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Abstract

Autonomous vehicles require the ability to build maps of an unknown environment
while concurrently using these maps for navigation. Current algorithms for this con-
current mapping and localization (CML) problem have been implemented for single
vehicles, but do not account for extra positional information available when multi-
ple vehicles operate simultaneously. Multiple vehicles have the potential to map an
environment more quickly and robustly than a single vehicle. This thesis presents
a collaborative CML algorithm that merges sensor and navigation information from
multiple autonomous vehicles. The algorithm presented is based on stochastic estima-
tion and uses a feature-based approach to extract landmarks from the environment.
The theoretical framework for the collaborative CML algorithm is presented, and
a convergence theorem central to the cooperative CML problem is proved for the
first time. This theorem quantifies the performance gains of collaboration, allowing
for determination of the number of cooperating vehicles required to accomplish a
task. A simulated implementation of the collaborative CML algorithm demonstrates
substantial performance improvement over non-cooperative CML.
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Chapter 1

Introduction

Successful operation of an autonomous vehicle requires the ability to navigate. Nav-

igation information consists of positional estimates and an understanding of the sur-

rounding environment. Without this information, even the simplest of autonomous

tasks are impossible. An important subfield within mobile robotics that requires

accurate navigation is the performance of collaborative tasks by multiple vehicles.

Multiple vehicles can frequently perform tasks more quickly and robustly than a sin-

gle vehicle. However, cooperation between vehicles demands the vehicle be aware of

relative locations of collaborators in addition to the baseline environmental knowl-

edge.

Current solutions to autonomous vehicle localization rely on both internal and ex-

ternal navigational aides. Internal navigation instruments such as gyros and odome-

ters (on land vehicles) provide positional estimates, but are susceptible to drift and

thus result in a navigation error that grows linearly with time. This unbounded

error growth makes long-term autonomous operation using only internal devices im-

possible. Beacon systems (such as the Global Positioning System (GPS) ) provide

extremely accurate navigation updates, but require pre-placement of accessible bea-

cons (satellites). In the case of GPS, this limits use to outdoor open-air environments.



Autonomous Underwater Vehicles (AUVs), as well as autonomous land vehicles op-

erating indoors, are unable to utilize GPS as a result. Acoustic beacon arrays with

known locations have been used successfully by AUVs for navigation, but deployment

of such beacons is only feasible in a limited number of mission scenarios. AUVs have

demonstrated the ability to localize their position and navigate using accurate a priori

bathymetric maps, but a priori knowledge of the underwater environment is not al-

ways available, especially in littoral zones where the environment frequently changes

in ways that would affect a shallow water AUV. A recent advance in autonomous

vehicle navigation techniques, Concurrent Mapping and Localization (CML), incor-

porates environmental data to provide vehicle position information [46]. CML allows

an autonomous vehicle to build a map of an unknown environment while simulta-

neously using this map to improve its own navigation estimate. This technique has

been demonstrated both in simulation and on actual vehicles.

This thesis reports the execution of the logical next step in the development

of CML: a CML algorithm for use by multiple collaborating autonomous vehicles.

Sharing and combining observations of environmental features as well as of the col-

laborating vehicles greatly enhances the potential performance of CML. This thesis

is demonstrates the feasibility and benefits of collaborative CML. Multiple vehicles

performing CML together perform faster and more thorough mapping, and produce

improved relative (and global) position estimates. This thesis quantifies the improve-

ment in CML performance achieved by collaboration, and compares collaborative

versus single-vehicle CML results in simulation to demonstrate how collaborative

CML greatly increases the navigation capabilities of autonomous vehicles.

This chapter reviews the fields within mobile robotics that are most relevant to

this thesis. Section 1.1 discusses the importance of collaboration, then briefly surveys

current collaborative techniques in mapping and navigation. In Section 1.2, the field

of single-vehicle CML is described. The intersection of these two fields is collaborative

INTRODUCTION18



1.1 COLLABORATION IN MAPPING AND LOCALIZATION

CML, discussed in Section 1.3, which provides motivation for the work of this thesis

and also reviews current collaborative CML implementations. The contribution made

by this thesis is described in Section 1.5. The chapter closes with a presentation of

the organization of the thesis in Section 1.6.

1.1 Collaboration in mapping and localization

A team of collaborating autonomous vehicles can perform certain tasks more effi-

ciently and robustly than a single vehicle [1, 383, and thus have been the focus of

significant study by the robotics community in the past decade. Section 1.1.1 moti-

vates the need for teams of autonomous vehicles to localize themselves with respect to

their surroundings and each other, as well as collaborative construct maps of their en-

vironments. Current work in collaborative localization is reviewed in Section 1.1.2.1,

and a brief survey of collaborative mapping is presented in Section 1.1.2.2. More

detailed reviews of collaboration in mobile robots are presented in Cao et al. [10],

Parker [38], and Dudek et al. [18].

1.1.1 Motivating scenarios

The following discussion of possible applications for teams of autonomous vehicles

that are able to perform localization and mapping demonstrates why collaborative

CML is of interest.

1.1.1.1 Indoor search and rescue

Autonomous vehicles perform tasks without endangering the life of their operator,

making them attractive for firefighting or search and rescue. Often firefighters or

rescue personnel put themselves at great risks to search for victims inside buildings.

A team of autonomous vehicles that could perform these tasks quickly and effectively

19



INTRODUCTION

would be helped by being able to collaboratively map the building while searching

for victims. Furthermore, a heterogenous combination of vehicles could include very

small, speedy search vehicles, as well as bigger firefighting or rescue vehicles to be

summoned when needed. Accurate navigation and mapping is essential to to perform

this task, and a team of robots able to collaboratively localize and map the search

area would provide the robustness and search efficiency needed for successful search

and rescue.

1.1.1.2 Submarine surveillance

The military seeks the capability to covertly observe the departure of an adversary's

submarines from their home ports. Detection of submarines in the open ocean is

much harder than detection in shallow water at a known departure point. One cur-

rent option available to the Navy is to position static acoustic listening devices on

the the sea floor or on the surface. However, these are difficult to deploy, requiring

divers or aircraft for delivery. Submarines themselves can also perform surveillance,

but they are limited to deep water operations. The inability of such submarines to

operate in shallow water and the limited range of underwater sensors gives an adver-

sary a window of opportunity to escape detection. Surveillance would be performed

much more effectively by an array of shallow water AUVs. By staying within com-

munications range and cooperatively localizing with respect to each other, a web of

properly positioned AUVs could create a barrier through which an adversary could

not slip through undetected. This AUV array could be deployed quickly, easily, and

covertly. This mission emphasizes the need for AUVs to share map and navigation

information in order to maintain proper relative positioning as well as to detect the

enemy submarine.

20



1.1 COLLABORATION IN MAPPING AND LOCALIZATION

1.1.1.3 Close proximity airborne surveillance

A major advantage of autonomous air vehicles over conventional aircraft is the in-

creased maneuverability envelope gained by eliminating the pilot, as their smaller size

is coupled with a much higher tolerance for tight turns (which induce high 'G' forces).

Capitalizing on this maneuverability while in close proximity to obstacles (such as

the ground, foliage, or other aircraft) requires excellent navigation and mapping ca-

pabilities. One military mission that requires extremely low altitude, high-precision

navigation and mapping is close-proximity surveillance of an unknown enemy posi-

tion. Military operations benefit greatly from real-time observations, especially in

the minutes leading up to an attack. Multiple autonomous air vehicles could gather

this coveted information by entering into and observing an enemy position when the

potential gain is worth the loss of surprise. Collision avoidance is especially crucial in

this situation, since survivability demands that these vehicles be able to hide behind

buildings, trees, and other terrain features. Further, relative position information is

essential to avoid collisions with collaborators. Using multiple vehicles for this task

increases the likelihood of mission success and decreases the amount of time required

to complete the surveillance.

1.1.1.4 Summary

Enabling autonomous vehicles to share navigation and map information would greatly

extend the existing performance capabilities of autonomous vehicles in a variety of

vehicle domains. These existing capabilities are demonstrated by the current work

in the fields of collaborative navigation and collaborative mapping, presented in the

next section.

21



1.1.2 Elements of CML

CML is the combination of mapping and localization. Existing work on these two

tasks as separate tasks is presented next.

1.1.2.1 Collaboration in navigation

Collaborative navigation is performed when multiple vehicles share navigation and

sensor information in order to improve their own position estimate beyond what is

possible with a single vehicle. This section surveys existing work in improving navi-

gation through collaboration.

Ant-inspired trail-laying behaviors have been used by a team of mobile robots

tasked to navigate towards a common goal [55]. In this implementation a robot

communicates its path to collaborators upon successfully arriving at the goal via a

random walk. Sharing this information improves the navigational ability of all the

robots.

Simple collective navigation has been demonstrated in simulation using multiple

'cartographer' robots that randomly explore the environment [13]. These vehicles

possess no pose estimate, and are only capable of line-of-sight communication. When

one of these robots detects the goal, it transmits this fact to all other robots it cur-

rently observes, and then passes the data along in the same manner. A 'navigator'

robot then uses this propagated communication signal to travel to the goal by using

the cartographer robots as waypoints.

Simple relative localization between collaborators has been performed using direc-

tional beacons [50]. Vision-based cooperative localization has been performed by a

team of vehicles tasked with cooperatively trapping and moving objects [49]. Track-

ing via vision is also used for relative localization of collaborators in an autonomous

mobile cleaning system [26].

In work by Roumeliotis et al. [41,42], collaborative localization is performed us-

IN TRODUCT ION22



1.1 COLLABORATION IN MAPPING AND LOCALIZATION

ing a distributed stochastic estimation algorithm. Each vehicle maintains its own

navigation estimate, and communicates localization information only when directly

observing a collaborator.

Cooperative navigation of AUVs has been performed in work by Singh et al. [45].

Also, two AUVs have demonstrated collaborative operation using the same acoustic

beacon array [2]. An unmanned helicopter has used a vision sensor to detect collabo-

rating ground vehicles at globally known positions, and thus was able to localize itself

[56].

A related field to collaborative localization is use of multiple vehicles to construct

maps of the environment, and is explored in the next section.

1.1.2.2 Collaboration in mapping

Collaborative mapping is performed by combining sensor information from multiple

vehicles to construct a larger, more accurate map. Cooperative exploration and map-

ping with multiple robots is reported by Mataric [32] using behavior-based control [9].

Map matching is used to combine topological maps constructed by multiple vehicles

in work performed by Dedeoglu and Sukhatme [15] (Topological maps are described

in Section 1.2.2.3).

Heterogenous collaborative mapping has also been investigated, as such systems

can capitalize on specialization. One example is a mapping implementation comprised

of 'worker' robots which constantly search the environment, and a static 'database'

robot that communicates with and is visited by the worker robots [7]. The database

robot maintains a centralized, global representation of the environment.
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1.2 Single vehicle CML

Most collaborative navigation and mapping techniques have a single-vehicle naviga-

tion and mapping technique as the basis, since collaborating vehicles must be able to

operate independently in the event of loss of communication. Robust, collision-free

operation of an autonomous vehicle requires a description of the vehicular pose as

well as information about the location of objects in the vehicle's environment. Only

with knowledge of self and surroundings can a safe path of travel can be calculated.

