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Abstract

In practical engineering analysis, considering contact effects is difficult due to the
extreme complexity involved in contact phenomena, and therefore much effort has
been expended to develop effective contact solution algorithms. However, efforts for
an evaluation of the available algorithms have been relatively small. With this in
mind, the segment method and the constraint function method are discussed in this
thesis as contact solution algorithms. The algorithms are evaluated using the following
three examples: (1) rectangular rubber block, (2) cylindrical rubber block and (3)
rubber sheet in a converging channel. Moderate and large displacement conditions
and frictional effects are considered. It is concluded that while good solutions have
been obtained, clearly improvements in the algorithms are still desirable.
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Chapter 1

Introduction

Boundary value problems involving contact are of great importance in industrial ap-

plications in mechanical and civil engineering. It is also not surprising that contact

interactions exist in virtually all structural and mechanical systems. The range of

applications includes metal forming processes, drilling problems, bearings and crash

analysis of cars or car tires. For example, metal forming processes could be analyzed

to improve designs of the die assembly, or to obtain the structural strength of the

final metal products. Other applications are related to biomechanics where human

joints, implants or teeth are of consideration. Due to this variety, contact problems

are today often combined either with large elastic or inelastic deformations including

time dependent responses.

In engineering, contact interactions may be intentional such that a bridge struc-

ture can sustain loads or that a forging press can perform an assigned task. However,

as in crash analysis of cars, there are situations where contact interactions are not

intended. Because it is obvious that contact interactions may influence significantly

the behavior of the structure or the mechanical system, it is important to have insight

into the process of the interactions for increasing efficiency in intentional contact in-

teractions and decreasing adverse effects in non-intentional contact interactions.

However, in practical engineering analysis, considering contact effects is difficult
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because of the extreme complexity involved in contact phenomena as follows:

* Contact problems are inherently non-linear because contact conditions must be

solved for together with the displacements of the system.

" Unlike other engineering problems, contact problems have unknown boundary

conditions and typically these conditions evolve during the solution response.

" In contact analysis, the actual contacting surfaces and the stresses and displace-

ments are all unknown prior to the solution of the problem.

" Due to the above facts, mathematical models of contact problems involve in-

equality constraints and nonlinear equations.

" Additionally, the interfacial behavior in the tangential direction (frictional re-

sponse) is even more complicated and varies with the smoothness, chemical

properties and temperature of the contacting surfaces.

To develop effective contact solution algorithms based on the common laws of

Coulomb and Hertz, much literature on contact and friction problems has been pub-

lished. Among recent numerical studies, there have been the works of Papadopoulos

and Solberg [6], Zavarise and Wriggers [7], Wriggers and Krostulovic-Opera [9], Liu

et al. [8] and El-Abassi and Bathe [4] and earlier works are published by Bathe and

Chaudhary [2], Eterovic and Bathe [3], Kikuchi [10], Kikuchi and Song [11], Oden [12],

Wriggers et al. [13], Glowinski et al. [14].

Considering the classes of solution methods, the most used methods are based

upon Lagrange multiplier methods, penalty methods, and augmented Lagrangian

methods.

In Lagrange multiplier methods, the contact pressure (Lagrange parameter) is

treated as an independent variable. Among the above works, Papadopoulos and

9



Solberg [6], Bathe and Chaudhary [2], Eterovic and Bathe [3] and other authors have

used Lagrange multiplier methods for contact problems.

In penalty methods, the contact condition is enforced in an approximate manner

by a penalty function procedure. Kikuchi [10], Kikuchi and Song [11], Oden [12] have

used these methods.

Augmented Lagrangian methods have been proposed as a procedure to partially

overcome the drawback of Lagrange multiplier methods and penalty methods. Wrig-

gers et al. [13], Glowinski et al. [14] have applied these methods to contact problems.

As described above, many contact algorithms have been suggested and developed

but efforts for an evaluation of the algorithms have been relatively small. Hence, in

this thesis, we will focus on and review the contact solution algorithms suggested by

Bathe and Chaudhary [2], Eterovic and Bathe [3] among the algorithms and evaluate

these algorithms through three examples.

The thesis outline is as follows. In Chapter 2 we review the continuum formulation

of contact problems as the basis for finite element solutions, where equilibrium equa-

tions and contact conditions are included. In Chapter 3 we first describe basic solution

approaches and then summarize and compare two contact solution algorithms, the

segment method [2] and the constraint function method [3], which are implemented

in the ADINA program. In Chapter 4, we present numerical solutions to evaluate the

performance of finite element discretizations in three example problems. Finally, in

Chapter 5, we close the presentation by giving the concluding remarks.
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Chapter 2

Continuum Formulation

In this chapter, we briefly review the general continuum equilibrium equations in-

cluding the contact conditions for finite element solutions [1]. We use the notations

presented in [1].

2.1 Equilibrium Equations

We first consider a general solid body. Let us denote by S, that part of S which

contains the prescribed displacements applied on S, and by Sf that part of S to

which surface tractions are applied. The body is also subjected to body forces in V.

The solution to the problem must satisfy the following differential equations:

Tijj + fiB = 0 in V (2.1)

Tij n = fgsf on Sf (2.2)

U = USU on Su (2.3)

where rij are the components of the Cauchy stress tensor, a comma denotes differ-

entiation, f,' are the externally applied body forces, nr are the components of the

unit normal vector to the surface S of the body, ui denotes the ith displacement

component, S = Su U Sf and Su n Sf = 0.

11



The above equations can be recast into the following principle of virtual work equation

-ij ftij dV j =V + j ftidSf (2.4)
fV Jv Sf3

where the overbar denotes virtual quantities, Sf are the externally applied surface

tractions.

If we use (2.4) for N bodies that are in contact, the principle of virtual work governing

the conditions of the N bodies in the deformed configuration at time t is

N tN f
N 6t j dtV} = u {f dtV + if6u, tf Sf dtS}

L=1 L=1 f tg
N

+ S6ui tfi dt S (2.5)
L=1 c

where 6teij are the virtual strain components corresponding to the virtual imposed

displacements 6ui, tf.B are the components of the externally applied forces per unit

volume, 'f Sf are the components of the known externally applied surface tractions,

and tfic are the components of the unknown contact tractions. We note that for each

body, the known surface tractions act on the surface area tSf, the unknown contact

tractions act on the unknown surface area tSc which is to be calculated and the last

summation sign gives the contribution of the contact forces.

