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Abstract

Parafoil trajectory planning systems must be able to accurately guide the highly
non-linear, under-actuated parafoil system from the drop zone to the pre-determined
impact point. Parafoil planning systems are required to navigate highly complex
terrain scenarios, particularly in the presence of an uncertain and potentially highly
dynamic wind environment.

This thesis develops a novel planning approach to parafoil terminal guidance.
Building on the chance-constrained rapidly exploring random tree (CC-RRT) [1] al-
gorithm, this planner, CC-RRT with Analytic Sampling, considers the non-linear
dynamics, as well as the under-actuated control authority of the parafoil by con-
struction. Additionally, CC-RRT with Analytic Sampling addresses two important
limitations to state-of-the-art parafoil trajectory planners: (1) implicit or explicit
constraints on starting altitude of the terminal guidance phase, and (2) a reactive or
limitedly-proactive approach to handling the effect of wind uncertainty.

This thesis proposes a novel formulation for the cost-to-go function, utilizing an
approximation of the reachability set for the parafoil to account for the effect of
vehicle heading on potential future states. This cost-to-go function allows for accu-
rate consideration of partially planned paths, effectively removing strict constraints
on starting altitude of the terminal guidance phase. The reachability set cost-to-go
function demonstrates considerably improved performance over a simple LQR cost
function, as well as cost-to-go functions with a glide-slope cone bias, demonstrating
the effectiveness of utilizing the reachability set approximation as a means for incor-
porating heading dynamics. Furthermore, this thesis develops a multi-class model
for characterizing the uncertain effect of wind. The wind model performs an online
classification based on the observed wind measurements in order to determine the ap-
propriate level of planner conservatism. Coupling this wind model with the method
for sampling the analytic uncertainty distribution presented in this thesis, the CC-
RRT with Analytic Sampling planner is able to efficiently account for the future effect
of wind uncertainty and adjust trajectory plans accordingly, allowing the planner to
operate in arbitrary terrain configurations without issue.

CC-RRT with Analytic Sampling performs exceptionally well in complex terrain
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scenarios. Simulation results demonstrate significant improvement on complex terrain
relative to the state-of-the-art Band-Limited Guidance (BLG) [2], drastically reduc-
ing the worst case and average target miss distances. Simulation results demonstrate
the CC-RRT with Analytic Sampling algorithm remains un-affected as terrain com-
plexity increases, making it an ideal choice for applications where difficult terrain is
an issue, as well as missions with targets with drastically different terrain conditions.
Moreover, CC-RRT with Analytic Sampling is capable of starting terminal guidance
at significantly higher altitudes than conventional approaches, while demonstrating
no significant change in performance.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Airdrop systems have been used since World War II to resupply remote military

positions as well as provide humanitarian relief. The first airdrop systems consisted

of nothing more than crates with additional padding in order to prevent damage on

impact [3]. Shortly thereafter small parachutes were added to the payloads in order to

decelerate the vehicles before touchdown. An example of an Army parachute system

at touchdown [4] is shown in Figure 1-1. Accurate resupply by these approaches

requires the payload to be dropped from very low altitudes [5].

Figure 1-1: Army Circular Parachute System [4]

Higher altitude drops required significant increase in predictability of the parachute

ballistic trajectory, leading to the development of the “Computed Air Release Point”
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(CARP) [6] system. The CARP system integrates wind forecasting and atmospheric

data, as well as parachute ballistic properties, descent rate and canopy opening trajec-

tories learned from the significant number of previous drops into determining a release

area for the parachute which is likely to result in the best landing conditions [6]. The

Precision Aerial Delivery System (PADS) was developed in order to automate this

process using wind data provided by weather balloons or drop team members at the

target location [7].

Although incorporation of the CARP system allowed for release altitudes on the

order of 5,500-7,620 m, the average landing accuracy exceeded 1,000m. Landing areas

of this size either severely limit the effectiveness of airdrop as a viable supply system,

or subject the system to a number of potentially devastating effects. Airdrops systems

that miss the target to such an extent are subject to system and payload damage due

to unintended collisions with man-made or natural hazards, theft of cargo by enemy

combatants, or the airdrop system itself could cause damage. The incorporation of

the PADS system resulted in average landing accuracy between 250m and 310m,

depending on the transport aircraft [8, 9]. Such landing accuracy is still unacceptable

in combat or in disaster relief zones. Therefore, as an alternative to the previously

standard round parachute, using a parafoil instead allowed for a greater degree of

control and therefore more accurate landings. The original parafoil design was based

the work of Domina Jalbert [10] and researchers at Notre Dame extended the idea,

and coined the term parafoil [11]. An example of a PADS candidate parafoil system

at the U.S. Army Natick Soldier Systems Center [12] is shown in Figure 1-2, and a

FireFly class parafoil, employing the extended Joint Precision Airdrop System [13] is

shown in Figure 1-3.

To fully utilize the capabilities of the parafoil systems, many groups began devel-

oping terminal guidance systems. The terminal guidance paradigm utilizes a combi-

nation of a homing phase, designed to steer the parafoil directly toward the target,

and an energy management phase, designed to descend above the target until an ap-

propriate altitude for terminal guidance. Once terminal guidance is active, it utilizes

on-board sensors as well as a feedback guidance algorithm to control the parafoil to-
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Figure 1-2: PADS Candidate Sys-
tem [12] Figure 1-3: FireFly Parafoil flying the JPADS [13]

ward the target. Two state of the art approaches to parafoil terminal guidance are

Band Limited Guidance (BLG) [2] and massively parallel GPU processing [14]. The

terminal guidance parafoil problem will be posed in the following sections and is the

subject of this thesis.

1.1 Problem Overview

The parafoil terminal guidance problem is to generate a trajectory from an initial

position {x0, y0, z0} and heading configuration ψ0 to a goal position, {xg, yg, zg}, or

position and heading, {xg, yg, zg, ψg}, configuration. The parafoil terminal guidance

problem presents significant technical challenges, particularly for the large scale sys-

tems considered in this thesis:

1. Parafoil dynamics are highly non-linear, relying on aerodynamic drag effects for

lateral control [15].

2. The parafoil is an under-actuated system, with lateral turn rates necessitating

turning circles over 100m in diameter, and with severely limited, or no vertical

control, resulting in a descent rate determined by system kinematics.

3. Parafoil drop locations have arbitrary, non-convex terrain maps, and although
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these terrains are mapped in advance, the non-convexity of the terrains pose a

significant problem for constraint satisfaction.

4. Parafoils are subject to uncertain and variable wind environments, which, if un-

compensated, often result in unacceptably large errors between predicted and

actual trajectories.

5. High-risk military and humanitarian applications often have tight landing re-

strictions, such as narrow valleys, adjacent to water or other terrain hazards, or

along the edge of a cliff. Such restrictions prevent loss of supplies or unaccept-

able recovery efforts from individuals at the target location.

1.1.1 Problem Statement

The parafoil terminal guidance problem is a specific case of a more general trajectory

planning problem. At each time step, the path planner attempts to solve the optimal

control problem,

min
u(t)

φf (xg,x(tf )) +

tf∫
t0

φ(xg,x(t),u(t)) dt, (1.1)

s.t. ẋ(t) = f(x(t),u(t), w̃(t)), x(t0) = x0

ẋC(t) = f(xC(t),u(t),w(t)), xC(t0) = x0

ẇ = fw(w(t),w,ν), w(t0) = w0

˙̃w = fw(w̃(t),w,0), w̃(t0) = w0

P (xC(t = t′) ∈ X ) ≥ psafe

u(t) ∈ U ∀t,

where x(t) is the nominal vehicle state, u(t) is the control input, w(t) are the wind

disturbances to the system, w are the nominal (mean) wind disturbances to the

system, w̃(t)) is the deterministic system wind, xC(t) is the state represented as a

distribution over the wind disturbances, f(x(t),u(t),w(t)) are the vehicle dynamics

to be discussed further in Section 1.3.4, φf (xg,x(tf )) is the cost at the terminal state,
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and φ(xg,x(t),u(t)) is the cost along the path. The set X is the entire set of feasible

states, U is the set of possible controls, xg is the goal state, t0 and tf are the initial and

final times, respectively, fw(w(t),w,ν) is a generalized model of wind state dynamics

(further discussed in Chapter 3), and ν is the random noise governing the evolution

of the wind state. Finally, the final time of the mission tf is determined by the time

at which the vehicle intersects with the terrain.

Given a terrain map T (x, y), which is a scalar function of x and y representing the

height of the terrain, an initial state x0, an altitude time evolution ż(x(t),u(t), w̃(t)),

and a control sequence u(t), the terminal time is defined such that,

tf =

t
∣∣∣∣∣∣ z0 +

t∫
t0

ż(x(τ),u(τ), w̃(τ)) dτ = T

x0 +

t∫
t0

f(x(τ),u(τ), w̃(τ)) dτ

 .

(1.2)

1.1.2 Glide-Slope Cone

The glide-slope cone for a parafoil system is important in describing the characteristics

of the parafoil guidance problem. The glide-slope surface is defined as all states

{x, y, z, ψ} such that applying no control leads the parafoil to terminate at the goal

state. Assuming no wind, this is defined as

XGSS =

{
(x, y, z, ψ)

∣∣∣∣∣ z =

√
x2 + y2

LD
, ψ + π = atan2(y, x)

}
, (1.3)

where atan2(y, x) is the 4 quadrant arc-tangent, returning a value in [−π, π) express-

ing the angle between the positive x−axis and the point (x, y), and {x, y, z} are goal

relative position states. Additionally, there is an implicit z > 0 constraint imposed

by the physical understanding that the parafoil can only descend.

This 4D surface is difficult to visualize, therefore, the glide-slope of the vehicle is

typically collapsed into 3D, where it forms a cone shown in Figure 1-4 and defined by

XGSC =

{
(x, y, z, ψ)

∣∣∣∣∣ z =

√
x2 + y2

LD

}
. (1.4)
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Figure 1-4: Visualization of the glide-slope cone under no wind (blue) as well as a
constant wind (red). The goal is represented by the green diamond at (0, 0)m, and
the negative of the constant wind is represented by the black arrow.

The cone representation of the glide-slope is useful as it allows for visualization of

the planning space relative to this cone. The space defined by z >

√
x2 + y2

LD
is the

region where the goal remains attainable, and moreover, the parafoil maintains margin

against unexpected wind disturbances further on in the trajectory. The space defined

by z <

√
x2 + y2

LD
implies a lower bound on the attainable miss distance proportional

to

∣∣∣∣∣
√
x2 + y2

LD
− z

∣∣∣∣∣; moreover, in this space, no disturbances further down in the path

can be addressed, without increasing this lower bound.

1.2 Literature Review

Since autonomous resupply is an active area of military research, there has been con-

siderable work concerning the parafoil terminal guidance problem. Broadly speaking,

these approaches can be broken down into two categories. The first category, glide-

slope-based planning, utilizes the concept of the parafoil glide-slope discussed in Sec-

tion 1.1.2 as a reference trajectory and builds control schemes designed to track this
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trajectory. The second category is the trajectory-based approach. This approach,

instead of relying on a pre-determined trajectory such as the glide-slope, generates

reference trajectories to the target and utilize general control schemes to track these

trajectories.

Glide-slope-based approaches rely on utilizing the parafoil glide-slope as a refer-

ence trajectory to improve parafoil mission performance. Ref. [16] demonstrates an

approach utilizing a series of scripted maneuvers intended to estimate the parameters

required to accurately compute the glide-slope, and then executes a series of turning

maneuvers to drive the parafoil to the glide-slope. This approach demonstrated the

usefulness of the glide-slope as an approach trajectory as well as a set of requirements

for accurately computing the surface. However, the approach heavily constrains the

solution space. Moreover, this approach forced glide-slope tracking from a relatively

large initial altitude above and lateral distance from the goal location, resulting in

trajectory plans which are greatly affected by uncertainty in the vehicle dynamics

or environment conditions (wind). Ref. [17] replaces the use of pre-scripted turning

maneuvers with nonlinear Model Predictive Control (MPC) to track the glide-slope.

Incorporating MPC improves the ability of the system to reject small-scale distur-

bances while tracking the glide-slope. However, the MPC approach suffers from the

same major deficiency as the turning approach, requiring long-term tracking of the

glide-slope, a surface that can be subject to environmental effects (wind) that cause

changes orthogonal to the control authority of the vehicle.

Ref. [18] builds on the glide-slope tracking approach and uses feedback control

based on the glide-slope and wind estimates driving the parafoil to approach the goal

along the computed glide-slope estimate. This approach, known as Glide-Slope Guid-

ance (GSG), controls the parafoil around the glide-slope in such a way as to minimize

the effect of coupled system uncertainty, the combination of wind uncertainty and

vehicle uncertainty, on the vehicle trajectory. This is accomplished by ensuring a

maximum heading deviation from the estimated wind direction. While this approach

takes some measures to account for the effect of wind uncertainty on the parafoil

landing position; the approach offers no robustness to interaction with terrain obsta-
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cles, nor does it overcome the fundamental constraint of the solution space imposed

by the glide-slope approach paradigm.

The glide-slope-based maneuvers, discussed above, rely on the notion of the glide-

slope for planning. Trajectory-based approaches [2, 19, 20], on the other hand, gener-

ate arbitrary reference trajectories online to optimize a pre-determined cost function.

Ref. [19] formulates the parafoil terminal guidance problem as an optimal control

problem and leverages several optimal control techniques to determine the necessary

conditions for the optimal solution. Additionally [19] notes that the optimal control

conditions for the parafoil terminal guidance problem can only generate near-optimal

solutions through approximation methods. However, [19] assumes a constant wind

throughout the mission, and would therefore require replanning to account for wind

effects during the mission.

Ref. [2] utilized a Band Limited Guidance (BLG) strategy which guarantees sat-

isfaction of control bandwidth constraints, ensuring that the trajectory can be ac-

curately followed. The BLG algorithm is a direct optimization technique, using the

Nelder-Mead simplex search to minimize a cost function of the predicted terminal

vehicle state. The BLG approach is computationally efficient, replanning at 1 Hz

to account for unexpected wind effects. As a terminal guidance approach, BLG is

extremely effective in practice under nominal wind and terrain conditions. However,

the algorithm requires performing an optimization where the objective function is

based on propagating a vehicle state from the initial state to terrain collision. In or-

der for an approach of this type to retain computational efficiency, an upper limit on

planner starting altitude must be enforced. Additionally, BLG incorporates no notion

of varying future wind in the trajectory planner, and relies on reactive replanning to

address varying future wind conditions.

Ref. [20] utilizes inverse dynamics (IDVD) to automatically connect the initial

vehicle state to the target terminal state. This approach is computationally efficient,

allowing for rapid replanning of the trajectory when encountering disturbances. More-

over, this approach guarantees satisfaction of terminal conditions by construction.

The algorithm, however, cannot guarantee bandwidth constraints on the control in-
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put space, requiring iteration in order to ensure that the trajectory plan can be

tracked by the controller. Moreover, the IDVD approach does not explicitly handle

changing future wind, relying on rapid replanning in order to mitigate the wind effect

on the resulting trajectory. Similar to BLG, this approach to wind is reactive, relying

on replanning to address off-nominal wind effects.

Recently, planning techniques have begun to consider methods which are explicitly

formulated to be robust to changing wind conditions. While Refs. [2, 14, 20] demon-

strated approaches which allow for rapid re-planning to account for wind, Ref. [14]

leverages massively parallel graphics processing unit (GPU) to consider a Monte Carlo

simulation of possible future winds, based on the measurement mean and standard

deviation. Using these trajectories to determine a landing distribution, and any po-

tential path is costed based on that distribution. This is an important step in the

development of parafoil terminal guidance algorithms. In contrast to the other ap-

proaches presented here, Ref. [14] considers a set of possible future winds in order to

create a nominal plan robust to a number of possible wind scenarios. However, this

approach requires significant computation power in the form of a GPU in order to

utilize the replanning capability online. Additionally, while a collection of constant

wind profiles covers the trajectory-wide effect (i.e. wind effect on landing location),

it is an optimistic assumption; failing to consider dynamic wind changes may result

in ignoring significant terrain interaction.

As outlined above, the general body of parafoil terminal guidance work suffers

from some combination of the following major limitations.

