, the mass distribution, and therefore the inertia

properties can be easily changed. It is actually possible to switch the minor and

intermediate spin axes as shown in Figure A-2.

Figure A-2: Diaganol Pliers and their Adjustable Inertia Properties
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The first demonstration that Ford performed was a spin about the minor axis

with the pliers almost mostly closed (i.e. the right hand side of Figure A-2). It is

clear from the video that the pliers maintained a spin about the minor axis, but

the spin axis slowly moved in a circle, or “wobbled”. This is known as torque free

precession. Because the spin is about a minor axis, this precession will occur in the

same direction as the direction of spin (for a major axis spin the precession direction

will be reversed). This type of motion should appear very similar to the wobble of a

football that is not thrown with a perfect spiral.

The second demonstration that Ford performed was a spin about the major axis.

Due to the higher inertia, this spin was visibly slower than the minor axis spin previ-

ously shown. From the video it is not clearly visible whether there was any “wobble”,

but if there was, it would be in the opposite direction of the spin, which is known

as retrograde torque free precession. This spin should appear to be very similar to a

frisbee type of flat spin.

The third demonstration that Ford performed was a spin about the intermediate

axis with the pliers mostly closed (i.e. the right hand side of Figure A-2). This motion

is known to be unstable. It was initiated with a flipping motion, however, unless the

flip occurs exactly about the intermediate axis ,with no motion about any other axis,

the unstable dynamics will always introduce a periodic twisting motion.

The reason for this twisting motion is that the angular velocity vector will always

remain stationary in an inertial frame. This is due to the conservation of angular mo-

mentum. In the case of Ford’s demonstration, the angular velocity vector is pointing

towards the aft direction of the ISS and never changes while the pliers are spinning

freely. However, because the intermediate axis is unstable, while the major axis is

stable, the pliers try to twist over so that the major axis is aligned with the angular

velocity vector. Since the system has nothing to slow it down (i.e. no mechanical

damping) this twisting motion will always overshoot its target and will try over and

over again in a periodic fashion to align the major axis with the angular velocity

vector in the inertial frame.

After some discussion on the radio and demonstrating another minor axis spin,

269



Ford adjusts the angle of the diagonal pliers so that they are spread out as in the left

hand side of Figure A-2, thereby changing their inertial properties. Ford performs his

fourth demonstration: a spin about the new intermediate axis (i.e. the old minor axis).

As in the third demonstration, this spin is unstable. Note that the angular velocity

vector is now pointing towards the overhead direction. If the video were rotated

90 degrees clockwise, a similar pattern to the motion would be evident. While the

angular velocity vector always stays in the same direction with respect to the inertial

frame of the International Space Station, the pliers try to flip in an attempt to get the

stable major axis aligned with the angular velocity vector. However, they repeatedly

overshoot their target and have try again and again at regular periodic intervals

governed by Equation 4.86.

Ford continues to demonstrate intermediate axis spins while fine tuning the angle

of the diagonal pliers, which shows that the period of the flipping can be adjusted by

changing the inertial properties. Additionally, he finds the exact angle where the spin

axis switches from an intermediate to a minor axis of inertia (i.e. the cutoff angle

between the right and left sides of Figure A-2).
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Appendix B

Source Code

B.1 Matlab Code for Tumbling versus Spinning

Threshold

Listing B.1: Matlab Spinning Script
1 close all; clear all; clc;
2 sel = 2; %select variable
3 if (sel == 1)
4 %SPHERES Goggles Inspection
5 r = 0.7;
6 m = 4.16 + 1.75;
7 Fmax = 0.22;
8 Isp = 37.7; %CO2
9 Mf = .17/m;

10 t = 5*60;
11 elseif (sel == 2)
12 %Orbital Express
13 r = 12;
14 m = 900;
15 Fmax = 3*3.6;
16 Isp = 235;
17 Mf = 5.0/m;
18 t = 120*60;
19 end
20

21 [ w_F, w_Mf, w_min] = ...
22 spinning_tumbling_threshold( r, m, Fmax, Isp, t, Mf)
23

24 radpersec2rpm = 60/(2*pi);
25

26 W_F = radpersec2rpm * w_F
27 W_Mf = radpersec2rpm * w_Mf
28 W_min = radpersec2rpm * w_min
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Listing B.2: Matlab Tumbling Threshold
1 function [ w_F, w_Mf, w_min ] = ...
2 spinning_tumbling_threshold( r, m, Fmax, Isp, t, Mf)
3 % INPUT PARAMETERS:
4 % r: station keeping radius (m)
5 % m: inspector satellite mass (kg)
6 % Fmax: maximum force inspector can apply (N)
7 % Isp: specific impulse of inspector propulsion system (s)
8 % t: duration of station keeping (s)
9 % Mf: maximum mass fraction ratio that can be spent on centripetal

10 % force (ratio: 0 ≤ Mf ≤ 1)
11 %
12 % OUTPUT PARAMETERS:
13 % w_F: the angular velocity threshold that corresponds to saturating
14 % the inspector propulsion system (rad/s)
15 % w_Mf: the angular velocity threshold that corresponds to requiring
16 % a mass fraction of exactly Mf (rad/s)
17 % w_min: angular velocity threshold between tumbling and spinning for
18 % this mission configuration (rad/s)
19

20 %%
21 g0 = 9.81;
22

23 w_F = sqrt(Fmax / (r*m));
24

25 w_Mf = sqrt(-(g0*Isp)/(r*t) *log(1 - Mf));
26

27 w_min = min(w_F, w_Mf);
28 end
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B.2 Matlab Code for Nonlinear Observability Test

of Inertia Matrix

Listing B.3: Matlab Inertia Observability
1 close all; clear all; clc;
2 reset(symengine);
3 syms wx wy wz Jx Jy Jz real
4 %set up variables and functions in control affine form
5

6 dwx = (Jy - Jz)/Jx * wy * wz;
7 dwy = (Jz - Jx)/Jy * wz * wx;
8 dwz = (Jx - Jy)/Jz * wx * wy;
9

10 dJx = 0;
11 dJy = 0;
12 dJz = 0;
13

14 X = [wx; wy; wz; Jx; Jy; Jz]
15 f = [dwx; dwy; dwz; dJx; dJy; dJz]
16 h = [wx; wy; wz]
17

18 %%
19 %compute Lie derivatives
20 L0_h = h
21 d_L0_h = jacobian(L0_h,X)
22

23 L1_h = jacobian(L0_h,X) * f
24 d_L1_h = jacobian(L1_h,X)
25

26 L2_h = jacobian(L1_h,X) * f
27 d_L2_h = jacobian(L1_h,X)
28

29 L3_h = jacobian(L2_h,X) * f
30 d_L3_h = jacobian(L2_h,X)
31

32 %%
33 % set up observability matrix
34 O = [d_L0_h; d_L1_h ]
35

36 %%
37 %compute observability properties
38 osize = size(O)
39 obs_rank = rank(O)
40 dim_X = size(X)
41

42 %%
43 %compute null space and row space
44 nu = null(O)
45 r = rref(O)
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B.3 Bash Code for VERTIGO GUI Data Down-

load and Reconstruction

Listing B.4: Tar and Split of Results Data Files
1 echo "Version 2.0 "
2

3 GID=$(cat /opt/GogglesDaemon/SIGNATURE)
4 TIME=$(date -u '+%Y-%m-%d_%H-%M-%S')
5

6 cd /home/
7 echo "Iterating through GPF_ directories... "
8 for DIR in `ls ./ | grep GPF | grep -v GPF_DIR`
9 do

10 if [ -d "$DIR" ]; then
11 echo $DIR
12 SYSCALL="sudo mkdir "/home/Results/$DIR-$TIME""
13 echo "$SYSCALL"
14 $SYSCALL
15

16 sudo mv /home/$DIR/Results/* /home/Results/$DIR-$TIME/
17 fi
18 done
19

20 cd /home/Results/
21

22 echo "Copying Log Files... "
23 sudo cp -RL /opt/GogglesDaemon/GogglesLogFiles /home/Results
24

25 echo "Creating Tar File... "
26 sudo tar cf /home2/TempResults/Vertigo_Data.tar *
27

28 echo "Splitting Tar File... "
29 sudo split -d --suffix-length=5 --bytes=50M /home2/TempResults/Vertigo_Data.tar /home/

TempResults/Vertigo_Data_$TIME"_GID_"$GID"_"
30 sudo rm /home2/TempResults/Vertigo_Data.tar
31

32 for f in /home/TempResults/Vertigo_Data_*
33 do
34 sudo mv $f $f".sdf"
35 done
36

37 echo "Computing CheckSum... "
38 sudo md5sum /home/TempResults/* > /home/TempResults/Vertigo_Data_$TIME"_GID_"$GID"_MD5

.sdf"
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Listing B.5: FTP Download Command
1 goggles
2 vertigo1
3 cd /home/TempResults
4 binary
5 prompt n
6 lcd Q:\SPHERES\Data
7 mget Vertigo_Data_*
8 quit

Listing B.6: FTP Download Command
1 #!/bin/bash
2 echo VERTIGO MAINTENTANCE
3 echo "*** Check Data Files"
4 DIR=$1
5 OLD_DIR=$(pwd)
6 cd $DIR
7 pwd
8 md5sum -c Vertigo_Data_*_MD5.sdf
9 cd $OLD_DIR

10 echo VERTIGO MAINTENTANCE COMPLETE

Listing B.7: FTP Download Command
1 #!/bin/bash
2 echo VERTIGO MAINTENTANCE
3 echo "*** Rebuild Data Files"
4 echo "Use only 1 set of split files in this directory"
5 DIR=$1
6 OLD_DIR=$(pwd)
7 cd $DIR
8 pwd
9 cat Vertigo_Data_*_GID_*_0*.sdf > Vertigo_Data.tar

10 tar --ignore-failed-read -xvif Vertigo_Data.tar &> untar_output.txt
11 rm Vertigo_Data.tar
12 cd $OLD_DIR
13 echo VERTIGO MAINTENTANCE COMPLETE
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B.4 Goggles Guest Scientist Code for Camera Cal-

ibration

Listing B.8: Camera Calibration: testproject.cpp

breaklines

1 #include "testproject.h"

2

3 #include <iostream>

4

5 using namespace std;

6

7 testproject *test = NULL;

8

9 void terminateHandlerHelper(int sig)

10 {

11 test->terminateHandler(sig);

12 }

13

14 void preInit()

15 {

16 test = new testproject;

17

18 signal(SIGTERM, terminateHandlerHelper);

19 signal(SIGABRT, terminateHandlerHelper);

20 signal(SIGINT, terminateHandlerHelper);

21

22 }

23

24

25

26 int main (int argc, char *argv[])

27 {

28 preInit();

29

30 test->runMain(argc, argv);

31

32 delete test;

33 return 0;

34

35 }
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Listing B.9: Camera Calibration: testproject.h

1 #ifndef _TESTPROJECT_H_

2 #define _TESTPROJECT_H_

3

4 #include "gogglesGSP.h"

5 #include "GSsupportingFiles/stereoCalib.h"

6 #include "GSsupportingFiles/additionalGuestscientistCode.h"

7 //#include "GSsupportingFiles/reproject.h"

8 #include <stereoSAD.h>

9 #include <iostream>

10 #include <iomanip>

11 #include <sstream>

12 #include <string>

13 #include <cstring>

14 #include <math.h>

15 #include <fstream>

16 #include <string>

17 #include <dirent.h>

18 #include <sys/time.h>

19 #include <sys/resource.h>

20 #include <sys/stat.h>

21

22 #include <opencv2/opencv.hpp>

23

24 #define CALIBRATION_WINDOW_NAME "Camera Calibration"

25 //#define CHESS_WIDTH 8

26 //#define CHESS_HEIGHT 6

27 #define CHESS_WIDTH 11

28 #define CHESS_HEIGHT 6

29

30 #define GOOD_COLOR CV_RGB(0x00,0xFF,0x00)

31 #define BAD_COLOR CV_RGB(0xFF,0x7F,0x00)

32 #define NORMAL_COLOR CV_RGB(0xFF,0xFF,0xFF)

33 #define GUIDE_COLOR CV_RGB(0x00,0xFF,0x00)

34 #define S_LINE_COLOR CV_RGB(0x00,0xFF,0xFF)

35 #define BKGD_COLOR CV_RGB(0xFF,0xFF,0xFF)

36 #define TEXT_COLOR CV_RGB(0x00,0x00,0x00)

37

38 #define MINVAL 0

39 #define MAXVAL 1

40

41

42 typedef struct {

43 float horz_translation[2];

44 float vert_translation[2];
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45 float depth_translation[2];

46 float rot_roll[2];

47 float rot_pitch[2];

48 float rot_yaw[2];

49 float focal_len[2];

50 float square_size[2];

51 } limit_struct;

52

53 #define inRange(limits,value) limits[MINVAL] ≤ value && value ≤ limits[MAXVAL]

54

55 using namespace cv;

56

57 class testproject : public gogglesGSP {

58

59 // own declaration go here

60 char key;

61 int numGoodImages;

62 int numImageSet;

63 int maneuverNumber;

64 int maxCalibrationIterations;

65 double maxCalibrationChange;

66 FileStorage fs;

67 int minimumNumberImages;

68 stringstream ImgListFilename;

69

70 pthread_mutex_t keymutex;

71 unsigned char charKey;

72

73 bool performedCalibration;

74 bool useImagesFromFile;

75

76 string currentCalibImageDir;

77 GuestScientistClass guestscientistclass;

78

79 Rectifier newRectifier;

80

81 // bool useReprojection;

82 // ReprojectClass reprojection;

83 bool runningReproject;

84

85 limit_struct limits;

86

87 Mat smallImg;

88

89 //video buffers
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90 MatVideoBuffer checkoutCalibrationVideoBuffer;

91 MatVideoBuffer goodExampleBuffer;

92 MatVideoBuffer badExampleBuffer;

93

94 pthread_mutex_t backgroundMutex;

95 bool computeCalibrationBackground;

96 bool runningCalibration;

97

98 //video saving

99 bool saveflag;

100 int savedircount, saveimagecount;

101 string saveImageDir;

102

103 //stored videos

104 vector<Mat> imgVec_goodEx_capCalib;

105 vector<Mat> imgVec_badEx_capCalib;

106 vector<Mat> imgVec_goodEx_metrics;

107 vector<Mat> imgVec_badEx_metrics;

108 vector<Mat> imgVec_goodEx_poseEst;

109 vector<Mat> imgVec_badEx_poseEst;

110 vector<Mat> imgVec_goodEx_depth;

111 vector<Mat> imgVec_badEx_depth;

112

113 int storedFrameCountGood, storedFrameCountBad;

114

115 string dir_storedImages_goodEx_capCalib;

116 string dir_storedImages_badEx_capCalib;

117 string dir_storedImages_goodEx_metrics;

118 string dir_storedImages_badEx_metrics;

119 string dir_storedImages_goodEx_poseEst;

120 string dir_storedImages_badEx_poseEst;

121 string dir_storedImages_goodEx_depth;

122 string dir_storedImages_badEx_depth;

123

124 public:

125

126 testproject () {

127 numGoodImages = 0;

128 numImageSet = 0;

129 maneuverNumber = 4;

130 minimumNumberImages = 60;

131 newRectifier = Rectifier();

132 maxCalibrationIterations = 30;

133 maxCalibrationChange = 1.0e-6;

134
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135 //default limits

136 limits.horz_translation[MAXVAL] = -8.60;

137 limits.horz_translation[MINVAL] = -9.40;

138 limits.vert_translation[MAXVAL] = 0.50;

139 limits.vert_translation[MINVAL] = -0.50;

140 limits.depth_translation[MAXVAL] = 0.50;

141 limits.depth_translation[MINVAL] = -0.50;

142

143 limits.rot_roll[MAXVAL] = 1.0;

144 limits.rot_roll[MINVAL] = -1.0;

145 limits.rot_pitch[MAXVAL] = 1.0;

146 limits.rot_pitch[MINVAL] = -1.0;

147 limits.rot_yaw[MAXVAL] = 1.0;

148 limits.rot_yaw[MINVAL] = -1.0;

149

150 limits.focal_len[MAXVAL] = 3.0;

151 limits.focal_len[MINVAL] = 2.7;

152 limits.square_size[MAXVAL] = 2.8;

153 limits.square_size[MINVAL] = 2.3;

154

155 pthread_mutex_init(&keymutex, NULL);

156 pthread_mutex_init(&backgroundMutex,NULL);

157

158 performedCalibration = false;

159

160

161 computeCalibrationBackground = false;

162 runningCalibration = false;

163

164 useImagesFromFile = false;

165

166 saveflag = false;

167 savedircount = 0;

168 saveimagecount = 0;

169

170 storedFrameCountGood = 0;

171 storedFrameCountBad = 0;

172

173 saveimagecount = 0;

174

175

176 }

177

178 void loadStoredImages(string directory, vector<Mat>& img_vec) {

179 stringstream tempfilename;
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180 Mat tempmat;

181 tempfilename.str("");

182 for (int i = 0; i < 2048; i++) {

183 tempfilename << directory << "/img" << i << ".jpg";

184 tempmat = imread(tempfilename.str());

185 if (tempmat.empty()) {

186 //cout << "Number: " << i << " is empty." << endl;

187 break;

188 } else {

189 img_vec.push_back(tempmat);

190 }

191 tempfilename.str("");

192 }

193 cout << directory << " - Number of files: " << img_vec.size() << endl;

194 }

195

196 void GSsetup(){

197

198 ////////// Guest Scientist initialization calls go here

199 // namedWindow(CALIBRATION_WINDOW_NAME, CV_WINDOW_AUTOSIZE);

200

201 // cout << "This Program is an example TestProject" << endl;

202

203 string dataPath = this->datastorage.getGSdatastoragePath();

204

205

206 cout << "Data Location: " << dataPath << endl;

207

208 rectifier.rectifierOn = false;

209

210 cout << cameras.getExposureTime() << " " << cameras.getFrameRate() << endl;

211

212 rectifier.calcRectificationMaps(this->cameras.getImageWidth(), this->cameras.

getImageHeight(), this->calibParamDir);

213 newRectifier.calcRectificationMaps(this->cameras.getImageWidth(), this->

cameras.getImageHeight(), this->calibParamDir);

214 guestscientistclass.updatePhotogrammetry(newRectifier);

215

216 videostreaming.createNew_MatVideoBuffer(checkoutCalibrationVideoBuffer, "

Checkout & Calibration");

217 videostreaming.setAsDefaultVideoMode(checkoutCalibrationVideoBuffer);

218 videostreaming.createNew_MatVideoBuffer(goodExampleBuffer, "Good Example (KEYS

DISABLED)");

219 videostreaming.createNew_MatVideoBuffer(badExampleBuffer, "Bad Example (KEYS

DISABLED)");
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220

221

222 useBackgroundTask = true;

223

224 loadStoredImages(this->dir_storedImages_goodEx_capCalib, this->

imgVec_goodEx_capCalib);

225 loadStoredImages(this->dir_storedImages_badEx_capCalib, this->

imgVec_badEx_capCalib);

226 loadStoredImages(this->dir_storedImages_goodEx_metrics, this->

imgVec_goodEx_metrics);

227 loadStoredImages(this->dir_storedImages_badEx_metrics, this->

imgVec_badEx_metrics);

228 loadStoredImages(this->dir_storedImages_goodEx_poseEst, this->

imgVec_goodEx_poseEst);

229 loadStoredImages(this->dir_storedImages_badEx_poseEst, this->

imgVec_badEx_poseEst);

230 loadStoredImages(this->dir_storedImages_goodEx_depth, this->

imgVec_goodEx_depth);

231 loadStoredImages(this->dir_storedImages_badEx_depth, this->imgVec_badEx_depth)

;

232

233 saveImageDir = this->datastorage.getGSdatastoragePath();

234

235 }

236

237 void setupCalibrationCapture() {

238 char newdirname[200];

239 sprintf(newdirname, "ImageSet%d", numImageSet);

240

241 if (this->useImagesFromFile == false) {

242 currentCalibImageDir = this->datastorage.newGSDataDirectory(newdirname);

243 } else {

244 cout << "Current Calib Name: " << currentCalibImageDir << endl;

245 printf("Directories for image only mode not yet implemented\n");

246 }

247

248 ImgListFilename.str("");

249 ImgListFilename << currentCalibImageDir << "/imglist.yaml";

250 fs = FileStorage(ImgListFilename.str(), FileStorage::WRITE);

251 fs << "images" << "[";

252

253 }

254

255 void captureCalibrationImages(Mat& leftImage, Mat& rightImage) {

256 Mat outImg;
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257 vector<Point2f> pointbuf1, pointbuf2;

258 stringstream filename1, filename2;

259 stringstream filename3;

260

261 equalizeHist(leftImage, leftImage);

262 equalizeHist(rightImage, rightImage);

263

264 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

265

266 //place two images side by side

267 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

268 outImg = BKGD_COLOR;

269 Mat outImgLeft = outImg( Rect(0, 0, leftImage.cols, leftImage.rows) );

270 Mat outImgRight = outImg( Rect(leftImage.cols, 0, rightImage.cols, rightImage.

rows) );

271

272 cvtColor( leftImage, outImgLeft, CV_GRAY2BGR );

273 cvtColor( rightImage, outImgRight, CV_GRAY2BGR );

274

275 //find chessboard

276 bool patternfoundLeft = findChessboardCorners(leftImage, Size(CHESS_WIDTH,

CHESS_HEIGHT), pointbuf1, CV_CALIB_CB_ADAPTIVE_THRESH +

CV_CALIB_CB_FAST_CHECK /*+ CV_CALIB_CB_NORMALIZE_IMAGE*/ +

CV_CALIB_CB_FILTER_QUADS);

277 bool patternfoundRight = findChessboardCorners(rightImage, Size(CHESS_WIDTH,

CHESS_HEIGHT), pointbuf2, CV_CALIB_CB_ADAPTIVE_THRESH +

CV_CALIB_CB_FAST_CHECK /*+ CV_CALIB_CB_NORMALIZE_IMAGE*/ +

CV_CALIB_CB_FILTER_QUADS);

278

279 if(patternfoundLeft)

280 cornerSubPix(leftImage, pointbuf1, Size(5, 5), Size(-1, -1), TermCriteria(

CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

281

282 if(patternfoundRight)

283 cornerSubPix(rightImage, pointbuf2, Size(5, 5), Size(-1, -1), TermCriteria(

CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

284

285 drawChessboardCorners(outImgLeft, Size(CHESS_WIDTH,CHESS_HEIGHT), Mat(

pointbuf1), patternfoundLeft);

286 drawChessboardCorners(outImgRight, Size(CHESS_WIDTH,CHESS_HEIGHT), Mat(

pointbuf2), patternfoundRight);

287

288 //flip images about vertical axis

289 flip(outImgLeft, outImgLeft,1);
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290 flip(outImgRight, outImgRight,1);

291

292 //display text

293 Point org;

294 // CvScalar textcolor;

295 if (numGoodImages ≥ minimumNumberImages) {

296 //Finish

297 org.x = 1020;

298 org.y = leftImage.rows + 13;

299 stringstream finishText;

300 // textcolor = CV_RGB(0,255,0);

301 finishText << "PRESS F TO FINISH CAPTURING";

302 putText(outImg, finishText.str(), org, FONT_HERSHEY_SIMPLEX,

303 0.5, //fontScale (double)

304 TEXT_COLOR, //color

305 1, //thickness (

306 CV_AA, //linetype

307 false); //bottom left origin

308

309 circle(outImg, Point(240,leftImage.rows+8), 5,GOOD_COLOR,-1, CV_AA);

310

311 } else {

312 circle(outImg, Point(240, leftImage.rows+8), 5,BAD_COLOR,-1, CV_AA);

313 // textcolor = CV_RGB(0,255,255);

314 }

315

316 //number of images

317 org.x = 10;

318 org.y = leftImage.rows + 13;

319 stringstream imgCntText;

320 imgCntText << "NUMBER OF IMAGES: " << numGoodImages << "/" <<

minimumNumberImages;

321 putText(outImg, imgCntText.str(), org, FONT_HERSHEY_SIMPLEX,

322 0.5, //fontScale (double)

323 TEXT_COLOR, //color

324 1, //thickness (

325 CV_AA, //linetype

326 false); //bottom left origin

327

328 //spacebar

329 org.x = 480;

330 org.y = leftImage.rows + 13;

331 stringstream spacebarText;

332 spacebarText << "PRESS SPACEBAR TO CAPTURE IMAGES";

333 putText(outImg, spacebarText.str(), org, FONT_HERSHEY_SIMPLEX,

284



334 0.5, //fontScale (double)

335 TEXT_COLOR, //color

336 1, //thickness (

337 CV_AA, //linetype

338 false); //bottom left origin

339

340 //// Display Rectified Images

341 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

342

343 videostreaming.update_MatVideoBuffer(goodExampleBuffer, this->

imgVec_goodEx_capCalib[storedFrameCountGood]);

344 videostreaming.update_MatVideoBuffer(badExampleBuffer, this->

imgVec_badEx_capCalib[storedFrameCountBad]);

345 if (goodExampleBuffer.active)

346 storedFrameCountGood = (storedFrameCountGood + 1) % this->

imgVec_goodEx_capCalib.size();

347 if (badExampleBuffer.active)

348 storedFrameCountBad = (storedFrameCountBad + 1) % this->

imgVec_badEx_capCalib.size();

