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Abstract

The Airborne Networks Group at MIT Lincoln Laboratory has funded the construc-
tion of a channel emulator capable of applying, in real-time, environmental models to
communications equipment in order to test the robustness of new wireless communica-
tions algorithms in development. Specific design goals for the new emulator included
support for higher bandwidth capabilities than commercial channel emulators and
the creation of a flexible framework for future implementation of more complex chan-
nel models. Following construction of the emulator’s framework, a module capable
of applying Doppler shifting to the input signal was created and tested using DVB-
S2 satellite modems. Testing not only verified the functionality of the emulator but
also showed that DVB-S2 modems are unequipped to handle the continuous spectral
frequency shifts due to the Doppler effect. The emulator framework has considerable
room for growth, both in terms of implementing new channel transformation models
as well as the re-implementation of the emulator on custom hardware for emulation of
channels with wider bandwidths, more complex noise sources, or platform-dependent
spatial blockage effects.
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Chapter 1

Introduction

Fundamentally, a channel emulator takes an input signal, transforms it in a manner

that, as closely as possible, mimics the environmental effects of noise, fading, or

signal path impairments, and transmits the newly-transformed signal. For example,

designers of wireless consumer products often employ channel emulation to determine

how well their new devices perform in sub-optimal environments such as in buildings

or tunnels. Channel emulation allows them to test their devices without leaving the

lab. Figure 1-1 describes a typical channel emulation setup.

Because a channel emulator operates on a signal in real-time, it is especially

useful in testing the end-to-end functionality of a given target. For example, when

designing a video communication device, one might hook two prototype devices up to

a channel emulator, instruct the emulator to apply various sub-optimal environments,

and directly see how well all of the components of the devices deal with this damaging

channel: from the hardware to the networking stack to the video codec itself.

Figure 1-1: Channel emulation in a nutshell. A channel emulator sits between a
transmitter and a receiver. In real-time, it modifies the transmitter’s signal in some
controllable way and presents the transformed signal to the receiver.
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1.1 Comparison to Simulation

Traditional simulation techniques and channel emulation try to solve different prob-

lems.

Simulating a portion of a system as it transmits data through a lossy channel can

provide very accurate and repeatable results. However, it also generally requires

constructing a complete and accurate model of the system under test. Therefore,

typically only small portions of the entire system are modeled and simulated at a

given time. If the proposed test involves a system that is too large, it would not only

take a considerable effort to build an appropriate simulation, it could also be very

computationally complex, resulting in very long run times.

Again referring to the video communication example, an engineer might build a

model of the video transmission algorithm and simulate that part as one portion

of the system. Another may build a model of the upper portions of the underly-

ing networking stack and simulate packets of data sent through this protocol layer.

Yet another might build a model for the lower portions of that network stack and

investigate signal integrity in different conditions.

Channel emulation provides end-to-end testing capability so that it is not neces-

sary to build individual models of the testing system. Instead, the system itself is

used directly in testing. Problems related to the complexity of the system — whether

it, for example, has algorithms that are based on real-time clocks, or requires ex-

tremely high sampling frequencies that do not lend themselves to prolonged periods

of data capture for later analysis — are completely orthogonal to the construction of

a channel emulator.

Channel emulators face their own set of design challenges. The root of these

problems it that a channel emulator must be able to operate on a streaming set

of input data. That is, it must have a throughput ratio of 1. If this is not the

case, the amount of time a single emulation can run becomes finite. Thus sacrifices

may be necessary, such as reducing the complexity of models the channel emulator

can implement. Channel emulators also typically require fairly powerful hardware,
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usually at least as powerful as the devices they test.

When designing a system, it is not necessarily better to choose emulation over

simulation or vice-versa; it is usually better to choose both.

1.2 Constructing a Channel Emulator

There are two overarching significant challenges in the field of channel emulation:

• Research of a given environment and development of the mathematics to match

that environment’s transformation.

• Implementation of these (often complex) mathematics into some kind of device

capable of performing them in real-time.

The bulk of this thesis deals with the latter problem as it appears in the context of

high-bandwidth aircraft-to-aircraft communication in a military setting. Specifically,

we developed a channel emulator capable of applying in real-time the phenomenon

known as Doppler shifting to a high-bandwidth signal.

The overarching goal was to build a framework for constructing future, more com-

plicated channel emulators capable of modeling much more complex scenarios such as

multipath fading, additive noise, and interference. To that end, the implementation of

a Doppler emulation “module” served as a suitable test of the emulator framework’s

overall functionality and extendability.

This channel emulator was specifically designed to operate on waveforms with

bandwidths of approximately 100MHz or less. Commercial channel emulators typi-

cally do not work with such wideband signals. The center frequency of the signal used

to test the initial emulator framework implementation was 1.25GHz, but in prac-

tice, the channel emulator can be modified to operate on a spectrum with a different

center frequency.

With regard to the Doppler module, the emulator was designed to shift a spectrum

by up to ±10KHz. Back-of-the-envelope calculations using math in Chapter 2, partic-

ularly Equation 2.7, indicate that this is a very generous upper bound, as frequency
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shifts for most real-world scenarios are almost always below 4KHz. In actuality, the

resulting architecture allowed the frequency to be shifted by multiple MHz, as shown

in Section 3.6.5.

Finally, when not applying Doppler shifting or any other signal transformation,

the channel emulator should essentially look like wire. With regard to delay, the

channel emulator itself should not induce a signal delay that would appear significant

to two aircraft 100m apart. As shown in Chapter 3, the overall signal delay is around

20 clock cycles at 1GHz, so the corresponding delay is simply c ⋅ 20
1⋅109 = 5.82m, where

c is the speed of light in air. This latency overhead is therefore extremely small.

With regard to fidelity, the signal-to-noise ratio (SNR) of a signal as it passes

through the channel emulator should be close to that of a signal passing through

a wire. Generally, for this kind of application, 60 dB is generally considered to be

superb. Testing showed that the actual SNR for a given test spectrum was closer to

around 50 dB, which is still excellent.

1.2.1 Hardware Decisions

One of the first steps in developing this project was the research and evaluation of

hardware on which to implement the channel emulator.

Xilinx’s Virtex 6 FPGA was chosen to be the fundamental processing unit for

the channel emulator. Section 4.1 details the justification for choosing to emulate

environmental effects digitally with an FPGA and Section 4.1.1 specifically justifies

the choice of this particular FPGA family with respect to its hardware capabilities.

Because the interface between the channel emulator and the testing equipment

is RF, a intermediate processing stage whereby analog signals are converted to dig-

ital and vice-versa is necessary. To accomplish this, an interface containing analog-

to-digital converters (ADCs) and digital-to-analog converters (DACs), described in

4.1.2, was used. Both the ADCs and the DACs sampled at 1GSPS, one billion sam-

ples per second. As a consequence, high-speed, wideband signals could be processed

with the channel emulator.
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1.3 Notation

The following notation is used throughout the thesis.

Symbolic Definitions

An equation describes how some set of symbols interact with one another. To clarify

what those symbols mean, a table may be placed below the equation, like so:

c2 = a2 + b2 (1.1)

c hypotenuse

a one side

b other side

Time-Ordered Sequence

For a chronological sequence where x1 comes after x0, x2 comes after x1, etc., the

following notation is used:

⌞x0 → x1 → x2 → ⋯⌝

Complex Numbers

A complex sample is denoted as ⟨R, I⟩ and is equivalent to the mathematical notation

R + jI.

Buses

A wire bus is represented by:

⟪ A ⋅ B ⋅ C ⟫

The most-significant bits are on the left and least-significant are on the right. The

operator ⋅ concatenates successive bits. For example:
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⟪ 0xAA ⋅ 0x55 ⟫

is equivalent to the number 0xAA55, or as an unsigned integer, 43605.

Array-Like Data Structures

Array-like data structures are represented as matrices. For example, consider the

data structure described by Equation 1.2:

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a b c

d e f

g h i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.2)

In this example, X[0][0] = a, X[1][0] = d, and X[0][1] = b.
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Chapter 2

Understanding the Doppler Effect

The phenomenon known as the Doppler effect is commonly encountered in daily life.

For example, consider the scenario where an observer is standing still while a car

blaring its horn drives past him at constant speed. As the vehicle approaches, the

horn’s pitch appears to be higher than if the car were still and when the car passes

the observer, it appears to be lower.

The sound wave is first being compressed from the observer’s perspective as the

vehicle approaches. It then appears “stretched” as the vehicle drives away. The

amount that the wave appears stretched or compressed is linearly related to the

relative speed of the source/observer pair, the frequency of the wave, and the speed

of the wave in the medium. Figure 2-1 demonstrates the apparent effect.

In this chapter, we develop a model for applying the Doppler effect to RF spectra.

2.1 Shifting a Sine Wave

Because the Doppler effect is dependent on the frequency of the waveform being

shifted, it is easiest to begin by considering the effect on a single sine wave.

The vehicle scenario described above illustrates the subsonic Doppler effect: the

case where the relative speed of the source and destination is less than the speed

of the wave. In the scenario of this thesis, we are dealing with RF transmission,

where the speed of the wave is the speed of light in air (around 3⋅108m/s) and the
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Figure 2-1: Doppler shifting example. When the source is stationary, the wave
incident on an observer is some frequency, as shown in the upper example. When
the object is moving to the right , the apparent wave frequency is different based on
where the observer is in relationship to the source. If the observer is directly to the
right of the source, it will see an apparently frequency higher than if the source was
stationary. If it were directly to the left of the source, it would see a lower frequency.

relative source-destination speed is around 600m/s. Clearly, this falls under the same

scenario.

In general, for some sine wave at frequency f in a one-dimensional world, Doppler

[1] observed that

f ′ = (
vd + vw
vs + vw

) f (2.1)

f ′ destination’s perceived wave frequency

vw speed of the wave in the current medium

vd speed of the signal’s receiver

vs speed of the signal source

f original frequency of the wave

However, vd ≪ vw and vs ≪ vw. We can simplify this equation in the following

manner.
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f ′ = (
vd + vw
vs + vw

) f (2.2)

= (
vd

vs + vw
+

vw
vs + vw

) f (2.3)

≈ (
vd − vs

vs + vw − vs
+
vw + vs
vs + vw

) f (2.4)

≈ (
vd − vs
vw

+ 1) f (2.5)

≈ (
vr
vw
+ 1) f (2.6)

vr relative speed between the receiver and the source (i.e. vd − vs)

Thus, if we are interested in the frequency change, that is, the difference between

the actual signal frequency and its perceived frequency as measured by the receiver,

we can describe ∆f as

∆f = f ′ − f =
vr
vw

f (2.7)

2.2 Shifting a Spectrum

Given Equation 2.7, we can now consider the effects of the Doppler shift on a spectrum

of frequencies, i.e. a collection of sine waves. Consider the left spectrum in Figure 2-2.

Because of the frequency dependency in the equation, each component of the spectrum

will change slightly differently. For example, if one were to apply a positive vr, the

result would be represented by spectrum drawn to the right in the same figure. The

lowest frequency component of the spectrum will shift less than the highest frequency

component. The resulting effect would be that the spectrum appears to spread out,

as shown in the figure.
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Figure 2-2: Doppler shift of a spectrum. The left spectrum is shifted upward to
become the right spectrum. The spectrum’s parameters change appropriately.