2.2 Contact Conditions

Figure 2-1 shows conceptually the bodies I and J which are in contact and how

contact tractions interact between two bodies, where we denote by tf'J the vector

of contact surface tractions on body I due to contact with body J. By Newton's

law of action and reaction, tfiJ - tfJI. Hence, the last term of equation (2.5)

corresponding to the surfaces SIJ and Sj' in figure 2-1 can be represented as

j 6u' tfi dS'' + j 6uJ t fJ dS'' = j ul"f|J dS'' (2.6)
fSIj ASAi fSIj

12
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Time t

S Time 0
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Figure 2-1: Bodies in contact at time t [1]

13

ra



where we denote 6uf and ul as the virtual displacements on the contact surfaces of

bodies I and J, respectively, and they satisfy the following equation

J'I = 6uI - Juf (2.7)

Consider two contact surfaces like SIJ and SJI that are initially in contact or that

are expected to come into contact during the response solution. We call each pair of

the surfaces a "contact surface pair". Hence, the actual area(tSc) of contact at time t

for body I and J may be different from SIJ and SJI but in each case this area is part

of SIJ and SJI (see Figure 2-1). One of the contact surfaces in the pair is designated

to be the contactor surface(S'J) and the other contact surface is designated to be the

target surface(SJI).

Now we evaluate the right-hand side of equation (2.6). Figure 2-2 illustrates the

definitions needed for this task. As shown in the figure, we denote by n the unit

outward normal to SJI and by s a vector such that n, s form an orthonormal basis.

We decompose the unknown contact traction tfIJ acting on SIJ into normal and

tangential components relative to SJI,

tfIJ = An + ts (2.8)

where for the sake of clarity, we do not carry the superscripts I and J over the new

variables to be defined for the contact pair, A and t are the normal and tangential

traction components satisfying the following relations:

A = (tfIJ)Tn; t - (tfIJ)Ts (2.9)

Next we analyze the contact conditions. First, no interpenetration should occur

throughout the motion. Second, the normal contact tractions can only be compressive

with the sign convention for A positive for compression on the contact surfaces. We

14



S"Body 
I

ts*

Xn* tf "= k n* + ts*

x ,/
n* n gH

s* s

-'Y* Body J

Figure 2-2: Definitions used in contact analysis [1]

consider a point x on SI and let y* (x, t) be the point on SJ' satisfying

x-y*(x,0jj2 = min {x - Y|2} (2.10)
yES-!

We can obtain the (signed) distance from x to S' as follows, which is called the

gap function for the contact surface pair. This function is one of main obstacles for

an exact evaluation of contact problems [4]: In finite element solutions, this function

is piecewise continuous along the contact surfaces but for a mesh of non-matching

elements, changes in the slope occur at the nodes of either contact surface. Hence,

this fact makes an exact evaluation for any integration scheme difficult. The gap

function is

g(x, t) = (x - y*)Tn* (2.11)

where the function g must be greater or equal to zero to satisfy the absence of in-

terpenetration on the contact surfaces and n* is the unit normal vector on y*(x, t).

Using these definitions, we can obtain the normal contact conditions which are

given by

g > 0; A > 0; gA = 0 (2.12)

The physical condition is that, if there is a gap between the two contact surfaces,

15



there can be no contact tractions. On the other hand, if the gap is zero, contact

tractions will be initiated or are on the contact surfaces.

We shall assume that Coulomb's law of friction holds pointwise on the contact

surface (although more representative friction laws are clearly desirable) and by this

assumption, frictional effects are simplified. For tangential conditions, the nondimen-

sional variable r is defined as follows

t
=(2.13)

where p is the coefficient of friction between surfaces S'J and SJI, PA is the frictional

resistance, and the magnitude of the relative tangential velocity is given by

it(x, t) = ( flJy*(x,t) - n'I(x,t))-s* (2.14)

where i%'x,t) is the velocity of point x at time t and ni'y*(x,t) is the velocity of the

point with position y*(x, t) at time t. Hence, it(x, t)s* is the tangential velocity at

time t of the material point at y* relative to the material point at x. In view of these

definitions Coulomb's law of friction states that

Tl <1

and ITI < 1 implies it= 0

while fTI = 1 implies sign(it) = sign(r) (2.15)

In (2.15), ii = 0 means that the sticking condition is active, and so the tangential

contact traction(t) is less than or is just reaching the frictional resistance(pA) at the

contact surfaces. Also, it = 0 means that the sliding condition is active. The condi-

tion gives Itl = pA, that is, during motion, the magnitude of the tangential traction

resisted by friction is pA. The sliding motion continues as long as the frictional trac-

tion is developed to be equal to pA. Once the developed tangential traction drops

below the frictional capacity, the relative motion between the contactor and target

16
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Normal conditions _ _

Tangential conditions

Figure 2-3: Interface conditions in contact analysis [1]

particles ceases (i.e., we have again sticking conditions), until such time that again

the developed tangential traction is equal to the frictional capacity. According to the

two conditions of sliding contact and sticking contact, we have Irl < 1.

In Figure(2-3), the left part illustrates the relations in equation(2.12) and the right

part shows the relations in equation(2.15).

Hence, we can get the solution of the contact problem in Figure 2-1 by obtaining

the solution of the virtual work equation (2.5) (specialized for bodies I and J) subject

to the contact conditions, equations (2.12) and (2.15).
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Chapter 3

Finite Element Solution

Algorithms

3.1 Basic Solution Techniques

To impose contact constraints, two basic solution techniques can be used. These basic

techniques are the Lagrange multiplier method and the penalty method. Based on

the basic techniques, other technique, such as the augmented Lagrangian method can

be derived and applied. In this section, we briefly review the basic techniques [11.

We consider a static mechanical problem subjected to discrete constraints. By

using the standard finite element procedure, the discretized form can be obtained as

follows:
1

HI -UTKU - UTR (3.1)
2

with the conditions aU = 0 (3.2)

where U is the global displacement vector, K the global stiffness matrix, and R the

global load vector.