349

350 if (saveflag) {

351 filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".png";

352 imwrite(filename3.str(), outImg);

353 //printf("Saved File: %s\n", filename3.str().c_str());

354

355 }

356

357 pthread_mutex_lock(&keymutex);

358 if (charKey == 0x1B) { // ESC

359 printf("Quitting...\n");

360 shutdownCriterion = true;

361 } else if (charKey == 0x20 && checkoutCalibrationVideoBuffer.active) { //

Spacebar

362

363 if (patternfoundLeft && patternfoundRight) {

364 numGoodImages++;

365 filename1 << currentCalibImageDir << "/Left" << numGoodImages << ".bmp

";

366 filename2 << currentCalibImageDir << "/Right" << numGoodImages << ".

bmp";

367 imwrite(filename1.str(), leftImage);

368 imwrite(filename2.str(), rightImage);

369 printf("Saved: %s, %s\n", filename1.str().c_str(), filename2.str().

c_str());

370
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371 stringstream leftName, rightName;

372 leftName << "Left" << numGoodImages << ".bmp";

373 rightName << "Right" << numGoodImages << ".bmp";

374 fs << leftName.str();

375 fs << rightName.str();

376 }

377

378 } else if (numGoodImages ≥ minimumNumberImages && (charKey == 0x46 || charKey

== 0x66)&& checkoutCalibrationVideoBuffer.active) { //f or F

379 fs << "]";

380 fs.release();

381 maneuverNumber = 3;

382 storedFrameCountGood = 0;

383 storedFrameCountBad = 0;

384 }

385 charKey = 0x00;

386 pthread_mutex_unlock(&keymutex);

387 }

388

389 void displayComputeCalibration(Mat& leftImage, Mat& rightImage) {

390 Mat outImg;

391 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

392 stringstream filename3;

393

394 //place two images side by side

395 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

396 outImg = BKGD_COLOR;

397 //Finish

398 stringstream waitText;

399 waitText << "Computing Camera Calibration";

400 putText(outImg, waitText.str(), Point(30,100), FONT_HERSHEY_SIMPLEX,1.0,

TEXT_COLOR,2,CV_AA,false);

401 waitText.str("");

402 waitText << "Please Wait...";

403 putText(outImg, waitText.str(), Point(30,200), FONT_HERSHEY_SIMPLEX,1.0,

TEXT_COLOR,2,CV_AA,false);

404

405 Mat outImgRight = outImg( Rect(leftImage.cols, 0, rightImage.cols, rightImage.

rows) );

406 cvtColor( rightImage, outImgRight, CV_GRAY2BGR );

407

408 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

409

410 if (saveflag) {
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411 //too much data

412 //filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".bmp

";

413 //imwrite(filename3.str(), outImg);

414 //printf("Saved File: %s\n", filename3.str().c_str());

415

416 }

417

418 pthread_mutex_lock(&keymutex);

419 if (charKey == 0x1B) { // ESC

420 printf("Quitting...\n");

421 shutdownCriterion = true;

422 }

423 charKey = 0x00;

424 pthread_mutex_unlock(&keymutex);

425 }

426

427 void computeCalibration(Mat& leftImage, Mat& rightImage) {

428

429 displayComputeCalibration(leftImage,rightImage);

430

431 pthread_mutex_lock(&backgroundMutex);

432 if (computeCalibrationBackground == false && runningCalibration == false) {

433 //not yet started

434 std::time_t result = std::time(NULL);

435 std::cout << "Starting Calibration Computation: " << std::asctime(std::

localtime(&result));

436 computeCalibrationBackground = true;

437 runningCalibration = true;

438 } else if (runningCalibration = true && computeCalibrationBackground == false)

{

439 //run complete - move on to next maneuver

440 runningCalibration = false;

441 performedCalibration = true;

442 maneuverNumber = 4;

443 std::time_t result = std::time(NULL);

444 std::cout << "Completed Calibration Computation: " << std::asctime(std::

localtime(&result));

445

446 } else if (runningCalibration = true && computeCalibrationBackground == true)

{

447 //middle of run

448 //do nothing

449 }

450 pthread_mutex_unlock(&backgroundMutex);
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451 }

452

453 void GSbackgroundTask() {

454 // printf("Background task\n");

455 pthread_mutex_lock(&backgroundMutex);

456 if (computeCalibrationBackground) {

457 pthread_mutex_unlock(&backgroundMutex);

458 Size boardSize;

459 // printf("Background task is calibrating\n");

460 Size imageSize;

461 string imagelistfn;

462 vector<string> imagelist;

463 vector<vector<Point2f> > imagePoints[2];

464 vector<vector<Point3f> > objectPoints;

465 vector<string> goodImageList;

466

467 float rms_error, reprojection_error;

468 int nimages;

469

470 boardSize = Size(CHESS_WIDTH, CHESS_HEIGHT);

471

472 printf("Calibrating(%s)...\n", ImgListFilename.str().c_str());

473 bool ok = initStereoCalib(ImgListFilename.str(), imagelist,

currentCalibImageDir,

474 boardSize, imagePoints, objectPoints, imageSize, goodImageList, &

nimages);

475

476

477 boardSize = Size(CHESS_WIDTH,CHESS_HEIGHT);

478 StereoCalib(imagelist, boardSize, /*true, false,*/ rectifier,

currentCalibImageDir,

479 imagePoints, objectPoints, imageSize, goodImageList,

480 maxCalibrationIterations, maxCalibrationChange,

481 &rms_error, &reprojection_error);

482

483 rectifier.calcRectificationMaps(this->cameras.getImageWidth(), this->

cameras.getImageHeight(), this->calibParamDir);

484 newRectifier.calcRectificationMaps(this->cameras.getImageWidth(), this->

cameras.getImageHeight(), currentCalibImageDir.c_str());

485 guestscientistclass.updatePhotogrammetry(newRectifier);

486

487 // printf("Completed Calibration in Thread\n");

488

489 pthread_mutex_lock(&backgroundMutex);

490 computeCalibrationBackground = false;
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491 }

492 pthread_mutex_unlock(&backgroundMutex);

493 }

494

495 void displayCalibrationMetrics(Mat& leftImage, Mat& rightImage) {

496 Mat outImg;

497 Mat Rnew, Tnew, M1new, D1new, M2new, D2new;

498 Mat Rold, Told, M1old, D1old, M2old, D2old;

499 double roll, pitch, yaw;

500 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

501 int leftboundary = 20;

502 int yoffset = 70;

503 stringstream filename3;

504

505 //place two images side by side

506 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

507 outImg = BKGD_COLOR;

508 //Finish

509 stringstream waitText;

510 waitText << "Camera Calibration Values: ";

511 putText(outImg, waitText.str(), Point(leftboundary,50), FONT_HERSHEY_SIMPLEX

,1.0, TEXT_COLOR,2,CV_AA,false);

512

513 rectifier.getCameraParameters(Rold, Told, M1old, D1old, M2old, D2old);

514 newRectifier.getCameraParameters(Rnew, Tnew, M1new, D1new, M2new, D2new);

515

516

517 waitText.str("");

518 waitText << std::fixed << std::setprecision(2) << "Translation between Cameras

:";

519 putText(outImg, waitText.str(), Point(leftboundary+20,yoffset+30),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

520

521 waitText.str("");

522 waitText << std::fixed << std::setprecision(2) << "Horizontal: "

523 << 2.54*Tnew.at<double>(0,0) << " cm";

524 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+50),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

525 circle(outImg, Point(leftboundary+30,yoffset+45), 5,

526 inRange(limits.horz_translation, 2.54*Tnew.at<double>(0,0)) ?

GOOD_COLOR : BAD_COLOR,

527 -1, CV_AA);

528

529 waitText.str("");
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530 waitText << std::fixed << std::setprecision(2) << "Vertical: "

531 << 2.54*Tnew.at<double>(1,0) << " cm";

532 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+70),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

533 circle(outImg, Point(leftboundary+30,yoffset+65), 5,

534 inRange(limits.vert_translation, 2.54*Tnew.at<double>(1,0)) ?

GOOD_COLOR : BAD_COLOR,

535 -1, CV_AA);

536

537 waitText.str("");

538 waitText << std::fixed << std::setprecision(2) << "Depth: "

539 << 2.54*Tnew.at<double>(2,0) << " cm";

540 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+90),

FONT_HERSHEY_SIMPLEX,0.5,TEXT_COLOR ,1,CV_AA,false);

541 circle(outImg, Point(leftboundary+30,yoffset+85), 5,

542 inRange(limits.depth_translation, 2.54*Tnew.at<double>(2,0)) ?

GOOD_COLOR : BAD_COLOR,

543 -1, CV_AA);

544

545

546 yaw = atan(Rnew.at<double>(0,1)/Rnew.at<double>(1,1))*180 / M_PI;

547 pitch = -asin(Rnew.at<double>(2,1))*180 / M_PI;

548 roll = atan(Rnew.at<double>(2,0)/Rnew.at<double>(2,2))*180 / M_PI;

549 waitText.str("");

550 waitText << std::fixed << std::setprecision(2) << "Rotation between Cameras:";

551 putText(outImg, waitText.str(), Point(leftboundary+20,yoffset+110),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

552

553 waitText.str("");

554 waitText << std::fixed << std::setprecision(2) << "Roll: "

555 << roll << " degrees";

556 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+130),

FONT_HERSHEY_SIMPLEX,0.5,TEXT_COLOR,1,CV_AA,false);

557 circle(outImg, Point(leftboundary+30,yoffset+125), 5,

558 inRange(limits.rot_roll, roll) ? GOOD_COLOR : BAD_COLOR,

559 -1, CV_AA);

560

561 waitText.str("");

562 waitText << std::fixed << std::setprecision(2) << "Pitch: "

563 << pitch << " degrees";

564 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+150),

FONT_HERSHEY_SIMPLEX,0.5,TEXT_COLOR,1,CV_AA,false);

565 circle(outImg, Point(leftboundary+30,yoffset+145), 5,

566 inRange(limits.rot_pitch, pitch) ? GOOD_COLOR : BAD_COLOR,

567 -1, CV_AA);
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568

569 waitText.str("");

570 waitText << std::fixed << std::setprecision(2) << "Yaw: "

571 << yaw << " degrees";

572 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+170),

FONT_HERSHEY_SIMPLEX,0.5,TEXT_COLOR,1,CV_AA,false);

573 circle(outImg, Point(leftboundary+30,yoffset+165), 5,

574 inRange(limits.rot_yaw, yaw) ? GOOD_COLOR : BAD_COLOR,

575 -1, CV_AA);

576

577 waitText.str("");

578 waitText << std::fixed << std::setprecision(2) << "Camera Lens Parameters:";

579 putText(outImg, waitText.str(), Point(leftboundary+20,yoffset+190),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

580

581 waitText.str("");

582 waitText << std::fixed << std::setprecision(2) << "Focal Length: "

583 << M1new.at<double>(0,0)*0.006 << " mm";

584 putText(outImg, waitText.str(), Point(leftboundary+40,yoffset+210),

FONT_HERSHEY_SIMPLEX,0.5,TEXT_COLOR,1,CV_AA,false);

585 circle(outImg, Point(leftboundary+30,yoffset+205), 5,

586 inRange(limits.focal_len, M1new.at<double>(0,0)*0.006) ? GOOD_COLOR :

BAD_COLOR,

587 -1, CV_AA);

588

589

590 waitText.str("");

591 waitText << "PRESS N FOR NEXT SCREEN";

592 putText(outImg, waitText.str(), Point(1020,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

593

594 waitText.str("");

595 waitText << "PRESS R TO REDO CALIBRATION";

596 putText(outImg, waitText.str(), Point(400,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

597

598 waitText.str("");

599 waitText << "PRESS A TO ACCEPT";

600 putText(outImg, waitText.str(), Point(750,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

601

602

603 //send to video buffer

604 // Mat bigOutImg;

605 // pyrUp(outImg, bigOutImg, Size(outImg.cols*2, outImg.rows*2));
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606 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

607

608 videostreaming.update_MatVideoBuffer(goodExampleBuffer, this->

imgVec_goodEx_metrics[storedFrameCountGood]);

609 videostreaming.update_MatVideoBuffer(badExampleBuffer, this->

imgVec_badEx_metrics[storedFrameCountBad]);

610 if (goodExampleBuffer.active)

611 storedFrameCountGood = (storedFrameCountGood + 1) % this->

imgVec_goodEx_metrics.size();

612 if (badExampleBuffer.active)

613 storedFrameCountBad = (storedFrameCountBad + 1) % this->

imgVec_badEx_metrics.size();

614

615 // cout << "Stored count good/bad: " << storedFrameCountGood << ", " <<

storedFrameCountBad << endl;

616 // cout << "Good Vector size: " << this->imgVec_goodEx_metrics.size() << endl;

617 // cout << "Bad Vector size: " << this->imgVec_badEx_metrics.size() << endl;

618

619 if (saveflag) {

620 filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".png";

621 imwrite(filename3.str(), outImg);

622 // printf("Saved File: %s\n", filename3.str().c_str());

623

624 }

625

626 pthread_mutex_lock(&keymutex);

627 if ((charKey == 0x4E || charKey == 0x6E) && checkoutCalibrationVideoBuffer.

active) { // N

628 //next screen

629 maneuverNumber = 5;

630 storedFrameCountGood = 0;

631 storedFrameCountBad = 0;

632 } else if ((charKey == 0x50 || charKey == 0x70)&&

checkoutCalibrationVideoBuffer.active) { // P

633 //previous screen

634 maneuverNumber = 4; //can't go further back

635 } else if ((charKey == 0x41 || charKey == 0x61)&&

checkoutCalibrationVideoBuffer.active) { // A

636 //previous screen

637 maneuverNumber = 8;

638 } else if ((charKey == 0x52 || charKey == 0x72)&&

checkoutCalibrationVideoBuffer.active) { // R

639 numImageSet++;

640 numGoodImages = 0;

641 newRectifier = Rectifier();
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642 maneuverNumber = 1;

643 storedFrameCountGood = 0;

644 storedFrameCountBad = 0;

645 } else if (charKey == 0x1B) { // ESC

646 printf("Quitting...\n");

647 shutdownCriterion = true;

648 }

649 charKey = 0x00;

650 pthread_mutex_unlock(&keymutex);

651 }

652

653 void displaySADmap(Mat& leftImage, Mat& rightImage) {

654 Mat disparityImage, outImg;

655 StereoSAD stereosad;

656 stringstream waitText;

657 stringstream filename3;

658

659 Mat Qin, Rin, Tin, R1in, P1in, P2in, R2in, M1in, D1in, M2in, D2in;

660 double Txin, Tyin, Tzin, fin, cxin, cyin;

661

662 newRectifier.getCameraParameters(Qin, Rin, Tin, R1in, P1in, R2in, P2in, M1in,

D1in, M2in, D2in, Txin, Tyin, Tzin,

663 fin, cxin, cyin);

664

665 newRectifier.rectifyImages(leftImage, rightImage);

666 stereosad.computeDisparity(leftImage, rightImage, disparityImage);

667

668 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

669

670 //place two images side by side

671 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

672 outImg = BKGD_COLOR;

673 Mat outImgLeft = outImg( Rect(0, 0, leftImage.cols, leftImage.rows) );

674 Mat outImgRight = outImg( Rect(leftImage.cols, 0, rightImage.cols, rightImage.

rows) );

675

676 cvtColor( leftImage, outImgLeft, CV_GRAY2BGR );

677 cvtColor( disparityImage, outImgRight, CV_GRAY2BGR );

678

679 waitText.str("");

680 waitText << "PRESS P FOR PREVIOUS SCREEN";

681 putText(outImg, waitText.str(), Point(10,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

682
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683 waitText.str("");

684 waitText << "PRESS R TO REDO CALIBRATION";

685 putText(outImg, waitText.str(), Point(400,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

686

687 waitText.str("");

688 waitText << "PRESS A TO ACCEPT";

689 putText(outImg, waitText.str(), Point(750,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

690

691 //send to video buffer

692 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

693

694 videostreaming.update_MatVideoBuffer(goodExampleBuffer, this->

imgVec_goodEx_depth[storedFrameCountGood]);

695 videostreaming.update_MatVideoBuffer(badExampleBuffer, this->

imgVec_badEx_depth[storedFrameCountBad]);

696 if (goodExampleBuffer.active)

697 storedFrameCountGood = (storedFrameCountGood + 1) % this->

imgVec_goodEx_depth.size();

698 if (badExampleBuffer.active)

699 storedFrameCountBad = (storedFrameCountBad + 1) % this->imgVec_badEx_depth

.size();

700

701

702 if (saveflag) {

703 filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".png";

704 imwrite(filename3.str(), outImg);

705 //printf("Saved File: %s\n", filename3.str().c_str());

706

707 }

708

709 //printf("Key: %d\n", charKey);

710 pthread_mutex_lock(&keymutex);

711 if ((charKey == 0x4E || charKey == 0x6E)&& checkoutCalibrationVideoBuffer.

active) { // N

712 //can't go further

713 storedFrameCountGood = 0;

714 storedFrameCountBad = 0;

715 } else if ((charKey == 0x50 || charKey == 0x70)&&

checkoutCalibrationVideoBuffer.active) { // P

716 //previous screen

717 maneuverNumber--;

718 storedFrameCountGood = 0;

719 storedFrameCountBad = 0;
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720 } else if ((charKey == 0x41 || charKey == 0x61)&&

checkoutCalibrationVideoBuffer.active) { // A

721 //previous screen

722 maneuverNumber = 8;

723 } else if ((charKey == 0x52 || charKey == 0x72)&&

checkoutCalibrationVideoBuffer.active) { // R

724 numImageSet++;

725 numGoodImages = 0;

726 newRectifier = Rectifier();

727 maneuverNumber = 1;

728 storedFrameCountGood = 0;

729 storedFrameCountBad = 0;

730 } else if (charKey == 0x1B) { // ESC

731 printf("Quitting...\n");

732 shutdownCriterion = true;

733 }

734 charKey = 0x00;

735 pthread_mutex_unlock(&keymutex);

736 }

737

738 void drawChessboardConnectingLines(Mat& img, vector<Point2f> & leftPoints, vector<

Point2f> & rightPoints) {

739 vector<Point2f>::iterator left_iter, right_iter;

740 Scalar linecolor = S_LINE_COLOR;

741

742 if (leftPoints.size() != rightPoints.size()) {

743 cout << "Error: Point sizes don't match.";

744 return;

745 }

746

747 left_iter = leftPoints.begin();

748 right_iter = rightPoints.begin();

749 do {

750 line(img, *left_iter, *right_iter, linecolor,1, CV_AA);

751 circle(img, *left_iter, 5,linecolor,1, CV_AA);

752 circle(img, *right_iter, 5, linecolor,1, CV_AA);

753 left_iter++;

754 right_iter++;

755 } while (left_iter < leftPoints.end() && right_iter < rightPoints.end());

756 }

757

758 void chessboardPoseEstimation(Mat& leftImage, Mat& rightImage) {

759 Mat matchesImage, outImg;

760 vector<Point2f> pointbuf1, pointbuf2;

761 stringstream waitText;
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762 double roll, pitch, yaw;

763 Mat T;

764 double mean_squares[2];

765 double stddev_squares[2];

766 stringstream filename3;

767

768 int leftboundary = 40;

769 int yoffset = 40;

770

771 equalizeHist(leftImage, leftImage);

772 equalizeHist(rightImage, rightImage);

773

774 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

775

776 //place two images side by side

777 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

778 outImg = BKGD_COLOR;

779 Mat outImgLeft = outImg( Rect(0, 0, leftImage.cols, leftImage.rows) );

780 Mat outImgRight = outImg( Rect(leftImage.cols, 0, rightImage.cols, rightImage.

rows) );

781

782 newRectifier.rectifyImages(leftImage, rightImage);

783

784 cvtColor( leftImage, outImgLeft, CV_GRAY2BGR );

785 // cvtColor( rightImage, outImgRight, CV_GRAY2BGR );

786

787 //find chessboard

788 bool patternfoundLeft = findChessboardCorners(leftImage, Size(CHESS_WIDTH,

CHESS_HEIGHT), pointbuf1, CV_CALIB_CB_ADAPTIVE_THRESH +

CV_CALIB_CB_FAST_CHECK /*+ CV_CALIB_CB_NORMALIZE_IMAGE*/ +

CV_CALIB_CB_FILTER_QUADS);

789 bool patternfoundRight = findChessboardCorners(rightImage, Size(CHESS_WIDTH,

CHESS_HEIGHT), pointbuf2, CV_CALIB_CB_ADAPTIVE_THRESH +

CV_CALIB_CB_FAST_CHECK /*+ CV_CALIB_CB_NORMALIZE_IMAGE*/ +

CV_CALIB_CB_FILTER_QUADS);

790

791 line(outImgLeft, Point2d(0,240), Point2d(640,240), GUIDE_COLOR,6);

792 line(outImgLeft, Point2d(0,120), Point2d(640,120), GUIDE_COLOR,6);

793 line(outImgLeft, Point2d(0,360), Point2d(640,360), GUIDE_COLOR,6);

794

795 waitText.str("");

796 waitText << "Stereo Camera Verification";

797 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+30),

FONT_HERSHEY_SIMPLEX,1.0, TEXT_COLOR,2,CV_AA,false);
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798

799

800 if(patternfoundLeft && patternfoundRight) {

801 cornerSubPix(leftImage, pointbuf1, Size(5, 5), Size(-1, -1), TermCriteria(

CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.1));

802 cornerSubPix(rightImage, pointbuf2, Size(5, 5), Size(-1, -1), TermCriteria(

CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.1));

803

804 drawChessboardConnectingLines(outImgLeft, pointbuf1, pointbuf2);

805 // drawChessboardCorners(outImgLeft, Size(CHESS_WIDTH,CHESS_HEIGHT), Mat(

pointbuf1), patternfoundLeft);

806 // drawChessboardCorners(outImgLeft, Size(CHESS_WIDTH,CHESS_HEIGHT), Mat(

pointbuf2), patternfoundRight);

807

808 guestscientistclass.triangulateChessboard(pointbuf1, pointbuf2, CHESS_WIDTH,

CHESS_HEIGHT, roll, pitch, yaw, T,

809 mean_squares, stddev_squares);

810

811 /*

812 std::cout << "Mean: [" << mean_squares[0] << "," << mean_squares[1]

813 << "]\nStandard Deviation: [" << stddev_squares[0]<< "," <<

stddev_squares[1] << "]\n";

814 */

815

816 waitText.str("");

817 waitText << std::fixed << std::setprecision(2) << "Please CHECK that the

Blue Lines are Horizontal";

818 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+100),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

819 waitText.str("");

820 waitText << std::fixed << std::setprecision(2) << "using the Three Green

Guide Lines";

821 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+130),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

822

823

824 waitText.str("");

825 waitText << std::fixed << std::setprecision(2) << "Range to Target: "

826 << 100*T.at<double>(2,0) << " cm";

827 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+170),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

828

829 /* waitText.str("");

830 waitText << std::fixed << std::setprecision(2) << "Rotation (Roll, Pitch,

Yaw in deg): [ "

297



831 << roll << ","<< pitch <<","<< yaw << " ]";

832 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+120),

FONT_HERSHEY_SIMPLEX,0.5, CV_RGB(0,255,0),1,8,false);

833 */

834

835 if (inRange(limits.square_size,100*mean_squares[0]) && inRange(limits.

square_size,100*mean_squares[1])) {

836 //square size good

837 waitText.str("");

838 waitText << std::fixed << std::setprecision(2) << "CALIBRATION TARGET

Squares are the CORRECT Size";

839 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+210),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

840 circle(outImgRight, Point(leftboundary-15,yoffset+20), 7,GOOD_COLOR

,-1, CV_AA);

841

842 } else {

843 //square size bad

844 circle(outImgRight, Point(leftboundary-15,yoffset+20), 7,BAD_COLOR,-1,

CV_AA);

845

846 waitText.str("");

847 waitText << std::fixed << std::setprecision(2) << "CALIBRATION TARGET

Squares are the INCORRECT Size";

848 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+210),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

849

850 waitText.str("");

851 waitText << std::fixed << std::setprecision(2) << "Mean Square Size in

cm: [ "

852 << 100*mean_squares[0] << ","<< 100*mean_squares[1] << " ]";

853 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+230),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

854

855 waitText.str("");

856 waitText << std::fixed << std::setprecision(2) << "Standard Deviation

Size in cm: [ "

857 << 100*stddev_squares[0] << ","<< 100*stddev_squares[1] << " ]

";

858 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+250),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

859 }

860

861

862 } else {
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863 circle(outImgRight, Point(leftboundary-15,yoffset+20), 7,CV_RGB(0x7F,0x7F

,0x7F),-1, CV_AA);

864 waitText.str("");

865 waitText << "CALIBRATION TARGET is Not Visible in both cameras";

866 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+100),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

867 waitText.str("");

868 waitText << "Please hold CALIBRATION TARGET approximately";

869 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+160),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

870 waitText.str("");

871 waitText << "30 cm in front of both cameras";

872 putText(outImgRight, waitText.str(), Point(leftboundary,yoffset+190),

FONT_HERSHEY_SIMPLEX,0.6, TEXT_COLOR,1,CV_AA,false);

873

874 }

875

876 waitText.str("");

877 waitText << "PRESS N FOR NEXT SCREEN";

