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CHAPTER I

THEORY AND DESCRIPTION

Let us consider two homogeneous fluids

and h separated by an horizontal plane n and let us

suppose that the fluid a moves with r3lspect to the fluid

h with a velocity V, parallel to the plane of separation.
for simplicity's sake, we shall suppose

the fluid h be immobile. It follows that absolute

velocities will be velocities counted with respect to h

In the fluid a we place a-n airfoilshaped

body A (Fig.1);- in the fluid h a similar body H. Both

airfoils having their leading edges perpndicular to the

separation plane m and occupying one with respect to the

other a position subh that their upper surfaces face

opposite directions of space.

The two airfoils are tied rigidly

together with some sort of an undeformable connection C.

We shall assume that, exept for the

reactions of the two fluids on the airfoils A and, H there

are no exterior forces acting on the rigid system AH.

This system will be free to move in any direction along

the plane n.We suppose however that its motion is only

3 (3 6
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two-dimensional, i.e.:.airfoil A does not leave thd fluid

a, airfoil H does not leave the fluid h and their

leading edges remain perpendicular to the plane n. It

will be shown later how this can be re-alized in practice

Finally we assume that the system AH

is stable with respect to both fluids a and h,i.e.when

the system is moving with a certain angle of attack i.

in the fluid a and an angle of attack h in the fluid ,

any change in those angles will create a moment that wi)1i

tend to bring them back to their original values. This

last requirement is of course easily fullfilled by means

of stabilizers.

If wie now give to the system AH a

velocity V of a direction and magnitude such, that the

reactins ]R and Rh created by the fluids on the two wings

ao equal and of opposite signs:.

Re - Rh

it is obvious that, the resultant force being zero, the

the body AH will conserve indefinitely its velocity V.*)

2. Let as study the relations existing

between the different reactions and velocities of this

motion. Briefly recapitulating our data:.

The fluid a moves with respect to the fluid h

) This might seem against the law of oonservation of energy. It is evident,however,

that the kinetio energy of the fluid a suplies the energy of the motion.



-6-.

wth a veLocity V,

The fluid a movns with respect to the system AH with

a velocity Va It causes a reaction R'

The system AH moves with respect to thefluid h with

a velocity V (t sustains from the fluid h a

reaction Rh.

As we have seen already the two fluid

reactions are tied by the relation:.

R + R =,O (1)

We know that these reactions can be expres.

-sed in terms of the speeds. Using the usual symbols:.

R =c P S V2

(1) can be written now:.

cap aS& V&2 = h V2

whosee.

V /
- =~, (8)

Adding vectorially the different relative speeds we find

another relation:.

Rel. vel.of a with resp. toh V,

U- h - "AH 2, -V

N ' AH a it a , -'V&

. V -

or:. V + - ,0 ((a).
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Finally these speeds are tierd together

by still another element,namely the fineness ratios of

the airfoils A and H. Indeed, let us draw the triangle

visualizing the vectorial addiyion (3): ( Fig. 2).This

triangle will play an important part in our discussion.

Henceforward we shall refer to it as the j.LiApggaqf_

Let us call now ca the angle of the

force R. with the perpendicular to the speed V and

Th the angle of the f orce Ph with the perpendicular to

the speed V.

We know that these angles depend directly

from the fineness ratios of A and H

cot q5 ' (L/Dl

cot 9 L,

If we draw through the suminit 0 of the

90tangle of speeds a perpendicular p to the direction

Ra k .It will make an angle cf with V- and an angle qwith V.

The angle at the summit of the triangle is the sum of those

two angles. It follows that the speeds V and V. make an

angle c such that

If ' Cf + fh (4)

3. Being given the velocity V, the triangle

of speeds will be completely determined by the two data

V/ arid furnished by the formulae (2) and (*

Let us see how the velocity V ,i.e.. the
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absolute velocity of the system AH,varies with those two

quantities V/yVS and c ,and in particular, let us find out

which values we should give them in order to make V as

large as possible.

Considering in the first place the

influence of the ratio / , we see that, being given a

certain value of (, the summit 0 of the triangle of

speeds has to lie on the circumference MON (Fig.3)

capable of the angle P. When / varies 0 moves along this

circumference. (We assume here that /N is changed by

some means that does not affect # ,which as we shall see

later can actually be done in practice.) V will reach

its maximum value when occupying the position O1Ni which

is a diameted of the circumference. We can write then:.

and this will be obtained when

a

The formula (') immediatly shows the

influence of T. In order to make V. as large as possible

we have to make ( as small as possible

4. To what amount these two requirements?

Formula (I). shows that reducing ( means reducing ipvand (

,i.e.having both airfoils A and H working at high 1 D -

Assuming this first condition satisfied, cp is small and

(6): can be written in first approximatiocn.
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V =,V

What by virtue of (2) means:.

caPas =chPh Sh

But both c. and C correspond to the angle of incidence of

greatest L/D .Hence we may assume:.

C a=,C h

and we get the condition:.

Pas &="Ph Sh

or:.

():
Sh Pa

Summarizing :. In order that the system AH should have with

resuect to the fluid.h a velocity V as -reat as possible

1*.Both the cellules A and H should be given the

greatest possible fineness ratio.

2*'.Their wing areas shopld be in inverse

proportion to the densities of their

respective fluids.

A mechanism such as we have schematically

described in the above paragraphs ,actually exists in the

form of tioe sailing boat. TIe twp fluids in relative motion

a and h are here the air and the water. V, will be the

wind speed, V the speed of the ship. the sail and the

keel are acting as airfoil shaped bodies i.e.bodies whose

fluid resistance has a ccmponent perpendicular to the

relative velocity of the fluid.

I
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When the ship is moving at constant

speed we have R,=,R, and the velocities V, V. andV,

fatisfy the equations ( 2). (3): and ( 4 ):.Consequently all

our reasoning applies to the sailing boat and if we

desire to build a fast ship we shall have to observe the

two requirements of paragraph 4.

We find indeed that the first of those

requirements is the chief concern in yacht building.Here

progress has always consisted in increasing the fineness

of the keel. The rather recently aquired aerodynamical

knowledge has been successfully applied to better the

/D of the sail s. So for instance were remarkable results

obtained by replacing the sails by regular airptane wings.

It is however impossible to complywith

the second requirement, to wit the rational proportioning

of keel and sail areas. There are two reasons for this

*we both overlooked in our theoretical developement:.

1'. The forces R. and Rh O# oreating iacapsizing

moment vbich has to be balanced. (Fig.4).

20. The forces of gravity have to be taken into

account.