For the Lagrange multiplier method, if we subject (3.1) to the discrete constraints,

BU = V where B is a m x n matrix, the function to be minimized is replaced by the

18



following function:

J* = -UTKU - UTR + AT(BU - V) (3.3)
2

where A is an unknown vector which contains m Lagrange multipliers and then we

find U and A by invoking stationarity of fl*, i.e. 6rI* is zero

6n* = 6UTKU - 6UTR + 6AT(BU - V) + 6UTBTA = 0 (3.4)

Using the fact that 6U and 6A are arbitrary, we obtain

K BT U R
(3.5)

B 0 A V

By solving (3.5), we obtain the displacements U and the Lagrange multipliers A. The

elements in A are interpreted as contacting forces at corresponding contacting nodes.

Equilibrium equations (3.5) are the optimality conditions of the saddle point problem

(see figure 3-1):

inf sup {UTKU - UTR + ATBU - ATV (3.6)

In figure 3-1, we can see that the minimum of H(u) subject to the constraint function

is equal to the maximum of -P(A) and a point where they meet is a saddle point. In

the figure, -P(A) is obtained as follows:

we minimize 11* in equation 3.3 with respect to U. First, to show that 11* is

minimized at the finite soution U, let us calculate ]* at U + e, where e is any

arbitrary vector,

* = (U+ )TK(U + e) - (U+ e)TR+AT(B(U + e) - V)
2

19



min(H#)
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U 2
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LI-
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saddle

-P(A(u))

Figure 3-1: Saddle point problem
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Figure 3-2: Minimum problem
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= -UTKU - UTR+ AT(BU-V) + TKE
2 2

+ e(UTK - R+ ATB) - ATV

= *|o + eTKe+e(UTK-R+ ATB) - ATV
2

(3.7)

where we used that KU + BTA = R and the fact that K is a symmetric matrix

and a positive definite. Hence, rl*ju is the minimum of fl*. The minimum of

F* occurs when U = K-'(R - BTA), which is given by

1
* - -I(R - BTA)2

- -P(A)

TK-(R - BTA) - ATV

(3.8)

where P represents the total potential energy and that energy is minimized at

equilibrium. It means that -P(A) is maximized. Hence, W* is minimized with

respect to U and at the same time it is maximized with respect to A.

In the penalty method, a penalty function is introduced as follows:

HP =(BU - V)T(BU - V)P 2
(3.9)

where a is a penalty parameter of large magnitude and then we use the following

function

= + rIP

=UTKU
2

(3.10)- UTR + c(BU V)T(BU - V)
2

To find the minimum of f** (see figure 3-2), we use 6l** = 0, which gives

61** = 6UTKU - 6UTR + a6UTBT(BU - V)

and obtain

(K + aBTB)U = R + aBTV

21

= 0 (3.11)
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The Lagrange multiplier method is often an effective procedure and the constraint

condition is enforced "exactly", however, care must be taken that the stiffness matrix

is non-singular. The penalty method is effective because no additional Lagrange

multiplier equation is required but it has the drawback that it is sensitive to the

choice of the penalty factor: a large penalty number leads to ill-conditioning of the

global stiffness matrix whereas a small penalty number results in a non-negligible

violation of the constraint conditions. The choice of the penalty factor can be difficult

and is problem-dependent. Also, it is difficult to generalize this approach to large

deformation sliding conditions.

In this context, the augmented Lagrangian method has been proposed as a pro-

cedure to partially overcome these difficulties. A combination of the penalty and the

Lagrange multiplier methods leads to the augmented Lagrangian method as follows

f* =UTKU - UTR + a(BU - V)T(BU - V) + AT(BU - V) (3.13)
2 2

If we take 5H* = 0, which gives

6H* = 6UT [KU - R + aBT(BU - V) + BTA] + 6AT(BU - V) = 0 (3.14)

we find that
K + eBTB BT U R+ aBTV

(3.15)
L B 0 JLA L V

Augmented Lagrangian methods remove the requirement that the penalty parameter

be large. In the above equation, we can find that when a = 0, the equation reduces

to equation (3.5).

Due to the difficulties to resolve the mechanical behavior in the contact interface,

several different approaches have been used in the literature to solve contact problems.

In Section 3.2 and 3.3, among those approaches, we describe two methods, the segment

method [2] and the constraint function method [3] as finite element solution algorithms

(which are implemented in the ADINA program).
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3.2 The Segment Method

This method was suggested by K.J. Bathe and A. Chaudhary [2] as a contact solution

algorithm. For the formulation of this algorithm, the incremental procedure and the

notation presented in [1] are used.

This algorithm for contact solution has the following features:

" The kinematic conditions are enforced at the contactor nodes: To enforce the

geometric compatibility conditions due to contact, a Lagrange multiplier pro-

cedure is used and the total potential of the contact forces is involved in the

variational formulation.

" The frictional conditions are enforced over the contact segments: The state of a

contact segment is determined using the segment resultant forces and Coulomb's

law of friction and the conditions of adjoining segments are used to decide

whether a surface node is in sticking contact, sliding contact or is releasing.

" In the contact area, the contact tractions are obtained from the externally ap-

plied forces and nodal point forces corresponding to the current element stresses.

" The number of Lagrange multiplier equations due to contact is dynamically

adjusted in each iteration: If the node is in sticking contact, there are two

equations for the node and if the node is in sliding contact, there is one equation

for the node.