878 putText(outImg, waitText.str(), Point(1020,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

879

880 waitText.str("");

881 waitText << "PRESS P FOR PREVIOUS SCREEN";

882 putText(outImg, waitText.str(), Point(10,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

883

884 waitText.str("");

885 waitText << "PRESS R TO REDO CALIBRATION";

886 putText(outImg, waitText.str(), Point(400,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

887

888 waitText.str("");

889 waitText << "PRESS A TO ACCEPT";

890 putText(outImg, waitText.str(), Point(750,leftImage.rows + 13),

FONT_HERSHEY_SIMPLEX,0.5, TEXT_COLOR,1,CV_AA,false);

891

892

893 //send to video buffer

894 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

895

896 videostreaming.update_MatVideoBuffer(goodExampleBuffer, this->

imgVec_goodEx_poseEst[storedFrameCountGood]);

897 videostreaming.update_MatVideoBuffer(badExampleBuffer, this->

imgVec_badEx_poseEst[storedFrameCountBad]);
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898 if (goodExampleBuffer.active)

899 storedFrameCountGood = (storedFrameCountGood + 1) % this->

imgVec_goodEx_poseEst.size();

900 if (badExampleBuffer.active)

901 storedFrameCountBad = (storedFrameCountBad + 1) % this->

imgVec_badEx_poseEst.size();

902

903

904 if (saveflag) {

905 filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".png";

906 imwrite(filename3.str(), outImg);

907 //printf("Saved File: %s\n", filename3.str().c_str());

908

909 }

910

911 //printf("Key: %d\n", charKey);

912 pthread_mutex_lock(&keymutex);

913 if ((charKey == 0x4E || charKey == 0x6E)&& checkoutCalibrationVideoBuffer.

active) { // N

914 //next screen

915 maneuverNumber++;

916 storedFrameCountGood = 0;

917 storedFrameCountBad = 0;

918 } else if ((charKey == 0x50 || charKey == 0x70)&&

checkoutCalibrationVideoBuffer.active) { // P

919 //previous screen

920 maneuverNumber--;

921 storedFrameCountGood = 0;

922 storedFrameCountBad = 0;

923 } else if ((charKey == 0x52 || charKey == 0x72)&&

checkoutCalibrationVideoBuffer.active) { // R

924 //redo

925 numImageSet++;

926 numGoodImages = 0;

927 newRectifier = Rectifier();

928 maneuverNumber = 1;

929 storedFrameCountGood = 0;

930 storedFrameCountBad = 0;

931 } else if ((charKey == 0x41 || charKey == 0x61)&&

checkoutCalibrationVideoBuffer.active) { // A

932 //previous screen

933 maneuverNumber = 8;

934 } else if (charKey == 0x1B) { // ESC

935 printf("Quitting...\n");

936 shutdownCriterion = true;
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937 }

938 charKey = 0x00;

939 pthread_mutex_unlock(&keymutex);

940

941

942 }

943

944 void displayAcceptQuestion(Mat& leftImage, Mat& rightImage) {

945 Mat matchesImage, outImg;

946 vector<Point2f> pointbuf1, pointbuf2;

947 stringstream waitText;

948 double roll, pitch, yaw;

949 Mat T;

950 double mean_squares[2];

951 double stddev_squares[2];

952 stringstream filename3;

953

954 int leftboundary = 20;

955 int yoffset = 150;

956

957 Size size( leftImage.cols + rightImage.cols, MAX(leftImage.rows, rightImage.

rows) + 18 );

958

959 //place two images side by side

960 outImg.create( size, CV_MAKETYPE(leftImage.depth(), 3) );

961 outImg = BKGD_COLOR;

962 Mat outImgLeft = outImg( Rect(0, 0, leftImage.cols, leftImage.rows) );

963 Mat outImgRight = outImg( Rect(leftImage.cols, 0, rightImage.cols, rightImage.

rows) );

964

965 waitText.str("");

966 waitText << "Would you like to accept the new calibration and exit?";

967 putText(outImg, waitText.str(), Point(70,150), FONT_HERSHEY_SIMPLEX,1.0,

TEXT_COLOR,2,CV_AA,false);

968

969 waitText.str("");

970 waitText << "Press Y for Yes";

971 putText(outImg, waitText.str(), Point(70,190), FONT_HERSHEY_SIMPLEX,0.7,

TEXT_COLOR,1,CV_AA,false);

972

973 waitText.str("");

974 waitText << "Press N for No";

975 putText(outImg, waitText.str(), Point(70,220), FONT_HERSHEY_SIMPLEX,0.7,

TEXT_COLOR,1,CV_AA,false);

976
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977

978 //send to video buffer

979 videostreaming.update_MatVideoBuffer(checkoutCalibrationVideoBuffer, outImg);

980

981 if (saveflag) {

982 filename3 << saveImageDir << "/displayImg" << saveimagecount++ << ".png";

983 imwrite(filename3.str(), outImg);

984 //printf("Saved File: %s\n", filename3.str().c_str());

985

986 }

987

988 pthread_mutex_lock(&keymutex);

989 if (charKey == 0x4E || charKey == 0x6E) { // N

990 //previous screen

991 maneuverNumber = 4; //can't go further back

992 } else if (charKey == 0x59 || charKey == 0x79) { // Y

993 char newSysCommand[200];

994 char newCalibDir[200];

995

996 sprintf(newCalibDir,"/opt/GogglesOptics/Calib_Params/calib_%s", this->

datastorage.getTimeOfTestStart().c_str());

997 sprintf(newSysCommand, "sudo mkdir %s", newCalibDir);

998 system(newSysCommand);

999

1000 sprintf(newSysCommand, "sudo chmod 777 %s", newCalibDir);

1001 system(newSysCommand);

1002

1003 sprintf(newSysCommand, "sudo ln -sfn %s /opt/GogglesOptics/Calib_Params/

CURRENT_CALIB_DIR", newCalibDir, this->datastorage.getGPFpath().c_str

());

1004 printf("System Command: %s\n", newSysCommand);

1005 system(newSysCommand);

1006

1007 sprintf(newSysCommand, "sudo cp %s/*.yml %s/", currentCalibImageDir.c_str

(),newCalibDir);

1008 printf("System Command: %s\n", newSysCommand);

1009 system(newSysCommand);

1010

1011 sprintf(newSysCommand, "sudo chmod 777 %s/*", newCalibDir);

1012 printf("System Command: %s\n", newSysCommand);

1013 system(newSysCommand);

1014

1015 printf("Accepting Calibration: %s\n", newCalibDir);

1016 shutdownCriterion = true;

1017 } else if (charKey == 0x1B) { // ESC
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1018 printf("Quitting...\n");

1019 shutdownCriterion = true;

1020 }

1021 charKey = 0x00;

1022 pthread_mutex_unlock(&keymutex);

1023

1024 }

1025

1026 void GSprocessImages(Mat& leftImage, Mat& rightImage) {

1027

1028 //// Check if currently captured frames are in synch

1029 //// If they are out of synch, the previous image frames are provided, which

are still in synch

1030 if (this->synchCheckFlag == -1)

1031 {

1032 printf("Current frames are out of synch! Previous frames are used.\n");

1033 }

1034

1035 switch (maneuverNumber) {

1036 case 1: //setup calibration capture

1037 setupCalibrationCapture();

1038 maneuverNumber = 2;

1039 break;

1040 case 2:

1041 captureCalibrationImages(leftImage, rightImage);

1042 break;

1043 case 3:

1044 computeCalibration(leftImage, rightImage);

1045 break;

1046 case 4:

1047 displayCalibrationMetrics(leftImage, rightImage);

1048 break;

1049 case 5:

1050 chessboardPoseEstimation(leftImage,rightImage);

1051 break;

1052 case 6:

1053 displaySADmap(leftImage, rightImage);

1054 break;

1055 case 7:

1056 this->shutdownCriterion = true;

1057 break;

1058 case 8:

1059 if (performedCalibration) {

1060 displayAcceptQuestion(leftImage, rightImage);

1061 } else {

303



1062 this->shutdownCriterion = true;

1063 }

1064 break;

1065 }

1066

1067 }

1068

1069 void GSprocessGuiKeyPress(unsigned char networkkey) {

1070 pthread_mutex_lock(&keymutex);

1071 charKey = networkkey;

1072 /*

1073 if (charKey == 0x53 || charKey == 0x73) //s or S

1074 {

1075 saveflag = !saveflag;

1076

1077 if (saveflag) {

1078 char newdirname[200];

1079 sprintf(newdirname, "SavedImages%d", savedircount++);

1080 saveimagecount = 0;

1081 saveImageDir = this->datastorage.newGSDataDirectory(newdirname);

1082 cout << "Save Flag Turned ON: " << saveImageDir << endl;

1083 } else {

1084 cout << "Save Flag Turned OFF: " << endl;

1085 }

1086

1087 }

1088 */

1089 pthread_mutex_unlock(&keymutex);

1090 }

1091

1092

1093 void GSparseParameterFile(string line) {

1094 string searchString;

1095 string foundString;

1096 size_t found;

1097

1098 searchString = "MINIMUM_NUMER_IMAGES";

1099 found = line.find(searchString);

1100 if (found != string::npos)

1101 {

1102 foundString = line.substr( found+searchString.size()+1, string::npos );

1103 minimumNumberImages = atoi(foundString.c_str());

1104 cout << "MINIMUM_NUMER_IMAGES " << foundString << endl;

1105 }

1106 searchString.clear();
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1107 found = string::npos;

1108

1109 searchString = "MAX_CALIBRATION_ITERATIONS";

1110 found = line.find(searchString);

1111 if (found != string::npos)

1112 {

1113 foundString = line.substr( found+searchString.size()+1, string::npos );

1114 maxCalibrationIterations = atoi(foundString.c_str());

1115 cout << "MAX_CALIBRATION_ITERATIONS " << foundString << endl;

1116 }

1117 searchString.clear();

1118 found = string::npos;

1119

1120 searchString = "MAX_CALIBRATION_CHANGE";

1121 found = line.find(searchString);

1122 if (found != string::npos)

1123 {

1124 foundString = line.substr( found+searchString.size()+1, string::npos );

1125 maxCalibrationChange = atof(foundString.c_str());

1126 cout << "MAX_CALIBRATION_CHANGE " << foundString << endl;

1127 }

1128 searchString.clear();

1129 found = string::npos;

1130

1131 searchString = "HORZ_TRANSLATION_MAX";

1132 found = line.find(searchString);

1133 if (found != string::npos)

1134 {

1135 foundString = line.substr( found+searchString.size()+1, string::npos );

1136 limits.horz_translation[MAXVAL] = atof(foundString.c_str());

1137 cout << "HORZ_TRANSLATION_MAX " << foundString << endl;

1138 }

1139 searchString.clear();

1140 found = string::npos;

1141

1142 searchString = "HORZ_TRANSLATION_MIN";

1143 found = line.find(searchString);

1144 if (found != string::npos)

1145 {

1146 foundString = line.substr( found+searchString.size()+1, string::npos );

1147 limits.horz_translation[MINVAL] = atof(foundString.c_str());

1148 cout << "HORZ_TRANSLATION_MIN " << foundString << endl;

1149 }

1150 searchString.clear();

1151 found = string::npos;
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1152

1153 searchString = "VERT_TRANSLATION_MAX";

1154 found = line.find(searchString);

1155 if (found != string::npos)

1156 {

1157 foundString = line.substr( found+searchString.size()+1, string::npos );

1158 limits.vert_translation[MAXVAL] = atof(foundString.c_str());

1159 cout << "VERT_TRANSLATION_MAX " << foundString << endl;

1160 }

1161 searchString.clear();

1162 found = string::npos;

1163

1164 searchString = "VERT_TRANSLATION_MIN";

1165 found = line.find(searchString);

1166 if (found != string::npos)

1167 {

1168 foundString = line.substr( found+searchString.size()+1, string::npos );

1169 limits.vert_translation[MINVAL] = atof(foundString.c_str());

1170 cout << "HORZ_TRANSLATION_MIN " << foundString << endl;

1171 }

1172 searchString.clear();

1173 found = string::npos;

1174

1175 searchString = "DEPTH_TRANSLATION_MAX";

1176 found = line.find(searchString);

1177 if (found != string::npos)

1178 {

1179 foundString = line.substr( found+searchString.size()+1, string::npos );

1180 limits.depth_translation[MAXVAL] = atof(foundString.c_str());

1181 cout << "DEPTH_TRANSLATION_MAX " << foundString << endl;

1182 }

1183 searchString.clear();

1184 found = string::npos;

1185

1186 searchString = "DEPTH_TRANSLATION_MIN";

1187 found = line.find(searchString);

1188 if (found != string::npos)

1189 {

1190 foundString = line.substr( found+searchString.size()+1, string::npos );

1191 limits.depth_translation[MINVAL] = atof(foundString.c_str());

1192 cout << "HORZ_TRANSLATION_MIN " << foundString << endl;

1193 }

1194 searchString.clear();

1195 found = string::npos;

1196
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1197 searchString = "ROT_ROLL_MAX";

1198 found = line.find(searchString);

1199 if (found != string::npos)

1200 {

1201 foundString = line.substr( found+searchString.size()+1, string::npos );

1202 limits.rot_roll[MAXVAL] = atof(foundString.c_str());

1203 cout << "ROT_ROLL_MAX " << foundString << endl;

1204 }

1205 searchString.clear();

1206 found = string::npos;

1207

1208 searchString = "ROT_ROLL_MIN";

1209 found = line.find(searchString);

1210 if (found != string::npos)

1211 {

1212 foundString = line.substr( found+searchString.size()+1, string::npos );

1213 limits.rot_roll[MINVAL] = atof(foundString.c_str());

1214 cout << "ROT_ROLL_MIN " << foundString << endl;

1215 }

1216 searchString.clear();

1217 found = string::npos;

1218

1219 searchString = "ROT_PITCH_MAX";

1220 found = line.find(searchString);

1221 if (found != string::npos)

1222 {

1223 foundString = line.substr( found+searchString.size()+1, string::npos );

1224 limits.rot_pitch[MAXVAL] = atof(foundString.c_str());

1225 cout << "ROT_PITCH_MAX " << foundString << endl;

1226 }

1227 searchString.clear();

1228 found = string::npos;

1229

1230 searchString = "ROT_PITCH_MIN";

1231 found = line.find(searchString);

1232 if (found != string::npos)

1233 {

1234 foundString = line.substr( found+searchString.size()+1, string::npos );

1235 limits.rot_pitch[MINVAL] = atof(foundString.c_str());

1236 cout << "ROT_PITCH_MIN " << foundString << endl;

1237 }

1238 searchString.clear();

1239 found = string::npos;

1240

1241 searchString = "ROT_YAW_MAX";
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1242 found = line.find(searchString);

1243 if (found != string::npos)

1244 {

1245 foundString = line.substr( found+searchString.size()+1, string::npos );

1246 limits.rot_yaw[MAXVAL] = atof(foundString.c_str());

1247 cout << "ROT_YAW_MAX " << foundString << endl;

1248 }

1249 searchString.clear();

1250 found = string::npos;

1251

1252 searchString = "ROT_YAW_MIN";

1253 found = line.find(searchString);

1254 if (found != string::npos)

1255 {

1256 foundString = line.substr( found+searchString.size()+1, string::npos );

1257 limits.rot_yaw[MINVAL] = atof(foundString.c_str());

1258 cout << "ROT_YAW_MIN " << foundString << endl;

1259 }

1260 searchString.clear();

1261 found = string::npos;

1262

1263 searchString = "FOCAL_LEN_MAX";

1264 found = line.find(searchString);

1265 if (found != string::npos)

1266 {

1267 foundString = line.substr( found+searchString.size()+1, string::npos );

1268 limits.focal_len[MAXVAL] = atof(foundString.c_str());

1269 cout << "FOCAL_LEN_MAX " << foundString << endl;

1270 }

1271 searchString.clear();

1272 found = string::npos;

1273

1274 searchString = "FOCAL_LEN_MIN";

1275 found = line.find(searchString);

1276 if (found != string::npos)

1277 {

1278 foundString = line.substr( found+searchString.size()+1, string::npos );

1279 limits.focal_len[MINVAL] = atof(foundString.c_str());

1280 cout << "FOCAL_LEN_MIN " << foundString << endl;

1281 }

1282 searchString.clear();

1283 found = string::npos;

1284

1285 searchString = "SQUARE_SIZE_MAX";

1286 found = line.find(searchString);
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1287 if (found != string::npos)

1288 {

1289 foundString = line.substr( found+searchString.size()+1, string::npos );

1290 limits.square_size[MAXVAL] = atof(foundString.c_str());

1291 cout << "SQUARE_SIZE_MAX " << foundString << endl;

1292 }

1293 searchString.clear();

1294 found = string::npos;

1295

1296 searchString = "SQUARE_SIZE_MIN";

1297 found = line.find(searchString);

1298 if (found != string::npos)

1299 {

1300 foundString = line.substr( found+searchString.size()+1, string::npos );

1301 limits.square_size[MINVAL] = atof(foundString.c_str());

1302 cout << "SQUARE_SIZE_MIN " << foundString << endl;

1303 }

1304 searchString.clear();

1305 found = string::npos;

1306

1307 // use images from file

1308 searchString = "USE_IMAGES_FROM_FILE";

1309 found = line.find(searchString);

1310 if (found != string::npos)

1311 {

1312 foundString = line.substr( found+searchString.size()+1, string::npos );

1313 if (foundString != "false") {

1314 this->currentCalibImageDir = foundString;

1315 this->ImgListFilename << currentCalibImageDir << "/imglist.yaml";

1316 this->useImagesFromFile = true;

1317 this->maneuverNumber = 3;

1318 cout << "USE_IMAGES_FROM_FILE " << foundString << endl;

1319 }

1320 }

1321 searchString.clear();

1322 found = string::npos;

1323

1324 // use images from file

1325 searchString = "STORED_IMAGES_GOOD_BAD_EX";

1326 found = line.find(searchString);

1327 if (found != string::npos)

1328 {

1329 foundString = line.substr( found+searchString.size()+1, string::npos );

1330 if (foundString != "false") {

1331 cout << "STORED_IMAGES_GOOD_BAD_EX " << foundString << endl;
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1332 this->dir_storedImages_goodEx_capCalib = foundString + "/

goodEx_CapCalib";

1333 this->dir_storedImages_badEx_capCalib = foundString + "/badEx_CapCalib

";

1334 this->dir_storedImages_goodEx_metrics = foundString + "/goodEx_Metrics

";

1335 this->dir_storedImages_badEx_metrics = foundString + "/badEx_Metrics";

1336 this->dir_storedImages_goodEx_poseEst = foundString + "/goodEx_PoseEst

";

1337 this->dir_storedImages_badEx_poseEst = foundString + "/badEx_PoseEst";

1338 this->dir_storedImages_goodEx_depth = foundString + "/goodEx_Depth";

1339 this->dir_storedImages_badEx_depth = foundString + "/badEx_Depth";

1340

1341 }

1342 }

1343 searchString.clear();

1344 found = string::npos;

1345

1346 // autoImageStorage

1347 searchString = "SAVE_DISPLAY_IMAGES";

1348 found = line.find(searchString);

1349 if (found != string::npos)

1350 {

1351 foundString = line.substr( found+searchString.size()+1, string::npos );

1352 if (foundString == "true")

1353 saveflag = true;

1354 if (foundString == "false")

1355 saveflag = false;

1356 cout << "SAVE_DISPLAY_IMAGES " << foundString << endl;

1357 }

1358 searchString.clear();

1359 found = string::npos;

1360

1361 }

1362

1363 };

1364

1365 #endif

Listing B.10: Camera Calibration: additionalGuestScientistCode.h

1 #ifndef MYHEADERFILE_H_

2 #define MYHEADERFILE_H_

3
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4 //#include "cv.h"

5 //#include "highgui.h"

6 #include <opencv2/opencv.hpp>

7

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <pthread.h>

11 #include <string>

12 #include <iostream>

13 #include <vector>

14 #include <fstream>

15 #include <sys/time.h>

16 #include <sys/resource.h>

17 #include <photogrammetry.h>

18

19 using namespace std;

20 using namespace cv;

21

22 #include <stereoSAD.h>

23 #include "stereoFeatureMatcher.h"

24

25

26 class GuestScientistClass{

27

28 //// feature vectors and feature extractors

29 vector<KeyPoint> leftFeatures, rightFeatures;

30 int FASTthresh;

31 int FASTthreshDummy;

32

33 //// feature descriptors and descriptor extractor

34 SurfDescriptorExtractor surfDescriptorExtractor;

35 SiftDescriptorExtractor siftDescriptorExtractor;

36 ORB orbDetector;

37 SURF surfDetector;

38 SIFT siftDetector;

39 Mat leftDescriptors, rightDescriptors;

40

41 //// feature stereo matching

42 vector<DMatch> stereoFeatureMatches, stereoFeatureMatchesRANSAC;

43 vector<KeyPoint> leftFeaturesPreMatch, rightFeaturesPreMatch;

44 vector<KeyPoint> leftFeaturesRANSAC, rightFeaturesRANSAC;

45 vector<KeyPoint> leftFeaturesRANSAC_filtered;

46 vector<KeyPoint> rightFeaturesRANSAC_filtered;

47 Mat leftDescriptorsRANSAC, rightDescriptorsRANSAC;

48 int maxiterRANSAC;
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49 int numberOfSufficientMatches;

50 vector<Point3d> stereoMatchedFeaturesRANSACcoord3D;

51 vector<Point3d> stereoMatchedFeaturesRANSACcoord3D_transformed;

52

53 //photogrammetry

54 Photogrammetry* photo;

55

56 Mat Q;

57 Mat R, T, R1, P1, R2, P2;

58 Mat M1, D1, M2, D2;

59 double Tx;

60 double f;

61 double cx;

62 double cy;

63

64 int iterationNumber;

65

66 vector<double> dval;

67 bool dval_init;

68

69 public:

70

71 StereoMatcher stereomatcher;

72 StereoSAD stereoSAD;

73

74 int imagewidth, imageheight;

75

76 //// for visualization

77 Mat featureMatchesImage;

78 Mat featureMatchesImagePreRansac;

79

80 // GSdata storage

81 string GSstoragePath;

82 ofstream positionVOEstimateFile;

83

84 GuestScientistClass() {

85

86 /// stereo RANSAC settings

87 stereomatcher.SDthreshold = 0.20; // "abstract" value, since error = x_right'

* F * x_left

88 stereomatcher.maxiterRANSAC = 600;

89

90 /// FAST settings

91 FASTthresh = 40;

92
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93 /// other settings

94 iterationNumber = 1;

95

96 dval_init = false;

97

98 }

99

100 void extractFeatures(Mat& leftImage, Mat& rightImage);

101

102 void extractFeatureDescriptors(Mat& leftImage, Mat& rightImage);

103

104 void stereoMatchFeatures(Mat& leftImage, Mat& rightImage, int& numberMatches);

105

106 void showStereoMatches(Mat& leftImage, Mat& rightImage, Mat& matchesImage);

107

108 void updatePhotogrammetry(Rectifier & rectifier) {

109 photo = new Photogrammetry(rectifier);

110 }

111

112 int triangulateChessboard(vector<Point2f>& leftImgPoints, vector<Point2f>&

rightImgPoints,

113 int chessboardWidth, int chessboardHeight, double & roll, double & pitch,

double & yaw, Mat & Tout,

114 double mean_squares[], double stddev_squares[]);

115

116 int monocularChessboard(vector<Point2f>& imgPoints,

117 int chessboardWidth, int chessboardHeight, bool usingLeft, double & roll,

double & pitch, double & yaw, Mat & Tout, double & mse);

118

119 };

120

121 #endif

Listing B.11: Camera Calibration: additionalGuestScientistCode.cpp

1 #include "additionalGuestscientistCode.h"

2

3 using namespace std;

4 using namespace cv;

5

6

7 void GuestScientistClass::extractFeatures(Mat& leftImage, Mat& rightImage) {

8

9 // FAST(leftImage, this->leftFeatures, this->FASTthresh, true);
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10 // FAST(rightImage, this->rightFeatures, this->FASTthresh, true);

11

12

13 SURF surfDetector(1500, 4, 2, false, true);

14 Mat zeroMask;

15 surfDetector(leftImage, zeroMask, this->leftFeatures);

16 surfDetector(rightImage, zeroMask, this->rightFeatures);

17

18 /*

19 Mat zeroMask;

20 siftDetector(leftImage, zeroMask, this->leftFeatures);

21 siftDetector(rightImage, zeroMask, this->rightFeatures);

22 */

23

24 }

25

26 void GuestScientistClass::extractFeatureDescriptors(Mat& leftImage,

27 Mat& rightImage) {

28

29 SurfDescriptorExtractor surfDescriptorExtractor(4, 2, false);

30 surfDescriptorExtractor.compute(leftImage, this->leftFeatures, this->

leftDescriptors);

31 surfDescriptorExtractor.compute(rightImage, this->rightFeatures, this->

rightDescriptors);

32

33 /*

34 siftDescriptorExtractor.compute(leftImage, this->leftFeatures, this->

leftDescriptors);

35 siftDescriptorExtractor.compute(rightImage, this->rightFeatures, this->

rightDescriptors);