Section 1.2.1 describes common navigation techniques underlying CML. Similarly,

Section 1.2.2 reviews the main techniques used for autonomous vehicle mapping.

The intersection of these two related fields is Concurrent Mapping and Localization

(CML), in which an autonomous vehicle builds a map of an unknown environment

while simultaneously using this map to improve its own navigation estimate. Existing

CML work can be partitioned by the mapping approaches presented in Section 1.2.2.

Feature-based CML, the subset of CML most applicable to work in this thesis, is

reviewed in greater detail in Section 1.2.3.

1.2.1 Navigation techniques used in CML

Understanding the need to improve improve techniques for autonomous vehicle nav-

igation requires an understanding of the shortcoming of current approaches to the

navigation problem. A detailed survey of localization techniques can be found in

Borenstein, Everett, and Feng [8]. This subsection reviews the primary methods

used; dead-reckoning and inertial navigation, beacon-based navigation, and map-

based navigation.
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1.2 SINGLE VEHICLE CML

1.2.1.1 Dead reckoning and inertial navigation systems

Dead reckoning is accomplished by integrating velocity or acceleration measurements

taken by the vehicle in order to determine the new vehicle position. This task is most

often performed by inertial navigation systems (INS), which operate by integrating

the acceleration of the vehicle twice in time to compute a new position estimate.

These systems use accelerometers and gyroscopes to sense linear and angular rate.

INS suffers from accuracy problems resulting from integration errors. Another inter-

nal data source for state determination on land robots is odometry, which measures

wheel rotation. This estimate is affected by wheel slippage, which can be significant

in a number of situations [8].

Dead reckoning is the most commonly used AUV navigation technique. Unfor-

tunately, the vehicle is only able to measure its velocity with respect to the water

column, not accounting for drift caused by ocean currents. This can be an especially

significant safety hazard for AUVs that operate at low speeds and in shallow water,

due to the proximity of the ocean floor. Historically, INS use in AUVs has also been

made difficult by power consumption and cost. The basic problem with reliance on

either dead reckoning or INS devices is the same - position error grows without bound

as the vehicle travels through the environment.

1.2.1.2 Beacon-based navigation

The placement of artificial beacons at known locations allow autonomous vehicles to

determine their position via triangulation. The most prevalent beacon-based naviga-

tion system is the satellite-based Global Positioning System (GPS), which provides

worldwide localization with an accuracy of meters. GPS is an excellent navigation

solution for a great number of mobile robot implementations, but is not applicable

in all cases. Specifically, GPS signals are not strong enough to be used indoors and

underwater, and in military applications GPS use can be denied by signal jamming.
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Beacon-based navigation by AUVs uses an array of acoustic transponders placed in

the environment. Sound pulses emanating from these beacons and prior knowledge

about the transponder locations are combined to calculate the AUV position. The

two primary beacon systems currently used are ultra-short baseline (USBL) and long

baseline (LBL). Both systems rely on accurate beacon deployment and positioning.

While beacon-based navigation is the system of choice for AUV applications, bea-

con deployment during covert military operations in other difficult areas (as under

the polar ice cap) can be significant handicaps. Currently GPS is crucial for truly

autonomous operation of unmanned air vehicles, as even the slightest of positional

errors can have disasterous consequences, especially during takeoff and landing.

1.2.1.3 Map-based navigation

Often it is infeasible to provide artificial beacons for navigation. Instead, map-based

navigation techniques use the natural environment and an a priori map for localiza-

tion. By comparing sensor measurements with the ground truth map, current vehicle

pose can be deduced. Thompson et al. [52] performed localization by matching vis-

ible hills and other naturally occuring terrain features on the horizon to an a priori

topological map. Cozman and Krotkov [13] also visually detect mountain peaks on

the horizon, then localize probabilistically using a known map. Cruise missiles have

successfully used terrain contour matching (TERCOM) via a radar altimeter and an

a priori map to localize their position [23].

1.2.2 Mapping techniques used in CML

Generally, autonomous vehicle mapping approaches can be grouped by how the map

is constructed and environmental information is stored. The basic techniques of

map construction elicit entirely different solution spaces, and by this criteria map-

ping approaches can be grouped into grid-based, feature-based, and topological-based
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1.2 SINGLE VEHICLE CML

approaches.

1.2.2.1 Grid-based map representation

Grid-based approaches, such as those described by Moravec [34], represent the envi-

ronment via an evenly-spaced grid. Each grid cell contains information about possible

obstacles at that location. In most cases a probability between 0 and 1 is stored in

each cell. A probability of 1 is assigned if the cell is certain to be occupied, and a

probability of 0 if it is certain to be free. A map constructed in this fashion is called

an occupancy or certainty grid. Mapping is performed by incorporating new mea-

surements of the environment into the occupancy grid, and these measurements are

incorporated by increasing or decreasing the probability values in the corresponding

grid cells. Localization is performed by a technique called map matching. A local map

consisting of recent measurements is generated and then compared to a previously

constructed global map. The best map match is found typically by correlating the

local to the global map, and from this match the new position estimate is generated.

Based on this position, the local map is then merged into the global map.

Work by Thrun et al. [53] represents the current state of the art of implementa-

tions of the grid-based map representation. This method has also been implemented

by Yamauchi et al. [57] and Salido-Tercero et al. [44]. Grid based map representa-

tions are simple to construct and maintain, and directly incorporate all measurement

data into the map. However, grid-based approaches suffer from large space and time

complexity. This is because the resolution of a grid must be great enough to capture

every important detail of the world. Performance is also highly dependent on the

quality and model of sensors used for the map update. Also, information is lost when

measurements are assigned to grid cells.
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1.2.2.2 Feature-based map representation

Feature-based approaches to mapping represent environments using a set of geomet-

ric attributes such as points, planes, and corners, and encode these landmarks in a

metrically accurate map [31]. This representation has its roots in surveillance and

target tracking [4].

1.2.2.3 Topological-based map representation

Topological-based approaches to mapping produce graph-like descriptions of environ-

ments [16]. Nodes in the graph represent 'significant places' or landmarks [28]. Work

by Chatila and Laumond [12] exemplifies this approach. Once created, the topologi-

cal model can be used for route planning or similar problem solving purposes. Arcs

connecting the nodes depict the set of actions required to move between these sig-

nificant places. For instance, in a simple indoor environment consisting entirely of

interconnected rooms, the topological map can represent each room as a node and the

actions needed to travel between rooms as arcs. Computer vision has been used to

characterize places by appearance, making localization a problem of matching known

places with the current sensor image [51]. The topological approach can produce very

compact maps. This compactness enables quick and efficient symbolic path planning,

which is easily performed by traversing the graph representation of the environment.

The major drawback to the topological approach is difficulty in robustly recognizing

significant places. Regardless of the sensor used, identification of significant places,

especially in a complex environment (e.g. an outdoor environment), is very sensitive

to point of view [27, 28]. Further, distinguishing between similar-looking significant

places is difficult, in part because no metric map is maintained.
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1.2.2.4 Summary

The three mapping approaches have many orthogonal strengths and weaknesses. All

the approaches, however, exhibit increased computational complexity when the size

of the environment to be mapped is increased. Another common difficulty with these

approaches is the need to robustly handle ambiguities in the sensor measurements.

The problem of data association is compounded in the feature and topological-based

approach, which use frequently unreliable sensor measurements for accurate identifi-

cation of features within the environment.

1.2.3 Feature-based CML

A significant challenge for mobile robotics is navigation in unknown environments

when neither the map nor vehicle position are initially known. This challenge is ad-

dressed by the techniques for Concurrent Mapping and Localization (CML). CML

approaches can be categorized by the map representations described in Section 1.2.2.

This section focuses on the subset of the field, feature-based CML, which is the rep-

resentation of choice for work presented in this thesis. Work in grid-based CML

[3, 20, 21, 54, 57] is less relevant in this context.

Feature-based approaches to CML identify stationary landmarks in the environ-

ment, then use subsequent observations of these landmarks to improve the vehicle

navigation estimate. An example of this approach is work by Deans and Hebert

[14], which uses an omnidirectional camera and odometry to perform landmark-based

CML.

Stochastic Mapping (SM) [47] (discussed in further detail in Chapter 2) provides

the theoretical foundation for the majority of feature-based CML implementations.

In Stochastic Mapping, a single state vector represents estimates of the vehicle loca-

tion and of all the features in the map. An associated covariance matrix incorporates

the uncertainties of these estimates, as well as the correlations between the estimates.
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The heart of Stochastic Mapping is an Extended Kalman Filter (EKF) [5,22], which

uses sensor measurements and a vehicle dead reckoning model to update vehicle and

feature estimates. Stochastic Mapping capitalizes on reobservation of static features

to concurrently localize the vehicle and improve feature estimates. Analysis of theo-

retical Stochastic Mapping performance is presented by Dissanayake et al. [17] and

in further detail by Newman [37].

Adding new features to the state vector produces a corresponding quadratic ex-

pansion to the system covariance matrix, and computational complexity thus becomes

problematic in large environments. Feder [19] addresses the complexity issue by main-

tains multiple local submaps in lieu of a single, more complex global map.

Another challenge inherent in Stochastic Mapping is feature association, the pro-

cess of correctly matching sensor measurements to features. Feature association tech-

niques have been successfully demonstrated in uncluttered indoor environments [6],

but remain a challenge for more geometrically complex outdoor environments.

The Stochastic Mapping approach to feature-based CML serves as the algorithmic

foundation for this thesis. Current implementations of the collaborative extensions

to CML are discussed in the next section.

1.3 Collaborative CML

This section reviews related work most similar to that presented in this thesis, the in-

tersection of the fields of autonomous vehicle collaboration and CML. One navigation

method for collaborative navigation and mapping uses robots as mobile landmarks for

their collaborators. Kuipers and Byun [29, 30] introduce this concept, whereby some

robots move while their collaborators temporarily remain stationary. This method is

extended through the use of synchronized ultrasound pulses to measure the distances

between team members and determination the relative position of the vehicles via
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triangulation [36]. This system has been implemented on very small (5 cm) robots

[24]. Another such implementation uses an exploration strategy that capitalizes on

line of sight visual observance between collaborators to determine free space in the

environment and reduce odometry error [40]. Drawbacks to this approach are that

only half of the robots can be in motion at any given time and the robots must stay

close to each other in order to remain within visual range.

An important challenge in collaborative robotics is the task of combining maps

that were independently gathered by cooperating vehicles. The first step in accom-

plishing this task is vehicle rendezvous, the process of determining the relative location

of each vehicle with respect to its collaborators. This is not trivial when vehicles have

previously been out of sensor range, out of communication, or have a poor sense of

global position. Rendezvous has proved workable in an unknown environment given

unknown starting positions using landmark-based map matching [43]. Rendezvous

has been detected visually, following which the shared maps are combined probabilis-

tically [20]. Map merging has also been demonstrated once rendezvous is complete

[25,39].