In the case of the sailing boat this

moment and this force are balanced by the hydrostatical

r eactions of the hull.The buoya:ncy of the ship carries

its weight and prevents it from capsizing.The disponible

buyoancy however limits rapidly the sail area. It is
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easy tosee that if we fullfilled the relation (7): the

buoyancy would be absolutely insufficient not only to

hold the ship upright but even to carry the weight of the

sails not t& speak of any useful load.Indeed, the density

of water being about 800 times that of air, the sail area

shculd amount to 800: times the keel area. Which is

absolutely out of proportion.The result is that in a sailing

boat we can never attain a favorable V1 ratio.The triangle

of speeds will always be flattened out as shown in Fig.5

The highest speeds attainable will never be much in excess

of the existing wind speed.We cannot take advantage of

the enormous amount of energy in presence that would

permit much higher speeds if efficiently utilized.

6. The merit of the new method of flying

we are describing is to do a way with these difficulties

The principle of this method consist in

making the two cellules A and H two independent and

individually stabilized units. These two units will no

longer be rigidly connected but the aerodynamic and

hydrodynamic reactions will be transmitted fro m one to

the other by means of a flexible cable. The aerial unit

will bei a glider and the aquatic part a small floa t in the

form of an airplane wing provided with some s ort of a

stabilizing devise.(Fig.6)

The sole function of the float will be

to create an hydrodynamic reaction. It does not need to
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have any buoyancy as

1*.the loadcarrying function will be transferred to

the glider

20 .the capsixing moment will be done away with all

together as the cable that ties the float to the plane is

unable to transmit any moment. In other words, the

hydrodynamic reaction will always be in line with the pull

of the cable.(Fig.6Z'

Once we dont need to worry any more about

the buoyancy of the keel, there is no reason why we should

not give it the araa which was proven to be the most

efficient for obtaining high speeds, to wit:.

S =, S

7. Before we go anj further se have to make

sure that the, bheory we developped in the first paragraphs

may be applied to this new system.

First of all,. in how far is this theory

affected by replacing the rigid connection btween the two

cellules by a non rigid one? We introduced the assumption

that A and H were tied rigidly together only once in our

reasoning. That was when establishing the relation (3):

Indeed this, this relation is only true when the cellule

A has no velocity with respect to the cellule H .This, as

arule,not being the case when no rigid connection exists

(3) should be replaced by a more accurate fotmula:
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Rel. vel. of a with resp. to A V&

Bel. vel. of A H

H " "V"

h V VA+VV

It can be shown however that VH always

will have a small value. Let us suppose that VA is not

zero.As the distance A4 (Fig.7j isconstant, V, has to

be perpendicular to AH. Let us suppose that at a given

instant R. and Rh are in line witithei'cable-- AR as shown

in position I. After a certain time At the whole will

have moved to the position II.As both the cellules A andH

are static ally stable, their angles of attack remain the

same. The angles of R. with V. and Rh with V remain the same

and R&//RI, Rh/Rh1! . it.(AH)i will not be parallel to (AH),,

Consequently the forces R.I and Ra1 are no longer in line.

They can be decomposed into R..tand Rh2 who balance each

other, and R. . and R. who will create accelerations in

a direction opposite to that of V. . V will decrease,

change its sign. Whea AH gets parallel again to (AH), the

accelerations change sign and again check the increase of

V, .A damped osvillatory motion of A with respect to H

will be the result.VAwill never grow large its average

value will be ze f-o, so that in ghe study of the abso lute

motiop of the sys tem (A+H) as a whole we may s till apply

formula (3). and work with the triangle of speeds.
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As a matter of fact unless an absolutely ideal

steadiness of flow T evails, this oscillating motion of

the direction AH around its position of equilibrium will

be the normal condition . Moreover the angles of inci-

dence of both the cellules A and H will be submitted to

a similar periodical variation, which will be linked to

this former motion. In order to make a complete quan-

titative study of these different interdependent motions,

it would be necessary to establish again the equations

(1), (3) and (4) for conditions -of disturbed static

equilibrium, that is to say with the introduction of

masses and accelerations. The discussion of a system

of simultaneous partial derivative equations having as

independent variables the angles of attack iA and i.

the angular velocities - and the wind speed V,

would permit to find the conditions required for dynamic

stability, i.e. for the damping of the perturbatory

motions. It would be possible too to find the period

and the damping characteristics of these motions. As

this development would be long and only of academic

interest we shall not go into it hwre.

8 The sailing flight differs still in another

respect from the theoretical case we treated in the

first paragraphs. Indeed, in the theoretical case the
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frces R. and Rk had no other function but assuring the

horizontal motion of the system. In the real case they

have two other functions to perform, namely:

10. to carry the glider, the cable and the

useful load.

20. to apply a vertical tension to the cable

AH. We know indeed, that this cable will assume the

shape of a catenery. If the traction applied at the

lower end of this catenary was purely horizontal, the

catenary would be tangent to the horizontal in this

point (Fig. 8). As R. is necessarily situated beneath

the surface of the water this would mean that the

cable is dragging through the water. This, of course,

we cannot admit, as it would create an enormous re-

sistance and badly impair the L/D of the float. It

follows that the pull of the float on the cable should

be pointed downwards.

Both those new functions of the aerodynamic

and hydrodynamic forces require that they possess a

vertical domponent. This is, of course, obtained by

inclining both the glider and the keel. Their leading

edges will no longer be vertical as in the theoretical

case. The problem ceases to be a two-dImensional one,

we have to consider the position of the different

Porces in the three-dimensional shace.
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Again, how is the general theory affected by

this modification? We find (Fig 9) that the weights and

the vertical components of R. and RK are balancing each

other, and tIB t all what has been said in the paragraphs

one to four can be applied to their horizontal compon-

ents.

Consequently formula (1) becomes

and formulae (2) and (7) are similarly modified. The

most favorable ratio S is no longer a constant, but

varips with the speed and the shape of the cable. This

is of no great importance, because we shall be able to

give the desired value to Sg at any moment.

The angles <g' and 'fk will be respectively the

angles of ' with a perpendicular to ~\,, and of 'A

with a perpendicular to V. Let us decompose i, in a

drag component 6Ra, an horizontal lift component

and a vertical lift component'vfig 9). We have:

similarly

We see that and Cf are greater than in the theoret-

ical case. Consequently the attainable speeds will be

smaller. The efficiency of the system is adversely

affected by the necessity of carrying the weight and

holding up the cable.

- i66
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Moreover, y and k are no longer a function

of the angles y and L only. Yk depends on the slope of

the cable G and If, both on 0 and on the air speed V,.

