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ABSTRACT

Recent advances in information technology have made available large single source databases
which contain household purchase and shopping trip records collected by UPC scanners and
advertising exposures by TV meters. Such databases permit analyses on a household level and
have opened up a whole new direction in marketing. The issues of interest cover a wide range
from brand choice, purchase quantities, and interpurchase timing to behavioral theories of
price, advertising, and promotion response, as well as repeat purchasing. The theme of this
dissertation throughout is how to obtain the most use out of such enormous amounts of data.

Taking advantage of the data size, Part I approaches modeling from a different angle by
discarding the parametric statistical models and using empirical joint densities of relevant
variables. The method of nonparametric density estimation (NDE) is compared with
multinomial logit model (MNL) - a popular parametric method in consumer brand choice.
While the empirical results of NDE show promise, the method requires an enormous amount of
data, even beyond the scope of scanner data. This sets practical limitations on the approach.

This conclusion leads to Part II, where a middle approach between parametric and
nonparametric methods is pursued. A semiparametric utility residual method (URM) is
proposed that retains the assumption of stochastic utility maximization and the extreme value
distribution of MNL while relaxing the linear utility function by using additive one
dimensional nonparametric functions of explanatory variables. Part II conducts an extensive
simulation study to investigate the operational characteristics of URM, and then applies the
method to two actual scanner databases to illustrate its power.

Part III focuses on category purchase incidence in order to pursue household level analyses of
sales in addition to brand choice and share as considered in Part I and I. The model is based on
a nested logit driven by shopping trips, and URM is employed for graphical diagnostics to infer
appropriate parametric utility transformations. The URM procedure is found to be quite useful
in identifying influential points, outliers, and heterogeneous segments.

Finally, Part IV adds a Poisson advertising exposure model to the nested logit marketing mix
model calibrated in Part III. The exposure model computes a household advertising stock
variable that is an input of the marketing mix model. This is done by converting GRPs by week
and daypart to household adstocks, taking into account household media habits. The
combined model permits a simulation of various ad scenarios to evaluate their sales and share
implications.

Thesis Supervisor: Professor John D. C. Little

Title: Institute Professor
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OVERVIEW

Recent advances in scanner technology have made available large databases of individual

purchase records and opened up a whole new direction in marketing science. The issues of

interest cover a wide range from brand choice, purchase quantities, interpurchase timing to

behavioral theories of price, advertising, and promotion response as well as repeat purchasing.

In studying these, many models have been created to address specific questions to databases

which contain enormous amount of information. Most of these models are parametric in nature,

in other words, a specified model contains some number of unknown constants (parameters).

These are then estimated from the data, various tests are made, and conclusions are drawn. A

weakness in this methodology is that the underlying specification of the model may be

incorrect, in which case the parameter estimates will be biased and subject to

misinterpretation. For example, in discrete choice models both probit and logit make a

distributional assumption about the stochastic term, and the logit further posits independence

from irrelevant alternatives. In inter-purchase timing, many models assume parametric

distribution functions such as gamma or lognormal. For verifying theories, an elaborate

modeling scheme must often be devised in which special variables and sequences of models are

created to facilitate hypothesis testings.

This paper takes an alternative path by utilizing nonparametric methods. These are

appealing because they make few or, at least, fewer underlying assumptions and offer great

structural flexibility. In particular, a comparison of nonparametric density estimation using a

kernel method with multinomial logit for modeling consumer brand choice is investigated using

IRI scanner data. The tracking results indicate that the nonparametric results are superior to

the logit for this database. Then, advantages and limitations of the nonparametric density

estimation in more general settings are discussed, and insight is gained about modeling

philosophy.
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1. INTRODUCTION

Recent advances in UPC scanner technology have made available large databases of

individual purchase records. A brief calculation shows that about 2 gigabyte (2,000 megabyte)

of data is generated every week across the nation. This enormous amount of data has caused a

data glut situation as noted in August 28, 1989 issue of Business Week (p57).

In the meantime, they [the companies] are trying to figure out how to make better use of

the reams of information they already have. ... "The information preceded clients'

ability to handle it," says SAMI head Steven A. Wilson. "They can't absorb the

amount of information we're imposing on them." Adds Brian M. Shea, Ore-Ida's

marketing research manager.

From a research point of view, however, there is a positive side in this data glut. It has

created an unprecedented opportunity for new approaches in modeling, which is a key

determinant of the performance of marketing decision support systems. In most experimental

disciplines, the accuracy of the study is limited by the amount of data used, and more samples

are sought if time and cost allow. Most techniques in experimental design such as fractional

factorial designs stem from the common goal of extracting the maximal information from a

given number of data points. By contrast, our situation is rare in that there exists more data

than we can easily handle. Therefore, some non-traditional, if not radical, approaches may be

in order.

For example, when a traditional econometric discrete choice model, multinomial logit (MNL),

is applied to a panel data obtained from the scanner, it is common to observe t-values for some

coefficients such as loyalty to be as high as 20 or more. (Guadagni & Little 1983) This is quite

natural considering that a dozen or so parameters are estimated from thousands of observations.

Obtaining such high t-values is great news as long as the underlying model is correct. But in

many cases, it is not an easy task to specify the model appropriately, and that's why so many

specification tests exist. For instance, in the OLS regression, an entire textbook can be devoted

to such tests as residual analyses, optimal transformations, and tests for multicollinearity.

MNL is no exception.

With abundant data, perhaps we can afford to let the data do more of the work of specifying

the model structure, even at some loss of efficiency, instead of having a data analyst iterate the

process of postulating a model and conducting specification tests on it. That's where

nonparametric methods come in. They are based on fewer assumptions and possess much more

7
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structural freedom so that information contained in the data is preserved without the bias or

distortion that can arise from the model structure itself.

Figure 1 demonstrates the power of nonparametric methods. It is a nonparametric regression

fitted to points which are generated by a quadratic underlying model with normal disturbances.

The solid line is a fit by nonparametric regression called moving ellipsoid method (MEM) (Abe

1991) while the dashed line is the ordinary least squares (OLS). As expected, the OLS is a

straight line which hardly resembles the true model. Of course, if the analyst knows that the

underlying model is quadratic ex-ante, he or she would certainly add a quadratic term. While

one could visually conjecture this fact from the plot in Figure 1, such inspections become

increasingly difficult in higher dimensions. Eventually one must rely on various statistical

tests and follow a trial and error iterative process to specify the correct model. In contrast, the

nonparametric method is much more automatic. It is necessary to specify smoothing constants

but some latitude is permitted in their values. Thereafter, once the data is entered, pressing

the return key is all it takes to obtain the result.

The current research investigates the feasibility of one particular nonparametric method,

nonparametric density estimation, in the context of brand choice modeling. The method is

compared against a popular parametric counterpart, multinomial logit model (MNL), on

household-level scanner data, and its advantages and disadvantages are evaluated

systematically. Section 2 illustrates the basic theory of the nonparametric density estimation

using a kernel method in discrete choice. Then in Section 3, application to scanner data for

modeling consumer choice is demonstrated and a comparison with MNL is made from various

angles. In Section 4, analyses of the results lead to its pros and cons over MNL under general

settings, followed by a discussion of modeling philosophy and concluding remarks in Section 5.

2. A NONPARAMETRIC DENSITY ESTIMATION METHOD

2.1 Concept and Basics

A wide range of marketing studies lies on obtaining a conditional expectation of a response

variable y given a set of explanatory variables, x, E(y I x). For example, y could be a brand

choice, interpurchase time, or quantity purchased. A vector x could include marketing mix

variables (e.g. price, promotions), product attributes, and buyer characteristics (e.g. income,
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family size), and may be a mixture of continuous, and nominal and ordinal discrete variables.

For this class of general regression analyses, a parametric method, which assumes a certain

parametric functional form and error distribution for estimating parameters like OLS and MNL,

has been traditionally used. An alternative approach which does not involve such

assumptions is called nonparametric regression.

When response variable y is continuous, kernel regression (Watson 1964, Nadaraya 1970) which

is introduced in Marketing by Rust (1988) is one of the most popular nonparametric regression

techniques. A class of splines is another well-known method. The current research, on the

other hand, focuses on brand choice where the response variable is nominal discrete. In this

case, more intuitive interpretation of the conditional expectation E(y I x) or equivalently

P(y I x), is in terms of f(x I y) - a conditional probability density function of attribute variables

x given that brand y is chosen - as follows.

(1) E(y I x) = P(yIx) = - f(XIy)P(y)
f Wx Z f (x Iy) P(y)

Y

The regression is solved by estimating f(x I y) nonparametrically for each brand y. We shall

refer to this process as Nonparametric Density Estimation (NDE) method.

In the following discussion, the conditioning of y in f(x I y) is suppressed for clarity on the

understanding that the density function is estimated only from a subset of sample with observed

choices of brand y. Some of the common nonparametric estimators for a density function, f(x),

are histogram, moving average, the kernel estimators, the nearest neighbor method,

orthogonal series methods, (all of these in Silverman 1986), the maximum penalized

likelihood method (Good & Gaskins 1980), and spline methods (Wegman & Wright 1983).

Many of these estimators, however, become rapidly complex in higher dimensions. For

instance, popular splines are largely applied in one dimension and the formulation for even a

two dimensional case is rather complex (Wegman & Wright 1983). In this study, the kernel

method is chosen, since it remains analytically and computationally tractable in higher

dimensions which are usually the case here.

The kernel estimator for the probability density function (PDF), f(x), is

10
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(2) N
f(x)( k(x-~i)

N hd i-1 h

N is the number of observations, xi is the i-th observation of the vector of explanatory

variables x whose dimension is d. h is a smoothing constant which controls the trade off

between roughness and fit of the estimator. k(e) is a so called kernel function, and typically

but not necessarily possesses the following properties:

[a] It is a decreasing function of the argument in the appropriate metric.

[b] It is smooth and has derivatives of high order.

[c] It is non-negative and integrates to 1.

A symmetric probability density function whose density is concentrated around 0 will satisfy

all of the above and it is most often used in practice. By [a] above, the form of the kernel

function differs whether the argument is continuous, ordered discrete, or nominal discrete,

depending on the choice of the metric. For instance, a Gaussian function is a popular choice in

continuous cases, while a geometric weighting function, k (x-xi) = constant x p Ix -xjl (where

4<1), is often used in ordered discrete cases.

The parameters h and g are called smoothing constants, and determine how fast the value of

k(-) falls as the argument increases. They affect smoothness of the resulting density function

and balance the trade off between bias of the estimator and its variance. It is generally known

that the constructed density function is quite sensitive to the value of the smoothing constant,

but much less sensitive to the shape of the kernel function (Ullah 1988). The next section

discusses the smoothing constant in detail and introduces some existing methods for determining

its value.

When the density function is estimated only from a subset of sample with observed choice of

brand y in (2), it becomes f(x I y). Substituting this in (1) provides our NDE model of choice

probability P(y I x). Note that unlike MNL, the probability is derived without any reference

to utility maximization, a linear-in-parameter utility function, or a doubly exponential

stochastic component.

It turns out that equation (1) can be also obtained by direct application of kernel regression

when the response variable is 0/1 binary discrete as shown below. A general expression for

kernel regression of y on x is (whether y is continuous or discrete)

11



Y, yi k (x-ci
E(y I x) =

Xk (x.i)
i h

where subscript i is an index for an observation.

If y is a vector of J elements (each corresponding to one of J alternatives) with j-th element yj
being 1 if alternative j is chosen and 0 otherwise, then E(yj I x) = P(yj I x), and the above

regression becomes

E(yjIx) = P(yj I x) =

N

y N k (X-Xi
i.1 'h

N

Ek (x X-i)

i e choose brand j
N
Z k (xXi)

N N ji e choose branm hX-X
N N

N i1 ~h
P (y) f (x I y)

f (x)

Hence, in the case of discrete response variable yj, the nonparametric kernel regression reduces

to the nonparametric density estimation of x conditional on choosing brand j.

2.2 Smoothing Constant

The value of h must be determined based on some criteria, ideally, a function of the difference

between the unknown underlying density function, f(x), and its estimate, f(x). A common

12
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discrepancy measure, mean square error (MSE), can be decomposed into two elements, bias and

variance, as,

2 2 ^ 2
MSEx() = E f(x) - f(x) E f(x) - f(x) + E f(x) - Efx = bias (x)2 + var f(x)

If we limit the kernel k(t) to a radially symmetric d-dimensional PDF such that fk(t)dt=1,

ftk(t)dt=O, and 1t1 2k(t)dt=k 2 , then the asymptotic values of bias and variance are

approximately,

bias (x) = -h2  V 2f(x)
2

var f(x) n-1 h" 0 f(x), where = k(t)2 dt.

These results can be obtained by applying the Taylor series expansion (Silverman 1986).

Several important observations can be made here. First, for a fixed h, the bias is independent

of n while the variance is inversely proportional to n. Of course, both are indirectly related to

the sample size through h which should depend on n for consistent estimation. Second,

reduction of h decreases the bias but increases the variance at the same time. Thus, h balances

the trade off between the magnitudes of the bias and variance. Now, the optimal h which

minimizes the global discrepancy measure, mean integrated square error (MISE, L2 criterion)

defined as

(3) MISE(f)- E f(x) - f(x) dx = h l (V2f(x))dx + n-he p

can be found to be

(4) hopt n f(Vf)2 dx
d3 I X

13



by the first order condition. Note that it depends on the form of the kernel via $ and Gk2 and on

the second derivative of the unknown true density function. The rougher the function is, the

smaller the optimal h is. It is known that the MISE is rather insensitive to the functional form

of the kernel. Also, the smoothing constant, h, converges to 0 rather slowly (~ n-11 (d+" ) as the

sample size increases.

Because h depends on the unknown density function, there are several methods for selecting its

value.

[1] Subjective approach: Human judgement from pictorial plots, assuming the true PDF as

some convenient parametric function, and the test graph method (Silverman 1986).

[21 Cross validation (least square, likelihood): Carrying out estimation by removing one

sample and comparing its prediction with the actual value.

[31 Internal estimation of the second derivative of the density: Iteratively adjust h so that

the consistency is obtained for the value of f(V 2f) 2 which is used in h to start with and

its estimation, f(V 2f)2 (Silverman 1986).

Automatic methods for finding the best h such as cross validation are a current focus in

econometric research and a good survey can be found in Marron (1989).

The kernel estimator is shown to be consistent under mild regularity conditions. Since there

exists an enormous literature on the proofs of the asymptotic properties of the density

estimators (Prakasa Rao 1983, Devroye & Gyorfi 1985), only a few relevant ones are briefly

pointed out in the appendix.

3. APPLICATION

To demonstrate the feasibility of the nonparametric density estimation (NDE) method and

evaluate its performance, a comparison is made on a brand choice process with one of the most

popular parametric discrete choice model in Marketing, multinomial logit (MNL).

The subset database contains store and panel data on three national aseptic fruit drink brands

(each pack of three single serving paper cartons), Hi-C (brs 1), KoolAid (brs 2), and Ssips (brs 3)

14
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during weeks of 12-29-86 through 2-6-89 (111 weeks). There are 3221 total purchases made by

143 panelists whose purchases are greater than or equal to 10 throughout this period. For

simplicity, it is assumed that only one package is bought at each incident since multiple unit

purchases were rare.' The 1988 purchases made during the first 71 weeks are used for

calibration of the models and the remaining 1233 purchases in the last 40 weeks (5-9-88-2-6-89)

are saved as a holdout for assessing the predictive ability of the models. Vital statistics for

each brand, share, average price, fractions of promotional activities among the purchases, are

found in Table 1.

Table 1: Statistics of the Database

brand share average price ($) feature display

1: Hi-C 29.8% 0.790 32.0% 12.0%

2: KoolAid 22.2% 0.894 11.5% 5.1%

3: Ssips 48.0% 0.689 9.7% 0.2%

3.2 Multinomial Logit Model

Table 2 shows the result of three nested models, M1 through M3, by MNL. As shown below,

LOYALTY is defined in the same way as Guadagni and Little (1983) with the decay constant a

set to 0.8.

LOYALTYj (t) = a x LOYALTYj (t-1) + (1- a) x dj (t-1)

where LOYALTYj(t) = loyalty of brs j at t-th purchase incidence

dj (t) = 1 if brs j is purchased at t-th purchase occasion
0 otherwise

a = decay constant

PRICE is a shelf price in dollars, and FEATURE and DISPLAY are 0/1 binary indicators of the

promotional activities. ASC2 and ASC3 are alternative specific constant for brs 2 and brs 3

respectively. Since it was necessary to limit the number of continuous variables in NDE due to

the memory space, the less significant PRICE variable was dropped and model M2 was selected

for further comparison.

1 When an n-unit purchase is encountered, it is decomposed into n single unit purchases.
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Table 2: Result of Multinomial Logit

adable

LOYALTY

FEATURE

DISPLAY

PRICE

ASC2

ASC3

loglikelihood: L(0)

p
2

L(0) = -2184.0 (loglikelihood of equal probabilities)

p2 = _ @)
L(O),

where k is the number of parameters

3.3 A Nonparametric Density Estimation Model

In NDE, a multidimensional joint PDF, f(x I y), of the same set of explanatory variables as

MNL, i.e. loyalties of the first two brands, features, and displays of all brands, was constructed

for each brand y. It is not necessary to consider all three loyalties since they sum up to 1. These

continuous values are approximated by ordered categories of 30 to allow for numerical

computation. To summarize, each joint PDF, f(x I y), corresponding to the respective brand y is 8

dimensions with the following variables.

LOYALTY1
LOYALTY2
FEATURE1
FEATURE2

30 point representation of ordered categorical, 0 - 1 in interval
30 point representation of ordered categorical, 0 - 1 in interval
binary categorical
binary categorical

16

M1

3.342
(32.79)

-0.129
(-1.613)

0.025
(0.314)

-1126.7

0.4841

0.4827

N2

3.406
(32.06)

0.781
(7.126)

1.094
(6.239)

0.094
(1.099)

0.365
(4.170)

-1067.1

0.5114

0.5091

M3

3.393
(31.844)

0.717
(6.438)

1.019
(5.781)

-2.836
(-3.570)

0.385
(3.244)

0.079
(0.666)

-1060.7

0.5144

0.5116

p -L(P) - k
L(O)



FEATURE3 binary categorical
DISPLAY1 binary categorical
DISPLAY2 binary categorical
DISPLAY3 binary categorical

The number of cells in each PDF is 302 - 26 = 57,600. The kernel functions used for the ordered

categorical variables are discrete approximations of the Gaussian. The smoothing constant for

loyalty, h, is set to 0.1 since it has produced the best goodness-of-fit after some study as shown

in Figure 5 and resulted in the most reasonable marginal probability of choice v.s. its own

loyalty plot in Figure 8. This value is of the same order as the standard deviation of the

variables since h in equation (2) represents a standard deviation of the Gaussian. Furthermore,

assuming that the underlying density function is normally distributed, the optimal value, hopt,

expressed in equation (4) indicates the value to be between 0.05 and 0.5. For the binary discrete

variables, features and displays, the smoothing of the geometric weighting function was

introduced to avoid zero density cells. The value, g=0.99 was chosen close to 1 to avoid any

unwanted effects, and a comparison with smaller g's indicates that it produces the best

goodness-of-fit as shown in Figure 6.

The actual kernel estimator for f(x I yj) corresponding to equation (2) is

[LOYALTYI - LOYALTYj(i)]2f (x I yi) =-L 1 exp-
Ni iechoose hmd j f2nh2 2 h2

1 [LOYALTY2 - LOYALTY2(i)]2j

f2i2 2 h2

x [p- FEATUREI, FEAnURI(i) + ( 5 FFARUREI, FE.ATUREI(i)

x [- FEATURE2, FEATURE2(i) + (8 FEATURE2, FEATURE2(i)

x[- FEATURE3, FEATURE3(i) + (8 FEATURE, FEATURE3(i)

x[p- DISMAYI, DISPLAYI(i) + ( -p)( - DLSPLAYI, DISPLAYI (i)

X [8DSAY MDISPLAY2(i)+ (1-)(1-DLSPLAYZ DISPLAY2(I))

x [ WDIPAY3, DISPLAY3(i) + ( -p)( - DISPLAY3, DISPLAY3(i)

where Nj is the number of observations which choose brand yj, and 5a,b is a kronecker

delta function.

Using above, the conditional choice probability, P(yj I x), in equation (1) can be written as

17



f (xIy? Nj/N
P(yj Ix) =

Xf (xly Nj/N
y=1

where N is the total number of observations.

3.4 Tracking

Figures 2 - 4 exhibit the predicted and actual shares of each brand with NDE and MNL by

aggregating the choice probabilities and observed number of purchases respectively for each 4-

week period. The vertical line separates the calibration period (12-29-86-5-2-88) and the

holdout period (5-9-88-2-6-89). A visual inspection shows that NDE has a better fit than the

parametric MNL in tracking the brand choice. Two measures for their goodness-of-fits, P,

which is a mean probability of correct choice, and R2 , are also computed in Table 3.

Table 3: Goodness-of-Fits of the Share Plots

C2rMnn1

P (mean probability of correct choice) calibration
holdout

calibration

holdout

NDE w

0.7309
0.6915

0.8882
0.8112

0.7016
0.6885

0.8249
0.8046

NOTE: N = 1988 for calibration sample and N =

h = 0.1 and p = 0.9 9
1233 for holdout sample

For the calibration sample, NDE dominates MNL in both P and R2 , while the dominance holds

by smaller margin for the holdout sample. This situation might be attributed to "overfitting"

in NDE. In a parametric model, an arbitrary better fit can be achieved within the calibration

sample as more explanatory variables are added. In the OLS regression, this is manifested by

18
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Figure 2: Time Series Share of Hi-C by NDE and MNL

Although both methods do well, close analysis shows NDE to be better.
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higher R2 with more variables. But this better fit does not necessarily lead to a better

prediction in the holdout sample, since the overfitted model also starts to pick up the unwanted

effect of the random disturbance term which is idiosyncratic to the calibration sample.

Because NDE with small h could be regarded as a parametric model with a number of

parameters approaching to the number of observations, the effect of excessive degrees of

freedom may be manifested in the figures of Table 3.

Figures 5 and 6 illustrate how the goodness-of-fit measures in both the calibration and the

holdout sample vary as the smoothing constants h and . for the continuous and discrete

variable, respectively. As expected, the lesser the smoothing is (h-+0 and p-+1), the better

the fit is for the calibration but the worse for the holdout sample. Also, in the calibration

sample, the fit degrades as the smoothing is increased.

3.5 Market Responses

Table 4 lists market responses, percent change in share by feature and display activities. They

are computed by changing the values of the chosen attribute for the corresponding brand

keeping the other variables unchanged and aggregating the predicted probabilities. The

discrepancy between NDE and MNL needs further investigation, especially Ssips figures of

NDE where display rarely occurred according to Table 1. Some discussion on these response

figures by MNL will be found in the next section.

Table 4: Percent Share Change due to Own-Brand Promotions by NDE and MNL

FEATURE DISPLAY
bmnd NDE MNL NDE MNL

Hi-C 23.1% 28.7% 23.9% 41.5%

KoolAid 59.9% 35.6% 42.2% 51.9%

Ssips 5.8% 16.1% 1.3% 23.3%

3.6 Marginal Probability

Further insight is obtained by focusing onto one or two variable dimensions of the estimated

density function. The first example is a plot of the share for Hi-C v.s. loyalty of each brand by

aggregating all other dimensional variables, which is shown in Figure 9. Although, Hi-C
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Figure 5: Goodness-of-Fit v.s. the Continuous Smoothing Constant h

As the smoothing is decreased (h is decreased), goodness-of-fit improves in the
calibration. In the holdout, R2 degrades while P improves.
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Figure 7: Marginal Probability v.s its Own Loyalty by NDE (h = 0.1) and MNL

Casual Comparison of the marginal probability curves suggests that they look
rather similar. But NDE version may offer further improvement over MNL
version.
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Market Diagnostics Using Marginal Probability Curves

K =Hi-C

-- ------- 

L-' K Kool Aid
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Loyalty to K

Figure 9: Marginal Probability of Hi-C v.s Loyalty of K by NDE

As expected, increasing Hi-C loyalty and/or decreasing Ssips loyalty is associated
with increasing Hi-C share. But surprisingly, increasing KoolAid loyalty (for
low KoolAid loyalty) is associated with increasing Hi-C share.
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share increases in loyalty of Hi-C and decreases in loyalty of Ssips as expected, the non-

monotonic curve corresponding to loyalty of KoolAid is rather surprising. It implies that

increasing KoolAid loyalty (for low KoolAid loyalty) is associated with increasing Hi-C

share, which is counter-intuitive. One possible explanation could be that, both Hi-C and

KoolAid being famous national brands as opposed to the relatively unknown price brand Ssips,

there exists a loyalty process across the two former brands which constitute a high quality

segment.

The second example is shown in Table 5, a 2x2 table of KoolAid share for various combinations

of feature and display of KoolAid by again aggregating other dimensions. This indicates a

strong interaction effect of the two promotion variables because the share would be only 0.265

had there been no interaction.

Table 5: Interaction of Feature and Display on KoolAid Share

no display display

no feature 0.149 0.176

feature 0.225 0.414

4. DISCUSSION

4.1 Comments on MNL

The independence from irrelevant alternatives (IIA) property potentially influences all

market responses such as elasticities of MNL. For example, disaggregate cross elasticities of

the probability of alternative i with respect to the k-th attribute of alternative jwi is

independent of i because its expression corresponding to the n-th purchase incident is

EPU(i) = P'(i) / P"() = [8ij - Pn(j)] Xnjk k
weAe / x.

where @k = coefficient of the k-th attribute.
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Thus, MNL imposes uniform cross elasticities at the disaggregate level. Now, define aggregate

share elasticity (Ben-Akiva and Lerman 1985) as

ai) - P(i) / P(i)E Xjk /Xjk

N

I Pn(i) a X
w here P(i) ="i , arri kXnjk Xk

N Xn* Xn'jk X4

Although the uniformity property does not directly carry over to the aggregate elasticities,

there is still a heavy influence from the reciprocal of the average shares since the aggregate

elasticity of alternative i to the k-th explanatory variable of alternative j, xjk can be written

as

- N

F i= __ Pn(i) [ij - Pn(i)] Xnjk

N P(i) n=1

The effect can be readily observed in the market response figures of MNL in Table 4. The

percent share change due to feature and display are approximately inversely proportional to

their shares, exhibiting the denominator effect.