1.4 Summary

This chapter introduced and motivated the underlying techniques for collaborative

concurrent mapping and localization. Possible applications requiring improved navi-

gation and mapping performance for multiple vehicles were presented. Current work

in autonomous vehicle collaboration, navigation, and mapping was reviewed to place

the work performed in this thesis into the correct context, with focus given to the

the subset of CML that this thesis extends - the Stochastic Mapping approach to

feature-based CML.
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1.5 Contributions

This thesis makes the following contributions:

e A method for performing collaborative concurrent mapping and localization.

o A quantitative theoretical analysis of the performance gains of that collabora-

tion method.

o An analysis of collaborative concurrent mapping and localization performance

in 1-D and 2-D simulation.

1.6 Thesis organization

This thesis presents an algorithm for performing CML with multiple vehicles working

cooperatively. The remainder of it is structured as follows.

Chapter 2 reviews stochastic mapping as a theoretical foundation for performing

single-vehicle CML.

Chapter 3 extends the stochastic mapping algorithm to multiple vehicles. An

algorithm for collaborative dead-reckoning in the absence of static environmental fea-

tures is discussed. A collaborative CML algorithm is then introduced and developed.

Theoretical analysis of this algorithm generates a convergence theorem that quantifies

the performance gain from collaboration.

Chapter 4 applies the collaborative CML algorithm in a 1-D simulation, to explain

the algorithm structure and demonstrate its performance.

Chapter 5 presents 2-D simulations of both collaborative localization and collab-

orative CML with varying parameters.

Chapter 6 summarizes the main contributions of this thesis and provides sugges-

tions for future research.

32 INTRODUCTION



Chapter 2

Single Vehicle Stochastic Mapping

Most successful implementations of feature-based CML use an Extended Kalman

Filter (EKF) [5, 22] for state estimation. The class of EKF-based methods for feature-

based CML is termed stochastic mapping (SM) [35, 47].

This chapter reviews the single vehicle stochastic mapping algorithm which will

be extended to incorporate collaboration in Chapter 3. Section 2.1 presents the

representations used in the stochastic mapping process, followed by a brief overview in

Section 2.2 of the stochastic mapping algorithm itself. For a more detailed explanation

refer to one of Smith, Self, and Cheeseman's seminal papers on SM [47,48].

2.1 Models

This section presents the form of the vehicle, observation, and feature models to be

used in this thesis. To preserve simplicity for presentation purposes, these models are

restricted to two dimensions.



2.1.1 Vehicle model

The state estimate for an autonomous vehicle in this implementation is represented by

xV = [XV Yv # v]T , storing north and east coordinates in the global reference frame as

well as heading and speed. Vehicle movement uv[k] due to control input is generated

at time k with time T between successive updates, and consists of a change in heading

and a change in speed, such that

uV[k] =

0

0

T6$[k]

T6v[k]

(2.1)

and is assumed to be known

can be defined as

exactly. The general form of a vehicle dynamic model

x [k + 1] = f(xv[k], uv[k]) + wv[k] . (2.2)

This discrete time vehicle model describes the transition of the vehicle state vector

x, from time k to time k + 1 and mathematically takes into account the kinematics

and dynamics of the vehicle. The function f is a nonlinear model that receives the

current vehicle state xv[k] and control input u,[k] as inputs. The model is updated

at times t = kT for a constant period T, and can be expanded and written as

f(xv[k], uv[k]) =

x[k] + Tcos(q[k])v[k]

y[k] + Tsin(#[k])v[k]

0[k] + T6q[k]

v[k] + Tov[k]

Although this particular vehicle dynamic model is non-linear, it can be linearized

using its Jacobian evaluated at time k [33]. The Jacobian is linearized based on the

(2.3)
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vehicle state, such that

x,[k + 1] = Fv[k]xv[k] + uv[k] +w, . (2.4)

The dynamic model matrix F,[k] is the Jacobian of f with respect to the vehicle

state, and is defined as

- Tsin($[k])v[k]

Tcos(o[k])v[k]

1

0

Tcos(4[k])

Tsin(O[k])

0

1

Noise and the unmodeled components of the vehicle behavior are consolidated into

the random vector w,. This vehicle model process noise is assumed to be a stationary,

temporally uncorrelated zero mean Gaussian white noise process with covariance

E[4, wL4 =

xwV

0

0

0

0

Yw)

0

0

0

0

okw

0

0

0

0

vw

(2.6)

2.1.2 Feature model

Features are fixed, discrete, and identifiable landmarks in the environment. Repeat-

able observation of features is a core requirement for CML. These features can take

many forms, including passive features (points, planes, and corners), or active fea-

tures (artificial beacons). What constitutes a feature is entirely dependent on the

physics of the sensor used to identify it. Vision systems, for instance, may be able

to identify features based on color, whereas sonar and laser rangefinders use distance

and reflectivity to categorize features.

F v [k] - -

1

0

0

0

0

1

0

0

(2.5)
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This thesis uses, without loss of generality, the least complicated of features, sta-

tionary point landmarks. This simplification reduces challenges with feature identifi-

cation and interpretation, increasing the focus on the CML algorithm itself. A point

feature is defined by two parameters specifying its position with respect to a global

reference frame, and is observable from any angle and any distance. The feature state

estimate parameters of the itl point landmark in the environment are represented by

Xf = .: (2.7)
Yfi

The point feature is assumed to be stationary, so unlike the vehicle model, there

is no additive uncertainty term due to movement in the feature model. Therefore the

model for a point feature can be represented by

Xfi[k + Ilk] = xf,[k] . (2.8)

2.1.3 Measurement model

A measurement model is used to describe relative measurements of the environment

taken with on-board sensors. In this thesis range measurements are provided by

sonar, which operates by generating a directed sound pulse and timing the reflected

return off features in the environment. With knowledge of the speed of sound and the

pulse duration, the distance to the reflecting surface is deduced. Inexpensive sonars

are easily installed on mobile robots but present some significant challenges due to

often ambiguous and noisy measurements. Sonar pulses have a finite beam width,

producing an angular uncertainty as to the direction of the reflecting surface. Drop-

outs, another problem, occur when the physical structure of the reflecting surface is

too poor to generate a reflection capable of being detected. A multipath return occurs

when a sonar pulse reflects off multiple surfaces before being detected, thus producing
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an overly long time of flight. Lastly, when using an array of multiple sonars, crosstalk

is possible. This occurs when a sonar pulse emanating from one sonar transducer is

detected by another, producing an erroneous time of flight. These attributes of sonar

are taken into account by incorporating noise into the sonar model.

The measurement model is used to process sonar data readings in order to deter-

mine where features are in the environment. An actual sonar return

V_ [ k]
zi[k] = i (2.9)

consisting of a relative range vz,[k] and bearing z, [k] measurement is taken at time

k from the vehicle with state xv[k] to the ith feature with state xfj[k]. The model for

the production of this reading is given by

zi[k] = hi(xv[k], xf,[k]) + wi[k] , (2.10)

where hi is the observation model which describes the nonlinear coordinate trans-

formation from the global to robot-relative reference frame. Noise and unmodeled

sensor characteristics are consolidated into an observation error vector wi[k]. This

vector is a temporally uncorrelated, zero mean random process such that

Rz = E[wi[k] wi[k]'] = rw 0 , (2.11)
0 We

where R, is the observation error covariance matrix. The measurement function can

be expanded and written as

[k]) x5 [k] - xv[k]) 2 + (yf[k] - yv[k])2  (2.12)
h~xVk]x~[])= arctan ( fb.[k] -y,[] O[k] 1

x Xf[ [k]xk - X[k][) =
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Improving navigation performance in stochastic mapping relies on comparing pre-

dicted and actual measurements of features. Predicted measurements are calculated

based on the current location of the vehicle and environmental features as well as

the observation model. Therefore a predicted sonar return taken at time k from the

vehicle with state x,[k] to the i h feature with state xf, [k] has the form

ii[k] = hi(x,[k], xf,[k]) . (2.13)

2.2 Stochastic mapping

Stochastic mapping (SM), first introduced by Smith, Self and Cheeseman [48], pro-

vides a theoretical foundation of feature-based CML. The SM approach assumes that

distinctive features in the environment can be reliably extracted from sensor data.

Stochastic mapping considers CML as a variable-dimension state estimation problem,

where the state size increases or decreases as features are added to or removed from

the map. A single state vector is used to represent estimates of the vehicle location

as well as all environmental features. An associated covariance matrix contains the

uncertainties of these estimates, as well as all correlations between the vehicle and fea-

ture estimates. SM capitalizes on reobservation of stationary features to concurrently

localize the vehicle and improve feature estimates. The implementation of stochastic

mapping applied by this thesis uses the vehicle, feature, and sonar measurement mod-

els detailed in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. Assuming two stationary

features, this section presents the EKF-based algorithms that constitute SM.
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2.2.1 SM prediction step

Stochastic mapping algorithms used for CML use a single state vector that contains

both the vehicle and feature estimates, denoted by

--
x[k] 

v[k

xf [k]

x [k]

Xf,[k]

Xf 2 [k]

Xf[k]

(2.14)

A predicted estimate given the motion commands provided to the vehicle is generated

using the vehicle model described in Equations 2.4 and 2.5, producing a predicted

x[k + Ilk] with the form

xv[k + Ilk]

xf[k+l|k] =F[k]x[k]+u[k]+w[k]

Xf2[k+l|k] j
Fv[k] 0 0 x [k] UV[k]

0 0 0 xf, [k] + 0 +

0 0 0 xf2[k] 0

Fv[k]xv[k] + uv[k] + w[k] ±

Xf, [k] 1
Xf2 [k]

wV[k]

0

0

(2.15)

The feature state estimates in the prediction stage are unchanged, as the features

themselves are assumed to be stationary. Unlike the features, the vehicle is in motion,

x[k + Ilk]
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and because of the uncertainty in this motion the system noise covariance model

QV 0 0

Q = 0 0 0 (2.16)

0 0 0

adds noise to the vehicle estimate. Associated with the state estimate x[k] is an

estimated covariance matrix P[k], which has the general form

P[k + Ilk] = F[k]P[klk]FT [k] +Q . (2.17)

In its expanded form, the estimated covariance matrix

Pvv[k] Pv1[k] Pv 2 [k]

P[k] = P1v[k] Pv1 [k] PN[k] (2.18)

P 2 4[k] P 2 1 [k] P 2 2 [k]

contains the vehicle (Pv[k]) and feature (Pii[k]) covariances located on the main

diagonal. Also contained are the vehicle-feature (Pri[k]) and feature-feature (Pij[k])

cross correlations, located on the off-diagonals. Maintaining estimates of cross cor-

relations is essential for two reasons. First, information gained about one feature

can be used to improve the estimate of other correlated features. Second, the cross

correlation terms prevent the stochastic mapping algorithm from becoming overconfi-

dent, the result incorrectly assuming features are independent when they are actually

correlated [11].