2.3 Intelligently Representing a Spectrum Shift

In communications, a transmitted signal is often coarsely characterized by its carrier

(or center) frequency and its bandwidth. For example, referring again to 2-2, one can

easily see that the original carrier frequency of the signal is fc and the bandwidth is

fb.

Given this representation of a signal, it makes sense to represent the frequency

shift due to the Doppler effect in an analogous fashion. That is, one can deconstruct

the shift of a given frequency into a change in the carrier frequency and a change in

a given component.

Consider a spectrum with carrier frequency fc. Consider a component that is

fx + fc. Then, using Equation 2.7, we can decompose ∆f into two components as

follows:

∆f =
vr
vw
(fc + fx) (2.8)

=
vr
vw

fc +
vr
vw

fx (2.9)

=∆fc +∆fx (2.10)

∆fc carrier shift

∆fx component shift

Thus, the component ∆fc is shared among all components in the spectrum. ∆fx
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is unique to each component.

Therefore, we can represent a Doppler shift on a spectrum with two components:

an additive frequency shift applied to the whole spectrum (∆fc) and individual cor-

rective shifts (∆fx for each fx in the spectrum).

2.4 Determining the Need for the Corrective Shift

The corrective shift component is smaller than the additive shift because for any given

component fx in the spectrum, fx ≤
fb
2 , where fb is the spectrum bandwidth.

How important is this corrective shift? Consider the outermost frequency in a

spectrum, namely fc +
fb
2 . We can find the error between the full frequency shift and

an approximated shift that is just the center frequency component. Let fx =
fb
2 .

error = ∣
∆ffull −∆fapprox

∆ffull
∣ (2.11)

= ∣
(∆fc +∆fx) −∆fc

∆fc +∆fx
∣ (2.12)

= ∣
∆fx

∆fc +∆fx
∣ (2.13)

= ∣

vr
vw
fx

vr
vw
(fc + fx)

∣ (2.14)

= ∣
fx

fc + fx
∣ (2.15)

=

fb
2

fc +
fb
2

(2.16)

=
fb

2fc + fb
(2.17)

Therefore, the error does not depend on the relative velocity or characteristics of

the wave speed; it only depends on the carrier frequency and the bandwidth. In the

scenario of this thesis, fc = 1.25GHz and fb = 100MHz, yielding an error of 3.84%.

We can also determine just how much the outermost frequency component will be

approximated if we know vr and vw. That value is simply:
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ferror =∆fc +∆fx −∆fc (2.18)

=
vr
vw

fx (2.19)

=
vr
vw

fb
2

(2.20)

2.5 Defining vr in the Real World

We have characterized ∆f , but have neglected to describe exactly what vr represents.

When a wave propagates in the direction from the transmitter to the receiver,

the Doppler effect causes compression or dilation along the axis of propagation. The

relevant component of the relative velocity between the transmitter and the receiver

is also along this axis.

In this thesis, we will consider the relative position and velocity of the transmitter

and receiver as vectors in the Cartesian coordinate space. The relevant vectors in the

transmitter-receiver system are r⃗sd, the relative position between the source and the

destination, and v⃗sd, the relative velocity between the source and destination.

Therefore, we can define vr as follows:

vr = −proj
sc
r⃗sd

v⃗sd (2.21)

Recall that in Cartesian space, the scalar projection of a vector a⃗ onto a vector b⃗

is:

projsc
b⃗
a⃗ = a⃗ ⋅ b̂ (2.22)

=
a⃗ ⋅ b⃗

∣⃗b∣
(2.23)

We call vr the radial velocity because it is the component of the velocity along the
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relative position axis. For example, if the source was traveling around the destination

in a circular motion, the radial velocity would be zero and the perceived shift in

frequency would be 0.
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Chapter 3

Signal Processing Architecture

A channel emulator should appear virtually transparent save for the actual signal

transformation for emulating the environment. Therefore, it is important to develop

an architecture that modifies the input signal with very low latency and high resolu-

tion.

This chapter discusses the overall architecture that this channel emulator employs

to apply Doppler shifting to an input signal. Recall that the relevant design con-

straints dictate that the input carrier frequency is 1.25GHz and the bandwidth limit

is 100MHz, which is nearly twice that of most commercial channel emulators.

As discussed in Section 4.2.1, due to clocking restraints, all data that is produced

from the FPGA’s interface to the ADC as well as the data that enters the FPGA’s

interface to the DAC is parallelized into sets of 8 samples per system clock, with the

most significant set of bits representing the latest sample, S7, and the least significant

representing the oldest, S0. We call this bus an octet.1. Data passed between each

stage of the signal processing architecture looks like:

⟪ S7 ⋅ S6 ⋅ S5 ⋅ S4 ⋅ S3 ⋅ S2 ⋅ S1 ⋅ S0 ⟫

The signal processing chain is described in Figure 3-1. An anti-aliased signal is

presented to the input ADC. The signal is downconverted to baseband and digitally

1In this thesis, the term octet refers to a set of 8 samples concatenated together into a single bus.
The samples can be of any size. Here, octet does not refer to an 8-bit value as it traditionally does
in computing.
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Figure 3-1: Signal chain overview. Illustration of the signal processing chain, with
separation of the analog and digital realms

anti-aliased. Baseband emulations can be applied to the signal at this point. Then,

signal is mixed to an intermediate frequency (IF ) using a frequency-adjustable mixer.

The Doppler frequency shift ∆fc is applied at the digital mixer stage. The signal is

then sent out to the DAC and mixed up to the final center frequency using an analog

mixer.

The microarchitecture of each step of the signal processing chain must be designed

to handle the octet-at-a-time constraint.

3.1 Analog Pre-filtering

The only relevant portion of the incoming signal is the 100MHz spectrum around

the carrier frequency. It is therefore necessary to install an analog passband filter

before the ADC to reject anti-aliasing effects from outside the spectrum. The K&L

Microwave filter had a passband from 1GHz to 1.5GHz, which was suitable for this

project because the ADC (as described in Section 3.2) had a sampling frequency of

1GSPS, so this filter restricted the input of the ADC to a single Nyquist fold.

3.2 ADC

The ADC chosen was the Texas Instruments ADS5400. It provides 12-bit samples at 1

billion samples per second (1 GSPS). It also has adjustable gain between 1.52 Vpp and

2.0 Vpp. Sampling theory and, in particular, rules regarding the Nyquist frequency
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tell us that a signal spectrum must be within 0.5×fs intervals where fs is the sampling

frequency of the ADC. That is, if fs is 1GSPS, or 1GHz, a spectrum that falls

between 0Hz and 500MHz would be in the first Nyquist fold, between 500MHz and

1GHz would be in the second, 1GHz and 1.5GHz would be the third, etc.

When an ADC samples a spectrum that is not in the first fold, the spectrum

will be folded down into that first region when it appears at the ADC output. For

example, the ADC would show a 1.25GHz component as 250MHz. If the original

region was even (i.e. second fold, fourth fold, etc.), the spectrum will be inverted as

it folds down (e.g. 750MHz would appear as 250MHz).

In this case, the ADS5400 operates extremely well in the third Nyquist fold. A

signal generator was plugged into the analog input of the ADC. It was then swept

through several frequencies in the third fold and their corresponding frequencies in

the first fold and a few seconds of samples were recorded from the ADC. A Welch

Power Spectral Density estimate was then performed on each capture and the SNR

between each corresponding pair was compared. The result was that a signal in the

third fold had only around a 10dB loss compared to its corresponding signal in the

first fold. This was deemed extremely acceptable, as the SNR was still very large –

orders of magnitude larger than the loss experienced in a typical wireless environment.

The output of the ADC is a non-inverted spectrum centered at 250MHz.

3.3 Downconversion

In the first digital processing stage, the incoming signal is downconverted to baseband,

yielding I and Q outputs. The process of downconversion usually involves multiplying

the input signal by a cosine and also by a sine at the same frequency. The first result

is the in-phase component and the second is the quadrature phase component.

There is a slight optimization that can be taken when downconverting a signal

with carrier frequency fs
4 where fs is the sampling frequency. Namely, the incoming

data samples can be multiplied by 1, i, −1, and −i in that order to generate I and

Q. This technique was employed in the implementation of the down-converter, but
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Figure 3-2: Generated input spectrum with 100MHz of bandwidth, centered around
250MHz, created by summing and normalizing a series of sine waves with increasing
frequencies and amplitudes.

the FPGA has enough resources for a full DDC if a different carrier frequency is ever

chosen for the emulator to operate on.

Figure 3-2 shows a test spectrum applied to the DDC and Figure 3-3 shows the

I and Q outputs that are the result of the DDC. The latter figure shows two plots:

the upper is the result of applying the operation with floating-point precision. The

lower is the result of applying the operation using the hardware simulator Modelsim

with a fixed-point hardware implementation of the design. Figures 3-6 and 3-10 will

also show two plots each in a similar manner. Comparing the two allows us to see

the effect of the lower-resolution fixed-point numeric format on the generated signals.

Section 3.9 discusses choices for numeric representation in the hardware design.

Implementing this design on the set of parallel input samples is relatively straight-

forward. For an input S0 through S7, the final output looks like the following sequence

⌞S0 → jS1 → −S2 → −jS3 → S4 → jS5 → −S6 → −jS7⌝ (3.1)

To generate this set of samples, the downconversion module creates two octets,

one for in-phase components and one for quadrature components. It computes −S2,

−S3, −S6, and −S7 by taking the complement of each sample and adding 1 (because

the samples are in two’s complement format). Finally, it rearranges the set of input

samples and negated samples to produce the output buses:
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Figure 3-3: Result of applying an fs/4 downconversion to the input spectrum in
Figure 3-2. The baseband signal is now represented by I and Q samples. It also has
an image as a result of aliasing. This will need to be removed with a low-pass filter.

28



0 10 20 30 40 50
Tap Index

−0.04
−0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

T
ap

V
al
u
e

FIR Filter Taps

Figure 3-4: AA FIR filter shape

dout_i: ⟪ 0 ⋅ −S6 ⋅ 0 ⋅ S4 ⋅ 0 ⋅ −S2 ⋅ 0 ⋅ S0 ⟫

dout_q: ⟪ −S7 ⋅ 0 ⋅ S5 ⋅ 0 ⋅ −S3 ⋅ 0 ⋅ S1 ⋅ 0 ⟫

Due to the simplicity of this computation, this module produces valid data in

the same clock cycle as its respective input without severely impacting the timing

constraints of the system.

3.4 Anti-aliasing Filter

The output of the DDC produces an aliased image centered around 500MHz as shown

in Figure 3-3. To remove this component so that it does not affect future stages, it

is necessary to create a low-pass anti-aliasing filter.

Because of the large distance between the baseband signal and the aliased com-

ponent, the filter requirements are not at all very strict; from Figure 3-3, we see that

there is somewhere between 300 and 400MHz of dead space. We chose to use a finite

impulse response (FIR) filter with 47 taps, generated by the method of least squares.