1. Solution space artificially constrained to an a priori defined subset of the true

solution space based on pre-conceived notions of the form of the solution [16–18].

2. Implicit or explicit constraints on starting altitude cause a reliance on homing

and energy management phases to result in initial conditions which allow for

successful terminal guidance phases [2, 14, 16–18, 20].

3. A reactive approach to handling the effect of wind uncertainty [2, 16–18, 20].
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In order to address these limitations, this thesis presents an implementation of a

chance-constrained rapidly exploring random tree (CC-RRT), which is a real-time

general planning approach that is capable of planning from an arbitrary altitude as

well as incorporating a model for future uncertainty into the planning framework.

1.3 Approach

1.3.1 Success Criteria

Given the problem statement defined in Section 1.1.1, the effectiveness of the trajec-

tory planner developed in this thesis is measured in terms of the following success

criteria:

1. The planner should result in a mean arrival accuracy that is comparable to the

state of the art algorithm, BLG, while improving worst case arrival accuracy.

2. The planner should satisfy all hard constraints, such as turn rate constraints.

3. At all time steps, the planner should maintain a probabilistically feasible path,

specifically accounting for wind uncertainty in the plan, the degree of feasibility

to be determined a priori.

4. The planner should not be constrained by initial altitude of terminal phase.

1.3.2 Overview

There have been several approaches proposed for solving the parafoil terminal guid-

ance problem. This thesis investigates the use of a chance constrained formulation of

the rapidly exploring random tree algorithm (CC-RRT) [21, 22] as a solution to the

problem.
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1.3.3 Planning Under Uncertainty

The problem of motion planning under uncertainty represents a large class of prob-

lems, as described in [23, 24]. Such problems address two general types of uncertainty,

process noise, which represents uncertainty in the vehicle model, and obstacle uncer-

tainty, which represents uncertainty in the environment through sensing errors and/or

uncertainty in the states of other agents in the system.

The partially-observable Markov decision processes (POMDPs) [25, 26] frame-

work is a powerful tool for representing and planning in an uncertain environment.

POMDPs develop optimal policies for partially-observable systems. However, while

the POMDP approach is guaranteed to generate the optimal policy, even in uncertain

systems, for state-action spaces of comparable size to the parafoil guidance problem,

a real-time application is computationally intractable.

Ref. [27] demonstrates a framework for Gaussian overlap for chance constrains

with an underlying A∗ graph search. Similar to the POMDP, to the level of chosen

discretization, this approach produces a true optimal policy for partially-observable

systems. This approach, however, suffers from the same scalability problem as the

POMDP approach, where increased size of the A∗ graph leads to intractable compu-

tation times, ultimately prohibiting this approach from modelling the domain of the

parafoil guidance problem.

Other approaches include the use of randomized planners to generate probabilistic

roadmaps (PRMs) [28, 29]. These approaches use pre-processed maps to explore

the space and provide probabilistic guarantees on path feasibility. However, PRMs

are composed of linear path segments, segments which the control scheme for the

parafoil is not necessarily able to accurately track, particularly in the uncontrollable

dimensions (altitude).

The main algorithm of interest for this thesis is the rapidly exploring random tree

(RRT) algorithm originally proposed in Ref. [30]. The RRT approach creates a tree

of connected nodes and utilizes low level control to connect the nodes of the tree in

a dynamically feasible manner. Similar to the PRM approach discussed above, this
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approach is unsuitable to be applied to the parafoil terminal guidance problem as the

parafoil controller is unable to reliably and efficiently connect two arbitrary states

within the space. A variant of the RRT algorithm, closed loop RRT (CL-RRT), is

presented in Ref. [31, 32]. This variation converts samples into control sequences

in order to create new tree nodes. These nodes do not require connection via low

level control, as they are the product of simulated control sequences. This bypasses

the problem of connecting piecewise linear trajectories, as well as the treatment of

uncontrollable dimensions. Refs. [21, 22] extend the CL-RRT approach by using

chance constraints on path feasibility, making CC-RRT an ideal approach for solving

the parafoil terminal guidance problem. This thesis develops a variation of the CC-

RRT approach applied to the parafoil terminal guidance problem.

1.3.4 RRT Overview

This section outlines the underlying RRT algorithm implemented in this thesis to

solve the parafoil terminal guidance problem. In general, there are a number of

components which must be addressed to implement an RRT approach. This section

outlines the overarching RRT algorithm, as well as defines the required components

for the RRT framework which are not contributions of this thesis, but are required

for a full definition of the approach. The basic steps for tree growth outlined in [30]

are:

1. Sample some state from the environment.

2. Identify the “nearest node” in the tree using a pre-defined distance metric.

3. Attempt to connect to the sample from the nearest node with a feasible trajec-

tory.

The chance constrained formulation of the RRT algorithm, rather than generating

a tree of feasible trajectories, generates a tree of state distributions that satisfy a

minimum probability of feasibility.
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A path (or series of nodes) from that tree is then selected in order to connect the

tree root (initial state x0) to the goal region X , based on some cost function. The

cost function typically has components related to the terminal state φt(xtf ) as well

as cost accumulated traversing the planned path through the space φp(xt,uu), as is

typically expressed by

J = φt(xtf ) +

t=tf∑
t=0

φp(xt,uu). (1.5)

If a path being evaluated has not yet reached the goal region, then a cost-to-go is

used in place of the true cost, as discussed in Chapter 2.

Tree Growth

Algorithm 1 Tree Growth: CC-RRT [1]

1: Take a sample xsamp from the environment
2: Identify the m nearest nodes using heuristics
3: for m ≤M sorted nearest nodes do
4: Nnear ← current node, xt+k ← final state of Nnear

5: while psafe(xt+k) ≥ psafe and xt+k has not reached xsamp do
6: Select input ut+k
7: Simulate xt+k+1 using (1.11)
8: Create intermediate nodes as appropriate
9: k ← k + 1
10: Compute node feasibility probability psafe(xt+k)
11: end while
12: for there each feasible node N do
13: Update cost estimates for N
14: Add N to the tree
15: if Exists a probabilistically feasible connection to goal region then
16: Update upper-bound cost-to-go of N and ancestors
17: end if
18: end for
19: end for

The algorithm for generating the tree of probabilistically feasible paths, as shown

in Ref. [1], is given in Algorithm 1. Similar to the original RRT algorithm from

Ref. [30], Algorithm 1 generates a sample (line 1) from the environment, identifies

the nodes nearest to the sample (line 2), then attempts to connect to the sample via
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a probabilistically feasible trajectory (lines 4-12). Heuristics are utilized to generate

probabilistically feasible paths to the goal, and moreover generate “better” paths (in

terms of (1.5)). The important design choices required for a CC-RRT implementation,

are listed below:

1. Cost-to-go is an approximation of the potential remaining cost to the goal.

2. Sampling strategy is the methodology used to generate candidate samples. It

can be general or problem specific.

3. Vehicle and environment model are the dynamic models governing the vehicle

state and the environment scenario.

4. Nearest node is the metric determining the order in which nodes from the tree

attempt to make connections to the sample generated in line 1.

5. Reference generator is the CL-RRT method of mapping a sample to the refer-

ence input space.

6. Feasibility calculation is the methodology used by the chance constrained algo-

rithm to determine feasibility.

Execution

The execution step for CC-RRT, given in Ref. [1], is reproduced in Algorithm 2.

The real-time CC-RRT algorithm operates at a fixed planning frequency. Between

each growth cycle of the tree, the algorithm propagates the vehicle state, and roots

the tree at that state. Following that, the algorithm expands the tree using the tree

growth algorithm (Algorithm 1) for the remainder of the available time. After the

growth, the best path is selected based on the cost of the nodes (either cost (1.5) or

cost-to-go). The trajectory associated with the chosen path is simulated to ensure

probabilistic feasibility. If the path is feasible, the algorithm executes the next control

associated with that path. Otherwise, the infeasible segment is pruned from the tree,

and the algorithm searches for a new path.
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Algorithm 2 Execution: CC-RRT [1]

Input: Initial state distribution N (x̂0, Px0), goal region X
1: t← 0, xt ← x0

2: Initialize tree with node at x0

3: while xt 6∈ X do
4: Update current vehicle state xt
5: Use measurements, if any, to repropagate state distributions
6: Propagate the mean state xt by the computation time → xt+∆t using (1.11)
7: while time remaining for this time step do
8: Expand the tree by adding nodes (Algorithm 1)
9: end while
10: Use cost estimates to identify best path {Nroot, . . . , Ntarget}
11: if no paths exist then
12: Apply safe and goto line 19
13: end if
14: Repropagate the best path from xt+∆t using (1.11)
15: if repropagated best path is probabilistically feasible then
16: Apply best path
17: else
18: Remove infeasible portion of best path and goto line 9
19: end if
20: t← t+ ∆t
21: end while

Vehicle Model

The airspeed of a parafoil in steady level flight [33] is given by (1.6), with the atmo-

spheric density model based on isothermal scale height [34] given by (1.7),

v(z) = v0

√
M

ρ0

ρ(z)
, (1.6)

ρ(z) = ρsle
−z/τz , (1.7)

where v0 is the ground level airspeed of the parafoil set to 17.8m/s [35], ρ0 is the

atmospheric density computed using (1.7), M is the weight ratio of the parafoil to

the 9000 kg nominal weight, ρsl is the sea level atmospheric density set to 1.225
kg

m3

[34], and τz is the isothermal scale height of earth, 10000m [34]. This airspeed is

used in this work as part of the 3D extension of a Dubins vehicle used to model

the position, {x, y, z}, and heading, ψ, of the parafoil [36]. The heading rate of the
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parafoil is modeled based on a second-order approximation of the Dutch roll mode

of the canopy. Ref. [36] determines appropriate ranges for the second order Dutch

roll model, and our approach selects randomly from those ranges in order to generate

a specific model. Additionally, the differential toggle control input mechanism is

modelled with a first order lag with a time constant determined in Ref. [35]. The

controller is a PID controller with feedforward as proposed in Ref. [36], with gains

tuned to achieve performance similar to that in Ref. [36]. The states of the lag

dynamics, including the controller, are denoted by the 5th order state r. The state

vector and the control input are

x =
[
x y z rT ψ

]T
, (1.8)

u = ψ̇d. (1.9)

The continuous time dynamics of the system are given by combining the 3D Dubins

model with the 5th order lag dynamics,

ẋ = v(z) cosψ + wx(z),

ẏ = v(z) sinψ + wy(z),

ż =
−v(z)

LD
+ wz(z),

ṙ = Ar +Bu,

ψ̇ = sat(Cr +Du, ωmin, ωmax), (1.10)

where LD is the lift-to-drag ratio of the parafoil, 2.8 [35], {wx(z), wy(z), wz(z)} is the

3D wind profile associated with the environment model, the matrices A,B,C,D are

the continuous time representation of the lag dynamics, and the saturation function

“sat” takes minimum and maximum turn rate arguments, ωmin and ωmax and ensure

that the output lies within [ωmin, ωmax], set to ±0.2094rad/s [35] (this implies a min-

imum turning radius of R = v0/ωmax = 85m for the parafoil). In order to implement

a real-time version of the CC-RRT algorithm, the dynamics in (1.10) must be dis-

cretized. Using the discretization time step, ∆t, and the indexing k, the discrete time
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dynamics are

xk+1 = xk + ∆t (v(zk) cosψk + wx,k) ,

yk+1 = yk + ∆t (v(zk) sinψk + wy,k) ,

zk+1 = zk + ∆t

(
−v(zk)

LD
+ wz,k

)
,

rk+1 = rk + ∆t (Ark +Buk) ,

ψk+1 = ψk + ∆tsat (Crk +Duk, ωmin, ωmax) . (1.11)

Sampling Strategy

In sample-based planning algorithms, the weighting of sample space is extremely

important in the ultimate outcome of the planner [23]. The sampling strategy can

be broken up into two parts: random sampling, which generates samples randomly

across the entire planning space, and directed sampling, which creates samples geared

toward incorporating specific planning options into the tree.

Random Sampling 4 regions of interest within the 3-D Euclidean planning space

have been identified. When a new sample is required, the algorithm randomly selects

a region based on tunable probabilities assigned a priori. The regions are

1. Goal Sampling Generates a sample around the goal based on a hemisphere,

where the radius is sampled from a Folded-Normal distribution, with mean

and standard deviation determined by tunable parameters and azimuth and

elevation angles drawn uniformly from [−π, π] and [0, π/2], respectively.

2. Local Sampling Generates a sample in a sphere around the parafoil, where the

radius is sampled from a Folded-Normal distribution, with mean and standard

deviation determined by tunable parameters and azimuth and elevation angles

drawn uniformly from [−π, π] and [−π/2, π/2], respectively.

3. Line Sampling Generates a sample in an sphere around a convex combina-

tion of the parafoil location and the goal location, with combination parame-
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ter λ drawn uniformly from [0, 1], with the radius is sampled from a Folded-

Normal distribution, with mean and standard deviation determined by tunable

parameters and azimuth and elevation angles drawn uniformly from [−π, π] and

[−π/2, π/2], respectively.

4. Global Sampling Generates a sample uniformly across the entire space.

Figure 1-5 shows an illustration of the sampling regions, as well as the probability of

selecting a sample from each region. Figure 1-6 shows a heat map of the sampling

distribution, showing the relative sample density. In this example, the parafoil is

located at (−300m,−300m) and the goal at (0, 0)m.

Figure 1-5: Illustration of the sampling
strategy. Each of the sampling regions
(goal sampling, local sampling, line sam-
pling, global sampling) are indicated,
along with the parafoil (red triangle),
parafoil minimum-radius turning circles
(red circles) and the goal (green star)

Figure 1-6: Heat map of the sampling
distribution. The parafoil is located at
(−300m,−300m) and the goal at (0, 0).

Directed Sampling Two types of direct sampling have been identified that are

useful for the parafoil guidance problem. After every sample generated by random

sampling, the resulting nodes attempt to make a connection based on the following

two direct sampling methods
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1. Connect to Goal Generates a sample at the goal location and attempts to

make a connection to it.

2. Turn Around With probability

P

(
χ <

√
x2 + y2(∆ψ)2

rdsRπ2
, χ ∼ U(0, 1)

)
,

where x and y are states of the node, ∆ψ is the heading of the node relative

to pointing toward the goal location, R = v0/ωmax = 85m is the minimum

turning radius of the parafoil, rds is the tuning parameter, and χ is randomly

drawn from a uniform distribution on [0, 1], places a sample at (−R, sign(ψ̇)R)

in the frame parallel and perpendicular to the parafoil. This sample forces a

turn around maneuver. This is an advantageous option for the parafoil under

a combination of two conditions, (1) the parafoil is far from the goal (2) the

parafoil is facing away from the goal. These conditions are expressed in the

probability of executing this direct sample.

Nearest Node

Standard nearest node metrics are distance functions in a metric space, which are

used as a method of determining which node in the tree a new sample is connected

to. Examples of such functions are Hamming distance, Manhattan distance and

Euclidean distance. For this work, the distance d is a variant of Euclidean distance

which does not penalize altitude above the sample based on propagation along the

glide-slope

d =

√√√√(xn − xs)2 + (yn − ys)2 +

(
zn − zs −

√
(xn − xs)2 + (yn − ys)2

LD

)2

, (1.12)

where {xn, yn, zn} is the position of the node, {xs, ys, zs} is the position of the sample,

and LD is the lift-to-drag ratio of the parafoil. Figure 1-7 illustrates the effect of the

nearest node distance relative to the true Euclidean distance. Additionally, this metric
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has the effect of biasing toward connections when a sample is below the node. This is

an advantageous bias, as the parafoil has no method of vertical control, and therefore

must descend to all future states.