At each time step a prediction is made by Equation 2.4 even if no sensor measure-

ments are taken. The prediction step, used on its own, enables the vehicle to perform

dead-reckoning.
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2.2.2 SM update step

The update step in stochastic mapping integrates measurements made of features in

the environment in order to create a map of the environment as well as improve the

vehicle's own state estimate. Sensor ranging observations measure the relative dis-

tance and orientation between the vehicle and features in the environment. Applying

Equation 2.10, a predicted measurement from the vehicle to feature 1 is

21[k + 1] = h(xv[k + lIk], x,[k]) = V21[ki ] (2.19)
- 2,[k+1]

Thus a full predicted measurement set of all features in the environment is defined

as

2[k + 1|k] = 21[k + 1k]

i 2 [k + Ilk]

h(x[k + 1|k], xf,[k]) (2.20)

h(x,[k + Ijk], xf. [k])

An algorithm is then used to associate the predicted measurements with the actual

measurement set generated by the sonar. There are various techniques for performing

this association, which is discussed further in Section 5.1. Assuming the correct

association is performed, the actual sonar return structure

z[k + 1] = (2.21)
LZf.2[k + 1]j

is organized so that each actual measurement corresponds to the matched predicted

measurement.
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The update process starts by computing the measurement residual

r[k+1] = z[k +]- 2[k + k] (2.22)

which is the difference between the predicted and actual measurements.

The residual covariance is then found

S[k + 1] = H[k + Ik]P[k + 1lk]H[k + 1lk]T + R[k + 1] , (2.23)

where R[k +1] is the measurement noise covariance calculated via Equation 2.11 and

H[k + Ifk] is the measurement Jacobian. H[k + i|k] is calculated by linearizing the

non-linear measurement function h(x[k + I Ik]). Because separate vehicle and feature

state models are maintained, the measurement function is expressed in block form by

linearizing separately based on the vehicle and feature states. The observation model

Jacobian H,[k + Ilk] with respect to the vehicle state can be written as

Hv[k +I|k] =- AL
1 xv[k+1|k]

xf [k+1k]-xv[k+1|k]

V4(xj [k+k]|-xvk+1k] )2+(fi k+1k]-y, [k+1|k] )2

yXf [k+1|kl]-y[k+1|k
L (xf, [k+1|k]-xv[k+1|k]) +(yf, [k+1|k]-y,[k+1|k]_)7

Yf5 [k+1|k]-y,[k+1|k]00
-V(xfi [k+1|k]-x,[k+1|k] )2+(y5i [k+1|k]-y,,[k+1|k] )2 ( .4

xfj [k+ 1|k] -x,[k+ I|Ik]
(xfi [k +1|Ik] - xv[k +11|k] +( [k+1|k]-y,[k+T|k])2 _

The negative in this equation emphasizes that the observation is a relative measure-

ment from the vehicle to the feature. Similarly, the Jacobian of the measurement

function with respect to the feature state is

Hf,[k+Ilk]= -h
axfi xf,[k+l|k]
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xfj [k+l|k ]-x[k+l|k]

- ,(xf 2 [k+l|k]-xv[k+llk])2 +(yif [k+1|k]-ye [k+1k] )2

xf1 [k+1|k]-xy[k+1|kj[ (xf, [k+ilk]-x,[k+l Ik]) 2+(yf [k+1+ k] -y, |k+ 2k])
2

Yfi [k+1|k ]-yv[k+1|k ]

(xf [k+1lk]-xv[k+1|k])
2+(yfi [k+lk]-yv[k+l|k])

2

The full measurement Jacobian contains both the vehicle and feature Jacobians, and

has the following form

H[k + lk]= [.[+I] fill] 2 (2.26)
-Hv[k +Ilk ] .0 Hf[k +l|k]

The residual covariance presented in Equation 2.23 is then used to calculate the

Kalman filter gain and update the covariance estimate of the vehicle poses. The

Kalman gain for the update is defined by

K[k + 1] = P[k + llk]H[k + 1]TS-1[k + 1] . (2.27)

The pose estimate is updated by adding the Kalman correction, which consists of the

measurement residual multiplied by the Kalman gain:

xV[k + Ilk + 1] = x[k + ilk] + K[k + 1]v[k + 1] . (2.28)

The state covariance matrix P[k + IIk + 1] is most safely updated using the Joseph

form covariance update [5] because the symmetric nature of P is preserved. This

update has the form

P[k+llk+1] = (I-K[k+1]H[k+1])P[k+llk](I-K[k+1]H[k + 1]) T

2.2 ST OCH AST IC M APPING 43



+K[k + 1]R[k + 1]K[k + 1]T . (2.29)

2.3 Single vehicle CML performance characteris-

tics

This section reviews theorems from work by Newman [37] that characterize the per-

formance of the single vehicle CML algorithm.

Theorem 2.1 (Newman, 1999) The determinant of any submatrix of the map co-

variance matrix P decreases monotonically as successive observations are made.

The determinant of a state covariance submatrix is an important measure of the

overall uncertainty of the state estimate, as it is directly proportional to the volume

of the error ellipse for the vehicle or feature. Theorem 2.1 states that the error for

any vehicle or feature estimate will never increase during the update step of SM.

This make sense in the context of the structure of SM, as error is added during the

prediction step and subtracted via sensor observations during the update step. The

second single vehicle SM theorem from Newman [37] that will be utilized is

Theorem 2.2 (Newman, 1999) In the limit as the number of observations in-

creases, the errors in estimated vehicle and feature locations become fully correlated.

Not only do individual vehicle and feature errors decrease as more observations are

made, they become fully correlated and features with the same structure (i.e. point

features) acquire identical errors. Intuitively, this means that the relative positions

of the vehicle and features can be known exactly. The practical consequence of this

behavior is that when the exact absolute location of any one feature is provided to the

fully correlated map, the exact absolute location of the vehicle or any other feature

is deduced.
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2.4 SUMMARY

While single vehicle CML produces full correlations between the vehicle and the

features (and thus zero relative error), the absolute error for the vehicle and each

feature does not reduce to zero. Rather, Newman asserts that

Theorem 2.3 (Newman, 1999) In the limit as the number of observations in-

creases, the lower bound on the covariance matrix of the vehicle or any single feature

is determined only by the initial vehicle covariance at the time of the observation of

the first feature.

This theorem states that in the single vehicle CML case, the absolute error for the

vehicle or single feature can never be lower than the absolute vehicle error present at

the time the first feature is initialized into the SM filter.

These theorems describe performance of single vehicle CML, and will be used to

analyze the collaborative CML case in Section 3.3.3.

2.4 Summary

The stochastic mapping algorithm serves as the foundation for the collaborative CML

algorithm presented in the next chapter. The case presented in this chapter (single

vehicle and multiple features) will be extended to multiple vehicles in the next chapter.
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Chapter 3

Extending CML to Multiple

Vehicles

This chapter constitutes the theoretical contribution of this thesis. First, in Section

3.1 the main challenges that a successful collaborative CML algorithm must over-

come are addressed. Then a collaborative localization algorithm using a stochastic

mapping framework but doing no feature mapping is presented in Section 3.2 as

an intermediate step to collaborative CML. Finally, in Section 3.3 the collaborative

CML algorithm itself is introduced, its performance properties are analyzed, and a

convergence theorem is proved.

3.1 Critical challenges

There are three main challenges that must be addressed for any successful implemen-

tation of collaborative CML on autonomous vehicles. These collaborative challenges

are in addition to problems already faced by single vehicle CML algorithms, such

as correct association of measurement data and scalability, which remain problem-

atic in collaborative CML. The first critical challenge faced by collaborative CML is



addressed in this chapter - the merging of position estimates and measurements of

collaborating vehicles into a single framework.

Second, collaborative CML requires vehicles to rendezvous with each other. Often

vehicles performing CML will do so independently, then travel to meet with collabo-

rators. Upon congregating, each vehicle will possess its own navigation estimate and

map of the environment. Long term execution of CML often results in a highly accu-

rate local map of the environment relative to the vehicle, but a poor global estimate

of position. Thus, would-be collaborators will need to compare and match local maps

in order to initialize their positions relative to one another accurately enough to start

performing CML collaboratively or to use their previous individual maps together.

Lastly, dealing with limited communication is a difficult challenge for collaborative

CML implementations. Collaboration requires sharing navigation and map informa-

tion in order to improve CML estimates. Therefore, maintenance of an accurate

position estimate of collaborators is essential. Intermittent communication between

vehicles introduces large amounts of error because of unknown motion by collabo-

rators between updates. Communication bandwidth also is an issue, especially for

underwater vehicles reliant on the slow data rates of acoustic modems. Vehicles with

a high observation rate must either communicate these measurements to collaborators

or attempt to distill the data themselves and then communicate their findings. Even

when using a feature-based CML approach, sharing estimated feature positions also

requires communicating error covariances that describe confidence in the estimates

as well as correlations with other features.

3.2 Collaborative localization

The Kalman filter structure used for performing collaborative localization in the ab-

sence of static environmental features (i.e. the need to simultaneously map the envi-
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3.2 COLLABORATIVE LOCALIZATION

ronment) provides a theoretical foundation for collaborative CML. In this section a

collaborative Kalman filter is presented that tracks the positions of multiple vehicles

and incorporates the measurements of the others. This uses the single vehicle CML

equations presented in Section 2.2.1 and 2.2.2, and is shown assuming three collab-

orating vehicles. This non-mapping subset of CML is presented here to make clear

the structural change made to support collaborative CML.

3.2.1 Prediction step

The state for the centralized filter contains the estimated states of the three collabo-

rating vehicles and is represented by

XA
xv

xV x , (3.1)

XC
xV

where x is the state estimate for vehicle N. The system model is constructed by

extending the vehicle model described in Equation 2.4 and Equation 2.5, and has the

form

x A[k + 1lk]

XV= xB[k + 1Ik]

xC[k + Ilk]

FV[k] 0 0 xv[k] Uw Af

= 0 Fj[k] 0 xB[k] + uB + w) . (3.2)

0 0 Fc[k] xc[k] uw Wc

Each of the FN matrices describes the motion for the vehicle N. Note that because

the motion of each vehicle is not affected by any other vehicles, the initial system
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matrices are diagonal, reflecting no cross-correlations. The system noise covariance

model is also diagonal:

QAA

Q 0

0

0

QBB

0

0
0 .

Q C
(3.3)

The covariance matrix P contains the error estimates for the individual vehicle poses,

denoted by Pi for the ith vehicle, as well as the correlation estimates between vehicle

estimates, each of which is termed P' for the correlation between the i1' and j"
vehicles. Before any information sharing P is represented by

p^^[kAk]

P[k +Ilk]= 0

0

0

pBB[klk]

0

(3.4)

0

Pcc[klk]

The covariance prediction equation for generating P[klk] has

Equation 2.17, and can be written as

the general form of

FA[k]PAA[klk]FA[k]T + QAA

P[k +1k]= 0

[ 0

0

FB[k]PBB[klk]FB[k] T + QBB

0

0

0

F [k]Pcc[klk]F [k]T + QcJ
(3.5)
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At each time step this prediction step occurs, regardless of whether any sensor mea-

surements are made of collaborating vehicles. Thus, in the worst case (without any

sensor measurements and communication), dead reckoning for each vehicle is main-

tained, and state and covariance matrices will continue to be diagonal.