FIR filters are useful because they are architecturally very simple (due to their high

degree of symmetry) and are always stable. The filter’s shape and frequency response

are plotted in Figures 3-4 and 3-5 respectively.

Continuing with our example from the preceding section, we apply this anti-

aliasing filter to both the in-phase and quadrature baseband components to achieve

the results shown in Figure 3-6.
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Figure 3-5: AA FIR filter frequency response
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Figure 3-6: Result of applying the anti-aliasing filter to the downconverted signal.
Notice that while the overall noise floor of the hardware simulation’s result is higher,
the overall signal-to-noise ratio is still 80 dB.
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Figure 3-7: Architecture of the digital anti-aliasing filter. Input samples are
buffered, combined, multiplied, and added together to yield a stream of output sam-
ples.

Figure 3-8: Filter Buffer System. A 55-sample buffer is kept. 8 “windows” into
this buffer are used to produce an octet of output samples. In this figure, the first
4 output windows are shown: the first output sample uses input samples S0 through
S47, the second output sample uses input samples S1 through S48, and so on.

To implement this filter on two octets (I and Q), a multi-stage filter was con-

structed whose overall architecture is described by Figure 3-7. The 7 stages of

the system are: buffering, coefficient folding, multiplication, and a four-stage post-

multiplication adder tree.

3.4.1 Data Capture and Buffering

The first stage is a combination input-buffering and data-loading stage. Given that

the filter is 47 taps and the input bus is 8 samples wide, there must be 47 + 8 =

55 samples buffered into the filter at any given point because for each sample in

the output bus, a 47-sample window into those 55 samples is used to generate the

low-passed result. This design allows us to create an output octet each clock cycle.

Figure 3-8 demonstrates how a large shift register keeps these 55 samples buffered in

memory.

In the next step, an unregistered bus stg a simply extracts samples from the shift

registers. The data structure of this bus is defined as follows:

[ ⟨I0,Q0⟩ ⟨I1,Q1⟩ ⋯ ⟨I54,Q54⟩ ] (3.2)
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3.4.2 Tap Folding

The FIR filter is a summation of multiplications, but these multiplications are sym-

metric around the center tap. For example, for a 7-tap FIR filter as follows:

y[n] =C0x[n] +C1x[n − 1] +C2x[n − 2] +C3x[n − 3]+ (3.3)

C4x[n − 4] +C5x[n − 5] +C6x[n − 6] (3.4)

C0 = C6, C1 = C5, etc., so the equation can be represented as:

y[n] =C0(x[n] + x[n − 6]) +C1(x[n − 1] + x[n − 5])+ (3.5)

C2(x[n − 2] + x[n − 4]) +C3x[n − 3] (3.6)

There is an important optimization that we can employ in this stage. Because

every other sample in the previous stage was 0 and the number of taps of the filter

is odd, we can use symmetry to throw out half of the folding additions. This would

be analogous to x[n − 1] = x[n − 3] = x[n − 5] = 0 in Equation 3.5, which would cause

the C1(⋯) and C3(⋯) taps to drop. Notice how one could not take advantage of

this optimization if there were an even number of taps, as each tap would have one

non-zero sample and one zero sample.

Therefore, following the extraction of the input shift register into samples, we fold

these samples for each of the (47−1)/2 = 23 tap pairs for each of the 8 output samples

and store the resulting data into the 8×12 array stg b bus, whose format is described

by Equation 3.7.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨I0 + I46,Q1 +Q45⟩ ⟨I2 + I44,Q3 +Q43⟩ ⋯ ⟨I22 + I24,Q23⟩

⟨I2 + I46,Q1 +Q47⟩ ⟨I4 + I44,Q3 +Q45⟩ ⋯ ⟨I24,Q23 +Q25⟩

⋮ ⋮ ⋱ ⋮

⟨I8 + I52,Q7 +Q53⟩ ⟨I10 + I50,Q9 +Q51⟩ ⋯ ⟨I30,Q29 +Q31⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.7)
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Figure 3-9: Architecture of the post-multiplication adder tree. This architec-
ture applies for n = 0...7 (i.e. all samples on the input bus). Each term is a complex
number.

3.4.3 Multiplication

In the third stage, the taps in stg b are multiplied by their respective coefficients.

Equation 3.8 describes the output of this stage, which is stored as stg c, which again

has the dimensions 8 × 12.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨C0 ⋅ (I0 + I46) ,C1 ⋅ (Q1 +Q45)⟩ ⋯ ⟨C22 ⋅ (I22 + I24) ,C23 ⋅ (Q23)⟩

⋮ ⋱ ⋮

⟨C1 ⋅ (I8 + I52) ,C0 ⋅ (Q7 +Q53)⟩ ⋯ ⟨C23 ⋅ (I30) ,C22 ⋅ (Q29 +Q31)⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

3.4.4 Post-Multiplication Adder Tree

The last four stages of the filter sum the taps in a tree-like fashion. Figure 3-9

illustrates how the components of stg c sum to stg d, which in turn sum to stg e

and then stg f and stg g.
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3.5 Baseband Emulation Stage

The baseband emulation stage is reserved for special modifications applied to the

baseband signal. This channel emulator tries to achieve an architecture capable of

pluggable transformations, so this stage could easily allow for the addition of additive

Gaussian white noise, signal mixing, or other modifications. In this specific imple-

mentation, the baseband signal is not modified, however the hardware architecture

makes it relatively easy to plug in modules that do so.

3.6 Variable Mixer

The final digital processing stage is the mixer, which mixes the baseband signals with

a intermediate carrier frequency. The result is sent out via the DAC.

The nominal mix frequency is 120MHz. That is, given a set of I samples xI and

Q samples xQ, the output signal is:

xmixed[n] = xI[n] cos(
2πfm
fs

n) + xQ[n] sin(
2πfm
fs

n) (3.9)

where fm is nominally 120 ⋅ 106Hz and fs continues to be 1 ⋅ 109Hz.

Why nominally? The mixer is the perfect opportunity to inject the effects of ∆fc

from Equation 2.8, as the entire spectrum can be shifted simply by adjusting fm.

fm becomes 120 ⋅ 106 +∆fc.

Figure 3-10 demonstrates the result of mixing the anti-aliased I and Q to 120MHz.

The digital architecture utilizes a direct digital synthesizer (DDS) to generate the

carrier wave, multiplies incoming samples by this wave, and sums the results in a

fully pipelined operation.
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Figure 3-10: Result of mixing anti-aliased baseband signal to 120MHz. The overall
SNR for the hardware implementation is around 60 dB, which, for the target appli-
cation, is excellent.

35



Figure 3-11: Example of DDS output with varying phase ramps. As we change
the slope of the phase ramp, we select more or fewer elements in a single period of
the lookup table. In this example, the dotted line corresponds to samples marked
with a × and has twice the slope of the solid line, which corresponds to the samples
marked with a ◻. Clearly, we can see that the resulting × sine wave will have twice
the frequency of the ◻ sine wave.

3.6.1 DDS Background Theory

There are many ways to generate sine waves digitally. The simplest method is through

the use of a lookup table (LUT). With this method, a period of the sine function (or

any periodic function) is stored to memory and a “phase” is applied as an input index

into the table. The phase is then incremented and the next value of the function is

determined. The input phase accumulates until it overflows back to the start of the

periodic function.

The slope of this phase ramp therefore determines the frequency of the output

wave. Figure 3-11 illustrates how different phase ramps result in different frequency

outputs.

In continuous time, this concept is very simple. For a function f with phase input

φ, the output of that function at a given phase is just f(φ). Furthermore, as we

want successive values of f , we just update φ with some δφ continuously. This

value determines the frequency. Things become more complicated as we enter the

discrete time-domain realm. In this realm, we have a timestep τs instead of being in

continuous time as well as a fixed number of positions Nt in a given LUT instead of
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having a phase that is all real numbers between 0○ and 360○. We now refer to the

phase as ϕ and the change in phase at each timestep as ∆ϕ. In a digital system, it

makes sense to make N a power of two such that we can always make ϕ simply by

creating a register lg(Nt) bits wide (so that when it overflows, the phase starts at the

beginning again).

Now, ∆ϕ becomes:

∆ϕ = fm ⋅ τsNt (3.10)

∆ϕ increment to phase with each timestep

fm desired target frequency to generate

τs timestep (inverse of sampling frequency)

Nt number of elements in the LUT

Unfortunately, unless the quantity on the right-hand side is a whole number, errors

accumulate very rapidly as ϕ← ϕ+∆ϕ with each timestep. As a result, the frequency

that is actually generated will be inaccurate. One thing we can do that will sacrifice

the purity of the signal (i.e. its precision) in favor of better accuracy is to make ϕ

a fixed decimal value and only feed the integral part into the LUT. Thus, with each

timestep update, we do not accumulate quite as much error. If we wish to introduce

Nf decimal values, with Nf being a power of two, ∆ϕ becomes:

∆ϕ = fm ⋅ τsNtNf (3.11)

Now, we simply take the upper lg(Nt) bits of ϕ and use that as the index into the

LUT.

There are more techniques that one can use to improve the output signal quality

in different ways. For example, one natural result of this method is that harmonics

are generated. By dithering the value of ∆ϕ with a small random offset on each

increment, one can suppress these harmonics at the cost of raising the signal’s noise

floor.
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3.6.2 Implementing a DDS

Using a fixed-point decimal notation with the integral and fractional parts both being

powers of two makes it easy to separate the components in order to provide an index

into the LUT. In this implementation, we set Nt to 210 (i.e. 1024 table entries) and

Nf to 216 (i.e. 16 bits of fractional precision).

The lookup table was implemented as a dual-read-port ROM with 18-bit values.

This 1024 × 18 design fits neatly into a single Virtex 6 BRAM. On each clock cycle,

one of these ports outputs a sine sample and the other outputs the corresponding

cosine sample. A total of 8 of these LUTs were instantiated, one for each sample on

the input bus.

The nominal mix frequency is fm = 120MHz. We can calculate ∆ϕ as follows:

∆ϕactual = fm ⋅ τsNtNf (3.12)

= 120 ⋅ 106 ⋅
1

1 ⋅ 109
⋅ 210 ⋅ 216 (3.13)

= 8053063.68 (3.14)

∆ϕ = ⌊∆ϕactual⌋ = 8053063 (3.15)

Therefore, with each timestep, we add 8053063 to the existing register storing ϕ

and use the top 10 bits of that value as the index into the LUT.

The difference between the actual and approximate phase increment, 0.68, is ex-

ceptionally small, and produces a frequency error of only:

error = ∣
∆ϕactual −∆ϕ

∆ϕactual

∣ (3.16)

= 8.44 ⋅ 10−6% (3.17)

or around 10Hz.
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Figure 3-12: Mixer Architecture.

3.6.3 Mixer Architecture

As illustrated in Figure 3-12, the architecture is a very simple 3-stage pipeline. In

the first stage, the set of input samples is registered as well as their corresponding

sine and cosine values in the LUT. In the second, the real component of the sample

is multiplied by the cosine value and the imaginary component is multiplied by its

corresponding sine value. Finally, in the third stage, they are summed.

