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CHAPTRR I

THEORY AND DESCRIPTION
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Let us consider two homogeneous fluids

o and n separated by an horizontal plane n and let us
suppose that the fluid s moves with rzsspect to the fluid

h with a velocity V_ parallel to the plane of separation.
For simplicity's sake, we shall suppose

the fluid P be immobile. It follows that absolute
velocities will be velocities counted with respect to n

In the fluid o we place an airfoilshaped
body A (Fig.1);  in the fluidn a similar body H., Both
airfoils having their leading edges perpndicular to the
separation plane ¥ and occupying one with respect to the
other a position subh that their upper surfaces face
opposite directions of space.

The two airfoils are tied rigidly
together with some sort of an undeformable connection C,

We shall assume that, exept for the
reactions of the two fluids on the airfoils A and H there
are no exterior forces acting on the rigid system AH.
this system will be free to move in any direction along
the plane n.We suppose however that its motion is only
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two-dimensional,i.e.:airfoil A does not leave tho fluid

s, airfoil H does not leave the fluid n and their
leading edges remain perpendicular to the plane n, It
will be shown later how this can be realized in practice

Finally we assume that the system AH
is stable with respect to both fluidss and h,i,e.when
the system is moving with a certain angle of attack i,
in the fluid « and an angle of attack i in the fluid h,
any change in those angles will create a moment that wiiii
tend to bring them back to their originel values, This
last requirement is of course easily fullfilled by means
of stabiligzers.,

If we now give to fhe systém AH a
velocity V of a direction and magnitude such, that the

reactins Rs and R, created by the fluids on the two wings
ave equal and of opposite signs:,
R, =Ry

it is obvious that, the resultant force being zero, the

the body AH will conserve indefinitely its velocity V.*)

2. Let as study the relations existing
between the different reactions and velocities of this

motion., Briefly recapitulating our data:,

The fluid = moves with respect to the fluid h

*) This might seem againet the law of oonservation of energy. It is evident, however,

that the kinetic enmergy of the fluid a suplies the energy of the motion.
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The fluid « movzis with respect to the system AH with
~a velocity V_ It causes a reaction R,.

The system AH moves with respect to thefluid n with

a velocity V It sustains from the fluid » a

reaction Rh.

As we have seen already the two fluid

reactions are tied by the relation:,

- 1
R‘ + Rh =4 O ( )
We know that these reactions can be expres.

-sed in terms of the speeds. Using the usual symbols:.
R, = 4c,p,S,V?2

R =485V

(%) can be written now:.

capt S.V.z = ch ph vaz

whenoe!,
L. (*).
“ S

Adding vectorially the different relative speeds we find
another relation:,
Rel. vel.of &« with resp. ton =V

w
" " ®" h [} " !AH=‘.:T]

or.,



Finally these speeds are tizd together

by still another element,namely the fineness ratios of
the airfoils A and H. Indeed, let us draw the triangle
visualizing the vectorial addigion (®) ( Fig. 2).This
triangle will play an important part in our discussion.

Henceforward w& shall refer to it as the triiangle of
Speeds .

Let us call now 9a the angle of the

force R, with the perpendicular to the speed V

A and

9, the angle of the ferce § with the perpendicular to

the speed V.

We know that these angles depend directly

from the fineness ratios of A and H :
cot ¢‘=/ (L/D)A

cot 9, = (I,
If we draw through the summit O of the
g¢pitangle of speeds a perpendicular p tr the direction
RaBy .1t will make an angle 9, with V_ .4 ., angle 9,with V.
The angle at the summit of the triangle is the sum of those

two angles. It follows that the speeds V and V_ make an
angle ¢ such that :,

w =4 ¢.‘. wh (‘)

3. Being given the velocity V_ the triangle

of speeds will be compl etely determined by the two data
W@ axi o furnished by the formulae (2) and (*).
a

Let us see how the velocity V ,i.e. the
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absolute velocity of the system AH,varies with those two

quantities zﬁﬂ and ¢ ,and in particalar, let us find out
which values we should give them in order to make V as
large as possible.v

Considering in the first place the
influence of the ratio YQ& ,we see that, being given a
certain value of ¢, the summit O of the triangle of
speeds has to lie on the circumference MON (Fig.3)
capable of the angle 9. When ﬂg% varies O moves along this
circunference., (We assume here that Eﬁh is changed by
some means that does not affect ¢ ,which as we shall see
later can actually be done in practice.) V will reach
its maximum value when occupying the position O,M which
is adiamete#¢ of the circumference, We can write then:,

v,
Vnaxg'lin ) (%)

and this will be obtained when :,
V7V‘=,sa: P (¢)

The formula (®) immediatly shows the
influence of 9. Inorder to make V,, as large as possible
'we have to make ¢ as small as possible

4. To what amount these two requirements?
Formula (*) shows that reducing ¢ means reducing 9.,and 9,
#.e.having both airfoils A and H working at high I/,
Assuming this first condition satisfied, 9 is small and

(%) can be written in first approximatian :,



v=y,
What by virtue of (2?) means:,
clptss%chphsh
‘But both ¢, and ¢ correspond to the angle of incidence of
greatest hﬁ;.Hence wWe may assume:,
c a=‘c h

and we get the condition:,

psssaphsh
or.,
.._§!..='_£Q (7);
Sb P.

Summarizing : In order that the system AH should have with
respect

1°.Both the cellules A and H should be given the

greatest possible fineness ratio.

2°,Their wing areas shoyld be in inverse

. ! he d i ¢ .
. Fluids.

B, A mechani sm such as we have schematically
described in the above paragiaphs ,actually exists in the
form of the sailing boat. Tiee twp fluids in relative motion
e and h are here the air and the water. V, will be the
wind speed, V the speed of the ship. the sail and the
keel are acting as airfoil shaped bodies i.e.bodies whose

fluid resistance has a ccmponent perpendicular to the

relative velocity of the fluid.
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When the ship is moving at constant
speed we have R =R, and the velocities V, V_  andV_
gatisfy the equations (2) (®) and (*).Consequently all
our reasoning applies to the sailing boat and if we
desire to build a fast ship we shall have to observe the
two requirements of paragraph 4.

We find indeed that the first of those
requirements is the chief concern in yacht building.Here
progress has always consisted in increasing the fineness
of the keel. The rather recently aquired aerodynamical
knowledge has beem successfully applied to better the
Hﬁ)of the sails. So for instance wére remarkable results
obtained by replacing the sails by regular airpdane wings.

It is however impossible to complywith
the second requirement, to wit the rational proportioning
of keel and sail areas. There are two reasons for this
‘we both overlooked in our theoretical developement:,

1°. The forces R, and R, @F# oreating +acapsizing

moment which has to be balanced. (Fig.4).
2°, The forces of gravity have to be taken into
account.