3.2.2 Update Step

Collaborative localization is performed by taking direct sensor measurements of col-

laborating vehicles to determine their relative location. The sensor model for a range

measurement of one vehicle as seen by another generates a prediction based on the

estimated pose of both vehicles. The general sensor model is defined in Section 2.1.3

and, in the collaborative localization case, a measurement of vehicle B as seen by

vehicle A is produced by

AXA B + A [rZ A[k+l]1ZA[k +1] = h V[k+llk],xV[k+lk])wBs B PAk1

where x is the state estimate of vehicle i and wA is the noise associated with the

sensor measurement zA[k+1] from vehicle A of vehicle B. The noise process associated

with measurement zA[k + 1] is zero mean and temporally uncorrelated, and has an

measurement error covariance matrix defined by

RA[k + 1] = E w Aw .T (3.6)

Each measurement is then used to improve the system state and covariance. As in the

single vehicle CML case, the update process starts with computing the measurement

residual

r [k + 1] = zA[k + 1] - 2A[k + Ilk] ,7
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which is the difference between the predicted and actual measurements. The predicted

measurement of the difference in pose between vehicle A and vehicle B is generated

by using the observation model and the current estimated state

B+Ilk] = hB(x,[k + lk])- (3.8)

The observation model is linearized applying Equations 2.25 and 2.26. The resulting

observation Jacobian HA[k + 1k] is then used in computing the residual covariance

S[k + 1] = HA[k + ljk]P[k + l|k]H A[k + 1lk]T + RB[k + 1]

x

-H A[k+ Ilk] H B[k + lk] 0

p^^[k+ Ilk] 0 0 H [k +1|k]

0 pBB[k + lk] 0 HB[k + 1lk] + RA[k + 1]
0 0 Pcc[k + Ilk] 0

(3.9)

= H [k + Ilk] PA[ k + 1 k]H A [k + Ilk]

+ Hv[k + l|k]P BB[k + 1lk]H [k + Ilk] + RB[k + 1]. (3.10)

The residual covariance is then used to calculate the Kalman filter gain and update

the covariance estimate of the vehicle poses. Applying the Kalman gain update from

Equation 2.27,

K[k + 1] = [KA[k + 1]

K B[k + 1]

Kc[k + 1]I
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3.2 COLLABORATIVE LOCALIZATION 53

pAA[k + Ilk]

0

0

P

=I
CC0 -H [k + Ilk]

BB[k +Ilk] 0 H[k +l|k] S-1 [k +1]

0 Pcc[k+1|lk] JL 0

-PAA[k + 1lk]HA[k + 1lk]S-l[k + 1]
pBB[k + llk]Hg[k + lk]S- 1 [k + 1] . (3.1

0

1)

Note that no Kalman gain is acquired for vehicle C due to the observation of vehicle B

by vehicle A. The pose estimate is updated by adding the Kalman correction, which

consists of the measurement residual multiplied by the Kalman gain, as follows

xV[k + Ilk + 1] = xv[k + Ilk] + K[k + 1]vA [k + 1]. (3.12)

The state covariance matrix P[k +1k +1] is updated using Equation 2.29, producing

a covariance update defined by

P[k + l|k + 1] = (I - K[k + 1]H A[k + 1])P[k + Ilk](I - K[k + 1]H A[k + 1])

+RB[k + 1]K[k + 1]RB[k + 1] (3.13)

Expanding and substituting using Equation 2.27, the covariance update becomes

P[k + Ilk + 1] = P[k + Ilk]

-(P[k + 1|k]H A[k + l|k]TS-l [k + 1])(S[k + 1])(P[k + 1lk]H A[k + l|k]TS-l[k + 1])T

= P[k + Ilk] - P[k + 1lk]H A[k + 1|k]TS- 1 [k + 1]H A[k + 1lk]P[k + ilk]

pAA - PAAH ATS-HAPAA

pBB HBTS-1 HAPAA

0

PAAHAT S-1HBPBB
V V

PBB - PBBHBTS--H BpBB
V V

0

(3.14)

(3.15)

0

0

Pcc
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The important conclusion from these calculations is that only the estimates from

vehicle A and vehicle B are updated. The state estimate and covariance for vehicle C

remain unchanged, and the estimate for vehicle C remains independent of the other

vehicles. Once vehicle C is observed or shares its own measurements of the collabo-

rators, intervehicle cross-correlations with vehicle C (currently zero) will result.

The general collaborative localization algorithm presented in Section 3.2 was

demonstrated by Roumeliotis et al. [41] to perform collective localization with three

vehicles. This algorithm serves as a degenerate case of the collaborative CML algo-

rithm (presented in the next section) when no features are present.

3.3 Collaborative CML

This implementation of collaborative CML extends the single vehicle stochastic map-

ping algorithm to multiple vehicles employing the centralized Kalman filter structure

used for collaborative localization described in Section 3.2.

3.3.1 Collaborative CML prediction step

In the collaborative CML case, as in the collaborative localization algorithm, all of

the collaborating vehicle state estimates are combined into a single state vector

xv [k]

x x[k]
xV[k] = , (3.16)

X N[k]

where x is the vehicle state estimate for vehicle i.

As in single vehicle stochastic mapping, the feature state estimate of the jth point

landmark in the environment at time step k is represented by the position estimate
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xfj [k], generating a combined feature estimate for this environment of

Xf [k] =

Xf,[k]

xf2[k

xf3 [k]

Xf.[k]

(3.17)

In stochastic mapping, a single combined state

and feature estimates, defined as

[ xv[k]

L xf [k] j

estimate contains all of the vehicle

x [k]

x [k]

x [k]

Xf [k]

Xf 2[k]

Xf5[k]

(3.18)

The dynamic vehicle model used has the same general form as Equation 2.4 and Equa-

tion 2.5 and is functionally identical to the collaborative localization vehicle model

described by Equation 3.2. Only the vehicle states are updated in the prediction step

as the features are assumed to be stationary. Following Equation 2.4, the dynamic
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model is

x[k + 11k] =

+±

x^[k + k]

xvBk + lk]

xv[k + 11k]

Xf1 [k +11k]

Xf[k + 11k]

Xf,[k + Ilk]

F [k]

0

0

0

0

0

AuV

BuV

UN
u N

0

0

0

0

Fv[k]

0

0

0

0

±

0

0

0

0

0

0

0

I

0

0

F [k]

0

0

0

xf[k]

x [k]

xv[k]
xv [k]
Xf, [k]

Xf 2 [k]

x1 .[k]_

0

I0

0

0

0

0

A
wv

B

N

0

0

0

(3.19)
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3.3 COLLABORATIVE CML

The system noise covariance model Q is diagonal and adds noise only to the vehicle

states. It has the form

QA

0

0

0

0

0

0

QB

0

0

0

0

0

0

0

o QN

0 0

0 0

0 0

. 0

00

(3.20)

The covariance prediction equation has the same general form as that used in single

vehicle CML Equation 2.17 and collaborative localization Equation 3.5,

P[k + Ilk] = F[k]P[klk]F T[k] + Q , (3.21)

and updates an associated covariance matrix P[k + Ilk] that contains all of the error

information and correlations present in the x[k + lk] state estimate. The error

associated with each position estimate in the state estimate vector is stored as a

covariance estimate P' and represents the covariance between the Zth and j1 h elements

(superscripted letters are used for vehicles and numbers for features). Thus vehicle-

vehicle, feature-vehicle, and feature-feature correlation estimates are maintained. The
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general collaborative CML covariance matrix is

PAA

PBA

PNA

plA

P2A

PnA

PAB

pBB

pNB

plB

p2B

PnB

... PAN

pBN

... pNN

... pIN

... p2N

... pnN

pAl

pB1

pNl

P 11

P 2 1

PnI

pA2

pB2

pN2

P 12

p 2 2

pn
2

... pAn

pBn

... pNn

... PIn

... p 2 n

... Pnn

(3.22)

Before any observations are made, no static features are present in the state estimate

and there are no correlations between collaborating vehicles. Therefore P[k] initially

is a diagonal matrix equal to Equation 3.4 with no cross-correlation terms between

vehicles and no features estimated.

3.3.2 Collaborative CML update step

Each vehicle produces a set of range measurements of static features in the envi-

ronment, as well as measurements of collaborating vehicles within observation range.

Because of occlusion and limited sensor range, the measurement set is usually a subset

of all of the features and vehicles currently contained in the state estimate. Assuming

observations are made of all collaborating vehicles and static features, the complete
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set of measurements produced by vehicle A at time step k+1 has the following form

zA[k + 1] =

B [k +

z A[k +

N [k +

z [k +

1]

1]

1]

1]

1]

zn[k+1]

(3.23)

where zA[k + 1] corresponds to the sensor measurement of the itI element (vehicle or

feature) as observed by vehicle A. The corresponding predicted measurement set for

vehicle A is

iA [k + l|k] =

zi[k + ljk ]

z 4[k + 1|k]

B[k + 1k]

zA [k + 1|k]

z'[k + lk]

1 [k + Ilk]

h(xA [k

h(x A [k

h(xA[k

h(xA [k

h(x A[k

h(xA[k

+

+±

+

+

+

+±

1|k], xB[k + Ilk])

1Ik], xc[k + Ilk])

Ilk], x [[k + ilk])

ijk],xf[k + Ilk])

llk],xf2[k + Ilk])

lIk], xf3 [k + Ilk])

(3.24)

h(xA[k + 1lk],xfn[k + ilk])
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With collaboration, the sensor measurements taken by all collaborating vehicles are

consolidated into a single measurement vector

zA[k + 1]

z[k + 1] [k + 1 (3.25)

zN[k + 1]

where z2 [k + 1] is the set of all measurements for vehicle i. As an example, given

an implementation of two vehicles and three features, the complete measurement set

would take the form

zj[k±+1]
ZB [k + 1]
zj[k + 1]

z A[k + 1]

z[k + 1] = [k±1] (3.26)
zA[k + 1]

z B[k + 1]

z2 [k + 1]

Z3 [k + 1]

As expected, the observation Jacobian H for a full set of sensor measurements has

much the same form as the collaborative observation Jacobian presented in Equation

3.10. Sensor range measurements are treated identically for both static features and

collaborating vehicles. The observation Jacobian for the two vehicle, three static
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feature measurement set presented in Equation 3.26 is

H[k + ilk] =

-HA[k +

0

-Hv [k +

0

-H [k +

-Hv [k +

HA[k + I

0

0

0

Ik]

1|k]

ilk]

ilk]

|k]

HV[k + ilk]

0

0

0

-HB[k + ilk]

-HB[k +1Ik]

-HB[k +1|k]

-HB[k +1lk]

0

HA [k + ilk]

0

0

0

HB [k + 1|k]

0

0

0

0

HA[k + ilk]

0

0

0

HB[k + Ilk]

0

0

0

0

HA[k + ilk]

0

0

0

H± [k + |k]

(3.27)

Subsequent calculation of the residual and Kalman gain have the same form as the

single-vehicle CML case presented in Section 2.2.2, and are repeated without further

explanation:

r[k+1] = z[k+1]- Z[k+1|k],

S[k + 1] = H[k + llk]P[k + ljk]H[k + llk] +R[k+1],

K[k + 1] = P[k + l1k]H[k + 1]TS1[k + 1] ,

xv[k + Ilk + 1] = x[k + Ilk] + K[k + 1]v[k + 1],

(3.28)

(3.29)

(3.30)

(3.31)

P[k + l|k + 1] = (I - K[k + 1]H[k + 1])P[k + lk](I - K[k + 1]H[k + 1])

+K[k + 1]R[k + 1]K[k + I]T . (3.32)

The key structural elements to the collaborative extension to single-vehicle CML are

expansion of the state estimate vector and associated covariance matrix to incorpo-

rate more than one vehicle, combining measurements from multiple vehicles into a

single measurement vector, and constructing the measurement Jacobian to reflect the
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different observation sources and targets.