3.6.4 Parallel Lookup Tables

One slight difference between a standard DDS implementation and that of this project

is the need for parallel LUTs because there are 8 samples per clock cycle. As a result,

we actually need 8 LUTs where we feed offsets of a phase into each one. Namely, if

we’re starting at the beginning of the table, where ϕ of the first sample is 0, the ϕ of

the next sample must be 0 + 8053063, etc.: Thus, we have an address input bus — a

one-dimensional array whose starting addresses are:

[ 0 1 ⋅∆ϕ 2 ⋅∆ϕ 3 ⋅∆ϕ 4 ⋅∆ϕ 5 ⋅∆ϕ 6 ⋅∆ϕ 7 ⋅∆ϕ ] (3.18)

Then, with each timestep, we add 8 ⋅∆ϕ to each of these values.

As mentioned, each LUT has two input ports. This allows simultaneous retrieval

of sine and cosine values. The LUT itself is a single period of a cosine function.

Therefore, we can retrieve a sine function simply by adding a three-quarter period to
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the input phase. For a 1024-entry table, we would add 3
4 ⋅ 1024 = 768 to each input

phase to get the corresponding sine value.

3.6.5 Making the Mixer Variable

Previously, ∆ϕ, was a fixed value, as fm was set to 120MHz. However, because the

dominant effect of Doppler shifting on a given spectrum is additive frequency change,

it makes sense to alter the mixing frequency. From Equation 2.8, we now want to set

fm = 120 ⋅ 106 +∆fc. Because ∆ϕ is a linear function of the desired mixing frequency,

we can represent the term as follows:

∆ϕ = fm ⋅ τsNtNf (3.19)

= (120 ⋅ 106 +∆fc) ⋅ τsNtNf (3.20)

= 120 ⋅ 106 ⋅ τsNtNf +∆fc ⋅ τNtNf (3.21)

=∆ϕn +∆ϕd (3.22)

The latter term is the phase increment from the Doppler effect and the former is

the nominal increment. Therefore, we generate ∆ϕd and add it along with ∆ϕn to ϕ

to generate the next phase input into the LUTs. Figure 3-13 illustrates the additional

component of this architecture. This gives us a variable mixer, capable of applying

the Doppler effect on an input spectrum.

3.7 DAC

The DAC chosen was the Texas Instruments DAC5681Z, which outputs 16-bit sam-

ples at 1GSPS at 1.0Vpp. This particular DAC has a SINC output filter that

makes production of a signal within the third Nyquist fold impossible. As a con-

sequence, the digital mixer mixes the baseband signal to the intermediate frequency

(IF ) 120MHz. An external analog mixer then mixes the signal to its final carrier fre-

quency of 1.25GHz.
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Figure 3-13: Revised variable mixer architecture. The addition of the increment
adjust input produces a variable mixer.

3.8 Analog Mixer

To upconvert from the IF to the carrier frequency, a simple analog mixer is used. For

a spectrum centered around fm to be mixed up to one centered around fc, an analog

mixer is fed the local oscillator (LO) fc − fm as well as the spectrum at fm. Then,

a spectrum is produced at fc as well as fc − 2fm. The frequency fm should be large

enough so that the image produced on the opposite side of fc−fm is far enough away

that it is rejected by the receiving modem’s internal passband filter.

3.9 Numeric Precision

There is an inherent trade-off between numeric precision and resource usage. All of the

calculations involve decimal math. For example, the coefficients in the anti-aliasing

filter are all fractions, as are sine and cosine values in the mixer.

Floating-point math is generally not chosen for most digital designs. To minimize

unnecessary resource consumption, fixed-point math is generally preferred; thus, it

was chosen for this project. Each stage of the signal chain is composed of an integer

and decimal component. For example, a 16.8 representation would mean that the

integer part was 16 bits wide while the decimal part was 8 bits wide.

One relevant constraint to use when choosing numeric precision is the size of
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the hardware multipliers in the FPGA fabric. The Virtex 6 has a large number of

DSP48E1 slices, which include a pre-adder, a 25 × 18 multiplier, and an ALU. For

resource-intensive operations, namely the anti-aliasing filter and the mixer, it would

be useful to enforce the constraint that all multiplication inputs are no larger than 25

and 18 bits in width. Based on the layout of the FPGA fabric, in the case of both the

AA filter and the mixer, lookup table values are pulled from BRAMs, which dump

directly into the 18-bit multiplier inputs.

The input into the AA filter is a 12-bit integer from the ADC. To maintain as much

precision as possible while keeping true to the 25-bit limit into the next multiplier

stage, the output is 16.9. Table 3.1 lists the fixed-point representations of each stage.

Table 3.1: Numeric format of each signal chain stage’s output

Stage Output’s Representation
ADC Capture 12.0

DDC 12.0
Anti-Aliasing 16.9

Baseband Emulation 16.9
Mixer 17.9
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Chapter 4

Implementation of the Channel

Emulator

The channel emulator consists of two domains: the hardware domain processes a

streaming input signal and the software domain directs the hardware how to process

that signal. The two communicate via a custom protocol. Careful consideration went

into the design of this implementation so that the channel emulator can be extended

to emulate environmental effects beyond simple Doppler shifting.

4.1 Hardware Considerations

Transforming a signal sampled at 1GSPS is not possible with a CPU, so the log-

ical choice of signal processing device is a field-programmable gate array (FPGA).

These devices are best described as blank canvases on which digital circuits of great

complexity can be created. FPGAs are perfect for complex signal processing and

massively-parallel computations. Creating a digital circuit for an FPGA starts with

a behavioral description of that circuit using a hardware description language (HDL).

In the case of this channel emulator, the language VHDL was chosen. Once the circuit

has been fully described, it is synthesized and mapped into real logic using a software

tool provided by the FPGA vendor. Finally, the result is routed onto the FPGA fab-

ric and a programming file is created. The user can then program the FPGA with
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this programming file and run their application.

4.1.1 FPGA Evaluation Board

Generally, for the purposes of prototyping, FPGA evaluation kits are used. These

kits are full boards that provide useful frameworks for developing applications. In

addition to having an FPGA fully routed on the board, they often feature a variety

of peripheral hardware, such as USB UARTs, ethernet ports, digital video ports, and

an array of buttons and switches for easy configurability.

This project used the ML605 evaluation kit from Xilinx. This board features a

Virtex 6 FPGA, DDR3 RAM, high-speed connectivity, and a variety of other features.

Xilinx also has excellent documentation for both the features of the FPGA and the

components on the evaluation board.

The Virtex 6 family is Xilinx’s second-newest generation at the time of writing

(and was the newest at the start of the project when hardware decisions were being

made). This chip has a variety of useful functionality built into the fabric, and there

are few particular features that make it highly desirable for this project. Because

the device must operate at very high speeds in a streaming manner, the process of

capturing data from the analog interface (described in Section 4.1.2) and sending the

transformed signal back to that analog interface requires high-speed hardware sup-

port. The Virtex 6 contains a number of high speed serializer-deserializer (SERDES )

blocks, which convert data between the narrow high-speed bus used to talk to the

analog interface and a wide low-speed bus used to process data within the FPGA.

This architecture is detailed in Sections 4.2.4 and 4.2.5. Along with these SERDES

modules, the Virtex 6 family has clock routing and control features that make process-

ing data across multiple clock domains relatively straightforward. These capabilities

are instrumental in producing a real-time streaming signal processing environment.

The last major useful feature of the Virtex 6 layout is the large number of DSP48E1

slices. These are specific function blocks that contain a pre-adder, an 18×25-bit multi-

plier, and an arithmetic logic unit. In particular, the hardware multipliers are of

great importance to this project because they make the process of applying com-
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plicated filters to high-speed signals possible. The particular Virtex 6 chip on the

ML605 has 768 DSP48E1 slices; the final design of the emulator framework uses a

relatively small fraction of them, about 15%. The rest can be used for the individual

emulation modules that will come from future development.

4.1.2 Analog Interface

The channel emulator’s interface to the signal path is analog. Thus, to sample data

for processing within the FPGA and then deliver that data to the output, an analog-

to-digital converter (ADC ) and digital-to-analog converter (DAC ) were necessary. To

reduce the development cycle time, a third-party add-on module featuring two ADCs

and two DACs was purchased.

4DSP is a company that produces such add-on boards for FPGAs. These boards

connect to the FPGA evaluation kit using the FPGA mezzanine connector (FMC )

pseudo-standard, which provides numerous high-speed connections to the FPGA.

4DSP produces a series of analog boards, but only one fit the suitable requirements:

the FMC110. This board contains two ADS5400 ADCs and two DAC5681Z DACs,

each operating at 1GSPS. It also has an on-board clock generator to drive these

chips as well as the digital interface to the FPGA.

4DSP provides a reference firmware that can be loaded onto the FPGA to test the

features of the FMC110. It sets up the FPGA as a router between the FMC110 and

a computer via the evaluation kit’s ethernet interface. A Windows program connects

to the FPGA, drives a waveform to the DAC and captures a few thousand samples

from each ADC. The source code for this firmware is also provided.

The reference firmware is based on a burst architecture: a finite of samples is read

into a large buffer, which is then drained more slowly via ethernet to send the data

back to the computer. A new design, built from scratch, was necessary in order to

meet the real-time streaming requirements of the channel emulator. Components of

4DSP’s firmware were used for reference.

This channel emulator only uses one ADC and one DAC. There are plenty of re-

sources on the FPGA available for further development of a second emulation channel
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Figure 4-1: FMC110 architecture. Relevant components of the FMC110 architec-
ture used by the channel emualtor are shown here.

using the other pair. Figure 4-1 illustrates the architecture of the FMC110, high-

lighting the parts of the board that are used in the emulator. The ADCs, DACs, and

clock generator are configured via their respective serial peripheral interfaces (SPI ).

The high-speed data interfaces on the ADCs and DACs are parallel low-voltage dif-

ferential signalling (LVDS ) buses, which consume the majority of the resources of the

FMC connector. A configurable programmable logic device (CPLD) acts as a router

for configuring the devices with SPI interfaces. It also provides the capability to reset

certain devices with asynchronous reset lines.

4.2 Digital Hardware Architecture

Figure 4-2 is a block diagram of the various hardware components that were imple-

mented on the FPGA. The signal processing architecture described in Chapter 3 is a

relatively small component of the larger system operating inside the FPGA.

4.2.1 Clocking

It is particularly important to note that there are numerous top-level clocks in the

system. Table 4.1 describes their origin and purposes. Note that clocks with signals

{p,n} are differential and are used to drive MMCM blocks on the FPGA to generate
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Figure 4-2: Digital hardware architecture. Not shown are lesser components such
as the PWM fan speed controller and debugging modules, which were later removed
in the final design.

other clocks.

4.2.2 Picoblaze Microprocessor

After the FPGA starts up, the system must perform a series of configuration steps to

initialize all of the on-board hardware. After the system has been configured, it can

continue to receive additional configuration directives. It is common in most FPGA

designs to include a small microprocessor on which to allocate portions of the design

that are state-based, such as reading in a command string.