36 */

37

38 }

39

40 void GuestScientistClass::stereoMatchFeatures(Mat& leftImage, Mat& rightImage, int&

numberMatches) {

41

42 this->stereomatcher.initialStereoMatch(this->leftFeatures, this->rightFeatures,

this->leftDescriptors, this->rightDescriptors, this->stereoFeatureMatches,

this->leftFeaturesPreMatch, this->rightFeaturesPreMatch);

43

44 // this is the Fundamental Matrix RANSAC version

45 if (this->stereoFeatureMatches.size() > 8) // RANSAC needs at least 8 matches, and

we need more than 8 for RANSAC to make sense

46 {
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47 this->stereomatcher.getStereoInliersRANSAC_Fundamental(this->leftFeatures,

this->rightFeatures, this->leftFeaturesRANSAC,

48 this->rightFeaturesRANSAC, this->leftDescriptors, this->

rightDescriptors, this->stereoFeatureMatches,

49 this->stereoFeatureMatchesRANSAC);

50 }

51

52 numberMatches = this->stereoFeatureMatchesRANSAC.size();

53

54 // printf("STEREO: numOf initial: %d \t numOf RANSAC: %d\n", this->

leftFeaturesPreMatch.size(), this->stereoFeatureMatchesRANSAC.size());

55

56 /*

57 // this is the Homography Matrix RANSAC version

58 if (this->stereoFeatureMatches.size() > 5) // RANSAC needs at least 8 matches, and

we need more than 8 for RANSAC to make sense

59 {

60 this->stereomatcher.getStereoInliersRANSAC_Homography(this->leftFeatures, this

->rightFeatures, this->leftFeaturesRANSAC,

61 this->rightFeaturesRANSAC, this->leftDescriptors, this->

rightDescriptors, this->stereoFeatureMatches,

62 this->stereoFeatureMatchesRANSAC);

63 }

64 */

65

66 /*

67 // this is the Mutliple Homography Matrix RANSAC version

68 if (this->stereoFeatureMatches.size() > 5) // RANSAC needs at least 8 matches, and

we need more than 8 for RANSAC to make sense

69 {

70 this->stereomatcher.getStereoInliersRANSAC_MultiHomography(this->leftFeatures,

this->rightFeatures, this->leftFeaturesRANSAC,

71 this->rightFeaturesRANSAC, this->leftDescriptors, this->

rightDescriptors, this->stereoFeatureMatches,

72 this->stereoFeatureMatchesRANSAC);

73 }

74 */

75

76 }

77

78 void GuestScientistClass::showStereoMatches(Mat& leftImage, Mat& rightImage, Mat&

matchesImage) {

79

80 drawMatches(leftImage, this->leftFeatures, rightImage, this->rightFeatures, this->

stereoFeatureMatchesRANSAC, matchesImage, 255, Scalar::all(-1));
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81 // drawMatches(leftImage, this->leftFeatures, rightImage, this->rightFeatures, this->

stereoFeatureMatches, matchesImage, 255, Scalar::all(-1)); // this is just to see,

what initialStereoMatching does

82 }

83

84 int GuestScientistClass::triangulateChessboard(vector<Point2f>& leftImgPoints, vector<

Point2f>& rightImgPoints,

85 int chessboardWidth, int chessboardHeight, double & roll, double & pitch,

double & yaw, Mat & Tout,

86 double mean_squares[], double stddev_squares[]) {

87 int index;

88 vector<Point3d> measuredPoints;

89 vector<Point3d> objectPoints;

90 Point3d xyzPoint;

91 Point3d p1, p2;

92 double squareSize = 0.0254;

93 Mat R, T;

94 double scale;

95

96 R.create(3, 3, CV_64FC1);

97 T.create(3, 1, CV_64FC1);

98

99 if (leftImgPoints.size() == chessboardWidth*chessboardHeight && rightImgPoints.

size() == chessboardWidth*chessboardHeight) {

100 for (int y = 0; y < chessboardHeight; y++) {

101 for (int x = 0; x < chessboardWidth; x++) {

102 index = x+y*chessboardWidth;

103

104 //std::cout << "left: " << leftImgPoints[index] << " right: " <<

rightImgPoints[index];

105 this->photo->triangulate(leftImgPoints[index], rightImgPoints[index],

xyzPoint);

106 //std::cout << "(" << x << "," << y << "): " << xyzPoint << endl;

107

108 //cout << "XYZ Point: " << xyzPoint << endl;

109

110 measuredPoints.push_back(xyzPoint);

111 objectPoints.push_back(Point3d((x - (int) floor(chessboardWidth/2))*

squareSize, (y - (int) floor(chessboardHeight/2))*squareSize, 0));

112 }

113 }

114

115 // cout << endl;

116

117 this->photo->absoluteOrientation(objectPoints, measuredPoints, R, T, scale);
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118 // std::cout << "R: " << endl << R << endl << "T: " << endl << T << endl << "

Scale: " << scale << endl;

119

120 yaw = atan(R.at<double>(0,1)/R.at<double>(1,1))*180 / M_PI;

121 pitch = -asin(R.at<double>(2,1))*180 / M_PI;

122 roll = atan(R.at<double>(2,0)/R.at<double>(2,2))*180 / M_PI;

123

124 Tout = T;

125

126 //compute statistics

127 //X DIRECTION

128 Mat p1obj, p2obj, d3;

129 vector<double> dvect;

130 double d;

131 double mean_d = 0;

132 double stddev_d = 0;

133 int n = 0;

134 for (int y = 0; y < chessboardHeight-1; y++) {

135 for (int x = 0; x < chessboardWidth-1; x++) {

136 p1 = measuredPoints[x+y*chessboardWidth];

137 p2 = measuredPoints[(x+1)+y*chessboardWidth];

138

139 //gemm(R, Mat(p1), 1/scale, NULL, 0, p1obj, GEMM_1_T);

140 p1obj = (1/scale) * R * Mat(p1);

141 //gemm(R, Mat(p2), 1/scale, NULL, 0, p2obj, GEMM_1_T);

142 p2obj = (1/scale) * R * Mat(p2);

143

144 subtract(p1obj, p2obj, d3);

145 d = norm(d3);

146 dvect.push_back(d);

147 mean_d += d;

148

149 n++;

150 }

151 }

152 mean_d /= n;

153

154 vector<double>::iterator it;

155 for (it = dvect.begin(); it < dvect.end(); it++) {

156 d = *it;

157 stddev_d += (d - mean_d)*(d - mean_d);

158 }

159 stddev_d = sqrt(stddev_d / (n-1));

160

161 stddev_squares[0] = stddev_d;
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162 mean_squares[0] = mean_d;

163

164 //Y DIRECTION

165 dvect.clear();

166 mean_d = 0;

167 stddev_d = 0;

168 n = 0;

169 for (int y = 0; y < chessboardHeight-1; y++) {

170 for (int x = 0; x < chessboardWidth-1; x++) {

171 p1 = measuredPoints[x+y*chessboardWidth];

172 p2 = measuredPoints[x+(y+1)*chessboardWidth];

173

174 //gemm(R, Mat(p1), 1/scale, NULL, 0, p1obj, GEMM_1_T);

175 p1obj = (1/scale) * R * Mat(p1);

176 //gemm(R, Mat(p2), 1/scale, NULL, 0, p2obj, GEMM_1_T);

177 p2obj = (1/scale) * R * Mat(p2);

178

179 subtract(p1obj, p2obj, d3);

180 d = norm(d3);

181 dvect.push_back(d);

182 mean_d += d;

183

184 n++;

185 }

186 }

187 mean_d /= n;

188

189 for (it = dvect.begin(); it < dvect.end(); it++) {

190 d = *it;

191 stddev_d += (d - mean_d)*(d - mean_d);

192 }

193 stddev_d = sqrt(stddev_d / (n-1));

194

195 stddev_squares[1] = stddev_d;

196 mean_squares[1] = mean_d;

197

198

199 } else {

200 roll = 0;

201 pitch = 0;

202 yaw = 0;

203

204 Tout = T;

205

206 return -1;
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207 }

208

209 return 0;

210 }

211

212 int GuestScientistClass::monocularChessboard(vector<Point2f>& imgPoints,

213 int chessboardWidth, int chessboardHeight, bool usingLeft, double & roll,

double & pitch, double & yaw, Mat & Tout, double & mse) {

214 int index;

215 vector<Point3d> objectPoints;

216 double squareSize = 0.0254;

217 Mat R, T;

218

219 R.create(3, 3, CV_64FC1);

220 T.create(3, 1, CV_64FC1);

221

222 if (imgPoints.size() == chessboardWidth*chessboardHeight) {

223 for (int y = 0; y < chessboardHeight; y++) {

224 for (int x = 0; x < chessboardWidth; x++) {

225 index = x+y*chessboardWidth;

226

227 objectPoints.push_back(Point3d((x - (int) floor(chessboardWidth/2))*

squareSize, (y - (int) floor(chessboardHeight/2))*squareSize, 0));

228

229 if (dval_init == false) {

230 dval.push_back(0.5);

231 }

232 }

233 }

234

235 dval_init = true;

236

237 this->photo->exteriorOrientation(imgPoints, objectPoints, R, T, dval, mse,

usingLeft, 1000, 1.0e-10);

238

239 yaw = atan(R.at<double>(0,1)/R.at<double>(1,1))*180 / M_PI;

240 pitch = -asin(R.at<double>(2,1))*180 / M_PI;

241 roll = atan(R.at<double>(2,0)/R.at<double>(2,2))*180 / M_PI;

242

243 Tout = T;

244 } else {

245 roll = 0;

246 pitch = 0;

247 yaw = 0;

248
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249 Tout = T;

250

251 return -1;

252 }

253

254 return 0;

255 }

Listing B.12: Camera Calibration: stereoCalib.h

1 #ifndef STEREOCALIB_H

2 #define STEREOCALIB_H

3

4 #include <optics.h>

5

6 #include "opencv2/calib3d/calib3d.hpp"

7 #include "opencv2/highgui/highgui.hpp"

8 #include "opencv2/imgproc/imgproc.hpp"

9

10 #include <vector>

11 #include <string>

12 #include <algorithm>

13 #include <iostream>

14 #include <iterator>

15 #include <stdio.h>

16 #include <stdlib.h>

17 #include <ctype.h>

18

19 using namespace cv;

20 using namespace std;

21

22 void StereoCalib(const vector<string>& imagelist, Size boardSize,

23 Rectifier & rectifier, string currentCalibImageDir,

24 vector<vector<Point2f> > imagePoints[2], vector<vector<Point3f> > &

objectPoints, Size & imageSize, vector<string>& goodImageList,

25 int maxIterations, double maxChange,

26 float * rms_error, float * mean_reprojection_error);

27

28 bool initStereoCalib(const string& filename, vector<string>& l, string

currentCalibImageDir, Size boardSize,

29 vector<vector<Point2f> > imagePoints[2], vector<vector<Point3f> > &

objectPoints, Size & imageSize, vector<string>& goodImageList,

30 int* nimages);

31
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32 #endif

Listing B.13: Camera Calibration: stereoCalib.cpp

1 #include "stereoCalib.h"

2

3 //RATION MODEL PARAMETER IS ON LINE 173

4

5

6 void StereoCalib(const vector<string>& imagelist, Size boardSize,

7 Rectifier & rectifier, string currentCalibImageDir,

8 vector<vector<Point2f> > imagePoints[2], vector<vector<Point3f> > &

objectPoints, Size & imageSize, vector<string>& goodImageList,

9 int maxIterations, double maxChange,

10 float * rms_error, float * mean_reprojection_error) {

11

12 int i, j, k, nimages = (int) goodImageList.size() / 2;

13 bool displayCorners = false;//true;

14 const int maxScale = 2;

15 const float squareSize = 1.0;

16

17 cout << "Imagelist size: " << imagelist.size() << endl;

18 cout << "nimages: " << nimages << endl;

19 cout << "goodImagelist size: " << goodImageList.size() << endl << endl;

20

21 cout << "objpoints size: " << objectPoints.size() << endl;

22 cout << "imagePoints0 size: " << imagePoints[0].size() << endl;

23 cout << "imagePoints1 size: " << imagePoints[1].size() << endl;

24

25 for (i = 0; i < nimages; i++) {

26 for (j = 0; j < boardSize.height; j++)

27 for (k = 0; k < boardSize.width; k++)

28 //cout << "ijk: " << i << "," << j << "," << k << endl;

29 objectPoints[i].push_back(Point3f(j * squareSize, k

30 * squareSize, 0));

31 }

32

33 cout << "Running stereo calibration ...\n";

34

35 Mat cameraMatrix[2], distCoeffs[2];

36 Mat R, T, E, F;

37

38 rectifier.getCameraParameters(R,T,cameraMatrix[0], distCoeffs[0], cameraMatrix[1],

distCoeffs[1]);
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39

40 double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],

41 cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1],

42 imageSize, R, T, E, F, TermCriteria(CV_TERMCRIT_ITER

43 + CV_TERMCRIT_EPS, 300, 1e-10),

44 // 0

45 CV_CALIB_USE_INTRINSIC_GUESS +

46 // CV_CALIB_FIX_INTRINSIC +

47 //CV_CALIB_FIX_ASPECT_RATIO +

48 // CV_CALIB_ZERO_TANGENT_DIST +

49 // CV_CALIB_SAME_FOCAL_LENGTH

50 + CV_CALIB_RATIONAL_MODEL

51 // CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5

52 );

53

54 *rms_error = rms;

55 cout << "done with RMS error=" << rms << endl;

56

57 // CALIBRATION QUALITY CHECK

58 // because the output fundamental matrix implicitly

59 // includes all the output information,

60 // we can check the quality of calibration using the

61 // epipolar geometry constraint: m2ˆt*F*m1=0

62 double err = 0;

63 int npoints = 0;

64 vector<Vec3f> lines[2];

65 for (i = 0; i < nimages; i++) {

66 int npt = (int) imagePoints[0][i].size();

67 Mat imgpt[2];

68 for (k = 0; k < 2; k++) {

69 imgpt[k] = Mat(imagePoints[k][i]);

70 undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k],

71 Mat(), cameraMatrix[k]);

72 computeCorrespondEpilines(imgpt[k], k + 1, F, lines[k]);

73 }

74 for (j = 0; j < npt; j++) {

75 double errij = fabs(imagePoints[0][i][j].x * lines[1][j][0]

76 + imagePoints[0][i][j].y * lines[1][j][1] + lines[1][j][2])

77 + fabs(imagePoints[1][i][j].x * lines[0][j][0]

78 + imagePoints[1][i][j].y * lines[0][j][1]

79 + lines[0][j][2]);

80 err += errij;

81 }

82 npoints += npt;

83 }
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84

85 *mean_reprojection_error = err / npoints;

86

87 cout << "average reprojection err = " << err / npoints << endl;

88

89 // save intrinsic parameters

90 FileStorage fs(currentCalibImageDir + "/intrinsics.yml", CV_STORAGE_WRITE);

91 if (fs.isOpened()) {

92 fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] << "M2"

93 << cameraMatrix[1] << "D2" << distCoeffs[1];

94 fs.release();

95 } else

96 cout << "Error: can not save the intrinsic parameters\n";

97

98 Mat R1, R2, P1, P2, Q;

99 Rect validRoi[2];

100

101 stereoRectify(cameraMatrix[0], distCoeffs[0],

102 cameraMatrix[1], distCoeffs[1],

103 imageSize, R, T, R1, R2, P1, P2, Q,

104 CALIB_ZERO_DISPARITY, 0, imageSize, &validRoi[0], &validRoi[1]);

105

106 fs.open(currentCalibImageDir+"/extrinsics.yml", CV_STORAGE_WRITE);

107 if (fs.isOpened()) {

108 fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1

109 << "P2" << P2 << "Q" << Q << "F" << F;

110 fs.release();

111 } else

112 cout << "Error: can not save the intrinsic parameters\n";

113 /*

114 // OpenCV can handle left-right

115 // or up-down camera arrangements

116 bool isVerticalStereo = fabs(P2.at<double> (1, 3)) > fabs(P2.at<double> (0,

117 3));

118

119 // COMPUTE AND DISPLAY RECTIFICATION

120 if (!showRectified)

121 */ return;

122

123 }

124

125 bool initStereoCalib(const string& imagelistfn, vector<string>& imagelist, string

currentCalibImageDir, Size boardSize,

126 vector<vector<Point2f> > imagePoints[2], vector<vector<Point3f> > &

objectPoints, Size & imageSize, vector<string>& goodImageList,
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127 int* nimages) {

128 imagelist.resize(0);

129 FileStorage fs(imagelistfn, FileStorage::READ);

130 if (!fs.isOpened()) {

131 cout << "can not open " << imagelistfn << endl

132 << " or the string list is empty" << endl;

133 return false;

134 }

135

136 FileNode n = fs.getFirstTopLevelNode();

137 if (n.type() != FileNode::SEQ) {

138 cout << "Can not open Top Level Node" << endl;

139 return false;

140 }

141 FileNodeIterator it = n.begin(), it_end = n.end();

142 for (; it != it_end; ++it) {

143 imagelist.push_back((string) *it);

144 }

145

146 if (imagelist.size() % 2 != 0) {

147 cout << "Error: the image list contains odd (non-even) number of elements\n";

148 return false;

149 }

150

151 bool displayCorners = false;//true;

152 const int maxScale = 1;

153 const float squareSize = 1.f; // Set this to your actual square size

154 // ARRAY AND VECTOR STORAGE:

155

156 int i, j, k;

157 *nimages = (int) imagelist.size() / 2;

158

159 imagePoints[0].resize(*nimages);

160 imagePoints[1].resize(*nimages);

161

162 for (i = j = 0; i < *nimages; i++) {

163 for (k = 0; k < 2; k++) {

164 const string& filename = imagelist[i * 2 + k];

165 Mat img = imread(currentCalibImageDir + "/" + filename, 0);

166 if (img.empty())

167 break;

168 if (imageSize == Size())

169 imageSize = img.size();

170 else if (img.size() != imageSize) {

171 cout << "The image " << filename
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172 << " has the size different from the first image size.

Skipping the pair\n";

173 break;

174 }

175 bool found = false;

176 vector<Point2f>& corners = imagePoints[k][j];

177 // for (int scale = 1; scale ≤ maxScale; scale++) {

178 Mat timg;

179 // if (scale == 1)

180 timg = img;

181 // else

182 // resize(img, timg, Size(), scale, scale);

183 found = findChessboardCorners(timg, boardSize, corners,

184 CV_CALIB_CB_ADAPTIVE_THRESH + CV_CALIB_CB_FAST_CHECK /*+

CV_CALIB_CB_NORMALIZE_IMAGE*/ + CV_CALIB_CB_FILTER_QUADS);

185 /* if (found) {

186 if (scale > 1) {

187 Mat cornersMat(corners);

188 cornersMat *= 1. / scale;

189 }

190 break;

191 }

192 }

193 */

194 /* if (displayCorners) {

195 Mat cimg, cimg1;

196 cvtColor(img, cimg, CV_GRAY2BGR);

197 drawChessboardCorners(cimg, boardSize, corners, found);

198 double sf = 640. / MAX(img.rows, img.cols);

199 resize(cimg, cimg1, Size(), sf, sf);

200 imshow("corners", cimg1);

201 char c = (char) waitKey(500);

202 if (c == 27 || c == 'q' || c == 'Q') //Allow ESC to quit

203 exit(-1);

204 } else

205 */

206 putchar('.');

207 if (!found) {

208 printf("The following image did not find the target. i: %d,j: %d,k: %d

", i, j, k);

209 break;

210 }

211 cornerSubPix(img, corners, Size(11,11), Size(-1, -1),

212 TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.1));

213 }
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214 if (k == 2) {

215 goodImageList.push_back(imagelist[i * 2]);

216 goodImageList.push_back(imagelist[i * 2 + 1]);

217 j++;

218 }

219 }

220 cout << j << " pairs have been successfully detected.\n";

221 *nimages = j;

222 if (*nimages < 2) {

223 cout << "Error: too little pairs to run the calibration\n";

224 return false;

225 }

226

227 imagePoints[0].resize(*nimages);

228 imagePoints[1].resize(*nimages);

229 objectPoints.resize(*nimages);

230

231 }
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B.5 Source Code for Dynamic iSAM Algorithm

Listing B.14: Dynamic iSAM: nonlinearSystem.h

1 #ifndef NONLINEARSYSTEM_H_

2 #define NONLINEARSYSTEM_H_

3

4 #include <Eigen/Dense>

5 #include <iostream>

6 #include <math.h>

7

8 #define DEFAULT_H 0.05

9 #define LOWER_H_LIMIT_FACTOR 20

10 #define RMS_ERR_CUTOFF 1.0e-5

11 #define INITIAL_H_FACTOR 1

12

13

14 using namespace Eigen;

15

16 class nonlinearSystem {

17 double h;

18 public:

19 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

20 nonlinearSystem();

21 VectorXd propagateRK4(double tf, VectorXd x0);

22 VectorXd propagateRK4_adaptive(double tf, VectorXd x0);

23 void setStepSize(double _h) { h = _h;};

24 virtual VectorXd f(VectorXd x) = 0;

25 };

26

27 #endif
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Listing B.15: Dynamic iSAM: nonlinearSystem.cpp

1 #include "nonlinearSystem.h"

2

3 nonlinearSystem::nonlinearSystem() {

4 h = DEFAULT_H;

5 }

6

7 VectorXd nonlinearSystem::propagateRK4(double tf, VectorXd x0){

8 VectorXd k1;

9 VectorXd k2;

10 VectorXd k3;

11 VectorXd k4;

12 double t = 0;

13 double dt;

14 bool done = false;

15 VectorXd x = x0;

16

17 // std::cout << "x(" << t << "): " << x.transpose() << std::endl;

18

19 while (!done) {

20 if (tf - h - t > 0) {

21 dt = h;

22 } else {

23 dt = tf - t;

24 done = true;

25 }

26

27 k1 = dt * this->f(x);

28 k2 = dt * this->f(x + 0.5 * k1);

29 k3 = dt * this->f(x + 0.5 * k2);

30 k4 = dt * this->f(x + k3);

31 x = x + (k1 + 2 * k2 + 2 * k3 + k4) / 6;

32 t += dt;

33

34 // std::cout << "x(" << t << "): " << x.segment<12>(0).transpose() << std::endl;

35 }

36

37 return x;

38 }

39

40 VectorXd nonlinearSystem::propagateRK4_adaptive(double tf, VectorXd x0){

41 bool done = false;

42 double h_starting = this->h;

43

44 this->h = tf / INITIAL_H_FACTOR;
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45

46 VectorXd newX, errX;

47 VectorXd currX = this->propagateRK4(tf, x0);

48

49 while (!done) {

50

51 //new h step size

52 this->h = this->h/2;

53

54 //try the new step size

55 newX = this->propagateRK4(tf, x0);

56

57 //compute rms error

58 errX = newX - currX;

59 double rms_err = sqrt(errX.squaredNorm() / errX.size());

60

61 // std::cout << "propagateRK4 Adaptive, h=" << h << ", rms_err=" << rms_err <<

std::endl;

62

63 //check rms_error or if h is too small that it will take too long

64 if (rms_err < RMS_ERR_CUTOFF || this->h ≤ (tf / LOWER_H_LIMIT_FACTOR)) {

65 done = true;

66 if (this->h ≤ (tf / LOWER_H_LIMIT_FACTOR)) {

67 // std::cout << "adaptive RK4 timestep was cutoff" << std::endl;

68 }

69 } else {

70 currX = newX;

71 }

72 }

73

74 this->h = h_starting;

75 return newX;

76 }
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Listing B.16: Dynamic iSAM: rigidBodyDynamics.h

1 #pragma once

2

3 #include "nonlinearSystem.h"

4 #include <Eigen/Dense>

5 #include <iostream>

6 #include "inertiaRatios.h"

7

8 using namespace Eigen;

9

10 class rigidBodyDynamics: public nonlinearSystem {

11 isam::inertiaRatios _ir;

12 Vector4d _qref;

13 Vector3d _r, _v, _a, _w;

14 Matrix<double,6,6> _Q;

15 double _sigma_v, _sigma_w;

16

17 Matrix3d crossProductMat(Vector3d vec);

18

19 public:

20 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

21 rigidBodyDynamics(isam::inertiaRatios ir, double sigma_v, double sigma_w);

22 void setMassProperties(isam::inertiaRatios ir);

23 void setCovProperties(double sigma_v, double sigma_w);

24 VectorXd f(VectorXd x);

25 void setState(VectorXd x, Vector4d q);

26 void setState(VectorXd x);

27 void reset_qref();

28 Vector4d qref() const {return _qref;};

29 Vector4d qTotal() const;

30 VectorXd symmMat2Vec(Matrix<double, 12, 12> M);

31 Matrix<double, 12, 12> vec2symmMat(VectorXd v);

32 Vector4d quaternionFromRot(Matrix3d& R)const;

33 Vector4d mrp2quaternion(Vector3d mrp)const;

34 Vector3d quaternion2mrp(Vector4d q) const;

35 Vector4d addQuaternionError(Vector3d& mrp, Vector4d& qref) const;

36 Vector4d quaternionMultiplication(Vector4d& q1, Vector4d& q2) const;

37 Vector4d quaternionDivision(Vector4d& q1, Vector4d& q2) const;

38 Vector3d diffQuaternion(Vector4d& q, Vector4d& qprev, double dt) const;

39 Matrix3d rotationMatrix(Vector4d& q) const;

40 Matrix3d getJ() const;

41 isam::inertiaRatios getIR() const;