Figure 1-7: Illustration of Nearest Node Distance

Reference Generator

The underlying CL-RRT planner requires samples generated be in the space of the

reference input, instead of a waypoint to which the vehicle is controlled. For this work,

a circular arc connecting the nearest node with specified orientation, {xn, yn, zn, ψn},

to the sample location {xs, ys} is used. This is accomplished by determining the

radius, R of the circle connecting the two points, shown in Figure 1-8:

δx = xs − xn,

δy = ys − yn,

δ =
√
δ2
x + δ2

y ,

R =
δ2

2(δy cosψn − δx sinψn)
. (1.13)

(1.13) is not a true radius, as it can be negative, however, the sign of R does encode

the turn direction. The angular rate reference ψ̇d is computed using the horizontal

34



velocity model (1.6) and the radius R,

ψ̇d =
va(zn)

R
. (1.14)

The duration of the reference command is computed by determining the angle θ

traversed about the circle connecting the node and the sample using

θ = 2 sin−1

(
δ

|2R|

)
. (1.15)

The angle θ is then used to compute the time, td, over which the reference is com-

manded,

td =
θ

ψ̇d
. (1.16)

Figure 1-8: Illustration of the Reference Generation
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1.3.5 Testing Terrains

Valley Terrain

Figures 1-9(a) and 1-9(b) show the difficult valley terrain used to validate the CC-

RRT algorithm, where green terrain is at low altitude, yellow terrain is high altitude,

and the yellow diamond is the goal location. This terrain is difficult based on three

design features. These features are: (1) the slope of the valley is greater than the glide-

slope of the parafoil, severely limiting the planning options for the parafoil at lower

altitudes, (2) the parafoil goal is located at a terrain “bottleneck”, making feasible

plans away from the goal relatively simple, while making feasible plans toward the

goal relatively more difficult, (3) a global minimum (bottom right of Figure 1-9(a))

far from the goal, with a drastic elevation change between the minimum and the goal

for the planner to avoid when leaving the global-minimum region.

(a) Valley Terrain Top View (b) Valley Terrain Skew-Side View

Figure 1-9: Valley Terrain Images. Green indicates lower altitude, with yellow shades
indicating higher altitude. The parafoil goal is located at the yellow diamond.

Obstacle Terrain

Figures 1-10(a) and 1-10(b) show the obstacle terrain used to analyze the value of

robustness of the CC-RRT approach. This terrain situates a terrain obstacle between

the parafoil starting location (blue circle) and the goal (yellow diamond). Testing on

this terrain is intended to be nearly pathological. This terrain has a start/goal pair,

(−700m, 0m, 350m) and (100m, 0m), respectively, that encourages paths that closely
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approach the obstacle with a wind scenario that constantly forces the parafoil toward

the y = 0 line. This scenario is intended to highlight one of the specific cases in which

robustness to wind effects and terrain play a critical role in the success of a parafoil

mission.

(a) Obstacle Terrain Top View (b) Obstacle Terrain Skew-Side View

Figure 1-10: Obstacle Terrain Images. Parafoil start location shown as a blue circle;
goal location shown as a yellow diamond.

1.3.6 Comparison Algorithm: Band Limited Guidance

The BLG algorithm proposed and evaluated in Ref. [2] will be used as a point of

comparison for this thesis. The BLG algorithm determines an optimal control by

choosing coefficients ψ′k for the heading rate profile,

ψ′(h) =
N∑
k=0

ψ′k
sin(π(h− k∆z)/∆z)

π(h− k∆z)/∆z
, (1.17)

where ∆z andN are the band-limiting parameters described in Ref .[2]. The simplified

dynamics,

x′ = −LD cos(ψ) + wx/ż,

y′ = −LD sin(ψ) + wy/ż,

(cos(ψ))′ = −ψ(z)′ sin(ψ),

(sin(ψ))′ = ψ(z)′ cos(ψ), (1.18)
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expressed as differential equations with respect to altitude by (·)′, are simulated for-

ward and a cost function consisting of a weighted sum of x2, y2, and (sin(∆ψ/2))2,

where ∆ψ is the difference between final heading and desired heading is optimized

[2]. The vehicle model used in this planning algorithm is fundamentally different from

the model presented in Section 1.3.4 in the way that heading rate is handled. In the

vehicle model used in the thesis (Section 1.3.4), the heading rate is the result of a

linear model, whereas the BLG vehicle model assumes full control over the heading

rate with no lag, provided that the controls are bounded by the BLG control equa-

tion (1.17). This approach has been implemented in MATLAB in order to provide

comparison to the CC-RRT simulation set-up.

Algorithm Implementation

Initial Guess The parafoil terminal guidance problem in general is a non-convex

optimization, and therefore, there is significant chance for solution convergence to

a local minimum. It is, therefore, important to select an appropriate initial guess

for the optimization algorithm. For this implementation of the BLG algorithm, the

following procedure to determine the initial guess is used.

1. The BLG algorithm is initialized with all coefficients ψ′k initialized to the same

constant value. This value is chosen from that list of candidate constants.

2. Generate a list of candidate constants. This list of constants, Ψ, is generated

by first defining the following quantities,

ψ′a =
1

z0

cos−1

(
−x0 cosψ0 − y0 sinψ0√

x2
0 + y2

0

)
(1.19)

ψ′b =
1

z0

(
2π − cos−1

(
−x0 cosψ0 − y0 sinψ0√

x2
0 + y2

0

))
(1.20)

where, {x0, y0, z0, ψ0} represent the initial state of the parafoil, and cos−1 is

the arc-cosine function. ψ′a and ψ′b represent minimum angle opposite direc-

tion constant turn-rate turns which align the parafoil heading with the goal at
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touchdown. The list of candidate solutions is then generated as,

Ψ =
[
ωmin −ψ′b −ψ′a 0 ψ′a ψ′b ωmax

]
. (1.21)

3. Using the BLG parafoil dynamics model (1.18), each of the potential initializa-

tions from the candidate list is simulated until termination and then a cost is

assigned to each of the candidate constants.

4. The BLG algorithm is then initialized using the element of the candidate list

which results in the lowest cost.

This procedure considers initial guesses in many regions of the solution space, allowing

the guess to be close to the global or an attractive local minima.

Optimization Algorithm The BLG algorithm requires a minimization of a non-

convex objective function. For this application, the MATLAB fmincon function is

used. The fmincon function uses sequential quadratic programming (SQP) ([37]).

The SQP method optimizes a quadratic approximation of the objective function sub-

ject to a linearization of the system constraints. MATLAB uses the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method quasi-Newton with line search ([37]) which utilizes

objective function gradient change information to iteratively build a Hessian matrix

approximation. Details of SQP, as well as the BFGS method are found in Chapter

18 of Ref. [38].

1.4 Contributions and Structure of Thesis

This thesis presents a novel variation of the CC-RRT algorithm applied to parafoil

terminal guidance. Parafoil missions are subject to significant disturbances, with

winds over 95% of the vehicle airspeed. Moreover, many parafoil missions require

navigating aggressive terrain scenarios. Each chapter offers contributions toward

fulfilling the success criteria from Section 1.3.1.
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• Chapter 2: A novel cost-to-go function for the parafoil problem is proposed,

developed, and analyzed. This cost-to-go approach is based on a fixed-horizon

discrete approximation of a reachability set. This cost-to-go approach allows for

the consideration of partial paths in the planning process, improving the plan-

ners ability to adapt to varying mission configurations as well as reducing the

impact of planner start altitude on solution quality. Specific parameters of the

cost-to-go function are analyzed to determine the most favorable configuration.

• Chapter 3: A multi-class colored noise wind uncertainty model is developed.

The model uses real-time observed wind data to classify the wind uncertainty en-

vironment online. The model of each cluster considers a non-zero-mean random

process; where the mean is estimated using a moving average of the observa-

tions, and the additional transient is modeled using an altitude-driven colored

noise. This model differs significantly from those proposed in the literature as it

considers the spacial and temporal evolution of the statistical characteristics of

the wind along the parafoil trajectory, while the literature considers primarily

the wind estimation problem, wind prediction over large areas (using sensor ar-

rays) or long time-scale prediction. The effectiveness of the proposed multi-class

model is then characterized and compared to utilizing a single classification.

• Chapter 4: Utilizing the multi-class wind model developed in Chapter 3, Chap-

ter 4 presents an analytic method for determining the uncertainty distribution

of the vehicle state. The method utilizes the analytic uncertainty distribution to

create a finite set of samples which uniformly cover the uncertainty space, result-

ing in an efficient method for constraint checking, which unlike the “particle”

formulation proposed in Ref. [1], does not requires dynamic state propagation.

• Chapter 5: Demonstrates simulation results of the new CC-RRT with Analytic

Sampling algorithm on the valley terrain scenario, and compares these results

with a nominal CL-RRT formulation (with only mean wind knowledge), with

a CC-RRT formulation utilizing a particle approximation of the uncertainty

distribution, as well as with the state-of-the-art BLG formulation. This chapter
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also demonstrates the ability of the CC-RRT with Analytic Sampling algorithm

to operate with various initial altitudes

• Chapter 6: This chapter presents conclusions and recommendations for future

work.
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Chapter 2

Cost-To-Go Function

2.1 Introduction

One of the main advantages of the RRT framework is the capability to select a path

which has not yet terminated in planning, use it as the basis for vehicle execution,

and complete the plan for the path during a later planning cycle. Critical to this

capability is an informative cost-to-go function, which must provide the ability to

compare two prospective paths which have not yet terminated, as well as to compare

paths that have not terminated with actual path costs of paths that have terminated

in planning. Cost-to-go functions are utilized in many different works, but are rarely

the main focus of the work. [39, 40] consider a cost-to-go function in the context

of a mixed integer linear program. This cost-to-go function, very naturally, follows

the form of the objective function that the work seeks to optimize and takes the

form of a weighted L1 norm. [41] extends the previous approach to include decent

consideration as well as visibility of the target point. Extending these ideas to the

parafoil, one might consider a cost-to-go function as a weighted sum of the position

state. However, as we shall see in Section 2.6, such an approach is insufficient for

this application, as it does not consider the effect of heading on the outcome of the

cost-to-go. This chapter presents a cost-to-go formulation which combines the cost

at the point of consideration with a discrete approximation of the reachability set.
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2.2 One step look-ahead

2.2.1 Description of Approach

We seek a method for determining the cost-to-go for a given state {x, y, z, θ, r}, defined

in (1.8). Our approach combines the use of a point cost primitive with a reachability

set approximation to incorporate the effect of approach direction on the cost. For this

cost-to-go function, we ignore the lag dynamic states r so as to simplify computation.

Cost at a Point

A straightforward choice for the cost-to-go for a single point is the Euclidean 2-norm

of the vector connecting the point to the goal location (assumed to be 0). We have

incorporated a slight modification in accounting for the drift associated with the

persistent wind, discussed in Section 3.2.3,

Ji =
√

(xi − tgwx)2 + (yi − tgwy)2 + z2
i . (2.1)

where tg represents the time to descend from the current altitude to the goal altitude.

The use of this cost-to-go function represents the desire to terminate at the goal, but

accounts for the persistent wind effect, as well as demonstrating the preference for

nodes closer in altitude to the termination point, as captured by the z2
i term.

Reachability Set Approximation

The use of a reachability set addresses the intention to incorporate the effect of

approach direction on the cost of a particular node. The full reachability set of

a state is defined as all possible future states of the system, which, in the case of

the parafoil, can only be constructed by propagating all input sequences from the

initial state until intersection with the terrain. This is extremely difficult to achieve

in practice, therefore, in order to simplify the computation as well as regulate the

overall effect of heading on the cost function we consider only an approximation of

the reachability set described by a propagation of a finite number of possible input
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sequences for a finite time.

In order to estimate the reachability set for a given number of input sequences, N ,

and propagation time t, we elect to use a set of equi-spaced, constant control inputs.

Constant inputs allow for analytic determination of the points in the reachability set

approximation, allowing for a computationally efficient approach. Choosing equally

spaced points allows the approximation to cover the largest portion of the space for a

given number of points in the approximation. If N = 1, then a constant input of ω = 0

is used; if N > 1, then the control inputs are determined for index i ∈ {1, . . . , N} by

ωi = ωmin +
ωmax − ωmin

N − 1
i, (2.2)

where ωmin and ωmax are the minimum and maximum allowable turn rates of the

vehicle, as defined in Section 1.3.4.

Using the resulting set of control inputs, ωi, as well as the time τ , the minimum of

the propagation time t and the time to descend to goal altitude, each tuple {xi, yi, zi}

representing a point in the reachability set approximation is computed using

xi = x+

∣∣∣∣ vωi
∣∣∣∣ (cos(ψ + sign(ωi)

π

2
) + cos(ψ + (2 + sign(ωi))

π

2
+ ωiτ)

)
, (2.3)

yi = y +

∣∣∣∣ vωi
∣∣∣∣ (sin(ψ + sign(ωi)

π

2
) + sin(ψ + (2 + sign(ωi))

π

2
+ ωiτ)

)
, (2.4)

zi = z − v

LD
τ. (2.5)

Figure 2-1 illustrates the result of the reachability set approximation using N = 3

and t = T/4. In this framework, each of the ωi represent a control choice that the

planner is able to make, and each of the points xi represent the result of each of those

choices. An increase in N implies that the approximation is aware of more options

for planner control choice (i.e. a larger and more closely spaced set of ωi), allowing

for a more densely packed representation of the reachability set. A larger t represents

a reachability set which looks further forward, implying that the planner must hold

constant inputs for longer before it is able to make another planning choice.
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Figure 2-1: Arcing Trajectories for Reachability Set Approximation.From the point
considered (x0, red circle), the reachability set approximation (x1, x2, x3) are computed
relative to the parafoil heading ψ.

2.2.2 CDF and Percentile Plots

Aggregate cumulative density function (CDF) plots, individual percentile plots, as

well as tabular representation of the percentile data are used throughout this thesis

to demonstrate the relative performance and effectiveness of various strategies. Due

to the inherent randomization in the RRT, and by extension CC-RRT, algorithm, the

outcome and planner decisions of a single simulation trial are useful in explaining a

particular trait of the algorithm, but cannot be generalized to infer operating con-

ditions on a larger scale. Therefore, we consider aggregate representations of many

runs of the algorithm in different scenarios. The CDF and percentile plots are an

efficient, meaningful represntation of this data.

In the subsequent section, Figure 2-2(a) shows the CDF aggregating 500 trials of

the options for the cost-to-go function. For any miss distance d, this plot shows the

percentage of simulated results landing within a circle of radius d. Additionally, the

plot shows 95% confidence bounds, computed using the MATLAB function norminv.

Figure 2-2(b) shows the mean and standard deviation of the miss distance for each

of the cost-to-go functions being compared, the miss distance values associated with

specific percentages, as well as the 95% confidence bounds. Table 2.1 reproduces the

percentage data in tabular form.

In considering data presented in this form, there are 4 key features when inter-
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preting the data:

1. Shape of the CDF curve: The closer the CDF curve is to a vertical line at miss

distance of 0m, the more successful the algorithm or algorithm parameter.

2. Mean miss distance: The mean miss distance characterizes the nominal perfor-

mance of the configuration.

3. Mid-Valued Percentile: The mid-value allow feature (1) to be quantified by

assigning numerical values to intermediate points of the CDF plot.

4. High Percentile and Worst Case: The worst case and high percentile miss dis-

tances characterize how poorly the algorithm can perform.

Combining Cost-To-Go Pieces

Now that we have developed a reachability set approximation, and have costed each

of the points of the approximation, it is necessary to combine all parts into a single

cost-to-go function, so that each may be compared to the others in a meaningful way.

The cost-to-go function combines the costs by taking the maximum between the cost

of the initial point, J0, and the minimum of the cost of the points of the reachability

set approximation (2.2.1),

J = max(J0,min(J1, J2, . . . , JN)). (2.6)

Each of the two pieces of the cost-to-go function incorporate a different under-

standing about the parafoil planning problem. The first piece, J0, at every altitude,

suggests to the planner to situate the vehicle directly above the goal, which is as far

from the glide-slope as possible, while remaining inside it. Planning using a this type

of cost-to-go function allows for high amount of disturbance rejection later in the path

planning process.

The second piece, min(J1, J2, . . . , JN), represents the most favorable option of the

reachability set approximation. The cost-to-go function considers the minimum cost

propagated point (as opposed to the maximum or the average) as the planner has
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Table 2.1: Miss Distance Data of Combined Cost Function vs Constituent Pieces

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98%
Piece 1
Cost-to-Go
Function

500 40.0 59.3 22.0 64.1 95.1 124 181

Piece 2
Cost-to-Go
Function

500 55.9 51.1 43.2 95.3 117 135 170

Combined
Cost-to-Go
Function

500 33.9 49.3 19.3 56.6 79.7 101 151

the control authority to choose the executed trajectory and can therefore choose to

execute the control leading to the lowest cost. When this piece of the cost-to-go

function is active, i.e. min(J1, J2, . . . , JN) > J0, this implies that all possible choices

available to the planner are less desirable than remaining at the current state.