The Picoblaze is a very small soft-core microprocessor developed by Xilinx en-

gineer Ken Chapman. While minimalistic, it provides the perfect feature set for

configuration of various modules on the device.

Firmware for the microprocessor is written in assembly, assembled, and the re-

sulting machine code is loaded into block RAMs on the FPGA. The firmware imple-

mentation is discussed in more detail in Section 4.3.

4.2.3 SPI Controller

The FMC110 board is configured via a SPI bus. SPI commands sent to the board

are interpreted by the on-board CPLD, which directs communication to one of the

configurable chips on the device.
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Table 4.1: System Clocks

Clock Name Freq. Source Main Uses
sysclk {p,n} 200MHz FPGA Eval Board Generation of other

board clocks
clk200 200MHz sysclk {p,n} ADC IODELAY control
clk125 125MHz sysclk {p,n} virtually all processing

and control blocks
clk50 50MHz sysclk {p,n} fan PWM clock

generator
pwmclk 25MHz clk50 fan PWM clock

adc0 clka {p,n} 500MHz FMC110 input data clock
from ADC0

adc0 dout dclk 125MHz adc0 clka {p,n} ADC0→FPGA output
data samples

clk to fpga {p,n} 500MHz FMC110 DAC input data
dac0 din dclk 125MHz clk to fpga {p,n} FPGA→DAC input

Figure 4-3: FMC110 SPI packet structure. SPI packets begin with a prefix that
indicates which device the controller is intending to write to or read from. All devices
except for the clock generator use an 8-bit address as shown in the upper diagram.
The clock generator uses a 16-bit address as shown in the lower diagram.

To facilitate SPI communication with the FMC110, a SPI controller was built. The

microcontroller firmware provides a set of subroutines that send data to output ports

that are connected to the SPI controller, which, in turn, processes the SPI instruction.

Figure 4-3 illustrates the structure of a SPI packet. The ADCs, DACs, and CPLD all

have an 8-bit address space and the clock generator has a 16-bit address space; the

SPI controller handles both cases.
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Figure 4-4: FMC110 DAC controller architecture. The DAC controller uses an
incoming clock from the FPGA to produce its own set of clocks for driving data flow.
The serializer sends a data stream to the DAC, as well as a 1GHz clock.

4.2.4 DAC Controller

Fundamentally, to drive the DAC, 16 bits of data must be fed in parallel output

format at a speed of 1GHz. Given that the FPGA itself operates at a speed of

125MHz, achieving this design constraint is done by passing the data through several

clock domains. Figure 4-4 describes stages of the DAC controller.

Clock Generation

The FMC110 provides a 500MHz signal to the FPGA that is synchronized to the

data-loading clock it internally routes to the DACs. This clock is divided into two

new clocks: one at 250MHz and one at 125MHz named fmc clk d4 and fmc clk d8

respectively. The clock line fmc clk d8 is provided as an output from the module

and incoming data must be aligned it.

8-to-4 FIFO

Data entering the module aligned to fmc clk d8 is sent into a FIFO whose read clock

is fmc clk d4 and whose read port size is a quartet of samples. Thus, if the sample

input at a given time was ⌞⟪A ⋅B ⋅C ⋅D ⋅E ⋅ F ⋅G ⋅H⟫⌝, then the outputs from the

FIFO would be: ⌞⟪E ⋅ F ⋅G ⋅H⟫→ ⟪A ⋅B ⋅C ⋅D⟫⌝.
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Reordering and 4-to-1 Serialization

With data now formatted as quartets at 250MHz, the data bits are reordered for

input into a SERDES serializer, which produces individual samples aligned to the

500MHz input clock at double data rate. These samples are sent out to the DAC via

the FMC110 interface. Additionally, the serializer actually generates a 1GHz clock

(by alternating 1 and 0 bits at 500MHz DDR) and sends that to the DAC as well.

4.2.5 ADC Controller

The ADC interface is somewhat the “opposite” of the DAC’s: serial samples at

the hardware interface are converted to blocks of parallel samples synchronized to

the FPGA’s system clock. However, it is somewhat more complicated in that its

incoming data lines must be synchronized to the incoming clock using a delay-locked

loop (this initialization phase is discussed in Section 4.3.4). Figure 4-5 illustrates the

processing stages of the ADC controller.

The FMC110 delivers data on a supplied 500MHz input clock. An MMCM pro-

duces a 125MHz clock. The incoming data is sent through a SERDES de-serializer

whose output is an octet of samples aligned to the divided clock. The output is then

sent through a FIFO in order to align the data to the FPGA system clock.

4.2.6 FIFO Dumper

To test and verify the operation of the ADC, a FIFO dump system was developed.

When the CPU triggers the dumper to start, the output of one of the ADCs is

redirected from going into the channel emulator’s signal chain to a very large FIFO

(it was configured to take up almost all of the remaining BRAM on the FPGA).

When the FIFO is full, the dumper takes control of the UART and sends its full

contents out via the UART. A software script reads this data and unpacks it back to

its 12-bits-per-sample representation.
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Figure 4-5: FMC110 ADC controller architecture. The ADC controller fea-
tures a DLL trainer that configures the de-serializer; its functionality is described in
Section 4.3.4.

4.3 Configuring FMC110 Hardware

All of the devices on the FMC110 must be properly initialized. The overall startup

process is as follows:

1. Configure the CPLD to set board-level settings.

2. Configure the clock generator to provide clocks to the ADCs, DACs, and FPGA.

3. Configure the DACs and have them perform a “training” phase so that they

can align their clock delay appropriately

4. Configure the ADCs and perform a training phase on the FPGA to align clock

delays.

This startup process is driven by the CPU. Nearly 80 registers need to be set,

making the startup code fairly involved. The startup takes around 10 seconds to

complete.
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4.3.1 Channel Emulator Configuration Interface

The Picoblaze Assembler has no support for macros, so a small interpreted language

was designed to produce assembly code from a set of keywords. This program was

named cci (channel emulator configuration interface). For example, if we wish to

configure ADC0’s register 0x00 to have value 0xAA, then we would write as an input

to cci:

fmcw adc0 00 AA

cci would then produce an assembly file containing the code:

load s0, 00

load s1, AA

call send_adc0

Appendix A describes the full syntax of the language and details how cci can be

used to both generate assembly code and to perform on-the-fly configuration.

The channel emulator makes use of cci to generate the initialization routine which

brings up all of the chips.

4.3.2 Configuring FMC110’s CPLD and Clock Generator

After the CPU has started, it jumps into the FMC110 initialization routine, which

configures the CPLD to reset the clock generator and use an internal clock source. It

also resets the DACs. Next, it configures the clock generator, which provides stable,

phase-corrected 500MHz clocks to each ADC and DAC, as well as one to the FPGA.

The routine then waits for the PLL on the clock generator to lock before proceed-

ing to configure the DAC.

4.3.3 Configuring DAC0

The DAC is configured to provide a two’s complement output and the FPGA is then

configured to provide a stable data clock to the DAC. The DAC’s DLL is then reset
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and the CPU waits until the DAC reports that its DLL has been locked. This process

guarantees that the DAC has synchronized to the data clock that the FPGA provides

along with the input data stream.

Once the DLL has locked, the FPGA provides a checkerboard pattern of data:

a stream of 0xAAAA, 0x5555, 0xAAAA, etc. It then reads the DAC error register to

confirm that no errors in the checkerboard pattern were received. This stage ensures

that the data going into the DAC is correctly aligned to the data clock.

Following the training period, the CPU reports if there were any errors in testing

by reading the error register of the DAC. It then enables the DAC for standard

operation (streaming data output).

4.3.4 Configuring ADC0

Finally, the CPU configures the ADC for operation. Before the input data stream

can be considered valid, the ADC controller must undergo a training phase, which

ensures that each incoming data bit is aligned to the incoming clock. Because the

data is being sent from the ADC extremely quickly, the length of the traces can affect

propagation time. It is possible for the clock to become skewed from the data, which

would cause the data to sometimes appear invalid. To overcome this, a delay-locked

loop is available for every incoming bit in the sample stream. In the training phase,

the ADC is configured to produce a pseudo-random bit sequence (PRBS ) with the

function x7 + x6 + 1. The training system calculates the same PRBS on the FPGA

and compares the result to what it receives from the ADC. When it receives incorrect

data, it adjusts the SERDES delay timing and tries again.

Finally, the CPU confirms the validity of the ADC input by configuring it to send

a checkerboard stream (0xAAA, 0x555, 0xAAA. . . ) and tests for received values that

deviate for the pattern. After a few seconds of testing, it reports back the number of

times it discovered an error.

The CPU sets the ADC to run in normal mode and at that point, initialization

is complete.
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4.4 Configuring the Signal Processing Chain

There are two main signal processing chain settings. The first is the direction of the

baseband down-converter. By default, the converter runs in counter-clockwise mode,

meaning that it multiplies the set of incoming samples by the rotation ⌞1, j,−1,−j⌝.

However, if the incoming spectrum is inverted, it can be fixed by changing to a

clockwise rotation: ⌞1,−j,−1, j⌝. Using cci, one can change this direction on the fly.

The other configuration option is the digital gain setting. When the signal pro-

cessing chain is performing mathematical operations on the input signal, it preserves

as much resolution as possible. Then, at the final output, 16 bits of the number must

be selected. The digital gain setting determines how far to shift the final 26-bit value

from its most significant bit. By default, a setting of 6 is used, meaning that bits 19

through 4 of the output will be sent to the DAC. A utility allows the user to get and

change the digital gain.

There is one more useful gain to configure: the ADC’s analog gain. This is set

and read from a register using SPI. The gain adjustment utility can modify this value

as well.

4.5 Applying Doppler Shifting

The Doppler shifting effect is applied by adjusting the mix frequency (fm in Equa-

tion 3.9). To do this, the CPU configuration bus is used to apply an offset to the

phase slope increment of the mixer.

As discussed in Section 3.6, the phase slope is fed into a lookup table which returns

a value of a sine or cosine at the appropriate phase point. By adjusting the amount

the phase slope increments with each timestep, one can change the frequency of the

generated sine wave on the fly. The mix module is given a 24-bit incr adj value that

changes the phase slope increment on the next clock cycle.

Since data transfered between the computer and the CPU on the FPGA is 8-bits

in width, a frequency shift is represented by configuring 3 times 8-bit registers on the
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FPGA and then setting a fourth register to 0x01 to indicate that the next frequency

shift is valid. The total time to issue a frequency shift directive is largely limited by

the baudrate, or approximately 4⋅10
460800 = 0.0000861 sec = 86µs, which is also around

11520 frequency shifts per second.
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Chapter 5

dopgen Software Package

A software package named dopgen was written to smoothly apply frequency shifting

directives to the channel emulator by mathematically transforming sets of transmit-

ter and receiver coordinates into frequency shifts. It supports two main modes of

operation: processing a pre-recorded set of coordinates and receiving data live from

a flight simulator.

The first mode is exceptionally useful when using captured data from physical

scenarios. However, because most captured data is taken at relatively slow intervals

(usually once or twice per second), dopgen is capable of interpolating between data

points, sending frequency shift commands at faster intervals to the channel emulator

to allow for smoother operation.