Let T be the traction applied at the lower end

of the cable. Decomposing it in horizontal and vertical

components we get:

7V

7-g T e-A 9

The slope 0 will largely depend on the steadiness of

the sea and the air. When both air and water are calm

we can adopt a small g , which, as we shall see later,

gives a high efficiency. On the contrary, when the sea

is choppy, the cable is likely to be struck by the waves

and 9 must be large. If the air is bumpy a large 9

is required again, because we have, for safety's sake,

to maintain the glider at sufficient height above the

surface of the water. It lies in our power to give

any desired value to 9 by varying the altitude of the

plane.

If we call W the total weight of the plane and

the cable, we can write:

or
To T+ \AT

1 ' OT
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and:

-~~- %T- +'t*~4AOF

According to the definition of

-
T

- A~ecn

W is a constant. T varies with V consequently varies

with and so does ( . When decreases a greater

fraction of the air forcel\- is needed fcr carrying the

weights. is going to point upwards (Fig. 10). The

Y-axis of the plane nears the horizontal. If V, contin-

ues to decrease, at the limit the totality of R will be

needed for weight carrying purposes. In this case the

wing will be horizontal

on the other hand, when V. increases indefinitely

w/T tends toward zero, and:

In the majority of cases V will be such that this

latter fonnula can be used as a first approximation.

(A numerical example of the cla nge of j with speed

has been developed in paragraph 17.)
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We consider the weight of the float as

negligible compared to the other forces acting on it.

It follows that is independent of the speed we have:

9. Description

The glider does not require much of a

description as it differs very little from the ordinary

glider. The only difference is that the sailing glider

will be more sturdy. It has indeed to resist to much

higher forces than is the case with the ordinary air-

plane. The machine will have to be built for unusual-

ly high wing loadings. The reason for this will be,

given later. (chapter III)

In view of this fact the biplane cellule seems

to impose itself rather than the monoplane. The biplane

will h1ve the other advantage that its span is small,

so reducing the danger of touching the water with the

wing tips.

This danger, will necessitate too a very great

lateral stability. Moreover, the glider should be

absolutely spinproof and this for two reasons:
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10 the gliderwill constantly be flying at an

higher angle of attack thsn an ordinary plane (the angle

of maximums L/D or thereabout) so that an unusual danger

for autorotation exists.

20 owing to the small elevation of the plane,

once a spin started it would be impossible for the pilot

to recover.

The cable is a cause of considerable head resis-

tance it may effect badly (L/D)_ . That is why its cross

section has to be reduced as much as possible. This

means that we have to use a material of high tensile

strength. Flexible steel cable of high tensile strength

seems indicated. In order to reduce the air resistance

a streamlined cable might be used. When tended between

A and H the cable would bend around the axis of the

smallest inertia moment of its cross section (Fig.ll).

This means that the axis XX will be horizontal. That

is to say that the streamlined cable will automatically

assume its position of lowvest air-resistance. In horiz-

ontal projection the air speed will in general be nearly

perpendicular to the cable.

As for the dimensions of the cable, they depend

of course to a certain extent on the dimensions of the

plane. A length of 50 yards would be a fairly represen-
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tative figure. With a slope 5 507 this would corres-

pond to an elevation of t1h plane of 25 yards.

In order to moderate the effects of sudden

changes of forces we may attach the cable at both ends

by means of some sort of a shock absorbing device.

The float, or as we may call it, the keel is

the only new apparatus introduced by the sailing flight.

We have to devote a little more detailed description to

it. As first requiremm t we have to place as far as

possible all parts creating head resistance out of the

water. So has the connection between the cable and the

keel to be above the surface. Fig. 12 shows schematic-

ally how this will be done: AB is a rigid member. The

connection B is rigid and transmits a bending moment.

The connection at the point of attachment A allows free

rotation.

If all we have said about the theory of sail-

ing flight has to have any value at all it is essential

that scan keep a constant value or at least will

oscillate in the neighborhood of a constant value. This

we obtain by means of the simple scheme shown in Figure

12. The keel will oD nsist of two parts BC and CD of

different inclinations. As no moment can be transmitted

through A, the keel will assume a position such that
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the hydrodynamic force R, passes through A. RK can be

decomposed into R, due to the part BC and R. due to the

part CD. R, creates a moment M. around A which tends

to pull the keel out of the water. R% creates a moment

M1 which pulls the keel downward. Those two moments

balance each other. If accidentally the immerged part

of BC decreases, M, becomes smaller than M and the

float is pulled down. If it comes down too far M,

surpasses M. and the float is pulled out again. A

condition of dynamic equilibrium ensues.

In order to assure the constancy of the angle

of attack of the keel, we shall provide it with a

stabilizer S exactly as it is done with an airplane.

The connection between the keel and the stabilizer

will be above the water in order to reduce head

resistance.

Giving the stabilizer the same shape as the

keel we keep its immersed surface constant. So doing

we oblige the leading edge of the keel to remain in a

vertical plane, it is to say we prevent the whole

device of tipping over around the axis AB.

One point remains to be solved: how shall

we control the keel? The pilot being in the glider,

the keel has to be operated from a distance. Consequent-

ly it will be important to simplify as much as possible the

controls. In view of this fact we shall not attempt to
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change the angle of attack of the keel while in flight.

The angle setting of the stabilizer will be constant

and such as to make the keel work as its greatest L/D.

Only two manoeuvers are left for the keel,

to wit:

10 the regulating of the immersion.

20 the inversion.

We have at our disposal a very simple means

of regulating the depth of immersion of the keel. It

is sufficient indeed, to change the angle BCD of the

two parts or the keel in order to make it dip dcwn or

come up. The smaller the angle BCD and the greater

part of BC has to be under water in order to make

R pass through A. On the contrary when we make BCD

large, R, will pass near A (Fig 12) and R, will have

to be small.

In the disposition of Fig. 12, quite a

moment would be required to make CD rotate around C.

This is easily eliminated by hinging the lower part

of the keel in the center of its span as shown in

Pig. 13. In order not to have to transmit any con-

trol effort from the plane to the keel we could have

the flap DD' change its own banking angle by means

of the ailerons E and E' operated by the pilot.
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Once the desired angle attained the ailerons would be

brought back automatically to their neutral position

by means of a very simple servo-mechanism such as that

used in the Plettner rudder.

In order to maintain a ccnstant ratio b-tween

the keel area and the immersed area of its stabilizer

it will be necessary to equip the latter with an

exactly similar devise. Whenever we increase or

decrease S the immersed stabilizer area will vary

with a proportional amount.

The second manoeuver the keel must be able

to perform is the inversion. Let us see wherein it

consists. Fig. 14 represents a sailing glider flying

in the direction V . V is the prevAling wind. We

see that the glider has its wing tip L down its wing

tip R up. The keel has its tip L up its tip R down.