In numerical solutions, the contact surfaces (the contactor and target surface) are

discretized by two-node linear segments and the contactor surface nodes are consid-

ered to come into contact with the target surface segments. If both nodes which are

connected to a segment are in contact with the target surface, the contactor segment

is defined to be in contact. In the contact area, the displacements and coordinates are

interpolated linearly between adjacent nodes on the contact surfaces of the bodies by

a location parameter(#). After the two bodies have come into contact, the incremen-

tal contactor surface displacements must be compatible with the incremental target
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Figure 3-3: Finite element discretization in contact region [2]

surface displacements so that the current conditions of sticking contact and sliding

contact between the contactor and target surfaces are satisfied. This compatibility of

surface displacements is only enforced at the discrete locations corresponding to the

contactor nodes. Hence, in an equilibrium configuration, the contactor nodes cannot

be within the target body. (see Figure 3-3)

3.2.1 Potential of contact forces

In Section 3.1, we obtained the governing finite element equations by invoking sta-

tionarity of the total potential. In the case of contact problems, the functional is

represented as follows:

1I1 = U - Z Wk (3.16)
k

where 1I is the incremental total potential for generating equilibrium equations with-

out contact conditions, and EWk is the incremental total potential of contact forces.
k

In this section, more details about this term are discussed. As a preliminary for

constructing the term, general geometric variables and contact forces in the contact

area are introduced as shown in Figure 3-4 and 3-5. Figure 3-4 illustrates how the

contactor node k comes into contact with the target segment j. Here, A('-' repre-

sents the material overlap which is eliminated in iteration (i) by the basic geometric
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Figure 3-4: Definition of geometric variables [2]
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Figure 3-5: Contact forces [2]
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condition of contact that no material overlap can occur between the bodies. From

geometry, A( and - , which is the parameter of location of physical point of

contact, are given by

A0-1) =- t+ At (i
k Xk

_ t At (i-1)
xc

Then, in iteration (i), the following equation is satisfied

t+At (i) t+At (i) (3.19)
Xk XC

For the constraint equation in sticking contact, the following manipulations are given.

Subtracting t+Atx-) from both sides of equation (3.19),

t+At X) t+At x(- t+At ) _ t+At x(i-
c xC

=AUi)

1) (3.20)

Then, using the relation of equation (3.17),

t+At x - t+At x(- 1 ) + A - = Au(i) (3.21)

We have from the above equation,

Au + A (3.22)

where by an isoparametric interpolation using the location parameter(#0- 1 ))

-(1- ) + B1-0u (3.23)

Hence, the constraint equation in sticking contact can be obtained by the combination

of equation (3.22) and (3.23) as follows:

[(Aufz) + A 1) - (1 -#(i-))AuW - (i#-Au 1
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(3.18)

= 0 (3.24)
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where Aul, A~ui and Au are the displacement increments at nodes k, A and B,

respectively.

In the case of sliding contact, in iteration i, the physical point (point C in figure 3-4)

of contact with the target segment can change because its tangential force is equal to

the frictional capacity. However, by assuming the amount of sliding to be small and

through linearizing about the geometry after iteration (i - 1), the constraint equation

can be obtained as follows:

(nT) [(Aulj + A(zl)) - (1 - W-)>u) - 0-)Au(i) = 0 (3.25)

where n, is the unit vector along the local direction s on the target segment with

respect to the global reference frame.

Figure 3-5 shows the contact force at contactor node k and the reaction contact force

at point C on the target segment j. By an isoparametric interpolation, the following

equation is satisfied.

t+LAtA(iK1) - - t+AtA\(i-l) -t±At'\(i-l)
k A B

= -(1 - 0-1)) t+At i-1 _ 0-1) t+At -1) (3.26)

The total potential Wk for sticking contact is obtained by summing up the potential

of a contact force at each node (e.g., k, A and B)

Wk = t+Atki)T (Ui) + -A ) + t+AtA(i)T AU + +AX(i)T u (3.27)

In iteration i, the contact force at the node k is given by,

t+AtA(i) - k+At i-1) + Ak (3.28)

where AA(' is the change in the contact force at node k and components of AA(' are

Lagrange multipliers.

By substituting equations (3.26) and (3.28) into equation (3.27), the rearranged
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equation of Wk can be obtained as follows:

Wk -t±ZAtA(ilI)T [(AU(i) +,&(il1)) W 1-,(1)ui - /3(i1)i)]

+ /A~)T [A(AU(i) + A ) - (1 - 0- !3-i1)uAA)1 (3.29)

This potential is used for all contactor nodes which are in sticking contact and the

second term in equation (3.29) reflects the constraints of sticking contact in the in-

cremental equations of equilibrium.

Also, the total potential Wk for sliding contact is obtained as follows:

Wk - t+AtA(i-1)T [()U(i) + A(i - ( - i(i-1))U ) - 1)Au(i)

+ AA') {-n T [(Aui) + A 1 )) - (1 - #i)-l))Au - -(i1Au$)] (3.30)

where AA() is the change in the magnitude of the normal component of t+AtA(- 1 )

This potential is used for all contactor nodes which are in sliding contact.

3.2.2 Governing finite element equations

The total potential including the potential of the contact forces with the constraints

of compatible boundary displacements is obtained by substituting from equations

(3.29) and (3.30) into equation (3.16). Then, by invoking stationarity, MII 1 = 0, the

governing finite element equations for iteration (i) are generated as follows:

[t+AtR(iF) 0] + t+Ri~

[ 0+t 0 1 C L+t~l 1A (331

1 t+AtF(-1) + (3.31)
0 L t+At(- 1

t+AtK(') t+AtR2 l) and t+AtA(-l) include all contributions for all surface nodes

that belong to the contact region. For simplicity, these terms are considered below

for a generic contact region consisting of the contactor node k and its target segment
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j. The total effect of all contactor nodes can be obtained by summing the individual

contributions using the direct stiffness method.

In equation (3.31), t+AtK(yl) is the contact stiffness matrix that includes the

constraints of compatible surface displacements after iteration (i - 1). On the other

hand, t+AtK(i-l) is the usual tangent stiffness matrix. The calculation of t+tK(i-),

t+AtR and t+AtF(-l) can be performed by employing the usual procedures [1].

In sticking contact, t+tK2 l) and the overlap vector t+AtAk 4  can be obtained as

follows from the second term in equation (3.29).

t+AtK(-) =
C

+AtA(i-l) -
C

0

symmetric

-1

0

1 - 1 3(i-1)

0

(i-1)

0

0

-1

0

1 - /3(i-1)

0

#(i-1)

0

(3.32)

~(i-1) 1
kx

y(i-1)
ky_

(3.33)

where the overlap is eliminated in iteration (i). The corresponding contact forces

t+AtR2l), i.e. the vector of updated contact forces after iteration (i - 1), is given

from the first term in equation (3.29) as follows:
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t+AtR(i'1)C

t+ At A ('-1)kx

t±AtA(il')
ky

t+AtA()

_i-1) t kxky

(3.34)

where t+AtR2 l) are calculated from AR(-) which is the vector of nodal point con-

tact forces prior to updating (see Section 3.2.3).