3.3.3 Collaborative CML performance analysis

In this section proofs are provided for the following results that characterize the

performance of the collaborative CML algorithm.

1. In the limit as the number of observations increases, if there are features ob-

served by all vehicles, or each vehicle directly observes its collaborators, all of

the vehicle and feature estimates become completely correlated with each other.

2. In the limit as the number of observations increases, the covariance of each

vehicle and feature estimate becomes identical and converges to a single lower

covariance bound that is a function of the uncertainty of initial location esti-

mates of the vehicles when the first feature is observed.

These results form the collaborative CML extension of single vehicle SM error conver-

gence properties, and define the best-case performance of collaborative CML. These

performance characteristics are validated via simulation in Chapter 4 and 5. The

theorems derived by Newman [37] and briefly reviewed in Section 2.3 serve the theo-

retical basis for analyzing the performance of the collaborative CML algorithm, and

will be used to prove the above results.

The full correlation property of single vehicle CML asserted in Theorem 2.2 scales

to the collaborative CML case, as the second vehicle is, in essence, a moving feature

in the SM structure.

However, the single vehicle CML lower performance bound does not apply to the

collaborative CML case. Multiple vehicles performing CML together can attain a

lower absolute error than the single vehicle initial covariance which bounds the sin-

gle vehicle CML case. The collaborative lower bound is quantified in the following

theorem:
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Theorem 3.1 In the collaborative CML case, in the limit as the number of obser-

vations increases, the lower bound on the covariance matrix of any vehicle or any

single feature equal to the inverse of the sum the initial collaborating vehicle covari-

ance inverses at the time of the observation of the first feature or observation of a

collaborating vehicle.

Analysis of the limiting behavior of the state covariance matrix in the collaborative

case is performed by using the information form of the Kalman filter [33]. The

following proof starts with the two vehicle case, then uses induction to generalize the

result for any number of collaborating vehicles.

For observations of vehicle B by vehicle A during collaborative localization, the

state covariance update equation can be written as

P- ±[k + Ilk + 1] = P-[k + Ilk] + H A[k + lk] T(R A[k + 1])-'H A[k + 11k] . (3.33)

Using the form for the observation model HA presented by Equation 3.6, the state

covariance update equation reduces to

-H A[k]P-'[k + Ilk + 1] = P-[k + Ilk] + [ ](RA[k + 1])-[ -HA[k] HB[k] ]
H B[k] B V

(3.34)

P- is a measure of the amount of information present in the system [33]. During

the prediction step information is subtracted from the system via system noise, and

then during the update step information is added back into the system via sensor

measurements. Assuming there is zero system noise added during the prediction

step, Q[k + 1] = 0, then there is zero information lost and

P-'[k + Ilk] = P-[klk]. (3.35)
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Applying Equations 3.33 and 3.35 recursively for k observations of vehicle B by vehicle

A produces

P~1[kk] = [PAA 1 [o] 0

0 pBB-1[] J

k H[k]T (RA[k + 1])- 1 HA[k] -kH [k]T (RA[k + 1])~ 1 HB[k]

-kHB[k] T (RA[k + 1])- 1 HA[k] kHB[k] (RA[k + 1])- 1 HB[k] I (3.36)

It is assumed that the size of the vehicle covariances pAA and PB" are identical. Note

that the values of PAA[0] and pBB[0] need not be the same, and they are uncorrelated.

Applying the common 2 x 2 matrix inversion formula

a

C

b

d
,det(A)=a*d-b* c =- A-= -

1
det(A) [d

-c

-b

a

to Equation 3.36 produces a determinant of

det(P-1 [kjk]) = kPAA- [0]PBB--[0]

x }I~ + H[k] (R )-1Hv[k]PBB pAA[O]H[k] (R^)-1HB[k]

The inverse of the determinant is

1 - 1pAA[1 pB0
det(P B0] +) AAk oB

X[ j!I+ HA [k]T (R A)-'H A[k]pBB~o pAA[0]HB[k]T (R A)-1 HB[k]

(3.37)

. (3.38)

.(3.39)

Thus the resulting covariance for vehicle A is

pAA[kk] = 1pAA[ 0 ] (3.40)
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X[ I + H [k] T (RA)-HA[k]PBB[] + pAA [O]H [k] T (R)-H[k] (3.41)

+PAA[0]PBB[0] } + HA[k]T (RA)-'HA[k]PBB[0]

+PA B T A B IB _A -H k (3.42)
+^[0]HB [ (B-'Hv[k] HB Tk

If an infinite number of observations of vehicle B are taken by vehicle A, k - 00 and

the resulting vehicle covariance for vehicle A converges to

limk, PAA[k kl = PAA[0]PBB[O]

xHj[k]T (RA)-1HA[k]PBB[0] + PAA[o]HB[k] T (R A)-H B[k]

x~[k]T (R A)-'H B[k]

= PAA[0]PBB[O]

x [k] (RA)-'HA[k]pBB[0](HB[k]T(RA)-1HB[k])- + pAA[o] . (3.43)

For simplicity assume similar vehicle models. The relative nature of making observa-

tions leads to the assumption of H A[k] = -HB[k] and simplifying,

liM PAA[kik] = lim pBB[klk] pAA[ 0 ]pBB[0 ] AA pBB[o] (3.44)
k-*oo k-*oo [PAO I

This result is the lower performance bound for collaborative CML with two vehicles.

Note that the vehicle covariances for both vehicles becomes fully correlated and thus

identical, supporting Theorem 2.2. A simpler, more intuitive conceptual result is

found by taking the inverse of Equation 3.44, producing a result of

lim p [klk] = liM pBB-1 pAA~1 [ BB-1[0] .(3.45)
k-*oo k[oo

Further, Equation 3.45 makes sense in the context of conservation of information.

In the general case, P- 1 represents the amount of information present in the system
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[33]. The total amount of information in the system can never decrease, but can

stay constant when no noise is added to the system. The sum of information present

initially in the system is equal to the inverse of the sum of initial uncorrelated vehicle

position errors, while the amount of information present after infinite observations

are made is encapsulated in a single vehicle position covariance.

It is also important to note that the lower performance bound for collaborative

CML is not dependent on direct observation of one vehicle by another. While direct

observation improves the rate of covariance convergence, simple observation by both

vehicles of a common feature is all that is required for convergence.

Equation 3.45 scales easily for collaboration with more than two vehicles. Assume

that at time t ~ oo a third vehicle C, with a nonzero initial covariance uncorrelated

with vehicle A and vehicle B, becomes a collaborator. Thus the lower performance

bound becomes

PAA- t] - PBB~1 t] = pAA-1 [0] pBB-1 [0] (3.46)

Since vehicles A and B are fully correlated at t, pAA' [t] captures all of the informa-

tion present in vehicle PBB [t]. Thus

lim pAA' [klk] = lim PBB-1 [kk] = lim PCC-1[kk]
k-+oo k-+oc k-+oo

- pAA [t] + PCC- 1 [t] = pAA-1 [] + pBB [0] + pCC Bt] BC(3.47)

In the n vehicle case, the lower performance bound becomes

lim pAAl [klk] = lim pBB-' [kk] =... = lim PNN-'[kk]
k-+oc k-4oo k-*oo

= pAA [iA] + pBB- '[B] + ... + pNN-1 [iN] (3.48)
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where in represents the initial time at which the n" vehicle started collaborating,

assuming that each vehicle covariance is initially uncorrelated with its collaborators.

In the case of homogeneous collaborating vehicles, each with identical, initially un-

correlated error estimates, such that

PAA[O] = pBB[O] pNN[O] (349)

a relationship can be found between the final map covariance and the number of

vehicles required to achieve this performance bound, defined by,

lim pfina l[kk] = pAA [0] + pBB-1 [0] pNN-1
k-+oo

= nPNN-1[0] . (3.50)

Taking the determinant of both sides and solving for n produces a result of

det(Pdesired1) ,(3.51)

det(P NN-1 []

where pdesied is the desired final map error. This result is very useful for mission

planning as it allows determination of how many vehicles are required to construct a

map to a desired accuracy.

3.4 Summary

This is the first formulation of CML (that is, mapping as well as localization) for

multiple vehicles and quantifies the benefits collaboration provides.

This chapter presented the theoretical framework for extending stochastic map-

ping to multiple vehicles. First, the challenges inherent in performing collaborative

CML were discussed. Second, an algorithm for performing collaborative localization
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was presented as an intermediate step to collaboration in the presence of environmen-

tal features. The research program from which this thesis reports results was focused

on the full CML problem, which includes feature mapping. As a result it did not

derive what is herein called collaborative localization, except for elucidation purposes

while writing this thesis. At that point, it was observed that the formulation for the

non-mapping case had been developed separately [41]. Third, this chapter introduced

a theoretical framework for a collaborative full CML algorithm. Lastly, a convergence

theorem central to the cooperative CML problem was proved for the first time. This

theorem quantifies the performance gain from collaboration, enabling determination

of the number of cooperating vehicles required to accomplish a task.
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Chapter 4

1-D Collaborative CML Simulation

Results

This chapter demonstrates the fundamental principles of the Collaborative CML algo-

rithm in the simplest environment possible - a 1-D simulation. Quantitative improve-

ment over single vehicle CML is shown. In this implementation two vehicles move

along a line, observing each other as well as stationary point features also located

along the line.

There are two important reasons for the inclusion of the 1-D case into this thesis.

First, the observation model H that encapsulates the heart of the collaborative ex-

tension to CML is linear, and becomes exceptionally easy to visualize and understand

in the 1-D case. Second, simulation results in the 1-D case are not subject to EKF

linearization as in the 2-D case. Thus the 1-D convergence behavior to the theoretical

lower covariance bound presented in Section 3.3.3 is more obvious.



1-D COLLABORATIVE CML SIMULATION RESULTS

4.1 1-D algorithm structure

The state estimate for a mobile robot in the 1-D simulation is represented by the

position along the world line x, = [xj]. Note that only the position is estimated;

velocity is not stored in the state estimate. Vehicle control input u consists of a

change in position, u = [Tox], where T is the time between updates. The vehicle

model is

xv[k + 1] = f (x[k], u[k]) + Wr. (4.1)

The corresponding vehicle dynamic model update is defined as

xv[k+1] = Fv[k]xv[k]+uv[k]+wv[k]

= x [k] + Tox . (4.2)

The vehicle model process noise Wr provides noise in the robot motion, and is assumed

to be a stationary zero mean Gaussian white noise process with covariance x,. The

model used for both vehicles in the simulation is identical. It is assumed that both

vehicles observe the same features and each other at every time step.