Figures 2-2(a) and 2-2(b) show the CDF and percentiles (with 95% error bounds),

respectively, for the simulated miss distance of the full cost-to-go compared with

individual pieces; Table 2.1 represents the data in tabular form. This simulation was

conducted using the following simulation parameters

1. Valley Terrain described in Section 1.3.5

2. Cost-to-go function parameters N = 3 and t = T/4, where T =
2π

ωmax

is the

duration of one turning circle

3. Nominal RRT planner, utilizing only re-planning capabilities, and no chance

constraint formulation

Figures 2-2(a) and 2-2(b) demonstrate the relative effectiveness of each of the in-

dividual pieces of the cost-to-go function, as well as the combined cost-to-go function.

Considering first “Piece 2” of the cost-to-go function, min(J1, J2, . . . , JN); we see that

the “Combined” cost-to-go function out-performs the individual “Piece 2” in each of

the important characteristics relevant to the data. “Piece 2” as a stand-alone cost-to-

go function suggests optimism about the future path quality of a state for states close

to the glide-slope surface (1.3), and pessimism about the future path quality of states
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(a) CDF Plot

(b) Percentile Plot

Figure 2-2: Miss Distance of Combined Cost Function vs Constituent Pieces
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which are far from the glide-slope surface, most notably points on the glide-slope cone

(1.4), but which have a heading ψ incompatible with the glide-slope surface. “Piece

1” tracks consistently with the “Combined” cost-to-go function, it fails to consider

several worst case scenarios in which approaching the glide-slope cone with an in-

correct heading results in significantly worse path quality, as evidenced by the high

percentile ad worse case miss distances.

2.2.3 Cost-To-Go function Parameters

Propagation Time

As described in Section 2.2.1, the propagation time determines where, along its re-

spective pre-determined trajectory, each point of the reachability set approximation

is placed. As seen in Section2.6, this will effect the cost-to-go function by altering

the min(J1, J2, . . . , JN) term. It is useful, therefore, to consider t as it effects the

symmetry of the cost-to-go function, as a cost-to-go function which is symmetric in

3D space for a particular choice of heading cannot capture the behavior of the true

glide-slope surface, as discussed in Section 1.1.2. When t = 0, it is trivial to see that

the cost-to-go function is symmetric, as all of terms in min(Ji∈{1,...,N}) are the same

as the J0 term. Consider now, the case in which t =
2π

ωmax

; moreover, assume that

N > 1, and therefore, ω1 = ωmin and ωN = ωmax; for a typical parafoil, ωmin = −ωmax,

so, without loss of generality, we can consider only ωmax. Because propagation is done

using a constant turn rate, in x/y space the parafoil traces a circle, thus the x and

y terms are periodic, contributing in the same way to the cost at different altitudes.

However, since altitude is strictly decreasing, after t =
2π

ωmax

, the cost-to-go of the

propagated point is strictly lower than the initial point, since both points have the

same x and y, but the propagated point has a lower z. This implies that for any state

with z ≥ v
2π

ωmax

, there exists at least one xi such that Ji < J0, and therefore the node

cost-to-go is J0.

The exact glide-slope surface exists only when the relative heading toward the

goal θ = 0. Without loss of generality, the case where ψ = 0, y = 0 and x = −zLD
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can be considered. Additionally if the point y = 0, x = +zLD, is considered, this

point will also be on the glide-slope cone, but will not be on the glide-slope surface.

As established previously, there exist two choices for propagation time t = 0 and

t =
2π

ωmax

for which these two points will have the same cost-to-go function value.

Clearly, it is a poorly tuned cost-to-go function if a point on the glide-slope surface

and a point which had no control option which allows it to stay within the glide-

slope cone evaluate to the same cost. Consider next a propagation time t = ε. For

a sufficiently short propagation time, no matter what the commanded turn rate,

the first order approximation for all propagated points is directly forward along the

direction of the heading, implying that the cost of the state with x < 0 will remain

J0 as propagated points will all move toward the goal in both lateral and vertical

position, and the cost-to-go of the state with x > 0 will increase, as any decrease

in cost-to-go due to lower altitude is more than offset by an increase in cost-to-go

due to lateral position. We have now established that there exists a propagation

time t = ε such that min(J1, J2, . . . , JN) > J0 and a propagation time t =
2π

ωmax

such that min(J1, J2, . . . , JN) < J0, therefore since, in this case, min(J1, J2, . . . , JN) is

continuous in t, as the points xi trace continuous paths in t, there must exist a point

t = t∗ at which min(J1, J2, . . . , JN) = J0.

The point t = t∗ represents the point at which the point (x = −zLD, y = 0) and

(x = zLD, y = 0) have the same cost-to-go, and therefore, points on the glide-slope

cone, but not on the glide-slope surface, have a symmetric cost-to-go to the points

which are on the glide-slope surface. In order to prevent this cost-to-go symmetry,

we seek an upper bound on t, namely t∗ such that an asymmetry between these two

classes of points can be guaranteed in the cost-to-go function. This problem is written

as

max
t

t (2.7)

s.t. Ji > J0 ∀ i ∈ {1, . . . , N}

x0 = −z0LD
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y0 = 0 and ψ0 = 0

0 < t <
2π

ωmax

The optimization in (2.7) can be solved analytically. For N = 1, this problem is

trivial, as there is no t > 0 for which JN < J0, therefore, we assume that N > 1.

Because N > 1, there exist at least N−1 non-zero control inputs in the discretization

set ωi, and moreover, those control inputs are symmetric about 0. Therefore, the

chosen control input ω can be assumed to be greater than 0. In order to solve this

problem, we must find the value t = t∗ such that J0 = JN , where JN is the cost-to-go

of the propagated point, not necessarily the first propagated point. First, we consider

the propagated point {xN , yN , zN}, computed using

xN = x+
v

ω
sin (ωt) , (2.8)

yN =
v

ω
(1− cos (ωt)) , (2.9)

zN = z − v

LD
t, (2.10)

as well as the cost-to-go associated with that point, computed using

J2
N = x2

N + y2
N + z2

N , (2.11)

= x2 + 2
v

ω
x sin (ωt) +

v2

ω2
sin2 (ωt) +

v2

ω2

(
1− 2 cos (ωt) + cos2 (ωt)

)
+z2 − 2

v

LD
zt+

v2

L2
D

t2. (2.12)

This cost-to-go can then be equated to the cost-to-go at the initial point {x, y, z},

J2
0 = x2 + z2, (2.13)

to determine a single functional relationship between x, z and t for which the cost-

to-go of the initial point and the cost-to-go of the propagated point are equal,

J2
0 = J2

N (2.14)
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Table 2.2: Miss Distance Data for Propagation Time Comparisons

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
t = 1/4t∗ 200 37.0 44.3 23.6 60.7 84.3 116.9 133.1 430.4
t = 1/2t∗ 200 31.8 29.7 21.9 51.6 76.7 93.0 116.9 146.4
t = 3/4t∗ 200 33.0 32.1 23.2 53.0 73.4 101.4 135.9 170.4
t = t∗ 50 39.2 37.1 30.1 62.5 98.6 105.8 151.7 170.4

x2 + z2 = x2 + z2 + 2
v

ω
x sin (ωt) +

v2

ω2
sin2 (ωt) ...

+
v2

ω2

(
1− 2 cos (ωt) + cos2 (ωt)

)
− 2

v

LD
zt+

v2

L2
D

t2, (2.15)

⇒ z =

2 v
2

ω2 (1− cos2 (ωt)) +
v2

L2
D

t2

2
v

LD
t

+
v
ω

sin (ωt)
v

LD
t

x. (2.16)

(2.16) defines an affine relationship between x and z. The desired value t = t∗ is

achieved when the slope of (2.16) is parallel to the glide-slope cone,

1

LD
=

dz

dx
=

v

ω
sin (ωt∗)

v

LD
t∗

, (2.17)

⇒ t∗ =
L2
D

ω
sin (ωt∗) . (2.18)

(2.18) is a transcendental equation and, therefore, cannot be solved analytically

for the variable t∗. Several numerical solution methods, including Newton’s Method,

Taylor series approximation as well as the secant method are used to solve such a sys-

tem. Employing a numerical implementation in MATLAB and using the parameters

of the dynamics model in 1.3.4 yields ωt∗ ≈ 0.906π. In order to find the minimum

value of t∗, as stated in the problem statement (2.7), the largest possible value of ω

should be used, and therefore t∗ ≈ 0.453T ≈ 13.891s.

Figures 2-3(a) and 2-3(b) show the miss distances for varying values of t, ranging

from t∗/4 to t∗. There is little difference between any two values of t, with t∗/2 having

the lowest overall miss distances by a slight margin.
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(a) CDF Plot

(b) Percentile Plot

Figure 2-3: Cost-to-Go Function Propagation Time Comparisons
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Propagation Number

Determining the propagation number, N , for the reachability set approximation in-

volves balancing the information/computation trade-off. Increasing the number of

points in the approximation provides more control options for consideration in de-

termining the the best case propagated path, but comes at the cost of increased

computation cost. Moreover, since all inputs must fall within the range [ωmin, ωmax],

a larger value of N will only discretize the a space of finite size more finely, decreasing

the marginal benefit of each added propagation point. It is therefore, the goal of this

section to determine the value of N which accurately captures the possible future

states while remaining as small as possible, in order to minimize the computation

cost.

First, it is important to note that only odd values of N should be included in the

search. This is due to the fact that while for all values of N the propagated directions

are symmetric about the no-turn (ω = 0) propagation option, and therefore all even

values of N do not consider the no-turn propagation option. This option leads to,

among other things, the understanding that the vehicle being on the glide-slope facing

toward the goal is a desirable location. Therefore, only odd values of N should be

considered for the reachability set approximation.

The following analysis considers heat maps of the cost-to-go function using differ-

ent values of N . The cost-to-go function is determined by t, N , the position (reduced

to altitude and lateral distance from the goal), as well as heading. Figure 2-4 shows

a lateral cross section of the glide-slope cone as viewed from above a distance z above

the goal (goal shown in yellow), with the glide-slope cone a lateral distance r from

the goal center. Each blue arrow represents a parafoil with a true heading ψ =
π

2
,

but with various headings relative to the goal location θ. In order to perform this

analysis, we consider heat map representations of the cost-to-go function. For each of

these heat maps, the cost-to-go (2.6) is computed for a range of altitudes (y-axis), as

well as lateral distances (x-axis) where a negative lateral distance can be interpreted,

relative to Figure 2-4, as locations from the goal in the direction of the parafoil, and
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Figure 2-4: Visualization of Heading in Cost-To-Go Function Heat Maps

goal relative headings θ. The heat maps presented here are 2D cross-sections of the

3D heat map r, z, θ taken at particular goal relative headings θ.

First, consider the step from N = 1 to N = 3. We desire to understand what

information is given to the planner by adding the two additional propagation points.

Figure 2-5 depicts the heat map for N = 1, while Figure 2-6 shows the heat map

for N = 3, both of them with θ =
π

2
. The main difference between these two heat

maps lies in the structure of the central region (the region directly around the r = 0

line). This difference can be seen even more clearly by the difference between the

two heat maps, shown in Figure 2-7, where the areas of larger cost difference (more

red) show a greater decrease in cost from JN=1 to JN=3. The addition of these lower

cost regions allow for the addition of an important class of paths to be added to the

planner, helical trajectories which circle about the r = 0 line in order to decrease the

parafoil altitude before making a final turn into the goal.

Next, consider the step from N = 3 to N = 5. Similar to the previous analysis,

we desire to understand what information or planning options are introduced by

increasing the number of propagation points from N = 3 to N = 5. In order to do

this, we consider the following 3 cost function heat maps, each showing the difference
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Figure 2-5: Heat Map of N = 1 at θ = 0 Figure 2-6: Heat Map of N = 3 at θ = 0

Figure 2-7: Heat Map of (N = 1)− (N = 3) at θ = 0
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Figure 2-8: Heat Map of (N = 5)−(N =
3) at θ = 0

Figure 2-9: Heat Map of (N = 5)−(N =
3) at θ = π/4

Figure 2-10: Heat Map of (N = 5)− (N = 3) at θ = π/2
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between the costs for N = 3 and N = 5, with Figure 2-8 showing the cost difference

when θ = 0, Figure 2-9 showing the cost difference when θ =
π

4
, and Figure 2-

10 showing the cost difference when θ =
π

2
. These figures show that none of the

information incorporated by adding the 4th and 5th propagation point is utilized by

the cost function, leading to the choice for number of propagation point to be N = 3.

2.3 Comparison to Alternative Approaches

Glideslope Cone with heading scaling Refs. [16–18] utilize the glide slope as

a reference input for trajectory control of a parafoil. Following along from this idea,

it would be logical to compare the approach presented in this chapter with one that

biases the parafoil toward the glide slope.

J =

(
1 + C3

(
∆ψ

π

)2
)2

Jcone(x, y, z) (2.19)

Jcone(x, y, z) =

 z

[
(1− C1)

(
r(x,y)
rcone(z)

)2

+ C1

]
, r < rcone(z),

z + 1
2
C2(r(x, y)− rcone(z)), r ≥ rcone(z)

(2.20)

(2.20) represents a cost function which is lowest along the glide slope cone, and

increases proportionally to the deviation from the cone. (2.19) represents a quadratic

heading penalty augmentation based on the deviation from the heading required to

fully utilize the glide slope cone to arrive at the goal location. rcone(z) computes the

radius of the glide slope cone at an altitude z, r(x, y) computes the radius from the

goal at a position {x, y}, and {C1, C2, C3} are constants.

Figure 2-11 and Table 2.3 present the results of simulation comparing the glide

slope cost-to-go with the cost to go developed in this chapter. The combined cost-

to-go function developed in this chapter demonstrates globally superior performance

to the glide slope inspired cost-to-go function; the nominal performance improves by

nearly 30%, and similar improvement can be seen for the mid and even high percentile

ranges. There is no significant difference in the absolute worst case miss distances
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Figure 2-11: Combined Cost-to-Go vs Glide-Slope Cost with Heading Scale CDF

Table 2.3: Miss Distance Data for Cost-To-Go Formulation Comparisons

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98%
Combined
Cost-to-Go-
Function

500 33.9 49.3 19.3 56.6 79.7 101 151

Glide-Slope
Cost with
Heading Scale

500 47.0 60.5 27.0 72.1 111 152 202

for the two cost functions. This similarity is due to the lack of robustness to wind

effects. Chapters 3 and 4 will address this deficiency.

2.4 Summary

This chapter presented a cost-to-go formulation which combines the cost at the point

of consideration with a discrete approximation of the reachability set. Using the

reachability set approximation, the cost-to-go function is able to accurately account

for the potential effects of heading on the viability of future states. The effectiveness
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of this strategy is demonstrated through comparison with alternative approaches,

such as a LQR cost-to-go function (“Piece 1” of Section 2.2.2), and two cost-to-

go functions which favor glide-slope based trajectories (“Piece 2” of Section 2.2.2,

“Glide-Slope Cost with Heading Scale” of Section 2.3).
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Chapter 3

Wind Modeling

3.1 Introduction

Wind modeling is an important consideration for many different applications includ-

ing aerospace, power generation, and civil engineering. As such, there has been

considerable work on developing wind prediction and estimation models. Several ap-

proaches have addressed the problem of online estimation of wind. Ref. [42] utilizes

a Kalman filter and an unscented Kalman filter to accurately estimate wind vectors

from radar data. The approach requires either accurate airspeed measurement, or

specific vehicle maneuvers (no fewer than 2 turns during the trajectory) to accurately

estimate the wind vectors. Similarly, Ref. [43] also utilized a Kalman Filter approach

to perform online estimates of 3D wind for an unmanned aerial vehicle (UAV) in

an efficient, real-time manner. In contrast to Ref. [42], Ref. [43] utilizes only on-

board sensing, GPS, IMU as well as UAV trajectory information to estimate accurate

wind vectors at each point along the trajectory. Additionally, Ref. [43] demonstrates

functionality of the algorithm regardless of the UAV trajectory.