By performing frequency shift computations in software and then sending direc-

tives to the FPGA board, the process of adding additional features (such as generating

frequency shifts from more complicated antenna patterns) is greatly simplified.

5.1 System Architecture

Figure 5-1 illustrates the architecture of dopgen. The main thread begins by parsing

command line arguments, determining whether to run in replay mode or live mode.

It then creates an instance of the main Processor object, which takes coordinates,

calculates the frequency shift, and sends the appropriate command to the hardware.
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Figure 5-1: dopgen Software architecture. dopgen’s architecture is heavily
threaded. The processor thread does most of the heavy lifting — computing fre-
quency shift directives from transmitter and receiver coordinates and velocities and
then communicating those directives via the serial interface. The transmitter and re-
ceiver threads periodically inject such coordinates into the processor.
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To supply the processor with antenna coordinates, the main thread instantiates

two Injector instances, one for the transmitter antenna and the other for the re-

ceiver antenna. It then configures each appropriately so that they may both feed the

processor coordinates and indicate when they have finished.

5.1.1 Injectors

The Injector class provides a method to asynchronously provide the main processing

unit with an update on the coordinates of a given antenna. Each injector instance

runs in its own thread. Upon initialization, it is provided with two functions pointers

from the Processor object. The injector calls the first when it wishes to update the

coordinates on the processor and the second to indicate that it has finished supplying

all of its coordinates.

Three types of injectors were built.

FileInjector

The FileInjector takes a set of predefined samples and injects them into the channel

emulator according to timestamps provided with each sample.

It is initialized with the set of samples in the following format:

timestamp : [latitude, longitude, altitude]

Because the data is provided in dictionary form, with the timestamp being the

key and the coordinates the value, it is not necessary to provide timestamps that

are always separated by the same interval. Furthermore, for a given system with

two FileInjector instances (one for the transmitter and one for the receiver), the

timestamps can be completely independent of one another; the system only cares

about the relative time between each timestamp.

This injector simply injects each coordinate and then waits for the time between

the two successive timestamps. When it has injected all of the coordinates, it calls

the donefn().
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UDPInjector

This injector is supplied with a hostname and port to bind to upon initialization. It

binds to this UDP port and upon receiving a data packet, it extracts the antenna

coordinates and injects them into the processor.

The format of the packet is a set of packed 32-bit floats that represent data such

as the antenna’s latitude, longitude, and feet above mean sea level. Since it is a

streaming server, this injector must be stopped externally, by invoking its stop()

method.

StationaryInjector

This is the simplest injector. It is simply supplied with an initial coordinate, which

it injects into the processor and then stops itself. It is meant to be used alongside

UDPInjector in cases when there is only one instance of a live data source available.

5.1.2 Processor

The Processor class sets up an object that converts the coordinates of a transmitter

and receiver into a frequency shift and then sends the appropriate shift command to

the hardware.

As discussed in Section 5.1.1, this class provides two function pointers to each

injector thread: injfn provides a path for the injector to supply the processor with

new coordinates and donefn allows the injector to inform the processor that it has

finished supplying coordinates.

The processor thread performs a complex dance to get all the timing right, but

the essence of its operation is that it waits for either one of the injectors to supply

a new coordinate, updates the system model, and generates a new frequency shift

directive. If interpolation is enabled, it will perform this update if the interpolation

timestep has passed since the last update or if an injector fires a new coordinate at

the processor.

The actual process of updating the environment model begins with the establish-
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ment of a coordinate system. To compensate for the fact that dopgen offers data input

from multiple different sources, a set of two CoordSys coordinate system classes were

created, one for Cartesian inputs and another for geographic inputs. These classes

provide the appropriate mathematics for computing relative position, velocity, radial

velocity, etc. Section 5.1.3 provides a detailed explanation of each calculation.

After receiving an event (such as new coordinates from an injector or interpolation

timestep), the processor updates the coordinates of each antenna. If there are new

coordinates waiting from one of the injectors, the processor simply updates its model

to have those coordinates. If there are no new coordinates available and interpolation

is enabled, it instead sets coordinates by looking at the previous two sets of received

coordinates, calculating the velocity and interpolating a result.

Following the establishments of the transmitter and receiver coordinates, the pro-

cessor calculates the relative position and relative velocity vectors of the system. It

then uses those to calculate the radial velocity, which was defined by Equation 2.21.

It also applies a multiplicative scaling factor if the user supplied one.

From the radial velocity, the frequency shift and the associated directive is com-

puted and sent via the serial interface. Finally, the processor checks to see if both

antennas have stopped moving. If that’s the case, the thread exits; otherwise, it waits

for another coordinate or interpolation event.

5.1.3 Coordinate Systems

In order to easily support multiple input formats, the actual mathematics process

was abstracted away from the main Processor class in the form of coordinate system

transformations.

Namely, when the user runs dopgen with various input arguments, the program

selects the correct coordinate system to represent the environment based on the type

of input the user gives. The coordinate system can be overridden with a configuration

switch. Each system provides methods to perform the following computations:

60



1. Relative position, given two position vectors

2. Velocity, given two position vectors and a time differential

3. Relative velocity, given two velocity vectors

4. Radial velocity, vr as calculated by Equation 2.21

5. Shift frequency, ∆f according to Equation 2.7

6. Increment adjust, the configuration directive sent to the hardware

7. Interpolation, a simple linear interpolation that produces a new set of coor-

dinates given a previous position vector, a velocity vector, and the amount of

time elapsed: u⃗new = u⃗ +∆t ⋅ v⃗

The base class computes all of these functions in the Cartesian coordinate system:

i.e. the inputs are some absolute vectors in xyz-space. The geographic coordinate

system system first transforms the input vectors into a Cartesian representation us-

ing Equations 5.1–5.3 and then acts identically to the Cartesian coordinate system

thereafter.

u⃗x = (rearth + u⃗ξ) ⋅ sin (u⃗φ) ⋅ cos (u⃗λ) (5.1)

u⃗y = (rearth + u⃗ξ) ⋅ sin (u⃗φ) ⋅ sin (u⃗λ) (5.2)

u⃗z = (rearth + u⃗ξ) ⋅ cos (u⃗φ) (5.3)
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u⃗x Cartesian x component

u⃗y Cartesian y component

u⃗z Cartesian z component

u⃗ξ Altitude above mean sea level

rearth Average Earth radius

u⃗φ Latitude

u⃗λ Longitude

5.1.4 Serial Interface

The SerialInterface class generates a connection to the hardware via a USB serial

port. Upon instantiating an object, the programmer specifies the device name and

baud rate. The class provides methods to initialize the hardware prompt and send

frequency shift directives through the cci protocol.

5.1.5 Logger

To facilitate data visualization, dopgen will log data with each new frequency shift

request. Each log entry contains:

1. a timestamp

2. transmitter and receiver positions

3. transmitter and receiver velocities

4. relative position and velocity

5. radial velocity, frequency,

6. (optionally) received modem data

To append additional information about the currently running emulation, dopgen

can optionally connect to a TCP server that serves data from the testing modem.

One such server was written to communicate with the Newtech AZ-410 modem’s web

62



interface to receive information about the modem’s error rate, offset frequency, and

other statistics.

5.2 Using Data from Pre-Recorded Scenario

dopgen can read antenna position data from a pre-recorded scenario file in one of two

formats: the asynchronous EEL format and the synchronous CSV format.

5.2.1 The EEL Pseudo-Standard

The Emulation Event Log format was created by the PROTEAN research group at

the US Naval Research Laboratory. Each line of the file contains a timestamp, a node

number, and the position of that node. dopgen interprets a subset of the format to

capture position data of a transmitter and receiver antenna. A typical line of the file

looks as follows:

0.000000 nem:1 location gps 16.591267,15.445880,1000.000000

Table 5.1 describes the fields.

Table 5.1: Format of the EEL file

Component Meaning
0.000000 Timestamp, in seconds
nem:1 Node number

location gps Next field will be GPS coordinates
16.591267 Latitude
15.445880 Longitude

1000.000000 Altitude above mean sea level in meters

dopgen uses node 1 as the transmitter and node 2 as the receiver. This file

format is asynchronous because a given line only specifies one node, meaning that the

transmitter and receiver antennas can be updated on different timestamps. That is,

the two antennas operate independently.
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5.2.2 CSV File Format

In order to support a more simple processing scheme, dopgen also interprets CSV

files. These files are synchronous in that in a single line, there is a timestamp and the

coordinates of both the transmitter and the receiver. The transmitter and receiver

must therefore be updated on the same timestamps.

A typical line of the CSV file looks as follows:

0.0,100.0,200.0,300.0,110.0,210.0,310.0

Table 5.2 describes the fields.

Table 5.2: Format of the CSV file

Component Meaning
0.0 Timestamp, in seconds

100.0 Transmitter x
200.0 Transmitter y
300.0 Transmitter z
110.0 Receiver x
210.0 Receiver y
310.0 Receiver z

By default, the CSV file is interpreted with Cartesian coordinates, but it can also

supply geographic coordinates.

5.3 Injecting Data from Flight Simulators

dopgen interfaces with the commercial flight simulator X-Plane to support real-time

application of the Doppler effect to a data stream. It can be configured to receive

data from one or two instances of X-Plane depending on whether the user wishes to

have a stationary antenna or two moving antennas. X-Plane provides a variety of

advanced functionality that allows users to record and replay advanced flight paths

and fly multiple planes in the same environment.
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dopgen listens on UDP ports for transmitter and receiver coordinates. X-Plane

is then configured to transmit plane position data to one of dopgen’s listening ports.

This data is a set of packed 32-bit floating point integers that include the current

latitude, longitude, and altitude of the plane. With each received packet, dopgen

extracts these coordinates and injects them into the processor.

This mode is especially useful for generating and testing realistic flight paths as

well as demonstrating the use of the channel emulator in real-world scenarios.
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Chapter 6

Evaluating the Emulator’s

Performance Capabilities

The first step in verifying the functionality of the channel emulator was to get an

idea of its operation in the target channel bandwidth. The original design goal stated

that when no Doppler shifting was applied, the channel emulator should be able to

transparently pass a 100MHz signal centered around 1.25GHz. Therefore, if we were

to pass a signal with some set of spectral characteristics between 1.2GHz and 1.3GHz

through the channel emulator, we would expect to see an almost identical spectrum

within that region on the output of the emulator. To test the emulator’s actual

bandwidth limit, two methods were used. In the first, a low-bandwidth modem’s

output was swept across a range of frequencies and its performance at each point

was measured. In the second, a high-bandwidth modem was fed into the channel

emulator with successively larger symbol rates until the modem started reporting

data errors.

The experimental results matched well with one another. Both experiments indi-

cated that the emulator’s actual bandwidth limit was around 122MHz to 125MHz.
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6.1 Bandwidth Limit Evaluation using a Newtec

AZ-410 Modem

The Newtec AZ-410 modem is capable of sending and receiving a modulated PRBS

signal in order to evaluate communication errors. This modem is primarily used as

a satellite modem and employs the DVB-S2 standard. One interesting property of

DVB-S2 is that its operating point on its Eb/n0 curve is such that the error rate is

either very high or very low. As a consequence, a signal will almost always appear in

sync and receiving cleanly or not at all. This fact is useful in testing the performance

capabilities of the channel as well as in evaluating DVB-S2’s resistance to Doppler

shifting.