Now we want to fly in the direction V, lying

at the other side of the wind. The triangle of speed

shows how this is to be done: we shall have to adopt

the disposition of fig. 15. The glider has now tip

L up and tip A, down., The keel tip L down and tip R up.

Both glider and keel have been inverted.

From this we conclude that the keel has to be

bilateral. Only one half at a time has to be in the

water, while the other half absolutely symetrical to

the first one will stick up in the air (Pig. 13)



The inversion of the glider does not entail

any special difficulties, we simply pass through the

horizontal position when going over from the left bank

to the right bank. The invers.on of the keel might

be done in many conceivable ways. Practice will un-

doubtedly show what is the best method to execute the

menoeuver. One possible way of doing it (which we

give for what it is worth) would be to give suddenly

to the keel flap DD' the position ,t own in fig. 16,

and at the same time to move the stabilizer flap in the

opposite direction. The keel would be drawn completely

into the water whereas the tail would whip out. The

whole thing would tip over in the direction shown by

the arrow and would recover its equilibrium when the

tail gets in the water again. Tip L will then be in

the water and tip R up in the air. It is, of course,

necessary to provide in A a joint that will permit

rotation around the axis AB.
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Chapter II

MANOEUVER ING

10. Our new method of flying would not have any

practical value at all if we were unable to take off

to land or to fly in any desired direction of space.

It is desirable also that we can control our speed

at least in a certain range. Let us see how we shall

meet those different requirements.

First of all how can we cantrol the direction

of flight. Looking at the triangle of speeds we see

that, being given the direction of the wind W , we

are able to change the direction of V by changing the

ratio V/VA . According to formula (2) this can be

done either

1. by changing C, and C4 that is by cla nging

the angle of attack of the plane, of the keel, or both.

2. by changing the ratio

The first method has the disadvantage of

changing the fineness ratios. VWe could not maintain

the greatest L/D and a loss of speed would result.

This disadvantage does not exist for the

second method. The most practical way to control the

ratio / is to act on S& i.e. the immersion of

the keel, As we have seen in paragraph 9 this can
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be done with very simple means.

The procedure of changing the direction becomes

then very simple. Suppose we are flying in the direc-

tion V (Fig. 17) and we want to go over to the direc-

tion V We see that

So, all we have to do is to decrease S that is

to increase * We gradually dip the keel deeper

into the water until the desired direction is attained.

It goes without saying that this manoeuver should be-

come a reflex and that the pilot should not have to

think in which way he is changing his triangle of

speeds.

11. This method of controlling the direction of

flight is, however, subject to. certain limitations.

It is obvious, indeed, that we cannot change indefinit-

ely the immersed area . Consequently, there will

be an angle LML (Fig. 17) within &iich it will be

impossible to fly, exactly as it is the case with a

sailing boat. Thanks to "tacking" we can overcome

this difficulty.

Let us suppose we have to reach a point lying

in the direction OD within the angle LML. We start

with the velocity 0,M. (If maximum speed is desired
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0, will be situated on the circle of minimum V ). O1M

has a component perpendicular to MD: 0,P1 . It means

that the distance of the plane to the line MD is in-.

creasing with 0, P, per unit of time. After a certain

time t, this distance will be t, '

At this moment we reverse the triangle of

speeds, i.e. we are going to fly in a direction that

lies at the other side of the direction of the wind.

Be O M our new velocity. It has a component perpen-

dicluar to MD: 0 P . We are now approaching again

the line MD at the rate of O P, per unit of time.

Suppose we reach MD after a time t.

Let us calculate now what has been our average

speed in the direction MD:

total distance
time

MP, aid MP being the components of the velocities 0,M

and OkM parallel to MD

L,.WT- Jq WP.
t i c IQ)-*



The fact that the line MD is reached after

the total time t . t. gives us the relation:

0 - 0 IT7

whence:

Consequently, we can transform the last term of the

expression ( Y):

1 r p + 0qi ,

as follows from the similarity of the triangles 0,P P,

and OsP P.

Whence

So, by tacking, the average speed made in a direction

MD is represented by the vector PM contained between

the point M and the straight line joining the extrem-

ities 0 , and 0 , of the vectors representing the two

actual flying speeds of the manoeuver 0,M and O2 M.

It immediately follows that the greatest

possible average speeds in tacking are obtained when

0o0 coincides with the common tangent of the circles

1 and 2. What is more, if we consider a triangle of

speedS, such as MON where 0. lies on the inner half

of the circumference 1 or 2, we see that the actual



flying speed OM is smaller than the average speed we

could make in the same direction by tacking. So, even

in directions where tacking is not necessary for making

flight possible, it may be interesting to apply it.

We can summarize the above in three practical

rules:

1. When tacking the summit of the triangle of

speeds should be placed alternately in either O, and

0 or 0 and O . In other words, when tacking

with the wind the two best directions of flight are

O.0 % and O t M . When tacking against the wind the two

best diredtions of flight are 01 A and 0 .

2. Speed can be gained by tacking in all

directions lying within the angles O. MO and O M 0'

3. The closed curve 0., 0 0 0 com-

posed of the two exterior half circles (1) and (2) and

the two common tangents at, Ot and O is, with

M as origin, a polar diagram of the maximum speeds

obtainable in all directions of space.

12. We have to study a little more closely the

reversing manoeuver in tacking. Let us suppose we are

tacking with the windthe summit of the triangle of

speeds being in Ot (Fig. 18). Reversing will consist

in bringing the summit in O .
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The way this manoeuver is done varies widely

with the time in which it is to be accomplished. The

more quickly the manoeuver is executed and the more

important become the inertia forces. The latter com-

pletely modify the mechanism of the reversing.

As a limiting case we shall first study the

case where the manoeuver is done in a very long time.

In this case there are no inertia forces. The system

will always be in static equilibrium. That means that

it will never pass through any position in which flight

cannot be maintained indefinitely.

The hypothesis of the total absence of inertia

forces is, of course, purely theoretical, but it is

conceivable that we approach this ccndition in prac-

t ice.

The only way of bringing the summit of the

triangle of speeds from Ob to Ot without disrupting

the static equilibrium of the system, is to move it

gradually along a path such as shown by the dotted

line. This will be done by increasing g . According

to paragraph 9 V is a constant. we have thus to

change . The most practical way of doing this is

to decrease the angle between the Y-axis (parallel

to leading edge) of the glider and the horizontal as

has been described in paragraph 8. I and II in



Fig. 19, show the orientation of the plane and the

keel with air and water speeds corresponding to the

positions of the summit of the triangle designated

by I and II in Fig. 18. (We say the orientation of

the glider and not the position because we are unable

to draw the actual paths of A and H owing to the long

time elapsed between I and II).