In the case of the sailing boat this
moment and this force are balanced by the hydrostatical
reactions of the hull.The buoyancy of the ship carries
its weight and prevents it from capsizing.The disponible

buyoancy however limits rapidly the sail area. It is
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easy tosee that if we fullfilled the relation (7): the
buoyancy would be absolutely insufficient not only to

hold the ship upright but even to carry the weight of the
sails not té speak of any useful load.Indeed, the density
of water being about 800 times that of air, the sail area
shculd amount to 800 times the keel area. Which is
absolutely out of proportion.fhe result is that in a sailing
boat we can never attain a favorable %Qa ratio.The triangle
-of speeds will always be flattened out as shown in Fig,5
The highest speeds attainable will never be much in excess
of the existing wind speed.We cannot take advantage of

the enormous amount of energy in presence that would

permit much higher speeds if efficiently utilized.

6. The merit of the new method of flying

we are describing is to do a way with these difficulties

The principle of this method consist in
making the two cellules A and H two independent and
individually stabilized units. These two units will no
longer be rigidly connected but the aerodynamic and
hydrodynamic reéctions will be transmitted fro m one to
the other by means of a flexible cable. The aerial unit
will besi a glider and the aguatic part a small float in the
form of an airplane wing provided with some s ort of a
stabilizing devise.(Fig.6)

The sole function of the float will be

to create an hydrodynamic reaction, It does not need to



have any buoyancy as

1°.the loadcarrying function will be transferred to
the glider
2%, the capsiging moment will be done away with all
together as the cable that ties the float to the plane is
unable to trénsmit any moment, In other words, the
hydrodynamic reaction will always be in line with the pull
of the cable.(Fié.GI
Once we dont need to worry any more about
the buoyancy of the keel, there is no reason why we should
not give it the arma which was proven to Be the most

efficient for obtaining high speeds, to wit:,

‘shEB&O Sa
7. Before we go any further se have to make

sure that the. bheory we developped in the first paragraphs
may be applied to this new mystea, o

First of all, in how far is tnis theory
affected by replacing the rigid connection btween the two
cellules by a non rigid one? We introduced the assumption
that A and H were tied rigidly together only once in our
reasoning. That was when establishing the relation (32).
Indeed this, this relation is only true when the cellule
A has no velocity with respect to the cellule H .This, as
arule ,not being the case when no rigid connection exists

(®) should be replaced by a more accurate fofmula :,
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Rel. vel., of » with resp. to A =
H

381. Vel. Of A " " L]
" " " g " " w h =,

" » w B u " n s =,

+ L[

It can be shown however that Vg always

wil; have a small value. Let us suppose that mm is not
zero.As the distance AH (Fig.7&«is,con§tant, Vg has to

be perpendicular to AH. Let us suppose that at a given
instant R, and K, are in line wittheircable - AH as shown
in poéition I. After acertain time At the whole will

have moved to the.position II.As both the cellules A andH
are static ally stable, their angles of attack remain the
same. The angles of R, with V, and R, with V remain the same
amd R 7R, R/ Ry - Bt kAH); will not be parallel to (AH);,
Consequently the forces Rdiand Ryyr are no longer in line,
They can be decomposed into R, and Rpy, who balance each
other,and R, ,and Ry, who will create accelerations in

a direction opposite to that of Vg . Vg will decrease,
change its sigh. Whea AH gets parallel again to(AH)I the
accelerations change sign and again check the increase of
Vg - A damped osvillator& motion of A with respect to H
will be the result.ﬁmwill never grow large its average
value will be ze fo, so that in ghe study of the absolute
motiop of the syétem(A+H) as a whole we may still apply

formula (3®) and work with the triangle of speeds,



 As a metter of fact unless an absolutely ideal
steadiness of flow wevalls, this oscillating motion of
the direction AH around its position of equilibrium will
be the normal condition:. Moreover the angles of inci=
dence of both the cellules A and H will be submitted to
a similar periodical varistion, which will be linked to
this former motion. In order to make & complete quan;
titative study of these different interdependent motions,
it would be necessary to establish again the ecquations
(1), (3) and (4) for conditions of disturbed static
equilibrium, that is to say with the introduction of
messes and accelerations. The discussion of a system
of simultaneous partial derivative equations having as
independent varlables the angles of attack 1, and 1,
the angulsr velocities -%%F ,%a} and the wind speed V,
would permit to find the conditions required for dynamic
stability, 1.e. for the damping of the perturbatory
motions. It would be possible too to find the period
and the damping characteristics of these motions., As
this development would be long and only of}acgdemic
interest we shall not go intb it here.

The sailling flight differs still in eanother

respect from the theoretical case we treated in the

first paragraphs. Indeed, in the theoretical case the



farces R, and R, had no other functlicn but assuring the
horizontal motion of the system. In the reai case they
heve two other functions to perform, namely:

1°. to carry the glider, the cabie and the
useful load.

20, to apply a vertical tension to the cable
AH. We know indeed, thet this cable will assume the
shape of a catenery. If the traction applied at the
lower end of this catenary was purely horizontasl, the
catenary would be tangent to the hofizohtal in this
point (Fig. 8). As R, 1s necessarlly situated benesath
the surface of the water this would meen that the
cable 1is dragging through the water, This, of course,
we cennot admit, as it woﬁld create an enormous re-
sistance end badly impair the L/D of the float. It
follows that the pull of the float on the cable should
be pointed downwards.

Both those new functions of the aerodynamic
and hydrodynamic forces require that they possess a
verticel domponent. This 1s, of course, obtained by
linclining both the glider and the keel. Their leading
edges will no longer be vertlcal as in the theoretical
case, The problem ceases to be & two-dimensional one,
we have to consider the positibn of the different

forces in the three-dimensional space.
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Again, how is the general theory affected by
this modification? We find (Fig 9) that the weights end
the vertical components of R, and R, are balancing each
other, and tla t all what has been said in the paragraphs
one to four cén be applied to their horizontal compon-
ents.,

Consequently formula (1) becomes

Raw = Aoy
and formulee (2) and (7) are similerly modified. The
most favorsasble ratio %7gk is no longer a constant; but
variss with the speed and the shape of the cable, This .
is of no great importance, becsuse we shall be aﬁle to
give the desired value to ‘Sk at any moment,

The angles ¢, and ¢, will be respectively the
angles of ‘R, with a perpendicular to V, and of Ry
wlth a perpendiculer to V. Let us decompose 1\a in a
drag component(Rmt, an horizontal 14ft component T\R?