The corresponding solution vector for iteration (i) is in detail as follows:

[zAU(z)1
zAXW

AU~i

A (3.35)

where AAN() is the vector of increments in contact forces in iteration (i).

In the case of sliding contact, t+AtK -l), t+AtA(-) and the corresponding solution

vector in equation (3.31) are

[AU~i
(3.36)

t+A~t,(i-1) =
C I-nsxA(-1 - i~ ky
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-nsx

-nsx

t+AtK('-0 1 (4 ny, (3.38)

symmetric 0

As shown above, to enforce sticking contact, two individual equations are necessary

to constrain the x and y incremental displacements of node k. However, in the case

of sliding contact, only one constraint equation along the direction n. is needed.

Using equation (3.31), the procedure of calculations performed in the contact

solution is as follows for iteration (i) at time t + At:

* Evaluate the updated contact forces, t+AtR l) from AR(-' (for more detail,

see Section 3.2.3).

* For each contactor node, determine the target segment using the current geom-

etry after iteration (i - 1) and calculate the material overlap and the location

parameter(#).

* Find whether any new contactor nodes have come into contact after iteration

(i - 1)

* Determine the states of contactor nodes for iteration (i) using the state of

adjoining contactor segments (see Section 3.2.3).

* Assemble all matrices in equation (3.31) including the contact matrices t+AtK -)

and t+AtA(i). Then solve to obtain the solution AU(') and AN.
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3.2.3 Evaluation of contact forces and contact conditions

The appropriate matrices for the cases of sticking and sliding contact respectively are

used in generating equation (3.31). This means that the algorithm has to determine

which contact condition shall be applied to the system of equations. In solving con-

tact problems, much difficulty lies in this aspect for a reliable and effective scheme.

The state of the contactor segment can be decided in the procedure based on cal-

culating the contact force at node k, t+"A(-) for which components appear in the

vector t+AtR2 -l). The procedure of calculating a contact force is described below

(see figure 3-6).

1. After iteration (i - 1), the nodal point forces AR(-') can be obtained as follows

AR('-') = t+AtF(i-) - t+AtR (3.39)

where +AtF(i-1) is the vector of nodal point forces equivalent to the element

stresses and t+AtR is the vector of total applied forces, and so AR(-') is the

out-of-balance force vector.

2. From AR(-) over segment j which is connected to the nodes k and k + 1,

the nodal point values of the segment tractions, tj are given by the following

equation

AR R= G ti (3.40)

where

AR k AR k tk tk

ARj = Y ti = Y (3.41)
ARk+ 1 AR k+1 tk+1 tk+1

where ARk is the x-component of the consistent nodal load at node k due to

the distributed segment tractions over segment j only, and so the total force

ARk- at node k is the sum of the tractions acting over all segments adjoining
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node k:

G = h -j i (3.42)
6 1 2

where G is the coefficient matrix for plane stress and plane strain analysis with

uniform thickness h and dj is the length of the contactor segment j (see the

reference [2] for the case of axisymmetric analysis).

3. The components tk, tk and tk+1 , tk+1 are transformed to the normal and tangen-y x X y

tial segment tractions, tk, tk and tk+ 1, tk1 1 for calculation of the total resultant

normal force, Ti and tangential force, Tj acting on segment j in plane stress

and plane strain analysis.

T = h k (t+ tk+1)
2

T = h 2 (t + t +1) (3.43)
2

4. Coulomb's law of friction, T = T3 is used to determine if the segment is in

the sticking condition or sliding condition and the tangential segment traction

is accordingly updated to tit.

* If T > T3 , the segment is in the sticking condition. In this case, tt = tt

and the updated nodal point forces ARj = ARj. The sum of contributions

from updated tractions adjoining node k generates the total updated force

t±At\(il1)

k

* If T < T, the segment is in the sliding condition. In this case, the total

tangential force is scaled down to equal the frictional capacity and using

this force, k is generated.

5. According to the state of adjoining contactor segments, the state of a contactor

node is decided as follows.

* If one of two adjoining segments is sticking, the state of the contactor node
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nodal point forces : t+AtF('l) - t4*AtR
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updated nodal point forces
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Figure 3-6: The procedure of calculation of contact forces
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is sticking and if both adjoining segments are in the sliding condition, the

state of the contactor node is sliding.

3.3 The Constraint Function Method

This method was suggested by Eterovic and Bathe [1] [3]. To apply the segment

method to contact problems, it is necessary to adopt an active set strategy, in which

only the equations corresponding to active constraints are included in each iteration.

Hence, this feature may worsen the convergence properties of a full Newton-Raphson

scheme if there are frequent changes of the active set.

The constraint function method enforces the contact and friction inequality con-

straints explicitly by means of appropriate constraint functions and does not require

an active set procedure. This method is especially suitable for nonconservative prob-

lems like inelastic large-strain analysis with frictional conditions and it is based on

the general equilibrium equations and contact conditions prescribed in Chapter 2.

In this method, the conditions to be satisfied are given in equations (2.12) and (2.15)

and two constraint functions are defined, in which one is the normal constraint func-

tion w(g, A) and the other is the frictional constraint function v(it, T).

The following normal constraint function w(g, A) is used such that when w(g, A) = 0,

the conditions in (2.12) are satisfied

w(g, A) = A) 2 + n (3.44)
2 (2

where the variables g, A are the gap function and the normal traction component,

respectively, and 6n is a small parameter (6n < 1).

In the case of friction, the conditions (2.15) are also satisfied when v(it, T) = 0. To

construct the constraint function, the following relationship is used

2 it
T = - arctan - (3.45)

'r Et

35



where Et is a small parameter (ft < 1) which represents the characteristic behavior

of the friction law.

Considering the variables A and T as Lagrange multipliers, the constraint equation

for the continuum is as follows

j [6A w(g, A) + 6 T v(it, )] dSI = 0 (3.46)
fSIJ

where 6A and 3 T are variations.