Also for attributes associated with common coefficients across the alternatives, only their

differences between the alternatives are relevant on a choice probability, irrespective of their

absolute levels. The implication is two fold. Let d be the difference of a particular attribute,

say price, between brs 1 and brs 2 as d = P2 - P1. Then,

(1) Price increase of S by brs 2 produces the same effect as price reduction of S by brs 1 because

d+8 = (P2 +6)-P 1 = P2-(P1-5)

This is implicitly related to the property of the uniform cross elasticity.

(2) If prices of both brands are raised by the same amount 6, then its net effect is zero and their

choice probabilities are unchanged if the other attributes stay the same since

d = P2 - P1 = ( P2 + 8) -( P1+ )
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The lines in the marginal probability v.s. its own loyalty plot for the three brands by MNL

shown in Figure 7 are near parallel with different absolute levels unlike that by NDE. This is

due to the common loyalty coefficient across the alternatives in the logit formulation, which

exemplifies the above phenomena.

4.2 Comments on the Nonparametric Density Estimation

The main advantage of NDE is that very few assumptions are required unlike MNL. And its

concept is very straightforward since the joint PDF is a cumulation of the past history and can

be interpreted as a "smooth histogram". Derived from this are the marginal probabilities on

which various exploratory analyses can be conducted. Therefore, NDE facilitates analysts to

examine data itself, while it is often the case in MNL to see raw data only in the form of a time

series of shares.

Its structureless assumption makes the method extremely flexible to conform to any shape of

distribution. Since the resulting density function is based solely on data fed in, its prediction

for the holdout sample is excellent in the range of explanatory variables where observations

are repeatedly made in the calibration. The flip side is that, due to the lack of a priori

structure, its performance in prediction is relatively poor, if not impossible, for what has not

been encountered before. In other words, an outcome of extrapolation must be interpreted with

caution.

Similarly, the market response for Ssips due to its display activity needs further investigation

since its occurrence happens mere 5 times or only 0.2% of the data. This does not imply that the

figure by NDE is incorrect, but care must be exercised. In contrast, the same figure for Ssips

derived from MNL (Table 4) is mainly driven by the response of Hi-C to its own display

activity because the display coefficient, which is common across alternatives, is estimated

largely from data of Hi-C which displays 16 times as often as Ssips. Thus, unless magnitude of

the response to its own display activity is similar between Hi-C and Ssips, MNL estimates

cannot be relied upon either. If alternative specific display coefficients are utilized to

overcome this difficulty, it is likely to encounter the small sample instability in estimating the

Ssips' coefficient. This will bring MNL to the same situation as NDE.

An even more interesting case is the prediction of shares when a new product is introduced. The

NDE is not able to answer this because of the absence of the previous history. The MNL will

generate a purchase probability of the new brand if its values of the attribute variables are
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provided. The prediction will be based on IIA, that is, the relative utility of the new product

determines the level of the share it acquires, and the remaining brands are pushed back in

proportion to their pre-entry levels. This may not be exactly true. Therefore, it is either "no

answer" by NDE or "possibly inaccurate answer" by MNL.

4.2.1 Computational requirement with respect to time and space

Two main disadvantages of NDE over MNL are (1) large computational requirement in terms of

time and storage, and (2) large sample requirement. In this study, the run time for NDE method

took about 2,000 seconds against 30 seconds by MNL using a 16MHz 386 machine. This is a factor

close to 70. Partially compensating for the speed problem is NDE's ability to incrementally

update the density function. Because the density function is a sum of the appropriately

normalized kernels, it can be revised with ease as new data becomes available. The MNL does

not possess this property since parameters would usually be re-estimated from scratch every

time new data arrives. A need for large storage space to save the joint PDFs in the form of

discrete approximation is another matter, however. Here, there exists three such PDFs, each

with 57,600 cells, even after additional assumptions were imposed in an effort to reduce this

size. These assumptions are (1) omitting PRICE attribute variables, and (2) introducing the

loyalty variable which is a parsimonious aggregation of more fundamental observation

variables.

4.2.2 Large data requirement in higher dimensions

While these computational limitations may not be crucial to the utilization of the method

because of advances in computer technology, the real bottleneck is in the necessity of a huge

amount of data for reliable estimations, especially in a PDF of larger dimensions. Because the

number of attribute variables increases linearly with the number of alternatives at hand, the

number of cells becomes enormous and even the largest databases result in few observations per

cell. Then, the estimation becomes unstable and inefficient. The following simple examples

excerpted from Silverman (1986) demonstrate why the common sense in low dimensions

completely breaks down in higher dimensions. This exponential growth of required sample

size as the number of dimension is often referred to as "curse of dimensionality" and is a well

known phenomenon.

Example k: Approximating the distribution of a tail whose magnitude is less than 1% of the

maximum value is fairly irrelevant in estimating an accurate density for one dimensional case.

But, consider estimating a density function whose underlying true distribution is multivariate
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independent normal with mean 0 and variance 1. Then the probability of points falling in the

region x such that f(x) 0.01x sup f is less than 0.5% in 1 dimension and about 1% in 2

dimensions. But in 10 dimensions, about 50% of all points reside in this region.2 Let us take a

look at this surprising fact from a different angle. While 90% of sample lies between ±1.6 in 1

dimension, only 1% lies in the region whose distance is less than 1.6 from the origin in 10

dimensions.3 Therefore, estimation of the tail is crucial.

Example 2: Consider an even simpler case where the underlying density function is a uniform

hypercube of edge lengths equal 1 centered at the origin. In one dimension, clearly 1% of the

sample occupy the length of 0.01 on average. Yet, the same 1% fill in the hypercube of edge

lengths equal to 0.63 in 10 dimensions because (0.63)10 ~ 0.01.

Both examples can be described as an "empty space phenomenon", in which most points are

observed where the magnitude of f(x) is very small. This makes for the need of the enormous

number of observations in higher dimensions.

5. CONCLUDING REMARKS

In the previous section, two contrasting methods are compared in a brand choice context. One

side is represented by the highly parametrized MNL, and the opposite end by NDE.

Advantages and disadvantages of each method are discussed in detail. If we summarize the

two in terms of modeling criteria as in Table 7, the difference becomes even clearer.

[1] Predictability: How well does a model perform in prediction by extrapolation as well as

interpolation?

2 This can be derived as follow.

f (x) =epIx

f (0) 1- 2 x] 2 x -1

f(x) 0.01 =* X3(prob)= 9.21
f (0)

3 This is since X210 (0.99) = 1.62 = 2.56
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[2] Robustness to underlying assumptions: How well does it perform if underlying assumptions

are violated?

[3] Descriptive capability: How well does it provide an underlying structure for

understanding the phenomenon?

[4] Adaptability: How easy is it to update the model?

[51 Operating Characteristics: Sample size requirement, computational time

Table 7: Evaluation of the two models by the five criteria

criterion NDE MNL

Predictability - +

Robustness to underlying assumptions +

Descriptive capability - +

Adaptability + -

Operating characteristics - +

Any model can be positioned between these two extrema on the continuum line of varying degree

in parametrization, which is shown in Figure 10. The MNL in our study had only five

parameters, and incorporated stochastic utility maximization with a doubly exponentially

distributed disturbance term. It is surprising that such a parsimonious model can compete

reasonably well against NDE which could be regarded as having many more number of

parameters. The probit model is located slightly away from logit toward less

parametrization, and hence exhibits more flexible structure. But it is necessary to estimate

more parameters including variance-covariance matrix of the disturbance term. Although

NDE demonstrated here may not be the pure ideal nonparametric method due to assumptions

with respect to selection of the attribute variables, shape of the kernel, and i.i.d. observations,

it is exceedingly nonparametric in the traditional sense. In reality, one would like to opt for a

model satisfying all five criteria reasonably well, which ought to be somewhere between these

two extrema.
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Figure 10: Models along the continuum line of varying degree in parametrization

For future research, there exists two major directions in extending the nonparametric methods.

One is to develop diagnostic techniques for parametric models using nonparametric methods. In

other words, is it possible to test some parametric model assumptions by relaxing them with a

nonparametric method? One such attempt is a study done by Abe (1991), where an empirical

distribution of the random component of MNL is constructed using a nonparametric regression

and then compared against the theoretical one (logistic function) to check the distributional

assumption of logit. The other is to investigate a class of so called semiparametric methods,

which are a compromise between parametric and nonparametric methods, so that they are

located somewhere in the middle of the line in Figure 10. These two areas should complement

each other during the course of building good models for achieving one's objectives.

Although the theoretical aspects of nonparametric methods have been extensively covered in

the past decade, application studies hardly exist in the literature. For other empirical studies

of a nonparametric density estimation method in the marketing field, see Bumbaca (1988), Rust

(1988), and Donthu & Rust (1989). UPC scanners generate an enormous amount of data across the

nation everyday, and the benefits from its efficient analysis and full utilization are large.

Though some might see this data glut as one big computational problem, it must be regarded as

a golden opportunity. While in most experimental disciplines, availability of data is the

bottleneck, here is a rare situation where there is an abundance of data. In this respect,

marketing modelers should consider fresh, if not radical, approaches without being constrained

in the traditional view of data analysis.
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APPENDIX

Asymptotic Properties of Kernel Density Estimator

First, sufficient conditions for the pointwise strong consistency of the estimated function using n

points, fn, are, (i.e. fn-+ f as n-+oo almost surely)

[1] Let K be the class of all Borel-measurable bounded real valued functions, K(t), of d-

dimensional vector t, such that

(a) f K(t) dt = 1, (b) f I K(t) I dt <oo, (c) 11tid I K(t) -+ 0 as 11tI-+0o,

(d) Sup I K(t)I <oo, where 11tl is the Euclidean norm of t.

[2] hn-+0 as n-+oo

[31 n(hn)d -)oo as n-oo

[4] f(t) is continuous for each t.

Second, pointwise asymptotic normality of fn was shown by Parzen (1962) as

fn - E fn - N(0,1) as n-+oo
VV(fn)

where V(fn) is the asymptotic variance of fn expressed as

V(fn) = --- d f K 2() dt
n h f

Third, MISE decreases as n-4 (d+4) at best for the case of the previous section. This can be seen

by substituting the optimal h of (4) into equation (3).
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OVERVIEW

Marketing managers in packaged goods companies now have access to great quantities of scanner

data. This suggests the possibility of nonparametric methods. These can take special

advantage of large datasets to provide new modeling flexibility. A previous nonparametric

approach to a brand choice model described in Part I, however, has shown that the direct

approach of nonparametric density estimation requires even larger databases than may be

reasonably expected from scanners.

The present paper takes a mid path that tries to overcome such difficulties while maintaining

flexibility in model specification by pursuing a semiparametric approach. The proposed

utility residual method (URM) for the multinomial logit keeps the doubly exponential logit

distributional assumption while expanding the structural freedom of the systematic utility

component. This is done by using a one dimensional nonparametric function for each

explanatory variable in additive utility form. The key idea is to develop a residual for the

utilities in the multinomial logit. The utility residual contrasts to the ordinary residual of a

discrete choice model, which is the difference between observed binary choices and predicted

probabilities. The utility residuals provide much greater insight into market response

functions and behavioral phenomena.

The validity and usefulness of URM is verified in a simulation study and in applications to two

scanner databases. In the simulation, a utility structure is recovered nonparametrically from a

pre-specified additive nonlinear utility function in a logit model. The two scanner data

applications illustrate the development of nonlinear additive utility functions and their

marketing implications.
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1. INTRODUCTION

Recent advances in scanner technology have made available large databases of individual

purchase records and opened up a whole new direction in marketing. The issues of interest cover

a wide range from brand choice, purchase quantities, interpurchase timing to behavioral

theories of price, advertising, and promotion response as well as repeat purchasing. In studying

these, many models have been created to address specific questions to databases which contain

enormous amount of information. Most of these models are parametric in nature, in other words,

a particular functional form with some number of unknown parameters is assumed based on

theories and/or data. The parameters are then estimated from the data, various tests are

made, and conclusions are drawn. For example, a multinomial logit (MNL) brand choice model

is founded on stochastic utility maximization with a specific assumption on the random

component of the utility. From this, a choice probability can be derived to have a particular

functional form of the deterministic utility, which is usually expressed as linear-in-parameters

of relevant explanatory variables.

In many parsimonious MNL models applied to scanner panel data, one frequently observes t-

values for some coefficients such as loyalty to be as high as 40, because large databases with

thousands or even tens of thousands of observations are quite common. (Guadagni and Little

1983) Yet, obtaining such high t-values is meaningless if the underlying model is incorrectly

specified, in which case the parameter estimates will be biased and subject to

misinterpretation. A traditional approach to the model specification is to propose an initial

model based on existing theories, common sense, and experiences and prior knowledge of the

analyst, and then keep refining it with various specification tests. Such a trial and error

process is not only time consuming, but also results in the final model which varies greatly

depending on the subjective judgements of the analyst. With abundant data collected by

scanners and appropriate statistical techniques, perhaps we can afford to let the data do more

of the work of specifying the model structure than has been possible heretofore.

For a brand choice model, this idea is pushed to an extreme of empiricism by the nonparametric

density estimation in Part I of this dissertation, where a conditional probability of brand

choice y given a set of marketing mix variables is calculated from a multidimensional joint

probability density function, f(x,y), as

1)P(yIX) =f(x,y) f(x l y) f(y)
f(x) f f(x I y) f(y) dy
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The density, f(x,y), is estimated nonparametrically by a kernel method (Silverman 1986).

Conceptually, it can be interpreted as a huge multidimensional smoothed histogram or cross

tab. Because the nonparametric density estimation (NDE) method simply compiles a history

of past observations to predict the future, it does not involve a parametric specification of the

utility nor a distributional assumption unlike MNL. In fact, the whole notion of the utility

maximization does not exist at all.

Two notable disadvantages of NDE are, [1] a large computational requirement, and [2] a large

sample requirement. Part I finds a computational factor of close to 70 for NDE over MNL for a

dataset of about 1000 observations, 3 alternatives with two continuous and two binary

explanatory variables. However, as more powerful desktop computers become available, the

computation may not be the limiting factor. The real bottleneck is the second one, i.e. the

necessity of an enormous amount of data to reliably estimate the density function, especially for

larger dimensions. Because in NDE the number of attribute variables increases linearly with

the number of alternatives at hand and the number of cells increases exponentially with the

number of attribute variables, even the largest databases result in only a few observations per

cell. Eventually, the estimation becomes unreliable. The exponential growth of required

sample size with the number of dimensions is often referred to as the "curse of dimensionality",

and is a well-known phenomenon. (Friedman and Stuetzel 1981, Silverman 1986) Other

applications of nonparametric methods in marketing can be seen in Rust (1988) and Rust and

Donthu (1989).

Such a difficulty encountered in the NDE method leads us to consider a step back from such

extreme empiricism by taking a mid approach that employs semiparametric methods. In other

words, a basic foundation of a model is built around well-established theories, while data

specifies the remaining structure.

In the present paper focusing on a brand choice model, the model is founded on the MNL

framework, i.e. stochastic utility maximization with a doubly exponentially distributed

random utility component, but the systematic utility is specified nonparametrically. In

particular, the utility is specified as a sum of one dimensional nonparametric functions of

relevant explanatory variables. Hence, the choice probability of alternative j is expressed as
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(2) Pj= evi where vj= Y$p(xjp)
Sevk p

where xjp is the p-th attribute variable for alternative j and $p(-) is a one dimensional

nonparametric function for the p-th attribute.

Semiparametric methods in the literature can roughly be classified into two groups, depending

on whether a distributional assumption or a model specification is nonparametrized. Relaxing

random term distributional assumptions such as normality, symmetry, and homoskedasticity, is

rather beneficial in practice for obtaining consistent parameter estimates. In econometrics,

these techniques are called distribution-free methods and there exist various papers. (Manski

1975, 1986, 1989, Cosslett 1983, Duncan 1986, Stoker 1986, Han 1987, Klein and Spady 1988) The

latter group, which imposes certain parametric distributional assumptions while relaxing a

model specification is relatively new, and has been studied mainly in the field of statistics

(Breiman and Friedman 1985, Hastie and Tibshirani 1986 1987 1990, Matzkin 1989).

There are several reasons for building our semiparametric model around MNL. One is that

MNL has been confirmed to perform quite well as a brand choice model, especially in cross

validations, with various data sets, and has become a standard benchmark for comparing

choice models in the past decade. As with any model, MNL involves certain assumptions

which may or may not reflect reality. But, its proven record in field studies supports the

robustness of the MNL assumption in practice. Two properties of MNL might explain its

operational successes. First, when the conditional choice probability of j given a vector of

covariates x, P(j I x), is expressed by the likelihood function and a prior using Bayes rule, it

resembles the general MNL formulation. Furthermore, if the priors are the same and

covariates are normally distributed with identical covariances but different means across

alternatives, the expression becomes Fisher's discrimination method and reduces to MNL with

linear-in-covariates utility form. Second, among a class of multinomial distributions whose

probabilities are functions of a linear predictor of covariates, rl=x's, a logit function,

Tj=log[p/p(1-p)], is referred to as a canonical link by the terminology of the Generalized Linear

Models (GLM) and possesses a sufficient statistic for $. (McCullagh and Nelder 1989) Since the

derivation is not documented in their book, it is shown in Appendix D.

The second reason for choosing MNL is its underlying behavioral mechanism of stochastic

utility maximization, where a consumer chooses an alternative which has the highest utility

but the utility has a random component. Possible sources for such stochastic disturbance are
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unobserved attributes, unobserved heterogeneity, measurement error, and imperfect (instrument

and/or latent) attributes. Therefore, the stochastic component accounts for uncertainty from

the consumers' side as well as model deficiency from the analysts' side.

Third, because there exists an explicit analytical expression for a choice probability, MNL is

mathematically tractable and easy to build variants and extensions.

Finally, various diagnostic tests are available to check for the distributional assumption of

MNL including IIA tests. (McFadden, Tye, and Train 1976, Hausman and McFadden 1984,

McFadden 1985) In Abe's paper (1991) on a general kernel regression called moving ellipsoid

method, he illustrates an application which permits a visual comparison between the

empirical and theoretical (i.e. logistic) distribution of the stochastic component. Thus, by

using these techniques, we can make sure that the current method is valid by examining

whether the MNL distributional assumption is violated or not. In addition, because our

method constructs an empirical random distribution at each iteration, a consistency check for

the logit assumption can be performed by monitoring its deviation from the theoretical

distribution.

A nonparametric utility specification of the form (2) can potentially unveil various interesting

marketing phenomena such as nonlinearities and asymmetries in explanatory variables.

Uncovering such structures using the conventional linear-in-parameters approach requires

skilled analysts and elaborate modeling schemes in which special variables and sequences of

models are created to facilitate hypothesis testing. The method to be described does not

involve such an extensive iterative process to reach an acceptable model specification.

Furthermore, its output, nonparametric plots with partial utility residuals, can help identify

outliers and influential points and visually communicate with non-technical managers who

may be able to provide better marketing interpretations than data analysts. Hence, relaxation

of model specification is of great value for investigating managerial implications as well as

substantive issues in marketing.

In terms of the organization of this paper, Section 2 explains our method, which we shall refer

to as the utility residual method (URM). It consists of two iterative steps. One infers

residuals in utility from discrete choice data, and the other constructs the additive

nonparametric utility function from the residuals. Section 3 is a simulation study to illustrate

how well URM recovers a pre-specified nonlinear utility structure. In Section 4, applications of

URM to two scanner databases are demonstrated, and their marketing implications are

discussed. In the second database, URM is evaluated both in calibration and holdout sample
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against linear-in-parameters MNL and NDE. This illuminates the relationship between

predictive ability and strength of assumptions or equivalently the degrees of freedom. Section

5 summarizes the paper and discusses possible extensions.

2. A SEMIPARAMETRIC METHOD USING UTILiTY RESIDUALS

2.1 Overview

The choice probability of alternative j by the standard linear MNL can be expressed as

Pj= evj where vj=X $p xjpZ eVk p
k

where xjp denotes the p-th attribute value for alternative j. The objective of the utility

residual method (URM) is to obtain a MNL discrete choice model with flexible utility structure

as follows.

(2) Pj= evi where vj= $p(xjp)
J:evk p
k

where $p(-) is a one dimensional nonparametric function.

We consider additive separability in marketing variables for three reasons. First, it is a

natural generalization of the linear model. Second, an interaction term can readily be

incorporated by creating a new variable which multiplies relevant variables together and

extending the p-index. Third, if we start replacing several 1-dimensional functions Op(-) by a

more general multidimensional nonparametric function $pq..(-,-,..,-), we are likely to encounter

the "curse of dimensionality" problem (Stone 1985, Silverman 1986). That is, an exponentially

increasing sample size will be required as the number of dimensions grow to maintain reliable

estimation as shown in Part I.
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In ordinary least squares, the correctness of the linear model is often diagnosed by examining

the residuals, en = Yn - I Pp xnp , on a partial residual plot. (Mosteller & Tukey 1977) In fact,

the Alternative Conditional Expectation (ACE) method by Breiman and Friedman (1985) and

the Generalized Additive Models (GAM) by Hastie and Tibshirani (1986, 1987) obtain

nonparametric regression of the following kind from the residuals, which is analogous to the

utility in equation (2). (see Figure 1)

y =O p(xp)
P

$q(xq) + e

=y - Y $p(xp)

$q(Xq)

Xq

Figure 1: OLS residuals against explanatory variable q

A vertical difference between a point and the curve, Oq(xq), is a residual.

The difficulty of these approaches for discrete choice models is that vj is not directly

observable. That is, we do not have a straightforward way to find ejn in (3).

(3) ejn= vjn-I Op xnp
P

In the following subsections, a concept of utility residuals is introduced, and a computational

method, Utility Residual Method (URM), for finding $p is presented.
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2.2 Utility Residual Method

The method assumes [a] the additive separable utility function, and [b] that the MNL

distributional assumption, i.i.d. doubly exponential distribution, of the disturbance term holds

for discrete choice data in question. In MNL, the choice probability of alternative j can be

expressed as follow.

(4) P. evi I
evk 1+ e-wi

k

(4a) where wj= vi- In Xevk

Hence Pj is a logistic function of wj as the name logit suggests. Equation (4) can also be derived

from stochastic utility maximization with the doubly exponential random term. This

derivation in Appendix A shows that P = prob( < wj ), where is logistically distributed.

If an estimate of wj is known (e.g. from the linear model), then Pi, which is an empirical value

of Pj, can be obtained from nonparametric regression of yj on wj as Pj (wj) = E(yj I wj ), where yj is 1

if alternative j is chosen and 0 otherwise. See Figure 2.

- - - - - - - - - -A-b- A
1

Tjl"

Wjn Wjn+ Trjn

--- Pj = theoretical

- Pj = empirical
(by nonparametric regression)

jWA

Figure 2: Theoretical logistic function and the empirical probability plot, Pi

A residual in utility is a horizontal difference between the two curves.
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Since the regression involves just a single explanatory variable, several alternative methods

exist as the nonparametric regression. In our case, a kernel estimation method is used because it

possesses an attractive mathematical property of a consistent estimator and can be readily

extended to higher dimensions. Details of the nonparametric regression appear in Section 3.3.

If, [a] the model is correctly specified (i.e. vj is correct), and [b] the disturbance is doubly

exponential, then Pj (wj) should be close to Pj(wj) and approach it asymptotically as the amount

of data increases. Maintaining assumption [b] of the doubly exponential disturbance, we take

the discrepancy between Pj and P as a measure of the misspecification in vj, i.e. the violation

of [a]. 4  Checking the difference between the empirical and theoretical probability plot is

somewhat analogous to the normal probability plot in linear regression. In the latter case, the

normal probability plot is used simply to check the normal distribution assumption of the error

term and cannot be used to infer model adequacy of X P. However, we can do more in the logistic

case. Due to the discrete nature of the response with expectation p and variance p(I-p), the

error distribution is directly affected by the model specification. (Landwehr, Pregibon, and

Shoemaker 1984) This is illustrated in Section 3.2 by simulation study.

For the n-th observation, we calculate wjn from equation (4a) and define a utility residual as

the amount, mjn, that must be added to wjn to convert Pj into Pj, i.e.

(5) Pj(wjn)=Pj(wjn+rj)= 1
I+ e 1 wn+lW)

In Figure 2, oqjn is the horizontal distance between Pj and Pj at Pj (wj). Using (5), it is expressed

as,

Tljn =-Wjn - In o, -
(P(w)

4 As a technical note, a smoothing constant for the nonparametric regression (whatever is

utilized) must chosen such that the empirical distribution Pj becomes monotonically increasing
in wj to avoid a double value in the discrepancy.
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Starting from the linear model, we shall iteratively estimate $q(-) in such a way as to reduce

the residuals, 71j, and make Pi more closely conform to Pi.

From (2) and (5),

(6)

wj = $ )p(xjp) - In I evk. Solving for $4xjq) yields
P k aj

$q(jq)+ Tj = - p(xjp) + In y evk - In, 1 - I
paq k*j Pj(w.

using the previous estimate of $p(-), vk, and Pj in the right hand side.

Now, consider explanatory variable q. For each observation, we have xjq (j=1,2,..,J) and

corresponding $q(xjq)+71j. These form the scatter plot shown in Figure 3.

Effect of x

4 Xjq)+ 71j

Xjq

Figure 3: Utility residuals against q-th explanatory variable

A vertical difference between a point and the curve, 4q(xjq), is the utility residual.

A nonparametric regression of $q(xjq)+7lj on xjq gives the current estimate of $q(-). Iteration

over q for several cycles produces the final $q(.)'s. In our work, we do all nonparametric

regression by kernel estimation (Silverman 1986). Details are discussed in Section 3.3.
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2.3 Algorithm

The following algorithm iteratively finds $q(), where Q denotes the number of explanatory

variables, APj (wj) and A~q(-) are square integral difference of Pj (wj) and $q(xjq) respectively

between successive iterations.