Continuing to increase the Y-axis gets

finally horizontal (orientation III). We have:

0eA 0 T c~0 t

cannot be made any larger. But, in order to get

the summit of the triangle of speeds in IV we have to

make =t Vso . This can be obtained by letting the

cable drag into the water. The enormous resistance

so created will practically reduce to to zero the

L/D of the keel. Hence: 900 1800

In this position the glider will fly like a kite,

i.e. the eable will assume the direction of the wind.

It has to be remarked that the air speed VC at this

point will be very low. we will be able to get over

this point only when a strong wind speed V, prevails.

We now invert the keel as described in para-

graph 9, the summit of the v will get to 1. As we



see in Fig. 19, the keel which was at the left hand side

of the glider got to the right hand side. In order to

restore normal flying conditions we have only to incline

the Y-axis again - this time the left wing tip pointing

down. By so doing we acquire gradually the positions

VI and VII. The reversing manoeuver is completed.

The disadvantages of this method of reversing

are obvious. In .the first place we cannot get over the

position IV unless we have a very strong wind at our-

disposal. In the second place, if we wish to avoid

all inertia forces, we have to slow up the operation.

That means that we have to fly a long time at speeds

such as V., , V , V. - which are small. It follows

that the manoeuver entails a considerable loss in

average speed. Because of these two disadvantages

this method of reversing will be used seldom or not

at all. We described it nevertheless for completeness,

and because it gives a clear idea of what reversing

really consists of.

13. We shall now describe the method that will

be generally used, i. e. the quick reversing in which

considerable inertia forces will occur.

The general procedure to be followed remains

the same as in the previous case, that is to say we

go over from a left bank to a right bank and reverse
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moment the plane is in the horizontal

Let us call V the velocity of the center of

gravity G of the system. It has to be brought from

the value Ot M to the value 0. M (Fig. 20). Owing,

however, to the inertia the variation of V will no

longer be given by the curve I, II, III...of Fig. 18,

but by some other curve I, II, III ... as shown in

Fig. 20.

Let us call V the relative velocity of the

air with respect to the glider.

V the relative velocity of the

glider with respect to the center

of gravity.

V4 the relative velocity of the center

of gravity with respect to the keel.

V the relative velocity of' the keel

with respect to the water.

We have:

The distances AG and GH being constant V and V, A are

both perpendicluar to AH. As the horizontal projection

of the cable may be supposed to remain a straight line,

V A and V will be parallel and:

Cc %r

the keel at the

position.

~Jk~i -



and: A Gr

From paragraph 7 we know that:

V -k- 0
or:

Also:

Knowing V we can build the vector polygones those two

relations. This has been done in Fig. 20 for the differ-

ent values of V represented by IM ) II M II M, etc.

By means of the velocities so obtained we have construc-

ted the paths of the glider and the keel during the

reversing, as shown in Fig. 21. We see that the glider

has not to make a complete turn around its vertical

axis' as in the former case. The two disadvantages we

mentioned in paragraph 12 have disappeared.

It has to be remarked that during the major

part of the manoeuver the system is just flying on

acquired speed. It would not be possible to maintain

for any length of time most of the positions assumed

during the manoeuver.



14. We have still to study the manoeuvers of landing

and taking off. Landing will not entail any great diffi-

culties. It will be possible in general to glide down

against the wind.

At taking off, the glider will, of course, be

in a horizontal position, consequently f,=900 We

turn the nose of the plane into the wind and let it

drag the cable through the water. (u= 900 So:

(f = 1800 we are in case IV of Fig. 18. When the

prevailing wind is sufficient the pltne can be lifted

off the water. When we gain sufficient height, we

raise the cable out of the water. At this moment

90" 0 T. We are in case III or V of Fig. 18

and 19. We can then get the system to the positions I

or VII or give the triangle of speeds any desired form

by banking the glider the necessary amount and dipping

the keel to the required depth.

As we shall see in chapter III (paragraph 18)

the above described method of take off will be rather

unusual. In the more general case, the prevailing

wind will not be strong enough to make possible the

take off without outside help, thougY it will be perfect-

ly sufficient to make normal flight possible. Two

other methods of getting the glider in the air present

themselves:

- :Z &
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1. towing.

2. using an auxiliary motor.

In the f irst case the glider will be towed by

the lower end of the cable against the wind (by a motor

launch, for instance). The glider takes off, uses and

raises the cable out of the water. At this moment the

pilot banks the glider which will move to the side of

the launch (instead of directly behind it). The cable

can then be released and the flight will continue in-

dependently.

There now remains the case of the auxiliary

motor. The pilot takes off in the usual way, towing

the cable and the keel behind the plane. He rises, and

as soon as the cable will be out of the water, the keel

moves to the right or left of the plane. The pilot

banks in the corresponding direction and stops the

engine cintinuing in sailing flight.
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Chapter III

STRESSES, TAYE-OFF, CAVITATION, AND

THEIR IN FL UENCE ON SPEED

15. The glider to be used in sailing flight differs

considerably from the ordinary plane in so far as its

mechanical resistance is concerned. The forces involv-

ed in the case of sailing flight are much greater than

those acting on the ordinary airplane. Indeed, in

free flight, the total air force never exceeds the

weight of the plane in normal conditions. This is no

longer true for the sailing glider. As we have already

seen in paragraph 8, the forces applied to the glider

are threefold; to wit (1) the resultant air force R;

(2) the tension in the cable T, and (3) the weight W.

(We suppose the weight of the cable included in N. T

then will not be the actual pull of the cable in A,

but only the pull transmitted from the float.1 Pigure

22 shows a typical proportioning of these three forces

we have here: R 6 6W.

Whereas in the ordinary airplane, we de-

crease the angle of attack when the speed increases,



in sailing flight the angle of attack is constant and

equal to that of maximum L/D. Consequently, the air

forces will increase as the square of the speeds.

It is obvious that the speeds increasing, a moment

will arrive where the wing-loading will attain a

critical value beyond which structural failure will

occur. Once this resistance limit is attained we

shall be obliged to decrease the angle of attack if

;;e want to fly at still higher speed. Whien we do

this we impair the L/D of the glider, ? will in-

cre"se and a limitation of the speed V will ensue.

16. Let us find out what this limitation really

amounts to. BS V, the greatest speed we can obtain

with a windV . According to fonula (5) we have

approximately:

(For simplicity we suppose V _ V )

According to formula (4)

We call (L/D) the maximum fineness ratio of the plane.

. definite ratio exists between the maximum L/D of the
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plarn and that of the keel.