While these approaches represent the solution to the very important estimation

problem, they offer no manner of wind prediction forward in time (or space) for UAV

systems. There have been approaches considered for other domains that begin to ad-

dress the issue of predictability. In the meteorological community, Ref. [44] generated

time series models for “short-term” wind prediction using wavelets. However, “short-
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term” refers to time scales of days, whereas a typical parafoil drop lasts minutes.

Ref. [45] utilizes adaptive Gaussian processes in order to generate predictive mod-

els for wind speed. The predictive models developed require data spanning months

in order to train accurately, an assumption that may be unreasonable in combat or

disaster zones. Additionally, this approach utilizes the correlation which arises from

continuous time-series data. Even if numerous parafoil drops have been recorded, it

is unclear if and to what degree two arbitrary drops are correlated.

Current wind modeling literature has developed strategies for estimating wind

along a vehicle trajectory [42, 43], as well as prediction over time scales as short as

10 minutes [44, 45]. However, none of these approaches address prediction over the

time scales considered in this thesis, and moreover do not consider spatial predic-

tion of the wind speed. This chapter fits an uncertainty model to the wind as a

function of the altitude (the relevant parameter for a parafoil mission) which can be

incorporated into the planner to enforce robustness. Moreover, this chapter discusses

the implementation of an on-line classification scheme. This scheme uses a set of

pre-determined wind classes to regulate the amount of conservatism in the planner.

Performing a wind classification on-line allows the planner to dynamically adjust the

level of conservatism by changing the wind classification based on observed wind

conditions.

3.1.1 Model Goals

The wind model developed in this section is intended to be utilized by the planner

to improve performance on the parafoil terminal guidance problem. The model is

tuned to match the 194 wind profiles collected by Draper Laboratories [46], utilizing

the wind estimation method in Ref. [2]. In order to address this, development of the

wind model is broken into the following 3 objectives:

1. Maintain a simple model of wind uncertainty. A simple uncertainty model is

desirable for two reasons. First, it ensures that the model is not over-fit to the

data. Second, a simple model can be incorporated into the real-time operation
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of the planner without utilizing significant computational resources.

2. Improve wind effect predictability over zero assumed wind. Improved pre-

dictability, especially in wind scenarios in which there is significant prevailing

wind, will mitigate the amount of replanning required and greatly improve the

quality of solutions generated by the RRT. Moreover, improved predictability

justifies the computation effort put into growing a tree of possible solutions, as

that tree is more useful as a planning tool.

3. Capture the uncertainty of future wind effects. Arguably the main purpose of

this wind model is to characterize the possible effects of the wind into an uncer-

tainty model. Developing such a model and incorporating it into the planning

framework gives the planner knowledge of a distribution over possible outcomes

of a planned trajectory. Utilizing this distribution in a chance constrained

planner (Section 1.3.4) allows for constraint checking for probabilistic feasibil-

ity, allowing planned trajectories to ensure a level of probabilistic robustness to

terrain obstacles.

3.2 Model Development and Description

3.2.1 Model Form

The 3-D wind estimate at step k,

wk = wk + δwk, (3.1)

is composed of two components: a 3-D persistent estimate, wk, and a 2-D variational

estimate, δwk. The persistent estimate,

wk =
1

m

k∑
i=k−m+1

wi, (3.2)
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is modeled using a finite impulse response filter (Section 3.2.3) to reflect the notion

that there exists a prevailing wind which acts on the parafoil throughout the en-

tire mission and must be accounted for during the state prediction. The variational

estimate,

δwk = δwk−1 + v0∆t (Ajδwk−1 +Bjνk−1) νk−1 ∼ N(0, 1) (3.3)

is modeled as a colored noise process (Section 3.2.3), where v0 is the nominal vertical

airspeed of the parafoil, ∆t is the discretization time step, Aj and Bj are the tuned

parameters of the colored noise model for the jth wind classification, and N(0, 1)

is the zero-mean, unit-variance Gaussian noise. A colored noise process was chosen

to reflect the idea that, while wind at lower altitudes is correlated with the wind

measured at the current altitude, the further that separation becomes, the lower the

correlation.

3.2.2 Wind Model Classifications

Human jumpers utilize classification when planning and executing jumps. They uti-

lize weather forecasting to determine jump windows or if a jump is feasible at all.

Additionally, professional jumpers develop intuition about the effects of wind during

a jump. In order to give the planner a methodology for tailoring the amount of con-

servatism to the observed wind condition, we have implemented an on-line learning

algorithm to determine, in real time, the class of wind scenario being experienced

by the parafoil. Such a class determines the parameters of the variational estimate

(Section 3.2.3), ultimately guiding the actions of the planner, permitting higher risk-

reward maneuvers or encouraging safe, reliable trajectories when the situation war-

rants it. The variational model associated with each class is tuned to capture the

amount of uncertainty associated with the wind profiles within the class, while not

incorporating unnecessary conservatism.
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Feature Selection

Wind profiles of the form {wx(z), wy(z), wz(z)} are data representations which pose

significant problems for clustering and classification algorithms. Clustering and clas-

sification algorithms were designed to operate on observations, whereas wind profiles

represent functions of altitude. The process of feature selection reduces the dimen-

sion of system models, and allows for the use of many efficient clustering algorithms

and classification schemes [47]. For this work, the following features were chosen to

represent a wind profile,

Φ =
[
ρ max ρ |ρ′| max |ρ′| |θ′| max |θ′|

]
, (3.4)

where ρ =
√
wx(z)2 + wy(z)2 + wz(z)2, θ = atan2(y, x), the overline notation denotes

the average over all discrete data points in the wind profile, the max notation denotes

the maximum over all discrete data points in the wind profile, and the derivative with

respect to altitude z, denoted (·)′, is computed point-wise forward and backward on

the data by x′k =
dxk
dz

=
xk+1 − xk−1

zk+1 − zk−1

. These features represent the amount of power

believed to be in the profile, captured by the ρ and max ρ terms, as well as the

possible rate of influx of power, captured by the |ρ′| and max |ρ′| terms. The features

|θ′| and max |θ′| represent the average and maximum horizontal plane direction shift

experienced by a descending parafoil over the course of the wind profile.

Clustering of Wind Profiles

After defining the relevant features, the problem of clustering the wind profiles be-

comes a standard clustering problem of partitioning observations {x1, x2, . . . , xn},

where the observations are the features described in the above Section for each of the

n recorded wind profiles, into κ < n clusters S = {S1, S2, . . . , Sκ}. The partition is

chosen so as to minimize the squared sum of the distance from the mean within each

cluster, µi,

argmin
S

k∑
i=1

∑
xj∈Si

||xj − µi||2. (3.5)
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The optimization problem posed in (3.5) has been extensively addressed in the lit-

erature [48, 49]. The modern, efficient, algorithm, known as the k-mean clustering

algorithm, was proposed in Ref. [50].

The k-means algorithm is divided into two steps, an assignment step and an

update step. The assignment step assigns the observation to the Sl cluster by solving

the optimization,

l = argmin
i
||xj − µi||2, (3.6)

where µi are, again, the cluster centers. Once all observations have been assigned one

of the κ clusters, the cluster centers are re-computed using

µi =
1

|Si|
∑
xj∈Si

xj. (3.7)

The algorithm repeats the update and assignment steps until convergence.

The k-means clustering algorithm described above has been used in many machine

learning and autonomy applications. The main drawback of the standard k-means

approach is that it requires either (1) a priori knowledge of the number of clusters κ,

or (2) an arbitrary amount of time/resources to determine the appropriate number

of clusters through successive guessing of the value of κ [51].

When approaching such a problem, it is common to augment the optimization

(3.5) with a regularization term,

argmin
S

 κ∑
i=1

∑
xj∈Si

||xj − µi||2
+ λκ. (3.8)

Much like the k-means algorithm addresses the optimization in (3.5), the DP-means

algorithm was developed to address the optimization posed in (3.8) [52]. DP-means

addressed the major issues with the standard k-means approach by (1) assuming no a

priori knowledge of the number of clusters and (2) determining the number of clusters

incrementally, resulting in less computation.

In execution, DP-means is extremely similar to k-means. Both algorithms are
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divided into an assignment step and an update step. The key insight in DP-means is

that during the assignment step, if an observation is further than λ from the nearest

cluster center, a new cluster is added, with the center defined as the observation which

created it.

Draper Laboratories has released 194 altitude dependent wind profiles [46] col-

lected using the sensor configuration and estimation procedure outlined in Ref. [2].

Because the wind is not directly measured on-board, it must be estimated, which is

done using a standard Kalman filtering approach. Applying the DP-means algorithm

to this wind profile set, resulted in classification into 3 distinct classes. The three

classifications represent successively more conservative models for the evolution of the

wind distribution. Ultimately, due to the limited parameters of the model, the only

dimension along which two classes can be compare is which represents a more con-

servative approach. Class 1 represents the most optimistic representation, assuming

little to no unknown variation in wind, scaling up to class 3 representing a significant

uncertainty in the effect of wind on the vehicle.

3.2.3 Wind Model Components

Persistent Wind Estimate

This thesis presents a finite impulse response filter approach to estimating the persis-

tent wind component of the model, w. The finite impulse response filter is a simple,

well understood, and reliable method for smoothing data. Particularly, it is used in

practice to highlight long-term trends. Filters of this type mitigate the fluctuation in

the long-term estimate caused by noise in the short term measurement. Such filters

are discussed extensively in Ref. [53]. Such a filter is expressed as a discrete time

convolution,

y[n] =
m−1∑
i=0

bi
a0

x[n− i]. (3.9)

This formulation has 3 parameters which must be identified. The weighting parame-

ters bi and the scaling parameter a0 are set to 1 and m, respectively. This reflects the
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belief that each observed sample (in this case, wind measurement) contains the same

amount of information about the long-term trend (prevailing wind). The final param-

eter to determine is m, the width of the filter window. In this case, this parameter

has been chosen to provide the planner with the most useful information, regardless

of the wind profile being planned against, i.e. the value of m which produces the

most accurate predicted landing location.

In order to determine the effect of a wind profile on the parafoil, we consider

the wind profile’s effect on the landing location. In order to perform this analysis,

and to ensure that the measured effect is due to the wind, we make the following

assumptions:

1. Zero heading rate command, ψ̇d = 0

2. Zero initialized lag dynamics, r(0) = 0

3. Flat terrain scenario, T (x, y) = 0

Based on these assumptions, we can ignore the lag dynamics, and the parafoil heading

remains fixed. We can, therefore, compute the landing location (x(tf ), y(tf )) of the

parafoil by propagating the location dynamics (1.10) for

tf =

t
∣∣∣∣∣∣ 0 = z0 +

t∫
t0

ż(z, wz(z))dτ = z0 +

t∫
t0

(
−v(z)

LD
+ wz(z)

)
dτ

 ,

under the influence of the true wind profile wx(z) = w∗x(z), wy(z) = w∗y(z), wz(z) =

w∗z(z)

x(tf ) = x0 +

tf∫
t0

(v(z) cosψ + wx(z)) dτ,

y(tf ) = y0 +

tf∫
t0

(v(z) sinψ + wy(z)) dτ. (3.10)

Additionally, propagating these dynamics requires a propagation of the z position

(not listed) in order to evaluate v(z), wx(z) and wy(z). For each wind profile, we
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determine the effect of the wind profile by computing the change in landing location

between the parafoil under the influence of wind, (x(tf ), y(tf )), and the parafoil under

the influence of no wind,
(
x′(t′f ), y

′(t′f )
)
, i.e. wx(z) = 0, wy(z) = 0, wz(z) = 0. This

change is computed as

∆w =

√(
x(tf )− x′(t′f )

)2
+
(
y(tf )− y′(t′f )

)2
. (3.11)

For each filter width m, we can characterize the effect of the mean wind on landing

location prediction for each profile by computing a quantity, ∆w,m. Just as ∆w

represents the error between the true landing location and the zero-wind predicted

location, ∆w,m represents the error between the true landing location and the location

predicted by the mean wind model with a filter length of m. Similar to (3.11), the

error between true landing location and the mean wind predicted location is computed

as

∆w,m =

√(
x(tf )− x′m(t′f )

)2
+
(
y(tf )− y′m(t′f )

)2
, (3.12)

where
(
x′m(t′f ), y

′
m(t′f )

)
are computed using (3.10), assuming that wx(z) = wx, wy(z) =

wy, wz(z) = wz. This produces a quantity ∆w,m for each wind profile w and filter

width. We characterize the effect that utilizing the mean wind estimate has on the

predicted miss distance by comparing the effect of mean wind on landing location

with the effect of the true wind profile using,

δdw,m = ∆w −∆w,m. (3.13)

This comparison indicates that for some profiles and some filter widths, introducing a

mean wind improves predictive ability by decreasing the predictive error, δdw,m > 0,

and for others the including a mean wind increases the predictive error, δdw,m < 0.

In order to choose the appropriate filter width, we wish to minimize the negative

impact on predictive ability. Therefore, for each filter width we consider only the

set of profiles which are adversely impacted by the incorporation of a mean wind

prediction, Dm = {δdw,m | δdw,m < 0}.
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Figure 3-1: Regularized Cost for Filter Width Optimization. High values of the cost
represent limited negative impact, and are therefore desire-able.

We define the cost related to each filter width as,

cm = min (Dm) + βDm − λm, (3.14)

where min (Dm) represents the minimum element of the set of adversely impacted

profile predictions, i.e. the prediction where the accuracy decreases by the largest

amount, Dm represents the average decrease in accuracy, β > 0 is a weighting term,

and λ > 0 is the regularization term. Maximizing this cost results in finding the

filter width with the least negative impact on predictive ability. Figure 3-1 shows the

regularized cost cm versus the filter widthm using the Draper wind profiles to compute

the wind effects. Considering the construction of the set Dm, desireable values of the

cost, cm, are high values, i.e. the optimal vlaue of m satisfies m = argmax
m

cm. The

general trend of this figure is a that of a plateau of relatively similar values, followed

by a steep drop-off. Given that the parameters β and λ can be chosen, any filter

width value between [0, 10] is appropriate. For this work, we have chosen β = 2 and

λ = 1, along with a filter width of m = 8.
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Variational Wind Model

Each of the wind classes determined in Section 3.2.2 requires a separately trained

variational wind model, δw, i.e. requires separately tuned matrices Aj & Bj. Each

of these models are trained based on the effect of the variational wind component on

the predicted landing location. Each of the variational wind models is constructed

using the following process:

Propagate. For each of the wind profiles within the cluster of interest, construct

the quantity ∆w,m, described above, for the optimal filter width.

CDF Construction. From the set of distance measures above, construct a CDF

miss distance as described in Section 2.2.2.

Analytic CDF Construction. The variational wind is modeled as a multi-modal

linear system subject to Gaussian noise. Using a state vector

δw =
[
δwx δwy δwz

]T
, (3.15)

where (δwx, δwy, δwz) are variational winds in the x, y, z direction. The system in

(3.3) for class j, is expressed as a continuous time system by

δẇ = Ajδw +Bjν. (3.16)

We assume that δwx and δwy are independent and symmetric. Additionally, we

assume the model to be two-dimensional, i.e. δwz = 0 ∀t. Alternatively, these

assumptions can be written as conditions on the matrices Aj & Bj by

Aj = αj


1 0 0

0 1 0

0 0 0

 , Bj = βj


1 0

0 1

0 0

 , (3.17)

where βc > 0 is a positive scalar.
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Consider the variation of position states (x, y, z) relative to the expected states

(E[x], E[y], E[z]). For illustration, the expected state E[x] is developed by

x = x0 +

tf∫
t0

ẋ(x(τ),u(τ),w(τ))dτ,

x = x0 +

tf∫
t0

v(z) cosψ + wx + δwxdτ,

E[x] = x0 +

tf∫
t0

v(z) cosψ + wdτ,

x− E[x] =

tf∫
t0

δwxdτ,

δẋ = δwx. (3.18)

Collecting the variational states,

δx =


x− E[x]

y − E[y]

z − E[z]

 ,

which are governed by the dynamics

δx = δw.