Initial estimate by linear-in-parameters MNL

Compute initial vj , wj's from the estimated coefficients

Repeat until APj(w ) < 8

For q = 1 to Q [loop over explanatory variables]

While A~q(-) > tolerance

Obtain E(yj I wj) [by nonparametric regression]

Compute $q(xjq)+Tlj [by (6)]

Find $q(-) [by nonparametric regression]

Revise vj and wj by MNL using new $q(xjq)'s

end [while]

end [for ql

end [repeat]

Convergence of the algorithm is guaranteed simply by adding a statement, "terminate if

loglikelihood value decreases" in the repeat loop.

2.4 Summary: Two key concepts of URM

A crucial idea of URM is the use of the utility residuals, which are latent and unobservable in a

discrete choice case. In order to find them, we postulate the logit distributional assumption

Thus we are dealing with a class of semiparametric methods in which model structure is

nonparametric and distributional assumptions are parametrically specified. This is in contrast

to traditional semiparametric literature in econometrics, so called distribution-free methods,

where minimum assumptions are imposed on the disturbance distribution while model

specification is parametric. These include the maximum score estimator (Manski, 1975, 1986,

1989), the maximum likelihood estimator (Cosslett 1983), the quasi-maximum likelihood
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estimator (Klein & Spady 1988), and regression models of Duncan (1986), Stoker (1986), and

Han (1987).

The author is aware of one working paper in which Matzkin (1989) pursues an idea of the

specification-free semiparametric approach in general multinomial models using a constrained

maximum likelihood estimation to obtain a multidimensional nonparametric utility function.

In the field of statistics, generalized additive models (Hastie and Tibshirani 1986, 1987)

pursue nonparametric additive model specification with a parametric link function for

distributional form. Their binary logistic regression case does not directly apply to MNL

because doing so violates its fundamental assumption of the additivity. Their extension to a

matched case-control model, however, can be readily used in MNL with slight notational

modifications and possesses many attractive theories associated with General Additive

Models (GAM). Although its application to the simulation data presented in Section 3 leads to

the similar result as URM, the extended GAM is not quite robust and has failed on several real

databases. Appendix C discusses GAM and its extension to MNL, and presents both simulation

study analogous to the one for URM in Section 3 and a real data application which has failed .

3. SIMULATION STUDY

3.1 First Cut Result

To test and evaluate the validity of URM, first, a simulation study is conducted from a known

model. Multinomial choice data is generated from a pre-specified nonlinear additive

separable utility function, which is then recovered by URM. The data contains three

alternatives with 988 observations. Marketing mix variables are based on an actual Aseptic

Drink database. However, in this database, price occurs at discrete values such that the last

digit of the cents is either 4 or 9 in the price range of 55-99 cents (see Figure 17 of utility v.s.

price plot in Section 4). This is an undesirable distraction for testing URM. Therefore, the

simulated price is randomly generated from the uniform distribution between 50 cents to $1 for

each alternative. Because the database does not contain advertising exposure information,

this is also randomly generated from the uniform distribution between 0 and 1. The systematic

component of the utility function for alternative j is then pre-specified as follows.
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vj = 0.317 - asc2j + 0.307 - asc3j + 0.567 -feature

+ 0.700 - displayj + log (advj+0.1) - 2 - (pricej )3

asc2 and asc3 are alternative specific constants, feature and display are binary promotional

activities whose values are taken from the data. The coefficients are selected based on

estimates from previous linear logit model runs in order to have realistic orders of magnitude.

Note that a diminishing return effect of advertising is assumed by means of the logarithmic

function, and price exhibits increasing marginal disutility expressed by the negative cubic term.

Figure 4 shows the resulting nonparametric plots of Oadv(-) and Oprice(-) for each variable after

convergence is achieved with 3 cycles of the outer loop. The absolute level of the utility scale

is irrelevant and the entire curve can be shifted to have the mean of zero, since multinomial

logit takes into account of only the differences among alternatives. Both exhibit an excellent

recovery of the true underlying nonlinear relationships, the logarithmic for ad exposure and

negative cubic for price. The top graph in Figure 5 is an empirical probability plot generated

from the utility residuals right after the initial linear MNL run (Cycle 0) and the bottom one is

at the end of the three URM cycles (Cycle 3). Notice how closely the final residuals are

distributed to the theoretical logistic function. The deviation between the empirical and

theoretical probability plot at Cycle 0 is solely due to the misspecification by modeling the

utility function as a linear form other than sample variations.
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Utility Component explained by ADV
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Utility Component explained by PRICE
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Figure 4: Additive nonparametric utility transformations by URM in the
simulation study
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Empirical Logistic Distribution
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Figure 5: An empirical and theoretical distribution generated from utility
residuals in the simulation study



Table 1: Result of linear and the URM logit in the simulation study

Linear Model

variable coeff. std.err t-stat

FEATURE 0.5811 0.1189 4.8850

DISPLAY 0.7681 0.2142 3.5863

ADV 1.8391 0.1585 11.6049

PRICE -3.4936 0.3189 -10.9558

ASC2 0.2098 0.0932 2.2516

ASC3 0.2860 0.0918 3.1167

mean probability of correct choice = 0.4379 p2 = 0.14643
percentage of correct choice = 54.45 loglikelihood value = -926.49

mean absolute deviation = 0.0904 mean absolute second derivative = 0.4693

The URM Logit Model

variable coeff. std.err t-stat

FEATURE 0.5844 0.1197 4.8816

DISPLAY 0.8102 0.2161 3.7484

$(ADV) 1.1105 0.0929 11.9581

O(PRICE) 1.2180 0.1069 11.3923

ASC2 0.2108 0.0939 2.2461

ASC3 0.2934 0.0923 3.1797

mean probability of correct choice = 0.4466 p2 = 0.15987
percentage of correct choice = 54.66 loglikelihood value = -911.90

mean absolute deviation = 0.0210 mean absolute second derivative = 0.3172

The True Underlying Model

variable coeff.

FEATURE 0.5883

DISPLAY 0.8036

log(ADV+0.1) 1.0108

PRICE3  -2.1616

ASC2 0.2141

ASC3 0.2957

mean probability of correct choice = 0.4469
percentage of correct choice = 54.05

std.err

0.1199

0.2157

0.0848

0.1915

0.0938

0.0923

p2 =0.16057
loglikelihood

t-stat

4.9083

3.7246

11.9263

-11.2883

2.2813

3.2026

value = -911.14

52



Table 1 illustrates how well URM recovered the original function by applying linear, URM,

and the true model transformation of the advertising exposure and price for MNL estimation.

An examination of U-square, a measure of loglikelihood, suggests that URM captures a striking

92% of the information gained by going from the linear null model to the correct model

specification. (Hauser 1978) A bootstrap estimate using 50 samples gave 89.4% recovery in the

log likelihood values with an asymptotic standard error of 3.4%. Furthermore, similar

magnitudes of improvement (over 90%) have been observed in replications of the simulation

runs using four other sets of random numbers as well. The mean absolute deviation figures in the

table show better correspondence between the empirical and theoretical probability plot after

URM. The mean absolute second derivative is used to monitor its smoothness.

Another finding from the table is a surprisingly good prediction by the linear model. In fact,

the linear model surpasses the true model in the percentage of correct choice, and only a slight

degradation can be seen in the probability of correct choice. In other words, as far as prediction

is concerned, a linear utility MNL model performs quite well even if it is misspecified. Once

again, this confirms the robustness of the linear-in-parameter MNL in cross-validations, the

fact demonstrated by many empirical studies.

The computational time varies from run to run depending on how many cycles and inner

iterations are repeated. In all cases, convergence is achieved within three cycles and three

iterations, and actual time is between 5 to 8 minutes on a 25 MHz 486 machine.

3.2 Robustness against Various Distributions for the Disturbance Term

3.2.1 Testing the Distributional Assumption of URM

The fundamental idea behind URM is that any discrepancy between the theoretical and

empirical probability plot is caused by model misspecification. However, this reasoning is

supported only if the discrepancy is not largely induced by incorrect assumption of the

disturbance distribution (i.e. doubly exponential) in the stochastic utility function. We test

this by using a disturbance term with different distributions.

Five sets of the simulated choice data are generated from the same utility specification as

before but with different disturbance distributions; doubly exponential, uniform, independent

normal, normal with correlation of 0.5 between alternative 1 and 2, and normal with correlation

of 0.8 between alternative 1 and 2. They are all derived from the same set of random numbers
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(using the same seed) to minimize instability, and their variances are set to 7r2 /6 for scale

consistency so as to allow a direct comparison of the magnitude of the estimators.

Figures 6 and 7 show the estimated advertising and price utility transformations respectively.

While comparable curves are expected for the independent normal since it resembles the doubly

exponential, we find that the uniform distribution also results in the similar transformations.

The conclusion drawn from these three plots is that URM is quite robust against its

distributional assumption in recovering the underlying utility structure.

3.2.2 Violation of IIA

The normal distributions with correlation involve a tougher test, not only of the URM

assumptions but also simultaneously MNL on violation of independence among alternatives. In

spite of this, the transformations approximate the correctly assumed curve fairly well as long

as the correlation is within a reasonable level (0.5). For the excessively high correlation of

0.8, some deviation is apparent although the general shape is still preserved. The high

correlation has much stronger impact on estimation bias in other variable coefficients. The

estimates for the 0.8 correlation case are 0.820 (t=6.60) for feature, 1.145 (t=5.12) for display,

0.272 (t=2.72) for asc2, and 0.643 (t=6.71) for asc3, in comparison with 0.640 (t=5.42), 0.839

(t=3.92), 0.101 (t=1.10), and 0.195 (t=2.15) respectively for the uncorrelated normal distribution.

The bias seems to be inherent in a correlated disturbance. Such bias is observed in the normal

with 0.5 correlation to a lesser degree but not in any of the uncorrelated distributions. This

study empirically supports the notion that URM is quite stable under wide variety of

distributional assumptions, helping to justify the logic behind URM as well as to extend its

applicability in various real situations.

3.3 Issues in Nonparametric Regressions

Within each inner loop of URM algorithm, two types of nonparametric regression are executed

for different purposes; one regresses a binary choice indicator yj on wj to compute the empirical

probability plot, E(yj I wj), and the other regresses the partial utility residuals on marketing

mix variable xq to obtain nonparametric utility transformation, $q(xq). Because the algorithm

does not explicitly specify the nature of these nonparametric regressions, they will be

investigated in the following subsections.
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3.3.1 Existing methods in nonparametric regression

Since both nonparametric regressions involve only a single explanatory variable, one can choose

from several well-established techniques as well as some simple smoothing schemes.

Examples of the former are kernel regression (Nadaraya 1970, Watson 1964) and various splines

(Wegman and Wright 1983), while running mean, running line, and running median belong to the

latter. See Hastie and Tibshirani (1989) for an overview of each technique as a smoothing

device. A nonparametric regression technique for URM should be selected based on the

following three criteria.

First, the resulting fit must produce a smooth curve. We can reasonably expect both the

probability plot and the utility transformation functions to be continuous since they model

human behavior. Running mean, running line, and running median are not suitable in this

regard because of discontinuity in the first derivative at each observation.

Second, it is desirable if the fit of the regression Y can be expressed as linear in observed

response values yi's. That is, Y = S y, where Y and y are nxl column vectors, S is a nxn matrix,

and n is the number of observations. In this case, many useful concepts and properties, such as

degrees of freedom and standard error, can be derived by the analogy of linear regression.

Running mean, running line, kernel, and splines are all linear operations, while running median

and variable kernel whose smoothing depends on the values of y are not.

Finally, but not least, the computational efficiency is another important criterion since the

regression routine is repeated many times in the URM algorithm.

In addition to these considerations, ease for extending to higher dimensions leads us to adapt

kernel regression, which is expressed as

yi K(Xh x)

(7) E(y I x) = i
SK(xh-)

h

where K(.) is called a kernel function. We used the popular Gaussian function. h is a

smoothing constant which essentially determines the effective distance of the i-th observation

to its neighbors. It is well known that the resulting estimate is much more sensitive to the
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choice of the smoothing constant than the functional form of the kernel. (Silverman 1986, Ullah

1988) A detail discussion on its choice appears in subsection 3.3.4. In short, E(y I x), can be

interpreted as a local weighted average of all observations yi's, in which the weight of each

point is determined by its distance from x.

The kernel regression has two minor drawbacks, which are also shared by some other

nonparametric regression techniques. First, it exhibits biases at the boundaries as seen in

Figure 4. This is due to the effect of the weighting from only one side. The problem can be

partly alleviated by using a kernel function which puts more weight along the line of fit. A

moving ellipsoid method proposed by Abe(1991) adaptively controls the shape of the kernel

function in such a manner. Figure 8 is the final utility transformations obtained by the moving

ellipsoid method. Although some improvements are observed, its marginal effect does not

seem to be large in our class of applications, and so our work here will use the standard kernel

regression.

A second weakness is that the estimator is sensitive to outliers. While it does not appear to

pose any problem in the simulation study, it could potentially become relevant in actual data.

One simple solution is to preprocess data by applying a running median of three before the

kernel regression is run. I will refer to this as robust kernel regression in contrast to the

standard kernel regression which is not robust. Because outliers can possibly contain important

information, whenever the robust regression is run it is always advisable to compare with the

non-robust version as well. Figure 9 shows the final transformations using the robust kernel

regression. As one can see, partial residuals are clustered more tightly along the curves

compared with the non-robust result. Note that neither the moving ellipsoid method nor

running median are linear operations.

3.3.2 Degrees of freedom

To facilitate various inferences, it is very useful to have a notion of degrees of freedom. While

nonparametric regression does not contain parameters to be estimated, one could devise a concept

of equivalent degrees of freedom which are mainly controlled by the smoothing constant. The

intuition is as follows. As h goes to infinity, the kernel function looses its local weighting

property and approaches the global averaging of all observations. In this case, the degrees of

freedom is one because it is equivalent to having just an intercept term in linear regression. As h

is reduced slightly, the fit might resemble a near straight line or smooth unimodal curve which

is comparable to linear or quadratic approximation. This should correspond to low degrees of
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freedom somewhere between 2 and 3. When h is much smaller, the curve becomes quite wiggly,

which leads to high degrees of freedom.

For linear nonparametric estimator, Y = S y, one can formulate the degrees of freedom in analogy

to linear regression where the estimator can be expressed as

y= X (X'X)-'X' y = H y.

H is referred to as a hat matrix which is a projection matrix. Three formulations for the

degrees of freedom suggested by Hastie and Tibshirani (1989) are briefly reviewed below.

Here, the model is assumed to have a form, y = f + E, with E being i.i.d. with mean 0 and

variance a 2 , y is a nxl observation vector, and f is a linear regression model with p parameters.

[1] tr(SS')

Sum of variances for prediction can be expressed as

Var( ,i) = tr( I')

= tr (H y y'H')

= tr (H H')a 2

=p (32

[21 tr(2S - S'S)

Expected residual sum of squares is

ERSS = E( y - Y)' (y - Y)

[n- tr(2H - H H')] 02 +b b

where b = f - f is a bias term.

[31 tr(S)

Correction factor to be added to the residual sum of squares to obtain Cp statistic (Mallows 1973,

Meyers 1986) is 2 tr(H) a 2 .

61



In the case of linear regression, all three produce the identical degrees of freedom, p, since H is

a projection matrix. If S is a symmetric matrix whose eigenvalues are between 0 and 1, it is easy

to show that tr(S S') tr(S) ! tr( 2S - S'S). Because tr(S) is between the other two in such a

case and is the simplest to compute, this formula will be used as the equivalent degrees of

freedom from now on. It also has an intuitive appeal. For one side of extreme cases, if S is to

simply take the global average, S is a diagonal matrix whose elements are all equal to 1/n and

the degrees of freedom becomes 1. On the other hand, if no smoothing takes place at all and

hence the fit simply interpolates the observed points, S is an identity matrix and its degrees of

freedom corresponds to n, the number of observations.

When the number of observations is large, even a computation of tr(S) becomes time consuming.

A good approximation formula is

(8) tr (S) = 1 1 'x a h 41/12
2ic h '1 / 12 ( Gx

where a(.) is given in Table B of Appendix B. For the derivation, see the appendix.

Table 2 is a result of goodness-of-fit for various nested models using the notion of the degrees of

freedom, (8). Deviance is defined as -2 times loglikelihood to facilitate the chi-square test.

The full URM model with price and advertising nonparametric transformations is better than

the full linear utility model at 1% level of significance. But when either price or advertising

variable is missing, URM is not significantly better than its linear counterpart. This implies

the importance of including all necessary predictor variables in order to gain the maximum

performance out of URM.
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Table 2: Goodness-of-fit of Various Nested Models

Model deviance Adeviance* df Adf*

asc2, asc3 2169.10 2

asc2, asc3, feature, display 2129.18 4

asc2, asc3, feature, display, price 2002.50 5

asc2, asc3, feature, display, $price 1996.34 6.16 11.4 6.4

asc2, asc3, feature, display, adv 1985.02 5

asc2, asc3, feature, display, $adv 1975.08 9.94 11.4 6.4

asc2, asc3, feature, display, price, adv 1852.98 6

asc2, asc3, feature, display, Oprice, Oadv 1824.88 28.10** 18.8 12.8**

* Adeviance and Adf refers to the difference between the URM and its

linear counterpart (line above).

** Significant at 1%

3.3.3 Pointwise standard error

Pointwise standard error is calculated from cov(f) = S S' a 2 . Assuming that the bias, E(f) - f , is

negligible (which is very difficult to check), 2 times square root of the diagonal elements can be

used to obtain an approximate 95% confidence band. In practice, however, the repeated

applications of nonparametric regression within both inner and outer loop makes the explicit

evaluation of the final S almost infeasible. Therefore, we have turned to bootstrap estimates

(Efron 1981, Efron and Gong 1983), which is described below.

Let Ob be an estimate of parameter 0 based on random sample of size n with replacement from

the observed data. Repeat this process B times. Then, the variance estimate of 0 is

Var() = 1 2
B- 1=1

where 0 is a mean of Ob.
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Figure 10 shows the result of 50 bootstrap estimates for advertising and price utility

transformations. Based on them, 95% pointwise confidence bands are computed in Figure 11.

The bands are narrow enough to support the nonlinearity of the transformations.

3.3.4 Smoothing constant

As equation (7) shows, the smoothing constant, h, determines how fast an influence of a

particular observation point decays as the distance. As shown in Part I, h actually controls the

trade off between bias and variance of the estimated regression curve. For clarity, let us

distinguish the smoothing constant h associated with the binary regression for the empirical

probability curve and utility transformations for advertising and price by adding subscript as

hb, ha, and hp, respectively when necessary.

A standard automatic method for choosing the value of h is a cross validation. However, in

URM we rely on a graphical and subjective approach for the following reasons.

[1] The computational requirements of cross validation for a nonlinear model such as

multinomial logit would be extremely high.

[2] The performance of cross validation in practice has not been very good. (Hastie and

Tibshirani 1990)

[31 To some extent, the best choice of h in terms of usefulness of the final result depends on the

user's prior belief. In a one dimensional case such as URM, a managerial judgement can be

easily made on the basis of visual inspection.

The third reasoning especially applies to the nonparametric regression for the utility

transformations. For instance, in the simulation study, an analyst should suspect

undersmoothing in the adv (price) transformation if the curve is not monotonically increasing

(decreasing).

On the other hand, care must be exercised for the other nonparametric regression which

computes the empirical probability plot, E(y I w), whose deviation from a logistic function

directly affects the magnitude of the utility residuals. It could be the case that a small change

in hb greatly influences the size of the residuals and consequently the shape of the

transformations and overall fit of the model. Furthermore, managers in general have little

prior knowledge and expectation on how the probability plot should look for a given utility
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specification. Therefore, a sensitivity analysis is conducted by evaluating URM at seven

different values of the smoothing constant for the binary regression, E(y I w).

Figure 12 shows the probability plots in the final iteration, and Figures 13 and 14 are the

resulting advertising and price utility transformations respectively. The general shape is

preserved rather well except for extreme values of hb. Undersmoothing can be easily detected

if the probability plot is double valued as in the case of hb=0.05 and 0.10. The rule of thumb is

to choose the smallest value of hb which avoids the double value.

There is also a more systematic way for determining the smoothing constant hb. Table 3

exhibits p2 , deviance, and approximate degrees of freedom using formula (8). In order to

investigate whether a decrease in the smoothing constant improves the fit significantly

considering that the degrees of freedom increases, the chi-square test is conducted for each

value of hb against the null hypothesis which corresponds to the value of hb in the line below.

This infers the optimal value of hb by the analogy of a test for nested models in parametric

models. The result shows that a model for hb=0.30 with df=5.1 cannot be rejected at 1% level of

significance when the null hypothesis of a more restricted model of hb=0.40 with df=3.8.

Similarly, a model with df=7.4 for h=0.20 cannot be rejected at 5% when the null model of

hb=0.30 has df=5.1. Although this method is an approximation, it is quite adequate

considering the fact that the transformations are not very sensitive to the choice of hb as

demonstrated in Figures 13 and 14. In terms of computation, it requires only 7 runs of URM,

which is substantially less than cross validation.

Table 3: Goodness-of-fit for different values of hb in the binary kernel regression

hb P2 df Adf* deviance Adeviance* X2-test v.s. next below

0.05 0.15451 27.8 13.6 1862.8 -16.4 not significant

0.10 0.15789 14.2 6.8 1846.4 2.8 not significant

0.20 0.15987 7.4 2.3 1849.2 8.2 sig. at 5%

0.30 0.16013 5.1 1.3 1857.4 10.4 sig. at 1%

0.40 0.16046 3.8 0.6 1867.8 12.6 sig. at 1%

0.50 0.16015 3.2 0.4 1880.4 14.8 sig. at 1%

0.60 0.16005 2.8 n.a 1895.2 n.a n.a

* Adf and Adeviance refers to the difference from the line below
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Another heuristic way for checking the oversmoothing in the probability plot is to examine the

final MNL coefficients for the utility transformations. An empirical finding is that these

coefficients increase systematically from near 1.0 for hb=0.05 to as much as 2.0 for hb=0.60.

This is due to the result of the smoothing constant affecting the trade off between bias and

variance. In general, bias caused by oversmoothing is something very hard to detect because

the true underlying value of what is being estimated is unknown. However, in the case of the

transformation coefficients, their true values are known to be 1.0. Thus, oversmoothing can be

detected if they are much larger than 1.0. For our simulated dataset, recovery of the original

models seems quite good for hb=0.30 which has the coefficients of about 1.14.

4. APPLICATIONS TO SCANNER DATABASES

The simulation study in Section 3 illustrates that URM is quite successful in recovering the

underlying additive utility structure and could potentially become a valuable tool by extending

MNL models. In this section, the method is applied to real databases to [11 better understand

market response, and [2] exploit possible advantages of URM over linear-in-parameters MNL.

4.1 Red Drink Single Source Database

This database contains 513 panel purchase records as well as advertising exposure data

monitored by TV meters from 140 households in Grand Junction, Colorado. The products are so

called red drinks, which includes cranberry or any blend of cranberry such as cranberry apple

and cranberry grape. The five highest share brandsizes (share figures in parentheses) ---

brand 0 cranberry cocktail 32oz (23.2%), 48oz (24.4%), 64oz (20.9%), cranapple 48oz (14.6%),

and private label cranberry cocktail 48oz (17.0%) -- are extracted. They cover about 40% of

the category purchases, and shares of other brandsizes are much smaller.5

5 The decision to ignore smaller volume brandsizes is primarily for the computational
convenience, and its consequence needs further investigation. Here, we simply argue that
product switching to and from the selected five major brandsizes with other drink category is
more frequent than with smaller share brandsizes because of diverse nature of the red drink
category. Hence, small volume brandsizes are of less concern in our brand choice model.
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The television commercial broadcasts (three types) for brand 0 are primarily brand image

oriented and do not strongly differentiate among flavors. Thus, we assume the same

advertising exposure level for all brand 0 brandsizes regardless of their flavor and size. There

was no private label TV ad. An advertising variable for each panelist was constructed as a sum

of all previous exposures encountered before a particular purchase occasion in question, adjusted

for memory recall by daily decay. The decay rate was set to 0.95, which is equivalent to

reaching approximately 20% level after 4 weeks based on studies by Lodish (1971), Clarke

(1976), Craig, Sternthal, & Leavitt (1976). From anticipation that the advertising might

prompt increased purchase quantity, advertising variables are introduced as interactions with

size dummies to capture their size dependent effects.

In addition to the size specific advertising variables, loyalty, price per ounce, feature, and

display are included. Although an initial MNL showed all advertising variables, Adv32 (t=-

0.97), Adv48 (t=0.79), and Adv64 (t=-0.11) to be insignificant, after dropping Adv32, Adv48 was

marginally significant (t=1.76) and Adv64 had t=0.86. This implies that the advertising may

be causing an upgrading of the size purchased from 32oz to larger ones as well as brand

switching within 48oz from private label to brand 0. As a first cut, we have included only

Adv48 in URM model.

Figure 15 illustrates the nonparametric utility functions of price, loyalty, and Adv48 by URM

after the convergence is achieved after three iterations. By looking at these plots, a manager

might make following observations.

" There is a steep utility decrease for unit price above 5.7 cent/oz.6

" There is an evidence for the existence of three loyalty segments: brand non-users with

loyalty less than 0.05, switchers between 0.05 and 0.9, and brand loyal users above 0.9.

9 The advertising exposure exhibits saturation and possibly an S-shape.

Logit results for the linear model and URM are presented in Table 4. The fit is greatly

improved as can be seen from the U-square jumping from 0.637 to 0.670. Note also that the

advertising coefficient (df=1) has changed from insignificant (t=0.72) to significant (t=2.6) at

(X=1%.

6 Although the line does not seems to go through the points for price near 6 cents, there exist
some points below the x-axis scale excluded from the graph.

72



Utility residual plots

Utility Component explained by Price by new ACE

3.5 4 4.5 5 5.5 6 6.5 7

Price

Utility Component explained by Loyalty by new ACE

-0 0.1 0.2 0.3 0.4 0.5

Loyalty

0.6 0.7 0.8 0.9

Utility Component explained by Adv by new ACE

Steep utility decrease for price
above 5.7 cent/oz.