A
end & vertical 1ift componentv?fig 9). We have:

AL

et

similarly 2 "
|

’ M?kzﬁ

We see that ?& and ¢, are greater éhan in the theoret-
ical case. Consequently the attalinsble speeds will be
smaller, The efficlency of the system 1s adversely
affected by the necessity of carrying the welight and

holéing up the cable.
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Moreover; Ya and ¢, are no longer a function
of the angles {, and \, only. ¢, depends cn the slope of
the cable © and ¢, both on & and on the air speed V,_ .

Iet T be the traction applied at the lower end
of the cable. Decomposing it in horizontal and vertical

components we get:

T =—r>’lﬂ\,9 =/K\\‘)¥

v
T“ =T cob 8 g/P\L\H

The slope 9 will largely depend on the steadiness of
the sea and the air, When both eir and water are calm
we can adopt a smell © , which, as we shall see later,
gives a high efficiency. On the contrary, when the sea
is choppy, the cable 1is 1ikely to be étruck by the waves
and & must be large. If the air 1s bumpy a large &
1s required agein, because we have, for safety's sake,
to maintain the glider at sufflcient height above the
surface of the water., It lies in our power to give
any desired valuve to & by varying the altitude of the
pléne.

If we call W the tctal welght of the plane and
the cable, we can write:

R =T +W

or
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and:

A= VT oW s 2 sin 6 TV

According to the definitlion of ¢, s

. /&m( /P\a. \/—T‘L“’_Wl* %My‘rw
Aom € = = o) = 9 /\_/
/Ra.ﬂ ‘Ra“( /1\1 T es/d j
Aec O ,‘ \/,-l + (ﬂ\q—+ 9 An @ (’«FE
T M) T
W is a constant. T varies with V consequently%/—_- varies

with .VA and so does ¢, « When -V; decreases a greater
fraction of the air force R, 1is needed far carrying the
weights, /P\,L is going to point upwards (Fig. 10). The
Y-axls of the plane nears the horlzontal. If V_ contin-
ues to decrease, at the 1limit the totality of R, will be
needed for welight carrying purposes. In this case the

wing will be horizontal

N 0 and ¢, =90°

a.‘% =
On the other hand, when V_, increases indefinitely
W/T tends toward zero, ands

AC/\/\,Y&: Ae’,cg —'—|'—‘

N
In the majority of cases v, will be such that this
latter formula can be used as a first approximation.

(A numerical example of the cla nge of {, with speed

has been developed in paragraph 17.)
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We cons ider the weight of the float as
negligible compared to the other forces acting on it.
It follows that ¢ 1s independent of the speed we have:

Rse . D

. T o \
/Sw = = = ——/} 9 —
?K /\\\\H /Rku (L/i\)k m * /\Lé)\lk

Description

The glider does not require much of a
description as 1t differs very little from the ordinary
glider. The only difference 1s that the salling glider
will be more sturdy. It has indeed to resist to much
highér forces than 1s the case with the ordinary air-
plane, The machine will have to be built for unususl-
ly high wing locadings. The reason for this will be:
given later. (chapter IIT)

In view of this fact the biplane cellule seems
to impose itself rather than the moﬁoplane. The'biplane
will Imve the other advantage that its span is small,
so reducing the danger of touching the water with the
wing tips.

This danger, wlll necessitate too a very great
lateral stability. Moreover, the glider should be

absolutely spinproof and this for two reasons:



20~

1° the gliderwill constently be 1l ying at an
higher angle of attack than an ordinary plene (the angle :
of maximums L/D or thereabout) so that an unusual danger
for autorotation exists,

2° owing to the small elevation of the plene,
once a spin started 1t would be impossible for the pilot
to'recover.

The cable is a cause of considerable head resis-
tance it may effect badly (L/D)_ . That 1s why its cross
section has to be reduced as much as possible, This
means that we have to use & material of hlgh tensile
strength. Flexible steel cable of high tensile strength
seems indicated. 1In order to reduce the air resistance
a streamlined cable might be used. When tended between
A and H the cable would bend sround the axis of the
smallest inertia moment of Its cross section (Fig.ll).
This means that the axis XX will be horizontal. That
i1s to say that the streamlined cable will automatically
assume its position of lowest air-resistance. In horiz-
ontal projection the air speed will in generasl be nearly
perpendicular to the cable,

As for the dimensions of the cable, they depend
of course to a certain extent on the dimensions of the

plane. A length of 50 yerds would be & fairly represen-
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tative figure. With a slope &=30° this would corres-
pond to an elevation of the plane of 25 yards.

In order to moderate the effects of sudden
changes of forces we may attach the cable at both ends
by means of some sort of a shock absarbing device.

The float, or as we may call it, the keel is
the only new apparstus introduced by the sailing flight.
We have to devote a little more détailed description to
1it. As first requiremm t we have to place as far as
pés;ible all parts creating head resistance out of the
water, So has the connectlon between the cable and the
keel to be above the surface. Fig. 12 shows schematic-
ally how this will be done: AB is a rigid member, The
connection B 1s rigid and transmits a bending moment.
The connection at the point of attachment A allows free
rotation.

If all we have sald about the theory of sail-
ing flight has to heve any value at all 1t 1s essentlsal

that S, cen keep a constant value or at least will

oscillate in the neighborhood of a constant value. This

we obtaln by meens of the slmple scheme shown in Figure
12. The keel will ®nsist of two parts BC and CD of
different inclinations. As no moment can be transmitted

through A, the keel will assume a position such that



the hydrodynamic force R, passes through A. R, can be
decomposed Into R, due to the part BC and R, due to the
part CD. R, creates a moment M, around A which tends
to pull the keel out of the water, R, creates a moment
M, which pulls the keel downward. Those two moments
balance each other, If accidentally the immerged part
of BC decreases, M, becomes smaller than M, and the
float is pulled down. If it comes down too far M,
surpasses M, and the float is pulled out again. A
condition of dynamlc equillibrium ensues.

In order to assure the constancy of the angle
of attack of the keel, we shsall provide it with a
stebilizer S exactly as 1t 1s done with en airplane.
The connectlon between the keel and the stabilizer
will be above the water in order to reduce head
resistance, |

Giying the stabllizer the same shape as the
keel we keep 1ts immersed surface constant. So doing
we oblige the leading edge of the keel to remain in a
vertical plane, 1t is to say we pevent the whole
device of tipping over arcund the axis AB.

Pne point remains to be solved: how shall
we control the keel? The pilot being in the glider,
the keel has to be operated from a distance. Consequént-
ly it will be important to simplify ss much as possible the

controls. In view of thls fact we shzll not attempt to
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change the angle of attack of the keel while in flight.

The angle setting of the stabilizer will be constant

and such as to make the keel work as 1ts greatest L/D.
| Only two menoeuvers are left for the keel,

to wit: |

1° the regulating of the immersion.

20 the inversion.