42 void setIR(isam::inertiaRatios ir);

43 MatrixXd getBw() const;

44 double getSigmaV() const;
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45 double getSigmaW() const;

46

47 VectorXd x() const;

48

49 };
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Listing B.17: Dynamic iSAM: rigidBodyDynamics.cpp

1

2 #include "rigidBodyDynamics.h"

3

4 rigidBodyDynamics::rigidBodyDynamics(isam::inertiaRatios ir, double sigma_v, double

sigma_w) {

5 _ir = ir;

6 _qref << 0, 0, 0, 1;

7

8 _r = Vector3d::Zero();

9 _v = Vector3d::Zero();

10 _a = Vector3d::Zero();

11 _w = Vector3d::Zero();

12

13 setMassProperties(ir);

14 setCovProperties(sigma_v, sigma_w);

15 }

16

17 void rigidBodyDynamics::setMassProperties(isam::inertiaRatios ir) {

18 _ir = ir;

19 }

20

21 void rigidBodyDynamics::setCovProperties(double sigma_v, double sigma_w) {

22 _sigma_v = sigma_v;

23 _sigma_w = sigma_w;

24 _Q = Matrix<double,6,6>::Zero();

25 _Q.block<3,3>(0,0) = _sigma_v * _sigma_v * Matrix<double,3,3>::Identity();

26 _Q.block<3,3>(3,3) = _sigma_w * _sigma_w * Matrix<double,3,3>::Identity();

27 }

28

29 void rigidBodyDynamics::reset_qref() {

30 Vector3d a_ = _a;

31 Vector4d qref_ = _qref;

32 _qref = addQuaternionError(a_, qref_);

33 _a = Vector3d::Zero();

34 }

35

36 Vector4d rigidBodyDynamics::qTotal() const {

37 Vector3d a_ = _a;

38 Vector4d qref_ = _qref;

39 return addQuaternionError(a_, qref_);

40 };

41

42 VectorXd rigidBodyDynamics::f(VectorXd x) {

43 Vector3d dr, dv, da, dw;
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44 Matrix<double,12,12> lambda, dLambda;

45 VectorXd vec_dLambda;

46 VectorXd dx(90);

47

48 Vector3d r = x.segment<3>(0);

49 Vector3d v = x.segment<3>(3);

50 Vector3d a = x.segment<3>(6);

51 Vector3d w = x.segment<3>(9);

52

53 MatrixXd Bw = getBw();

54 Matrix3d J = _ir.getJ();

55

56

57 //Nonlinear State Model \dot x = f(x)

58

59 /*

60 * \mathbf{\dot r} = \mathbf{v}

61 */

62 dr = v;

63

64 /*

65 * \mathbf{\dot v} = 0

66 */

67 dv = Vector3d::Zero();

68

69 /*

70 * \frac{d \mathbf{a}_p}{dt} =

71 * \frac{1}{2}\left(\mathbf{[\omega \times]} +

72 * \mathbf{\omega} \cdot \mathbf{\bar q} \right) \mathbf{a}_p +

73 * \frac{2 q_4}{1+q_4} \mathbf{\omega}

74 */

75 double c1, c2, c3;

76 c1 = 0.5;

77 c2 = 0.125 * w.dot(a);

78 c3 = 1 - a.dot(a)/16;

79 da = -c1 * w.cross(a) + c2* a + c3 * w;

80

81

82 /*

83 * \dot \mathbf{w} = -\mathbf{J}ˆ{-1} \mathbf{\omega} \times \mathbf{J} \mathbf{\

omega}

84 */

85 dw = - J.inverse() * w.cross(J * w);

86

87
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88 //Covariance Propagation according to Lyapunov function

89 //see Brown & Hwang pg 204

90

91 //Compute Linear transition matrix

92 Matrix<double,12,12> A = Matrix<double,12,12>::Zero();

93

94 //position derivative

95 A.block<3,3>(0,3) = Matrix<double,3,3>::Identity();

96

97 //mrp kinematics

98 A.block<3,3>(6,6) = -0.5*crossProductMat(w) + w.dot(a)/8 * Matrix3d::Identity();

99 A.block<3,3>(6,9) = (1-a.dot(a/16))*Matrix3d::Identity();

100

101 //angular velocity dynamics

102 A.block<3,3>(9,9) = - J.inverse() * crossProductMat(w) * J;

103

104 lambda = vec2symmMat(x.segment<78>(12));

105 dLambda = A * lambda + lambda *A.transpose() + Bw * _Q * Bw.transpose();

106 vec_dLambda = symmMat2Vec(dLambda);

107 //write to dx

108 dx.segment<3>(0) = dr;

109 dx.segment<3>(3) = dv;

110 dx.segment<3>(6) = da;

111 dx.segment<3>(9) = dw;

112 dx.segment<78>(12) = vec_dLambda;

113

114 return dx;

115 }

116

117 Matrix3d rigidBodyDynamics::crossProductMat(Vector3d vec) {

118 Matrix3d M = Matrix3d::Zero();

119 M(0,1) = -vec(2);

120 M(0,2) = vec(1);

121 M(1,0) = vec(2);

122 M(1,2) = -vec(0);

123 M(2,0) = -vec(1);

124 M(2,1) = vec(0);

125

126 return M;

127 }

128

129 VectorXd rigidBodyDynamics::symmMat2Vec(Matrix<double, 12, 12> M) {

130 VectorXd v(78);

131 int count = 0;

132 for (int row = 0; row < 12; row++) {
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133 for (int col = row; col < 12; col++) {

134 v(count) = M(row,col);

135 count++;

136 }

137 }

138 return v;

139

140 }

141

142 Matrix<double, 12, 12> rigidBodyDynamics::vec2symmMat(VectorXd v) {

143 Matrix<double, 12, 12> M = Matrix<double, 12, 12>::Zero();

144 int count = 0;

145 for (int row = 0; row < 12; row++) {

146 for (int col = row; col < 12; col++) {

147 M(row,col) = v(count);

148 M(col,row) = v(count);

149 count++;

150 }

151 }

152 return M;

153

154 }

155

156 VectorXd rigidBodyDynamics::x() const{

157 VectorXd x(12);

158 x.segment<3>(0) = _r;

159 x.segment<3>(3) = _v;

160 x.segment<3>(6) = _a;

161 x.segment<3>(9) = _w;

162 return x;

163 }

164

165 void rigidBodyDynamics::setState(VectorXd x, Vector4d q) {

166 _r = x.segment<3>(0);

167 _v = x.segment<3>(3);

168 _a = x.segment<3>(6);

169 _w = x.segment<3>(9);

170 _qref = q / q.norm();

171 }

172

173 void rigidBodyDynamics::setState(VectorXd x) {

174 _r = x.segment<3>(0);

175 _v = x.segment<3>(3);

176 _a = x.segment<3>(6);

177 _w = x.segment<3>(9);
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178 }

179

180 Vector4d rigidBodyDynamics::mrp2quaternion(Vector3d mrp) const{

181 Vector4d dq;

182 dq << 8*mrp / (16 + mrp.transpose() * mrp), (16 - mrp.transpose() * mrp) / (16+mrp

.transpose() * mrp);

183 dq /=dq.norm();

184

185 return dq;

186 }

187

188 Vector3d rigidBodyDynamics::quaternion2mrp(Vector4d q) const{

189 Vector3d mrp;

190 if (q(3) < 0) {

191 q = -q;

192 }

193

194 mrp << 4*q(0)/(1+q(3)), 4*q(1)/(1+q(3)), 4*q(2)/(1+q(3));

195 return mrp;

196 }

197

198 Vector4d rigidBodyDynamics::addQuaternionError(Vector3d& mrp, Vector4d& qref) const{

199 Vector4d qnew, dq;

200 dq = mrp2quaternion(mrp);

201

202 Vector4d qnew1 = quaternionMultiplication(dq, qref);

203

204 if (qnew1.dot(qref) ≥ 0) {

205 return qnew1;

206 } else {

207 Vector4d qnew2 = -1 * qnew1;

208 return qnew2;

209 }

210 }

211

212 Vector4d rigidBodyDynamics::quaternionMultiplication(Vector4d& q1, Vector4d& q2) const

{

213 //q1 \mult q2

214 Matrix4d qm;

215 Vector4d result;

216 qm << q1(3), q1(2), -q1(1), q1(0),

217 -q1(2), q1(3), q1(0), q1(1),

218 q1(1), -q1(0), q1(3), q1(2),

219 -q1(0), -q1(1), -q1(2), q1(3);

220
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221 result = qm*q2;

222 result /= result.norm();

223

224 return result;

225 }

226

227

228 Vector4d rigidBodyDynamics::quaternionDivision(Vector4d& q1, Vector4d& q2) const {

229 Vector4d q2inv;

230

231 q2inv << -q2(0) , -q2(1) , -q2(2) , q2(3);

232

233 Vector4d result = quaternionMultiplication(q1,q2inv);

234 return result;

235 }

236

237 Vector3d rigidBodyDynamics::diffQuaternion(Vector4d& q, Vector4d& qprev, double dt)

const {

238 Vector4d dq = (q - qprev) / dt;

239 Matrix4d M;

240

241 M << qprev(3) , qprev(2), -qprev(1), -qprev(0),

242 -qprev(2), qprev(3), qprev(0), -qprev(1),

243 qprev(1), -qprev(0), qprev(3), -qprev(2),

244 qprev(0), qprev(1), qprev(2), qprev(3);

245

246 Vector4d wp = 2*M*dq;

247 Vector3d w = wp.head(3);

248

249 return w;

250 }

251

252

253 Matrix3d rigidBodyDynamics::rotationMatrix(Vector4d& q) const {

254 Matrix3d rot;

255

256 rot(0,0) = q(0)*q(0)-q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

257 rot(0,1) = 2*(q(0)*q(1)+q(2)*q(3));

258 rot(0,2) = 2*(q(0)*q(2)-q(1)*q(3));

259

260 rot(1,0) = 2*(q(0)*q(1)-q(2)*q(3));

261 rot(1,1) = -q(0)*q(0)+q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

262 rot(1,2) = 2*(q(2)*q(1)+q(0)*q(3));

263

264 rot(2,0) = 2*(q(0)*q(2)+q(1)*q(3));
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265 rot(2,1) = 2*(q(2)*q(1)-q(0)*q(3));

266 rot(2,2) = -q(0)*q(0)-q(1)*q(1)+q(2)*q(2)+q(3)*q(3);

267

268 return rot;

269 }

270

271 Vector4d rigidBodyDynamics::quaternionFromRot(Matrix3d& R) const{

272 Vector4d q;

273 double div1, div2, div3, div4;

274

275 double numerical_limit = 1.0e-4;

276

277 if (abs(R.determinant()-1) > numerical_limit ) {

278 std::cerr << "R does not have a determinant of +1" << std::endl;

279 } else {

280 div1 = 0.5*sqrt(1+R(0,0)+R(1,1)+R(2,2));

281 div2 = 0.5*sqrt(1+R(0,0)-R(1,1)-R(2,2));

282 div3 = 0.5*sqrt(1-R(0,0)-R(1,1)+R(2,2));

283 div4 = 0.5*sqrt(1-R(0,0)+R(1,1)-R(2,2));

284

285 //if (div1 > div2 && div1 > div3 && div1 > div4) {

286 if (fabs(div1) > numerical_limit) {

287 q(3) = div1;

288 q(0) = 0.25*(R(1,2)-R(2,1))/q(3);

289 q(1) = 0.25*(R(2,0)-R(0,2))/q(3);

290 q(2) = 0.25*(R(0,1)-R(1,0))/q(3);

291 } else if (fabs(div2) > numerical_limit) {

292 //} else if (div2 > div1 && div2 > div3 && div2 > div4) {

293 q(0) = div2;

294 q(1) = 0.25*(R(0,1)+R(1,0))/q(0);

295 q(2) = 0.25*(R(0,2)+R(2,0))/q(0);

296 q(3) = 0.25*(R(1,2)+R(2,1))/q(0);

297 } else if (fabs(div3) > numerical_limit) {

298 //} else if (div3 > div1 && div3 > div2 && div3 > div4) {

299 q(2) = div3;

300 q(0) = 0.25*(R(0,2)+R(2,0))/q(2);

301 q(1) = 0.25*(R(1,2)+R(2,1))/q(2);

302 q(3) = 0.25*(R(0,1)-R(1,0))/q(2);

303 //} else {

304 } else if (fabs(div4) > numerical_limit) {

305 q(1) = div4;

306 q(0) = 0.25*(R(0,1)+R(1,0))/q(1);

307 q(2) = 0.25*(R(1,2)+R(2,1))/q(1);

308 q(3) = 0.25*(R(2,0)-R(0,2))/q(1);

309 } else {
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310 std::cerr << "quaternionFromRot didn't convert: [" << div1 << ", " << div2

<< ", " << div3 << ", " << div4 << std::endl;

311 std::cerr << "Rotation Matrix: " << R << std::endl;

312 }

313 }

314 q /=q.norm();

315

316 return q;

317 }

318

319 MatrixXd rigidBodyDynamics::getBw() const {

320 Matrix<double, 12,6> Bw;

321 Bw = Matrix<double,12,6>::Zero();

322 Bw.block<3,3>(3,0) = Matrix3d::Identity();

323 Bw.block<3,3>(9,3) = Matrix3d::Identity();

324

325 return Bw;

326 }

327

328

329 Matrix3d rigidBodyDynamics::getJ() const{

330 return _ir.getJ();

331 }

332

333 isam::inertiaRatios rigidBodyDynamics::getIR() const{

334 return _ir;

335 }

336

337 void rigidBodyDynamics::setIR(isam::inertiaRatios ir) {

338 _ir = ir;

339 }

340

341 double rigidBodyDynamics::getSigmaV() const{

342 return _sigma_v;

343 }

344

345 double rigidBodyDynamics::getSigmaW() const {

346 return _sigma_w;

347 }
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Listing B.18: Dynamic iSAM: NodeExmap.h

1 //modified from Node.h - tweddle

2

3 #pragma once

4

5 #include <list>

6 #include <Eigen/Dense>

7

8 #include <isam/Element.h>

9 #include <isam/Noise.h>

10 #include <isam/Node.h>

11

12 namespace isam {

13

14 template <class T>

15 class NodeExmapT : public Node {

16

17 protected:

18 T* _value; // current estimate

19 T* _value0; // linearization point

20

21 public:

22

23 NodeExmapT() : Node(T::name(), T::dim) {

24 _value = NULL;

25 _value0 = NULL;

26 }

27

28 NodeExmapT(const char* name) : Node(name, T::dim) {

29 _value = NULL;

30 _value0 = NULL;

31 }

32

33 virtual ¬NodeExmapT() {

34 delete _value;

35 delete _value0;

36 }

37

38 void init(const T& t) {

39 delete _value; delete _value0;

40 _value = new T(t); _value0 = new T(t);

41 }

42

43 bool initialized() const {return _value != NULL;}

44
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45 T value(Selector s = ESTIMATE) const {return (s==ESTIMATE)?*_value:*_value0;}

46 T value0() const {return *_value0;}

47

48 Eigen::VectorXd vector(Selector s = ESTIMATE) const {return (s==ESTIMATE)?_value->

vector():_value0->vector();}

49 Eigen::VectorXd vector0() const {return _value0->vector();}

50

51 void update(const Eigen::VectorXd& v) {_value->set(v);}

52 void update0(const Eigen::VectorXd& v) {_value0->set(v);}

53

54 void linpoint_to_estimate() {*_value = *_value0;}

55 void estimate_to_linpoint() {*_value0 = *_value;}

56 void swap_estimates() {T tmp = *_value; *_value = *_value0; *_value0 = tmp;}

57

58 /

59 // void apply_exmap(const Eigen::VectorXd& v) {*_value = _value0->exmap(v);}

60 // void self_exmap(const Eigen::VectorXd& v) {*_value0 = _value0->exmap(v);}

61

62 void apply_exmap(const Eigen::VectorXd& v);

63 void self_exmap(const Eigen::VectorXd& v) {*_value0 = _value0->exmap(v);}

64

65 void rezero() {

66 _value->rezero();

67 _value0->rezero();

68 }

69

70 void write(std::ostream &out) const {

71 out << name() << "_Node " << _id;

72 if (_value != NULL) {

73 out << " " << value();

74 }

75 }

76 };

77

78 }

79

80 //snippet code goes "elsewhere" for compilation

81 template <class T> void NodeExmapT<T>::apply_exmap(const Eigen::VectorXd& v) {

82 *_value = _value0->exmap_reset(v);

83

84 //update factor noise

85 std::list<Factor*> factor_list= this->factors();

86 for (std::list<Factor*>::iterator it = factor_list.begin(); it != factor_list.end

(); it++) {

87 Factor* factor = *it;
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88 dynamicPose3d_NL_dynamicPose3d_NL_Factor * dynamic_factor;

89 dynamic_factor = dynamic_cast<dynamicPose3d_NL_dynamicPose3d_NL_Factor *>(

factor);

90 if (dynamic_factor !=0) {

91 if (dynamic_factor->checkPose1(this)) {

92 //std::cout << "Found Dynamic Factor in apply_exmap(), adjusting noise

" << std::endl;

93 Eigen::MatrixXd sqrtinf = dynamic_factor->get_sqrtinf();

94 Noise newnoise = isam::SqrtInformation(sqrtinf);

95 dynamic_factor->setNoise(newnoise);

96 }

97 }

98

99 }

100 }
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Listing B.19: Dynamic iSAM: FactorVariableNoise.h

1 #pragma once

2

3 #include <vector>

4 #include <string>

5

6 #include <math.h> // for sqrt

7 #include <Eigen/Dense>

8

9 #include<isam/util.h>

10 #include<isam/Jacobian.h>

11 #include<isam/Element.h>

12 #include<isam/Node.h>

13 #include<isam/Noise.h>

14 #include<isam/numericalDiff.h>

15

16 namespace isam {

17

18

19 // Generic template for easy instantiation of new factors

20 template <class T>

21 class FactorVarNoiseT : public Factor {

22

23 /* Not a const variable

24 * This is important because it allows the factor's uncertainty to be updated in

real-time

25 */

26 Noise _noise_variable;

27 cost_func_t *ptr_cost_func_local;

28 protected:

29

30 const T _measure;

31

32 public:

33 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

34

35 FactorVarNoiseT(const char* name, int dim, const Noise& noise, const T& measure) :

Factor(name, dim, noise), _measure(measure) {

36 _noise_variable = noise;

37 ptr_cost_func_local = NULL;

38 }

39

40 virtual void setNoise(Noise& newNoise) {

41 _noise_variable = newNoise;

42 }
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43

44 virtual void set_cost_function(cost_func_t* ptr) {ptr_cost_func_local = ptr;}

45

46 virtual Eigen::VectorXd error(Selector s = ESTIMATE) const {

47 Eigen::VectorXd err = _noise_variable.sqrtinf() * basic_error(s);

48 // optional modified cost function

49 if (*ptr_cost_func_local) {

50 for (int i=0; i<err.size(); i++) {

51 double val = err(i);

52 err(i) = ((val≥0)?1.:(-1.)) * sqrt((*ptr_cost_func_local)(val));

53 }

54 }

55 return err;

56 }

57

58 virtual const Eigen::MatrixXd& sqrtinf() const {return _noise_variable.sqrtinf();}

59

60 const T& measurement() const {

61 return _measure;

62 }

63

64 void write(std::ostream &out) const {

65 Factor::write(out);

66 out << " " << _measure << " " << noise_to_string(_noise_variable);

67 }

68

69 };

70

71

72 }
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Listing B.20: Dynamic iSAM: slam dynamic3d NL.h

1

2 #ifndef SLAMDYNAMICS_H_

3 #define SLAMDYNAMICS_H_

4

5

6 #include <Eigen/Dense>

7 #include "dynamicPose3d_NL.h"

8 #include "camera3d.h"

9 #include "FactorVariableNoise.h"

10 #include <isam/Node.h>

11 #include <isam/Factor.h>

12 #include <isam/Pose3d.h>

13 #include <isam/Point3d.h>

14 #include <isam/slam_stereo.h>

15 #include "NodeExmap.h"

16 #include "inertiaRatios.h"

17 #include "kinematicPose3d.h"

18

19

20 namespace isam{

21

22 typedef NodeExmapT<dynamicPose3d_NL> dynamicPose3d_NL_Node;

23 typedef NodeT<Point3d> Point3d_Node;

24

25 /**

26 * Prior on dynamicPose3d.

27 */

28 class dynamicPose3d_NL_Factor : public FactorT<dynamicPose3d_NL> {

29 public:

30 dynamicPose3d_NL_Node* _pose;

31

32 dynamicPose3d_NL_Factor(dynamicPose3d_NL_Node* pose, const dynamicPose3d_NL& prior,

const Noise& noise)

33 : FactorT<dynamicPose3d_NL>("dynamicPose3d_NL_Factor", 12, noise, prior), _pose(

pose) {

34 _nodes.resize(1);

35 _nodes[0] = pose;

36 }

37

38 void initialize() {

39 if (!_pose->initialized()) {

40 dynamicPose3d_NL predict = _measure;

41 _pose->init(predict);

42 }
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43 }

44

45 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

46

47 dynamicPose3d_NL p1 = _pose->value(s);

48 Eigen::VectorXd err = p1.vectorFull() - _measure.vector();

49

50 Eigen::Vector4d p1qTot = p1.qTotal();

51 Eigen::Vector4d mqTot = _measure.qTotal();

52 Vector3d da = p1.getMRPdifference(p1qTot, mqTot);

53 err.segment<3>(6) = da;

54

55 return err;

56 }

57 };

58

59

60 //Process Model Factor - one of the main contributions of this thesis

61 class dynamicPose3d_NL_dynamicPose3d_NL_Factor : public FactorVarNoiseT<

dynamicPose3d_NL > {

62 dynamicPose3d_NL_Node* _pose1;

63 dynamicPose3d_NL_Node* _pose2;

64 inertiaRatios_Node* _ir_node;

65 double dt;

66

67 public:

68

69 /**

70 * Constructor.

71 * @param pose1 The pose from which the measurement starts.

72 * @param pose2 The pose to which the measurement extends.

73 * @param measure DOES NOTHING - DON'T USE IT!!!! (could be extended in future

release to add forces/torques

74 * @param noise The 12x12 square root information matrix (upper triangular).

75 */

76 dynamicPose3d_NL_dynamicPose3d_NL_Factor(dynamicPose3d_NL_Node* pose1,

dynamicPose3d_NL_Node* pose2, inertiaRatios_Node* ir_node,

77 const dynamicPose3d_NL& measure, const Noise& noise, double timestep)

78 : FactorVarNoiseT<dynamicPose3d_NL>("dp3dNL_dp3dNL_IR_Factor", 12, noise, measure)

,

79 _pose1(pose1), _pose2(pose2), _ir_node(ir_node), dt(timestep) {

80 _nodes.resize(3);

81 _nodes[0] = pose1;

82 _nodes[1] = pose2;

83 _nodes[2] = ir_node;
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84 }

85

86 void initialize() {

87 dynamicPose3d_NL_Node* pose1 = _pose1;

88 dynamicPose3d_NL_Node* pose2 = _pose2;

89 inertiaRatios_Node* ir_node = _ir_node;

90 require(pose1->initialized() || pose2->initialized(),

91 "dynamicSLAM: dynamicPose3d_NL_dynamicPose3d_NL_Factor requires pose1 or pose2

to be initialized");

92

93 if(!_ir_node->initialized()) {

94 inertiaRatios init_ir;

95 _ir_node->init(init_ir);

96 }

97

98 if (!pose1->initialized() && pose2->initialized()) {

99 std::cout << "No BACKWARDS PROPAGATE" << std::endl;

100 } else if (pose1->initialized() && !pose2->initialized()) {

101 inertiaRatios ir = _ir_node->value();

102 dynamicPose3d_NL a = pose1->value();

103 dynamicPose3d_NL predict = a.propagate(dt, ir);

104 pose2->init(predict);

105 }

106 }

107

108 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

109

110 dynamicPose3d_NL p1 = _pose1->value(s);

111 dynamicPose3d_NL p2 = _pose2->value(s);

112 inertiaRatios ir = _ir_node->value(s);

113

114 Eigen::VectorXd err = p2.computeStateChange(p1, dt, ir);

115

116 return err;

117 }

118

119 Eigen::MatrixXd get_sqrtinf() const {

120 inertiaRatios ir = _ir_node->value();

121 Eigen::MatrixXd new_sqrtinf = _pose1->value().getProcessNoise(dt,ir)._sqrtinf;

122 return new_sqrtinf;

123 }

124

125 bool checkPose1(dynamicPose3d_NL_Node* poseRef) {

126 if(_pose1 == poseRef) {

127 return true;
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128 } else {

129 return false;

130 }

131 }

132

133 bool checkPose1(inertiaRatios_Node* ir_node) {

134 if(_ir_node == ir_node) {

135 return true;

136 } else {

137 return false;

138 }

139 }

140

141 bool checkPose1(kinematicPose3d_Node* poseRef) {

142 return false;

143 }

144

145 double get_dt() { return dt;}

146

147 void write(std::ostream &out) const {

148 FactorVarNoiseT<dynamicPose3d_NL >::write(out);

149 }

150 };

151

152

153 typedef NodeT<Point3dh> Point3dh_Node;

154

155 //stereo camera class

156 class StereoCameraDebug { // for now, camera and robot are identical

157 double _f;

158 Eigen::Vector2d _pp;

159 double _b;

160

161 public:

162 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

163

164 StereoCameraDebug() : _f(1), _pp(Eigen::Vector2d(0.5,0.5)), _b(0.1) {}

165 StereoCameraDebug(double f, const Eigen::Vector2d& pp, double b) : _f(f), _pp(pp),

_b(b) {}

166

167 inline double focalLength() const {return _f;}

168

169 inline Eigen::Vector2d principalPoint() const {return _pp;}

170

171 inline double baseline() const {return _b;}
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172

173 StereoMeasurement project(const Pose3d& pose, const Point3dh& Xw) const {

174 Point3dh X = pose.transform_to(Xw);

175 // camera system has z pointing forward, instead of x

176 double x = -X.y();

177 double y = -X.z();

178 double z = X.x();

179

180 // left camera

181 double fz = _f / z;

182 double u = x * fz + _pp(0);

183 double v = y * fz + _pp(1);

184 // right camera

185 double u2 = u -_b*fz;

186 bool valid = ( z > 0.0); // infront of camera?