Possibly three loyalty segments:
non-users, switchers, and loyal
users.

- Advertising response exhibits

saturation and may be S-shaped.

2 4 6 8 10 12 14 16 18

Adv

Figure 15: Nonparametric utility transformations by URM in the Red Drink study

-1

-2

t,

.5
Smoothing constant 0.2
Iteration - 1; 3

Smoothing constant - 0.05
Iteration - 1; 3

4-

3

2

1

0

*0

Smoothing constant - 0.3
Iteration - 1; 3

.1

-3



Table 4: Result of linear and URM logit in Red Drink Study

LINEAR MODEL

variable coeffL std.err t-stat

ASC2 -0.282 0.236 -1.195
ASC3 -0.046 0.374 -0.122
ASC4 0.0061 0.275 0.022
ASC5 -0.500 0.277 -1.808
LOYALTY 4.256 0.216 19.727
FEATURE 1.744 0.500 3.487
DISPLAY 1.448 0.392 3.689
PRICE -0.372 0.346 -1.074
ADV48 0.039 0.055 0.718

U-squared = 0.6370
Mean Absolute Deviation = 0.0486
Mean Absolute Second Derivative = 0.4417

URM NONPARAMETRIC TRANSFORMATION

variabhe coeff

ASC2
ASC3
ASC4
ASC5
$(LOYALTY)
FEATURE
DISPLAY
C(PRICE)
O(ADV48)

-0.542
-0.448
0.056

-0.878
1.147
1.701
1.495
0.586*
1.131

def*i rr

0.207
0.292
0.250
0.276
0.0750
0.501
0.376
0.502
0.444

-2.620
-1.537
0.225

-3.183
15.299
3.394
3.980
1.167*
2.551

U-squared = 0.66%
Mean Absolute Deviation = 0.0152
Mean Absolute Second Derivative = 0.4757

* the coefficient is not significant
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Finally, Figure 16 shows the empirical probability plot constructed from the utility residuals

before and after URM is applied. The discrepancy from the theoretical value decreases

markedly. Numerical values, the mean absolute deviation, appear in Table 4.

4.2 Aseptic Drink Database

We now apply URM to scanner data that is a subset of the Aseptic Drink Database used in the

study of the nonparametric density estimation (NDE) in Part I. Apart from adding more

experience with URM, there are two purposes in this analysis. First, the model developed by

URM is applied to a holdout sample in order to examine its predictive fit for model validation.

Second, its fit and prediction are directly compared to the standard multinomial logit with

linear utility and doubly exponential distributional assumption and to an NDE model which

relaxes the distributional assumption as well as the entire concept of utility maximization.

The database contains purchase records for three major brands (Hi-C, KoolAid, Ssips) of three-

pack aseptic drinks from 33 panelists during weeks of 12-29-86 through 2-6-89 (111 weeks).

Category purchase occasions (observations) were separated according to those made before and

after 5-9-88, which resulted in 988 observations in the calibration and 572 in the holdout

sample.

For the comparison of MNL, URM, and NDE, marketing variables incorporated are limited to

brand loyalty as defined in Guadagni & Little (1983), feature (0/1 binary), and display (0/1

binary) due to a large memory requirement of NDE. For details of NDE, refer to Part I.

Figure 17 shows the nonparametric function of loyalty and price obtained by URM.7 The

loyalty transformation indicates a quite nonlinear curve, while the price variable exhibits the

discontinuous nature briefly mentioned in Section 3. Figure 18 is a time series share tracking of

each brand by aggregating purchase occasions within each 4-week period for the actual data

and prediction by MNL and URM. Table 5 shows these goodness-of-fit numerically, where the

upper figures are for the calibration and lower ones are for the holdout.

7 The price variable is included only in this figure. Any other comparison with NDE is done by
excluding the price variable from the URM and MNL for fair comparison.
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Table 5: Goodness-of-fit in calibration and holdout sample

aiterion MNL JRNI NDE

Ave. loglikelihood calibration -0.4847 < -0.4619 < -0.4075

holdout -0.6050 < -0.5678 > -0.6850

R2 calibration 0.8113 < 0.8322 < 0.8788

holdout 0.8110 < 0.8290 > 0.7965

As might be expected in the calibration sample, the fit is improved in going from MNL to URM

to NDE. This is because the effective degrees of freedom are increasing and fewer assumptions

are made by the model. In the holdout, this is not necessarily true and in fact, we find that

NDE seems to exhibit an overfitting phenomenon. However, this is not observed in URM. As

sample size is increased, the improvement in goodness-of-fit is expected to increase more for

models involving nonparametric techniques than for MNL. In fact, NDE dominated MNL in

holdout with a larger Aseptic Drink database of 1,988 calibration observations in Part I.

Thus in this database, URM does very well. It fits better than MNL in the calibration sample

and predicts better in the holdout. Relative to the computationally intensive and data thirsty

NDE approach, URM does not fit as well in the calibration sample (which NDE seems to

overfit) but outperforms NDE in more important task of predicting in the holdout sample.

5. SUMMARY

At this stage of its development, URM represents a potentially valuable exploratory tool for

discrete choice models. The simulation study demonstrates that the method recovers the

underlying additive utility structure quite well and is robust under various distributions for the

stochastic utility. Pointwise confidence intervals for the reconstructed nonparametric utility

functions are shown to indicate reliability of the estimators. Also, a notion of the degrees of

freedom is derived to facilitate the selection of the smoothing constants and statistical

79



inferences. The two scanner data applications suggest the usefulness and advantages of URM in

studying market response and shed light on modeling practice -- a trade-off between strength

of assumptions and the model performance in cross-validation.

From the current study, it seems fair to conclude that URM can offer much improvement over the

linear MNL when the utility function is additive and nonlinear. It has better prediction, as

expected, since a URM model generalizes the linear specification of a MNL model by

nonparametric functions. The utility transformations are intuitively appealing because they

permit visual inspection of nonlinear response functions, and one has always an option of

recurring to parsimonious parametric modeling after inferring an appropriate functional form.

URM offers the promise of becoming a tool to assist managers make more effective marketing

decisions.

There are two possible directions for extending URM. In substantive marketing applications,

URM could be useful for observation and confirmation of various marketing response phenomena

predicted by behavioral and perceptual theories. Advertising responses (Kanetkar, Weinberg,

and Weiss 1989, Tellis 1988) and reference price (Winer 1986, Kalwani et al. 1989, Lattin and

Bucklin 1989, Gurumurthy and Little 1989) are some of the interesting areas where URM could

be valuable. In some cases, it might be useful to set up alternative specific nonparametric

utility functions analogous to alternative specific parameters in MNL to capture difference in

elasticities and responsiveness among alternatives.

Mathematically, there exists many questions to be answered for URM to be a standard

statistical tool, not just an exploratory device. For example, how does the order of variables to

be cycled affect the result? My computational experience indicates that the resulting utility

functions are rather insensitive to the order after a few cycles. But are the estimated

nonparametric utility functions consistent when the additivity assumption holds?

Understanding of the relevant literature in ACE (Breiman and Friedman 1985) and GAM

(Hastie and Tibshirani 1986, 1987) and seeking their connection with URM may help give us

some answers. It would be desirable to determine whether the estimated nonlinear utility

functions are consistent in the statistical sense. These and other questions await further

research.

80



APPENDIX A

Derivation of Theoretical Probability Plot, E(y I w), by Utility Maximization

In MNL, the stochastic utility associated with alternative j is expressed as

Uj = vj+ E

where E is an i.i.d. random variable of Gumbel (doubly exponential) distribution with E(E)=0

and Var(E)=n 2 /6. If necessary, the scale and the level of vj can be normalized to meet this

condition. A distributional form of E is

F(E) = exp (- e-+y)) where y is Euler constant (~ 0.577)

Then, the probability of choosing alternative j from choice set J in MNL is

P(j)= Prob (uj > ui ; " ie J, i:j) (Al)

= Prob (j> MAXiEj, i. ui) (A2)

= Prob (vj + j > MAXi j, ioj (vi + Ei) (A3)

= Prob vj + Ej > In I evi + E* (A4)
i*jI

=Prob vj - In I evi > E* - E j (A5)
i*jI

= Prob v - In Y evi > where E* - E (A6)

Equation (A4) holds because if um and un are independent random variables of Gumbel

distribution with E(um)=vm, E(un)=vn, and Var(um)=Var(un)=n 2 /6, then max(um, un) is also

Gumbel distributed with mean log(eum + eun) and variance n2/6. (Ben-Akiva and Lerman, 1985)

Thus, E2* is also Gumbel distributed with mean 0 and variance ic2 /6. Furthermore, it can be

easily shown (Ben-Akiva and Lerman, 1985) that t, which is a difference of two independent

Gumbel distributed random variables of the same mean and variance X2/6, is logistically

distributed as

F() 1 (A7)
1+e4
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F(t) has a smooth S-shape and is symmetric about a point F(=0) = 0.5.

Now, because P(j)=E(yj I wj ), where yj is 1 if alternative j is chosen, 0 otherwise, (A6) can be

expressed as

E(yi I wj) = prob(t< w), where wj = vi - In I evi
i~j

In other words, a regression line of yj on a single explanatory variable wj should depict a

cumulative distribution function of the logistic distribution t shown in (A7) if the error term

satisfies the distributional assumption of MNL.

APPENDIX B

Derivation of Approximate Degrees of Freedom in Kernel Regression

Kernel regression to compute E(y I x) is given as

(Bl)

n
yi Kx xi)

E(y I x) = i=1 h

Y x - x
j=1 h

where K(-) is a kernel function, h is a smoothing constant, and n is the number of observations.

It can be interpreted as a local weighted averaging of yi by rewriting (BI) as

E(y I x) = X X yi

where ki (x - x)

Kwhere Xj = hi
and )4 =1

It is a linear estimator which can be expressed as f = S y, where f and y are nxl vector of fitted

and observed response variable, and S is a nxn matrix. In terms of the kernel regression weights

above, each row of S corresponds to a lxn row vector X whose elements consist of Xj shown in (B2)

evaluated at each observation. Hence, the i-th diagonal element of S, Sii is
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(B3) Sii = K()

K

As discussed in the main text, we define the degrees of freedom as trace of S, i.e., . Sii . If n is

sufficiently large and xi's are reasonably spread out, there is a simple analytic formula for the

trace as a function of the smoothing constant h in the case of a single explanatory variable and a

Gaussian kernel function.

Hastie and Tibshirani (1990) note that the smoothing constant is the major determinant of the

degrees of freedom while the predictor configuration has little effect. Hence, a good

approximation can be obtained by considering n observations of (xi, yi), where xi are uniformly

spaced between 0 and 1 so that the interval between adjacent xi's is Ax=1 /n. Gaussian kernel

function is

K(z)= I e Z2
2Y 2h?

For large n, the numerator and denominator of equation (B3) becomes,

K(0) = Ax
2nh

and X KRN - 1 efL j dx
j=1 hs '2nh? 22h

The latter is simply an area between 0 and 1 under the normal distribution of variance hs2

centered at xi. By substituting them into (B3),

Sii = 1 -L 1

2,hfl n Area(xi; hs)

For fixed hs, the area takes the minimum value A(hs) at xi = 0 and 1, and the maximum value

B(hs) at xi = 0.5, where

A(hs) = (D - and B(hs)= 2<D 1
\hs 2 \s
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Now, the trace of S is

tr(S) = Sii

2l n i Area(xi; hs)

(B4) - 1 hs)

where a(hs) is a mean of the reciprocals of the area, which occurs somewhere between 1 /B(hs)

and 1/A(hs). It is numerically evaluated and showed in the following Table B.

Table B: Numerically Evaluated W(hs)

hs
0.01
0.05
0.07
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

a(hs)
1.01273
1.05954
1.08295
1.11806
1.23516
1.35562
1.49439
1.65973
1.84738
2.05090
2.26539
2.48757
2.71530

To illustrate the formula, let us compute the value of hs* which corresponds to the degrees of

freedom equal to 1. One would expect hs* to be of the order of 1 such that the kernel regression

takes almost global average in the domain of x. Using equation (B4) and Table B, hs*=0.9 .

The fact that this value of hs* leads to near global averaging can be seen by plotting a normal

distribution curve of standard deviation hs* centered at 0.5. The weights at the boundaries (x =

0 and 1) retain 86% of that in the center.

To apply this formula to the smoothing constant h defined on an arbitrary range of the domain

of x, h must be scaled to the standardized hs by the ratio of the standard deviation of observed

xi's, ax, to that of the uniform distribution above, namely, q 1/12 . In other words, hs must be
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substituted by hs = (11/12)h/ax . Therefore, the general approximation formula for the degrees

of freedom is

(B5) tr (S) = - 1 ax a h 1/12)
f2 -7 h j 1 / 12 G x )

where c(.) is shown in Table B.

In this paper, all h is normalized with respect to ax=l. Thus, it is simply,

tr (S) = 1.389 a (0.2887 h)
h

and plotted in Figure B.

Approximate Degrees of Freedom
16

14 -

12 -
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8-

6-

E
0

~0

2
0.0 0.1 0.2 0.3 0.4 0.5

Standardized h corresponding to var(x)=1

01
0.6

Figure B: Approximate Degrees of Freedom v.s. Smoothing Constant

Comparison with the actual trace of S indicates that equation (B6) is indeed a good

approximation. In our simulation study, trace of S for the advertising and price transformation

regression for h=0.1 are 14.33 and 14.43 respectively, while the degrees of freedom using (B6) is

14.3.
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APPENDIX C

Extension of the Generalized Additive Models

C.1 Brief Review of Generalized Linear Models (GLM)

GLM (Nelder and Wedderburn 1972) relate a random variable y to a vector of explanatory

variables x, but relax some assumptions associated with standard regression. They generalize

many likelihood based regression models to a common framework. The models consist of three

components;

[1] Random component

The response y is independent identically distributed with exponential family density,

(Cl) y (y exp y -b(O) + c(y,$)
a($ )

where 0 is called the natural parameter, and $ is the dispersion parameter. Expectation and

variance of y is shown to be E(y)-g=Db(0)/a0 and Var(y)=v=a 2 b()/a32-a($) . Because our

concern is how the mean of y is related to the explanatory variables, without loss of generality

the dispersion is assumed to be independent of x and equal to a($)=1 by letting 0 absorb the

scaling.8

[2] Systematic component

A linear predictor, ri, is related to a vector of explanatory variables x as ij=x's.

[3] The link

q is related to the mean of y by a link function, g(-), as 71 = g(p).

Different specifications of the exponential distribution and link function create various

regression type models. For example, using a normally distributed random component and an

identity link function, 1 = g, produces a standard regression model. Bernoulli distribution can

be obtained by substituting a($)=1, b(0)=log(1+eO), and c(y,o)=O in (C). In this case, the link

8 This practice is fairly standard as in McCullagh and Nelder (1989) and Hastie and
Tibshirani (1990).
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function must be chosen such that the domain of g(-), i.e. the probability pe [0,11, is mapped to

the entire real axis of ii=x'1. If the inverse logistic function, so called logit function, 7=log(p/1-

p), is chosen, the model becomes binary logit while the inverse cumulative normal, n=4-l(p),

leads to a binary probit model. Similarly, multinomial distribution is expressed as a

generalized linear model, and the use of inverse logistic and cumulative normal link function

result in multinomial logit and probit respectively. 9

The most commonly used link is called canonical link, Ti = 0, and in this case there exists a

sufficient statistic for p. (McCullagh and Nelder 1989) Since its derivation is not documented in

their book, it is shown in Appendix D.

Once, each of the three components is specified, MLE of p can be found by the Fisher scoring

procedure, a variant of the Newton-Raphson algorithm. It is shown in McCullagh and Nelder

9 Explicit form of the multinomial distribution in GLM is illustrated below since it is not
treated by McCullagh and Nelder (1989).

Consider the case of J alternatives Let y be a Jx1 column vector of an outcome indicator (i.e. 1 for
an element corresponding to the outcome and 0 otherwise). Now, the parameter of GLM, 0, is
also a Jx1 vector. Then, the joint probability mass function of a vector y is,

(F) fy(y) = exp( 'y -b() from (Cl)

Define b() = log ( Yj eei)

Then, (F) becomes the familiar

eY

fy ~ b(Y) e -

with Ii()= E(yi)= = i0

The canonical link, 0 = T = x'$ leads to MNL as

p4( = fyi(y ) =

Multinomial probit is obtained by the inverse cumulative normal link, 0, as

71i = 0-1(p) or 4i = (Z(xi' p)
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(1989) that the estimation process is equivalent to adjusted dependent variable regression (in a

sense that they produce the identical estimation sequence), where the adjusted dependent

variable z derived from the current estimate of and T1 is regressed on explanatory variables x

with weights w defined as

(C2) Z= 1+(y -

(C3) w-1 = var (y) 2

The algorithm can be regarded as iteratively estimating a new f by the weighted least squares

regression of the linear predictor 1 on explanatory variables x, in which 71 is updated by the

Taylor series expansion around s based on the current estimate of s. Iteration terminates when

the increase in loglikelihood is sufficiently small.

C.2 Brief Review of Generalized Additive Models (GAM)

GAM (Hastie and Tibshirani 1986) extends the systematic component of GLM, 7, to a sum of one

dimensional nonparametric functions, fp(xp) in each explanatory variable xp as 1 = I fp(xp)

rather than the linear-in-parameters form. Definitions for the other two components of GLM,

the random component and the link function, are unchanged. The following operational

modifications on GLM are introduced to compute the more general form of 1. First, the

estimation of each coefficient with the least square criterion is substituted by the estimation of

functions using one dimensional nonparametric regression (more generally referred to as a

smoother by Hastie and Tibshirani). Second, one step estimation of a vector of coefficients, P,

by the weighted least squares regression is now a backfitting procedure (Friedman and Stuetzel

1981), where the nonparametric functions fp's are estimated sequentially, one variable at a

time, using the previous estimates of functions for other variables. The backfitting algorithm

is summarized as follows.
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Initialization by linear model: fp(xp) p xp V p = I ,

Cycle over explanatory variables: p = 1,..,P, 1,..,P, 1,..

fp (xp)= E{ y - qp fq(xq) I xp }

Until changes in the functions, fp(xp), are sufficiently small.

Third, the iteratively reweighted least squares (IRLS) algorithm for 1 is replaced by so called

the local scoring algorithm in which Fisher's scoring is updated using a local score estimate.

The adjusted dependent variable z for GAM is derived by the Newton-Raphson method as

(C4 z= E TJI+ (y - R)x

where L and T1 are computed based on the current estimate.

Hastie and Tibshirani (1986) demonstrate that the local scoring algorithm achieves the

maximum expected loglikelihood. Let us denote the additive predictor in the systematic

component as 1(x) and a loglikelihood function for response y as L(3,y). Then, the estimate, 1

= I fp(xp), maximizes E[L(1,y)], instead of the sample loglikelihood, Xi L(Ti,yi), as is the case

in MLE. This criterion has an intuitive appeal in that the estimate maximizes the

loglikelihood for all future observations. Maximizing the sample loglikelihood in GAM

produces non-smooth estimated functions. For instance, in the binomial case, the estimated

functions will be such that 71(xi)=+oo for yi=1 and 1(xi)=-oo for yi=O. A sketch of the derivation

for the local scoring algorithm is shown in Appendix E.

Technical discussion for convergence of the algorithm and consistency (existence) and non-

degeneracy (uniqueness) of the solution can be found in Buja, Hastie, and Tibshirani (1989). The

following informally summarizes their findings.

For most common nonparametric regression methods satisfying some general technical

conditions,
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[11 there exists at least one solution (i.e. fp Vp) to which the algorithm converges.

[21 if the concurvity space, analogous to multicollinearity in functional space and null space in

linear systems, is empty, the solution is unique. Otherwise, the algorithm converges to one of

the solutions depending on the starting functions.

One basic example of concurvity in a function is represented by a base level or intercept term.

Thus, if the solution, say f1 (xi) and f2 (x2), is not constrained to be centered to mean 0, it leads to

degeneracy because fl(xi) + k and f2(x2) - k is also a solution. In practice, as long as covariates

are not highly correlated in the sense of concurvity, convergence of the algorithm and

consistency of the solution are generally achieved.

C.3 GAM Applied to Logit Models

Binary logit, or more commonly known as logistic regression, is one of GAM studied by Hastie

and Tibshirani (1986, 1987) with a Bernoulli random component and a canonical link,

g(x)=g(p)=log(p/1-g). It can be written in a more familiar form as

(C5) p(x)= E(y I x) = 1
1 +e-T1(x)

(C6) where i(x) = I fp(xp)

The adjusted dependent variable of equation (C4) without the conditional expectation becomes

(C7) z = 1(x)+ y9
(11 -p)

where T(x) and g are evaluated based on the current estimate. The additive functions fp's are

obtained by nonparametric regression of z on x with weights, w=p(1-g), by the backfitting

algorithm. Equation (C7) can be interpreted as computing the first order Taylor series

approximation of the linear predictor, rj = g(p), from its current estimate. A direct approach of

using the observed response, y, to obtain l=g(y) does not work here because of its binary nature.

It is note worthy that if 1(x) is linearly specified as x'P in equation (C7), z is what is referred to

as partial residuals by Landwehr, Pregibon, and Shoemaker (1984).

The following is the local scoring algorithm for logistic regression.
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Initial estimate by linear model, ii(x)=x'o

Repeat

Compute the current estimate of . from 1 [by (C5)]

Compute the adjusted dependent variable z and the weights w. [by (C7)]

Obtain fp(xp)'s by nonparametric regression of z on x with weights w.

[by the backfitting algorithml

Until loglikelihood converges.

The goal of this paper is to obtain a multinomial logit model with an additive utility function

as

(C8) pjev where vi= $pxP)
evk p

k

In the case of only two alternatives, the above logistic regression for GAM can be adapted with

slight modifications. Denoting the probability of choosing alternative 1 as (x), (C8) can be

reduced to the form of (C5) with

(C9) 1 = vi - v2 = Xq fq(xq) = Xp I Op(xpl) - 4p(xp2) 1.

There are two possible approaches in formulating equation (C9). One is to assume that only a

difference of explanatory variables influences the probability but not their absolute levels,

which is a standard linear-in-parameter logit assumption. In equation (C9), this implies that

xq = xpI - xp2 and q=p. The other is to define alternative specific utility functions so that

fq(xq) = 4p(xpi) q= ,..., P

fq(xq) = - p(xp2) q= P+1,..., 2P

This is analogous to alternative specific coefficients in the standard logit.

For more than two alternatives, however, such simple solutions do not apply since the additive

predictor is no longer additive in each covariate. That is,
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(C10) rl(x) = v1(x) - log Y evj(x)
j*1

This would violate the fundamental assumption of GAM in the binomial formulation.

Nevertheless, one can go back to the spirit of the basic approach of GAM and re-derive the

appropriate formulation from a penalized conditional likelihood function. Because even a

sketch of the derivation is rather complex involving much conceptual development and new

terminology, here an algorithm for MNL is simply presented below. It is derived by re-

interpreting the matched case-control model of Hastie and Tibshirani (1990, section 8.2) and

making the following conversions. Cases are changed to chosen alternatives, and a pool of

controls are replaced by non-chosen alternatives. The lower case k which ranges from 1 to K

becomes an index for purchases, while the lower case r which takes a value from 1 to Rk+1

becomes and index for alternatives at the k-th purchase. Thus, K is the number of purchases

and Rk+1 implies the number of alternatives in the choice set for the k-th purchase. We

occasionally emphasize the distinction from the standard GAM by referring to it as the

extended GAM, if necessary.

Initial estimate by linear model, 71(xi)=xi'p V i

Repeat

Compute the current estimate of ii from 1 as

en 0)

Compute the adjusted dependent variable zi and the weights wi, where

zi =I(xi) + yi ~ L

pi (1 - pi)

Wi =Ipi (1 - Ad)

Obtain 4 p(xp)'s by nonparametric regression of zi on xi with weights wi.

[by the backfitting algorithm]

Until loglikelihood converges.
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C.4 Connection with utility residual method (URM)

The objective of GAM is same as URM in that they both estimate the additive nonparametric

utility functions in the MNL framework as shown in (C8). The difference lies on their execution

in inferring an unobserved utility (or predictor 71 with the notation of CAM) from the discrete

response. In GAM, a new utility 7n is obtained from the first order Taylor series approximation

of the logit link function, logit(y), about p, the best current guess to E(y I x). On the other hand,

URM constructs an empirical version of the inverse link function based on the current estimate.

And the new utility is computed such that the discrepancy from the theoretical inverse link, a

logistic function, is minimized.

C.5 Simulation Study

The same simulation study as in Section 3 is conducted to investigate the operational

characteristics of the extended CAM described in Section C.3. Figure Cl shows the resulting

nonparametric additive utility functions for advertising and price after convergence is

achieved in three iterations. The smoothing constants are subjectively chosen to be h=0.4,

which corresponds to 3.9 degrees of freedom by formula (8). The logarithmic relationship for

advertising and the negative cubic for price are recovered quite well, however, the similar

boundary effects as URM exist. Note the way residuals are distributed. There is a band of

blank observations around the fitted curve, which is almost reverse case of the URM. Figure Cl

is rescaled to show all residuals in Figure C2. The phenomenon is a consequence of the

formulation of the "residual", (y-p)/0(l-g), in the extended CAM described in the algorithm.