For the two-body contact problem in figure 3-5, the constraint function method now

consists of solving equation (2.5) and enforcing the following conditions

w(g, A) = 0 (3.47)

v(it, T) = 0 (3.48)

The finite element solution of the governing continuum mechanics equation is achieved

by using the usual discretization schemes.

The discretization of the governing equations (2.5) and (3.46) for the continuum at

time t + At is given by

t+AtF(t+AtU) = t+AtR - t+AtRc(t+AtU, t+Atr) (3.49)

t+AtFe(t+AtU, t+Atr) = 0 (3.50)

where t+AtU is the vector of all unknown nodal point displacements, t+AtF(t+AtU) is

the vector of internal nodal point forces, t+AtR is the vector of external nodal point

forces and with m contactor nodes t+AtrT is given by

t+AtrT = [AiT7,. .. , Ak, k, ... , Am, Tm] (3.51)
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The contact traction term in equation (2.5) will result into nodal point forces t+AtRc.

The vector t+"tR, is obtained by assembling for all m contactor nodes (k = 1, ... M),

the contactor nodal force vector t+ALtR due to contact. t+AtRc is given by

Ak(n. + /-LTkflr)

t+AtRc = (1 - k)Ak(n, + prkn,) (3.52)

-k 3 k (n. + pUTkfnr)

where /k, ns, nr are defined in figure 3-4 and 3-5, the first row term of t+AtRc cor-

responds to the contactor node k and the second and third terms correspond to the

target nodes A and B, respectively in figure 3-5.

The vector t+AtFe in equation (3.50) can be written as

t+AtF _ t+AtF .T t+AtFCT (3.53)

where

t+AtFc (3.54)E V (it, Tk)j

The incremental equations for solution of equations (3.49) and (3.50) are obtained

by linearization about the last calculated state. Using the usual procedures [1], the

incremental equations corresponding to the linearization about the state at time t are

given by

([K +ttKcu) Kc AU R -TF - Rc
U U -t~c(3.55)

tKc, tKc AT 'F

where the matrix tK is the usual tangent stiffness matrix not including contact con-

ditions, AU and Air are the increments, and tKcu, tKcT, tKcu, tKcT represent contact

stiffness matrices, which are given by
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t C & R
UU luUT at'

tKc = tFc tKc tF (3.56)
TU tU' TT i-r

Due to the presence of friction the system matrix in equation (3.55) is in general

nonsymmetric but for frictionless contact, a symmetric matrix is obtained.

It is important to note that although the incremental equations (3.55) correspond

to a full linearization, the solution may be sensitive to the choice of time stepping,

that is, when too large incremental time steps are used, convergence difficulties in

the equilibrium iterations may occur. In general, large time steps can only be taken

when not much change in the sticking and sliding regions is expected.
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Chapter 4

Numerical Solutions

4.1 Mooney-Rivlin Material Behavior

In the numerical solutions, we shall use the rubber material, especially the Mooney-

Rivlin material model which is also available in ADINA. In this section, we briefly

discuss this material model.

The conventional Mooney-Rivlin material model [1] is represented by the strain energy

density per unit original volume as follows.

f/ = C1('11 - 3) + C2('I2 - 3); t13 = 1 (4.1)

where 'W is the strain energy density, C1 and C2 are material constants and the 'Ij

are the invariants given in terms of the components of the Cauchy-Green deformation

tensor(%C) as below

I2 = 2 - t [Ct ] (4.2)

13 = det tC

We consider the one-dimensional response of a bar (assume the section is a square)

as shown in figure 4-1 and examine the force-displacement relationship for C1 = 0.293
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Figure 4-1: One-dimensional rubber bar

and C2  0.177.

We can start using 0Sij =- 0 1 / E as follows

tosn 0
0tell

C1 + C2 
0 1 2

0 0en a he
(4.3)

where t Sl is the second Piola-Kirchhoff stress and 'ell is the Green-Lagrange strain.

With the fact that after and before deformation, this model should have the same

volume, we can obtain the deformation gradient(tLX), the Cauchy-Green deformation

tensor(tC) and the Green-Lagrange strain(oE).

A

=0

0

0

0

0

0
1

1
OE (tC - I)

tC= tXT tX=

(A2 _ 1)

0

0

0

(}-1)
0

A2

0

0

0 0

j1 0

0 A

(4.4)

0

0

where A = 1 + A/Lo
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By using the chain rule, 0 'I1/0 'El and 1 '12/0 'El is given by

0 0 0 a tOI a t C22  a o l a tC 33

6 a C bln a tOC 22 a Ell a C33 a LEH

= 2(1 - ) (4.5)

a 12 _ t 12 at aC1 a 12 a tOC22 a to12 a tOC33

a tel a toc1 a t a OC22 a ±En a tC33 a toll

1 1
- 2(- ) (4.6)

Hence, we can obtain t Si by substituting from equations (4.5) and (4.6) into equation

(4.3) as follows

tSl = 2 C1(1 - + C2 ( y ) (4.7)

and the Cauchy stress tensor( t r) can be given in terms of the second Piola-Kirchhoff

stress tensor as follows.

= P0X S XT (4.8)

Then, using equation (4.7) and (4.8), we can obtain the force-displacement relation-

ship [1], which is given by

I I
F = 2 OA Cl(A - -) + C 2 (1 - g) (4.9)

where OA is the original cross-section of the bar.

Figure 4-2 shows the force-displacement curve specialized to C1 = 0.293 and C2 =

0.177. We can find that as the displacement increases in the compression part, the

stiffness of the rubber bar increases more drastically than in the tension part.
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Figure 4-2: The force-displacement curve for the rubber bar

4.2 Example 1 - Analysis of Rectangular Rubber

Block

Figure 4-3 shows the rectangular rubber block considered. A long rectangular block

of size 1.Om x 1.0m is analyzed; hence in this model plane strain conditions are

assumed. The rigid target surface is modelled by specifying nodes with no degrees

of freedom. We idealize the piece of rubber using a Mooney-Rivlin description, with

C1 = 0.293MPa, C2 = 0.177MPa and r, = 141OMPa. In this example, 4/1 elements

and 9/3 elements are used and their solutions are compared to each other and in each

case, five finite element meshes are used (4 x 4, 8 x 8, 16 x 16, 32 x 32 and 64 x 64

meshes). The load is applied by prescribing the displacements at the top of the mesh

and both, moderate displacements (A = 0.1m) and large displacements (A = 0.5m)

are considered. We also examine two cases, namely, assuming no friction and friction