The collaborative state vector combines the estimate from two vehicles and four

features, and is defined as

XA[k]

XB[k]

x[k] Xf,[k] (4.3)
Xf[k] Xf2[k]

Xfj[k]

. xf,[k]
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The measurement model produces a set of noisy sonar range measurements. In the

collaborative case, each vehicle directly observes the other. This extra measurement

is also included by the measurement model, which for vehicle A is given by

ZA[k] = H(xA[k], xj[k]) + w[k] =

ZA[k]

r A [k]

r A [k]

-3 r[k]J

(4.4)

where r corresponds to the range measurement of vehicle B as observed by vehicle

and B and rzf[k] is the range to the ith feature. The noise in the sonar observation

is modeled by w[k], which is assumed to be a stationary zero mean Gaussian white

noise process with covariance x,.

The combined measurement vector for vehicle A in the collaborating case is

z[k] = [
_ ZB [k I

rZA [k]

rzA[k]

rzA[k]

Z [k]

ZA[k]

Z [k]

Z [k]

rZ [k]

rZB [k]

-rZB [k]

(4.5)

Each sonar measurement is a simple estimate of the difference between the x position

of the robot and the feature being observed. For instance, z A^[k] = xf1 [k] -x [k]. Thus
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the observation model, H, for a full set of sensor measurements in 1-D implementation

is defined as

Thus the complete expanded

-1 1 0 0

-1 0 1 0

-1 0 0 1

-1 0 0 0

-1 0 0 0

1 -1 0 0

0 -1 1 0

0 -1 0 1

0 -1 0 0

0 -1 0 0

observation model

0

0

0

1

0

0

0

0

1

0

for

0

0

0

0

1

0

0

0

0

1

the

(4.6)

1-D case is defined by

z A [
z[k] 

B k

VZA[k]

VZA[k]

VZA[k]

VzA k]

ZB [k]

Vi [k]

vZ2[k]

VZA[k]

VZ4A k]

-

-1

-1

0

0

0

1

0

0

0

0

-1

-1

x^[k]

xV[k]

Xf[k]

Xf2[k]

xf 3 [k]

Xf 4 [k]

+ w[k] . (4.7)

The error associated with each position estimate in the state estimate vector is stored

as a covariance estimate P'j[k] = ax and represents the covariance between the ith
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and jth feature. The combined covariance matrix has the form

PAA[k]

PBA [k]

pA[k]

P 2A [k]

P3 A [k]

P 4A[k]

PAB[k] pAl [k] pA2[k] pA3[k]

pBB[k] pBl[k] pB2[k] pB3 [k

plB~k P"[k p12[k p13[k

p 2B[k] p 21[k] p 22[k] p 23[k]

P 3B[k] p 31[k] p 32[k] p 33[k]

P 4B[k] P 41 [k] p 4 2[k] p 43[k]

pA4[k]

pB 4[k]

p14 [k]

P 24[k]

p 34[k]

p44[k]

(4.8)

4.1.1 Simulation parameters and assumptions

Both vehicles and all four features present in the 1-D simulation are initialized into

the state estimate at the start of the simulation, and every sensor measurement is

associated with the correct feature. Moreover, there is no sensor occlusion as each

feature is observed at every time step. Therefore, no data association techniques

attempting to match sonar returns with features are required. Vehicle motion in the

simulation consists of vehicle A traveling in the positive x direction, and vehicle B

traveling in the negative x direction, crossing paths at roughly the center of the world

line. Table 4.1 summarizes the global parameters that are consistent for all three

scenarios presented in Section 4.2.

Table 4.1: 1-D CCML simulation global parameters
number of vehicles 2
number of features 4
sampling period T 1 sec.
range measurement std. dev. x,, 0.4 m
feature probability of detection 1.0
vehicle speed u 0.2 m/s
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4.2 1-D Results

This section presents results from three different scenarios. In the first scenario, the

vehicles are given initial uncertainty and zero process noise, demonstrating conver-

gence to the theoretical lower performance bound. In the second scenario, there is no

initial vehicle uncertainty, but process noise is added at every time step. Finally, the

third scenario demonstrates performance given both process noise and initial vehicle

uncertainty.

4.2.1 1-D scenario #1

In this scenario, there is no process noise added as each vehicle moves. However, each

vehicle has an initial position uncertainty, as do all of the features. As a result of

the zero additive process noise, dead reckoning error stays constant as no informa-

tion is lost due to movement. Tables 4.1 and 4.2 summarize the parameters used in

this scenario. The initial starting location of both vehicles as well as static feature

positions is shown by Figure 4-1, with the 3a- (99% highest confidence region) error

bound ellipse around each vehicle and feature indicating the initial position uncer-

tainty. Note that the circular shape of the error bound is only for visualization - all

estimates are 1-D. Figures 4-4 and 4-5 demonstrate the convergence property of the

theoretical lower performance bound presented in Section 3.3.3. Note that the single

vehicle CML performance also demonstrates convergence toward an error less than

the initial error, albeit less than the collaborative case. The single vehicle CML con-

vergence is the result of additional position information provided by the uncorrelated

initial estimates of the four static features.

Table 4.2: 1-D CCML simulation scenario #1 parameters
speed process noise std. dev. x, 0.0 m/s
initial vehicle position uncertainty std. dev. 0.3 m
initial feature position uncertainty std. dev. 0.4 m
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1-D Simulation Final Position
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gence to the theoretical lower performance bound
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4.2.2 1-D scenario #2

In this scenario, each vehicle starts with no initial position uncertainty. However,

as each vehicle moves process noise is added. This scenario demonstrates how CML

bounds error growth, as well as the performance improvement of collaborative CML

over single vehicle CML. Tables 4.1 and 4.3 summarize the parameters used for this

scenario.

Table 4.3: 1-D CCML simulation scenario #2 parameters
speed process noise std. dev. x, 0.15 m/s I
initial vehicle position uncertainty std. dev. 0.0 m
initial feature position uncertainty std. dev. 0.4 m
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Figure 4-6: 1-D scenario #2 initial position
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Figure 4-8: 1-D scenario #2 vehicle position versus time
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Figure 4-9: 1-D scenario #2 vehicle A position error analysis
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Figure 4-10: 1-D scenario #2 vehicle B position error analysis
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4.2.3 1-D scenario #3

The final scenario is a combination of scenarios #1 and #2. Each vehicle starts out

with an initial position uncertainty, and process noise is added in every time step.

This scenario best reflects real world implementations. Tables 4.1 and 4.4 summarize

the parameters used for this scenario.

Table 4.4: 1-D CCML simulation scenario #3 parameters
speed process noise std. dev. x, 0.15 m/s
initial vehicle position uncertainty std. dev. 0.3 m
initial feature position uncertainty std. dev. 0.4 m
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Figure 4-11: 1-D scenario #3 initial position
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Figure 4-15: 1-D scenario #3 vehicle B position error analysis
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4.3 Summary

This chapter presented a 1-D application of the collaborative CML algorithm pre-

sented in Chapter 3. This 1-D version provides a simple, easy to understand version

of the collaborative extension to stochastic mapping. This extension is a simple one,

adding a second vehicle to the state estimate vector and adapting the observation

model to incorporate measurements from multiple vehicles. The 1-D simulation re-

sults demonstrate improved performance over single vehicle CML, and validates the

theoretical lower error bound for collaboration.



Chapter 5

2-D Collaborative CML Simulation

Results

This chapter presents results from 2-D simulations of the collaborative localization

and collaborative CML algorithms presented in Chapter 3.

5.1 Simulation assumptions

A number of assumptions are made in the simulations demonstrated in this chapter.

As in the 1-D case, both vehicles and features are modeled as points. Importantly,

collaborating vehicles communicate motion commands and all sensor measurements

at every time step. Thus the centralized collaborative CML filter has access to the

identical information as the single vehicle CML filter.

In order to apply the collaborative algorithms in real world scenarios, features

must be reliably extracted from the environment. A data association strategy is

utilized using sonar as a means observing collaborating vehicles and environmental

features. This strategy attempts to assign measurements to the features from which

they originate, generating a correct observation model h. A delayed nearest-neighbor



approach [4] is used to identify features. Clusters of similar, sequential measure-

ments are saved. When the cluster contains enough measurements, it is initialized

as a feature into the state vector. Once a feature is represented in the state vec-

tor, all subsequent measurements are compared to the feature estimate and tested

for association via a gated nearest-neighbor comparison. A sonar simulator in the

2-D simulation generates a set of noisy 'actual' measurements to be associated. No

dropouts or spurious measurements are included. Note, however, that collaborating

vehicles communicate their own position information and thus are initialized into the

collaborative state vector a priori.

5.2 2-D Collaborative Localization Results

In this simulation, two vehicles simultaneously travel circuitous paths in the absence

of static features. The simulation results from three different scenarios are presented.

The scenario sequence mirrors the 1-D CCML simulation structure presented in Sec-

tion 4.2. In the first scenario, the vehicles are given an initial uncertainty and zero

process noise, demonstrating convergence to a theoretical lower performance bound.

In the second scenario, there is no initial vehicle uncertainty, but process noise is

added at every time step. Finally, the third scenario demonstrates performance given

both process noise and initial vehicle uncertainty.

Table 5.1: 2-D Collaborative Localization simulation global parameters
number of vehicles 2
sampling period T 0.2 sec.
range measurement std. dev. x, 0.2 m
bearing measurement std. dev. #2 10 deg
vehicle cruise speed u 0.5 m/s

2-D COLL ABORATIVE CML SIMUL ATION RESULTS86



5.2 2-D COLLABORATIVE LOCALIZATION RESULTS

5.2.1 2-D CL scenario #1

In this scenario, there is no process noise added as each vehicle moves. However,

each vehicle has an initial position uncertainty. Tables 5.1 and 5.2 summarize the

parameters used for this scenario. The initial starting location of both vehicles is

shown by Figure 5-1, with the 3a- (99% highest confidence region) error bound ellipse

around each vehicle indicating the initial position uncertainty. Figure 5-2 shows the

final estimated position and path of each vehicle after 300 seconds of travel. As is to be

expected with no process noise, there is no difference between the true and estimated

position. In the collaborative localization portion of Figure 5-2 the final set of direct

sensor measurements are also shown. A direct comparison between dead-reckoning

and collaborative localization position error is made in Figure 5-3. Figures 5-4 and

5-5 show plots of the position and heading errors of the vehicles versus time, along

with 3a- bounds. Position error is presented in determinant form in Figures 5-6 and

5-7. Due to the zero additive process noise, dead reckoning error will stay constant

as no information is lost from movement. This plot also clearly shows the decrease

in error uncertainty to the theoretical lower bound predicted by Equation 3.48. The

extra information provided by the initially uncorrelated position of the collaborating

vehicle produces a reduction in position uncertainty as the collaborating vehicle is

directly observed.