So:

Let us call it a.

(I)CI+ C

/Y-D)

.e know when an airplane flies a its greatest L/D

its profile drag equals its induced drag:

Consequently
C LL,

c ? +C

the subscript 1 always referring to the angle of

attack corresponding to the maximx.m L/D.

Let us now suppose that the velocity V , is of a

magnitude such that the air force on the glider

attains exactly the limit of structural resistance

R 9 . We shall have

(IV)= , k V

Then

(III)

7771
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Let us now consider a second case where the existing

wind speed V, is greater than V, If we flew the

glider at the same angle of incidence the resistance

limit Rj would be exceeded. We suppose that after

cutting down the lift coefficient of the plane to the

value C,,- the maximum speed V, attainable with the new

angle of attack will again give an air force equal

to the limit of the structural resistance of the plane.

Let L be defined as:

Then (IV) and (V) give:

whence:

Y: ~CV~(VI)

Let us now find how the ratio 9c- depends upon the

ratio, V . How is affected by the adoption
V~w

of the new angle of attack? We may assume that the

profile drag coefficient of the plane did not change.

The induced -drag is known to be porportional to the

square of the lift. So:

(CC-



It follows that:
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From which we deduce

eLI - CL

C. 1-

a..l -

Whence

-ito~ts. (L

Formula (VI) becomes then:

and

(VII)

{tar1 ~4;

By means of formulae VI and VII we can now

plot V against V. upward from the critical point C

below which the structur-l resistance limit is not

attained. This has been done in Figure 25. y- The

dotted line gives the theoretical speeds we could

attain if structural failure were not to be feared.
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17. The graph of figure 23 is of great importance

in the study of the performances of the sailing

glider. It gives for every prevailing wind speed

the corresponding maximum speed attainable. We shall

call it the characteristic curve of the glider.

In the previous paragraph we only considered the portion

of the curve beyond the critical point C Let us

now study the portion below C,

If no weight had to be carried would

be constant, V would be proportional to V. and the

characteristic curve would be a straight line below C.

Vie have seen, however, in paragraph 8 that the relative

importance of the weight of the plane with respect to

the magnitude of the air forces greatly affects .

Let us suppose that At the critical pojnt C the

air forxe amounts to 6 times the value of the weight

Re 6W

6 will be a coefficient characteristic of the structure

of the glider we shall call it the plificatio factor

Let (fig. 22) be T R -XW

Let us suppose the slope of the cable is 9 =00

then

and
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If we now disregard R which is comparatively small,

we have (fig. 22):

CL

or

simplifying

resolving for >c,:

consequently

....... .

7 7

According to paragraph 8 we have approximately

Supposing now, as we did in the previous paragraph

(I'/D) - D we have

Let us now assume that the air speed decreases

to one-half of its value and let us find to what wind

speed this new V will correspond in the characteristic

curve. When the air speed is reduced to j the air forces
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are divided by four. Sot

Hence, as shown in Fig. 24:

or:

resolving for x*

and:

remained the same, consequently:

In the first case we had:

In the second:

By hypothesis:

we conclude

'S. ~S S Irv
466

The point (V W ) in the characteristic curve will be

D. (Fig. 23). So we see that the curve lies underneath

the straight line of the theoretical case. When we continue
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to decrease V, the characteristic gets tangent to a para-

llel to the V-axis in a point B. This point corresponds

to the minimum wind speed at which flight is possible.

18. The position of the critical point C depends

on the wing area, the limiting wing loading, and (
The length of the portion CB depends on the amplifica-

this factor be
tion factor. The greater Ad the larger will 3C. Onee

A A

we have C and the amplification factor, the whole charac-

teristic curve is defined.

The characteristic curve gives us immediately

the speed range of the glider. In Fig. 24 are shown three

different characteristic curves. They all correspond to

an amplification factor 6 and to = 5.

The curve I corresponds to a glider of small

wing area. This glider will be able to fly at very high

speeds. With a gale of 40 miles per hour, it will make

180 m.p.h. However, it needs already a fresh breeze in

order to be able to stay in the air. The minimum wind

speed permitting the flight (given by point B) is only

18 miles per hour. As we have only such a wind at our

disposal a few days in a year, the plane will be unable'

to f:,y most of the time. In some regions, however,

strong winds may be more frequent or even usual, in such

conditions it would be logical to adopt this type of

characteristic curve for the sailing glider.
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Looking at it from the view point of the ta ke

off we see that it would be quite out of the question to

start this type of plane by the sole force of the wind,

that is to say without towing or without auxiliary engine,

indeed, the lending speed of the plane is around 45 m.p.h.

That means that we would have to wait for a wind of about

60 m.p.h. before we could go up.

Condisering the glider corresponding to a curve

2 we see that it will be able to keep the air with a

gentle breeze of about 7hr. p.h. The attainable speeds

of this machine are, however, much smaller than those

of the glider of the former case. "With a gale of 40 miles

it will only make a 110 m.p.h. This type of glider,

that is tue, one which reaches its critical point at a 'vind

of 10 m.p.h. seems very well suited for the atmospheric con-

ditions prevailing in these latitudes. Indeed the most

frequent wind speeds of those regions - 8 to 25 m.p.h. -

lie within its useful range. It gives the reasonable

speed of 50 m.p.h. with a ten mile wind and of about

70 m.p.h. with a fifteen mile wind.

The landing speed of this machine is approxi-

mately 16 m.p.h. We need a strong gale for taking off with-

out outside help. So again, as a rule, we must have

recourse either to towing or to an engine for starting the

flight. Which of these two methods should we prefer?

Each of them has an -advantage and a disadvantage. The
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advantage of the engine is, of course, to make the

maclne independent. This is why it should be used

in long raids. Whenever the machine has

come down, whether because of insufficient wind or

from any other cause, it will be able to take off agAin

as soon as atmospheric conditions permit. The disad-

vantage of the engine is that it increases considerably

the weight of the plane and adds to the cost.

One advantage of the towing start is that it

permits the increase of /3 of the glider. The most

important advantage, however, if that it eliminates the

weight of the engine. By this very fact the ampli-

fication factor is increased. We can either let the

structure of the glider remain as it was and bring

down the point B of the characteristic curve,

that is lessen tie probability of being forced down by

lack of wind. Or we can use the weight saved on the

engine for reinforcing the wing structure. By doing

this we raise the critical point C and all the-speeds

beyond.

The disadvantage, of course, is that once we

are forced down by feeble winds, it is virtually im-

possible to again leave the water. Consequently this

method should be used only for short hops when the

pilot is always sure to find sufficient winds ahead.
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Curve 3 of figure 24 finally, is the charac-

teristic curve of a glider that has been constructed

so as to be able to leave the water by its own means.