(p = 0.3) between the contactor surface and the target surface of this model. The

load (displacement, A) is applied in ten equal load steps.
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p =0.0

p=0.3

contactor
surface

t

A: prescribed
displacement

size: 1.0m x 1.0m

rigid target
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Figure 4-3: Rectangular rubber block

ADINA
MAXIMUM

1 .112
TIME 10.00 MlN 1

W .0'3000
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0. 1200 0.00

-0.0600

Figure 4-4: Effective stress and distributed contact force for the rectangular rubber block
(4/1 elements with no friction, 16 x 16 mesh)
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Figure 4-5: Effective stress and distributed contact force for the rectangular rubber block
(4/1 elements with friction, 16 x 16 mesh)

Figure 4-6: Force-displacement curve for the rectangular rubber block, A = 0.1m (4/1
elements with no friction)
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4/1 element with friction (p=0.3, moderate disp.)

Figure 4-7: Force-displacement curve for the rectangular rubber block, A = 0.1m (4/1

elements with friction)

First, we consider moderate displacements. Figures 4-4 and 4-5 show the effective

stress and distributed contact force in the case of the 16 x 16 mesh for both cases with

no friction and friction (p = 0.3). As shown in the figures, in the case of friction, a

concentration of distributed contact force in both bottom edge elements of the model

is developed. The concentration is caused by frictional resistance. Figures 4-6 and

4-7 show the force-displacement curves in both cases with no friction and friction

(p = 0.3) using 4/1 elements. In these figures, both curves represent similar patterns

but we see that the case with friction results in a larger total contact force than the

case with no friction. This means that the effects of friction make the model stiffer.

Figure 4-8 shows the force-displacement curve using 9/3 elements. The figure shows

that the five finite element solutions are in close agreement with the 4/1 element

solutions.

For the large displacement solutions, the resulting force-displacement curves are

shown in figure 4-9 for the 4/1 elements and figure 4-10 for the 9/3 elements. In
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9/3 element with friction (p=0.3, moderate disp.)

Figure 4-8: Force-displacement curve for the rectangular rubber block, A = 0.1m (9/3

elements with friction)

Figure 4-9: Force-displacement curve for the rectangular rubber block, A = 0.5m (4/1

elements with friction)
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9/3 element with friction (p=0.3 , large disp.)

Figure 4-10: Force-displacement curve for the rectangular rubber block, A = 0.5m (9/3

elements with friction)

figure 4-9, we can see that as the size of the elements becomes smaller, the total

contact forces decrease. The results agree with the observation that in general finite

solutions, coarser meshes are stiffer than finer meshes. In the case of the 9/3 elements,

the curves do not show the general pattern as in the case of the 4/1 elements but

the five finite element solutions are also in close agreement as in the case of moderate

displacements. We note that the 9/3 element is much more powerful in this analysis,

namely the 4 x 4 mesh gives already good results (whereas a 64 x 64 mesh of 4/1

elements must be used).

4.3 Example 2 - Analysis of Cylindrical Rubber

Block

In this example, a cylindrical rubber block with radius R=0.5m is analyzed and plane

strain conditions are also assumed. To model the contactor, the same elements (4/1
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Figure 4-11: Cylindrical rubber block

elements and 9/3 elements) are used as in Section 4.2 and in each case, we also ex-

amine the performance of the five finite element meshes (4 x 4, 8 x 8, 16 x 16, 32 x 32

and 64 x 64 meshes). Figure 4-12 shows the finite element idealization of the 8 x 8

mesh.

The rigid target surface is also modelled by specifying nodes with no degrees of free-

dom. Here, we use two analysis models, the 1st model and the 2nd model (see figure

4-11). The 1st model is used for moderate displacements and the 2nd model is used

for both moderate and large displacement conditions because when the 1st model is

used for large displacements, the solution fails to converge due to distorted elements.

In both cases, the friction coefficient yL = 0.3 is used between the contactor surface

and the target surface. We idealize the piece of rubber with the same material con-

stants as in the above example. Both moderate displacement (A = 0.05m) and large
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ADINA

Figure 4-12: Mesh used for the cylindrical rubber block (4/1 elements, 8 x 8 mesh)
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Figure 4-13: Force-displacement curve for the cylindrical rubber block (1st model), A =

0.05m (4/1 elements with friction)
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Figure 4-14: Force-displacement curve for the cylindrical rubber block (2nd model), A

0.05m (4/1 elements with friction)

displacement conditions (A = 0.25m) are considered. To simulate the load appli-

cation, the vertical displacement is prescribed along the top surface of the model.

In the case of moderate displacement conditions, the load (displacement, A) is ap-

plied in twenty equal load steps and in the case of large displacement condition the

automatic-time-stepping method (ATS) is used to obtain converged solutions, which

is implemented in ADINA (see Theory and Modelling Guide Volume 1: ADINA).

Figures 4-13 to 4-16 show the force-displacement relationship for moderate displace-

ments. Considering figure 4-13, we see that near A = 0.035 for the 4 x 4 mesh,

the stiffness of the mesh changes noticeably. In the output, we can find that below

A = 0.035, only one node is in contact and above A = 0.035, three nodes are in

contact. This means that the model is artificially soft below A = 0.035. We can also

see this phenomenon using the 8 x 8 mesh (near A = 0.0125 and A = 0.045). We

can find another interesting observation in this figure, namely, that contrary to the

rectangular rubber block, finer meshes are stiffer than coarser meshes. The reason
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Figure 4-15: Force-displacement curve for the cylindrical rubber block (1st model), A =

0.05m (9/3 elements with friction)
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Figure 4-16: Force-displacement curve for the cylindrical rubber block (2nd model), A =

0.05m (9/3 elements with friction)
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Figure 4-17: Force-displacement curve for the cylindrical rubber block (2nd model), A=

0.25m (4/1 elements with friction)

is that when there are more nodes in contact, the model becomes stiffer in spite of

the fact that generally coarser meshes are stiffer than finer meshes. The 2nd model

(see figure 4-14) represents a similar solution pattern as the 1st model except that

the total contact force is smaller, in each time (load) step, than for the 1st model.