187

188 if (valid == false) {

189 std::cout << "invalid." << std::endl;

190 }

191

192 return StereoMeasurement(u, v, u2, valid);

193 }

194

195 StereoMeasurement project(const cameraPose3d& pose, const Point3dh& Xw) const {

196 Point3dh X = pose.transform_to(Xw);

197 // camera system has z pointing forward, instead of x

198 double x = -X.y();

199 double y = -X.z();

200 double z = X.x();

201

202 // left camera

203 double fz = _f / z;

204 double u = x * fz + _pp(0);

205 double v = y * fz + _pp(1);

206 // right camera

207 double u2 = u -_b*fz;

208 bool valid = ( z > 0.0); // infront of camera?

209 if (valid == false) {

210 std::cout << "invalid." << std::endl;

211 }

212

213 return StereoMeasurement(u, v, u2, valid);

214 }

215

216
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217 Point3dh backproject(const Pose3d& pose, const StereoMeasurement& measure) const {

218 double disparity = measure.u - measure.u2;

219 double lz = _f*_b / disparity;

220 double lx = (measure.u-_pp(0))*lz / _f;

221 double ly = (measure.v-_pp(1))*lz / _f;

222 if (disparity<0.) {

223 std::cout << "Warning: StereoCameraDebug.backproject called with negative

disparity\n";

224 }

225

226 Point3dh X(lz, -lx, -ly, 1.0);

227

228 return pose.transform_from(X);

229 }

230

231 Point3dh backproject(const cameraPose3d& pose, const StereoMeasurement& measure)

const {

232

233 double disparity = measure.u - measure.u2;

234 double lz = _f*_b / disparity;

235 double lx = (measure.u-_pp(0))*lz / _f;

236 double ly = (measure.v-_pp(1))*lz / _f;

237 if (disparity<0.) {

238 std::cout << "Warning: StereoCameraDebug.backproject called with negative

disparity\n";

239 }

240 Point3dh X(lz, -lx, -ly, 1.0);

241 return pose.transform_from(X);

242 }

243

244 };

245

246

247 //stereo measurement factor with geometric frame reference

248 class dStereo_MovingMap_CoM_Factor : public FactorT<StereoMeasurement> {

249 dynamicPose3d_NL_Node* _pose;

250 Point3d_Node* _point;

251 Point3dh_Node* _point_h;

252 StereoCameraDebug* _camera;

253 cameraPose3d_Node* _camera_pose3d;

254 kinematicPose3d_Node* _centerOfMass_princAxes;

255

256 Point3dh predict_inertial_stored;

257

258 public:
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259

260 // constructor for projective geometry

261 dStereo_MovingMap_CoM_Factor(dynamicPose3d_NL_Node* pose, Point3dh_Node* point,

StereoCameraDebug* camera, cameraPose3d_Node* camera_pose3d,

kinematicPose3d_Node* centerOfMass_princAxes,

262 const StereoMeasurement& measure, const Noise& noise)

263 : FactorT<StereoMeasurement>("Stereo_Factor COM", 3, noise, measure),

264 _pose(pose), _point(NULL), _point_h(point), _camera(camera), _camera_pose3d(

camera_pose3d), _centerOfMass_princAxes(centerOfMass_princAxes) {

265 // StereoCameraDebug could also be a node later (either with 0 variables,

266 // or with calibration as variables)

267 _nodes.resize(3);

268 _nodes[0] = pose;

269 _nodes[1] = _centerOfMass_princAxes;

270 _nodes[2] = point;

271

272 }

273

274 // constructor for Euclidean geometry

275 // WARNING: only use for points at short range

276 dStereo_MovingMap_CoM_Factor(dynamicPose3d_NL_Node* pose, Point3d_Node* point,

StereoCameraDebug* camera, cameraPose3d_Node* camera_pose3d,

kinematicPose3d_Node* centerOfMass_princAxes,

277 const StereoMeasurement& measure, const Noise& noise)

278 : FactorT<StereoMeasurement>("Stereo_Factor COM", 3, noise, measure),

279 _pose(pose), _point(point), _point_h(NULL), _camera(camera), _camera_pose3d(

camera_pose3d), _centerOfMass_princAxes(centerOfMass_princAxes) {

280 _nodes.resize(3);

281 _nodes[0] = pose;

282 _nodes[1] = _centerOfMass_princAxes;

283 _nodes[2] = point;

284 }

285

286 void initialize() {

287 require(_pose->initialized(), "dynamic Stereo_Factor requires pose to be

initialized");

288 if(!_centerOfMass_princAxes->initialized()) {

289 kinematicPose3d com_pa_init;

290 _centerOfMass_princAxes->init(com_pa_init);

291 }

292 bool initialized = (_point_h!=NULL) ? _point_h->initialized() : _point->

initialized();

293 if (!initialized) {

294 Point3dh predict_inertial = _camera->backproject(_camera_pose3d->value(),

_measure);
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295 predict_inertial_stored = predict_inertial;

296

297 Point3dh predict_body = _pose->value().transform_to_body(predict_inertial);

298

299 Point3dh predict_feature(_centerOfMass_princAxes->value().oTw() * predict_body.

vector());

300

301 //subtract Center of mass offset

302 Vector3d vec_point_feat_frame = predict_feature.vector().head(3);// -

_com_offset->value().vector();

303 Point3dh point_com = Point3dh(Point3d(vec_point_feat_frame));

304

305 if (_point_h!=NULL) {

306 _point_h->init(point_com);

307 } else {

308 _point->init(point_com.to_point3d());

309 }

310 }

311 }

312

313 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

314 //point in body feature frame

315 Point3dh point = (_point_h!=NULL) ? _point_h->value(s) : _point->value(s);

316

317 //add center of mass offset

318 Vector4d vec_point_feat_frame;

319 vec_point_feat_frame << point.vector().head(3), 1.0;

320 Vector3d vec_point_com_frame = (_centerOfMass_princAxes->value(s).wTo()*

vec_point_feat_frame).head(3);

321 Point3dh point_com = Point3dh(Point3d(vec_point_com_frame));

322

323 //transform from body frame to inertial frame

324 Point3dh inertialPoint = _pose->value(s).transform_to_inertial(point_com);

325

326 //project into camera

327 StereoMeasurement predicted = _camera->project(_camera_pose3d->value(s),

inertialPoint);

328

329 //create error measurement

330 if (_point_h!=NULL || predicted.valid == true) {

331 return (predicted.vector() - _measure.vector());

332 } else {

333 std::cout << "Warning - dynamicStereo_MovingMap_Factor.basic_error: point behind

camera, dropping term.\n";

334 std::cout << "_camera_pose3d->value(s): " << _camera_pose3d->value(s) << std::
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endl;

335 std::cout << "_pose->value(s): " << _pose->value(s) << std::endl;

336 std::cout << "inertialPoint: " << inertialPoint << std::endl << std::endl;

337 return Eigen::Vector3d::Zero();

338 }

339 }

340

341 };

342

343 //point3d prior factor

344 class Point3d_Factor : public FactorT<Point3d> {

345 Point3d_Node* _point;

346

347 public:

348

349 Point3d_Factor(Point3d_Node* point, const Point3d& prior, const Noise& noise)

350 : FactorT<Point3d>("Point3d_Factor", 3, noise, prior), _point(point) {

351 _nodes.resize(1);

352 _nodes[0] = point;

353 }

354

355 void initialize() {

356 if (!_point->initialized()) {

357 Point3d predict = _measure;

358 _point->init(predict);

359 }

360 }

361

362 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

363 return (_point->vector(s) - _measure.vector());

364 }

365

366 };

367

368

369 }

370

371 #endif
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Listing B.21: Dynamic iSAM: kinematicPose3d.h

1 #pragma once

2

3 #include <cmath>

4 #include <Eigen/Dense>

5 #include <Eigen/Geometry>

6 #include "NodeExmap.h"

7

8

9 namespace isam {

10

11 typedef Eigen::Matrix<double, 6, 1> Vector6d;

12

13 class kinematicPose3d {

14 frend std::ostream& operator<<(std::ostream& out, const kinematicPose3d& p) {

15 p.write(out);

16 return out;

17 }

18 Eigen::Vector4d _qref;

19 Eigen::Vector3d _r;

20 Eigen::Vector3d _a;

21

22 public:

23 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

24

25 static const int dim = 6;

26 static const char* name() {

27 return "kinematicPose3d";

28 }

29

30 kinematicPose3d() {

31 _qref << 0.0, 0.0, 0.0, 1.0;

32 _a << 0.0, 0.0, 0.0;

33 _r << 0.0, 0.0, 0.0;

34 }

35

36

37 kinematicPose3d(const Eigen::MatrixXd& hm) {

38 //Convert matrix to R,T

39 Eigen::Matrix4d HM = hm / hm(3,3); // enforce T(3,3)=1

40 Eigen::Matrix3d R = HM.topLeftCorner(3,3);

41 Eigen::Vector3d _r = HM.col(3).head(3);

42

43 //compute quaternion

44 _qref = quaternionFromRot(R);
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45 _a = Eigen::Vector3d::Zero();

46 }

47

48 Eigen::VectorXd x() const{

49 Vector6d x;

50 Eigen::Vector3d r = _r;

51 Eigen::Vector3d a = _a;

52 x.segment<3>(0) = r;

53 x.segment<3>(3) = a;

54 return x;

55 }

56

57 void setState(Eigen::VectorXd x, Eigen::Vector4d q) {

58 _r = x.segment<3>(0);

59 _a = x.segment<3>(3);

60 _qref = q / q.norm();

61 }

62

63 void setState(Eigen::VectorXd x) {

64 _r = x.segment<3>(0);

65 _a = x.segment<3>(3);

66 }

67

68 Eigen::Vector4d mrp2quaternion(Eigen::Vector3d mrp) const{

69 Eigen::Vector4d dq;

70 dq << 8*mrp / (16 + mrp.transpose() * mrp), (16 - mrp.transpose() * mrp) /

(16+mrp.transpose() * mrp);

71 dq /=dq.norm();

72 return dq;

73 }

74

75 Eigen::Vector3d quaternion2mrp(Eigen::Vector4d q) const{

76 Eigen::Vector3d mrp;

77 if (q(3) < 0) {

78 q = -q;

79 }

80

81 mrp << 4*q(0)/(1+q(3)), 4*q(1)/(1+q(3)), 4*q(2)/(1+q(3));

82 return mrp;

83 }

84

85

86 Eigen::Vector4d addQuaternionError(Eigen::Vector3d& mrp, Eigen::Vector4d& qref)

const{

87 Eigen::Vector4d qnew, dq;
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88 dq = mrp2quaternion(mrp);

89

90 qnew = quaternionMultiplication(dq, qref);

91

92 return qnew;

93 }

94

95 Eigen::Vector4d quaternionMultiplication(Eigen::Vector4d& q1, Eigen::Vector4d& q2)

const {

96 //q1 \mult q2

97 Eigen::Matrix4d qm;

98 Eigen::Vector4d result;

99 qm << q1(3), q1(2), -q1(1), q1(0),

100 -q1(2), q1(3), q1(0), q1(1),

101 q1(1), -q1(0), q1(3), q1(2),

102 -q1(0), -q1(1), -q1(2), q1(3);

103

104 result = qm*q2;

105 result /= result.norm();

106

107 return result;

108 }

109

110 Eigen::Vector4d quaternionDivision(Eigen::Vector4d& q1, Eigen::Vector4d& q2) const

{

111 Eigen::Vector4d q2inv;

112

113 q2inv << -q2(0) , -q2(1) , -q2(2) , q2(3);

114

115 Eigen::Vector4d result = quaternionMultiplication(q1,q2inv);

116 return result;

117 }

118

119

120 Eigen::Matrix3d rotationMatrix(Eigen::Vector4d& q) const {

121 Eigen::Matrix3d rot;

122

123 rot(0,0) = q(0)*q(0)-q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

124 rot(0,1) = 2*(q(0)*q(1)+q(2)*q(3));

125 rot(0,2) = 2*(q(0)*q(2)-q(1)*q(3));

126

127 rot(1,0) = 2*(q(0)*q(1)-q(2)*q(3));

128 rot(1,1) = -q(0)*q(0)+q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

129 rot(1,2) = 2*(q(2)*q(1)+q(0)*q(3));

130
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131 rot(2,0) = 2*(q(0)*q(2)+q(1)*q(3));

132 rot(2,1) = 2*(q(2)*q(1)-q(0)*q(3));

133 rot(2,2) = -q(0)*q(0)-q(1)*q(1)+q(2)*q(2)+q(3)*q(3);

134

135 return rot;

136 }

137

138 Eigen::Vector4d quaternionFromRot(Eigen::Matrix3d& R) const{

139 Eigen::Vector4d q;

140 double div1, div2, div3, div4;

141

142 double numerical_limit = 1.0e-4;

143

144 if (abs(R.determinant()-1) > numerical_limit ) {

145 std::cerr << "R does not have a determinant of +1" << std::endl;

146 } else {

147 div1 = 0.5*sqrt(1+R(0,0)+R(1,1)+R(2,2));

148 div2 = 0.5*sqrt(1+R(0,0)-R(1,1)-R(2,2));

149 div3 = 0.5*sqrt(1-R(0,0)-R(1,1)+R(2,2));

150 div4 = 0.5*sqrt(1-R(0,0)+R(1,1)-R(2,2));

151

152 //if (div1 > div2 && div1 > div3 && div1 > div4) {

153 if (fabs(div1) > numerical_limit) {

154 q(3) = div1;

155 q(0) = 0.25*(R(1,2)-R(2,1))/q(3);

156 q(1) = 0.25*(R(2,0)-R(0,2))/q(3);

157 q(2) = 0.25*(R(0,1)-R(1,0))/q(3);

158 } else if (fabs(div2) > numerical_limit) {

159 //} else if (div2 > div1 && div2 > div3 && div2 > div4) {

160 q(0) = div2;

161 q(1) = 0.25*(R(0,1)+R(1,0))/q(0);

162 q(2) = 0.25*(R(0,2)+R(2,0))/q(0);

163 q(3) = 0.25*(R(1,2)+R(2,1))/q(0);

164 } else if (fabs(div3) > numerical_limit) {

165 //} else if (div3 > div1 && div3 > div2 && div3 > div4) {

166 q(2) = div3;

167 q(0) = 0.25*(R(0,2)+R(2,0))/q(2);

168 q(1) = 0.25*(R(1,2)+R(2,1))/q(2);

169 q(3) = 0.25*(R(0,1)-R(1,0))/q(2);

170 //} else {

171 } else if (fabs(div4) > numerical_limit) {

172 q(1) = div4;

173 q(0) = 0.25*(R(0,1)+R(1,0))/q(1);

174 q(2) = 0.25*(R(1,2)+R(2,1))/q(1);

175 q(3) = 0.25*(R(2,0)-R(0,2))/q(1);

357



176 } else {

177 std::cerr << "quaternionFromRot didn't convert: [" << div1 << ", " <<

div2 << ", " << div3 << ", " << div4 << std::endl;

178 std::cerr << "Rotation Matrix: " << R << std::endl;

179 }

180 }

181 q /=q.norm();

182

183 return q;

184 }

185

186

187 Eigen::Vector3d r() const {return _r;}

188 Eigen::Vector3d a() const {return _a;}

189 Eigen::Vector4d qref() const {return _qref;}

190

191

192 void reset_qref() {

193 Eigen::Vector3d a_ = _a;

194 Eigen::Vector4d qref_ = _qref;

195 _qref = addQuaternionError(a_, qref_);

196 _a = Eigen::Vector3d::Zero();

197 }

198

199 Eigen::Vector4d qTotal() const {

200 Eigen::Vector3d a_ = _a;

201 Eigen::Vector4d qref_ = _qref;

202 return addQuaternionError(a_, qref_);

203 };

204

205

206

207 kinematicPose3d exmap(const Vector6d& ∆) {

208 kinematicPose3d res = *this;

209 res._r += ∆.head(3);

210 res._a += ∆.tail(3);

211 return res;

212 }

213

214 kinematicPose3d exmap_reset(const Vector6d& ∆) {

215 kinematicPose3d res = *this;

216 res._r += ∆.head(3);

217 res._a += ∆.tail(3);

218 res.reset_qref();

219 return res;
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220 }

221 Vector6d vector() const {

222 Vector6d tmp;

223 tmp << _r, _a;

224 return tmp;

225 }

226

227 void set(const Vector6d& v) {

228 _r = v.head(3);

229 _a = v.tail(3);

230 }

231

232 void write(std::ostream &out) const {

233 out << std::endl << "kinPose3d x: " << x().transpose() << std::endl;

234 out << "kinPose3d qref: " << qref().transpose() << std::endl;

235 out << std::endl;

236 }

237

238

239 /**

240 * Convert Pose3 to homogeneous 4x4 transformation matrix.

241 * The returned matrix is the object coordinate frame in the world

242 * coordinate frame. In other words it transforms a point in the object

243 * frame to the world frame.

244 *

245 * @return wTo

246 */

247 Eigen::Matrix4d wTo() const {

248 /*

249 Eigen::Matrix4d T;

250 Eigen::Vector4d qtot = qTotal();

251 T.topLeftCorner(3,3) = rotationMatrix(qtot).transpose();

252 T.col(3).head(3) = _r;

253 T.row(3) << 0., 0., 0., 1.;

254 return T;

255 */

256 Eigen::Vector4d qtot = qTotal();

257 Eigen::Matrix3d R = rotationMatrix(qtot);

258 Eigen::Matrix3d oRw = R;

259 Eigen::Vector3d C = - oRw * _r;

260 Eigen::Matrix4d T;

261 T.topLeftCorner(3,3) = oRw;

262 T.col(3).head(3) = C;

263 T.row(3) << 0., 0., 0., 1.;

264 return T;
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265

266 }

267

268 /**

269 * Convert Pose3 to homogeneous 4x4 transformation matrix. Avoids inverting wTo.

270 * The returned matrix is the world coordinate frame in the object

271 * coordinate frame. In other words it transforms a point in the world

272 * frame to the object frame.

273 *

274 * @return oTw

275 */

276 Eigen::Matrix4d oTw() const {

277 Eigen::Matrix4d T;

278 Eigen::Vector4d qtot = qTotal();

279 T.topLeftCorner(3,3) = rotationMatrix(qtot).transpose();

280 T.col(3).head(3) = _r;

281 T.row(3) << 0., 0., 0., 1.;

282 return T;

283

284 }

285

286

287 };

288

289 typedef NodeExmapT<kinematicPose3d> kinematicPose3d_Node;

290

291 class kinematicPose3d_Factor : public FactorT<kinematicPose3d> {

292 public:

293 kinematicPose3d_Node* _pose;

294

295 kinematicPose3d_Factor(kinematicPose3d_Node* pose, const kinematicPose3d&

prior, const Noise& noise)

296 : FactorT<kinematicPose3d>("kinematicPose3d_Factor", 6, noise, prior), _pose(

pose) {

297 _nodes.resize(1);

298 _nodes[0] = pose;

299 }

300

301 void initialize() {

302 if (!_pose->initialized()) {

303 kinematicPose3d predict = _measure;

304 _pose->init(predict);

305 }

306 }

307
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308 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

309

310 kinematicPose3d p1 = _pose->value(s);

311 Eigen::VectorXd err = p1.vector() - _measure.vector();

312 Eigen::Vector4d q1_tot = p1.qTotal();

313 Eigen::Vector4d qm_tot = _measure.qTotal();

314 Eigen::Vector4d dq = p1.quaternionDivision(q1_tot,qm_tot);

315 Eigen::Vector3d da = p1.quaternion2mrp(dq);

316

317 err.segment<3>(3) = da;

318

319 return err;

320 }

321 };

322 }
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Listing B.22: Dynamic iSAM: dynamicsPose3d NL.h

1

2 #pragma once

3

4 #include <ostream>

5 #include <Eigen/Dense>

6 #include "isam/isam.h"

7 #include "rigidBodyDynamics.h"

8 #include "FactorVariableNoise.h"

9

10

11 using namespace Eigen;

12 namespace isam{

13

14 class dynamicPose3d_NL {

15 frend std::ostream& operator<<(std::ostream& out, const dynamicPose3d_NL& p)

16 {

17 p.write(out);

18 return out;

19 }

20

21 rigidBodyDynamics rbd;

22 public:

23 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

24 // assignment operator and copy constructor implicitly created, which is ok

25 static const int dim = 12;

26 static const char* name() {

27 return "dynamicPose3d_NL";

28 }

29

30 Noise* factor_noise; //check if this is ever used

31

32 dynamicPose3d_NL(inertiaRatios ir, double sigma_v, double sigma_w) : rbd(ir, sigma_v

, sigma_w) {

33 }

34

35 //copy constructor

36 dynamicPose3d_NL(const dynamicPose3d_NL& cSource) :

37 rbd(cSource.rbd.getIR(), cSource.rbd.getSigmaV(), cSource.rbd.getSigmaW() )

38 {

39 rbd.setState(cSource.rbd.x(), cSource.rbd.qref());

40 }

41

42 dynamicPose3d_NL& operator= (const dynamicPose3d_NL& cSource) {

43 rbd = rigidBodyDynamics(cSource.rbd.getIR(), cSource.rbd.getSigmaV(), cSource.
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rbd.getSigmaW() );

44 rbd.setState(cSource.rbd.x(), cSource.rbd.qref());

45 return *this;

46 }

47

48 dynamicPose3d_NL(VectorXd x, inertiaRatios ir, double sigma_v, double sigma_w)

49 : rbd(ir, sigma_v, sigma_w)

50 {

51 Vector4d qref;

52 qref << 0, 0, 0, 1;

53 if (x.size() == 12) {

54 rbd.setState(x,qref);

55 }

56 }

57

58 dynamicPose3d_NL(VectorXd x, Vector4d qref, inertiaRatios ir, double sigma_v, double

sigma_w)

59 : rbd(ir, sigma_v, sigma_w)

60 {

61 if (x.size() == 12) {

62 rbd.setState(x,qref);

63 }

64 }

65

66 dynamicPose3d_NL(const Matrix4d& hm, bool initVelocities, double dt, inertiaRatios

ir, double sigma_v, double sigma_w)

67 : rbd(ir, sigma_v, sigma_w)

68 {

69 Matrix<double,12,1> x;

70 Vector3d r;

71 Vector3d v;

72 Vector3d a;

73 Vector4d q;

74 Vector3d w;

75

76 //Convert matrix to R,T

77 Matrix4d HM = hm / hm(3,3); // enforce T(3,3)=1

78 Matrix3d R = HM.topLeftCorner(3,3);

79 Vector3d T = HM.col(3).head(3);

80

81 //compute quaternion

82 q = rbd.quaternionFromRot(R);

83 a = Vector3d::Zero();

84

85 if (initVelocities) {
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86 //differentiate linear velocity

87 v = T / dt;

88

89 /* Differentiate quaternion:

90 * dq/dt = (q[k] - q[k-1])/dt = 0.5 O(w[k-1]) q[k-1]

91 * where O(w[k-1]) is an orthonormal quaternion mult matrix for [w1; w2; w3;

0] (i.e. quaternionMultiplication())

92 * set q[k-1] = [0;0;0;1] by definition (from a refererence frame) and solve

for w[k-1] gives

93 * w[k-1] = 2 [q1[k]; q2[k]; q3[k]] / dt

94 */

95 w = 2*q.head(3) / dt;

96 } else {

97 v = Vector3d::Zero();

98 w = Vector3d::Zero();

99 }

100

101 x.block<3,1>(0,0) = T;

102 x.block<3,1>(3,0) = v;

103 x.block<3,1>(6,0) = a;

104 x.block<3,1>(9,0) = w;

105 rbd.setState(x,q);

106 }

107

108 VectorXd x() { return rbd.x();};

109 Vector4d q() { return rbd.qref();};

110 Vector4d qTotal() const { return rbd.qTotal(); };

111

112 dynamicPose3d_NL exmap(const Matrix<double,12,1>& ∆) const {

113 dynamicPose3d_NL res = *this;

114 res.rbd.setState(res.rbd.x() + ∆);

115 return res;

116 }

117

118 dynamicPose3d_NL exmap_reset(const Matrix<double,12,1>& ∆) {

119 dynamicPose3d_NL res = *this;

120 res.rbd.setState(res.rbd.x() + ∆);

121 res.rbd.reset_qref();

122

123 /* We should REALLY, REALLY update Factor::_sqrtinf at this location

124 * in the code. However it is a const variable, and there is no way

125 * to do callbacks to the Factor class. So I will leave this for future

126 * work. Now, the value that is created on initialization is the final

127 * version, even after many relinearizations.