We have at our disposal a very simplé me ans
of regulaeting the depth of I1rmersion of the keel., It
1s sufficient iIndeed, to change the asngle BCD of the
two parts of the keel in order to make it dip 2own or
come up. The smeller the eangle BCD and the greater
part of BC hes to be under water in order to mske
R, pass through A. On tke‘contrary when we meke BCD
large, R, will péss near A (Fig 12) and R, will teve
to be small,

In the disposition of ﬁig; 12, quite a
moment would be required to mske CD rotate around C.
Thls 1s eassily eliminated by hinging the lower part
of the keel in the center of its span as shown in
Fig. 13. In order not to have to transmit eny con-
trol effort from the plane to the keel we could have
the flap DD' change its own banklng angle by means

of the ailerons ®© and E' opersted by the pilot.
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once the desired angle attéined‘the allerons would be
brought back automatically to their neutrsl positibn
by means of a very simple servo-mechanism such as that
used in the Flettner rudder.

In order to maintain e cmstant ratio b=tween
the keel area and the immersed area of its stsbilizer
1t will be necessary to equip the latter with an
exactly simllar devise. Whenever we increase or
decrease S ‘the lmmersed stabilizer area will vary
with a proportionai emount.,

The second manoeuver the keel must be able
to perform is the inversion. Let us see wherein it
consists., Flg. 14 fepfesentska seiling glider flying
" in the direction V . V. 1s the prevellng wind. wWe
see tnat the glider has its wing tip I, down 1ts wing
tip R up. The keel has 1ts tip L up its tip R down.

Now we want to fly in the direction V, lying
at the other side of the wind. The trilangle of speed
shoWs how thls 1s to be done: we shall have to adopt
the disposition of fig. 15. The glider has now tip
L up and tip R down.- The keel tip L down and tip R up.
Both glider and keel have been inverted.

From this we conclude that the kéel has to be
bilateral. Only one half at a time has to be in the
water, whlle the other half absolutely symetrical to

the first one will stick up in the air (Fig. 13)
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Tke Inversion of the glider does not entail
any speclal difficultiés, we simply pess through the
horizontal position when going over from the left bank
to the right bank. The inversl on of the keel might
be done in meny donceivable ways. Practice wili un-
doubtedly show what is the best method to execute the
menoeuver, One possible way of doing it (which we
give for what 1t 1s worth) would be to give suddenly
to the keel flap DD' the position s own in fig, 16,
and at the same time to move the stabilizer f;ap in the
opposite direction. The keel would be drawn completely
int6 the water whereas the tall would whip out, The
whole thing would tip over in the direction shown by
the arrow and would recover its equllibrium when the
tell gets in the water again., Tip L will then be in
the water énd tip R up in the air. It 1is, of course,
necessary to provide in A a joint that will permit

rotation around the axis AB.

-



Chapter II

MANOEUVERING

10. our new method of flying would not have any
practical value at all if we were unable to take off
to land or to fly in any desired direction of space.
It is desirgble also that we can control our speed
at least in a certain range. Let us see how we shall
meet those different requirements,

Pirst of all how can we cmtrol the direction
of flight. Looking at the triangle of speeds we see
thet, being given the direction of the wind W , we
are able to change the direction of V by changlng the
ratio V/V, . According to formuls (2) th's can be
done either

l. by changing ¢, and ¢, that 1is by clmnging
the angle of attack of the plane, of the keel, or both,

2. by changing the ratio Sygk

The first method hés the disadvantage of
chenging the fineness ratios. We could not meintain
the greatest L/D end & loss of speed would result.

This disadvantage doces not exist for the
second method. The most practical way to control the
ratio S“/Sk 1s to sct on S, i.e, the immersion of

the keel, As we have seen In paresgraph 9 this can
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pe done with very simple means,
The procedure of changing the direction becomes
then very simple. Suppose we are flying in the direc-

tion V|, (Fig. 17) and we want to go over to the direc-
tion V. . We see that qy& > %V%
a, 2q

Vo[ e
V ) S"v\

(49

o/
So, all we have to do 1s to decrease g/gl\ that is

to increase g\\ « We gradually dip the keel deeper
Into the water until the desired direction 1s attained.
It goes without saying that this manoeuver should be-
come a reflex and that the pilot should not have to
think iIn which way he 1is chenging his trilangle of
speeds. |

This method of controlling the direction of
flizht is, however, subject to certain limitations.
It is obvious, indeed, that we cannot change indefinit-
ely the immersed area S, . Consequently, there will
be an angle LML (Fig. 17) within which 1t will be
impossible to fly, exactly as it 1s the case with a
salling boat. Thanks to "tacking" we can overcome
this difficulty.

Let us suppose we have to reach a point lying
in the direction OD within the angle LML. We start

with the velocity O M. (If meximum speed is desired



0, will be situated on the circle of minimum ¢ ). OM
has a component perpendicular to MD: O,P, . It means
that the distance of the plane to the line MD is in-
creasing with O, P, per unit of tiﬁe. After’a certain
time t, this distance will be G, x 0,7,

At this moment we reverse the triangle of
speeds, 1.e. we are going to fly in a direction that
lies at the other side of the direction of the wind.
Be O*VM our new velocity., It has a component perpen-
dicluaf to MD: O,P, + We are now approaching again
the line MD at the rate of 0, P, per unit of time.
Suppose we reach MD after a time t, ,

Let us calculate now what has been our average

speed in the direction MD:

- total distance
\rawe. s time

MP, nd MP, being the components of the velocities O M
end O,M parallel to MD
V. 0 S o (N

= =

ae

t, o+t
Q'M?‘“tvM?x+ti'M?i+th?‘ = MP —EL"(M?~M?J‘
T R Y 7 l
b.*ti v
= WP, « PP ()

Exby ! z
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The fact that the line MD 1is reached after

the total time t, + t2 gives us the relation:

Ou/?.'t\ - Oi?&'tx.zo

whence:
of b
0,7, €,

Consequently, we cen transform the last term of the‘
expression (X):
——77, AL

\ kS (SRR 2 '
as follows from the similarity of the triangles O P P,
and O,P P, .
'hence

Ve =P M +7,7 -?M
So, by tacking, the average speed mede in a direction
MD 1s represented by the vector PM contalned between
the point M and the straight line joining the extrem-
1ties 0, aﬁd 0, of the vectors representing the two
actual‘flying speeds of the mesnoeuver O, M end O, M.

It immediately follows that the greatest
possible average speeds in tacking are obteined when
0,0, coincides with the common tangent of the circles
1l and 2., What is more, if we consider a triangle of
speeds, such as MO, N where 0, lies on the'inner half

of the circumference 1 or 2, we see that the actual
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flying speed O, M 1s smaller than the average speed we
could make in the same direction by tacking. So, even
in directlons where tacking is not necessary for making
flight possible, it may be Interesting to apply it.