That is to say, a glider with large wing area. The

landing speed has been chosen 6 m.p.h. so that the take

off will be possible at a slight breeze of 8 m.p.h.

'ie reach the critical point at a wind-speed of 3.5

m.p.h. The speeds we can at tain with a plane like this

are exceedingly low. With a wind of 10 m,.p.h. our

maximum speed will be only 34 m.p.h. In order to be

able to fly at 59 m.p.h. we need a wind of 26 m.p.h.

These figures could be bettered by increasing the fine-

ness ratios and the amplification factor. Supposing

we can get the latter up to 8 and make y _ 6 the

new characteristic curve will be given by the dotted

line.

19. It will be interesting to consider those

three types of gliders from the viewpoint of wing areas

and wing loadings. We shall admit that the lift

coefficient of the glider at its greatest I/ is

C L 1. This cannot be very far from the truth.

Let us first take the case of the fast

glider. It attains its critical point at an air

speed of 125 m.p.h. Consequently its maximum wing

loading will be :

125X x .00255 x 1 - 40#/ftL
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Unlike what is the case for the ordinary airplane, the

wing loading of the sailing glidcr does not express

the ratio weight . We obtain this ratio by dividing
wing area

the aximuta wing loading by the a&plification factor.

In this case

weight per sq. ft 6.7#

1le see that the wing area w ill not be very dif feren t

from that us ed in an ordinaiy airplane of the same

total weight. The wing weight will be greater than in

the ordinary plane as the structure will have to sus-

tain loads as high as 40#/ft2 .(It is evident that in

the stress calculations this load has still to be multi-

plied by the load factor as usual.) When applying

Irofessor Jarner's formula

we find a wing weight 6 . 2.2 times that of the

airplane with wing loading 6.7#/ft .

In the second case the critical point

corresponds-to the speed of 50 m/p.h. The critical

wing loading is:

50 x.00255 xl. 6.4#/f

the weight per sq. ft. j 6.4 . l#
6

In other words, the wing area will be about ten times

that of an ordinaiy plane of the same weight. In

order to keep down the wing weight we shall have to

transmit the pull of the cable directly to the wings in

I
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2 or more points conveniently situated along the span,

rather than to create excessive bending moments by

applying it on one point at the centre. The estima-

tion of the wing weight then becomes difficult. It

would require a detailed structural analysis. The

use of the triplane cellule mcnAy be necessary in

view of the enormous wing area.

Coming now to the ease of the glider that

will take off in a slight breeze, we find wing areas

absolutely prohibitive. This case has to be aban-

doned. We cannot hope to build up sailing gliders that

will take off at such small wind speeds without outside

help.

20. If the cable is efficiently designed, it should

reach its limit of permissible stress at the same moment.$ X

Conse-qi.ently the cross-section of the cable ani its

weight will be directly proportional to the amplification

factor.

The weight of the cable is rather small. -In

the specifications of the British Air Board (Pippard &

Pritchard), ve find that an extra flexible steel rope

of .388 inch diameter has a minimum breaking strength

of 15,700 lbs. and weight 25.5 lbs. per 100 feet. This

cable applied to a glider of 1,000 lbs. flying with an
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amplification factor 6 would still have a safety factor

of 2.6. -Fifty yards would weigh 38 lbs., that is to say,

only 3.8% of the total weight.

The shape of the cable is a catenary practically

reduced to a straight line. Indeed, if T is the traction

in the cable at its lcwer end, T' the traction at the

upper end and w its weight,

w being only about .6%' of T, the directions of T and T'

are practically the same.

21. There will be no difficulty in making the keel

strong enough to resisb to the hydrodynamic forces. There

is, ho-,ever, another reason for limiting the loads per

unit area, namely cavitation. If the water pressure

gets too low, gas pockets will be formed, the continuity

of flow will be destroyed. The keel loses its efficiency

and increases. Consequently, cavitation is something

we have to avoid by all means. This can only be done by

keeping the keel-loading below a certain limit. To what

just this limit will amount is difficult to say and

could only be determined by experiment. It seems, how-

ever, that the conditions are less favorable for cavita-

tion than those prevailing with the marine propeller.

In the latter case indeed, each blade has to work in a
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portion of the fluid that has already been disturbed by

the preceding one. Nothing of the sort happens in the

case of the keel. The fluid passes through the low

pressures only once and during a very short time. Owing

to the rapidity of this phenomenon, probably only a

small amount of the gases included in the water have

time to liberate themselves. A keel loading of 1000#/ft.

(i.e. 47% of the atmospheric pressure) seems a reason-

able limit not to surpass.

Once we attain this limit, we have to decrease

the lift cogf-ricient of the keel if we still want to

reach higher speeds. The case is absolutely similar

to that of the glider when it reaches its structural

resistance limit. Here again we shall have a critical

point. 'Pe shall call it the cavitation point. Above

this cavitation point3(Fig. 25) the characteristic

curve will be affected, exactly in the same way it is

above the critical point C, by the fact that the keel

does not maintain its angle of attack of maximum L/D.

(Paragraph 16) Unlike the critical point, however,

the cavitation point does not depend on the amplication

factor nor on the keel area. Once the keel section

determined the ordinate of D is the same in all charac-

teristic curves. Let us find this ordinate.
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The assumption we made in paragraph 4 that

when both cellules A and H work at their angle of

attack of greatest L/D CL- CL holds only in the

theoretical case. In the practical case where

is so much smaller than , we remove all the profile

resistance we possibly can from the water and place

it in the air. We have seen that the keel has no

profile resistance whatsoever except that of the air-

foils it is composed of themselves, So ' C ) Z

But as the profile drag equals the induced drag at

greatest L/D, C,, ) C, The induced drags being

proportional to the squares of the lifts we conclude

C ' C L

Leb us sucpose that at maxiipum L/D the keel

lift cogff'icient is:

(a rather conservative assumption). Adopting then as

limiting keel loading lOOO#/fet we fI nd fcr the speed

at the cavitation point:

-r

Lek us find now how the characteristic curve

is affected. Considering a speed V,, such that



we have, according to paragraph 16:

whence

Where (L/D), is the maximum L/D of the glider. We

know that (L/D), is the maximim L/D of the keel.

lie have already seen that thd L/D of the keel will be

greater than that of the glider as the latter presents

more parasite resistance: Let us suppose:

then:

L9 f

Tf we make V V we can deduce the corresponding

x, whence and

Let us do this for the glider corresponding to the
No. 2

characteristic curve of figure 24. We have V. = 50

m.p.h. So:
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whence:

In diagram 24 we supposed ( 1/5, that is to say:

whence:

and:

and:

We see that the influence of the existence of the

cavitation point has been to increase the critical

wind speed.