Creating a system of augmented dynamics, using the states δx and δw, ˙δx

˙δw

 =

 03 I3

03 Aj


︸ ︷︷ ︸

A

 δx

δw

+

 03×2

Bj


︸ ︷︷ ︸

B

ν, (3.19)

where 03 represents a 3 × 3 matrix of 0, 03×2 represents a 3 × 2 matrix of 0, and

where I3 is the 3 × 3 identity matrix. The covariance of the augmented state, Σ, can
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be computed by solving

Σ̇ = AΣ + ΣAT + BBT , (3.20)

with initial covariance

Σ(t0) = 06,

since all of this analysis is performed off-line and there is no error in the variational

wind or position estimates.

In order to compare the analytic covariance at impact with the true CDF, the

lateral position elements must be isolated from the covariance. This isolation is

accomplished by defining the transformation matrix CT = [I2 02×4]. The covariance

of interest, Σ′, is computed by Σ′ = CTΣCT
T . Given the independence and symmetry

assumptions of δwx and δwy, Σ′ will result in a diagonal 2× 2 matrix with identical,

positive diagonal elements, and can therefore be expressed as Σ′ = σ2I2, where σ > 0

is a scalar. Utilizing the standard deviation, σ, the PDF of a χ-distribution with

degree of freedom of 2 is constructed by

χ(x) =

(
x

σΓ(1)

)
exp

{
−
(

x

σ
√

2

)2
}
, (3.21)

where Γ(z) is the Gamma Function. Denote the CDF associated with this distribution

by χC(x).

Tuning. Tuning of the parameters of the matrices Aj & Bj must be done on a per

class basis. The true CDF of each class can be expressed as a series of points (di, ni)

where di represents the ith largest miss distance and ni represents the fraction of

profiles resulting in a miss less than or equal to di. The minimization was implemented

in MATLAB using fminunc to determine the parameters of A and B by addressing

the root mean square of the error between the actual CDF and the analytically derive

CDF by

J =
∑
i∈C

(ni − χC(di))
2, (3.22)

where C represents the cluster of interests.
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Figures 3-2(a), 3-2(b) and 3-2(c) show the true CDF (blue) for the wind class

and the tuned CDF (red). Class 1 represents an optimistic view of the future effect

of wind, where the wind is believed to have low power and/or variability. Class 2

represents a class of moderate effect. Winds in Class 2 have more of an effect than

those in Class 1. Class 3 represents a pessimistic view of the effect of the wind. The

winds in Class 3 are believed to have significant power and/or variability.

3.3 Classification

In order to utilize the varying levels of uncertainty associated with the k classifications

determined by DP-means in Section 3.2.2, the planner must have a methodology for

using the observed wind estimates to assign the wind that is being experienced by the

vehicle to a classification. This is known as statistical classification, and is a common

machine learning problem.

3.3.1 Support Vector Machine

The supervised learning problem is the task of inferring a classification function y =

f(x) from labeled training data, P = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}Mi=1, [47].

Support vector machines (SVM) are a particularly well known method for solving the

supervised learning problem. A SVM results from solving the following optimization

min
w,b

1

2
||w||2

s.t. yi(w · xi − b) ≥ 1, (3.23)

for the separating hyperplane with normal vector w and offset b. The optimization

(3.23) can be expressed with Lagrange multipliers α as

min
w,b

max
α≥0

{
1

2
||w||2 −

M∑
i=1

αi[yi(w · xi − b)− 1]

}
. (3.24)
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(a) Tuned Wind Model for Class 1

(b) Tuned Wind Model for Class 2

(c) Tuned Wind Model for Class 3

Figure 3-2: Tuned Wind Models for Classes 1-3. The blue region corresponds to the
data collected from the true wind profiles, while the red lines correspond to the tuned
wind models.
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The resulting optimization arguments w and b, as well as the Lagrange multipliers

αi, fully determine the approximation function f(x).

Relating this scheme with the classes generated in Section 3.2.2, a SVM can be

generated for each of the κ classes identified by the DP-means algorithm, and identify

if the wind experienced by the vehicle is a member of a particular class. This process

generates κ binary inclusion classifiers, indicating whether the observed wind is within

the class κ. It is possible for multiple classifiers to result in affirmative classifications.

If this is the case, the algorithm chooses the class which is the most conservative, i.e.

has the fastest growing uncertainty.

The decision to choose the most conservative class derived from the need to resolve

the problem of multiple affirmative classifications. Since previous analysis has shown

there to be only three classes of wind model, a series of one-versus-all classifiers, such

as those derived above, is sufficient to accurately and efficiently solve the problem.

However, if future data reveals the number of classes to be 5 or greater [54], then

it is advised to consider Error-Correcting Output Codes (ECOC) [55]. ECOC are

an efficient method for solving small- to medium- sized multi-classification problems,

which are proven to have both low bias, as well as low variance in classification [56].

3.4 Results and Comparison

3.4.1 Miss-Classification Effects

In order to validate the modeling and classification approach described in this chapter,

the effect of miss-classification on system performance is considered. The models

and classification scheme are highly coupled with the analytic robustness approach

presented in Chapter 4, and it is within that framework that the following test was

performed.

In order to ascertain the effect of the combined modeling and classification system,

a test using forced miss-classification is performed. In this test the algorithm was

artificially forced to classify all wind profiles into a single classification. The effect of

78



Table 3.1: Miss Distance Data for Miss-Classification Test

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
Combined 500 30.8 32.8 18.7 52.5 75.8 103 126 218
Class 1 500 32.0 39.7 18.8 50.4 74.8 102 134 349
Class 2 500 35.4 38.6 21.2 61.1 86.2 113 138 284
Class 3 500 41.2 41.2 26.1 70.6 109 127 157 218

utilizing each class separately is compared to utilizing them in a combined manner.

Figure 3-3 depicts this data graphically using a CDF, while Table 3.1 reproduces this

data in tabular form.

Let us consider each class individually. Class 1 represents the optimistic class,

where the wind is believed to have low power and/or variability. When all profiles

are assumed to be of this class, we would expect that the planning algorithm would

take considerable risks, some of which would pay off with low miss distances, whereas

others would result in significantly higher worst case scenarios. This phenomenon

can be seen by the worst case scenario for the labeled Class 1 demonstrating an

increase of nearly 60% in the worst cases, but having a mean which is comparable

to the nominal combined case (an improved mean of 29.4m, if one ignores the worst

case scenarios). Class 2 is a moderate class in which the wind is believe to have

more of an effect relative to Class 1. The understanding of increased wind effect is

demonstrated in the data by an increase in the mean miss distance, but a decrease in

the worst case scenarios, as the planner takes fewer risks and plans more conservative

paths. Class 3 represents the class in which the wind is believed to have the most

significant effect on the parafoil. When this class is assumed, the planner is extremely

conservative, suffering significantly in average performance, but is able to maintain

the low worst case performance. The combined approach, using the classification

method described in Section 3.3, utilizes the strengths of each of these classes in

order to plan aggressive paths when the wind is believed to have little effect, and

maintain a conservative approach when the wind appears to have a greater effect.
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Figure 3-3: Miss Distance CDF for Miss-Classification Test

3.5 Summary

This chapter developed a multi-class colored noise wind modelling scheme. The model

is broken down into the persistent and the variational components. The persistent

component is modelled as a finite impulse response filter, and is assumed to be present

throughout the course of the parafoil mission. The variational component of the model

incorporates multiple wind classifications determined by the DP-means algorithm.

The variational wind model is analytically tuned to match parafoil drop data collected

by Draper Laboratories Ref. [46]. Additionally, the classification scheme is able to

classify the observed wind online and dynamically adjust the level conservatism of the

planner (represented by changing the wind class and therefore the variational model

for future wind effects). Finally, this chapter considers the effect of miss-classification

on the performance of the parafoil planner. This consideration demonstrates the

effectiveness of using a multi-class scheme in practice.
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Chapter 4

Analytic Chance Constraints

4.1 Introduction

This chapter will first demonstrate the limitations of replanning as a method for

handling environment uncertainty, as well as the limitations of the particle CC-RRT

approach to approximating the uncertainty distribution. The core contribution of

this chapter is the presentation of the analytic sampling approach. The analytic

uncertainty distribution based on the wind model given in Chapter 3 is derived,

as well as detail the procedure for generating the analytic samples. Finally, this

chapter will demonstrate the computational advantages of the approach. Chapter 5

will demonstrate and discuss the results of this approach in simulation.

4.1.1 Algorithm Naming Convention

This thesis compares 3 specific variants of the CC-RRT algorithm. The naming

conventions for the variants are listed below:

Mode A. Mode A represents a nominal RRT planner, incorporating the effects of

mean wind as described in Section 3.2.1. This approach makes no active attempt

at robustness against uncertainty, but does utilize replanning at every time step to

attempt to counter-act system disturbances.

Mode AB. Mode AB is the CC-RRT particle representation proposed in Ref. [57].
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This mode incorporates mean wind as in Section 3.2.1, as well as propagates 10

particles (the effective computational limit), sampled from the uncertainty model de-

veloped in Chapter 3, in order to approximate the uncertainty distribution to attempt

to incorporate robustness to wind effects.

Analytic. CC-RRT with Analytic Sampling is the full CC-RRT approach devel-

oped in this thesis. It utilizes the wind model from Chapter 3 to inform the choice

of analytic covariance samples as discussed in this chapter in order to incorporate

robustness against wind uncertainty and terrain collision.

4.2 Motivation

4.2.1 Results of RRT with Replan vs BLG

Algorithms such as those proposed in Refs. [2, 20] utilize path replanning at every

control cycle coupled with prevailing (mean) wind prediction. It is natural to consider

the algorithm as proposed thus-far, RRT with replanning, to account for prevailing

wind (RRT Mode A). Figure 4-1 and Table 4.1 compare the RRT Mode A algorithm

with the state-of-the-art BLG approach (Section 1.3.6), executing on the valley ter-

rain shown in Section 1.3.5. The CDF of the RRT Mode A algorithm demonstrates

significant improvement over the state of the art BLG. Based on the criteria set forth

in Section 2.2.2, CC-RRT Mode A outperforms BLG in mean, all percentile levels as

well as in CDF curve shape. This improvement indicates that under nominal condi-

tions, CC-RRT Mode A represents an improved approach to mitigating and reacting

to the effects of the uncertain wind environment.

However, both BLG as well as CC-RRT Mode A exhibit off-nominal cases with

unacceptable worst case performance. Such situations are the product of an interac-

tion between the uncertain wind and the difficult terrain encountered by the parafoil.

Figures 4-2(a) and 4-2(b) demonstrate step 1 of the vehicle trajectory (blue) as well

as the planned path (green) on the Valley Terrain (Section 1.3.5), viewed from the

side and skewed top, respectively. From these figures, we can see that the CC-RRT
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Figure 4-1: Miss Distance CDF: RRT with Replanning vs BLG

Table 4.1: Miss Distance Table: RRT with Replanning vs BLG

Name N Mean SD (σ) 50% 80% 90% 95% 98% Max
CC-RRT
Mode A

500 33.9 49.3 19.3 56.6 79.7 101 151 548

BLG 500 63.5 89.0 37.9 66.1 153 227 431 581

Mode A planner has selected a path which, nominally, produces an accurate landing.

It is important to note, however, that the path planned is very close to the terrain.

In step 2, Figures 4-3(a) and 4-3(b), we see that the wind has shifted, causing the

previously planned path, and all other options as well, to collide with the terrain. It

is this behavior which the addition of robustness must address.
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(a) Side View (b) Skewed Top View

Figure 4-2: CC-RRT Mode A Worst Case Step 1. The nominal CC-RRT Mode A
planner generated path, showing an accurate simulated landing; the predicted path
is in green, while the goal is the yellow circle.

(a) Side View (b) Skewed Top View

Figure 4-3: CC-RRT Mode A Worst Case Step 2. The nominal CC-RRT Mode A
planner generated path from step 1 acted on by unexpected wind, showing a terrain
collision; the predicted path is in green, while the goal is the yellow circle.

4.2.2 Deficiency of CC-RRT with Particles

In selecting an RRT approach to solving the parfoil terminal guidance problem, there

are two important considerations: (1) nonlinear vehicle dynamics and (2) potentially

nonlinear/non-Gaussian wind model propagated through the nonlinear vehicle dy-

namics. Ref. [57] proposes a particle based CC-RRT approach for a problem with a

nonlinear vehicle subject to nonlinear/non-Gaussian disturbances. The central idea

to the algorithm is the use of particles, randomly sampled instances of the distur-

bances propagated through the dynamics, to generate a statistical representation of

the uncertainty; a representation which approaches truth and allows for guarantees

on probabilistic feasibility as the number of particles goes to infinity [57, 58].
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Figure 4-4: Miss Distance CDF of Mode A vs Mode AB

Ref. [59] applies the particle CC-RRT (CC-RRT Mode AB) approach to the

parafoil problem, and considers the trade-off between the number of simulated parti-

cles and the size of the tree. Figure 4-4 shows no significant change in the performance

of the RRT algorithm when incorporating the particle formulation. Moreover, Figure

4-5 shows no significant change in the worst case scenario. The CC-RRT Mode AB

algorithm applied to the parafoil terminal guidance problem suffers from 2 significant

drawbacks. (1) The particle representation used in the CC-RRT Mode AB algorithm

cannot guarantee the detection of a terrain collision. Table 4.2 shows the worst case

miss distance for CC-RRT Mode AB exceeds 425m. A miss distance of this magni-

tude comes from unintended terrain collisions, implying that the particles failed to

appropriately cover the uncertainty distribution. (2) Particles incur a extremely high

computational cost, resulting in sparse trees and fewer planning options [59].
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Figure 4-5: Zoomed Miss Distance CDF of Mode A vs Mode AB

Table 4.2: Miss Distance Data of Mode A vs Mode AB

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
CC-RRT
Mode A

500 33.9 49.3 19.3 56.6 79.7 101 151 548

CC-RRT
Mode AB

200 39.2 52.6 22.3 56.4 101 125 159 428

4.3 Analytic Covariance Sampling

Due to the high computation time and poor coverage of the possible state distribution

provided by the particle CC-RRT approach, we require a method which is able to

cover the state distribution in a computationally efficient manner.

Ref. [1] leverages the ability to form analytic representations of the uncertainty

distribution in the initial formulation of CC-RRT. However, this initial formulation

considers only polyhedral constraints, and does not address the arbitrary terrain,

h = T (x, y), faced in the parafoil problem. In order to efficiently check the terrain

constraint, the likelihood of collision with terrain is approximated by generating equi-

spaced samples at specified levels of the uncertainty distribution at each prospective

trajectory node. We utilize this method, a user-defined safety threshold, psafe, as well
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as a user defined discretization level M , which allows for tunable levels of robustness.

This is accomplished by utilizing the wind model developed in Chapter 3 by,

1. Demonstrating that the wind model results in a linear effect on the state prop-

agation,

2. Deriving the analytic uncertainty distribution caused by the linear wind model,

3. Directly sampling the uncertainty distribution to generate the distribution ap-

proximation.

Sampling the distribution in this way allows for coverage of the uncertainty space

with relatively few samples, as well removing the need to dynamically propagate each

sample, significantly reducing computation time, and retain the computation benefits

associated with terrain checking.