128 */
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129

130 //NOTE - THIS IS NOW DONE in NodeExmapT->apply_reset();

131

132 return res;

133 }

134

135 void set(const VectorXd& v) {

136 rbd.setState(v);

137 }

138

139 void set_qref(const Vector4d& qset) {

140 rbd.setState(rbd.x(), qset);

141 }

142

143 void rezero() {

144 VectorXd x = VectorXd::Zero(12);

145 Vector4d q;

146 q << 0 , 0, 0, 1;

147 rbd.setState(x,q);

148 }

149

150

151 dynamicPose3d_NL propagate(double dt, inertiaRatios& ir) {

152 VectorXd x0 = VectorXd::Zero(90);

153 x0.head(12) = rbd.x();

154 rbd.setIR(ir);

155 // std::cout << "x0: " << x0.head(12).transpose() << std::endl;

156 VectorXd newX = rbd.propagateRK4_adaptive(dt, x0).head(12);

157

158 // std::cout << "dt: " << dt << std::endl;

159 // std::cout << "newX: " << newX.transpose() << std::endl;

160

161 dynamicPose3d_NL xNew(newX, this->rbd.qref(), this->rbd.getIR(), this->rbd.

getSigmaV(), this->rbd.getSigmaW());

162 xNew.exmap(Matrix<double,12,1>::Zero());

163 return xNew;

164 }

165

166 Vector3d getMRPdifference(Vector4d qtot1, Vector4d qtot2) {

167 Vector4d dq = rbd.quaternionDivision(qtot1,qtot2);

168 Vector3d da = rbd.quaternion2mrp(dq);

169 return da;

170 }

171

172 //compute the control input using w_t = x_{t+1} - \int_tˆ{t+1}f(x_t)
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173 VectorXd computeStateChange(dynamicPose3d_NL& prev, double dt, inertiaRatios& ir) {

174 VectorXd w;

175

176 dynamicPose3d_NL predicted = prev.propagate(dt, ir);

177

178 Vector4d qTot = this->qTotal();

179 Vector4d qTotpred = predicted.qTotal();

180 Vector3d da = getMRPdifference(qTot,qTotpred);

181

182 w = this->x() - predicted.x();

183 w.segment<3>(6) = da;

184

185 return w;

186 }

187

188 Vector6d getOdometry() {

189 Vector6d odo;

190 VectorXd x = rbd.x();

191 Vector4d qref = rbd.qref();

192 Vector3d a = x.segment<3>(6);

193 odo.head(3) = x.segment<3>(0);

194 Vector4d qnew = rbd.addQuaternionError(a,qref);

195 odo.tail(3) = rbd.quaternion2mrp(qnew);

196 return odo;

197 }

198

199 Vector6d getOdometry(dynamicPose3d_NL& prev) {

200 Vector6d odo;

201 VectorXd x, xprev;

202 Vector4d q, qprev;

203 Vector3d a, aprev;

204

205 x = rbd.x();

206 xprev = prev.x();

207 a = x.segment<3>(6);

208

209 q = rbd.qref();

210

211 qprev = prev.q();

212

213 aprev = xprev.segment<3>(6);

214

215 Vector3d dr = x.segment<3>(0) - xprev.segment<3>(0);

216 Vector4d qtot_this = rbd.addQuaternionError(a, q);

217 Vector4d qtot_prev = rbd.addQuaternionError(aprev, qprev);
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218

219 Vector4d qprev_inv;

220 qprev_inv << -qtot_prev(0), -qtot_prev(1), -qtot_prev(2), qtot_prev(3);

221 Vector4d qDiff = rbd.quaternionMultiplication(qtot_this, qprev_inv);

222 Vector3d mrp = rbd.quaternion2mrp(qDiff);

223 odo.tail(3) = mrp;

224

225 Matrix3d Rprev = rbd.rotationMatrix(qtot_prev);

226 odo.head(3) = Rprev.transpose() * dr;

227

228 return odo;

229 }

230

231 dynamicPose3d_NL getOdometryPose(dynamicPose3d_NL& prev, bool initVelocities, double

dt) {

232 dynamicPose3d_NL newPose(prev.rbd.getIR(), prev.rbd.getSigmaV(), prev.rbd.

getSigmaW());

233 VectorXd new_x(12);

234 Vector3d new_r;

235 Vector3d new_v;

236 Vector3d new_a;

237 Vector4d new_q;

238 Vector3d new_w;

239

240 VectorXd x, xprev;

241 Vector4d q, qprev;

242 Vector3d a, aprev;

243

244 //get x's

245 x = rbd.x();

246 xprev = prev.x();

247

248 //attitude gets

249 a = x.segment<3>(6);

250 aprev = xprev.segment<3>(6);

251 q = rbd.qref();

252 qprev = prev.q();

253 //total attitude

254 Vector4d qtot_this = rbd.addQuaternionError(a, q);

255 Vector4d qtot_prev = rbd.addQuaternionError(aprev, qprev);

256 Vector4d qprev_inv;

257 qprev_inv << -qtot_prev(0), -qtot_prev(1), -qtot_prev(2), qtot_prev(3);

258 Vector4d qDiff = rbd.quaternionMultiplication(qtot_this, qprev_inv);

259 //previous rotation mat

260 Matrix3d Rprev = rbd.rotationMatrix(qtot_prev);
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261

262 new_r = Rprev.transpose()*(x.segment<3>(0) - xprev.segment<3>(0));

263 Matrix3d Rdiff = rbd.rotationMatrix(qDiff);

264 new_q = rbd.quaternionFromRot(Rdiff);

265

266 if (initVelocities) {

267 //differentiate linear velocity

268 new_v = new_r / dt;

269

270 /* Differentiate quaternion:

271 * dq/dt = (q[k] - q[k-1])/dt = 0.5 O(w[k-1]) q[k-1]

272 * where O(w[k-1]) is an orthonormal quaternion mult matrix for [w1; w2; w3;

0] (i.e. quaternionMultiplication())

273 * set q[k-1] = [0;0;0;1] by definition (from a refererence frame) and solve

for w[k-1] gives

274 * w[k-1] = 2 [q1[k]; q2[k]; q3[k]] / dt

275 */

276 new_w = 2*new_q.head(3) / dt;

277 } else {

278 new_v = Vector3d::Zero();

279 new_w = Vector3d::Zero();

280 }

281 new_a = Vector3d::Zero();

282

283 new_x.block<3,1>(0,0) = new_r;

284 new_x.block<3,1>(3,0) = new_v;

285 new_x.block<3,1>(6,0) = new_a;

286 new_x.block<3,1>(9,0) = new_w;

287 newPose.rbd.setState(new_x, new_q);

288 return newPose;

289

290 }

291

292 dynamicPose3d_NL adjustAttitude(dynamicPose3d_NL& prev) {

293 Vector4d q, qprev;

294 dynamicPose3d_NL newPose(prev.rbd.getIR(), prev.rbd.getSigmaV(), prev.rbd.

getSigmaW());

295

296 VectorXd x = rbd.x();

297 q = rbd.qTotal();

298 qprev = prev.qTotal();

299

300 std::cout << "q: " << q.transpose() << std::endl;

301 std::cout << "qprev: " << qprev.transpose() << std::endl;

302
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303 Matrix3d R = rbd.rotationMatrix(q);

304 Matrix3d Rprev = rbd.rotationMatrix(qprev);

305 Matrix3d Rdiff = R * Rprev.transpose();

306 Vector4d new_qdiff = rbd.quaternionFromRot(Rdiff);

307

308 std::cout << "R: " << R << std::endl;

309 std::cout << "Rprev: " << Rprev << std::endl;

310 std::cout << "Rdiff: " << Rdiff << std::endl;

311 std::cout << "new_qdiff: " << new_qdiff.transpose() << std::endl;

312

313 Vector4d qnew = rbd.quaternionMultiplication(new_qdiff, qprev);

314

315 std::cout << "qnew aa: " << qnew.transpose() << std::endl << std::endl;

316 if (isnan(qnew(1))) {

317 std::cout << "qnew aa nan\n";

318 new_qdiff = rbd.quaternionFromRot(Rdiff);

319 }

320

321 x.segment<3>(6) = Vector3d::Zero();

322 rbd.setState(x, qnew);

323 newPose.rbd.setState(x, qnew);

324 return newPose;

325

326 }

327

328 void shortenQuaternion(dynamicPose3d_NL& prev) {

329 Vector4d q, qprev, qnew;

330

331 VectorXd x = rbd.x();

332 q = rbd.qTotal();

333 qprev = prev.qTotal();

334 if(q.dot(qprev) < 0) {

335 qnew = -q;

336 x.segment<3>(6) = Vector3d::Zero();

337 rbd.setState(x, qnew);

338 }

339 }

340

341

342 dynamicPose3d_NL applyOdometry(dynamicPose3d_NL& prev) {

343 dynamicPose3d_NL newPose(prev.rbd.getIR(), prev.rbd.getSigmaV(), prev.rbd.

getSigmaW());

344 VectorXd new_x(12);

345 Vector3d new_r;

346 Vector3d new_v;
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347 Vector3d new_a;

348 Vector4d new_q;

349 Vector3d new_w;

350

351 VectorXd x, xprev;

352 Vector4d q, qprev;

353 Vector3d a, aprev;

354

355 //get x's

356 x = rbd.x();

357 xprev = prev.x();

358

359 //attitude gets

360 q = rbd.qTotal();

361 qprev = prev.qTotal();

362

363 new_q = rbd.quaternionMultiplication(q,qprev);

364

365 Matrix3d Rprev = rbd.rotationMatrix(qprev);

366 new_r = Rprev * x.head(3) + xprev.head(3);

367

368 new_v = Vector3d::Zero();

369 new_a = Vector3d::Zero();

370 new_w = Vector3d::Zero();

371

372 new_x.block<3,1>(0,0) = new_r;

373 new_x.block<3,1>(3,0) = new_v;

374 new_x.block<3,1>(6,0) = new_a;

375 new_x.block<3,1>(9,0) = new_w;

376

377 newPose.rbd.setState(new_x, new_q);

378 return newPose;

379 }

380

381

382 Matrix4d wTo() const {

383 Matrix4d T;

384

385 //error quaternion is applied

386 Vector4d qtot = rbd.qTotal();

387 VectorXd x = rbd.x();

388 T.topLeftCorner(3,3) = rbd.rotationMatrix(qtot).transpose();

389 T.col(3).head(3) << x.segment<3>(0);

390 T.row(3) << 0., 0., 0., 1.;

391 return T;
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392 }

393

394 Matrix4d oTw() const {

395 Matrix4d T;

396 Matrix3d R;

397

398 //error quaternion is applied

399 Vector4d qtot = rbd.qTotal();

400 VectorXd x = rbd.x();

401 R = rbd.rotationMatrix(qtot);

402

403 T.topLeftCorner(3,3) = R;

404 T.col(3).head(3) << - R * x.segment<3>(0);

405 T.row(3) << 0., 0., 0., 1.;

406 return T;

407 }

408

409

410 Pose3d getPose3d() {

411 return Pose3d(this->wTo()); //may be wrong: Mar 25, 2013, B.E.T.

412 //return Pose3d(this->oTw());

413 }

414

415 Point3dh transform_to_inertial(const Point3dh& pBody) const{

416 Vector3d p;

417 p << pBody.x(), pBody.y(), pBody.z();

418 Vector4d qtot = rbd.qTotal();

419 VectorXd x = rbd.x();

420 Vector3d T = x.head(3);

421 Matrix3d Rt = rbd.rotationMatrix(qtot).transpose();

422

423 Vector3d pInertial = Rt*p + T;

424

425 return Point3dh(pInertial(0), pInertial(1), pInertial(2), 1.0);

426 }

427

428 Point3dh transform_to_body(const Point3dh& pInertial) const{

429 Vector3d p;

430 p << pInertial.x(), pInertial.y(), pInertial.z();

431 Vector4d qtot = rbd.qTotal();

432 VectorXd x = rbd.x();

433 Vector3d T = x.head(3);

434 Matrix3d R = rbd.rotationMatrix(qtot);

435

436 Vector3d pBody = R*(p - T);
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437

438 return Point3dh(pBody(0), pBody(1), pBody(2), 1.0);

439 }

440

441

442 Noise getProcessNoise (double dt, inertiaRatios ir) {

443 VectorXd x0 = VectorXd::Zero(90);

444 x0.head(12) = rbd.x();

445 rbd.setIR(ir);

446 VectorXd newLambda = rbd.propagateRK4_adaptive(dt, x0).tail(78);

447

448 Matrix<double,12,12> lambda = rbd.vec2symmMat(newLambda);

449 Noise n = isam::Covariance(lambda);

450 return n;

451 }

452

453 VectorXd vectorFull() const {

454 VectorXd x = rbd.x();

455 Vector4d q = rbd.qref();

456 Vector3d mrp = rbd.quaternion2mrp(q);

457 x(6) += mrp(0);

458 x(7) += mrp(1);

459 x(8) += mrp(2);

460 return x;

461 }

462

463 VectorXd vector() const{

464 return rbd.x();

465 }

466

467 void write(std::ostream &out) const {

468

469 out << std::endl << "dP3d_NL x: " << rbd.x().transpose() << std::endl;

470 out << "dP3d_NL qref: " << rbd.qref().transpose() << std::endl;

471 out << std::endl;

472 }

473

474

475 };

476 }
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Listing B.23: Dynamic iSAM: camera3d.h

1 #pragma once

2

3 #include <Eigen/Dense>

4

5 #include <isam/Node.h>

6 #include <isam/Factor.h>

7 #include <isam/Pose3d.h>

8 #include <isam/Point3d.h>

9 #include "dynamicPose3d_NL.h"

10 #include <isam/slam_stereo.h>

11

12 namespace isam {

13

14 class cameraPose3d {

15 frend std::ostream& operator<<(std::ostream& out, const cameraPose3d& p) {

16 p.write(out);

17 return out;

18 }

19

20 Point3d _t;

21 Rot3d _rot;

22 public:

23 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

24

25 static const int dim = 3;

26 static const char* name() {

27 return "cameraPose3d";

28 }

29

30 cameraPose3d() : _t(0,0,0), _rot(0,0,0) {}

31

32 cameraPose3d(double x, double y, double z, double yaw, double pitch, double roll) :

_t(x, y, z), _rot(yaw, pitch, roll) {}

33

34 cameraPose3d(const Eigen::MatrixXd& m) {

35 if (m.rows()==6 && m.cols()==1) {

36 _t = Point3d(m(0), m(1), m(2));

37 _rot = Rot3d(m(3), m(4), m(5));

38 } else if (m.rows()==4 && m.cols()==4) {

39 // Convert a homogeneous 4x4 transformation matrix to a Pose3.

40 Eigen::Matrix4d wTo = m / m(3,3); // enforce T(3,3)=1

41 Eigen::Vector3d t = wTo.col(3).head(3);

42 Eigen::Matrix3d wRo = wTo.topLeftCorner(3,3);

43 _t = Point3d(t(0), t(1), t(2));
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44 _rot = Rot3d(wRo);

45 } else {

46 require(false, "Pose3d constructor called with matrix of wrong dimension");

47 }

48 }

49

50 explicit cameraPose3d(const Eigen::Isometry3d & T) {

51 Eigen::Vector3d t(T.translation());

52 _t = Point3d(t(0), t(1), t(2));

53 _rot = Rot3d(T.rotation());

54 }

55

56 cameraPose3d(const Point3d& t, const Rot3d& rot) : _t(t), _rot(rot) {}

57

58 double x() const {return _t.x();}

59 double y() const {return _t.y();}

60 double z() const {return _t.z();}

61 double yaw() const {return _rot.yaw();}

62 double pitch() const {return _rot.pitch();}

63 double roll() const {return _rot.roll();}

64

65 Point3d trans() const {return _t;}

66 Rot3d rot() const {return _rot;}

67

68 void set_x(double x) {_t.set_x(x);}

69 void set_y(double y) {_t.set_y(y);}

70 void set_z(double z) {_t.set_z(z);}

71 void set_yaw (double yaw) {_rot.set_yaw(yaw);}

72 void set_pitch(double pitch) {_rot.set_pitch(pitch);}

73 void set_roll (double roll) {_rot.set_roll(roll);}

74

75 cameraPose3d exmap(const Eigen::Vector3d& ∆) {

76 cameraPose3d res = *this;

77 res._t = res._t.exmap(∆.head(3));

78 // res._rot = res._rot.exmap(∆.tail(3));

79 return res;

80 }

81

82 Eigen::Vector3d vector() const {

83 // double Y, P, R;

84 // cheaper to recover ypr at once

85 //_rot.ypr(Y, P, R);

86 Eigen::Vector3d tmp;

87 tmp << x(), y(), z();//, Y, P, R;

88 return tmp;
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89 }

90

91 void set(double x, double y, double z, double yaw, double pitch, double roll) {

92 _t = Point3d(x, y, z);

93 _rot = Rot3d(yaw, pitch, roll);

94 }

95

96 void set(const Eigen::Vector3d& v) {

97 _t = Point3d(v(0), v(1), v(2));

98 //_rot = Rot3d(standardRad(v(3)), standardRad(v(4)), standardRad(v(5)));

99 }

100

101 void of_pose2d(const Pose2d& p) {

102 set(p.x(), p.y(), 0., p.t(), 0., 0.);

103 }

104

105 void of_point2d(const Point2d& p) {

106 set(p.x(), p.y(), 0., 0., 0., 0.);

107 }

108

109 void of_point3d(const Point3d& p) {

110 set(p.x(), p.y(), p.z(), 0., 0., 0.);

111 }

112

113 void write(std::ostream &out) const {

114 out << x() << ", " << y() << ", " << z() << "; "

115 << yaw() << ", " << pitch() << ", " << roll();

116 }

117

118 /**

119 * Convert Pose3 to homogeneous 4x4 transformation matrix.

120 * The returned matrix is the object coordinate frame in the world

121 * coordinate frame. In other words it transforms a point in the object

122 * frame to the world frame.

123 *

124 * @return wTo

125 */

126 Eigen::Matrix4d wTo() const {

127 Eigen::Matrix4d T;

128 T.topLeftCorner(3,3) = _rot.wRo();

129 T.col(3).head(3) << x(), y(), z();

130 T.row(3) << 0., 0., 0., 1.;

131 return T;

132 }

133
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134 /**

135 * Convert Pose3 to homogeneous 4x4 transformation matrix. Avoids inverting wTo.

136 * The returned matrix is the world coordinate frame in the object

137 * coordinate frame. In other words it transforms a point in the world

138 * frame to the object frame.

139 *

140 * @return oTw

141 */

142 Eigen::Matrix4d oTw() const {

143 Eigen::Matrix3d oRw = _rot.wRo().transpose();

144 Eigen::Vector3d t(x(), y(), z());

145 Eigen::Vector3d C = - oRw * t;

146 Eigen::Matrix4d T;

147 T.topLeftCorner(3,3) = oRw;

148 T.col(3).head(3) = C;

149 T.row(3) << 0., 0., 0., 1.;

150 return T;

151 }

152

153 /**

154 * Calculate new pose b composed from this pose (a) and the odometry d.

155 * Follows notation of Lu&Milios 1997.

156 * \f$ b = a \oplus d \f$

157 * @param d Pose difference to add.

158 * @return d transformed from being local in this frame (a) to the global frame.

159 */

160 Pose3d oplus(const Pose3d& d) const {

161 return Pose3d(wTo() * d.wTo());

162 }

163

164 /**

165 * Odometry d from b to this pose (a). Follows notation of

166 * Lu&Milios 1997.

167 * \f$ d = a \ominus b \f$

168 * @param b Base frame.

169 * @return Global this (a) expressed in base frame b.

170 */

171 Pose3d ominus(const Pose3d& b) const {

172 return Pose3d(b.oTw() * wTo());

173 }

174

175 /**

176 * Project point into this coordinate frame.

177 * @param p Point to project

178 * @return Point p locally expressed in this frame.
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179 */

180 Point3dh transform_to(const Point3dh& p) const {

181 return Point3dh(oTw() * p.vector());

182 }

183

184

185 /**

186 * Project point into this coordinate frame.

187 * @param p Point to project

188 * @return Point p locally expressed in this frame.

189 */

190 Point3d transform_to(const Point3d& p) const {

191 return transform_to(Point3dh(p)).to_point3d();

192 }

193

194 /**

195 * Project point from this coordinate frame.

196 * @param p Point to project

197 * @return Point p is expressed in the global frame.

198 */

199 Point3dh transform_from(const Point3dh& p) const {

200 return Point3dh(wTo() * p.vector());

201 }

202

203 /**

204 * Project point from this coordinate frame.

205 * @param p Point to project

206 * @return Point p is expressed in the global frame.

207 */

208 Point3d transform_from(const Point3d& p) const {

209 return transform_from(Point3dh(p)).to_point3d();

210 }

211

212 Pose3d getPose3d() {

213 Pose3d val(this->x(), this->y(), this->z(), this->yaw(), this->pitch(), this->

roll());

214 return val;

215 }

216

217 };

218

219 typedef NodeT<cameraPose3d> cameraPose3d_Node;

220

221 class cameraPose_Factor : public FactorT<cameraPose3d> {

222 cameraPose3d_Node* _pose;
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223

224 public:

225

226 cameraPose_Factor(cameraPose3d_Node* pose, const cameraPose3d& prior, const Noise&

noise)

227 : FactorT<cameraPose3d>("CameraPose3d_Factor", 3, noise, prior), _pose(pose) {

228 _nodes.resize(1);

229 _nodes[0] = pose;

230 }

231

232 void initialize() {

233 if (!_pose->initialized()) {

234 cameraPose3d predict = _measure;

235 _pose->init(predict);

236 }

237 }

238

239 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

240 Eigen::VectorXd err = _nodes[0]->vector(s).head(3) - _measure.vector().head(3);

241 return err;

242 }

243

244 };

245

246 }
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Listing B.24: Dynamic iSAM: inertiaRatios.h

1 #pragma once

2

3 #include <cmath>

4 #include <Eigen/Dense>

5 #include <Eigen/Geometry>

6 #include <isam/Node.h>

7 #include <isam/Factor.h>

8 #include "NodeExmap.h"

9

10 namespace isam {

11

12 class inertiaRatios {

13 frend std::ostream& operator<<(std::ostream& out, const inertiaRatios& p) {

14 p.write(out);

15 return out;

16 }

17

18 /*

19 * k1 = ln(J11 / J22)

20 * k2 = ln(J22 / J33)

21 */

22 double _k1;

23 double _k2;

24

25 public:

26 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

27

28 static const int dim = 2;

29 static const char* name() {

30 return "inertiaRatios";

31 }

32

33 inertiaRatios() {

34 _k1 = 0;

35 _k2 = 0;

36 }

37

38

39 inertiaRatios(const double& k1, const double& k2) {

40 _k1 = k1;

41 _k2 = k2;

42 }

43

44 Eigen::Matrix3d getJ() const {
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45 Eigen::Matrix3d J = Eigen::Matrix3d::Zero();

46 double Jscale = 1.0; //0.0116;

47 J(0,0) = exp(_k1);

48 J(1,1) = 1.0;

49 J(2,2) = exp(-_k2);

50

51 J *= Jscale;

52

53 return J;

54 }

55

56 Eigen::VectorXd x() const{

57 Eigen::Vector2d x;

58 x(0) = _k1;

59 x(1) = _k2;

60 return x;

61 }

62

63 void setState(Eigen::VectorXd x) {

64 _k1 = x(0);

65 _k2 = x(1);

66 }

67

68 inertiaRatios exmap(const Eigen::Vector2d& ∆) {

69 inertiaRatios res = *this;

70 res._k1 += ∆(0);

71 res._k2 += ∆(1);

72 return res;

73 }

74

75 inertiaRatios exmap_reset(const Eigen::Vector2d& ∆) {

76 inertiaRatios res = *this;

77 res._k1 += ∆(0);

78 res._k2 += ∆(1);

79 return res;

80 }

81

82 Eigen::VectorXd vector() const {

83 Eigen::Vector2d tmp;

84 tmp << _k1, _k2;

85 return tmp;

86 }

87

88 void set(const Eigen::Vector2d& v) {

89 _k1 = v(0);
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90 _k2 = v(1);

91 }

92

93 void write(std::ostream &out) const {

94 Eigen::Matrix3d Jcurr = getJ();

95 out << std::endl << "inertaRatios x: " << x().transpose() << std::endl <<

Jcurr(0,0) << " , " << Jcurr(1,1) << " , " << Jcurr(2,2) << std::endl;

96 }

97

98 };

99

100 typedef NodeExmapT<inertiaRatios> inertiaRatios_Node;

101

102 /**

103 * Prior on inertiaRatios.