A series of tests were conducted with the following settings to determine some

preliminary characteristics of the channel emulator’s bandwidth capabilities. The

testing modem was configured to use a QPSK 9
10 code with signal bandwidth of around

18MHz. In order to get an idea of the spectrum capabilities of the channel emulator,

the modulation and demodulation center frequencies of the modem were adjusted,

sweeping across a broad range of frequencies. That is, the channel emulator’s center

frequency was kept constant at 1250MHz and the modem was configured to operate

within different portions of the channel’s frequency range.

Specifically, we expected that for modulation/demodulation center frequencies

from 1250 − (100/2) + (18/2) = 1208MHz to 1250 + (100/2) − (18/2) = 1292MHz, the

emulator should cleanly and transparently forward the input spectrum. Additional

testing was done for center frequencies outside this target spectrum.

Figure 6-1 illustrates the test configuration. Modem output is sent into the channel

emulator, which then directed back into the input of the modem and is also sent into

an Agilent Vector Signal Analyzer, which calculates signal performance characteristics

and stores baseband samples.

The error vector magnitude (EVM ) is a measure of the quality of a received sig-

nal’s constellation. Values closer to 100% indicate higher deviation of received samples

from the ideal constellation points. Thus, the EVM is a good measure of overall sig-
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Figure 6-1: Channel emulator test setup. This setup was used to test the func-
tionality of the channel emulator. A computer connected to the modem supplied
modulation and demodulation parameters and also retrieved frequency shift data,
which it forwarded to the other computer, which ran dopgen to control the channel
emulator and log statistics.

nal quality. To obtain a preliminary verification that the channel emulator operates

on the target 100MHz bandwidth, the AZ-410 was configured to operate at several

different center frequencies along the 1.2GHz to 1.3GHz range. Figure 6-2 plots the

EVM as a function of the modulation/demodulation center frequency. Within the

target 100MHz bandwidth, the EVM is below 25%, which is very good. In the cen-

ter of the channel, at 1250MHz, it is around 14%, which is nearly identical to the

EVM of the case where the modem’s output is looped directly back into the input,

bypassing the channel emulator entirely.

Figures 6-3 through 6-12 show the spectra received by the modem given some

modulator/demodulator center frequency. At the outer bounds (e.g. when fc =

1180MHz, there is significant aliasing, causing the modem to fail to receive data. For

these plots, the spectrum gain was set as high as possible to maximize the SNR and

no Doppler shift was applied.

The figures show that the channel emulator can accurately emulate the target

bandwidth of 100MHz. That is, from 1200MHz to 1300MHz, the emulator can

recreate the input spectrum without any serious degradation in signal quality. Fur-

thermore, the channel emulator does slightly better than this: the emulator appears

to be able to accurately operate between around 1190MHz to 1315MHz, yielding a
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Figure 6-2: EVM as a function of fc. At the outer ranges, the EVM increases
sharply.

bandwidth of 125MHz and a bandwidth margin of around 25MHz.

6.2 Testing with High-Bandwidth Modem

The channel emulator was also tested with a second modem, which also used the

DVB-S2 standard. This modem was configured with a QPSK 1
2 code and was trans-

mitting scrambled null frames (effectively looking like random data). Figures 6-13

through 6-16 show the resulting spectra from testing the channel emulator with suc-

cessively larger input bandwidths. The modem was commanded with a target sample

rate and because it uses a 35% roll-off factor, the resulting bandwidth of the signal is

simply 1.35 ⋅Sr where Sr is the sample rate. At 74 MSPS, the bandwidth is 99.9MHz.

The test setup looks identical to that used for the AZ-410 modem, as illustrated

in Figure 6-1. In this case, samples from the Modem’s ADC were captured directly

to generate the plots below. For these tests, the low-pass analog filter on the channel

emulator’s DAC was removed.

There is one slight issue with this modem. Its sampling frequency is 1.2GSPS, so

a spectrum of 100MHz centered around 1.25GHz would result in the lower end of the
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Figure 6-3: fc = 1180MHz input waveform from AZ-410. This portion of the
spectrum is outside the target channel bandwidth and has severe aliasing problems,
preventing the modem from operating correctly.
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Figure 6-4: fc = 1185MHz input waveform from AZ-410. The aliased signal
is folded into the main signal, also causing the modem to function improperly.

70



1140 1160 1180 1200 1220 1240
Frequency [MHz]

−60

−50

−40

−30

−20

−10

0

R
el
.
P
ow

er
[d
B
]

PRBS Pattern (fb = 18 MHz, fc = 1190 MHz)

Figure 6-5: fc = 1190MHz input waveform from AZ-410. The aliased signal
begins to emerge from the other side of the spectrum. At this point, the modem does
in fact work correctly, though as Figure 6-2 indicates, the EVM was nearly 30%.
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Figure 6-6: fc = 1200MHz input waveform from AZ-410. At this frequency,
the EVM is low, below 20% and the spectrum is quite clean.
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Figure 6-7: fc = 1208MHz input waveform from AZ-410. At fc = 1208MHz,
the aliased spectrum is over 35dB below the input spectrum, indicating that the
channel emulator definitely performs to its 100MHz target bandwidth spec on the
lower side of the spectrum, though there is a small amount of roll-off.
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Figure 6-8: fc = 1250MHz input waveform from AZ-410. The spectrum is
nicely symmetric about the center frequency. The best SNR achievable is around
50 dB, which by all industry best practices is excellent performance.
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Figure 6-9: fc = 1292MHz input waveform from AZ-410. At the upper bound
of the target channel bandwidth, there is some roll-off due to the analog low-pass
filter at the output of the DAC (which was removed in later testing), but the signal
quality is excellent. The EVM is just over 20%.
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Figure 6-10: fc = 1300MHz input waveform from AZ-410. At a center fre-
quency of 1300MHz, an alias image begins to emerge, but is very small, so the modem
continues to operate without issue.
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Figure 6-11: fc = 1310MHz input waveform from AZ-410. The alias image
begins to merge with the primary signal, but the modem continues to function prop-
erly. This is essentially the farthest edge of the channel bandwidth.
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Figure 6-12: fc = 1315MHz input waveform from AZ-410. The alias image
signal moves further left and the signal is so distorted that the modem ceases to
function correctly.
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Figure 6-13: 25MSPS input waveform from high-bandwidth modem. At
just under twice the bandwidth of the AZ-410 modem, the input spectrum is clean
and the modem functions without issue.

spectrum just grazing the sampling frequency of the modem. As a consequence, there

is inherently a spectral limit on this testing harness. Experiments with this setup

concluded that the channel emulator was able to support a bandwidth of around

122MHz, which is very well in line with the results of testing with the low-bandwidth

modem.
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Figure 6-14: 74MSPS input waveform from high-bandwidth modem. At
the target bandwidth, the modem continues to operate.
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Figure 6-15: 90MSPS input waveform from high-bandwidth modem. At
121.5MHz, the modem’s sampling frequency begins to present an issue for the received
spectrum, but the modem continues to function.
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Figure 6-16: 91MSPS input waveform from high-bandwidth modem. At
122.85MHz, the modem ceases to function. This result matches very closely to the
perceived bandwidth limit of 125MHz from the previous experiment.
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Chapter 7

Testing Doppler Shifting

Capabilities

Once the bandwidth limit of the emulator was measured, the emulator’s Doppler

shifting abilities were characterized and the AZ-410’s resistance to Doppler shifting

was tested.

After performing some initial tests, applying various Doppler profiles, it was de-

termined that an excellent way to see the effect of Doppler shifting on a DVB-S2

signal is simply by looking at whether it is in sync or not because it was very difficult

to construct situations where the signal was in sync but had a non-zero bit error rate.

The AZ-410 reports a variety of useful data via its administration console. First,

it reports the offset from the center frequency. For example, if it reports an offset of

+40KHz, then the modem had to shift the spectrum to the right by 40KHz to offset

the frequency shift. Therefore, the spectrum itself had shifted to the left by 40KHz.

By simply inverting the sign of this reading, we have the measured frequency shift.

The second useful piece of information it can return is whether or not the modem

is in sync and receiving data. This data is continually extracted from the modem’s

configuration system via a script and the data is reported to dopgen’s logger.
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Figure 7-1: Aircraft fly-by test path. This elementary test path recreates the most
classic Doppler experiment where a car playing a single tone travels by an observer.
In this case, two aircraft fly by one another with some fixed minimum distances, as
shown in the diagram.

7.1 Notes about Modem Data Capture

The AZ-410 has some fundamental design flaws that make it impossible to retrieve

modem data in a timely manner. In order to capture data from the modem, a pro-

gram continually makes requests to the modem’s HTTP-based administration inter-

face. Each request takes approximately one second. Furthermore, the modem itself

only updates certain internal values, such as offset frequency, about once a second.

So that the dopgen logger does not have to wait for requests, a buffering system is

used in the request wrapper so that one thread is always requesting the latest posi-

tion. When the logger asks for the modem status, the wrapper simply returns the

last measurement it saw. As a consequence, the resulting modem data typically lags

behind the commanded results (which are nearly instantaneous) by somewhere be-

tween half a second and a second. This will be evident in the observations below.

7.2 Constant Airspeed Fly-By

A very simple place to start is to consider a scenario where two planes fly by one

another in opposite directions, as illustrated in Figure 7-1.

This scenario is much like the classic Doppler experiment where an observer stands

still and listens to a car blaring its horn as it passes him. If the planes are travelling

at constant airspeed, we expect that as they approach one another, there will be a

constant positive Doppler shift. As they pass each other, the shift transitions from

positive to negative. The speed of this transition is based on factors such as the planes’

airspeeds and how closely they pass one another. Figures 7-2 and 7-3 represent
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Figure 7-2: Distant fly-by frequency shift. Two planes fly by one another at a
large distance, around 5000 ft.

scenarios where in both cases the planes are travelling at 1900 ft/sec, but in the first

case, the closest separation is 5000 ft, and in the second case, the closest separation

is 500 ft. Gray bands indicate that the modem has lost sync and is unable to deliver

data. The transition time for the first case is slower and so the modem is more able

to account for the Doppler shift. However, the extremely fast transition time in the

second case causes the modem to fail at this point, as illustrated by the shaded area.

7.3 Flight Simulator Testing

Using X-Plane and dopgen in flight simulator mode, a single, relatively long (around

6 minutes) flight path was applied to a PRBS signal from the AZ-410, coded at

8PSK 5/6. The receiver was stationary on the ground, so the flight path was in-

tended to approach and leave the area of the receiving antenna, which is located at

42.3768○N,−70.9994○W, as shown in Figure 7-4. The resulting frequency shifts are

recorded in Figure 7-5. In areas of quickly changing shifts, the modem loses sync.
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Figure 7-3: Close fly-by frequency shift. Two planes fly by one another closely,
around 500 ft. The loss of communication means that the modem no longer success-
fully transmitted date 100% of the time.