4.3.1 Deriving the Distribution

Linear Wind Effect

Consider the x and y states of the vehicle model (1.11), incorporating the wind model

described in Chapter 3,

xk+1 = xk + ∆t (v(zk) cosψk + wx,k + δwx,k) ,

yk+1 = yk + ∆t (v(zk) sinψk + wy,k + δwy,k) . (4.1)

The variation δx = x − E[x] and δy = y − E[y] of the states (4.1) about the mean

can be expressed as,

δxk+1 = xk+1 − E[xk+1] = δxk + ∆t (δwx,k) ,

δyk+1 = yk+1 − E[yk+1] = δyk + ∆t (δwy,k) . (4.2)
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This system is linear in the variational wind components. Moreover, if augmented

with the wind model for the variational components (3.3), the resultant system

δxk+1 = δxk + ∆t (δwx,k) ,

δwx,k+1 = δwx,k + v0∆t (αxδwx,k + βxνx,k) ,

δyk+1 = δyk + ∆t (δwy,k) ,

δwy,k+1 = δwy,k + v0∆t (αyδwy,k + βyνy,k) , (4.3)

remains linear. Condensing the linear system (4.3) using the state vector δxk =

[δxk δwx,k δyk δwy,k]
T , and input vector νk = [νx,k νy,k]

T yields,

δxk = Axk−1 + Bνk (4.4)

=


1 ∆t 0 0

0 1 + v0∆tαx 0 0

0 0 1 ∆t

0 0 0 1 + v0∆tαy

 δxk−1 +


0 0

v0∆tβx 0

0 0

0 v0∆tβy

νk. (4.5)

Analytic Uncertainty Distribution

With the ultimate goal of developing the uncertainty distribution, we note that given

the linear system (4.4) driven by the Gaussian noise νk, all future state distributions

of δxk remain Gaussian [60]. Based on the procedure in Ref. [60], the covariance

matrix Pk = E[δxkδx
T
k ] at an arbitrary time step k is computed by the recursion,

Pk = APk−1AT + BBT , (4.6)

or explicitly by,

Pk = AkP0(AT )k +
k−1∑
t=0

Ak−t−1BBT (AT )k−t−1. (4.7)
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As only the effect of the disturbances on the x and y states is considered, we define

a transformation matrix CT to extract the relevant states from the state vector δxk

by (4.8),

δx′k =
[
δxk δyk

]T
= CT δxk, (4.8)

CT =

1 0 0 0

0 0 1 0

 . (4.9)

Therefore, the covariance of the positions states, Qk, can be expressed by,

Qk = CTPkC
T
T . (4.10)

Generating Sample Locations

The problem of determining a series of equi-spaced samples can be considered as the

geometric problem of finding a series of points along the uncertainty ellipse. The

solution to this problem is broken down into two steps: (1) determine the location of

of each point in the principle axis coordinate system, (2) transform the points into

the nominal path relative frame.

The covariance matrix Qk describes a contour of equal probability of points ∆xk =

[∆xk ∆yk]
T relative to the nominally propagated trajectory by the conic relation

∆xTkQ
−1
k ∆xk = 1. Additionally, denote the elements of Qk as

Qk =

 σ2
x,k σxy,k

σxy,k σ2
y,k

 . (4.11)

Let σ2
a and σ2

b be the eigenvalues of Qk, with σa > σb. These eigenvalues represent the

semi-major and semi-minor axes of the uncertainty ellipse, which are oriented along

the principle axes of the ellipse. The angle θ′ =
1

2
tan−1

(
2σxy,k

σ2
x,k − σ2

y,k

)
determines

the rotation from the x/y plane of the vehicle to the principle axis system of the

ellipse, x′/y′. The M equi-spaced samples are indexed by an angle with respect to

the x−axis, so that the feasibility of each sample can be tracked from one time step
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to the next; denote this angle θj =
2π

M − 1
j.

In the x′/y′ system, the position of the jth sample point is determined by

R =
σaσb√

(σb cos(θj − θ′))2 + (σa sin(θj − θ′))2
, (4.12)

∆x′j,k = R cos(θj − θ′), (4.13)

∆y′j,k = R sin(θj − θ′). (4.14)

The jth sample point ∆xj,k can be determined by a planar rotation,

∆xj,k = σ

 cos θ′ sin θ′

− sin θ′ cos θ′

∆x′j,k

∆y′j,k

 , (4.15)

where σ denotes the covariance scale factor.

Feasibility Determination

Given a set of uncertainty samples ∆xj,k, derived above, feasibility is determined by

determining the probability of terrain collision,

pcollide =
1

M

M−1∑
j=0

I (xk + ∆xj,k, yk + ∆yj,k, zk, T (x, y)) , (4.16)

where xk, yk, and zk are the nominal trajectory points, T (x, y) is the terrain map,

and the function I(x, y, z, T ) takes a trajectory point (x, y, z) and a terrain map T

and returns 1 if the trajectory point intersects the terrain and 0 otherwise. If the

probability of collision, pcollide, exceeds the user specified probability of safety 1−psafe,

then the trajectory is considered to have landed.

In addition to the uncertainty based feasibility check, if the nominal trajectory

point lands, the trajectory is considered landed. That is, if I(x, y, z, T ) = 1, then

the entire trajectory is considered landed. This landing assignment supersedes the

probabilistic assignment discussed above, considering the trajectory as landed even

in the case where pcollide > 1− psafe.
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Figure 4-6: Nominal CC-RRT Mode A Plan Unacceptably Close to Obstacle Terrain

4.3.2 Parameters: Covariance Buffer

In order to determine the outermost level used for constraint checking, the covari-

ance scale factor introduced in (4.15) must be determined. In order to determine

this parameter, a test utilizing the Obstacle Terrain and scenario depicted in Sec-

tion 1.3.5 is constructed. This test utilizes the near pathological nature of the

scenario to incentivize paths planned arbitrarily close to the Obstacle Terrain, as

shown in Figure 4-6. This test considered 100 trials of scale factors σ ∈ [0, 2.5] for

psafe ∈ {0.6, 0.7, 0.8, 0.9}.

This test considered two variables, the user-defined probability of safety, psafe, as

well as the covariance scale factor σ. Shown in Figure 4-7 is the crash percentage (% of

runs resulting in a collision with the obstacle) as a function of the pre-determined co-

variance scale factor, evaluated for a variety of psafe (probability of safety, or 1− crash

percentage) selections. The horizontal lines represent the expected crash percentage

for each of the psafe choices. The point at which the horizontal lines intersect with the

appropriate crash percentage vs σ curve represents the value of the covariance scale
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Figure 4-7: Crash Percentage at Standard Deviation Levels

factor which, in practice, results in satisfaction of the user-defined psafe constraint.

The vertical magenta lines bracket the range of σ = [1.5, 1.75] which satisfy the psafe

constraint. Any value of σ from this range is an appropriate choice for this work.

For this work a value of σ = 1.75 coupled with psafe = 0.9 has been chosen.

This value was chosen so that, in practice, the parafoil achieves a psafe = 0.9. It is

important to note that this choice of σ does not guarantee psafe = 0.9. Since the

analytic covariance samples only cover a finite portion of the uncertainty space, they

cannot be used to make robustness claims addressing regions of the uncertainty space

beyond the outermost layer sampled.

4.4 Computational Comparison of CC-RRT with

Analytic Sampling to CC-RRT Mode AB

Table 4.3 presents the trade-off between rate of tree node generation and discretiza-

tion size of the uncertainty distribution. The discretization size of the uncertainty
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Table 4.3: CC-RRT Mode AB and Analytic Sampling Node Generation Times

Average ms/Nodes
Disc. Size CC-RRT Mode AB Analytic Sampling

5 51.29 17.00
10 94.12 26.24
15 163.77 33.19
25 290.07 46.00
35 342.41 83.53
50 427.60 83.25

distribution is measured by the number of particles in the CC-RRT Mode AB formu-

lation by the number of particles. The discretization size for CC-RRT with Analytic

sampling is measured by the number of samples used. This table shows the average

number of milliseconds required to generate a new tree node in the Java code for each

specified level of discretization.

Table 4.3 clearly demonstrates the significant decrease in node generation time

over all discretization sizes. This improvement implies that during real-time operation

either a larger discretization of the space can be used, more nodes will be added to

the tree during each growth cycle. This result is significant, particularly when put

in the context that CC-RRT Mode A requires, on average, 10.4 ms to create a node.

This implies that CC-RRT with Analytic Sampling can utilize M = 10 samples, the

level of discretization used in practice, wile only decreasing tree size, at most, by a

factor of 2.5, as opposed to a factor of 9.5 as demonstrated using CC-RRT Mode AB.

4.5 Summary

This chapter presented an analytic method for determining the state uncertainty dis-

tribution. This method uses uniformly spaced samples of the analytic uncertainty

distribution, resulting in an efficient method for constraint checking. Moreover, this

method has been shown to significantly decrease the computational impact of repre-

senting the uncertainty space.

The second major claim of the approach is an improved coverage of the uncertainty
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space for the parafoil problem relative to the particle chance constrained approach.

Chapter 5 will demonstrate the results of the CC-RRT with Analytic Sampling algo-

rithm in simulation relative CC-RRT Mode AB. Moreover, Chapter 5 will compare

CC-RRT with Analytic Sampling to the state of the art BLG algorithm. The com-

parison of CC-RRT with Analytic Sampling to CC-RRT Mode AB is left to Chapter

5 so as to avoid redundancy of results.
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Chapter 5

Simulation Results

This chapter presents the simulation results demonstrating the effectiveness of the

CC-RRT with Analytic Sampling algorithm. This chapter considers the CC-RRT

with Analytic Sampling algorithm, along with 3 algorithms for comparison. The

algorithms considered in this chapter are the same as those outlined in Section 4.1.1:

Mode A, Mode AB, Analytic, as well as the state-of-the-art BLG.

This chapter demonstrates the effectiveness of the CC-RRT with Analytic Sam-

pling algorithm on the Valley Terrain. Furthermore, this chapter extends this claim

to show that the CC-RRT with Analytic Sampling algorithm remains invariant to

increasingly difficult terrain and responds nearly identically to the Valley Terrain as

the algorithm does on a flat terrain scenario. BLG, on the other hand, is unable to

demonstrate the same resilience to terrain changes. Moreover, this chapter demon-

strates that the CC-RRT with Analytic Sampling planning algorithm is capable of

handling increased drop altitude without a significant drop in performance, whereas

BLG is unsuitable for use at such altitudes.

95



5.1 Simulation Configuration

5.1.1 Wind Profiles

Twenty five wind profiles were used in generating the results demonstrated here.

These profiles are drawn from the 194 wind profiles released by Draper Laboratories

[46]. Of the 25 used profiles, 7 were artificially generated, while 18 are the result of

collected drop data. 6 of the artificially generated profiles represent constant winds

of varying intensity applied in cardinal (North, South, East, West) directions. These

profiles range in intensity from no wind to 12.9m/s (over 70% of the parafoil airspeed).

The 7th artificially generated profile represents an exponentially decreasing wind, with

an average wind speed change of 0.0025
m/s

m
and a maximum wind speed change of

0.05
m/s

m
.

The actual drop wind profiles are significantly more aggressive. These profiles

have an average overall intensity of 6.7m/s and gust up to 17.1m/s (over 95% of the

parafoil airspeed). Additionally, the actual profiles have an overall average intensity

change of 0.025
m/s

m
, and a maximum of 2.4

m/s

m
. Actual wind profiles are also subject

to rapid directional changes, in excess of 2rad/m (115◦/m).

5.1.2 CC-RRT Simulations

The implementations of all of the CC-RRT algorithms have 2 modes of operation, a

real-time running mode and a fixed sample mode. In the real-time running mode,

the tree is grown according to the procedure outlined in Section 1.3.4 for 60% of

the 1 Hz growth cycle. In the fixed sample mode, a pre-specified number of samples

are generated, according to the sampling strategy outlined in Section 1.3.4, and the

computation time requires is ignored. For the simulation results presented in this

thesis 165 samples are generated at each planning cycle. This number was chosen

as it represents the number of samples generated in a 1 Hz planning cycle by the

nominal RRT algorithm.

For each CC-RRT algorithm, 500 trials are run in order to gain a complete statisti-
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cal representation of the landing distribution. With 500 trials, the mean performance

has converged, but more importantly, outlier cases are likely to have presented. CC-

RRT Mode AB, however, only runs 200 trials. In practice, 200 is enough for an

accurate statistical picture, as well as for the mean to converge, and, as will be shown

later, outlier cases for CC-RRT Mode AB present after 200 trials.

5.1.3 BLG Simulation

Similar to the CC-RRT algorithms, the BLG optimization engine requires a stopping

criteria. Ideally, one would use a tolerance, however, to keep the computation allowed

for each of the algorithms comparable, BLG is permitted to simulate the parafoil to

the ground 75 times (approximately the equivalent propagated time for 165 CC-RRT

samples).

Since BLG does not require lag states, initial conditions can be randomly gen-

erated. For this work, 500 initial conditions were generated by randomly sampling

r ∼ [100, 400], θ ∼ [0, 2π], and ψ0 ∼ [0, 2π] from uniform distributions. x0 and y0 are

then initialized by x0 = r cos θ and y0 = r sin θ, and z0 is set to 500m.

5.2 Valley Terrain

The major terrain feature of the Valley Terrain scenario is the terrain slope is steeper

than the glide-slope of the parafoil. This implies that trajectories cannot approach

the goal perpendicular to the terrain valley. Reproduced for convenience from Section

1.3.5, the Valley Terrain scenario is shown in Figures 5-1(a) and 5-1(b).

First consider CC-RRT Mode AB and CC-RRT with Analytic Sampling. Figures

5-2 to 5-3 and Table 5.1 demonstrate the superior performance of CC-RRT with Ana-

lytic Sampling over CC-RRT Mode AB for the parafoil guidance problem on difficult

terrain. Nominal operating cases show CC-RRT with Analytic Sampling performing

approximately 25% better than CC-RRT Mode AB, and worst case scenarios demon-

strating a nearly 50% improvement. With CC-RRT algorithms, worst case planning

scenarios are caused by unanticipated terrain collisions; terrain collisions that the ap-
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(a) Valley Terrain Top View (b) Valley Terrain Skew-Side View

Figure 5-1: Valley Terrain Images

proximate state probability distribution failed to capture. However, when the worst

case scenarios are represented within the probability distribution, the planner is able

to compensate and select plans which are appropriately robust so as to avoid worst

case scenarios. The improvement demonstrated by CC-RRT with Analytic Sampling

substantiates the claim in Chapter 4 that CC-RRT with Analytic Sampling gener-

ates a representation of the uncertainty distribution which is more useful in practice

than the distribution created by the CC-RRT Mode AB approach. Specifically, the

CC-RRT with Analytic Sampling approach demonstrates a superior ability to detect

terrain collisions.

Figures 5-2 and 5-3 show considerable similarity in the nominal results of CC-RRT

Mode A and CC-RRT with Analytic Sampling, similarity which continues to the 95th

percentile. This similarity is highlighted in Table 5.1, where the mean, 50th, 80th, 90th,

and 95th percentiles for CC-RRT Mode A and CC-RRT with Analytic Sampling are

within 10%. However, there is significant improvement in the worst case scenario for

CC-RRT with Analytic Sampling. While CC-RRT Mode A demonstrates worst cases

exceeding 500m, while the worst case scenario for CC-RRT with Analytic Sampling

is 218m.

Finally, consider CC-RRT with Analytic Sampling relative to the BLG algorithm.

CC-RRT with Analytic Sampling demonstrates significant improvement over the BLG

algorithm, both in nominal performance as shown in Figure 5-2, with mean, 80th,
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Figure 5-2: Miss Distance CDF on Valley Terrain

90th, and 95th percentiles performing 50% better against the Valley Terrain, as well

as worst case, where the largest miss distance recorded for the CC-RRT with Analytic

Sampling algorithm is 40% of the largest miss distance recorded by BLG (Table 5.1).

The direct optimization technique of BLG does not consider off-nominal future terrain

interactions (e.g. terrain interactions caused by changing wind conditions), ultimately

resulting in potentially poor terrain interactions (worst cases).

To understand the performance of the BLG algorithm, consider the following

example. Shown in Figure 5-4(a) is the overlay of two trajectories, the trajectory

planned by the BLG algorithm (shown in red), and the trajectory executed by the

parafoil system (blue). The initial position and heading of the parafoil is denoted

by the green triangle, while the planner goal is denoted in yellow. Figure 5-4(b)

shows the point of deviation between the planned and the executed trajectory. The

terrain collision, denoted by ∗ for executed trajectory, is the result of a deviation of

less than 1m from the planned trajectory, as illustrated by the yellow line connecting

the terminating point of the executed trajectory with the planned trajectory. This
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Figure 5-3: Miss Distance CDF on Valley Terrain Zoom to 50m−400m

Table 5.1: Miss Distance Data for Valley Terrain Comparison

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
CC-RRT
Mode A

500 33.9 49.3 19.3 56.6 79.7 101 151 548

CC-RRT
Mode AB

200 39.2 52.6 22.3 56.4 101 125 159 428

CC-RRT
Analytic

500 30.8 32.8 18.7 52.5 75.8 103 126 218

BLG 500 63.5 89.0 37.9 66.1 153.2 226.9 430.5 581

deviation is due to an unexpected wind change, which caused a terrain interaction.

Such a scenario is not considered by the BLG optimization process, and therefore

such adverse terrain interactions are possible in off-nominal cases.