We can summarize the above in three practical
rules:

1. When tacking the summit of the triangle of
speeds should be placed alternately in either otland

0, or 0; and OL o« In other words, when tacking

2 .
with the wind theszo best directions of flight are
Oy M and OtJW « Vhen tacking against the wind the two
best diredtions of flight are oL)« and O¥JM .

2. Speed can be galned by tacking in all

directions lying within the angles OblMObL and OL‘M.OL

LB

3. The closed curve O, 0 0%

1
£, 0 C, com=

posed of the two exterior half circles (1) and (2) and
the two common tangents 0, 0 and 0. 0;; 1s, with
M as origin, a polar diagram of the maximum speeds
obtainable in all directions of space,

We have to study a 1little more closely the
reversing manoeuver in tacking. Let us suppose we are
tacking with the wind K the summit of the trisngle of
speeds being in O, (Flg. 18). Reversing will consist

In bringing the summit in Op
2



The way this manoeuver 1is done varies widely
with the time in which 1t is to be sccomplished. The
more quickly the manoceuver 1s executed and the more
important become the inertia forces, The latter com-
pletely modify the mechanlsm of the reversing.,

As a 1limiting case we shall first study the
case where the manoeuver is done in a very long time,
In this case there sre no inertia forces, The svstem
will always be in static equilibrium. That méans that
it will never pass through any position in which flight
cannot be mginteined indefinitely.

The hypothesis of the total absence of inertia
forces is, of course, purely theoretical, but it is
concelvable that we approasch this comdition in prac-
tice.

The only way of bringing the summit of the
trisngle of speeds from Op to Otl without disrupting
the static equilibrium of the system, is to move it
gradually along a path such as shown by the dotted
line, This will be done by 1ncreasing @ o« According
to paragraph 9 ¢, 1s s cmstant. We have thus to
change ¢, . The most practicel way of doing this ig
to decrease the angle between the Y-axis (parallel
to leading edge) of the glider and the horizontal as

has been described in psragraph 8., I end II in
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Fig. 19, show the orientation of the plane and the
keel with air and weter speeds corresponding to the
‘positions of the summit of the trilsngle designated
by I and IT in Flg. 18. (We say the orientation of
the glider and not the positioﬁ because we are unable
to draw the actusl paths of A and H owing to the long
time elapsed between T and II).

Continuing to increase ¢, the Y-axls gets

finally horizontal (orientation III). We have:

Pu =90 €= 90°+ ¢,

fk,cﬁnnot be mede any larger. But, in order to get
the summit of the trlangle of speeds In IV we have to
make P=1%0° » This can be obtained by letting the
cabls drag into the water., The enormous reslstance
so created will practically reduce tolto zero the
L/D of the keel. Hence: ¢, = 90° ¢ = 180° ,
In this position the glider will fly like a kite,
1.2, the wable will assume the direction of the wind,
It has to be remsrked that the air speed V, at this
point will be very low. We will be able to get over
this point only when a strong wind speed V., prevails.

We now invert the keel as described in para-

tﬁAM%i
graph 9, the summit of the v ' will get to Y. As we
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see in Flg. 19, the keel which was st the left hand side
of the glider got to the right hand side. 1In ordef to
restore normsl flying conditlions we have only to incline
the Y-axis egain - this time the left wing tip pointing
down. By so doing we acquire gradually the positions
VI and VII. The reversing manoeuver is completed,

The disadvantages of this method of reversing
ere obvious, 1In the first place we cannot get over the
position IV unless we have a very strong wind at our
disposal. 1In the second place, if we wish to avoid
all inertis forces, we have to slow up the operation.
That means that we have to fly a long time at speeds
such as Vy , Vg , Vg... - which are small., It follows
thet the manoeuver entails & considerable loss in
average speed. Because of these two disadvantages
this method of reversing will be used seldom or not
at all. We described it nevertheless for completeness,
and because it gives a clear idea of what reversing
really conslsts of.

We shall now describe the method that will
be generally used, 1. e. the quick reversing in which
considerable inertia forces will occur.

| The general procedure to be followed remsins
the same as in the previous case, that is to say we

go over from a left bank to a right bank and reverse



the keel at the moment the plane is in the horizontal
poslition.
Let us call V the velocity of the center of
gravity G of the system. It has to be brought from
the value 0 M to the value 05@ M (Fig. 20). oOwing,
however, to the inertia the varlation of V will no
longer be gilven by the curve I, II, III...of Fig., 18,
but by some other curve I, II, III ...as8 shown in
Fig. 20, |
Let us call‘vq the relative velocity of the
air with respect to the glider,
VMr the relative velocity of the
glider with respect to the center
of>gravity.
Vh“ the relative velocity of the center
of gravity with respect to the keel.
the relative velocity of the keel

with respect to the weter,

We have:

—VAG T Vou =‘V;H
The distances AG and GH being constant qu_ and VAH are
both perpendicluar to AH. As the horizontal projection

of the cable may be supposed to remain a straight line,

\Ik& and un will.be parallel gnd:
-V;q _ A G

[



«35u

and: V. - AG ._V.H

X3

qu“ B Jiﬁ-§v;u
From paragraph 7 we know that:

fﬁf; +<V:“ ;:V;—;iﬁv -0
or:

_V;.+tr;& ;:—;“ ;;Fk:;fw=’0
Also:' o .
Vo=V, + V.
Knowing V we can bulld the vector polygones those tWo
relations. This has been done in Fig. 20 for the differ-
ent values of V represented by IM II M ,ITI M, etc.
By means of the veloclitles so obtained we have construc-
ted the paths of the glider and the keel during the
reversing, as shown in Fig._él. We see that the glider
"~ has not to make a complete turn around its vertical
axls as in the former case. The two disadvantages we
mentioned in paragraph 12 have disappeared,

It has to be remarked that during the ma jor

part of the manoeuver the system 1s just flying on
acquired speed. It would not be possible to maintein
for any length of time most of the positions assumed

during the manoeuver,
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We have still to study the manoeuvers of landing
and taking off. Landing will not entail any great 4iffi-
culties, It will be possible in general to gllide down
against the wind.

At teking off, the glider will, of course, be
in a horizontal position, consequently ,-90° . We
turn the nose of the plsne into the wind and let it
drag the cable through the water. (= 90° So:

Y= 180° we are 1in case IV of Fig. 18. When the
prevaeiling wind 1s sufficient the plene can be 1ifted
off the water. When we gain sufficient height, we
raise the cable out of the water. At this moment

g = 90 %+ ¢.. We are in case III or V of Fig. 18
and 19. We can theh get the system to the positions I
or VII or give the triangle of spreeds &ny desired form
by banking the glider the necessary amount and dlpping
the keel to the required depth.