Table 5.2: 2-D CL simulation scenario #1 parameters
x position process noise std. dev. 0.0 m/s
y position process noise std. dev. 0.0 m/s
heading process noise std. dev. 0.0 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. 0.2 m
initial vehicle y position uncertainty std. dev. 0.2 m
initial heading position uncertainty std. dev. 0.0 deg
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Figure 5-1: 2-D CL scenario #1 : vehicle starting position
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Figure 5-6: 2-D CL scenario #1 : vehicle A error
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log[ x,y Error Determinant for Vehicle B]
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Figure 5-7: 2-D CL scenario #1 : vehicle B error determinant

5.2.2 2-D CL scenario #2

In this scenario, the starting position for each vehicle is known exactly. As each

vehicle moves, process noise is added and a dead-reckoning position estimate is main-

tained. This scenario demonstrates that collaborative localization results in slower
error growth in the presence of process noise as compared to dead-reckoning. Tables

5.1 and 5.3 summarize the parameters used for this scenario. The vehicle starting
positions shown by Figure 5-8 are unchanged from Scenario #1, though the process

noise produces drift in the position estimate that is evident in Figure 5-9. Figures 5-11
and 5-12 demonstrate the slower linear error growth rate produced by collaborative
localization as compared to dead reckoning.
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Table 5.3: 2-D CL simulation scenario #2 parameters
x position process noise std. dev. 0.075 m/s

y position process noise std. dev. 0.075 m/s

heading process noise std. dev. 0.25 deg/s
velocity process noise std. dev. 0.0 m/s

initial vehicle x position uncertainty std. dev. 0.0 m
initial vehicle y position uncertainty std. dev. 0.0 m
initial heading position uncertainty std. dev. 0.0 deg

M.

I U

0 0

Y Do-
. x

m

Figure 5-8: 2-D CL scenario #2 : vehicle starting position
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Figure 5-13: 2-D CL scenario #2 : vehicle A error determinant
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Figure 5-14: 2-D CL scenario #2 : vehicle B error determinant

5.2.3 2-D CL scenario #3

This scenario best simulates actual vehicle collaborative localization implementations,

as both initial position uncertainty and process noise are present. Tables 5.1 and

5.4 summarize the parameters used for this scenario. Position error growth plotted

in Figure 5-20 demonstrates the performance advantage provided by collaborative

localization.

Table 5.4: 2-D CL simulation scenario #3 parameters
x position process noise std. dev. 0.075 m/s

y position process noise std. dev. 0.075 m/s
heading process noise std. dev. 0.25 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. 0.2 m
initial vehicle y position uncertainty std. dev. 0.2 m
initial heading position uncertainty std. dev. 0.0 deg
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Figure 5-15: 2-D CL scenario #3 : vehicle starting position
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Figure 5-16: 2-D CL scenario #3 : final position estimates
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Figure 5-20: 2-D CL scenario #3 : vehicle A error determinant
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Figure 5-21: 2-D CL scenario #3 : vehicle B error determinant

5.3 2-D Collaborative CML Results

This section presents 2-D collaborative CML simulation results from three scenarios,

structured similarly to the 1-D collaborative CML and 2-D collaborative localization

scenarios. In the first scenario, the vehicles are given initial uncertainty and zero pro-

cess noise, demonstrating convergence to a theoretical lower performance bound. In

the second scenario, there is no initial vehicle uncertainty, but process noise is added

at every time step. Finally, the third scenario demonstrates performance given both

process noise and initial vehicle uncertainty. Table 5.5 summarizes the global pa-

rameters consistent for all three scenarios. Initial vehicle locations, feature locations,

and vehicle paths are also kept consistent. Note that unlike the 1-D CML simulation,

features are not initially present in the collaborative CML state estimate. Rather, the

data association algorithm described in Section 5.1 is used to identify features and

only then is the feature estimate added to the state vector. However, as in the 2-D

collaborative localization algorithm, both collaborating vehicles are initially present
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in the state estimate.

Table 5.5: 2-D Collaborative CML simulation global
number of vehicles 2
number of features 4
sampling period T 0.2 sec.
range measurement std. dev. x, 0.2 m
bearing measurement std. dev. #$ 10 deg
vehicle cruise speed u 0.5 m/s

parameters

5.3 2-D COLL ABOR ATIVE CML RESULTS 107
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5.3.1 2-D CCML scenario #1

In this scenario, there is no process noise added as each vehicle moves. However,

each vehicle has an initial position uncertainty. Because of the zero additive pro-

cess noise, dead reckoning error will stay constant since no information is lost due

to movement. The extra information provided by the initially uncorrelated position

of the collaborating vehicle produces a reduction in position uncertainty as the col-

laborating vehicle is directly observed. Tables 5.5 and 5.6 summarize the parameters

used for this scenario.

The initial starting location of both vehicles is shown by Figure 5-22, with the

3a- error bound ellipse around each vehicle indicating the initial position uncertainty.

Figure 5-23 shows the final estimated vehicle and feature positions after 300 seconds

of travel. As is to be expected with no process noise, there is no difference between

the true and estimated position. These plots also display the last set of sensor range

measurements taken by each vehicle. A direct comparison between vehicle position

errors is made in Figure 5-24. Figures 5-25 and 5-26 show plots of the position and

heading errors of the vehicles versus time, along with 3a bounds. Vehicle position

error is presented in determinant form in Figures 5-27 and . 5-28. Because of the

zero additive process noise, position error never increases. However, the single vehicle

CML error remains constant, supporting Theorem 2.3, which states that position un-

certainty for single vehicle CML can never be lower than the initial uncertainty. This

plot also clearly shows the decrease in collaborative CML error uncertainty to the

theoretical lower bound predicted by Equation 3.48. The extra information provided

by the initially uncorrelated position of the collaborating vehicle provides a reduction

in position uncertainty as information is shared. Note that the collaborative CML

error determinant generated by this simulation is slightly less that that predicted.

This overconfidence is result of the linearization used to construct the measurement

Jacobian. Figure 5-29 plots the feature error estimates in determinant form. Each

108



feature is initialized at a different time step depending on the location of the fea-

ture relative to the vehicles' outcome of the data association algorithm. These plots

demonstrate the convergence of all feature estimates to the same uncertainty as the

collaborating vehicles, supporting Theorem 2.2.

Table 5.6: 2-D CCML simulation scenario #1 parameters
x position process noise std. dev. 0.0 m/s
y position process noise std. dev. 0.0 m/s
heading process noise std. dev. 0.0 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. 0.2 m
initial vehicle y position uncertainty std. dev. 0.2 m
initial heading position uncertainty std. dev. 0.0 deg
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Figure 5-22: 2-D CCML scenario #1 : vehicle starting position
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Figure 5-23: 2-D CCML scenario #1 : final position estimates
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Figure 5-27: 2-D CCML scenario #1 : vehicle A error determinant
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5.3.2 2-D CCML scenario #2

In this scenario, the starting position for each vehicle is known exactly. As each vehicle

moves, process noise is added. Tables 5.5 and 5.7 summarize the parameters used

for this scenario. The vehicle starting positions shown by Figure 5-30 are unchanged

from Scenario #1, though the process noise produces drift in the position estimate

that is evident in Figure 5-31. These plots also include the dead-reckoning position

estimates. Note that because motion commands are based on an estimated position,

the final vehicle locations for the single vehicle and collaborative CML are different,

as reflected by Figure 5-32. Error bound and actual error comparison for each vehicle

are presented in Figures 5-33 and 5-34. Error determinant plots for the vehicles are

presented Figure 5-37. While both single and collaborative CML produces bounded

error growth, the performance advantage of collaboration is evident.

Table 5.7: 2-D CCML simulation scenario #2 parameters
x position process noise std. dev. 0.1 m/s
y position process noise std. dev. 0.1 m/s
heading process noise std. dev. 0.2 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. 0.0 m
initial vehicle y position uncertainty std. dev. 0.0 m
initial heading position uncertainty std. dev. 0.0 deg
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Figure 5-30: 2-D CCML scenario #2 : vehicle starting position
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Single vehicle CML Collaborative CML

Figure 5-31: 2-D CCML scenario #2 : final position estimates
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Figure 5-33: 2-D CCML scenario #2 : vehicle A error comparison
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Figure 5-34: 2-D CCML scenario #2 : vehicle B error comparison
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Figure 5-35: 2-D CCML scenario #2 : vehicle A error determinant
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Figure 5-36: 2-D CL scenario #2 : vehicle B error determinant
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5.3.3 2-D CCML scenario #3

This scenario best simulates actual vehicle implementations, as both initial position

uncertainty and process noise are present. Tables 5.5 and 5.8 summarize the param-

eters used for this scenario. Figures 5-41 and 5-42 demonstrate that vehicle position

uncertainty stabilizes above the theoretical lower bound in the presence of process

noise.

Table 5.8: 2-D CCML simulation scenario #3 parameters
x position process noise std. dev. 0.2 m/s
y position process noise std. dev. 0.25 m/s
heading process noise std. dev. 0.2 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. 0.075 m
initial vehicle y position uncertainty std. dev. 0.075 m
initial heading position uncertainty std. dev. 0.0 deg
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Figure 5-38: 2-D CCML scenario #3 : vehicle starting position
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Figure 5-39: 2-D CCML scenario #3 : final position estimates
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5.4 Summary

This chapter presented simulation results for vehicle navigation collaboration with

and without the presence of static features in the environment. Collaborative local-

ization provides a substantial performance improvement over dead reckoning. In the

presence of process noise, collaborative localization still results in unbounded linear

error growth, but at a slower growth rate than dead reckoning. The Kalman filter

based structure used for collaborative localization serves as an intermediary step to

collaborative CML. The collaborative CML algorithm presented in Section 3.3 in

simulation proves to be superior to single vehicle CML.



Chapter 6

Conclusions and Future Research

This chapter summarizes the contributions of this thesis and presents suggestions for

further collaborative CML research.

6.1 Thesis contributions

This thesis enabled multiple vehicles to collaboratively map an environment more

quickly and robustly than a single vehicle. Current algorithms for this concurrent

mapping and localization (CML) problem have been implemented for single vehicles,

but do not account for extra positional information available when multiple vehicles

operate simultaneously. This thesis presented an innovative technique for combining

sensor readings for multiple autonomous vehicles, enabling them to perform collab-

orative CML. In addition, a lower algorithmic performance bound has been proven,

enabling determination of the number of cooperating vehicles required to accomplish a

given task. This quantifies intuitive performance benefits that result from using more

than one vehicle for mapping and navigation, which were validated in simulation.



6.2 Future research

Any successful collaborative CML algorithm has to be based on a successful single-

vehicle CML algorithm. Single-vehicle CML issues such as correct association of

sensor measurements and map scalability for larger environments remain significant

constraints on any CML implementations. That said, the field of cooperation in

robotics is vast and largely unexplored.

This thesis quantifies intuitive performance benefits that result from using more

than one vehicle for mapping and navigation. Even within this collaborative CML

framework there is a substantial amount of analysis left unperformed. Suggested

analysis directions include larger numbers of collaborating vehicles as well as hetero-

geneous vehicles. Another interesting topic is the required rate of information flow if

collaborators mutually observe static features, but not one another. Addressing the

challenges of rendezvous and limited communication, as discussed in Section 3.1, are

logical next steps in producing a robust, effective collaborative CML implementation.
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