Because y is an observed binary choice and g is a predicted probability, those points above the

fit in the figures corresponds to y=l while those under are for y=O. Landweher, Pregibon, and

Shoemaker (1984) obtain similar partial residual plots when r9(x) is a linear-in-parameters

form, which coincides with the first iteration of the CAM. In Figure C3, the updated utility,

q(x)+(y-p)/p(1-p), is plotted against the utility q(x) based on the current estimate for each

iteration. Again, the similar blank band can be observed.
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Table Cl: Result of linear and the GAM logit in the simulation study

Linear model

variable coeff stderr t-stat

FEATURE 0.5811 0.1189 4.8850

DISPLAY 0.7681 0.2142 3.5863

ADV 1.8391 0.1585 11.6049

PRICE -3.4936 0.3189 -10.9558

ASC2 0.2098 0.0932 2.2516

ASC3 0.2860 0.0918 3.1167

p2 =0.14643

The Extended GAM

variable coeff. std.err t-stat

FEATURE 0.5833 0.1201 4.8560

DISPLAY 0.8295 0.2165 3.8321

$(ADV) 1.1688 0.0966 12.1033

$(PRICE) 1.1334 0.0980 11.5681

ASC2 0.2207 0.0942 2.3418

ASC3 0.3036 0.0926 3.2794

p2 = 0.16467

The True Underlying Model

variable

FEATURE

DISPLAY

log(ADV+0.1)

PRICEA3

ASC2

ASC3

0.5883

0.8036

1.0108

-2.1616

0.2141

0.2957

p2 = 0.16057

stdr

0.1199

0.2157

0.0848

0.1915

0.0938

0.0923

t-stat

4.9083

3.7246

11.9263

-11.2883

2.2813

3.2026
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Table C1 illustrates how well the GAM recovered the original functions by applying linear, the

extended GAM, and the true model transformations of the advertising and price to MNL. The

resulting p2 actually exceeds that of the true model. Bootstrap estimate of 50 samples indicates

153.3% recovery in the loglikelihood value with a standard error of 4.78%. This overfitting is

not surprising considering that the GAM is trying to maximize the expected loglikelihood by

fitting even random noise into the structure of the nonparametric utility functions. Increasing

the smoothing constants for both advertising and price from current value of 0.4 reduces p2 and

overfitting at the cost of biases in the resulting utility functions. Table C2 illustrates a

sensitivity analysis of the smoothing constants in the range between 0.1 and 0.6. The included

are loglikelihood value, p2 , and estimated scale coefficients for the transformations. Figures

C4 and C5 show the resulting transformations for advertising and price respectively.

Table C2: Sensitivity Analysis for the Smoothing Constant

h p2 loglikelihood coefficients (adv / price)

0.1 0.17813 -892.08 1.035 / 1.045

0.2 0.17019 -900.70 1.062 / 1.046

0.3 0.16641 -904.80 1.107 / 1.076

0.4 * 0.16467 -906.70 1.169 / 1.133

0.5 0.16372 -907.72 1.250 / 1.212

0.6 0.16294 -908.57 1.351 / 1.310

* The value chosen in the study

The computation time for the study varies from run to run depending on how many iterations are

repeated. But in all cases, convergence is achieved within 5 iterations and actual time is

between 3 and 5 minutes, which is about 40% less than that of URM.

Just as in URM, the extended GAM utilizes a logistic link function and is subject to the MNL

distribution assumption. Therefore, we test robustness of the GAM with the same five

distributions used in Section 3.2. Figure C6 and C7 illustrate the estimated advertising and
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price utility functions respectively. Surprisingly, plots for the uniform distribution look more

similar to the correctly specified doubly exponential ones that those for the independent

normal, despite the fact that the normal distribution closely resembles the doubly exponential.

Under a violation of error independence among alternatives, the GAM does not recover the

underlying true utility structure as well as URM even for the correlation of 0.5. Because the

result is based on the single sample, nothing affirmative can be concluded. However, URM

seems to be more robust than the GAM. This is further supported by the operational failure of

the GAM in some databases, which will be discussed in Section C.6.

Table C3: Goodness-of-fit of Various Nested Models

Model

feature, display

feature, display, price

feature, display, adv

feature, display, price, adv

feature, display, Oprice

feature, display, $adv

feature, display, $price, 4adv

deviance

2169.10

2129.18

2002.50

1985.02

1852.98

1831.78

1833.72

1813.40

degrees of freedom

2

4

5

5

6

7.9

7.9

11.8

Goodness-of-fit for various nested models are shown in Table C3 with degrees of freedom using a

formula (8) or (B5) derived in Appendix B. All three nonparametric utility models are

significant compared with their linearly specified counterparts at a level of 1%. In addition,

the nonparametric model with both $(adv) and $(price) is also significant in comparison to

models with either 0(adv) or $(price) alone at 1% level.

Figure C8 shows utility transformations of 50 bootstrap samples, from which 95% pointwise

confidence bands are derived in Figure C9. They are slightly narrower than those by URM.

One of the reasons of choosing the kernel method for nonparametric regression is that it can be

easily modified to accommodate multiple explanatory variables. In higher dimensional
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nonparametric regression, the main difficulty is not technicality or computation, but the amount

of data required to obtain sufficiently reliable estimator, referred to as "curse of

dimensionality". (Friedman and Stuetzle, 1981) Nevertheless, with close to 3000 observations

in our simulation study, the benefit of using a two dimensional nonparametric function for

variables between which interaction is highly suspected could outweigh the loss of some

statistical reliability by uncovering hidden structures. Thus, we have attempted two

dimensional kernel regression to compute the nonparametric utility transformation in

advertising and price in both GAM and URM.

Figure C10 shows the result of GAM. Although the reconstruction resembles the original model

in general, the additivity of the two variables specified in the utility function is not quite

captured. The marginal effect of the advertising is larger for higher price and that of the

price is larger for lower advertising. The issue needs further investigation, and a part of the

reason must be attributed to the curse of dimensionality. Result of the two dimensional

regression by URM is also presented in Figure C11. The smoothing constant (h=0.3) is chosen to

be larger than that of the one dimensional case (h=0.2) because data points are more sparsely

spread out in the two dimensional space. Again, the additivity of the simulation data is not

quite captured.

To explore the additivity assumption of GAM and URM, an interaction between advertising

and price is added to the original utility function and simulated choice data is generated. The

additional interaction term is -6-adv.(price-0.5), which cancels the positive advertising effect

as price is raised and reinforces the negative effect of price increase for higher advertising. As

expected, the linear utility model estimates a weak positive coefficient for advertising, 0.656

with t=4.16, and a strong negative coefficient for price, -6.61 with t=-17.3.

Figure C12 shows the result of the GAM transformations. Note the small vertical scale in the

advertising plot. t-value for advertising and price coefficients are 6.01 and 17.35 respectively,

which are similar to those of the linear specification. In Figure C13, the two dimensional

transformation is presented. Although it seems to resemble what the previous non-interaction

data should have, a comparison with Figure C10 reveals that the positive effect of advertising

is indeed dampened for higher price capturing the interaction. In terms of goodness-of-fit, the

two dimensional GAM improves p2 by 0.0323 over the additive linear model in comparison with

0.0157 for the additive GAM.
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Figure C10: Two dimensional utility transformation by GAM on the

simulation data
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Figure C11: Two dimensional utility transformation by URM on the

simulation data
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Figure C13: Two dimensional utility transformation by GAM on the
simulation data with advertising and price interaction
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Figure C14 shows the transformation obtained by URM from the same interacting data. The

result is similar to the GAM in that the advertising, whose main and interaction term tend to

cancel each other, has a much smaller scale than price where the interaction reinforces the

main effect. Their t-values are 4.14 and 17.38 respectively, which are similar to the linear and

GAM model. Figure C15 is a two dimensional transformations. It reproduces the decreasing

utility for increase in advertising at price near $1 quite well. In terms of goodness-of-fit, the

two dimensional URM improves p2 to 0.21943 while the additive URM actually lowers p2 to

0.21204, in comparison with 0.21379 achieved by the linear utility model. This study

illustrates that when the additivity assumption of GAM and URM is violated, additive one

dimensional transformation perform poorly. However, in URM one could at least visually

observe a bad fit of the transformation from the partial utility residual plots and possibly

conjecture the departure from the additivity assumption.

C.6 A Failing Example of the Extended GAM

The previous section demonstrates that the operational characteristics of the extended GAM

surpasses those of URM in some aspects such as computational time and improvement in fit. As

we learned, however, the method is less robust than URM towards various error distributions.

In fact, the problem turned out to be much more serous than initially thought, and the GAM

failed in some databases. Here I will report one such example on the Red Drink database used

in Section 4.1 and discuss the reasons.

The extended GAM updates the utility by adding the "normalized residual", (y-p)/4(1-p), to

the current utility. Hence, if the predicted probability is close to either 0 or 1, the denominator

becomes very small, while the numerator, the difference between the binary observation and

the predicted probability, would remain non-zero even for a perfect model. This produces

excessively large updated utility for the backfitting procedure. Figure C16 demonstrates the

phenomenon in the Red Drink data just after the first iteration. Note the scale differences by a

factor of 104 between the current and the updated utility. Estimated nonparametric utility

functions at the end of the first iteration are presented in Figures C17, C18, and C19 for loyalty,

price, and advertising respectively along with their rescaled plots so that all residuals are

included. The algorithm could not proceed to iteration two due to a numerical precision error in

computing MNL. The huge magnitude (-10,000) in the updated utility results in the counter-

intuitive and insignificant utility functions.
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Figure C15: Two dimensional utility transformation by URM on the

simulation data with advertising and price interaction
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Two methods are tried to overcome the difficulty: one by limiting the magnitude of 1/p(1-p),

and the other by preprocessing the updated utility with repeated applications of running

median in hope for eliminating outliers. The first remedy creates a cluster of points of the

updated utility at the threshold value and distorts the whole information, while the latter

failed to remove the outliers due to their overwhelming number.

This failure of the GAM is expected to be encountered rather frequently whenever extreme

values are predicted for choice probabilities. Such a situation can occur when certain

alternatives are either hardly chosen or chosen all the time, which is often the case in panel

data. It could also happen by simply facing a moderately large number (-10) of alternatives.

APPENDIX D

Sufficient Statistic for Canonical Link in GLM

Following the notation of Appendix C, when 0=1, the resulting link function is called a

canonical link, and there exists a sufficient statistic for . As an example, the canonical link

for the Bernoulli distribution is a logit function since

= db(O) dlog(1+e 6 )_ eO _ e-
d0 d0 1+eo 1+en

and thus i= g(A) =log

Claim: The sufficient statistic for the canonical link is I xi yi.

Proof:

Assuming that a($)=1 as usual, the likelihood function is obtained as

L = exp( 0 y - b(O)},

and thus the loglikelihood function is

L = y -b(O).
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For the canonical link, 0=1q=x' , where x and $ are pxl column vectors, it is

L = y x's - b(x'@) .

Because

L/ap = x y - (ab/&rj) (aQ /3D) = x ( y - g ),

the first order condition for the loglikelihood with n observations is

(Dl) n- yn -j)~
) Li = I xi ( yi - pi 0a13 i1  i=1.

Define a static w (a pxl vector) with a probability density function fw(w; 1) as

n n
(D2) W xi yi= xi p

i=1 i=1

using (Dl).

To show that w is a sufficient statistic for 1, it is adequate to demonstrate that

f (Y1; s) f (Y2; 5) --- f (yn; ) A(P)
fW(W; 0)

is independent of P. This is equivalent to

a A(P) -o or a log [A(p)J -o

But,

a log [AP$] a [ Li-

a

=0

log fw(w; p)I
ao

because the first term is 0 by the first order condition (Dl), and so is the second term as w is

independent of 1 by the first identity of (D2).

Q.E.D.
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APPENDIX E

Sketch of the Derivation for the Local Scoring Algorithm

[1] The first order condition for the expected loglikelihood function is

E (L x) =0

assuming that the integration and differentiation can be exchanged. To solve for j(x)

iteratively, a new estimate of (x), n W(x), is obtained by applying the Newton-Raphson

method as

(El) _x)i(X)- E (dL /d I x)

E (d2L /dT 2 I x)

For the exponentially family distributions of (C), it can be shown that

dL - dL 9 p (Y _ ) . d

di dO dp d di

EA x )= ad v-1

after some manipulation analogous to McCullagh and Nelder (1983, p41). Substituting these in

(El) results in

(E2) z= E ^1+ (y - 50 )g=x

Note that the adjusted dependent variable for GAM shown in (E2) is identical to its counterpart

for GLM of (C2) except for the expectation. For GAM with the additive nonparametric

predictors, the conditional expectation operator in (E2) is replaced by the backfitting

nonparametric regression with the weights

(E3) w-1 = var (in) = v

instead of the weighted least square regression in GLM.
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OVERVIEW

Marketing managers in packaged goods companies now have access to great quantities of scanner

panel data which allow household level modeling, which is particularly useful for

understanding marketing effects on the final customer and providing a deeper grasp of market

responses. In a household level marketing mix model, a purchase process is considered to

consist of three inter-dependent elements: namely, purchase incidence, brand choice, and

quantity selection. Although many disaggregate models exist for each element, less effort has

been devoted to combining them together to build full scale marketing mix models directed at

the marketing manager's brand planning problem.

In this regard, the nested logit formulation is introduced in the current work because it is highly

integrated, easily handles quantity purchases, and is driven by shopping trips. The scanner

data used in this study is an IRI single source database which contains store records, panel

purchase and shopping trip data, as well as household TV advertising exposures monitored by

TV meters. Explanatory variables for the model are constructed based on behavioral

considerations and take into account carry-over and forgetting of advertising exposures,

dynamic change and heterogeneity in household consumption rate, and inventory.

The variables are studied by the utility residual method described in Part II - a method to

obtain an additive nonparametric utility function in logit models -- to infer appropriate

parametric covariate transformations. Graphical diagnostics in logit models are found to be

very useful for identifying influential points, outliers, and heterogeneous segments. The

parameters are estimated in a calibration sample, their marketing implications are discussed,

and the model is cross-validated in a holdout sample.
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1. INTRODUCTION

1.1 Motivation

Marketing managers in packaged goods companies now have access to great quantities of scanner

data which contain not only sales but also information on price, promotional activities and,

increasingly, advertising. Of particular interest is the growing amount of household panel

data. Although many academic papers have made use of this data, there has been a surprising

lack of full scale marketing mix models based on the data and directed at the marketing

manager's brand planning problem. While an aggregate level marketing mix model which

links sales and/or share to control variables of a firm is valuable for planning and strategy

(Little 1975, Abraham & Lodish 1987, Blattberg & Levin 1987), it does not usually suggest the

underlying buyer behavior and how specific marketing implementations affect consumer

purchase decisions. Household level analysis holds the promise of avoiding certain

aggregation biases due to household heterogeneity and seems rich for understanding buyer

behavior.

In a household level marketing mix model, relationships are sought between marketing

variables and inter-dependent elements of a purchase process such as purchase incidence,

interpurchase time, brand choice, and quantity selection. Although many disaggregate models

exist for individual elements, only a few consider them together. Most of these studies combine

separate models, which work largely independently for each element. Hence, there is

potential advantage in an integrated marketing mix model at a household level to describe the

underlying consumer process. Such models will allow the researcher to obtain better

understanding of dynamic marketing phenomena as well as managers to act more properly on

strategic and tactic issues.

Effectiveness of sales promotions and advertising can be further enhanced by appreciating

market response in detail. Information contained in panel data in conjunction with behavioral

theories could fine tune the final execution of marketing activities by examining many issues

involved in market response including various possible nonlinearities, asymmetries, and

interactions. In addition to numerous behavioral studies conducted in laboratory settings, there

exists increasing number of field studies utilizing panel data to explore market response.

Reference pricing (Winer 1986, Kalwani et. al. 1989, Gurumurthy & Little 1989) and reference

promotion studies (Lattin & Bucklin 1989) shed light on the long term impact of frequent price
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cut and promotions in repeat purchasing. Advertising exposure response has been studied by

Tellis (1988), and Kenetker, Weinberg, & Weiss (1989).

The current research develops a household level marketing mix model which integrates the

three elements of a buying decision - namely, purchase incidence (when), brand choice (what),

and quantity selection (which size and how many) -- in integrated framework with special

attention to nonlinear market responses and their long term effects. The model is formulated

based on the nested logit model (Guadagni & Little 1987) with various carry-over variables,

whose responses are diagnosed nonparametrically by the utility residual method. Unlike Part

II, URM is used conservatively for graphical inspection rather than directly incorporating the

resulting nonparametric utility transformations into the model. In the current work, the

diagnostic capability of URM is exploited.

1.2 A Brief Review of the Literature

Table I summarizes a number of relevant modeling studies of the four elements, purchase

incidence (PI), interpurchase timing (IT), brand choice (BC), and quantity selection (PQ) in a

buyer decision process. The list is created with a particular emphasis on market response of

sales promotions and advertising. It is by no means an exhaustive list.

The well-known negative binomial distributed (NBD) interpurchase timing models aggregate

over heterogeneous consumers by assuming gamma distributed purchase rate. (Ehrenberg 1972)

Such aggregation approaches to the brand choice are mostly based on stochastic processes such

as zeroth order, Markov, and linear learning (Kuehn 1962, Lilien 1974) models. One of the first

multiple element purchase process was proposed by Jeuland, Bass, & Wright (1980) using NBD

interpurchase timing compounded with the multinomial Dirichlet choice model. Their model

assumes independence of the two elements and marketing variables are not introduced. Neslin,

Henderson, & Quelch (1985) and Wagner & Taudes (1986) integrate interpurchase timing and

purchase quantity which take into account the effect of marketing mix variables by aggregating

panel data. The former studies promotional purchase acceleration by a simultaneous regression

equation technique and finds that the acceleration is more likely to be attributed to increased

purchase quantity than shortened interpurchase time in both bathroom tissue and coffee

product category. The latter incorporates marketing mix variables and gamma distributed

heterogeneity to the Poisson incidence model coupled with the zeroth order generalized
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Table 1

Household level marketing mix models focusing on market response issues

Article

Hauser & Wisniewski 1982

Carpenter & Lerman 1985

Neslin et. al. 1985

Wagner & Taudes 1986

Jones & Zufryden 1980

Zufryden 1987

Krishnamurthi & Raj 1985

A/D S/E H N

A

A

A

A

A/D

A/D

A

S(1)

S(1)

E

S/E

S/E

S

E

Y

N

N

Y

Y

Y

Y

Y

N

N

Y

N

N

N

PI IT

yes

BC PQ

yes

yes

- yes

NBD

NBD

yes

- yes

- MNL

yes

yes

DEP

Y

NA

Y

N

N

NA

NA

Guadagni & Little 1983 D E Y Y - - MNL - NA

Lattin 1987 D E Y Y - - MNL - NA

Lattin & Bucklin 1989 D E Y Y - - MNL - NA

Kalwani et. al. 1989 D E Y Y - - MNL - NA

Kanetkar et. al. 1989 D E Y Y - - MNL - NA

Gurumurthy & Little 1989 D E Y Y - - MNL - NA

Guadagni & Little 1987

Tellis 1988

Krishnamurthi & Raj 1988

Gupta 1988

Pedrick & Zufryden 1990

D

D/A

D

D

A/D

E

E

E

S/E

S/E

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

NL

NBD

- NL

- MNL

- MNL

Erl-2 MNL

- MNL

NL

CR

CR

cumL

Y

Y

Y

N

N

NOTATION: A/D = Aggregate or Disaggregate purchase occasion approach
S/E = Stochastic or Econometric model
H = does it take into account of Heterogeneity of the households?
N = does it take into account of Nonstationarity?
PI = Purchase Incidence
IT = Interpurchase Timing
BC = Brand Choice
PQ = Purchase Quantity
DEP = does it consider inter-dependency among elements, PI, IT, BC, and PQ?

S(x) = Stochastic model of order x
NBD = Negative Binomial Distribution model
MNL = Multinomial Logit Model
NL = Nested Logit model
Erl-2 = Erlang 2 distribution model
CR = Censored Regression
cumL = Cumulative Logit model
NA = Not Applicable
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Dirichlet distribution brand choice process (Jeuland 1978), which is called Polya process, and

demonstrates a good time series tracking to the detergent data.

There have been increasingly many disaggregate studies with further complexity in an effort to

combine more than one element of purchase process. Guadagni & Little (1987) integrate brand

choice, quantity selection, and purchase incidence driven by shopping trips, in the nested logit

formulation. Both Tellis (1988) and Krishnamurthi & Raj (1988) combine the multinomial

logit brand choice model with purchase quantity in a regression framework using limited

dependent variable techniques (Maddala 1983, Amemiya 1985). Their substantive focuses

differ in that the former investigates the effect of interaction between advertising exposure and

brand loyalty on brand choice and purchase quantity, while the latter considers price

elasticities. Gupta (1988) merges the three independent elements, interpurchase timing by

Erlang-2 distribution, brand choice by logit, and purchase quantity by cumulative logit. He

concludes that much of the promotional effect appears on brand switching with small effect on

purchase timing and negligible effect on stockpiling (increased purchase quantity) in coffee

category, contrary to the earlier finding by Neslin et. al. (1985). Pedrick & Zufryden (1990)

examine the impact of advertising media plan, in particular depth and frequency, by the logit

brand choice model compounded with the Poisson purchase incidence assuming their

independence.

1.3 Issues in Multiple Element Purchase Process Models

There are three major issues to be considered when combining more than one element of the

purchase process.

1.3.1 Inter-dependency among the elements

By far the most complete combined models to date are those by Guadagni & Little (1987)10 and

Gupta (1988), in which all three elements, purchase incidence or interpurchase timing, brand

choice, and purchase quantity, are taken into account. However, there is a difference between

the two in the way to combine the elements. The nested logit formulation, as will be discussed

10 Although they did not emphasize the quantity selection other than size choice (how many additional
units to buy), their model can be easily extended to model a more sophisticated purchase quantity
scheme by introducing interaction terms with the "first purchase opportunity within trip" dummy
variable, if enough observations are made on multiple-unit purchase.
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in section 2.1, allows the decision of purchase incidence and purchase quantity to depend on

brand choice via "the category attractiveness" which refers to the expected maximum utility of

all available brands at the shopping trip. Therefore, joint probability of purchase incidence

(PI), brand choice (BC), and purchase quantity (PQ) under the influence of explanatory

variables, X, is expressed as

P(PI, BC, PQ I X) = P(PQ I PI, BC, X) P(PI I BC, X) P(BC I X) .

While Gupta's model contains three independently working modules so that

P(PI, BC, PQ I X) = P(PI I X) P(BC I X) P(PQ I X) .

The former seems more appealing. The following example will illustrate some of the

dependency issues.

Suppose Mrs. Logit went for grocery shopping but was not planning to buy any ground coffee

because she had plenty in stock at home. (This implies a very low category purchase

probability if the purchase incidence model contains a household inventory variable.)

While she was in the store, a huge stack of coffee cans with a big sign saying "Today Only,

Half Price on Miniwell House Coffee" caught her attention. The Miniwell brand has one of

the lowest market shares, and Mrs. Logit has never bought it before. But considering the

low price, she decided to buy the coffee.

In both methods, Guadagni & Little and Gupta, the brand choice model will predict a choice of

Miniwell brand with high probability. The independent model is likely to predict a low

category purchase probability, however, because the effect of the Miniwell promotional price

cut is weakened by the use of share weighted category price and promotional variables in the

interpurchase timing model. In other words, the effect of promotions may be underestimated in

category purchase and quantity model by the formulation. In contrast, the nested logit will

pick up the promotional effect via category attractiveness (because Miniwell brand results in

the maximum utility for that trip) and thus boost the category purchase probability. As this

"thought experiment" indicates, the independence assumption among the purchase process

elements seems less desirable than the full conditioning.

The formulations of Tellis (1988) and Krishnamurthi & Raj (1988) are basically the same.

They both capture the dependency between brand choice and purchase quantity by establishing

brand specific quantity equations. Furthermore, their quantity model is censored regression

which interacts with the brand choice model. Pedrick & Zufryden (1990) compound MNL
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brand choice into NBD purchase incidence by using the predicted brand choice probability as

the purchase rate parameter of the Poisson incidence model under their independence

assumption, which is a quite common technique in stochastic purchase models. (Jeuland et. al.

1980)

1.3.2 Purchase incidence vs. Interpurchase timing

Wheat & Morrison (1990) argue that purchase incidence is a better way to model category

purchase than interpurchase timing for two reasons. First, category purchase decisions are, by

and large, driven by shopping trips, implying that schedules of many people are not flexible

enough to allow irregular shopping trips. Second, there exists a possibility of selection bias

caused by truncating observations of very long interpurchase times from a study sample.

In addition, an accurate estimation of the relation between interpurchase timing and intensity

of promotions is difficult due to confounding with the timing of promotions observed in the data.

In other words, the extent to which interpurchase time is shortened is affected not only by the

effectiveness of the promotion but also when the promotion takes place - a factor which is out

of our design control. Such a difficulty does not arise in an analysis of the relationship between

purchase incidence probability and promotion intensity.

It is also technically burdensome to incorporate time varying marketing mix variables in

interpurchase timing models due to commonly practiced weekly promotions and price changes.

(Gupta 1991)

1.3.3 Discrete nature of purchase quantity

Both Tellis and Krishnamurthi & Raj treat purchase quantity as a continuous variable and use

regression in their models. The approach could result in biased estimates for observed

quantities which are integral as 1 unit, 2 units, or multiples of package sizes such as 16oz and

32oz. Another complication here is how to define marketing variables for a brand which

consists of different sizes. Predictor variables such as price and promotions are generally size

specific. Thus, setting them as share or sales weighted values -- the method employed by

many studies -- smooths out much variations in these variables and discards important

information in the data. In contrast, the nested logit model, which differentiates alternatives

by brand and size and views each additional unit purchase as a separate purchase occasion,

poses no problem.
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1.4 Model

With these factors taken into account for the combined element approach, the decision has been

made to base the model on the nested logit formulation. The nested logit is appealing from

theoretical point of view since it is derived from the utility maximization consumer theory

unlike many regression and stochastic models.

This paper is organized as follows. Section 2 illustrates the methodology to be used in our

model by briefly reviewing the nested logit model of Guadagni & Little (1987). Then the

utility residual method (URM), a technique used for diagnosing the nonlinearity in the utility

function, is introduced. Section 3 describes the Red Drink single source data for the study.

Then, the brand choice and category purchase models are discussed and their calibration results

are presented in section 4 and 5 respectively. Finally, section 6 summarizes the study.