As we shall see In chapter III (psragraph 18)
the above described method of teke off will be rather
unusual. In the more genersl case, the prevailing
wind will not be strong enough to mske possible the
teke off without outside help, thouglh it will be perfecte
ly sufficient to make normal flight possible. Two
other methods of getting the glider in the gir present

themselves:
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l. towing.

2. using an suxiliary motor.

In the first cese the glider Will be towed by
the lower end of the cable against the wind (by a motor
leunch, faor instance). The glider takes off, uses and
raises the cable out of the water, At this momént the
ﬁilot banks the glider which willl move to the side of
the leunch (instead of diréctly behind it). The cable
can then be released and the flight ﬁill continue in-
dependently.

There rnow remains the case of the suxllisry
motor. The pilot takes off in the usual wey, towing
the cable and the keel behind tke plene. He rises, and
as scon as the cablé will be out cf the water, the keel
moves to the right or left of the plane. The pillot
banks in the corresponding direction and stops the

engine cintinuing in salling flight,
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Chapter TIII

STRESSES, TAKE-OFF, CAVITATION, AND

THE IR INFLUENCE ON SPEED

The glider to be used in sailing flight differs
consliderably from the ordinary plane 1n so far as 1its
mechanical resistance 1is concerned. The forces involv-
ed in the case of salling flight are much greater than
those acting on the ordinary ailrplane. Indeed, in
free flight, the total air force never exceeds the
weight of the plene in normal conditions. This 1is no
longer true for the salling glider. As we have already
seen 1n paragraph 8, the forces applied to the glider
are threefold; to wit (1) the resultant air force R;
(2) the tension in the cable T, and (3) the weight W.
(me suppose the weight of the cable included in %, T
then will not be the actual pull of the cable in A,
but only the pull transmitted from the floét.? Figure
22 shows a typlcal proportioning of these three forces
we have here: R = 6W. .

Whereas in the ordinary airplane, we de-

crease the angle of attack when the speed increasés,
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in sailing flight the angle of attack is constant and
equal to that of maximum L/b. Consequently, the air
forces will increase as the square of the speeds.
It is obvioué that the speeds increasing, a moment \
will arrive where the wing-loading will attain =
critical value beyond which stiructural failure will
occur. Once this resistance limit is attained we
éhall be obliged to dec}ease the angle of attack if
we want to fly at still higher speed. When we do
this we impair the L/b of the glider, ¢ will in-
crewse ahd a limitation of the speed V will ensue.
16. Let us find out what this limitation really
“amounts to. BV, the greatest speed'we can obtain
ﬁith'a windfv;r. According to fomula (5) we have
approximately:

'V" - V«r L
‘ ¢,

(For simplicity we suppose V = V, awd ¢ < ¥ ¢ = Lamp)

According to formula (4)

o\ \
= (e o, + T — + 7T
‘f\ e Ch), M
We call (L/b)‘the neximum fineness ratio of the plane.

A definite ratio exists between the meximum L/p of the




plare and that of the keel. Let us call it a. Then

a \ta (I)

? = -'lf_— + = T
(), @, W,

-

Sd:

AR AR S

We know when an airplane flies at its greatest L/D

'its profile drag equals its induced drag:

C’P = c I
Consequently _ v
(L/.B\ = CL‘ - e, (III)
& C'P + Cil X cv

the subscript 1 always referring to the angle of
attack corresponding to the maximum /.

Let us now suppose that the velocity Vw;, is of a
magnitude such that the air force on the glider
attains exactly the limit of structural resistance

RQ . We shall have

N

Rz xpSelV, | (IV)
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Let us now consider a second case where the existing
wind speed V, 1is greater than V_ If we'flew’fhe
glider at the same angle of incidence the resistance
limit Ry would be exceeded. We suppose that af ter
cutting down the 1lift coefficient of the plane to the
value C , the maximum speed V, attainzble with the new

angle of attack will again give an air force eéual

to the limit of the structurzl resistance of the plane. -

-7t '
= 4
Re= 2 YSC‘-L\‘['L , (v)
Let & be defined ass

Then (1IV) and (V) give:

09V e pos BV,

2
whence: -

Y, eV, )

Let us now find how the ratio o depends upon the

ratio_V., . How is % affected by the adoption
Vor, " ,
of the new angle of attack? We may assume that the

profile drag coefficient of the plane did not change.

The induced drag is knovn to be porportional to the

square of the 1lift. So:

QL" 2 17
- S S = A
c:;' (Ch\ €y = o G, = m*cv




It follows that:

€,
a2 e ()
= Cpx C.Ll (‘+ ’;-.)"—v‘ @‘*\;‘3 (Y i a/,

From which we deduce %1

ot | @ xtelax+)

x UZD\\* (L/.‘D\)s i Ao E\'

V.. » (_L/D):\fwt

? Q:. 2t 20, )

n

‘f’- = ‘eat" (fk

Whence

<

Formula (VI) becomes then:

s (), - o ()Y

aCtt Lan +\
and
,V (VII)
we  _ ate 2% ¢
YV, V= (14a)

~ By means of formulae VI and VII we can now
plot V against V,, upward from the critical point C
below which the structur.l resistance limit is not
attained. This has been done in Figure 2 T~ The
dbtted line gives the theoretical speeds we could

attain if structural failure were not to be feared.
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The graph of figure 23 is of great importance
in the study of the performances of the sailing
glider. It gives for every prevailing wind speed'
the corresponding maximum speed aftainable. We shall

call it the characteristic curve of the glider.

Ig the previous paragraph we only considered the portion
of the curve beyond the critical point C . Let us
now study the portion below C,
If no weight had to be carried ¥ would

be constant, V would be proportional to V, and the
characteristic curve would be a straight line below C.
Ve have seen, however, in paragraph 8 that the relétive
importance of the weight of the plane with respect to
the magnitude of thé air forces greatly affécts ¢ .