104 */

105 class inertiaRatios_Factor : public FactorT<inertiaRatios> {

106 public:

107 inertiaRatios_Node* _ir_node;

108

109 inertiaRatios_Factor(inertiaRatios_Node* ir_node, const inertiaRatios& prior,

const Noise& noise)

110 : FactorT<inertiaRatios>("inertiaRatios_Factor", 2, noise, prior), _ir_node(

ir_node) {

111 _nodes.resize(1);

112 _nodes[0] = ir_node;

113 }

114

115 void initialize() {

116 if (!_ir_node->initialized()) {

117 inertiaRatios predict = _measure;

118 _ir_node->init(predict);

119 }

120 }

121

122 Eigen::VectorXd basic_error(Selector s = ESTIMATE) const {

123 inertiaRatios ir = _ir_node->value(s);

124 Eigen::VectorXd err = ir.vector() - _measure.vector();

125 return err;

126 }

127 };

128 }
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Listing B.25: Dynamic iSAM: inertialParams.h

1 #pragma once

2

3 #include <cmath>

4 #include <ostream>

5 #include <iostream>

6

7 #include <isam/util.h>

8 #include "math.h"

9 #include <Eigen/Dense>

10

11 using namespace isam;

12 using namespace Eigen;

13

14 class principalAxesFrame {

15 frend std::ostream& operator<<(std::ostream& out, const principalAxesFrame& p) {

16 p.write(out);

17 return out;

18 }

19

20 Vector3d _r; //position - from the target frame to the principal frame

21 Vector4d _q; //quaternion - from the target frame to the principal frame

22

23 //3 parameter attitude error

24 Vector3d _a; //Modified Rodrigues Parameter

25

26 public:

27 EIGEN_MAKE_ALIGNED_OPERATOR_NEW

28 static const int dim = 6;

29 static const char* name() {

30 return "principalAxesFrame";

31 }

32 Matrix<double, 6, 6> _sqrtinf;

33

34 principalAxesFrame() {

35 _r << 0.0, 0.0, 0.0;

36 _a << 0.0, 0.0, 0.0;

37 _q << 0.0, 0.0, 0.0, 1.0;

38 }

39

40 principalAxesFrame(Matrix<double,3,1> r) {

41 _r = r;

42 }

43

44 principalAxesFrame(Matrix<double,3,1> r, Vector4d q) {
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45 _r = r;

46 _q = q;

47 }

48

49 VectorXd vector() const{

50 Matrix<double, 6, 1> x;

51 x << _r, _a;

52 return x;

53 }

54

55 void set(const VectorXd& v) {

56 _r = v.block<3,1>(0,0);

57 _a = v.block<3,1>(3,0);

58 }

59

60

61 Matrix<double,6,1> x() {

62 Matrix<double,6,1> x;

63 x << _r, _a;

64 return x;

65 }

66

67 Vector4d q() {

68 return _q;

69 }

70

71 Vector4d mrp2quaternion(Vector3d mrp) const {

72 Vector4d dq;

73 dq << 8*mrp / (16 + mrp.squaredNorm()), (16 - mrp.squaredNorm()) / (16+mrp.

squaredNorm());

74 return dq;

75 }

76

77 Vector4d addQuaternionError(Vector3d mrp, Vector4d qref) const {

78 Vector4d qnew, dq;

79 dq = mrp2quaternion(mrp);

80

81 qnew = quaternionMultiplication(dq, qref);

82 return qnew;

83 }

84

85

86 principalAxesFrame exmap(const Matrix<double,6,1>& ∆) const {

87 principalAxesFrame res = *this;

88 res._r += ∆.block<3,1>(0,0);
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89 res._a += ∆.block<3,1>(3,0);

90 return res;

91 }

92

93 principalAxesFrame exmap_reset(const Matrix<double,6,1>& ∆) {

94 principalAxesFrame res = *this;

95

96 res._r += ∆.block<3,1>(0,0);

97 res._a += ∆.block<3,1>(3,0);

98

99 res.write();

100

101 //reset step

102 res._q = addQuaternionError(res._a, res._q);

103 res._a = Vector3d::Zero();

104

105 printf("inertial reset\n");

106

107 return res;

108 }

109

110

111 void write(std::ostream &out = std::cout) const {

112 out << " " << _r.transpose();

113 out << " " << _q(0) << " " << _q(1) << " " << _q(2) << " " << _q(3);

114 out << " " << _a.transpose();

115 out << std::endl;

116 }

117

118 Vector4d quaternionMultiplication(Vector4d q1, Vector4d q2) const {

119 //q1 \mult q2

120 Matrix4d qm;

121 Vector4d result;

122 qm << q1(3), q1(2), -q1(1), q1(0),

123 -q1(2), q1(3), q1(0), q1(1),

124 q1(1), -q1(0), q1(3), q1(2),

125 -q1(0), -q1(1), -q1(2), q1(3);

126

127 result = qm*q2;

128 result /= result.norm();

129

130 return result;

131 }

132

133 Matrix3d rotationMatrix(Vector4d q) const {
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134 Matrix3d rot;

135

136 rot(0,0) = q(0)*q(0)-q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

137 rot(0,1) = 2*(q(0)*q(1)+q(2)*q(3));

138 rot(0,2) = 2*(q(0)*q(2)-q(1)*q(3));

139

140 rot(1,0) = 2*(q(0)*q(1)-q(2)*q(3));

141 rot(1,1) = -q(0)*q(0)+q(1)*q(1)-q(2)*q(2)+q(3)*q(3);

142 rot(1,2) = 2*(q(2)*q(1)+q(0)*q(3));

143

144 rot(2,0) = 2*(q(0)*q(2)+q(1)*q(3));

145 rot(2,1) = 2*(q(2)*q(1)-q(0)*q(3));

146 rot(2,2) = -q(0)*q(0)-q(1)*q(1)+q(2)*q(2)+q(3)*q(3);

147

148 // std::cout << "q2rot: " << q << rot << std::endl;

149 return rot;

150 }

151

152 Point3d toPrincipalFrame(const Point3d& p_m) const {

153 Matrix3d R = rotationMatrix(addQuaternionError(_a,_q));

154 Vector3d vecBody = R * (p_m.vector() - _r);

155 Point3d p_c(vecBody);

156

157 return p_c;

158 }

159

160 Point3d fromPrincipalFrame(const Point3d& p_m) const {

161 Matrix3d R = rotationMatrix(addQuaternionError(_a,_q));

162 Vector3d vecBody = R.transpose() * p_m.vector() + _r;

163 Point3d p_c(vecBody);

164

165 return p_c;

166 }

167

168 };
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Listing B.26: Dynamic iSAM: DenseVis.h

1 /*

2 * DenseVis.h

3 *

4 * Created on: May 5, 2013

5 * Author: tweddle

6 */

7

8 #ifndef DENSEVIS_H_

9 #define DENSEVIS_H_

10

11 #include <fstream>

12 #include <vector>

13 #include <string>

14 #include <iostream>

15 #include <sstream>

16 #include <exception>

17

18 // Eigen

19 #include <Eigen/Core>

20 #include <Eigen/Geometry>

21 #include <Eigen/StdVector>

22

23 // OpenCV

24 #include "opencv2/core/core.hpp"

25 #include "opencv2/imgproc/imgproc.hpp"

26 #include "opencv2/calib3d/calib3d.hpp"

27 #include "opencv2/highgui/highgui.hpp"

28

29 // libelas

30 #include "elas.h"

31

32 #include "Triangulator.h"

33 #include "DenseStereo.h"

34 //#include "Frame.h"

35

36 #include "LCMPublisher.h"

37

38

39 #include <pcl/point_types.h>

40 #include <pcl/io/ply_io.h>

41 #include <pcl/io/pcd_io.h>

42 #include <pcl/kdtree/kdtree_flann.h>

43 #include <pcl/features/normal_3d.h>

44 #include <pcl/surface/gp3.h>

386



45 #include <pcl/io/vtk_io.h>

46 #include <pcl/io/vtk_lib_io.h>

47 #include <pcl/filters/voxel_grid.h>

48 #include <pcl/filters/statistical_outlier_removal.h>

49 #include <pcl/visualization/pcl_visualizer.h>

50 #include <pcl/common/transforms.h>

51 #include <pcl/visualization/image_viewer.h>

52

53 class DenseVis {

54 cv::Mat elasDisp, nonthresholded_img;

55 DenseStereo* denseStereo;

56 LCMPublisher* lcmpub;

57

58 std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> >

princAxisPoints;

59 std::vector<int> princAxisColors;

60

61 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, totalCloud;

62 pcl::PLYWriter plyWriter;

63

64 public:

65

66 pcl::PolygonMeshPtr smallTriangles;

67 pcl::PolygonMeshPtr totalTriangles;

68

69 DenseVis(Triangulator* triangulator, LCMPublisher* _lcmpub);

70

71 void computeDensePoints(isam::cameraPose3d_Node* cam, isam::dynamicPose3d_NL_Node*

pose, cv::Mat& leftImage, cv::Mat& rightImage);

72

73 void buildDenseMap(isam::cameraPose3d_Node* cam, isam::dynamicPose3d_NL_Node*

princAxis, std::vector<isam::dynamicPose3d_NL_Node*>& poselist, std::vector<cv

::Mat>& leftImageList, std::vector<cv::Mat>& rightImageList);

74 void buildDenseCloud(isam::cameraPose3d_Node* cam, /*isam::dynamicPose3d_NL_Node*

princAxis,*/std::vector<isam::dynamicPose3d_NL_Node*>& poselist, std::vector<

cv::Mat>& leftImageList, std::vector<cv::Mat>& rightImageList);

75 void updatePrincipalAxis(isam::dynamicPose3d_NL_Node* princAxis, int listsize);

76 void generateMesh(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, pcl::

PolygonMeshPtr triangles, std::string filename, int maxNN = 400);

77 pcl::PointCloud<pcl::PointXYZRGB>::Ptr downsampleCloud(pcl::PointCloud<pcl::

PointXYZRGB>::Ptr cloud, float dimension);

78 void visualizeMesh(pcl::PolygonMeshPtr mesh, std::vector<isam::

dynamicPose3d_NL_Node*> pose_list, std::vector<cv::Mat>& leftImageList);

79

80 void clear();
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81

82 };

83

84 #endif /* DENSEVIS_H_ */
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Listing B.27: Dynamic iSAM: DenseVis.cpp

1 #include "DenseVis.h"

2

3 DenseVis::DenseVis(Triangulator* triangulator, LCMPublisher* _lcmpub) {

4 denseStereo = new DenseStereo(*triangulator, false);

5 lcmpub = _lcmpub;

6

7 cloud = pcl::PointCloud<pcl::PointXYZRGB>::Ptr(new pcl::PointCloud<pcl::

PointXYZRGB>);

8 totalCloud = pcl::PointCloud<pcl::PointXYZRGB>::Ptr(new pcl::PointCloud<pcl::

PointXYZRGB>);

9

10 smallTriangles = pcl::PolygonMeshPtr(new pcl::PolygonMesh);

11 totalTriangles = pcl::PolygonMeshPtr(new pcl::PolygonMesh);

12

13

14 }

15

16 void DenseVis::clear() {

17 princAxisPoints.clear();

18 princAxisColors.clear();

19 }

20

21 void DenseVis::buildDenseMap(isam::cameraPose3d_Node* cam, isam::dynamicPose3d_NL_Node

* princAxis,std::vector<isam::dynamicPose3d_NL_Node*>& poselist, std::vector<cv::

Mat>& leftImageList, std::vector<cv::Mat>& rightImageList) {

22

23 int size = poselist.size();

24 lcmpub->clearBody3DPoints();

25 lcmpub->addPrincipalAxis(princAxis, poselist.size());

26 for (int i = 0; i < size ; i++) {

27 std::cout << "Dense Map Iteration: " << i << std::endl;

28 this->clear();

29 computeDensePoints(cam, poselist[i], leftImageList[i], rightImageList[i]);

30

31 lcmpub->addBody3DPoints(i, princAxisPoints, princAxisColors);

32 usleep(100000);

33 }

34 }

35

36 void DenseVis::updatePrincipalAxis(isam::dynamicPose3d_NL_Node* princAxis, int

listsize) {

37 lcmpub->addPrincipalAxis(princAxis, listsize);

38 }

39
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40 void DenseVis::computeDensePoints(isam::cameraPose3d_Node* cam, isam::

dynamicPose3d_NL_Node* pose, cv::Mat& leftImage, cv::Mat& rightImage) {

41 double lx, ly, lz;

42 isam::Point3dh X;

43 isam::Point3dh inertX;

44 isam::Point3dh bodyX;

45 Eigen::Vector3d bodyVec;

46 cv::equalizeHist(leftImage, leftImage);

47 cv::equalizeHist(rightImage, rightImage);

48

49 denseStereo->clear();

50

51 elasDisp = denseStereo->calculate(leftImage, rightImage);

52 nonthresholded_img = denseStereo->getPreThreshDisp();

53

54 for (unsigned int i = 0; i < denseStereo->points.size(); i++) {

55 lx = denseStereo->points[i](0);

56 ly = denseStereo->points[i](1);

57 lz = denseStereo->points[i](2);

58

59 X.set(lz, -lx, -ly, 1.0);

60 inertX = cam->value().transform_from(X);

61 bodyX = pose->value().transform_to_body(inertX);

62 princAxisPoints.push_back(Eigen::Vector3d(bodyX.x(), bodyX.y(), bodyX.z()));

63 princAxisColors.push_back(denseStereo->colors[i]);

64 }

65

66 }

67

68 void DenseVis::buildDenseCloud(isam::cameraPose3d_Node* cam,std::vector<isam::

dynamicPose3d_NL_Node*>& poselist, std::vector<cv::Mat>& leftImageList, std::

vector<cv::Mat>& rightImageList) {

69 std::stringstream filename, filename2, filename3, filename4, filename5, filename6;

70 denseStereo->clear();

71 std::cout << "Poselist, left, right: " << poselist.size() << "," << leftImageList.

size() << "," << rightImageList.size() << std::endl;

72

73 for (int j = 0; j < poselist.size() ; j++) {

74 filename.str(std::string());

75 filename2.str(std::string());

76 filename3.str(std::string());

77 filename4.str(std::string());

78 filename5.str(std::string());

79 filename6.str(std::string());

80 this->clear();
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81 computeDensePoints(cam, poselist[j], leftImageList[j+1], rightImageList[j+1]);

82

83 filename4 << "/home/tweddle/Desktop/disparity/mergeImg" << j << ".bmp";

84 filename5 << "/home/tweddle/Desktop/disparity/elasDisp" << j << ".bmp";

85

86 cv::Mat mergeImg;

87 std::vector<cv::Mat> channels;

88 channels.push_back(leftImageList[j+1]);

89 channels.push_back(leftImageList[j+1]);

90 channels.push_back(elasDisp);

91 cv::merge(channels, mergeImg);

92

93

94 cv::imwrite(filename4.str(), mergeImg);

95 cv::imwrite(filename5.str(), elasDisp);

96

97 std::cout << "PrincAxisPoints: " << princAxisPoints.size() << std::endl;

98

99 cloud->points.clear();

100 cloud->points.resize(princAxisPoints.size());

101 cloud->width = cloud->size();

102 cloud->height = 1;

103

104 //totalCloud->points.resize(totalCloud->points.size() + princAxisPoints.size()

);

105

106 for (unsigned int i = 0; i < princAxisPoints.size(); i++) {

107 cloud->points[i].x = princAxisPoints[i](0);

108 cloud->points[i].y = princAxisPoints[i](1);

109 cloud->points[i].z = princAxisPoints[i](2);

110

111 uint8_t r = princAxisColors[i];

112 uint8_t g = princAxisColors[i];

113 uint8_t b = princAxisColors[i]; // Example: Red color

114 uint32_t rgb = ((uint32_t)r << 16 | (uint32_t)g << 8 | (uint32_t)b);

115 cloud->points[i].rgb = *reinterpret_cast<float*>(&rgb);

116

117 pcl::PointXYZRGB newPoint;

118 newPoint.x = princAxisPoints[i](0);

119 newPoint.y = princAxisPoints[i](1);

120 newPoint.z = princAxisPoints[i](2);

121 newPoint.rgb = *reinterpret_cast<float*>(&rgb);

122

123

124 totalCloud->points.push_back(newPoint);
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125 totalCloud->width = totalCloud->points.size();

126 totalCloud->height = 1;

127

128 }

129 filename << "/home/tweddle/Desktop/plyfolder/plyfile" << j << ".ply";

130 filename2 << "/home/tweddle/Desktop/pcdfolder/pcdfile" << j << ".pcd";

131 plyWriter.write(filename.str(),*(cloud.get()));

132

133 std::cout << "Width/Height: " << cloud->width << "," << cloud->height << ","

<< cloud->size() << "," << princAxisPoints.size() << std::endl;

134 std::cout << "TotalCloud Width/Height: " << totalCloud->width << "," <<

totalCloud->height << "," << totalCloud->size() << std::endl;

135

136 pcl::io::savePCDFile(filename2.str(), *(cloud.get()));

137

138 filename3 << "/home/tweddle/Desktop/meshfolder/mesh" << j << ".vtk";

139 std::cout << "filename3: " << filename3.str() << std::endl;

140

141

142 }

143

144 std::cout << "totalCloud->points.size(): " << totalCloud->points.size() << std::

endl;

145

146 pcl::PointCloud<pcl::PointXYZRGB>::Ptr totalSampleSmall = downsampleCloud(

totalCloud, 0.001);

147 filename6 << "/home/tweddle/Desktop/meshfolder/totalmesh.vtk";

148 generateMesh(totalSampleSmall, totalTriangles, filename6.str(), 500);

149

150 pcl::io::savePolygonFileSTL("/home/tweddle/Desktop/meshfolder/totalMesh.stl", *

totalTriangles);

151 pcl::io::savePLYFile("/home/tweddle/Desktop/meshfolder/totalMesh.ply", *

totalTriangles,6);

152

153

154 }

155

156 pcl::PointCloud<pcl::PointXYZRGB>::Ptr DenseVis::downsampleCloud(pcl::PointCloud<pcl::

PointXYZRGB>::Ptr inputCloud, float dimension) {

157 std::cout << "Downsampling cloud - initial size: " << inputCloud->points.size() <<

std::endl;

158

159 pcl::PointCloud<pcl::PointXYZRGB>::Ptr outputCloud(new pcl::PointCloud<pcl::

PointXYZRGB>);

160 pcl::PointCloud<pcl::PointXYZRGB>::Ptr returnCloud(new pcl::PointCloud<pcl::
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PointXYZRGB>);

161

162 pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;

163 sor.setInputCloud(inputCloud);

164 sor.setMeanK(50);

165 sor.setStddevMulThresh(1.0);

166 sor.filter(*outputCloud);

167

168 std::cout << "SOR completed - final size: " << outputCloud->points.size() << std

::endl;

169

170 // Create the filtering object

171 pcl::VoxelGrid<pcl::PointXYZRGB> vgrid;

172 vgrid.setInputCloud(outputCloud);

173 vgrid.setLeafSize(dimension, dimension, dimension);

174 vgrid.filter(*returnCloud);

175

176 std::cout << "Downsample completed - final size: " << returnCloud->points.size()

<< std::endl;

177

178 return returnCloud;

179 }

180

181 void DenseVis::generateMesh(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud, pcl::

PolygonMesh::Ptr triangles, std::string filename, int maxNN) {

182

183 // Normal estimation*

184 pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> n;

185 pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);

186 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::

PointXYZRGB>);

187 tree->setInputCloud (cloud);

188 n.setInputCloud (cloud);

189 n.setSearchMethod (tree);

190 n.setKSearch (20);

191 n.compute (*normals);

192 //* normals should not contain the point normals + surface curvatures

193

194 // Concatenate the XYZ and normal fields*

195 pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr cloud_with_normals (new pcl::

PointCloud<pcl::PointXYZRGBNormal>);

196 pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);

197

198 std::cout << "Point A\n";

199
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200 // Create search tree*

201 pcl::search::KdTree<pcl::PointXYZRGBNormal>::Ptr tree2 (new pcl::search::KdTree<

pcl::PointXYZRGBNormal>);

202 tree2->setInputCloud (cloud_with_normals);

203

204 std::cout << "Point B\n";

205

206 // Initialize objects

207 pcl::GreedyProjectionTriangulation<pcl::PointXYZRGBNormal> gp3;

208

209 std::cout << "Point C\n";

210

211 // Set typical values for the parameters

212 gp3.setMu (2.5);

213 gp3.setSearchRadius(0.05);

214 gp3.setMaximumNearestNeighbors (maxNN);

215 gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees

216 gp3.setMinimumAngle(M_PI/18); // 10 degrees

217 gp3.setMaximumAngle(2*M_PI/3); // 120 degrees

218 gp3.setNormalConsistency(true);

219

220

221 // Get result

222 gp3.setInputCloud (cloud_with_normals);

223 gp3.setSearchMethod (tree2);

224 std::cout << "Point D: cloudnormals: " << cloud_with_normals->size() << std::

endl;

225 std::cout << "num of triangles1: " << triangles->polygons.size() << std::endl;

226 std::cout << "search radius: " << gp3.getSearchRadius() << std::endl;;

227

228 gp3.reconstruct(*triangles);

229

230 std::cout << "Point E\n";

231

232 // Additional vertex information

233 std::vector<int> parts = gp3.getPartIDs();

234 std::vector<int> states = gp3.getPointStates();

235

236 std::cout << "num of triangles: " << triangles->polygons.size() << std::endl;

237 std::cout << "write filename: " << filename << std::endl;

238 pcl::io::saveVTKFile(filename, *triangles);

239

240 }

241

242 void DenseVis::visualizeMesh(pcl::PolygonMeshPtr mesh, std::vector<isam::
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dynamicPose3d_NL_Node*> pose_list, std::vector<cv::Mat>& leftImageList) {

243 Eigen::Vector3f offset;

244 Eigen::Vector4f offset4;

245 Eigen::Quaternionf quat;

246 Eigen::Vector4d currq;

247 Eigen::Vector3d currp;

248 std::stringstream visFilename;

249 std::stringstream leftFilename;

250

251 pcl::visualization::PCLVisualizer vis("Mesh Viewer");

252 //pcl::visualization::ImageViewer iv("Left Camera Viewer");

253

254 cv::Mat combined_img;

255 //place two images side by side

256 combined_img.create( cv::Size(2*640,480), CV_MAKETYPE(leftImageList[0].depth(), 3)

);

257 cv::Mat imgLeft = combined_img( cv::Rect(0, 0, leftImageList[0].cols,

leftImageList[0].rows));

258 cv::Mat imgRight = combined_img( cv::Rect(leftImageList[0].cols, 0, leftImageList

[0].cols, leftImageList[0].rows) );

259

260

261 std::cout << "Visualizing Mesh" << std::endl;

262

263 offset << -0.35, 0, 0;

264 quat.x() = 0.0;

265 quat.y() = 0.0;

266 quat.z() = 0.0;

267 quat.w() = 1.0;

268

269 Eigen::Affine3f affineTransform = Eigen::Translation3f(offset) * Eigen::AngleAxisf

(quat);

270

271 vis.setBackgroundColor(0.1, 0.01,1.0);

272 vis.addPolygonMesh(*mesh);

273 vis.initCameraParameters();

274 vis.setCameraPosition(-0.5,0,0, 0,0,1);

275 vis.spinOnce(100);

276

277

278 pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr meshcloud(new pcl::PointCloud<pcl::

PointXYZRGBNormal>);

279 pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr temp2(new pcl::PointCloud<pcl::

PointXYZRGBNormal>);

280 pcl::fromROSMsg(mesh->cloud, *meshcloud);
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281

282

283 std::cout << "About to spin" << std::endl;

284

285 for (unsigned int i = 0; i < pose_list.size(); i++) {

286 if (vis.wasStopped()) {

287 break;

288 }

289

290 currp = pose_list[i]->value().x().head(3);

291 currq = pose_list[i]->value().qTotal();

292 offset(0) = currp(0);

293 offset(1) = currp(1);

294 offset(2) = currp(2);

295 offset4.head(3) = offset;

296 offset4(3) = 0.0;

297 quat.x() = currq(0);

298 quat.y() = currq(1);

299 quat.z() = currq(2);

300 quat.w() = currq(3);

301

302 affineTransform = Eigen::Translation3f(offset) * Eigen::AngleAxisf(quat);

303

304 std::cout << "Counter: " << i << std::endl;

305

306 pcl::transformPointCloudWithNormals(*meshcloud, *temp2, offset, quat);

307 vis.updatePolygonMesh<pcl::PointXYZRGBNormal>(temp2,mesh->polygons);

308 visFilename.str(std::string());

309 visFilename << "/home/tweddle/Desktop/visfolder/visfile" << i << ".png";

310 vis.saveScreenshot(visFilename.str());

311

312 cv::Mat tempVis = cv::imread(visFilename.str());

313 cv::resize(tempVis, imgRight, cv::Size(640,480));

314 cvtColor( leftImageList[i+1], imgLeft, CV_GRAY2BGR );

315

316 leftFilename.str(std::string());

317 leftFilename << "/home/tweddle/Desktop/visfolder/combinedImg" << i << ".png";

318 cv::imwrite(leftFilename.str(),combined_img);

319

320

321 //500 ms with 1ms draw every 50 ms

322 for (int j = 0; j < 10; j++) {

323 vis.spinOnce(100);

324 usleep(50000);

325 }
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326

327 }

328

329 //5000 ms with 1ms draw every 50 ms

330 while(!vis.wasStopped()) {

331 vis.spinOnce(100);

332 usleep(100000);

333 }

334

335 std::cout << "Done with spin" << std::endl;

336 }
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