2. METHODOLOGY

2.1 Nested Logit Model

In the nested logit (Ben-Akiva & Lerman 1985) as adapted by Guadagni & Little (1987), the

consumer purchase may be thought of as a two stage-process of category purchase followed by

brand choice in an integrated framework. (However, as noted by Guadagni & Little, theory

does not require that the actual customer decision making is in two stages.)



shopping trip

buy category buy category
now later

b

brs1 brs2 brs3 brs1 brs2 brs3

Nested logit model for consumer purchase process

The key concept of the nested logit hierarchy is an interaction between two stages, the upper

branch and its subtree, where the former choice depends on the utilities associated with all

alternatives in the subtree in addition to its own branch characteristics. In our case, buy

category now is influenced by attributes of stage a decision as well as utilities of choosing each

brandsizes given buy category now is selected. Hence, choice probability of the consumer's

ultimate alternative (a,b) can be expressed as P(a,b I x) = P(a I b,x) P(b I x) rather than P(a,b I x)

= P(a Ix) P(b I x) which implies independence of the two stages.

Nested logit postulates that the utility of alternative (a,b) is expressed as

uab = Wa + Vb + Vab + ea + eab

by assum-ing the variance of eb to be negligible compared to that of ea. Then,

P (b I a)= evb eVb+Vab

Y 'a

,ek+vak ew'
k under a

and
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(1) P(alb)= e(wa+Wa)ga

I e(Wk+Wk)9a
kcA

where W'a = systematic component of the maximum utility of the brandsize alternatives

b's that involve a

= expected maximum utility of the brandsize alternatives b's under branch a

W'a is the interaction between upper branch and its subtree and referred to as a measure of the

"inclusive value" (Ben-Akiva & Lerman 1985). In our context, we call it "category

attractiveness" for its intuitive interpretation. For example, if a consumer's favorite brandsize

is on promotion, not only its choice probability increases but so does the probability of the

purchase incidence via increase in the category attractiveness. vab is not necessary in our case

because no brandsize choice takes place when buy category latter is chosen. Thus, vab = 0, and

P(b I a) = P(b) .

Relevant marketing mix variables for the purchase incidence stage include the category

attractiveness (w'a), household inventory, seasonality, category price, environmental factors

such as trend and inflation. Also, an important variable to model for multiple unit purchases is

a dummy to indicate whether the current purchase incidence corresponds to a purchase decision

of the first unit or of the second or further unit within the given shopping trip. Examples of

marketing variables for the brandsize choice stage are price and promotions, which are

characteristic of the products, and advertising exposure, coupon, previous purchase history, and

brandsize preference, which are characteristic of the households.

The estimation can be carried out by the maximum likelihood method. Although a full

information joint estimation is possible, a convenient and consistent sequential estimation

permits a use of the standard multinomial logit routine with some loss of efficiency. (McFadden

1981, Ben-Akiva & Lerman 1985)

2.2 The Utility Residual Method (URM)

URM introduced in Part II generalizes the standard linear-in-parameter utility function in the

multinomial logit model by additive nonparametric utility function of each covariate as
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(2) Pj= evn where vj= $p(xp)
Y evk p
k

where xjp is a p-th covariate for alternative j and $p(-) is a one dimensional nonparametric

function. We will utilize the method in a conservative manner as a diagnostic tool and choose

better parametric transformations of the covariates for the utility function, if necessary, as a

result of subjective judgements on $p(-). Because URM does not automatically capture the

interaction among covariates, these aspects still need to be manually examined with care.

3. RED DRINK SINGLE SOURCE DATABASE

A product category studied is so called Red Drinks which includes cranberry cocktail and any

blends of cranberry such as cranberry apple and cranberry raspberry. In this category, a share

model (i.e., brand choice model) describes only part of the market phenomena because of many

switchings between other drink categories such as fruit juices and soft drinks. A sales model

describing the category expansion and contraction is crucial to describe the whole picture. The

database is a single source data from Grand Junction, Colorado supplied by IRI, and contains

panel records including shopping trips and store records over two years (10/12/87-10/08/89),

and TV advertising exposure data monitored by TV meters for the last one year.

15 highest share brandsizes which constitute 71% of the category purchases are extracted for

the study. The products are listed in Table 2 with their shares and average prices of the

purchases. Ocean Spray is the only national brand appearing in the top 15 and the other two

brands, FD and JL are both private (store) labels. The highest ranking occupied by any other

national brand is only 30th. We also note that Ocean Spray is the only TV advertiser for the

category in the market although local newspaper features may appear for other brands.

194 households who meet IRI continuity criteria as sample", are continuously monitored over

the entire two years for their shopping trips and purchases, while their TV data contains date

11 Households who drop out or join in the middle of the sample period or who have overly long gaps
between shopping trips are excluded. However, it does not imply that the households are regular
purchasers of the category products. In fact, there are 54 households with only a single category
purchase over the last two years, which made our calibration quite challenging.
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and daypart of each Ocean Spray media exposure. Numbers of various events in the database

are summarized in Table 3.

Table 2: Shares and average prices of each brandsize in the Red Drink Database

share (%) average Drice (W/oz)

FD cranberry 32oz
FD cranberry 48oz
JL cranberry 48oz
JL cranapple 48oz
JL cranraspberry 48oz
OS cranapple 48oz
OS cranapple 64oz
OS cranapple 128oz
OS cranberry low-cal 48oz
OS cranberry 32oz
OS cranberry 48oz
OS cranberry 64oz
OS cranberry 128oz
OS cranraspberry 48oz
OS cranraspberry 64oz

6.25
9.26
3.75
3.09
3.09
8.75
4.41
3.75
6.76

11.32
12.35
10.37

5.59
6.47
4.78

4.34
4.30
3.44
3.44
3.42
4.81
4.57
4.35
4.82
5.46
4.79
4.57
4.31
4.78
4.59

Table 3: Statistics of various events in the sample database

in/i 3 /l /1/7 1n/i ?/R7-1 n/nQ/88 in/i n/88~1i0/n8/89

weeks

purchases

trips

52

371

n.a.

purchase opportunities 12 n.a.

ad exposures n.a.

store data n.a.

* n.a. = not available

12 Refer to section 5.1 of the category model.
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In the next two sections, we will construct a brand choice and category purchase model which

will be calibrated and validated. Due to the limited time frame on certain data, the procedure

will be as follows. Household purchase data without trip or store information for the year

preceding the sample period is used as pre-calibration for initializing certain variables (e.g.

loyalty, household inventory). Next, to allow for the maximal accuracy, the entire two years

is used for selecting covariates and obtaining their transformations. Then, the model is

calibrated based on the first 72 weeks of the two years (10/12/87-2/26/89) with 628 purchases

and 32,573 trips and tested on the holdout sample during the remaining 32 weeks

(2/27/89-10/02/89) with 361 purchases and 14,699 trips. In both cases, a null model of equal

probabilities is used for a measure of fit, p2 and 2. All computations are done on a Dell 486 PC.

4. BRAND CHOICE MODEL

4.1 Brand Choice Model Specification

Our main objective here is to build a parsimonious marketing mix model with good predictive

fit. The following variables are selected after extensive data analysis.

Brandsize loyalty (between 0 and 1)

Feature (0, 1, 2, or 3)

Display (0 or 1)

Price (cents/oz)

Adstock (non-negative)

Brandsize loyalty for the j-th alternative defined as

(3) loyaltyj(t+1) = XI-loyaltyj(t) + (1-X)-dj(t)

where dj(t) is 1 if alternative j is bought at t-th purchase occasion, 0 otherwise,

is similar to the brand and size loyalty in Guadagni & Little (1983) But the value is associated

for each alternative (brand and size pair) instead of brand and size separately. Use of the

brandsize loyalty imposes less constraint than using brand and size loyalties, and tends to
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produce better fit with parsimony.13 Due to the fact that the loyalty takes into account cross-

sectional and time series variation with the same decay constant, some researchers propose to

decompose into two elements: one for stationary household idiosyncrasies and the other for

their dynamic change. (Fader & Lattin 1990) Since at least in some cases, such a decomposition

does not have much impact on prediction or estimation of other parameters (Guadagni & Little

1987), and since our database does not contain enough purchases to allow accurate estimation of

stationary preference for many panelists, we will stick with the single measure. The decay

constant, X1, is estimated to be 0.774 by the Taylor series method (Fader, Lattin, & Little 1990)

which maximizes the likelihood function.

Feature is a promotional product feature in local newspapers and store circulars, and takes a

value of either 0, 1, 2, or 3 depending on its effectiveness. (IRI classifies them as C, B, and A-ad)

Display is a binary in-store display indicator. Price is defined as price paid at a cashier

divided by the volume in cents per ounce. It includes both promotional price-cuts and coupons.

Decomposing the price into regular unit price and unit price-cut did not improve the fit, and

13 Separating brandsize loyalty into brand and size loyalty or brand, size, and flavor loyalty resulted in
worse fit as shown below.

-specification 1 2 3

p2 0.4755 0.4597 0.3669

p2-adjusted 0.4684 0.4519 0.3594

brandsize loyalty 5.474 -

(29.85)

size loyalty 2.956 3.282
(17.91) (20.26)

brand loyalty 2.087 2.523
(9.13) (10.72)

flavor loyalty - 3.144 -

(18.69)

feature 0.372 0.360 0.367
(3.29) (3.17) (3.35)

display 1.071 1.058 0.841
(6.06) (5.89) (4.94)

price -0.985 -1.163 -0.994
(-4.77) (-5.44) (4.93)

adstock48 0.116 0.112 0.101
(2.90) (2.70) (2.56)

* N = 989
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simply separates the price effect into two components. Coupon usage is very light and less than

2.5% of the purchases (31 purchases) are accompanied by coupons. In addition, because coupon

availability is not known, we presume their effect to be similar to discounting and let it be

absorbed in the price variable. None of the two way interactions among feature, display and

price (or even price-cut) are significant.

The television commercial broadcasts (three types) for Ocean Spray are primarily brand image

oriented and do not strongly differentiate among flavors. Thus, we assume the same

advertising exposure level for all Ocean Spray brandsizes regardless of their flavor and size.

There was no private label TV ad. The adstock variable for each panelist was constructed as a

sum of all previous exposures encountered before a particular purchase occasion in question,

adjusted for memory recall (forgetting) by daily decay. The variable is constructed based on

behavioral and field studies of advertising (Little & Lodish 1969, Lodish 1971, Clarke 1976,

Craig, Sternthal, & Leavitt 1976), and captures a direct carry-over of advertising effect in

continuous time frame unlike Tellis (1988), Kanetkar, Weinberg, & Weiss (1989), and Pedrick &

Zufryden (1990). The estimated decay rate per day by the Taylor series method produced

0.914, which corresponds to 53% retention after a week. Lodish (1971) found a slightly slower

decay of about 70% retention after one week and 30% after 4 weeks for magazine ads from

several empirical studies. We have created size and flavor specific adstock by multiplying

0/1 indicator dummy for appropriate brandsizes.

Motivated by the study of Tellis (1988), interaction terms between brandsize loyalty and a

linear and quadratic size-specific adstock were introduced in the model. Neither of them was

significant as is the case in his article. Similarly, we have introduced price and adstock

interaction to examine whether advertising affects price sensitivity. Kanetkar et. al. (1989)

find a significant negative coefficient and thereby conclude increased price sensitivity in their

dry dog food and aluminum foil product category. The effect was not observed in our study

which found an insignificant positive coefficient (t=0.23).

Table 4 is the result of models with various adstock variables calibrated on the whole two

years for the purpose of variable selection. In general, adstock coefficients are much weaker

than those of other marketing mix variables - a fact observed in other scanner studies (Tellis

1988). Advertised flavors receive a slightly stronger effect than non-advertised flavors, but

the difference is almost negligible. Among different sizes of Ocean Spray brands, 48oz - the

primary size for the category - indicates a significant positive, while relatively insignificant

negative is observed for 32oz. Adding adstock quadratic terms as in Tellis to account for the
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saturation phenomenon did not change the general relationship among the adstock coefficients

for different sizes.

Table 4: Result of MNL models with various adstock variables

specifiction 1 2 3

p2 0.4755 0.4761 0.4745

-2 0.4684 0.4679 0.4671

adstock32

adstock48 0.116
(2.90)

adstock64

adstock128

adstock flavor

adstock non-flavor

brandsize loyalty

feature

display

price

5.474
(29.85)

0.372
(3.29)

1.071
(6.06)

-0.985
(4.77)

-0.102
(-0.79)

0.139
(1.97)

-0.017
(-0.21)

0.096
(1.12)

5.477
(29.74)

0.361
(3.19)

1.084
(6.10)

-1.000
(-4.82)

0.096
(1.34)

0.061
(0.95)

5.446
(29.66)

0.385
(3.40)

1.049
(5.95)

-0.994
(-4.80)

* N = 989

Since one desirable model characteristic is parsimony, only significant and semi-significant

variables are retained throughout the study. Consequently, the brand choice model includes

five variables: brandsize loyalty, feature, display, price, and adstock for 48oz, in addition to

14 alternative specific constants which are kept to avoid bias in the coefficients.
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4.2 Analysis by URM

Finally, URM is applied to obtain better behavioral insight and to examine whether any

variable transformation is necessary. The loyalty plot shown in Figure 1 is very similar to

those observed in the two previous applications in Part II. The curve suggests that there exist

three segments, non-buyers and loyal buyers of a brandsize with a steep utility slope and

switchers with a very flat region. To model the curve in a parsimonious way, transformation

by a cubic function with the inflection point at 0.45 is applied. The parametric function

approximates the URM transformation very well when scaled by the estimated coefficient in

Figure 2.

The price plot of Figure 3 resembles the curve presented by Gurumurthy & Little (1989) in that

it has a relatively flat portion around the most frequently found prices. As seen in Table 2, the

price range of most brandsizes is between 4 and 5 cents/oz, in which consumers' utility is

insensitive to price movement. If price is lower than 4 cents/oz because the product is either

discounted or JL private label, utility increases quickly, while price higher than 5 cents/oz

results in steeper decreasing utility. Trying to fit a cubic function as in the loyalty case,

however, led to lower fit and thus, we leave it linearly specified.

The adstock plot in Figure 4 suggests a saturation effect of advertising, which is observed in

many studies. (Little 1979) Logarithmic transformation, log(adstock+1), shown in Figure 5 is

employed to account for the diminishing return.

The model with loyalty and adstock transformations results in improving fit of 0.0034 in p2 . In

the following, we will compare both the linear and parametrically transformed models in the

calibration and holdout sample.

4.3 Calibration and Validation

Table 5 is the result of the linear and transformed model on the calibration sample. The

feature variable which is significant at t=3.3 using all 104 weeks becomes insignificant. We

suspect that this is due to sample variation. The transformed model has a slightly higher p2 ,

but lower mean probability and percent of correct choices. Once again, this implies robustness
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Figure 1: Loyalty utility transformation by URM
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Figure 2: URM vs. parametric transformation of loyalty variable
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Figure 3: Price utility transformation by URM
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of the linear model in prediction even when the utility function is incorrectly specified as

demonstrated by the simulation study of URM in Part II.

Table 5: Calibration result of brand choice model

spedficaion Linear Transfonned

p2 0.4851 0.4895

i2 0.4739 0.4783

prob. of correct choice 0.425 0.424

percentage of correct choice 54.30 53.66

brandsize loyalty

adstock48

(loyalty - 0.45)3

log (adstock48 +1)

feature

display

price

5.582
(23.17)

0.124
(2.75)

0.164
(0.84)

1.021
(4.17)

-1.063
(-4.06)

28.28
(20.93)

0.485
(2.28)

0.140
(0.71)

0.960
(3.92)

-1.046
(-4.04)

* N = 628

Because the loyalty variable involves the carry-over based on previous purchases, for

projection in the holdout sample, a purchase sequence predicted by the model must be used as

purchase history. As in Guadagni & Little (1983, 1987) and Gupta (1988), this is done by

repeated runs of Monte Carlo simulation to stabilized the outcome. Here, we report the result

based on 50 runs. Table 6 confirms the validity of the two parsimonious models by comparing

fitting criteria between the calibration and holdout sample. R2 is sample correlation of 4-week

shares between the actual and predicted for all brandsizes. Time series share plots of the total
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Ocean Spray and the major brandsize - Ocean Spray Cranberry Cocktail 48oz -- by 4-week

period are shown in Figures 6 and 7 respectively for the linear and transformed model. A

visual inspection suggests a better fit by the linear model in the holdout as well.

Table 6: Goodness-of-fit for linear and transformed model in calibration and holdout sample

model

Transformed

Linear

prob, of correct choice

calibration 0.424

holdout 0.402

calibration

holdout

0.425

0.414

ave. loglikelihood

-1.382

-1.482

-1.394

-1.488

Due to the mixed result, we adopt the standard and parsimonious linear model for brand choice,

and the category attractiveness variable used in the category purchase model will be computed

accordingly.

5. CATEGORY PURCHASE MODEL

5.1 Category Purchase Model Specification

Because relatively few disaggregate category purchase studies have been done in the past

(Guadagni & Little 1987, Gupta 1988) unlike brand choice, we propose the following variables

for possible inclusion in the model and proceed cautiously using a priori hypotheses and

empirical testing.

buy-later dummy (0/1)

first purchase opportunity (0/1)

category attractiveness (unitless)

category price (cents/oz)

adstock (non-negative)
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category attractiveness on multiple unit purchases (unitless)

standardized spending on a shopping trip (unitless)

household buying rate (oz/week)

household consumption rate (oz/week)

household inventory (weeks of supply)

seasonal index (unitless)

Values for these variables are specified for each of the two alternatives - buy-now and buy-

later, and for each purchase opportunity which is defined as in Guadagni & Little (1987).

That means the number of purchase opportunities is the number of trips plus the total number of

units purchased to account for multiple unit purchases (45 out of 989 purchases).

Buy-later dummy is an alternative specific constant for the binary logit. First purchase

opportunity dummy indicates whether the particular purchase opportunity is for the first unit

or the second and further, and captures the likelihood of multiple unit purchases not explained

by other variables.

Category attractiveness is the expected maximum utility of all brandsizes faced at a shopping

trip (purchase opportunity) by a household. It is an output from the subtree in the nested logit

formulation described in section 2.1 and also referred to as the "inclusive value". Its value for

buy-later is an 8-week moving average of buy-now category attractiveness as in Guadagni &

Little. We have also created category price and adstock separately to examine their unique

roles not taken into account by the category attractiveness.

Category price for buy-now is an average of brandsize prices14 at a particular purchase

opportunity, and its 8-week moving average is used for buy-later counterpart. When introduced

in the full model, the category price was not significant (t=-0.97) and lowered the t-value of

the category attractiveness by 1.5. In addition, because correlation between the two variables

are quite high (-0.63), we decided not to include the category price in the model.

Adstock is the one used in our brand choice model, except that the decay is now updated for time

of each trip. When introduced, the adstock was insignificant at t=-0.60 and had moderately

high correlation with the category attractiveness (0.32). Hence, it was also dropped.

14 We did not take the average weighted by a household preference measure such as loyalty done by
Gupta (1988) because we wished to avoid collinearity with the category attractiveness.
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Category attractiveness on multiple unit purchases is created to examine the effect of price and

promotions on multiple unit purchases. It is set equal to category attractiveness only on

purchase opportunities for the second or further purchases and to zero otherwise. Equivalently,

it is an interaction term between category attractiveness and one minus the first purchase

opportunity dummy. The variable captures the tendency (if any) to buy an extra unit (given

that at least one unit has already been bought) as a result of the difference between the current

utility of the product - determined by the current price, promotions, adstock, and loyalty-and

its 8-week moving average. In other words, a significant positive sign suggests a stockup of a

temporally promoted and/or advertised product.

Standardized spending on a shopping trip is defined as a dollar amount spent on a shopping trip

divided by a household specific average spending of all shopping trips. 1 5  The

standardization takes care of heterogeneity between heavy and light consumers characterized

by, for example, family size.

A household purchase rate is decomposed into two components: cross-section across households

(heterogeneity) and time series within a household (longitudinal effect). The household

buying rate - defined as the total volume of category purchase by the panelist divided by the

number of weeks over the entire three years - accounts for the former. The latter dynamics is

captured by a household consumption rate with the exponential smoothing of the past buying

rates as,

(4) smoothed consumption rate (at current category purchase)=

Xc - smoothed consumption rate (at the previous category purchase)

+ (1-kc) - (volume of the previous purchase / smoothed interpurchase time)

where kc is estimated to be 0.490. The starting consumption rate is set to be the household

buying rate above. The smoothed interpurchase time in (4) is computed to account for its time-

varying effect as,

(5) smoothed interpurchase time (at current trip) =

X - smoothed interpurchase time(at previous category purchase)

+ ( - 4) - (most recent interpurchase time).

15 This variable was suggested by D. Honnold of IRI.
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Equation (4) and (5) represent the same smoothing scheme used for the loyalty variable in the

brand choice model, and is equivalent to averaging with geometric weighting to adapt more to

recent events. That is, a smoothed variable, y, is expressed as the weighted mean of past

covariate variable, z, as

Xk z (t - k)

(6) y (t+1) = X y (t) + (1-)) z(t) = k=

),k
k=O

The decay constant, Xt, for the interpurchase time is estimated to be 0.73 by the Taylor series

method. The average household interpurchase time over the three years, (i.e., [no. of weeks] /

[no. of category purchases] ), is used to start the variable. This average is also used for

panelists with a censoring problem due to few purchases (less than 3).

The value of the consumption rate for buy-later is set to be the household buying rate, which is

a stationary measure of a consumption rate.

The household inventory is defined in unit of weeks of supply to account for household

consumption heterogeneity as in Guadagni & Little. Then, the inventory at the r-th purchase

opportunity is,

(7) inventory(r) = inventory(r-1) - [date(r) - date(r-1)] + volume purchased (r-1)

7 usage rate (r)

We have two candidates for the usage rate in (7) from the previous definitions. One is the

household buying rate which is stationary and the other is the household consumption rate

which is dynamic. The stationary one resulted in much better fit than the latter by 0.0095 in

p2 . The reason seems to be the strong correlation between the dynamic inventory and the

household consumption rate which is also time-varying.

We do not clip the values of the household inventory at either the upper or lower bound unlike

Guadagni & Little (1987) and Gupta (1988). Therefore, if the category purchase is not made in
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a long time, the inventory could be driven towards a large negative value. At first, this may

not seem reasonable if only physical product inventory is concerned. However, the definition of

this inventory perhaps captures "mental state of inventory", i.e., a desire to consume the

category product because one hasn't used it for a long time. Taking into account this behavioral

phenomenon is potentially important in diverse categories such as Red Drinks where consumers

can readily seek variety and substitutes by other drink categories. This is in contrast to a coffee

category studied by the aforementioned articles since coffee is very much like necessity for

many addicted coffee drinkers so that the physical inventory overshadows the mental one.

The data also supports this formulation with much better fit (improvement of 0.0280 in p2 ) than

when the clipped inventory is used. The base level of the inventory for a household is shifted

in such a way that the inventory becomes non-negative by adding the most negative value to all

observations. The household inventory for buy-later is 0 as in Guadagni & Little.

Finally, a plot of category purchase volume by week over the two years indicates influences

from seasonality and certain holidays, but not from steady trend --- either expansion or

contraction. Thus, we construct a weekly seasonal index as follows to avoid any confounding

with marketing mix activities. First, the weekly number of category purchases is predicted by

the category model with all covariates except seasonal index. Then, these predictions are

subtracted from the observed number of purchases to form residuals on weekly basis. The

seasonal index is an average of the two residuals which correspond to the same week of the two

year.16 The resulting seasonal index which is normalized to have a mean of 0 is shown in

Figure 8. Difference between a peak (Nov.-Apr.) and off-peak (May-Oct.) season by an IRI

definition can be observed. A drop right after the Christmas - a phenomenon clearly found in

the data - is also reflected in the plot. The index for buy-later is set to zero.

To summarize, the category purchase model has nine variables: buy later dummy, first purchase

opportunity, category attractiveness, standardized spending on a shopping trip, category

attractiveness on multiple unit purchases, household buying rate, consumption rate, inventory,

and seasonal index.

16 It is not possible to construct a seasonal index without using the holdout data because minimum
duration of 2 years is necessary. Due to this construction, prediction performance in the holdout is
expected to be somewhat inflated.
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5.2 Analysis by URM

As shown in Table 3, the total number of category purchases is 1,040 among 48,312 purchase

opportunities over the two years. This corresponds to only 2% of buy-now choices for the

observations, and much computational effort is expensed for estimating the buy-later dummy in

the binary logit. Therefore, we introduce choice-based sampling in the category purchase

model estimation to reduce computation time while still maintaining relevant information.

The choice-based sampling refers to a sampling scheme based on the chosen alternative. In our

case, the sample consists of all purchase opportunities with buy-now observations (1,040

purchase opportunities) as well as random sample within the buy-later observations (3,771

purchase opportunities). The fraction of buy-now observations constitute approximately 20% of

the reduced sample, which is now only one tenth in size of the original data. Details about the

choice based sampling appear in Ben-Akiva & Lerman (1985). See also McFadden (1981) who

proves that, for a multinomial logit model with a full set of alternative specific constants, the

maximum likelihood procedure on the choice-based sample yields the consistent estimates of

all parameters except the constants. Consequently, we gain a computational advantage for

some minor loss in estimation efficiency but not consistency.

The smaller sample size makes the analysis by URM on a 486 PC much more manageable with

computational time of about 20 minutes. Figure 9 is the initial empirical probability plot

before the actual URM algorithm starts (cycle = 0). There are two influential points in the

symmetrical locations -- one at (y=0, w-9) and the other at (y=1, w=-9), which are due to

nature of the binary logit model.1 7 As a result, the kernel regression is strongly distorted in

these regions. The two points turn out to be purchase opportunity index 18,359 whose household

consumption rate is 322.77 oz/week corresponding to the upper bound of observed values (see

Figure 11) but no category purchase is made. Hence, these points are removed from the sample.

This illustrates an advantage of graphical diagnostics made possible by URM in logit models.

The resulting nonparametric utility transformations by URM are presented in Figures 10

through 13. First, notice that there are many more outliers than in the brand choice. We must

focus our attention to the portion of the curve where many observations fall and disregard the

regions of the outliers.