5.3 Flat Terrain

Planning against a scenario with flat terrain is a natural test for any parafoil planner.

However, it remains a difficult planning problem as it retains 3 of the 5 challenges

presented in the Problem Overview (Section 1.1). The parafoil remains a highly
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(a) Full Trajectory

(b) Zoom to Plan Divergence

Figure 5-4: BLG Planned Trajectory vs Executed Trajectory. The planned BLG tra-
jectory (red) is an example of an extremely accurate planned trajectory; the executed
trajectory (blue) slightly deviates from the planned trajectory, yet that deviation
(yellow) results in a terrain collision.
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Figure 5-5: Miss Distance CDF on Flat Terrain

non-linear dynamic system (challenge # 1); the parafoil is under-actuated system

(challenge # 2), leading to both large turning circles as well as uncontrollable and

uncertain landing times; finally, the system environment contains uncertain and vari-

able winds (challenge # 4).

Against flat terrain, CC-RRT Mode A and CC-RRT with Analytic Sampling re-

sult in the same algorithm, in terms of planning decisions. In practice, the difference

between the two are the additional terrain checks performed by the CC-RRT with

Analytic Sampling. Because the CC-RRT with Analytic Sampling generates covari-

ance samples in the x/y plane 4.3.1, against a flat terrain scenario, which does not

contain significant terrain obstacles, such additional checks provide no new informa-

tion to the planner and thus have no effect on the choices made by the planner. This

effect can be seen in Figure 5-5, as well as in Table 5.2, showing mean performance

differing by 0.6m, and worst case performance differing by 25m (15%).

Consider CC-RRT with Analytic Sampling relative to CC-RRT Mode AB. As

shown in Figure 5-5, and also in Table 5.2, in nominal cases, CC-RRT with Analytic
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Figure 5-6: Miss Distance CDF on Flat Terrain zoom to 25m−200m

Table 5.2: Miss Distance Data for Flat Terrain Comparison

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
Mode A 500 27.8 27.7 18.7 46.5 66.1 82.2 107 149
Mode AB 200 32.8 37.5 19.0 52.5 78.3 114 134 269
Analytic 500 28.4 28.1 19.3 43.6 67.1 90.0 112 174
BLG 500 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107

Sampling and CC-RRT Mode AB perform comparably, with the mean, 50th, and

80th percentile performance falling within 10%. However, as in the case of the Valley

Terrain, there is a demonstrable difference in off-nominal performance, with CC-

RRT with Analytic Sampling outperforming CC-RRT Mode AB by nearly 100m

(37%). While part of this difference is due to random variation in the planner, the

representation of the mean of the uncertainty distribution is a significant contributing

factor. CC-RRT with Analytic Sampling utilizes a direct measure of the mean of the

uncertainty distribution, as one of the samples is (by construction) guaranteed to

be the predicted mean, while CC-RRT Mode AB relies on the assumption that the

mean of the propagated particles accurately accounts for the mean of the uncertainty
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distribution. An off-nominal case for CC-RRT Mode AB is one in which the mean of

the uncertainty distribution is not captured by the mean of the particles. This type

of a case is plausable, as only 10 particles are used for CC-RRT Mode AB. Failing

to consider mean trajectory position can lead to poor performance in the off-nominal

cases.

Finally, consider the BLG algorithm. As is evident from the nominal performance

shown in Table 5.2, as well as the worst case performance shown in Figure 5-6,

BLG significantly out-performs the CC-RRT with Analytic Sampling algorithm, with

mean, 50th, 80th, and 90th percentile BLG miss distances landing 50% closer than CC-

RRT with Analytic Sampling, and worst case miss distance landing 40% closer. The

CC-RRT with Analytic Sampling algorithm finds feasible solutions to the planning

problem, while BLG plans an optimal path. In general, the CC-RRT approach as

presented in this thesis is not well suited to addressing this problem. Since the

flat terrain scenario lacks significant terrain obstacles, finding feasible solutions (the

strength of the RRT based algorithms) is a relatively simple task (while still non-

trivial), while optimizing the planned trajectory (the strength of the BLG algorithm)

is the most efficient use of the available computational resources. As mentioned

previously, the terrain checks performed by the CC-RRT with Analytic Sampling

algorithm provide no new information to the planner and thus have no effect on the

choices made by the planner. Since the samples provide no new information, creating

them and determining feasibility for each was is wasted computational effort.

5.4 CC-RRT Invariance to Terrain

The following results will utilize a terrain scenario named “75% Valley Terrain”. The

naming convention for this terrain references the slope of the valley walls. The “75%

Valley Terrain” has 75% the slope of the Valley Terrain. This difference is illustrated

in the side views comparing the Valley Terrain in Figure 5-7(a) and the 75% Valley

Terrain in Figure 5-7(b). This terrain scenario represents an intermediate step in

difficulty between flat terrain and the full Valley Terrain. Testing against this terrain
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(a) Side View Valley Terrain (b) Side View %75 Valley Terrain

Figure 5-7: Terrain Comparisons

allows for understanding how simulation results evolve from flat terrain to the full

Valley Terrain scenario.

Figure 5-8 shows the response of the BLG algorithm to terrains of increasing

difficulty, and Table 5.3 represents select data points in tabular form. As the terrain

becomes more complex (represented by a steeper slope), feasible paths become more

difficult to find. In the flat terrain case, as mentioned above, a feasible solution is less

difficult to find (relative to more difficult terrain cases), and therefore can be optimized

to improve performance. On the 75% Valley Terrain, we see that there exists a

regime of nominal performance up to 45m miss distance in which BLG performs

incredibly well, with 88% of cases falling below this mark. It is in these cases where

finding a feasible solution is relatively straightforward and BLG is able to optimize

the solution. Above 45m miss distance, interaction with terrain becomes an issue and

finding a feasible solution becomes difficult, and the BLG algorithm has a significant

increase in miss distance due to terrain collisions. On the full Valley Terrain, feasible

solutions are more difficult to find in general, and therefore attempting to optimize

a poor feasible solution leads to poor overall algorithm performance, as discussed

earlier.

Next, consider the response of the CC-RRT with Analytic Sampling algorithm

against the same terrains, as shown in Figure 5-9 and with selected points reproduced

in tabular form in Table 5.4. When considering the data, there are 3 important items
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Figure 5-8: Miss Distance CDF for BLG Against Various Terrain Scenarios

Table 5.3: Miss Distance Data for BLG Terrain Comparison

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
Flat
Terrain

500 15.9 19.7 8.9 20.7 35.2 71.3 86.1 107

75% Valley
Terrain

500 22.5 39.5 8.5 20.1 67.1 105 184 247

Valley
Terrain

500 63.5 89.0 37.9 66.1 153 227 431 581

to note. First, the mean miss distance of the CC-RRT with Analytic Sampling

algorithm changes by less than 4m, an increase of less than 15%, while the mean

miss distance of the BLG algorithm increases by more than a factor of 4. Second, the

worst case miss distance for the CC-RRT with Analytic Sampling algorithm increases

by approximately 25%, while the worst case miss distance for BLG increases by more

than a factor of 5. Third, upon inspecting the CDF curves in Figure 5-9, there

is little discernible difference between the shape of the curves, a contention that is

further substantiated by the data in Table 5.4, where the largest difference between 2

corresponding table elements is an increase of 40m from flat terrain to the full Valley

Terrain in the worst case. The near-identical CDF curves suggest that the CC-
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Figure 5-9: Miss Distance CDF for CC-RRT with Analytic Sampling Against Various
Terrain Scenarios

Table 5.4: Miss Distance Data for CC-RRT with Analytic Sampling Terrain Com-
parison

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
Flat
Terrain

500 28.4 28.1 19.3 43.6 67.1 90.0 112 174

75% Valley
Terrain

500 32.0 32.2 21.6 51.2 76.0 103 133 191

Valley
Terrain

500 30.8 32.8 18.7 52.5 75.8 103 126 218

RRT with Analytic Sampling algorithm is able to maintain consistent performance

regardless of the difficulty of the terrain scenario.

5.5 High Altitude

One of the advantages of the CC-RRT with Analytic Sampling algorithm, and of RRT

algorithms in general, which is regularly discusses in this thesis, is the capability to

vary the initial planner altitude. Figure 5-10 and Table 5.5 present simulation results

considering starting altitudes from 500m to 2000m. When considering the data, there
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are 3 important items to note. First, the mean miss distance of the CC-RRT with

Analytic Sampling algorithm changes by 1m, an increase of less than 4%. Second, the

worst case miss distance for the CC-RRT with Analytic Sampling algorithm increases

by 27m, approximately 12%. Third, upon inspecting the CDF curves in Figure 5-10,

there is little discernible difference between the shape of the curves, a contention

that is further substantiated by the data in Table 5.4, where the largest difference

between 2 corresponding table elements is an increase of 27m. This data suggests that

CC-RRT with Analytic Sampling is capable of operating at high altitudes without

a deterioration in performance. Other approaches in the literature, such as those

described in Refs. [2, 14, 16–18, 20], require an upper limit on the altitude for

initiation of terminal guidance in order to remain computationally tractable.

5.6 Summary

This chapter demonstrates that CC-RRT with Analytic Sampling is an effective

approach to the parafoil terminal guidance problem under significant wind uncer-

tainty/terrain interaction. The greatest strength of the algorithm is the invariance

to increasingly difficult terrain conditions relative to the state-of-the-art BLG algo-

rithm. The analytic sampling, presented in Chapter 4, captures a representation of

the state distribution, allowing for a measure of the robustness of a path. Consider-

ing the robustness of a candidate path allows the CC-RRT with Analytic Sampling

algorithm to plan against worst case scenario outcomes. The wind model and clas-

sification scheme presented in Chapter 3 informs the analytic sampling approach,

ensuring conservative approaches when the wind appears to have a large effect on

the system, and permitting more aggressive paths when the wind is believed to have

little effect. Moreover, unlike other approaches which incorporate wind into the plan-

ning framework ([14, 61]), this approach is capable of handling arbitrary wind profile

shapes.

In addition to demonstrating a robustness to aggressive terrain scenarios, we have

shown that the CC-RRT with Analytic Sampling algorithm capable of handling initial
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Figure 5-10: Miss Distance CDF for CC-RRT with Analytic Sampling with Various
Starting Altitudes

Table 5.5: Miss Distance Data for CC-RRT with Analytic Sampling with Various
Starting Altitudes

Name N Mean (m) SD (σ) 50% 80% 90% 95% 98% Max
z0 = 500m 500 30.8 32.8 18.7 52.5 75.8 103 126 218
z0 = 1000m 500 29.8 32.9 19.2 43.5 72.7 92.6 120 245
z0 = 2000m 500 30.7 33.4 19.0 49.8 76.7 89.8 118 231

altitude conditions from 500m to 2000m. The cost-to-go function developed in Chap-

ter 2 biases the planner toward choosing high-margin paths at high altitudes, while

guiding the parafoil toward the goal during the ending stages of terminal guidance.

The major drawback of the CC-RRT with Analytic Sampling approach stems from

the additional terrain collision checks that are required for the analytic sampling, par-

ticularly in the case when no terrain obstacles exist. When no, or few, terrain obstacles

exist, significant computational effort is spent finding a feasible solution (RRT tree

growth), and ensuring that the solution is robust to uncertain wind-obstacle interac-

tions (analytic sampling). Direct optimization techniques, such as BLG, utilize the

computational resources to optimize a feasible trajectory.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work a novel approach to on-line trajectory planning and robust obstacle

avoidance for a large autonomous parafoil is developed. This planning strategy, CC-

RRT with Analytic Sampling, robustly executes collision avoidance with arbitrary,

non-convex, mapped terrain. The underlying rapidly exploring random tree satisfies

the hard vehicle constraints by construction, while the analytic sampling maintains

probabilistic path feasibility by considering the wind variability about the prevailing

mean. The CC-RRT with Analytic Sampling algorithm has been verified in simulation

against the state-of-the-art BLG algorithm developed by Draper Laboratories in Ref.

[2].

Each chapter has explored a component of the CC-RRT with Analytic Sampling

planner which is necessary for applying it to the parafoil terminal guidance problem.

Chapter 2 develops a cost-to-go function used by the underlying RRT algorithm to

consider the viability of partially planned paths. The cost-to-go function presented

provides a balance between margin above the parafoil glide-slope to counter-act future

disturbances and utilization of a glide-slope trajectory to minimize range to target at

impact.

Chapter 3 develops a variational wind disturbance model. The DP-means cluster-

ing algorithm is used to automatically generate the appropriate number of clusters for

111



the wind profiles. Next the width of the impulse response filter for prevailing wind es-

timate is determined. Finally, direct optimization is used to tune colored noise models

to fit the landing variation. The effectiveness of the multi-class classification scheme

is demonstrated through forced single classification, demonstrating the appropriate

use of each of the potential wind classifications in order to plan aggressive paths when

the wind is believed to have little effect, and maintain a conservative approach when

the wind appears to have a greater effect.

Chapter 4 introduces analytic covariance sampling as a method for probabilistic

constraint checking. This approach leverages the structure of the colored noise model

to derive an analytic expression for the system covariance as a function of altitude.

The approach further samples this covairance to allow for computationally efficient

probabilistic constraint checking.

The success of this approach is demonstrated by verifying the success criteria set

forth in Section 1.3.1. As previously mentioned, the RRT algorithm satisfies the hard

vehicle constraints by construction (# 2). The analytic sampling explicitly considers

variations in the wind during future time steps (# 3) to evaluate probabilistic path

feasibility (# 4). The use of a cost-to-go function in the RRT framework allows the

planner to operate given an arbitrary starting altitude (# 5), although further work is

necessary to tune algorithm parameters to these conditions. Section 5 demonstrates

the improvement of the CC-RRT with Analytic Sampling over the state of the art

BLG alorithm (# 1).

6.2 Future Work

6.2.1 Analytic Sampling Extension

While this work presents and evaluates an effective, novel approach to parafoil un-

certainty, it only considers the uncertainty in the x/y plane. While this has proven

effective in avoiding unwanted terrain collisions, updrafts and downdrafts remain as

a source of unmodeled uncertainty in the planning problem. Extending the analytic
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sampling approach into 3 dimensions will add a level of robustness to a downdraft

causing a terrain collision. If one assumes that the uncertainty in the vertical direc-

tion is uncorrelated with the uncertainty in x/y, then augmentation can be broken

down into 3 tasks:

1. Re-tune the colored noise wind model parameters from Section 3.2.3. This

must be done in two steps, first, re-tune the model for x/y assuming no vertical

disturbance. Second, tune a vertical model by assuming zero x/y disturbance.

2. Replicate the approach in Sections 4.3 and 4.4 for the vertical disturbance.

3. These covariances must be used in conjunction with a methodology to produce

a set of equi-spaced covariance samples around the 3 dimensional covariance

ellipsoid. Such an approach is outlined in Ref. [62] Section 3.5.4.

In addition to performing the above augmentation to the model and the uncer-

tainty characterization, incorporating the vertical dimension requires addressing the

distinction between a landing and a collision. Fundamentally, the planner desires

a landing to be a high probability event, so the overall cost of the trajectory can

be accurately computed. A collision, on the other hand, is, in many cases, a low

probability event. This dichotomy of conditions that the planner must operate under

implies that the samples cannot be handled uniformly in all cases (as is done in the

approach discussed in Section 4.3.1).

6.2.2 Cost Function Augmentations

Cost Function Distribution

Ref. [14] proposes directly incorporating stochastic effects into the terminal cost func-

tion. Extension of the cost-to-go framework demonstrated in this thesis to incorporate

stochastic effects would provide additional robustness to the approach. The robust-

ness addressed in this thesis focused on maintaining dynamically feasible solutions.

Adding stochastic consideration to the cost-to-go and terminal cost functions would
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provide robustness with respect to actual landing state, resulting in more consistent

miss distances.

Additional Cost Function Considerations

Ref. [18] proposes the notion of biasing plans in order to minimize the system sensi-

tivity to imperfectly controlled heading rate. The notion proposed in Ref. [18] claims

that system impact of heading rate uncertainty is exacerbated by high parafoil ground

speeds, and decreasing the ground speeds will reduce the uncertainty in system ex-

ecution. Future work on this project should consider this claim and how it may be

incorporated into the cost-to-go proposed in Chapter 2.
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