7.4 Flight Simulator Merged Path Playback

Two flight simulator paths were recorded independently and merged into a single

EEL file. The resulting merged path is shown in Figure 7-6. This path was then fed

into dopgen multiple times in order to investigate consistency in applying a complex

Doppler profile. One illustrative result is shown in Figure 7-7. Communication is

lost when the frequency shift changes rapidly or is very large (around 3KHz). After

repeating this experiment multiple times, it was observed that the percentage of time

the modem was successfully able to transmit data was between 80% and 90%.

Thus, the channel emulator makes it relatively straightforward to determine how

various flight paths and the resulting frequency shifts from them affect the ability of

the modem to receive a waveform.

81



42
.3
40
00
0

42
.3
60
00
0

42
.3
80
00
0

42
.4
00
00
0

42
.4
20
00
0

42
.4
40
00
0

42
.4
60
00
0

Latitude [deg]

-71.050000

-71.000000

-70.950000

-70.900000

L
on

gi
tu
d
e
[d
eg
]

Flight Path (87.01% in sync)
Transmitter Path

Receiver Path

Comm. Loss

Figure 7-4: Live system test frequency shift. In this long, complicated flight
test, the flight simulator fed transmitter coordinate data to dopgen and the modem’s
response was recorded. The receiver was a fixed point on the ground. The modem’s
received signal failed often during instances of quickly-changing frequency shifts.
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Figure 7-5: Live system test frequency shift. In this long, complicated flight
test, the flight simulator fed transmitter coordinate data to dopgen and the modem’s
response was recorded. The receiver was a fixed point on the ground. The modem’s
received signal failed often during instances of quickly-changing frequency shifts.
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into a single system as an example of a moving transmitter-receiver pair.
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Figure 7-7: Merged path frequency shift frequency shift. Communication is
very frequently lost in this run
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Chapter 8

Concluding Remarks

The primary objective of building a scalable framework capable of applying channel

emulation effects to high-bandwidth L-band signals was completed. This solution

provides a solid design that allows for pluggable modules to be installed into the

signal chain. It does so by handling all of the pre- and post-processing of the signal

path and by encouraging signal modification at baseband.

A Doppler effect emulator, which shifts a spectrum based on the relative radial

velocity of two aircraft was built. A fusion of techniques were used to realize this

capability: the software program dopgen retrieves inputs from live or pre-recorded

scenarios and directs the hardware to shift an input spectrum by varying degrees.

The resulting solution was tested in a variety of environments and the results of that

testing lead to the conclusion that satellite modems using DVBS-2 are not capable

of correcting long periods of quickly-changing Doppler shifts.

8.1 Looking Forward

This project lends itself to an enormous number of opportunities for further develop-

ment. With regard to the creation of new emulation modules, support for multipath

signals, additive noise, and other features have already been identified as desired ad-

ditional features. The existing framework should make the addition of these features

relatively painless.
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Outside of simply developing new modules, there are a variety of improvements

that can be made to the underlying architecture for even more flexibility for future

testing. First, replacing the fs/4 DDC with a variable down-converter to support a

wider variety of input center frequencies between 1 and 1.5GHz. Second, by switch-

ing from a simple FPGA evaluation board to a custom board, a single FPGA can

control input and output from multiple ADCs and DACs, as well as communicate

with other FPGAs on the same board to allow emulation of very complex scenarios

where multiple aircraft are communicating with one another in close proximity.
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Appendix A

cci – Channel Emulator

Configuration Interface

A.1 Comments

Comments begin with ;, which is the same comment character as that of PSM. There

are no block comments.

A.2 Inline Assembly

Inline assembly, which is directly injected into the generated assembly file, is sur-

rounded by curly braces, with the braces each on their own line. For example, the

following snippet would insert assembly code into the generated file:

label:

load s0, AA

call uart_tx

Note that the braces must be on their own line.
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A.3 Macro Reference

A.3.1 fmcw DEV XX YY — SPI Write to FMC110

Writes YY to the address XX of the DEV chip on the FMC110 board, where DEV is

one of cpld (master CPLD), clkt (clock generator), adc0 (first ADC), adc1 (second

ADC), dac0 (first DAC), or dac1 (second DAC). If using clkt, then XX is a two byte

value, with the high and low bytes separated by a space (e.g. 01 83).

Generated assembly (DEV ≠ clkt):

load s0, XX

load s1, YY

call DEV_send

Generated assembly (DEV = clkt):

load s2, XX.hi

load s0, XX.lo

load s1, YY

call clkt_send

A.3.2 fmcr DEV XX — SPI Read from FMC110

Reads from address XX of the DEV chip on the FMC110 board, where DEV is one of the

devices listed in fmcw. If using clkt, then XX is a two byte value with bytes separated

by a space, also as in fmcw.

Generated assembly (DEV ≠ clkt):

load s0, XX

call DEV_read
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Generated assembly (DEV = clkt):

load s2, XX.hi

load s0, XX.lo

call clkt_read

A.3.3 fmcv DEV XX YY — SPI Write and Verify from FMC110

Performs fmcw with data YY to address XX of device DEV and then performs fmcr

on the same address, sending the resulting byte back via UART. This is useful for

debugging to verify that the correct value was set.

Generated assembly (DEV ≠ clkt):

load s0, XX

load s1, YY

call DEV_send

call DEV_read

load s0, s1

call uart_tx

Generated assembly (DEV = clkt):

load s2, XX.hi

load s0, XX.lo

load s1, YY

call clkt_send

call clkt_read

load s0, s1

call uart_tx
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A.3.4 ccfg DD AA — FPGA Module Configuration

The CPU uses an auxiliary bus system to configure various modules. For example,

through this system, one can set the digital output gain. This command will set

address AA to have value DD. AA’s high nibble determines which module it configures

and its low nibble determines which address of that module to configure.

Generated assembly:

outputk AA, port_cfg_addr

outputk DD, port_cfg_data

A.3.5 outk DD AA — Shortcut for outputk

Shorthand for the outputk directive.

Generated assembly:

outputk DD, AA

A.3.6 out REG, PORT — Shortcut for output

Shorthand for the output directive. REG can be s0, s1, etc.

Generated assembly:

output REG, PORT

A.3.7 in PORT — Read from port

Reads from PORT and sends the value over the UART.

Generated assembly:

input s0, PORT

call uart_tx

91



A.3.8 sndstr "STRING" — Sends a string over UART

Sends ASCII string over UART. Computes the MD5 hash of a random salt concate-

nated with STRING as a label and then uses PSM’s iterative operation feature to send

the string.

Generated assembly:

STRLABEL ← MD5_hex(random_salt + STRING)

string STRLABEL$, STRING

outputk STRLABEL$, port_uart_txdata

A.3.9 newline — Sends a newline over UART

Generated assembly:

call send_newline

A.4 Producing Assembly Code

cci’s default and most useful behavior is to produce assembly code which can then

be assembled with PSM, the Picoblaze assembler. To generate code for an input file

infile.cci to an output file outfile.psm, one can simply run the command:

sw/cci/cci.py -o outfile.psm infile.cci

As per UNIX standard, - can be used in place of infile.cci to represent reading

from stdin and in place of outfile.psm to represent writing to stdout.

A.5 Live Injection via Serial

An auxiliary useful feature of cci is that it allows the user to perform certain com-

mands after the CPU has finished its initialization routine through the use of a prompt

system.
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The macros fmcw, fmcr, fmcv, ccfg, outk, and in can all be issued in this manner.

To issue a command over serial, the user runs cci.py with the -s switch specifying

the serial port location and the location of a file containing a list of commands as

normal. For example:

sw/cci/cci.py -s /dev/ttyUSB0 infile.cci

stdin can be particularly useful in this case. For example, the following shell

command would issue the fmcw command to the system:

echo "fmcw adc0 01 00" | sw/cci/cci.py -s /dev/ttyUSB0 -

A.5.1 Additional Options

In this mode, a few other options can be given. -r instructs cci to automatically

read back the result from all fmcw commands to verify that the register was written.

-q makes the output less verbose. If the command is a write command (i.e. fmcw,

ccfg, or outk), the command returns nothing. If it’s a read command (fmcr, fmcv,

or in), it returns just the value read.

Finally, the -c switch can be used to specify a file containing constants. cci can

read a subset of Picoblaze assembly to parse out constants used in the design and

translate labels into numerical values. As a result, the user does not have to remember

important numerical values.

A.5.2 CPU Prompt Architecture

After initialization, the CPU jumps to a prompt routine. In this routine, it accepts

and processes commands from cci’s serial processor.

To determine whether the prompt is available, cci starts by issuing the ? com-

mand, seeing if it receives a ! in response to indicate that the system is ready. It tries

this 10 times before it fails and exists. After getting the prompt, it then translates

each macro into a prompt command according to the protocol specified in Table A.1.
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Table A.1: CPU Prompt Protocol. <label> represents a single byte, with the only
exception being that <addr> is two bytes when writing to or reading from the clock
generator.

Command Description
? → ! check if prompt is ready
r<dev><addr> → <value> FMC110 SPI read. <dev> is c (CPLD),

C (Clock Generator), a (ADC0),
A (ADC1), d (DAC0), or D (DAC1).

w<dev><addr><value> FMC110 SPI write. <dev> is as in
the previous command.

i<port> → <value> Read from input port.
o<port><value> Write to output port.
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Appendix B

VHDL Preprocessor System

Preprocessing is a standard practice in the field of programming. A preprocessor

provides a (commonly language-agnostic) method for modifying the input code before

it is actually compiled. For example, the compiler GCC has an extensive preprocessor

that enables the user to compile slightly different designs depending on configuration

inputs he or she gives.

However, Xilinx’s synthesis tools have no such capability. As a consequence of

needing the ability to modify my design for different levels of debugging, GCC’s

preprocessor was re-purposed to operate on VHDL files through a script named vhd-

preproc.

B.1 Fooling GCC

The heart of vhd-preproc is the GCC command:

gcc -Dfoo=bar -Dbaz=buz -traditional-cpp -E -x c -P -C file.vhd

This invokes GCC to believe file.vhd is a C file and to only run the preprocessor

on the file. It prints the output to stdout.
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B.2 Preprocessing the Project

The preprocessor determines which files to process using the prj file which Xilinx

generates as a list of HDL files to synthesize.

The syntax of each line of the file is:

<language> <library> "<file>"

where <language> is vhdl and <library> is work. The -p switch determines the

location of the project file to use.

A very simple key:value determines the appropriate configuration to use in pre-

processing. The file contains pairs of <label>=<definition>, with each on its own

line. These pairs determine the -D switches to GCC. -c specifies the location of the

project file.

Finally, the -P switch specifies a prefix to apply to the generated file. For each

VHDL file listed in the project file, vhd-preproc produces the output file with a new

prefix. By default, for an input file named file.vhd, it will produce gen-file.vhd.

Another way to use vhd-preproc is to have it clean out all of the generated files.

This can be done with the -C switch.

One unfortunate design limitation is that XST will produce an error at the as-

sociated line number in the generated file instead of the original one, which makes

debugging slightly more difficult.
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