The inventory plot shows a discontinuous utility curve, and it seems to suggest that there exist

two rather distinct segments. To make sure that the phenomenon is not a spurious effect caused

17 In the case of binary logit, w, = v, -v2 , according to the definition of w 1 in (4a) of Part II.
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Figure 10: Household consumption utility transformation of the whole
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Utility Component explained by BUYRATE
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Utility Component explained by INVENTORY
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by the other transformations, only the inventory is allowed to be nonparametric while other

variables are held as linearly specified. Still the same discontinuity was observed, which is

shown in Figure 14. The lower right segment with inventory greater than about 110 weeks of

supply corresponds to infrequent buyers. Thus, we decided to drop households who made less

than three purchases during the sample period of two years and re-estimated the category

model.

Now, the number of observations is reduced to 2,223, of those, 770 are buy-now and the

remaining 1,453 are buy-later. The resulting URM transformations are shown in Figures 15

through 18.18 The inventory no longer exhibits the two segments. Focusing the attention to

areas where points are concentrated and taking into account the boundary effect of kernel

regression which tends to flatten the curve (Part II), linear specification seems appropriate for

all but the standardized spending variable. Because the spending exhibits a diminishing

return in the dense region between 0.25 and 2.5, a logarithmic transformation, log(spend+1), was

tried, which resulted in an improvement of 0.017 in p2 . Figure 19 shows the parametric function

along with the URM curve after rescaling by the estimated coefficients. For other variables,

quadratic terms were added to capture the possible curvatures, but none of them were

significant. Therefore, household inventory, consumption rate, and buying rate are left to be

linear, and we evaluate both the linear and logarithmic standardized spending models in the

calibration and validation.

1 Because points are sparse at the higher end of the scale for each variable as seen in Figures 10 to 13,
the x-axis is truncated at the 99% quantile value to discount outliers except inventory. For the inventory
plot, all points are shown to demonstrate the effect of the earlier segmentation. The truncation of the
99% quantile results in a monotonically decreasing curve without the bump at the upper end.
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Utility Component explained by CONSUMPTION

20 40 60 80 100

CONSUMPTION

Figure 16: Household consumption utility transformation of the frequent-
buyer sample by URM (N=2223)
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Utility Component explained by SPEND
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Figure 18: Standardized spending utility transformation of the frequent-buyer

sample by URM (N=2223)

Utility Component explained by SPEND

-

-

-

-7

0 0.5 1 1.5 2 2.5 3 3.5 4

SPEND

Figure 19: URM vs. parametric transformation of standardized spending

variable

/ L6 .:

5

2

1

0

-1 Smoothin constant = 0.3
Iter = 2; Cycle = 2

4

3

2

1

0

F-

1

4 -



5.3 Calibration and Validation

Table 7 illustrates the result of the linear and transformed category purchase model calibrated

on the 72-week period. All variables have expected significant signs. Household inventory,

standardized spending on a shopping trip, consumption rate, buying rate have the strongest

effect followed by category attractiveness, seasonal index, and category attractiveness on

multiple unit purchases. The transformed model improves the fit by 0.022 in p2 compared with

the linear one.

Table 7: Calibration result of category purchase logit binary model

specification 1 2 3 4 5 6 7 8

p2 0.3852 0.3632 0.3569 0.3540 0.3250 0.2846 0.2102 0.1098

p2 0.3764 0.3544 0.3491 0.3473 0.3192 0.2797 0.2064 0.1069

buy-later
dummy

first purchase
opportunity

category
attractiveness

inventory

consumption
rate

standardized
spending

buying rate

catego. attract.
on multiple unit

seasonal
index

log(spend+1)

(
(

(

3.124 2.256
(7.51) (5.75)

).963 0.863
(2.73) (2.44)

.469 0.504
3.52) (3.88)

.0426 -0.0425
10.61) (-10.75)

.0431 0.0421
8.83) (8.71)

----- 0.602
(8.59)

.0716 0.0729
7.57) (7.88)

.973 0.964
2.17) (2.15)

.145 0.157
3.28) (3.58)

.053

0
(

C
(

C
(
2
(10.67)

* N = 1,487
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0.496
(2.05)

-0.307
(-1.24)

0.743
(7.07)

-0.543
(-2.02)

-0.255
(-0.97)

0.760
(6.74)

-0.0397
(-11.93)

-0.0227
(-0.078)

0.0877
(0.31)

0.654
(5.55)

-0.0526
(-14.10)

0.0493
(10.46)

0.929
(2.91)

0.315
(1.05)

0.586
(4.78)

-0.0528
(-13.98)

0.0486
(10.01)

0.599
(8.49)

1.817
(5.31)

0.445
(1.48)

0.587
(4.74)

-0.0421
(-10.75)

0.415
(8.61)

0.600
(8.59)

0.069
(7.56)

2.242
(5.62)

0.865
(2.39)

0.491
(3.82)

-0.0425
(-10.78)

0.0423
(8.74)

0.608
(8.68)

0.0704
(7.69)

1.057
(2.33)



In Table 8, the two models are evaluated in the choice-based holdout sample for their

probability of correct choices and average loglikelihood as well as R2 -- correlation between

actual and predicted category purchase share by 4-week period.1 9  Prediction in the holdout

is done using the actual purchase data. In other words, covariates with carry-over effect ---

such as household inventory, consumption rate, and category attractiveness, which depend on

purchase history -- are derived from the observed rather than forecasted purchases by the

model. Hence, the predictive fit tends to be overestimated because the projection into the

holdout period uses its own purchase data. We conducted the test in this way to evaluate

specifically the model specification of the category purchase by itself to avoid confounding

with either the brand choice or the covariates specification. A formal validation in the

holdout sample with the complete forecasting must wait until next section where the combined

nested logit model is tested.

Table 8: Goodness-of-fit for linear and transformed model in calibration and holdout sample

modeld

Transformed

Linear

1rob.

calibration

holdout

calibration

holdout

of correct choice

0.729

0.700

0.718

0.692

ave. loglikelihood

-0.426

-0.518

-0.441

-0.521

19 A calibrated linear model without the seasonality variable is shown below for a reference. There is a
larger drop of R2 in the holdout than calibration without the seasonality index as expected (see footnote
6), despite the fact that the other two criteria do not exhibit such a deterioration.

model

Linear

Linear

(no seasonality)

calibrati

holdout

calibrati

holdout

prob. of correct choice ave. loglikelihood

7n 0.718 -0.441

0.692 -0.521

on 0.715 -0.446

0.689 -0.530
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R2

0.890

0.912

0.886

0.932

0.886

0.932

0.832

0.636



Neither of the models shows much degradation in fit for the holdout compared with the

calibration. In fact, R2 improves. The transformed model surpasses the linear one in all

criteria except R2 in the holdout. A time series plot of the number of category purchases by 4-

week period is shown in Figure 20 for each model. Visual inspection indicates a slight

advantage for the transformed model as well. At the same time, however, the linear model

again demonstrates its robustness in predictive ability. Here, we adopt the superior

transformed utility model in our combined nested logit for further considerations.

5.4 The Combined Model

The brand choice and category purchase model are combined to build a sales model at each

purchase opportunity in the choice-based sample as

sales(j) = prob(j I category purchase) - prob(category purchase) - sizej.

where sizej is package volume of brandsize j in ounce. Table 9 illustrates performance of the

combined model along with a null model which has a constant purchase probability (share of

purchases among purchase opportunities) in category decision and the logit model of Section 3 in

brand choice. The average sum of square residuals is a sum of squares of the difference between

the actual and predicted volume of the 4-week period divided by the number of purchase

opportunities, and R2 is a correlation between the actual and predicted volume for all

brandsizes over the periods. The forecasting is done by a Monte Carlo simulation to construct

certain carry-over variables -- loyalty, household inventory and consumption rate. The

process is repeated 10 times to stabilize the random sample variations.

Table 9: Goodness-of-fit of the combined model in calibration and holdout sample

model sample ave. sum of square residuals 2

combined model calibration 763.4 0.632

holdout 802.3 0.577

null model calibration 920.1 0.528

holdout 901.4 0.565
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In the holdout, the sum of square residuals exhibits a moderate increase of 5% while R2 drops

by 0.056. The combined model outperforms the null model especially in the sum of square

residuals, which is more relevant than R2 is as far as prediction is concerned. Figures 21 and 22

show the sales tracking of the total Ocean Spray and OS cranberry cocktail 48oz. The result is

very encouraging.

6. CONCLUSION

This study has concentrated on a household level marketing mix model which combines the

three underlying consumer decision processes - purchase incidence, brand choice, and quantity

selection. A correct model formulation is crucial for understanding and predicting buyer

behavior as well as supporting appropriate managerial decision making. In this respect, the

nested logit model has advantages for integrating the three interdependent processes, treating

purchase quantity, and dealing with shopping trips rather than purchase timing.

The model is calibrated sequentially from brand choice to category purchase, and URM

described in Part II is utilized in diagnostics and for inferring parametric utility

transformations. The method is shown to be valuable in providing a graphical interface to a

model builder for identifying influential points, outliers, and heterogeneous segments, which

are otherwise hard to detect in multinomial logit models. The calibrated model is

demonstrated to perform well in the cross-validation -- supported by many other marketing

applications of logit models in field studies.

The final marketing mix model could provide valuable insights about marketing response

relevant to managerial issues. Perhaps, one of the most useful applications is to evaluate

effects of marketing mix variables by simulation. In particular, advertising is of great

interest. This will be investigated in Part IV.
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Figure 21: A time series plot of the total Ocean Spray sales by the combined
model
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Figure 22: A time series plot of Ocean Spray cranberry 48oz sales by the

combined model800
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OVERVIEW

While recent availability of household purchase records and TV ad exposure information from

single source data has led to many field studies in buyer behavior, very few have addressed the

marketing managers' brand planning problems. This research involves the evaluation of TV

advertising plans using a household level marketing mix model that is built from single source

data. The model permits a manager to pick alternative advertising scenarios specified by

GRPs by week and daypart over a year long period, then computes probability of category

purchase and brandsize choice at each shopping trip of the households, and obtains relevant

aggregate marketing measures such as brand sales, share as well as average volume

consumption and the number of purchases per buyer.

The model consists of two modules. One is a household marketing mix model by the nested

logit, which formulates the consumer purchase process by three inter-dependent elements --

category purchase incidence, brand choice, and quantity (size and unit) selection. The

explanatory variables are constructed to explain household heterogeneity in brandsize loyalty,

inventory, consumption, and purchase timing, as well as carry-over dynamics in the ad effect,

consumption, and purchase timing. The second module is a probabilistic exposure model which

translates GRP to the household exposure input by accounting for their media habits.

The current study is a result of combining theories from behavioral studies, econometric work for

parameter estimation from the data, and stochastic modeling in the ad exposure process. It is

found to be capable of including many phenomena heretofore excluded in aggregate advertising

models. Various ad scenarios of changing advertising levels and re-allocating GRPs among

dayparts are evaluated under illustrative advertising response coefficients to gain insights into

the marketing implications of advertising.
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1. INTRODUCTION

1.1 Motivation

The availability of large amounts of accurate panel data collected by scanners has prompted

many household level studies in marketing modeling. There are many advantages in the

disaggregate analyses. One is to avoid much of aggregation bias due to household

heterogeneity, and permit deeper insights on buyer behavior.20 In terms of modeling, one can

formulate the whole or parts of a model based on relevant behavioral consideration, which

may lead to a more logical and realistic representation and thus better predictions. For

instance, in brand sales modeling, a consumer purchase process can be decomposed into three

inter-dependent elements -- category purchase, brand choice, and quantity selection, where

each one can be modeled by incorporating appropriate buyer decision theories. In contrast, most

aggregate sales models are analytical relationships between sales and marketing variables

and are typically obtained by regression. As another example, behavioral variables such as

purchase-event feedback and advertising forgetting can be readily included in the household

level modeling. In aggregate marketing mix models, on the other hand, these phenomena are

expressed as a mathematical carry-over function of aggregate sales over time (e.g., lagged

terms) for pooled individuals (maybe within a segment) -- which may or may not reflect the

underlying individual household behavior.

Thus far, however, much of the disaggregate study has been directed towards modeling the

impact of marketing mix variables on buyer behavior and market influence, and very few

attempts have been made to address marketing managers' brand planning problems using the

scanner panel data (Pedrick & Zufryden 1990). As in the buyer behavioral studies, we could

exploit the potential advantages of the household level modeling to better capture dynamic

phenomena and act more properly on strategic and tactic issues in managerial decision making.

Furthermore, such studies are not only useful to managers but also to marketing researchers in

understanding long-term effect of marketing mix variables, which is rather difficult when just

interpreting estimated model parameters. By actually building and running a marketing mix

model, it is possible to gain a better insight into the dynamic implications of various marketing

activities. A good example is advertising, which is considered to have a relatively weak

short-term impact on sales as compared with price and promotion, and whose role may be more

20 With the current scanner data collection method, a panelist consists of multiple members of
the household, and this is a limitation in applying behavioral theories. See Kahn, Morrison,
& Wright (1986) for the distinction between households and individuals in modelling issues.
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long term. As a result, a coefficient for an advertising variable may not exhibit significance

even if its carry-over from past exposures are taken into account in the form of goodwill.

Sometimes, there exists experimental data (e.g. Behavior Scan 21 ) that indicates the effect

even when a disaggregate model does not detect a significant advertising coefficient. In such

cases, one can justify inclusion of the coefficient on aggregate response grounds.

Some of the reasons for the hesitation towards the disaggregate modeling in the planning may

be attributed to complexity in linking managerial control inputs to household inputs. For

example, from a manufacture's point of view, household marketing inputs which are monitored

by scanners and TV meters - price paid, store promotions such as feature, display and price-

cut, and ad exposures -- must be generated from the manufacture's controllable inputs such as

list price, a trade program characterized by allowances and requirements, and advertising GRP

or budget. An overall picture of such a complex marketing system is summarized in the diagram

below taken from Little (1975) who proposes a fairly complete marketing mix model. For

advertising planning, it is necessary to build a model that relates manufacture's media control

variables such as GRPs to the household exposures. The current research will focus on TV

advertising planning as a first step towards marketing decision making using household level

marketing mix models.

1.2 Previous Media Selection Models

The challenge in media selection is to handle a large combinatorial scheduling problem and

capture advertising phenomena realistically, while keeping the computation to a reasonable

amount. Several different approaches have been proposed. Various mathematical

programming methods - linear, nonlinear, integer, dynamic, and goal programmings - were

introduced in the '60s (Zangwill 1965, Bass & Lonsdale 1966, Little & Lodish 1966, Charnes et.

al. 1968, to name a few). Because the objective function and constraints must be expressed in

analytic form and then solved, many resorted to some simplifying assumptions such as linear

response and no dynamic carry-over in advertising effect. This has led to a lack of realism in

such models.

As computational cost continued to decline, simulation models were proposed in the late '60s to

'70s (Gensch 1969). They could incorporate a more complex formulation in response functions

and exposure distributions since the model needs to be merely evaluated for given inputs rather

21 Behavior Scan is an experimental market study using scanner data by IRI.
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than to be solved explicitly. The obvious concern of the approach is an enormous amount of

computing as the size of the scheduling problem grows.

The third approach is to apply an efficient heuristic combinatorial search method (e.g., greedy

and neighbor exchange algorithm) to a data-driven model obtained from statistical and

probabilistic analyses (Rust 1985) or to a managerially oriented model by using decision

calculus (Little & Lodish 1969, Aaker 1975).

All of the above models operate on aggregate data. To control for consumer heterogeneity,

segmentation of target buyers has been commonly practiced. Recently, Pedrick & Zufryden

(1990) proposed to evaluate the impact of TV media advertising plans in terms of reach and

frequency on a disaggregate marketing mix model calibrated from household level single source

data. Although their model offers insight into the reach and frequency trade off, it is not

really designed as a dynamic planning model. Nevertheless, it is an important step in a

household level media planning approach.

This study investigates media planning of GRP and/or advertising budget by week and daypart

to help assess their levels and allocation using scanner panel data. According to one manager,

allocation of GRP by daypart is a good starting point for media planning by marketing

managers because it is tractable yet does not overly simplify the process. It allows a certain

degree of targeting but is not as complex as selecting individual programs, which involves much

more effort and is usually handled by ad agencies. The model will permit a manager to

generate alternative plans based on his judgement, and then evaluate these scenarios in terms of

various marketing measures such as brand sales, share, and profit. In other words, we will

construct a household level marketing simulator for advertising managers just like a flight

simulator for pilots.

1.3 An Overview of the Model

The model consists of two modules: [1] a household level marketing mix model which accounts

for the impact of household marketing mix variables on sales by the three inter-dependent

consumer decisions -- category purchase, brand choice, and quantity selection, and [2] a

probabilistic model which links manager's advertising control variables to household ad

exposures characterized by their media habits.
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The first module is a nested logit model introduced and calibrated on the IRI Red Drinks single

source data in Part III of this thesis. There, the advantages of the nested logit formulation --

[1] the three decision processes are highly integrated, [21 the method handles discrete and

different sizes of the same brand without involving ad-hoc aggregation, and [31 the process is

driven by shopping trips - are discussed in detail.

The second module examines the media habits of each panelist from the observed exposure data

and calculates how likely each household is to be exposed to the ads during different time

frame of the day referred to as "daypart". Therefore, ad exposures of weekday late night TV

watchers will not be much influenced by changes in GRP of weekday mornings, while

housewives who watch TV in the morning might be greatly affected. The managerial

advertising variable, GRP by week and daypart, is transformed to the household advertising

stock variable -- input for the first module -- by incorporating the number and timing of

exposures stochastically as well as their memory decay effect.

The features which distinguish the current work from Pedrick & Zufryden (1990) are,

[11 While their managerial advertising variables are reach and frequency over periods in a

stationary sense, our control variables are GRP/budget by week and daypart, and the main

emphasis is on the dynamic planning reflected in the market movement over a long period of

time. In our model, reach and frequency for each week and daypart are treated endogenously.

In other words, reach and frequency within a daypart cannot be independently manipulated,

but are rather a result of interaction between the advertising plan and the model in a

systematic way. This is based on the belief that TV programs and household media habits

are fairly homogeneous within a daypart. Increasing frequency of a daypart is accompanied by

increase in reach in some predetermined relationship governed by the underlying stochastic

mechanism. Of course, it is still possible to increase reach with relatively small influence in

frequency by spreading a given quantity of ads across dayparts.

[2] The model operates on the sample households in the database, and marketing measures are

constructed by aggregating the sample. Pedrick & Zufryden estimate the population

heterogeneity of covariates such as loyalty and ad exposure probability by fitting parametric

distributions over the sample, and the aggregate measures are obtained by integrating over the

distributions analytically. Obviously, if the generalization of the result to the population is

the objective, their approach may seem attractive. The drawback, however, is loss of the

advantages in the household level approach and potentially incorrect aggregate estimations

by imposing inflexible parametric distributions which are often unimodal even in the presence
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of multiple segments. With sufficient number of randomly selected panelists, we can

reasonably ensure representativeness in the population at the cost of increased computation.

[31 Their category purchase model does not involve any explanatory variables and is purely

stochastic with a Gamma distribution. Hence, expansion or contraction of the total category

due to marketing activities is not allowed. The category sales in the nested logit used in our

model is affected by marketing mixes -- price, advertising, and promotions -- through the

category attractiveness obtained from the brand choice model as well as household

characteristics for buying rate, consumption rate, inventory, and expense on a shopping trip.

[41 Our household variables incorporate many carry-over effects, some based on buyer behavior.

For example, we explicitly model the forgetting of ad exposures. As another example, both

interpurchase time and consumption rate are dynamically constructed to adapt for the

household habitual change in the product category. Overall, such an elaborate dynamic model

is expected to explain the long-term effect of marketing mix variables better - an important

factor for the market simulator.

The household level marketing mix model, when aggregated, must reproduce phenomena that

are considered desirable in aggregate models. Little (1979) identifies five such phenomena in

aggregate advertising models.

P1. Sales respond dynamically upward and downward to increases and decreases of

advertising and frequently do so at different rates.

P2. Steady-state response can be concave or S-Shaped and will often have positive sales at

zero advertising.

P3. Competitive advertising affects sales.

P4. The dollar effectiveness of advertising can change over time as the result of changes in

media, copy, and other factors.

P5. Products sometimes respond to increased advertising with a sales increase that falls off

even as advertising is held constant.

The current model accommodates all of them except possibly P5. (We have not actually

implemented competitive advertising since there is none in the product category for our sample

of households, but the nested logit accommodates the phenomenon.)

The paper is organized as follows. The section 2 first lists key advertising phenomena which

need to be addressed, and the two modules are described in reference to them. Section 3

discusses the actual operationalization aspects --- calibration of parameters, an updating
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method for the carry-over variables in estimating probabilities of category purchase and brand

choice, and performance criteria used for media plans. Then, in section 4, illustrative examples

are presented by evaluating examples of advertising plans, and their marketing implications

are raised. Finally, section 5 concludes the paper.

2. MODEL

2.1 Objectives

The objective of the current study is to evaluate TV advertising plans in terms of various

marketing measures. Here, the advertising plan refers to GRP by week and daypart, or

equivalently an advertising budget if the costs of placing ads for each daypart are known. The

dayparts divide broadcast hours into six weekday and five weekend segments from early

morning to late night, which are shown in Table 1.

Table 1: Time frame of the eleven dayparts

We~aIM~1,Q (1~AnnA21, - ThiA2 A Wo~L~ii A IC~ 2411 iA 2~?..~l1 ,~ A igA

6am-9am

9 am - 12 pm

12 pm -4:30 pm

4:30 pm-7 pm

7pm-10pm

10pm-lam

7

8

9

10

11

7 am -1 pm

1pm-4pm

4pm-6 pm

6pm-10pm

10pm-1 am

As mentioned before, we assume that the dayparts are sufficiently good approximation to

capture the household media habits stochastically. That is, the observed exposure data is

used to infer average hours per week of TV watch for each daypart by each panelist, that in

turn, is used to calculate the expected number of ad exposures received, which are assumed to be

uniformly and independently distributed within a daypart.

The marketing measures could be any useful managerial criteria which can be derived from the

output of the household marketing mix model --- probability of category purchase and
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brandsize choice at each shopping trip22. Time series tracking of a particular brand or

brandsize sales and share is one of them. By aggregating over a year, common managerial

measures such as average brand consumption per buyer, average number of purchases per buyer,

and average volume at each purchase occasion, can be obtained. If the cost data for the media

and products is available, profit may be computed as well.

What factors and phenomena should be considered in the advertising planning model? We

would certainly like to address the four aggregate advertising phenomena, P1 - P4 in the last

section to our disaggregate household level model. Little & Lodish (1969), in addition, suggest

nine essential issues associated with media planning models:

1. Market segments for classifying customers

2. Sales potentials for each segment

3. Exposure probabilities for each media option in each segment

4. Media cost

5. Forgetting by people exposed to advertising

6. Seasonality in product potential and media audience

7. Individual response to exposure, including the effect of diminishing returns.

8. The distribution of exposures over people and over time

9. Exposure value for the exposures in each media option

As we will see, the first module - the nested logit marketing mix model developed in Part III

of this thesis - takes into account of 1, 2, 5, 6, and 7. The second module must be designed to

represent the probabilistic exposure process of 3, 8, and 9. The only remaining issue, 4, can be

readily incorporated into the model if the data is available.

2.2 The Nested Logit Model of Marketing Mixes

Details of the current nested logit marketing mix model are described in Part III of this thesis.

Because the nested logit is a household level model, we do not need to classify heterogeneous

buyers into separate segments indicated in issues 1, 2, and 7 above. In fact, the advantage of the

household modeling is that it can accommodate the household heterogeneity in many aspects

22 To be more precise, it is actually purchase opportunity which takes into account of multiple
unit purchases. See Part III of this thesis and Guadagni & Little (1987) for detail.
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such that, if segmentation were to be done in aggregate models, each cell, consisting of a

particular level of each aspect, would contain too few panelists to be analyzed.

The nested logit model employed in this work captures heterogeneity in [1] category purchase

via household inventory, buying rate, consumption rate, interpurchase timing, and category

attractiveness, [21 brand choice via brandsize loyalty, and [31 ad exposures by a Poisson process

with household specific media habit parameters (to be illustrated in the next section).

Forgetting in 5 is modeled in the definition of the adstock, which is a sum of all previous

exposures encountered before a particular shopping trip in question, adjusted for memory recall

by daily decay. The construct is based on behavioral and field studies of advertising effect

(Little and Lodish 1969, Lodish 1971, Clarke 1976, Craig, Sternthal, and Leavitt 1976). The

decay rate was estimated to be 0.914 per day from the data in Part III.

In addition to the direct carry-over of advertising by the adstock variable, the model

indirectly captures the advertising long-term effect through purchase event feedback variables

such as brandsize loyalty in the brand choice and time-varying household consumption rate in

the category incidence. All these dynamic considerations should lead to Little's P1 -- the

downward sales response due to reduction in advertising intensity is slower than the upward

movement from its increase - because purchase event feedback has a longer time constant than

advertising forgetting.

Seasonality in product potential referred to in issue 6 is included in the category model on a

weekly basis, which accounts for sales surges during certain holidays like the Christmas and

Thanksgiving rather well.

Interestingly, the disaggregate logit model sheds light on the controversy of whether the sales

response curve exhibits diminishing return or is S-shaped. When a choice probability of an

observation (purchase opportunity or purchase occasion) is plotted against the adstock variable

with other variables being fixed, the curve depicts the S-shaped logistic function. But because

values of the other variables cause the curve to shift either to the right or left, over the valid

domain of non-negative adstock, the response can resemble either the S-shaped or diminishing

return as shown in Figure 2.
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Figure 2: Adstock response curve of choice probability for one observation

Therefore, the advertising response of a particular observation may be either shape depending

on the values of the marketing mix variables and household characteristics such as loyalty and

inventory at the time of the observation. Furthermore, the choice probability at zero adstock

is strictly positive with a varying magnitude affected by other variables, which satisfies

Little's P2.

This formulation of the ad response is also appealing from a behavioral point of view. Initial

exposures might make a potential buyer aware of the existence of the product, and thus exhibit

an increasing return effect.23  After the initial awareness, the buyer responds positively

towards increasing exposures as more cognitive processes such as attention and retention are

actively involved. However, repetition of exposures beyond a certain level starts to exploit

boredom and saturation in the cognitive process as well as the financial and mental limitation

for the product demand. A review of laboratory studies by Sawyer (1981) supports such a

diminishing return effect at a high level of the repetition.