Figures 4-15 and 4-16 show the results using the 9/3 elements. Here, we can see that

the range of values concerning the predicted contact forces is smaller in each time

step compared with the 4/1 element solutions, which means that the results of the

five element meshes are in close agreement with each other.

For the large displacement solution, the resulting force-displacement curves are shown

in figures 4-17 and 4-18. The five solutions using 9/3 elements are in closer agree-

ment with each other than those using 4/1 elements, as in the above results, and

both results show that as A = 0.25 is approached, the stiffness of the cylindrical

rubber block increases drastically, which agrees with the rubber material behavior in

the compression part shown in figure 4-2.
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Figure 4-18: Force-displacement curve for the cylindrical rubber block (2nd model), A

0.25m (9/3 elements with friction)

4.4 Example 3 - Analysis of Rubber Sheet in a

Converging Channel

A sheet of rubber in plane stress conditions moves in a rigid horizontal channel, see

figure 4-19 (a). The right face of the sheet is subjected to the displacement history

given in figure 4-19 (b) making this a large deformation problem. The displacements

are assumed to vary slowly so that inertia effects can be neglected. To model the

sheet of rubber, 4/1 elements for both a 12 x 4 mesh and a 24 x 8 mesh (case 1 and 2)

are used and 9/3 elements for a 12 x 4 mesh (case 3) are used. Figure 4-20 shows the

finite element idealization of the 12 x 4 mesh of 4/1 elements. In all cases, the friction

coefficient p = 0.15 is used and Mooney-Rivlin constants C1 = 25.0 and C2 = 7.0 are

used. Here, we use both the segment method and the constraint function method

and compare the results (in the above two examples, we used only the constraint

function method).
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A: prescribed displacement
over entire face
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Figure 4-19: Rubber sheet in a converging channel: (a) problem considered; (b) prescribed

displacement
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Figure 4-20: Mesh used for the rubber sheet in a converging channel (4/1 elements, 12 x 4

mesh)

Figures 4-21 to 4-24 show the distribution of normal and tangential tractions for

different load steps in each solution. We see that the results of both methods are in

close correspondence except near the face at which the displacements are imposed.

However, we can also see that the constraint function method gives more reasonable

results than the segment method in tangential tractions near the face. Using the

12 x 4 mesh (figures 4-21 and 4-22) and 24 x 8 mesh (figures 4-23 and 4-24) of 4/1

elements, a close agreement is observed between the results although the 12 x 4 mesh

represents a coarse idealization of the rubber sheet. Figures 4-25 and 4-26 show

the distributions of normal and tangential tractions for the 12 x 4 mesh using 9/3

elements. In this case, an element has two segments, and so this case has the same

number of segments as in the 24 x 8 mesh using 4/1 elements. The solution shows

similar patterns as the solution presented using the 24 x 8 mesh of 4/1 elements. But

due to the two linear contact segments per parabolic displacements on an element

edge, there is some oscillation in the contact tractions using the 9/3 elements. The

three cases all show that at time 18 the tangential tractions have partially reversed,

which means that some segments are still in sticking conditions.
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Figure 4-21: Normal and tangential tractions for the rubber sheet at times 8 and 14 (case

1 : 12 x 4 mesh, 4/1 elements)

Figure 4-22: Normal and tangential tractions for the rubber sheet at times 18 and 24 (case
1 : 12 x 4 mesh, 4/1 elements)
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Figure 4-23: Normal and tangential tractions for the rubber sheet at times 8 and 14 (case

2 : 24 x 8 mesh, 4/1 elements)

Figure 4-24: Normal and tangential tractions for the rubber sheet at times 18 and 24 (case
2 : 24 x 8 mesh, 4/1 elements)
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Figure 4-25: Normal and tangential tractions for the rubber sheet at times 8 and 14 (case

3 : 12 x 4 mesh, 9/3 elements)

Figure 4-26: Normal and tangential tractions for the rubber sheet at times 18 and 24 (case

3 : 12 x 4 mesh, 9/3 elements)
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Chapter 5

Concluding Remarks

For the evaluation of contact solution algorithms, we have focused on the segment

method and the constraint function method which are implemented in ADINA and

reviewed in detail the algorithms. We have also described the continuum formulation

of contact problems where equilibrium equations and contact conditions are included

for the finite element solutions, and basic solution approaches - the Lagrange multi-

plier method, the penalty method and the augmented Lagrangian method.

To evaluate the algorithms, the following three examples were considered: 1) rect-

angular rubber block, 2) cylindrical rubber block and 3) rubber sheet in a converging

channel. In examples 1 and 2, we have evaluated the performance of finite elements

using 4/1 elements and 9/3 elements with no friction and friction for moderate and

large displacement conditions respectively. Example 2 is different from example 1 in

that from its initial time step, the number of nodes in contact varies continuously as

the load increases even for the moderate displacement condition. Here, we have found

an interesting observation that finer meshes are stiffer than coarser meshes contrary

to the observation for the rectangular rubber block. The reason is that when there

are more nodes in contact the model becomes stiffer in spite of the fact that generally

coarser meshes are stiffer than finer meshes. In example 3, we have used both the

segment method and the constraint function method and compared the results. We

observed that the results of both methods are in close correspondence except near
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the face at which the displacements are imposed and the constraint function method

predicts more reasonable results than the segment method for the tangential tractions

near the face.

It should be mentioned that the solution using the constraint function method

may be sensitive to the choice of time stepping, depending on the physical problem

solved, although the method enforces the contact and friction inequality constraints

explicitly and does not require an active set procedure. In particular, if in the solution

Et (a small parameter in equation (3.45)) is of a very small value, small incremental

load steps should be employed even when using the automatic-time-stepping method

(ATS). Here it could be more effective to automatically adjust the value of Et to reach

faster convergence.

Comparing the 4/1 and 9/3 element solutions, we have found that the 9/3 element

is clearly more powerful but it would be valuable to use a quadratic contact segment

rather than two linear contact segments on the element sides.

Finally, the improvements proposed by N. El-Abbasi and K.J. Bathe [4] should be

further researched and should be evaluated using the three proposed test problems of

this thesis.
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