Let us suppose that at ihe critical point C the
air forse amounts to 6.times the value of the weight

RQ = 6W |

6 will be a coefficient characteristic of the structure

of the glider we shall call it the amplificatiop factor

Let (fig. 22) be T, = R%‘ = o W
Let us suppose the slope of the cable is 8 =39

then

Tv = \',am ?,ao Tk ;J_":_T) %'W
and

‘7\5: (\+ J% %‘\Wﬂ

JV
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If we now disregard R£; which is comparatively small,
we have (fig. 22):

19=T\+®%

or

3g7dt= a?WNi+ U¥JE %Jl\ﬂl

simplifying .o ,
L NE
EY oc,"*\/’% o, - 35 =0

resolving for ac,:

conseQuently
=’P\x ,\,___l___/& V —_——G—-w—-———‘=\.18'\""
| i (AL AT (AN

According to paragraph 8 we have approximately

€= heel =115 —
I (A AN

Supposing now, as we did in the previous paragraph

(L/b)& = (L#p),  we have

@ - Cci = (125 v 115) l% = 245 g
Let us now assume that the air speed decreases
to one-half of its value and let us find to what wind
speed this new V will correspond in the characteristic

curve. When the air speed is reduced to % the air forces




- 45 -

are divided by four. Sos

R=%zR =3 ,é\t\f:%‘w

4
Hence, as shown in Fig. 24:

1,12
(%\r-wt= “:‘wz* (\'f\]-{ st.\ W

Y 1 (E. _.5-:
T X, v \T % gy =0

y
NEaE sk
g = =

: - .62
Q ¥ %
andzs 3

resolving for x5

ol

- f&! " /RQ _ S/L-W =9 Lir !
(ea'l (K‘t - (LA\‘:R% 'él—wcfl\\& ' E\a

¢, remained the same, consequently:

p \
fu= Cuct @, = (244 l.‘s\{% =355 7

In the first case we had:

In the second:

‘ 3,55
By hypothesis:

we conclude

N _e5s Vo g, Y
Yol quy 2 h 2

The point (V’,W.‘LIV‘)~ ) in the characteristic curve will be
D. (Fig. 23). So we see that the curve lies underneath

the straight line of the theoretical case. When we continue
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to decrease V, the characteristic gets tangent to a para-
llel to the V~axis in a point B. This point corresponds
to the minimum wind speed at wvhich flight is possible.
| The position of the critical éoint C depends
on the wing area, the limiting wing loading, and ¢ .
The length of the portion CB depends on the amplifica-
tlils factor be
tion factor. The greaterAuad the larger willABC. Onee
we have C and the amplification factor, the whole charac-
teristic curve is defined. |

The characteristic curve gives us immediately
the speed range of the glider. In Fig. 24 are shown three
different characteristic curves. They all correspond to
an amplification factor 6 amd to ¢= 5.

The curve 1 corresponds to a glider of small
wing area. This glider will be able to fly at very high
speeds. With a gale of 40 miles per hour, it will make
180 m.p.h. However, it needs already a fresh breeze in
order to be able to stay in the air. The minimum'wind
speed permitting the flight (given by point B) is only
18 miles per hour. &8 we have only such a wind at our
disposal a few days in a year, the plane will be unable
to fly most of the time. In some regions, however,
strong winds my be more frequent or even usual, in such
conditions it would be logical to adopt this type of

characteristic curve for the sailing glider.
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Looking at it from the view point of the téke
off we see that it would be quite out of the question to
start this type of plane by the sole force of the wind,
that is to say without towing or without auxiliary engine,
indeed, the landing speed of the plane is around 45 m.p.h.
That means that we would have to wait for a wind of about
60 m.p.h. before we could €0 up.

Condisering the glider corresponding to a curve
2 we see that it will be able to keep the air with a
gentle breeze of about 7m. p.h. The attainzble speeds
of this machine are, however, much smaller than those
of the glider of the former case. With a gule of 40 miles
it will only meke a 110 m.p.h. This type of glider,
that is tiie one which reaches i@s critical point at & wind
of 10 m.p.l1. seeis very well suited for the atmospheric con-
ditions prrevailing in these latitudes, Indeed the nost
fregquent wind speeds of those regions - 8 to 25 m.p.h. -
lie within its useful range. It gives the »easonuble
spéed of 50 m.p.he with a ten mile wind and of about
70 m.p.he with o fifteen mile wind.

The landing speed of this machine is approxi-

mately 16 m.p.he. e need a strohg gale for taking off with-

out .outside help. So again, as a rule, we must have
recourse either to towing or to an engine for stérting the
flight. Which of these two methods should we prefer?

Lech of them has an advantage and a disadvantage. The
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advantage of the engine 1s, of course, to make the

mectHine independent. This is why it should be used

in long raids. . Whenever the machine hsas
come down, whether because of insufficient wind or
from any other cause, it will be able to tuke off aguin'
as soon as atmospheric conditions permit. The disad-
vantage of the engine is that it increases considerably
the weight of the plane and adds to the cost. |
One zdvantage of the towing start is that it

permits the increase of ;/D of the glider. The most
important advantage, however, if that it eliminates the
weightk of the engine. By this very fact the ampli-
fication factor is increased. We can either let the
structure of the glider remain as it was and bring

down the point B of the characteristic curve,

that is lessen tle probability of being forced down by
lack of wind. Or we can use the weight saved on the
engine for reinforcing the wing structure. By doing
this we raise the critical point C and all the-speeds
beyond.

The disadvantage, of course, is thut once we

are forced down by feeble winds, .it is virtuaslly im-
possible to again léave the water. Consequently this
method should be used only for short hops when the

Pilot is always sure to find sufficient winds ahead.
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Curve 3 of figure 24 finally, is the charac-
teristic curve of a glider that has been constructed
so a8 to be asble to leave the water by its owm means.

That 1s to say, & glider with'large wing area. The

-landing speed hus been chosen 6 m.p.h. so that the take

off will be possible'at a slight breeze of 8 m.p.h.

We reach the critical point at a wind-speed of 3.5
m.pP.le The speeds we can attain with & plane like this
are exceedingty low. With a wind of 10 m.p.he our
maximum speed will be oniy 34 m.p.he. In order to be
able to fly at 56 m.p.h. we need a wind of 26 m.pe.h.
These figures could be bettered by increasing the fine-
ness ratios.and the amplification factor. Supposing
we can get the latter up to 8 and meake Y= 6 the

new characteristic curve will be given by the dotted
line,

It will be interesting to consider those
three types of gliders from the viewpoint of wing areas
and wing loadings. We shall admit thut the 1lift
coefficient of the glider at its greatest L/D is

C, = 1. This cannot be very far from the truth.

L

Let us first take the case of the fast
glider. It attains its critical point at an air
speed of 125 m.p.h. Consequently its maximum wing

loading will be ¢
125" x .00255 x 1 = 40#/p4>
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Unlike what is the c=se for the ordinary airplane, the
wing loading of the sailing glider does not exXpress

the ratio weight . We obtain this ratio by dividing
wing area ’
the maximum wing loading by the anplification factor.