The shifting caused by other variables - especially strong influence from loyalty -- implies

that the important moderators of ad response are [1] buyer's prior disposition, and [2] to a lesser

extent, other marketing activities such as price and promotions. This is supported by both

23 Because most laboratory studies measure brand attitudes such as affective and favorable
feeling towards the product, they are unlikely to find this phenomenon at a low exposure level,
despite the fact that some aggregate analyses support it.
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behavioral studies (Cacioppo & Petty 1985, Sawyer 1981) and field studies (Tellis 1988,

Kanetker et. al. 1989)

Because the ad response can differ even within an individual due to the situational factors such

as marketing activities and household brandsize loyalty and inventory, when the sales

response is obtained by aggregating many observations from many individuals, it could produce

a mixed result in the response shape that is characterized by the particular market condition

at the time --- a combination of product category, and its marketing activities and buyer

constituents. Therefore, it does not seem surprising that for the aggregate advertising models

some observe the S-shape (Rao & Miller 1975) while others don't (Simon 1969).

Finally, when aggregated over heterogeneous buyers, the change in ad responsiveness due to the

shifting of the individual S-curve will manifest itself as a complicated form of interaction

between advertising and other marketing mix variables -- which is also addressed in Little

(1979)24.

2.3 Probabilistic Exposure Model

We now turn our attention to the second module - the probabilistic exposure model -- which

transforms GRP by week and daypart to the adstock variable, thereby accounting for the issues

3, 8, and 9.

The adstock of a household at date s, a(s), can be expressed by that of date to as,

(1) a(s) = e4-(s-to) a(to) + I e-k(s-tk)
k

where k is an index for ad exposures received between date to and s, and tk is a

date of the k-th exposure.

Here, each exposure contributes one unit of effectiveness (could be different for different

commercials) to the adstock immediately afterwards, and e-X is a decay rate of the adstock per

day, which is estimated to be 0.914 in our data by the method of Fader, Lattin, & Little (1990).

24 Even within the logit model corresponding to one particular observation, interaction among
covariates is implicitly being assumed because of the additive utility in the exponential
argument.
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One way to obtain a(s) is to actually simulate the arrivals of exposures by the Monte Carlo

with the underlying probability distribution. However, because the process must be repeated

many times to stabilize the outcome for each daypart and panelist, the computational time

could be prohibitively large. Hence, we introduce a new analytic methods called the first

order Taylor series simulation, where the Monte Carlo simulation of random variables is

replaced by their expectations. The logic behind is a result of expanding the random variable

around its expectation and keeping up to the first order term.2 5 With this method, the second

term of (1) - an increase in adstock due to new exposures - is substituted by its expectation

value.

As mentioned earlier, the advertising exposures are modeled by a Poisson process with a

parameter denoted 9'hd, specific to a household-daypart pair, (h,d). Assuming that the

daypart sufficiently captures the household media habits, which are considered to be

stationary, the exposure rate of panelist h for daypart d of week w, phdw, is a linear function of

GRP for daypart d of week w, GRPdw, such that

(2) hdw = p'hd x GRPdw

In other words, doubling GRPdw within a daypart implies twice the exposure rate. g'hd for

each (h,d) pair is estimated from the actual exposure data as

(3) 'hd = Nhd
EGRPd

where EGRPd sample mean of weekly GRPd during all ad flights

and Nhd mean no. of exposures per day for daypart d by panelist h during all flights.

Thus, (2) becomes

(4) phdw = Nh d GRPd w
EGRPd

25 Expansion up to the second order involves variance-covariance matrix of the random numbers
and is much more complicated and computationally intensive than the first order.
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Before describing the construction of the adstock variable, let us derive formulas for two

commonly used exposure measures, reach and frequency, for a given weekly GRP level. Reach is

defined as a percentage of households receiving at least one exposure, and frequency is an

average number of exposures for the households who are exposed to ads. Thus, a product of

weekly reach and frequency is equal to weekly GRP. For daypart d of week w, the probability

that household h does not receive any exposure is

Pohdw = e-ghdwDd where i= 5 if d=1~6
2 if d=7-11

from the Poisson distribution. Because a sum of Pohdw over households is the expected number

of non-exposed, reach for (d,w) is expressed as

H - Phdw

(5) Reachdw = x 100
H

where H is the total number of households in the database

Frequencydw is simply GRPdw/Reachdw .

Similarly, probability of no exposures by household h for week w, Pohw , is

Pohw = prob (no exposure in weekdays) x prob (no exposure in weekend)

= exp - Dd PM w( d=1

Thus, reach for week w is

H - Pohw

(6) Reachw = h X 100
H
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Figures 3 and 4 compare the observed reach and frequency for each week with those of the

probabilistic formula of equation (6), and their scatter plots are presented in Figure 5. In all

cases, the probabilistic formulation closely approximates the actual reach and frequency.

For the adstock formula, let us suppress the subscripts, h, d, and w for clarity. The expected

increase in adstock between to and s due to new exposures whose process is Poisson with exposure

rate g is,

E e-X(s-tk)] f se-(s-t) g dt
k J to

(7) = e ( -e-(s -to))

The expected adstock at the end of week i of household h consists of a sum of all expected

weekly adstock received prior to week i adjusted for the decay and the expected additional

adstock during week i over all dayparts. The operation is graphically summarized in Figure 6,

where the distinction between dayparts for weekdays and weekend is made clear.
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WE1

4
WE2

4
t(WEi) t(WD2) t(WE2)

WE3

4
t(WD3) t(WE3)

shopping trip
at time t

I + I
It I

t(WD4) t(WE4)

week 1 week 2 week 3 week 4

MTWTFSSu MTWTFSSu MTWTFSSu MTWTFSSu

Figure 6 Construction of adstock variable - Graphical Explanation
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Figure 3: Weekly reach for the observed and Poisson model
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Figure 4: Weekly frequency for the observed and Poisson model

cV

2

11

10.10.88 11. 21.88

,A

01.02.89 02.13.89

p
,*~ I

/

I
I

I P

J I
( I

I I

I,

e3.27.89 05.08.89 06.19.89 07.31.89 09.11.89
WLLK

solid = Poisson dash = observed



ActIal R.&ch v.S. Frequncy
1N

4.

1-

+ + +

++ 4.
+

+

+

++
+

+4. 4.

+

Probabilistic #r"Ueecy v.S. reach

+

+

t++4+

+. +
-4+

+4.

+

Fr..uencv

Figure 5: Scatter plots of weekly reach and frequency for the observed and

probabilistic formula

as

44

0.

1o

75

Ni

5.

of
a



The current adstock at date t during week i for daypart d is expressed as

ahd(t) = WDhdk e- x t - t (w wk + Y WEae-[ t-t(Wk)
10.1 10.1

(8) + E [adstock contribution during week i at date ti

where t (WDk) = the last date of the weekdays for week k

t (WEk) = the last date of the weekend for week k

WEhdy= E [adstock contribution from weekday GRPdk at t = t (WD)]
Phdk (1-e-5x) d =1, ..., 6X

WEh= E [adstock contribution from weedend GRPdk at t = t (WEk)]

- (1 -e-2) d =

The last term, E[adstock contribution during week i at date t] -- denoted as NEWAD ---

depends on whether date t falls during weekdays or weekend as

Weekdays: NEWAD - lhi (1 -e-x[tt(E 1)+1)I)

Weekend: NEWAD = hd- ( 1 - e t-(t(WF4 )+6)]) + WDhdi e-x[t-(t(F1)+5)]

The total adstock is simply a sum of ahd(t) for all dayparts,

(9) ah (t) = Y ahd (t)
d-1

Equation (9) combined with (8) is the transformation from GRP by week and daypart, GRPdw, to

household adstock, ah(t). The model satisfies the Little's 8 as well as 3 if the terms "media

option" and "segment" are substituted by "daypart" and "household" respectively. Because

inspection of weekly hours of TV watched during each daypart by households did not reveal
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any seasonality in our data, the current formulation does not implement the seasonality of

media audience in issue 6. However, the extension is straightforward. By adding another

index, p, for the time period (e.g., quarter), a seasonal Poisson parameter, p'hdp, can be obtained

from EGRPdp and Nhdp by aggregating those within the period p.

The remaining issue is 9, which refers to different effectiveness among different advertising

commercials. Our model can incorporate such effectiveness by varying the unit of the

contribution for one exposure in (1) to a value other than 1. If a commercial effectiveness

measure is available, say from laboratory studies, it can be readily integrated by scaling up or

down the coefficients with an appropriate amount.

To summarize the section, we have discussed the objectives of the current study, and then the

model which constitutes of the two modules -- the nested logit household marketing mix model

and the probabilistic exposure model - is proposed. A diagram of the overall model is shown

below. The solid arrows corresponds to inputs, the thick arrows to outputs, and the dashed

arrows to internal state variables which can be monitored if one wishes. The model takes into

account all issues in media planning, 1-9, and aggregate advertising models, P1-P4, suggested

by Little.
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3. OPERATIONALIZATION

3.1 Calibrated Model

The data used in this study is the IRI Red Drinks single source database described in Part III.

The variables in the nested logit model are also the same. Exceptions are that all size-specific

adstock variables in the brand choice and the adstock in the category purchase are kept in the

model, despite the fact that some are not significant. That is because they could have a long-

term impact through other carry-over variables even though their short-term effect appears to

be weak.

Since the single source database contains the ad exposure information only during the second

year, the following procedure is employed. During the first year, the observed purchase data

is used to build up the carry-over variables such as brandsize loyalty, household consumption

rate and inventory, and then a given advertising plan is simulated in the second year. The

coefficients are estimated using the entire two years of the data to achieve the maximum

reliability since the model testing was already conducted in Part III.

The variables and their estimated coefficients in the brand choice and category purchase

models are listed in Table 2. The buy-later dummy estimated from the choice-based sample is

adjusted for the full sample by subtracting log(H/W), where H and W are fractions of the

numbers of buy-later observations in the choice-based and entire sample respectively (Manski

& McFadden 1981, Chap. 1). The term corrects the undersampling of the buy-later observations

in the calibration process by increasing its dummy coefficient. The adstock variable in the

category model has been set to be 0.100 for illustrative purposes. This value reflects about 8%

sales increase compared with a no advertising case in our database. The similar magnitude

was also observed by the aggregate experimental study.
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Table 2: Estimated coefficients for the nested logit model

brand choice variables category purchase variables

p2 0.4597 0.3565

p2-adjusted 0.4519 0.3507

adstock32 **

adstock48 **

adstock64 **

adstock128 **

brandsize loyalty

feature

display

price

0.050

0.100

0.050

0.050

buy-later *

first purch. opp.

category attract

inventory

consumption rate

buying rate

5.474
(29.85)

0.372
(3.29)

1.071
(6.06)

-0.985
(-4.77)

log (spend+1)

catego. attract
on multiple units

seasonality

adstock **

* The buy-later coefficient is adjusted for choice-based sample by -log(H/W).

** The adstock values have been chosen for an illustrative purpose.

N = 989 for brand choice, and N = 2223 for category purchase model.

Alternative specific constants in the brand choice model are not shown.

Figure 7 shows a histogram of the estimated Poisson exposure parameters for all household and

daypart pairs.
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5.694
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3.2 Simulation Calculations

Because the model involves certain carry-over variables which require updating based on

previous purchases -- brandsize loyalty, household consumption rate, and inventory, -- we

must use a purchase sequence predicted by the model as the purchase history to produce tracking

of a hypothetical advertising scenario.

Customarily, this has been done by Monte Carlo simulation (Guadagni & Little 1983, 1987,

Gupta 1988, Part III of this thesis) with the process being repeated many times to stabilize the

outcome. As mentioned in section 2.3, however, a new method is introduced to reduce the

computational burden by replacing the simulated random variables by their expectations.

In the following, definitions of the three carry-over variables - brandsize loyalty, household

consumption rate and inventory - used in Part III are shown.

(10) loyaltyj(t+1) = ?I-loyaltyj(t) + (1-)-dj(t)

where dj(t) is 1 if alternative j is bought at t-th purchase occasion, 0 otherwise,

and X1 is estimated to be 0.774 from the data.

(11) smoothed consumption rate (at current category purchase)=

- smoothed consumption rate (at the previous category purchase)

+ (1-4c) - (volume of the previous purchase / smoothed interpurchase time)

where Xc is estimated to be 0.49 from the data.

(12) inventory(r) = inventory(r-1) - [date(r) - date(r-1)] + volume purchased (r-1)

7 hh buying rate

For the brandsize loyalty variable defined in (10), the observed choice variable, dj(t), is

substituted by the predicted probability, pj(t), to be

(13) loyaltyj(t+1) = XI-loyaltyj(t) + (1-1)-pj(t)
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The smoothed interpurchase time used in the consumption rate is adaptively updated based on

past purchase history as (14).

(14) smoothed interpurchase time (at current trip) =

Xt smoothed interpurchase time(at previous category purchase)

+ (1 - Xt) - (most recent interpurchase time).

where Xt is estimated to be 0.73 from the data.

Here, the most recent interpurchase time for computing the household interpurchase time (14)

is replaced by

(15) most recent interpurchase time =most recent intertrip time
category purchase probability at the trip

For the household consumption rate shown in (11), volume purchased at the previous purchase

is replaced by its expectation at the previous trip if purchase was made as

(16) volume purchased (trip) = Xj pj(trip) x sizej x correction

where sizej is package volume of brandsize j in unit of ounce. The correction factor accounts for

the possibility of multiple unit purchase in a trip. Since the expected number of unit purchased

can be approximated as

E [no. of units purchased]

=P 1 (1-P 2) 1 + P1 P2 (1-P 3 ).2 + P1 P2 P3 (1-P 4 )-3 +--

P1 (1-P 2 ) 1 + P1 P2 (1-P 2 ) 2 + P1 P2 P2 (1-P 2 )-3+

= P1 (1-P 2 ) (1+ 2 P2+3 P22 + ... +k P2k-1 + --

= P1 (1-P 2 ). 1 / (1-P2) 2

= P 1 / (1-P2)

1%



where Pk denotes the category purchase probability at the k-th purchase occasion of a

trip, (Pk's differ because of different values of explanatory variables in first

purchase opportunity dummy, attractiveness on multiple unit, and hh inventory

even within a trip.26)

the correction factor in (16) is

correction = 1 / (1-P 2 )

Finally, volume purchased at the (r-1)st purchase opportunity for the household inventory in

(12) is substituted by its probabilistic expression as

(17) volume purchased (r-1) = Xj pj(r-1) x sizej x Pcat(r-1)

The decay constant, X, for loyalty, consumption rate, and interpurchase time shown in (10), (11),

and (14) are estimated by the Taylor series method (Fader, Lattin & Little 1990) for each

purchase made. In applying these to updating on a shopping trip basis, the values must be

adjusted to account for the higher frequency of trips (47,272) than purchases (989). This is done

by raising X to the power of 989/47272 as Xtrip = Xpurchase (969/472>.

3.3 Aggregate Marketing Measures

In addition to time series tracking of category sales and brand sales and share, the following

aggregate measures over the period of interest (in our case, the entire second year) are

computed.

Brand volume

26 The approximation of Pk's for k>2 by P2 causes a slight overestimation because Pk < P2 for
k>2 due to accumulated product inventory from the previous purchases. However, the error is
the second order since the approximation is used for estimating the previous volume purchase to
update only consumption rate but not inventory which is explicitly updated after each purchase
opportunity even within a trip as in (16).
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Brand share

Brand volume per buyer

Number of purchase occasions per buyer

Brand volume per purchase occasion

Brand volume per buyer measures an increase in the brand consumption induced by the ads. This

can be decomposed into shorter household interpurchase time and purchase of a larger size,

which are reflected respectively in the number of purchase occasions per buyer and Brand

volume per purchase occasion.

The number of purchase occasions per buyer is expressed as

IIpcat, h (n)

(18) h neh
No. of buyers in the sample

The brand volume per purchase occasion is simply brand volume per buyer divided by purchase

occasion per buyer.

4. ILLUSTRATIVE EXAMPLES AND MARKETING IMPLICATIONS

In this section, various ad scenarios are evaluated on the model to gain insights into the

advertising effects. All runs are performed on households who have made more than two

purchases during the two years of the sample period as done in Part III for the calibration We

have randomly selected 20 households to save the computational time. (The same 20

households are used for all runs.) The subsample constitutes 2,398 trips in the testing year.

4.1 Comparison of No Ad, Base Ad Case, and Twice the Base Case

During the second year of the sample period between 10-10-88 and 10-08-89, Ocean Spray ran

TV advertising in four separate flights whose lengths ranged from 4 to 7 weeks (Figures 3 and
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4). Although our advertising response coefficients are hypothetical, we shall build our

advertising scenarios around the actual TV exposures as a base case. The first scenario of

interest is a no advertising case. This will help us assess how much the implemented

advertising plan would produce in terms of sales and share. The second case is a scenario where

GRP for each daypart and week is doubled. The question addressed here is how much could be

gained by allocating twice as many GRP?

Figures 8 and 9 show weekly reach and frequency for the base and two times the base GRP

respectively using the formula of (6). Also shown are their scatter plots in Figure 10, which

clearly indicate the nonlinear relationship between reach and frequency. For instance,

doubling the GRP increases frequency by 32% and 72% for the extreme lower left and upper right

points respectively, while their reaches increase by 53% and 20%. In other words, boosting

GRP within a daypart exhibits the diminishing return effect on reach, which intuitively

makes sense because its upper bound is 100. Table 3 is an aggregate summary of the no ad, base

ad, and twice the base ad cases over the year. It suggests that, for the advertising response

coefficients used here, a large part of the sales increase due to the advertising comes from more

frequent purchases, and the contribution from size trade-ups is only one quarter of it.

Table 3: Aggregate summary of no ad, base, and two time the base cases over the 52 weeks

ieasume Base No ad Twice the base

Category sales [oz] 7,087.7 6,596.9 7,650.2
(% change from base) (-6.9%) (+7.9%)

OS sales [oz] 5,177.3 4,740.9 5,704.9
(% change from base) (-8.4%) (+10.2%)

OS share [%] 73.05 71.86 74.57

OS vol / buyer [oz] 258.9 237.0 285.25

No. of purchase / buyer 7.31 6.81 7.89
(% change from base) (-6.9%) (+7.9%)

OS vol / purchase [oz] 35.4 34.8 36.2
(% change from base) (-1.7%) (+2.1%)

Figure 11 is a time series of Ocean Spray sales constructed by aggregating category purchase and

brand choice probabilities of trips made by the 20 households for each four weeks. The sales

increase during the ad flights is followed by some drop afterwards. The phenomenon can be
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Figure 8: Weekly reach for base and twice the base cases
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Figure 9: Weekly frequency for base and twice the base cases
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Figure 11: Total Ocean Spray sales for no ad, base, and twice the base cases
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described as an advertising induced purchase acceleration, which in turn results in the

subsequent low sales because of a high level of inventory. The household inventory is the

strongest carry-over variable (t=-9.8) in Table 2. Furthermore, because the consumption rate ---

another strong carry-over variable (t=8.6) - has a large decay constant (X=0.49), any increase

in the consumption by the advertising is temporary and does not have an enough lasting effect

to override the sales drop caused by the inventory. In contrast, the share plot shown in Figure

12 does not exhibit such a purchase acceleration phenomenon since the inventory variable

appears only in the category purchase model.

Figure 13 plots the annual category and Ocean Spray sales by varying the GRP from 0 to 10

times the base case. The aggregate advertising response functions exhibit nonlinear

relationships, however, not exactly the S-shape. For GRP less than 5 times the base level, the

plots show a mild increasing return, while a diminishing return is observed at extremely high

levels.

4.2 Re-allocation of GRP among dayparts

To examine the effectiveness of advertising among different dayparts, the observed weekly

GRP is allocated to a single daypart. By concentrating GRP into a single daypart, reach is

limited by targeting ads to a segment of households with a particular media habit and a large

increase in frequency can be achieved by repeated exposures. Figures 14 and 15 illustrate reach

and frequency when GRP is allocated solely to daypart 7. Its reach is less than half in

comparison with the base case while its frequency is more than twice.

The resulting total category sales, Ocean Spray sales and share are shown in Figpre 16, 17, and

18 respectively. They suggest that a point of GRP is more effective for early evening

(4:30pm-7pm) and late night (10pm-lam) on weekdays and afternoon (lpm-4pm) on weekend

for the twenty households sampled.

The study leads to an investigation of daypart allocation by spreading the weekly GRP among

dayparts. A scheme proposed here chooses three dayparts which achieve the highest brand

sales based on Figure 17 and re-distributes the total weekly GRP to the three according to their

sales. They are 4:30pm-7pm and 10pm~-lam on weekdays and lpm-4pm on weekend, which

are considered to generate high reach by covering different time frames. As seen in Table 4, the

plan improves category and Ocean Spray sales by approximately 2.0% and 2.6% respectively.
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Figure 12: Ocean Spray share for no ad, base, and twice the base cases
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Annual Category Sales
12000

11000 -

10000 -

E
M 9000 -

8000 -

7000 -

6000 ' ' I I I -
0 2 4 6 8 10 12

a factor multiplied to the base level GRP

Annual Ocean Spray Sales
10000

9000 -

8000

E
7000 -

6000 -

5000 -

4000 '
0 2 4 6 8 10 12

a factor multiplied to the base level GRP

Figure 13: Annual sales of ad scenarios with GRP from 0 to 10 times the base level



Figure 14: Weekly reach when GRP is allocated solely to daypart 780
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Figure 15: Weekly frequency when GRP is allocated solely to daypart 7
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Figure 16: Total category sales when GRP is allocated to a single daypart
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Figure 17: Total Ocean Spray sales when GRP is allocated to a single daypart
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Figure 18: Ocean Spray share when GRP is allocated to a single daypart76
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Table 4: Aggregate summary of the two daypart allocation schemes

measure

Category sales [oz]
(% change from base)

OS sales [oz]
(% change from base)

OS share [%]

OS vol / buyer [oz]

No. of purchase / buyer
(% change from base)

OS vol / purchase [oz]
(% change from base)

Base

7,087.7

5,177.3

73.05

258.9

7.31

35.4

Re-allocation

7,231.6
(+2.0%)

5,311.5
(+2.6%)

73.45

265.6

7.44
(+1.8%)

35.7
(+0.8%)

4.3 Advertising Pulsing

There has been much debate on whether pulsing of media advertising is more effective than

constant spending over time. (Ackoff & Emshoff 1975, Rao & Miller 1975, Simon 1982, Mahajan

& Muller 1986, Feinberg 1988) The issue is also directly related to the S-shaped aggregate

response curve discussed earlier. Here, pulsing of various cycles (with a duty cycle 27 of 50%)

have been implemented while keeping the same total GRP and its relative daypart allocation

as the observed base case.

Table 5 is the aggregate results of the scenarios whose cycles are 52 weeks (26), 26 weeks (13), 13

weeks (6), 6-7 weeks (3), 2 weeks (1), and a constant level for 52 weeks, where the numbers in

the parentheses indicate the duration of the positive constant pulse in weeks within the cycle.

Hence, "6-7 weeks (3)" above means that 3 weeks of an ad flight is followed by no ad for 3

weeks, then another 3 weeks of a flight is followed by 4 weeks of no ad period, and this 13-

week process is repeated four times over the year. Because the results of Table 5 are specific to

our hypothesized advertising coefficients and are also confounded with other marketing mix

variables, one must be careful in generalizing to other situations. Under the circumstance of the

27 The duty cycle refers to a ratio of the duration of the high pulse to that of the whole period
in a square wave.
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current database, the pulsing of 6-7-week cycle - 3 weeks of a flight followed by either 3 or 4

weeks of no ad - produces the highest category as well as brand sales.

Table 5: Aggregate summary of the advertising pulsing scenarios

measure 52-week 26-week 13-week 6-7-week 2-week constant

Category sales [oz] 7,072.6 7,076.2 7,125.5 7,149.0 7,140.7 7,140.8

OS sales [oz] 5,166.2 5,177.7 5,208.6 5,223.6 5,214.7 5,213.6

OS share [%] 73.04 73.17 73.10 73.07 73.03 73.01

OS vol / buyer [oz] 258.3 258.9 260.4 261.2 260.7 260.7

No. of purchase / buyer 7.30 7.30 7.35 7.37 7.36 7.36

OS vol / purchase [oz] 35.39 35.46 35.42 35.43 35.41 35.40

5. CONCLUSION

What have we learned from the study? Little stated as follows in his 1979 article.

"Looking ahead, new developments in measurement offer the possibility of resolving

some of the outstanding modeling issues. ... The coupling of individual purchase

information with observations of media exposure should permit ongoing response

measurements ... Individual level measurements also seem required to examine

hypotheses being generated from behavioral science. At the same time, the

measurements must be tied into models.... In the next 5 to 10 years there will be

abundant opportunities for understanding advertising processes better and putting this

knowledge to work in improving marketing productivity."

The advances in information technology in the past decade have brought us to the point where

such sizable measurements are now readily available on a hard disk in a desktop PC. The time

has come for more disaggregate analyses. The current research is an attempt at dissaggregate

modeling for media planning by taking an advantage of the new data availability.
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Input in this study is GRP by week and daypart, while outputs are brand sales, share, volume

per buyer, number of purchases per buyer, and volume per purchase as well as exposure measures,

weekly reach and frequency. The aggregate outputs are computed from category purchase and

brandsize choice probability of each household at each purchase opportunity. The model has

two parts. The first one is a household marketing mix model based on nested logit described in

Part III, and the second is a Poisson ad exposure model calibrated on household media habits.

Different advertising scenarios are simulated with the model by changing the GRP level, re-

allocating GRP among dayparts, and re-scheduling flights. Computational efficiency is sought

by introducing a new Taylor series simulation instead of a usual Monte Carlo simulation which

requires multiple runs for stability.

We must realize that TV media planning covers just one part of the whole picture of a

marketing mix model presented in Figure 1. The current model can be readily accommodated to

simulate various store level marketing activities such as promotions and pricing on a weekly

basis. However, there still exists numerous opportunities remaining.
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