The behavior of the characteristic curve

above the critical point is found in the same way.

Let us consider a certain speed V. > V, . We want

to rind to what wind speed it corresponds. Again we

assume:

According to paragraph 16:

t i9- K 'L9-
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So:

7He found:

So:

Or, replacing x by its value:

6 434
\f9LIC-

This formula has been applied to find the characteristic

curve 2 of Fig. 25. We see that curve i lies entirely

beyond the cavitation point. This curve also has been

established with formulae si.milar to those of case 2.

22. The characteristic curves all refer to conditions

of maximum speed, that is, to the case where V=Vg , corres-

ponding to a direction of flight near to the perpendicular

to the prevailing wind direction. If nmv for a given wind

we reach the stress or cavitation limits when flying per-

pendicularly to it ,this does not mean that we reach those

limits when flying in the other d irection of space. For

those latter directions it may be quite possible to main-

tain the smallest possible value for * As we will be

obliged to use less favorable values of y in the direc-

tions of highest speeds, it is obvious that a deformation
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of the polar diagram of speeds of figure 17 will ensue.

Fig. 26 represents this spmed diagramsfor the glider

we called No. 2 in the above paragraph. The wind-

speeds chosen are:

1. The windspeed of the cavitation point.

2. The wind speed of the critical point.

3. A wind speed of three times the critical

wind speed.

23. The lowering of the lift coefficient of the

keel after the cavitation point has been reached can

only be done by clanging the stabilizer angle. In

order not to complicate the operation of the keel, this

stabilizer adjustment will be done automatically. A

simple mechanism can be devised for this, which will

go into action as soon as the keel-loading reaches its

greatest permissible value. The use of the Flettner

rudder principle seems once more indicated.

It would even be possible to provide the

glider with an exactly similar device so that it will

be impossible that the pilot increases unknowingly the

stresses.beyond the r4sistance limit.

In order to keep down the cavitation point D

it is essent~il that the lift coefficient of the keel

corresponding to the maximum L/D be as small as poss-
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ible. This can be obtained by reducing to a strict

minimum the profile drag of the keel. It means that

we shall have to use an airfoil section as thin as

the structural resistance will permit. In view of

this fact we shall have to aim at the highest poss-

ible structaral efficiency of the keel. We shall

adopt a tapered plan form (Fig. 13) and only a moderate

aspect ratio. The material will be high tensile stress

steel. TIe section will be full. It is, however,

desirable that the keel has enough buoyancl to keep

it float while at rest. This buoyancy will be given

to the body YS (Fig. 13) we might call the -fiselage

of the keel.

Let it be remarked that we have no longer

as in the theoretical case:

but rather: VV

which at the cavitation point means:

J0 0

At the critical point of glider No. 2 we have:

so

At the critical point of glider No. 1:
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Chapter IV.

POSSIBILITIES OF THE SAILING FLIGHT

24. We have already shown in paragraph 18 the

performances we may expect from the sailing glider.

The figures of paragraph 18 need, however, a little

correction as we did not take into account the poss-

ibility of cavitation. The corrected performances

are 'iven in Fig. 25. These performance calculations

are based on rather conservative assumptions, so that

in reality we will mcst probably be able to obtain even

better results. A certain number of the data we used

in our calculations can only be furnished by experi-

ment, We preferred to remain at the safe side when

estimating their value. Let us consider a little

more in detail these different assumptions,

1. We first supposed T = 1/5 and (Ca 2/3( =

- 2/15. This corresponds to a fine-

ness ratio for the plane of:

Evidently this figure can much be bettered.

It is true that the cable and the part of

the keel that sticks out of the water
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create quite some head resistance, but,

on the other hand, the fact that the wing

area is unusually large diminishes the

relative importance of the parasite resis-

tance.

2. We admitted = 1/3 e = 1/15. This means:

L4Lc6

we know that for thin wing sections such

as those used in the keel, the L/D ratio can

go up to 25 and higher. Two circuristances,

however, will tend to decrease this high

fineness ratio. In the first place we have

the resistance due to the creation of sur-

face waves. In the second place we have to

remember that the keel is working at a very

low Reynold's number. Indeed R =
the linear dimensions 1 are very small and

the specific viscosity is large.

Nevertheless, we think ta t estimating the

decrease in L/D at 30% is staying at the

safe side.

3. A third assumption we made is that the maxi-

mum L/D of the plane will correspond to a

lift cogf'icient C, = 1. This is certainly

too high. The result is that the critical
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point C is really higher than we assumed.

At the same time the ratio

is increased so that the minimum speed of

flight (point B) is brought down.

4. Similarly we supposed that (L/D), would

be maximum for CL-, .5. This again has

probably been estimated too high. The

result is that the cavitation point will

be reached well above 31 m.p.h. We see

that all of these four assumptions tend to

give us speeds which are lower than those

actually attainable in practice. Finally

these speeds could still be raised a little

by decreasing the slope of the cable .

25. The greatest advantage of the sailing flight

is that it has a practically unlimited endurance. We

can keep in the air as long as we have sufficient wind.

The sailing glider could consequently be used for long

raids. The crossing of the Atlantic or the Pacific,

for instance, would be possible. In those parts of the

world where constant winds prevail, such as the trade

winds or the mossoons, the sailing plane can be used

commercially. On the othe r hand, it is doubtful if any
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commercial exploitation would be possible in places

such as the Northern Atlantic where winds may vary

widely in direction and intensity. A lack of reliabil-

ity might indeed be too great a drawback in commercial

aviation.

The type of glider we characterize with No. J

has a wing loading not far from that adopted in the

ordinary plane. The minimum permissible wind speed

has been found 18 m.p.h. while actually it will prob-

ably be lower. At this speed we fly about in the

position given by the third sketch of Fig. 10 conse-

quently, RA is not much larger than W , so that a

plane built with the ordinary load factor can resist

to it. The tension T too is small, and as we are near

the cavitation point only a small keel area is needed.

If the plane had to fly in this position only, both the

cable and thp Ploat could be made very light. In

view of these facts, it is conceivable that a motor

driven plane which has to cross large stretches of

water takes along a small cable and float as a safety

device. In case of motor trouble or exhaustion of

fuel the plane could continue in sailing flight when-

ever it has a wind not under 18 m.p.h.
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The largest possibilities for sailing fl ight,

hcw ever, are probably in sport. Long distance sailing

would certainly be a most exciting adventure. In races

the personal skill of the pilot would play a much more

prominent part than is the case in ordinary airplane

races.
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