In this case
weight per sq. ft :‘%Q_ = 6.7#

We seé that the wing area will not be very different
from that used in an ordinary airplane of the same
total weight. The wing weight will be greafer than in
the ordinary plane as the étructure will have to sus-
tain loads as high as 40#/ft1 (It is evident that in
the stress calculations this load has still to be multi-

plied by the load factor as usual.) When applying
| Irofessor Jarner's formula

W =% AR
we find a wing weight 6 'Y= 2.2 times that of the
airplane with wing loading 6.7#/ft" . |
In the second case the ¢ritical point
correspondsrto the speed of 50 m/p.h. The critical
wing loading is:
50 x.00255 x1 = 6.4#/ft

the weight per sq. ft. % —§éé—'= 1.1#
In other words, the wing area will be about ten times
that of ean ordinary plane of the same weight. In
order to keep down the wing weight we shall have to

transmit the pull of the cable directly to the wings in
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2 or more points conveniently situated along the span,
rather than to create excessive bending moments by
applying it on one point at the centre. The estima-
tion of the wing weight then becomes difficult. It
would recuire a detailed structural analysis. The

use of the triplane cellule muy be necessafy in

view of the enormous wing area.

Coming now to the emse of the glider that
will teke off in a slight breeze, we find wing areas
absolutely prohibitive. This case has to be aban-
doned. We cannot hope to build up sailing gliders that
will take off at such small wind speeds wiﬁhout outside
help. |

If the cablé is efficiently designed, it should
reach its limit of permissible stress at the same moment&s&ka%la“e,
Consenuently the cross-gsection of the cable amd its
weight will be directly proportional to the amplification
factor, | . |

The weight of the cable is rather small. 1In
the specifications of the British Air Board (Pippard &
Pritchard), we find that an extra flexible steel rope’
of .388 inch diameter has a minimum breaking strength
of 15,700 1lbs. and weight 25.5 1lbs. per 100 feet. This
cable applied to = glider of 1,000 lbs. flying with an



21.

amplification factor 6 would still heve & safety factor
of 2,6, Fifty yards would weilgh 38 1lbs., thet is to say,
only 3.8% of the total weight.

The shape of the cable is a catenary practically
reduced to a straight line. 1Indeed, if T i1s the traction
in the cable at its lover end, T' the traction at the

upper end and w its weight,

w being only about .6% of T, the directions of T and T'
are practically the same.

There will be no difficulty in making the keel
strong enough to resist to the hydrodynamic forces, There
is, howeﬁer, another reason for 1imiting the loads per
unit area, namely cavitation. If the water pressure

gets too low, gas pockets willl be formed, the continulty

-of flow will be destroyed. The keel loses its efficiency

and increases. Consequently, cavitation is something
we have to avold by all means. This cen only be done by
keeping the keel-loading below a certain 1imit, To what
Just this 1imit will amcunt i1s difficult to say and
could only be determined by experiment. It seems, how-
ever, that the conditlions are less favorable for cavita-
tion then those prevailing with the marine propeiler.

In the latter case indeed, each blade hes to work in a
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portion of the fluid that has already been disturbed by
the preceding one. Nothing of the sort happens in the
case of the keel. The fluld passes through the low
pressures only once and during a very short time. Owing
to the rapidity of this phenomenon, probably only a

small amount of the gases included in the water have

time to liberate themselves. A keel loading of 1000#/ft
(1.e. 47% of the astmospheric pressure) seems a reason-
able limit not to surpass.

Once we attain this 1imit, we have to decrease
the 1ift co8fficient of the keel if we still want to
reach higher speeds, The csse 1s absolutely similar
to that of the glider when 1t reaches its structural
resistance 1imit, Here again we shall have a critical

point. We shall call 1t the cavitatlon point., Above

this cavitation pointd(Fig. 25) the characteristic
curve will be affected, exactly in the same way it is
above the criticel point €, by the fact that the keel
does not maintain its angle of attack of maximum L/D.
(Paragraph 16) Unlike the critical point, however,

the cavitation point does not depend on the amplication
factor nor on the keel area. Once the keel section
determined the ordinate of D is the same in all charec-

teristic curves, ILet us find this ordinate.
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The assumption we made in paragraph 4 that
when both cellules A and H wérk at their angle'of
attack of greatest L/D ¢ ..~ ¢, holds only in the
theoretical case. 1In the practicel case where f«
1s so much smaller than Qk we remove all the profile
resistance we possibly can from the water and place
it in the air. We have seen that the keel has no
profile resistance whatsoever except that of tre air-
foils it is composed of themselves, So : C%_> C?k
But as the profile drag equals the induced drag at
greatest L/D, Cro Y Cro The induced drags being
propertional to the squares of the 1ifts we conclude
c.. ) C. .

Leg us sucpose thrat at maximum L/D the keel
11ft colfricient is:

.. =.S

(a ratrer conservative assumption). Adopting then as
limiting keel lcading 1000#/ft  we find fa the speed
et the cavitation polint:
—
£
SR C .\
:D‘\f % - 3‘ ™. [\\»\

‘/1 kc'\-k

Lek us find now how the characteristic curve

1s affected., Considering a speed V, such that

VB,



we heve, according to paragraph 16:

(&Gbkl B ;;f; (%éjkm

whence .

| actt |
’fl = (f"t‘r ‘sz: *
(&Q‘ 1&.Qf

ﬁ\D

®here (L/D), 1s the maximum L/D of the glider. We

know that (L/b)k) 1s the maximum L/D of the keel.
We have already seen that thé L/D of the keel will be
greater than that of the glider as the latter presents

more parasite resistance: Let us suppose:

5 -2l

)
then:
Y, = L + —jétil-—-: aadocxl N\
R 7 N ()

If we make V, = V_ we can deduce the corresponding

X, whence %Q and

Let us do this for the glider'corresponding to the
No., 2 ,
characteristic aurverf figure 24. We have V, = 50

m.p.h. So:
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whence:
9‘-:'-&—&19(.(4'\ i

fe = L e (L{;DS\; |'75@)|

In dlagram 24 we supposed tf = 1/5, thaet 1s to say:

\ l v 1 ) \
TN TN T TN TN T = 5
]:\LZ,}I C—/‘“\ ho Q-ZD\ \ 1&‘@- 8 sz)l >
whence:
LI
wg\ \ 5
and:
(fl:\‘75 *‘:L; = .233
and:

n

Vo= ow3n VL= ns myl

We see thet the Influence of the existence of the
cavitation point has been to incrsase the criticel

wind speed,

The behavior of the characteristic curve
above the critical point is found in the ssme way.
Let us consider a certain speed V, > V. . We want

to find to what wind speed 1t corresponds. Again we

Vo= V= Ve, V)
N D

According to paragraph 16:
g g

assunue:

9.
S e T+ )

C e —

= ¥, = ‘z‘x.Q-/J)\\‘k 1%‘%"@3}\‘:

t/oc:’“* { + C)L?-’J(:' £\ ),\_,..
\\ i—c)L| L‘ 9(l 9('(—
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So: p
- ) /o)cf«x 9(.19<fr1 >_\__ -
v-w‘,b - k 2, + ‘~————q%‘ e (L/j)\‘\/;
We found:
V. =195, L~y . 45 v,
S T R CAN

L, L o9, 9 JIE _5

Or, replacing X by i