
Object Recognition with Pictorial Structures

by

Pedro F. Felzenszwalb

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2001

© Massachusetts Institute of Technology 2001. All rights reserved.

ftr

Author .
Department of Electrical Engineering and Computer Science

May, 7, 2001

C ertified by
W. Eric L. Grimson

Bernard Gordon Professor of Medical Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACH1S r pNEROF TECH,ITUTE BAKE

JUL 1 1 2001

LIBRARiEs

Object Recognition with Pictorial Structures

by

Pedro F. Felzenszwalb

Submitted to the Department of Electrical Engineering and Computer Science
on May, 7, 2001, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis presents a statistical framework for object recognition. The framework
is motivated by the pictorial structure models introduced by Fischler and Elschlager
nearly 30 years ago. The basic idea is to model an object by a collection of parts
arranged in a deformable configuration. The appearance of each part is modeled sep-
arately, and the deformable configuration is represented by spring-like connections
between pairs of parts. These models allow for qualitative descriptions of visual ap-
pearance, and are suitable for generic recognition problems. The problem of detecting
an object in an image and the problem of learning an object model using training
examples are naturally formulated under a statistical approach. We present efficient
algorithms to solve these problems in our framework. We demonstrate our techniques
by training models to represent faces and human bodies. The models are then used
to locate the corresponding objects in novel images.

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard Gordon Professor of Medical Engineering

3

Acknowledgments

I would like to thank my advisor, Eric Grimson, for his guidance and support. I

would also like to thank Paul Viola for many helpful conversations.

Much of the foundation of this thesis was developed in collaboration with Dan Hut-

tenlocher (thanks dan!).

This research was supported in part by Nippon Telegraph and Telephone.

4

Contents

1 Introduction

1.1 Pictorial Structures .

1.2 Statistical Formulation .

1.3 Efficient Algorithms. .

2 General Framework

2.1 Statistical Approach

2.2 Pictorial Structures

2.3 Estimating Model Parameters

2.3.1 Estimating the Appearance Parameters .

2.3.2 Estimating the Dependencies

3 Matching Algorithms

3.1 MAP Estimate

3.1.1 Efficient Minimization

3.1.2 Generalized Distance Transforms

3.2 Sampling from the Posterior

3.2.1 Computing the S functions

3.3 Sum m ary .

4 Iconic Models

4.1 Features

4.2 Spatial Distribution .

5

8

10

11

12

. 12

. 13

. 17

. 18

. 19

21

. 2 1

. 23

. 2 5

. 27

. 29

. 3 0

31

31

33

4.3 Experiments . 34

5 Articulated Models 37

5.1 Parts . 37

5.2 Geometry . 41

5.3 Experiments . 43

6 Summary 49

6.1 Extensions . 50

6

Chapter 1

Introduction

The problem of object detection and recognition is central to the field of computer

vision. Classical computer vision methods concentrate on objects with fixed or pa-

rameterized shapes or with known photometric information (see [17, 23, 30, 19, 25]).

This was a good starting point for the field, since it made the recognition problem

well defined, and allowed for the development of important mathematical and algo-

rithmic tools. On the other hand, no artificial system can recognize generic objects

like a dog, a house or a tree. These objects don't have fixed shape or photometric

information.

We believe that many object classes can be characterized solely by their visual

appearance, even though the objects in each class have large variations in shape and

detailed photometric information. This thesis presents a statistical framework that

allows for qualitative descriptions of appearance, making it suitable for many generic

recognition problems. Our framework is motivated by the pictorial structure repre-

sentation introduced in [13]. The problem of detecting an object in an image and the

problem of learning an object model using training examples are naturally formulated

under a statistical approach. We present efficient algorithms to solve these problems

in our framework. We demonstrate our techniques by training models to represent

faces and human bodies. The models are then used to locate the corresponding

objects in novel images, as shown in Figure 1-1.

7

Figure 1-1: Detection results for a face (left) and a human body (right). Each image

shows the globally best location for the corresponding object, as computed by our

algorithms. The object models were constructed from training examples.

1.1 Pictorial Structures

Pictorial structures were introduced by Fischler and Elschlager [13] nearly 30 years

ago. The basic idea is to model an object by a collection of parts arranged in a

deformable configuration. We model the appearance of each part is separately, and

the deformable configuration is represented by spring-like connections between pairs

of parts. The appearance of a part is encoded by a function which measures how

much a location in an image looks like the corresponding part. In [13], the problem of

matching a pictorial structure to an image is defined in terms of an energy function

to be minimized. The quality of a particular configuration for the parts depends

both on how well each part matches the image data at its location, and how well the

configuration agrees with the deformable model.

The appearance model for each part can be fairly generic. This is because parts

are not recognized on their own, but together with the other parts in the object

description. This is different than most methods that use part based representations.

In those methods, parts are recognized individually in an initial phase, and a second

phase groups them together to form objects. While separate recognition of each

part seems attractive from a computational point of view, it forces one to use more

complex part models. In the pictorial structure framework, parts can be generic to

8

the point that trying to locate them individually would fail (one would get too many

false positives or too many false negatives).

As mentioned, the deformable configuration of parts is represented by connections

between them. A connection between two parts indicates relationships between their

locations. For example, a connection can enforce precise geometrical constraints, such

as a revolute or prismatic joint between two parts. Connections can also represent

more generic relationships such as "close to", "to the left of", or even something in

between these generic relationships and precise geometrical constraints.

Since both the part models and the relationships between parts can be fairly

generic, pictorial structures provide a powerful framework for recognition problems.

For example, suppose we want to model the appearance of the human body. It makes

sense to represent the body as an articulated object, with joints connecting different

body parts. With pictorial structures we can use a fairly coarse model, with a small

number of parts connected by flexible revolute joints. In this case it is important that

the joints between parts don't behave exactly like rigid joints, since a small number of

parts can only approximate the geometrical structure of the human body. The flexible

revolute joints should try to enforce that connected parts be aligned at their joint,

but allow for small misalignment, penalizing it in the energy function. Moreover,

the angle between certain pairs of parts should be arbitrary, while the angle between

other pairs should be fairly constrained. Note that it would be impossible to detect

generic parts such as "lower-leg" or "upper-arm" on their own. On the other hand,

the structure between parts provide sufficient context to detect the human body as a

whole.

The pictorial structure framework is general, in the sense that it is independent

of the specific scheme used to model the appearance of individual parts, and the

exact type of relationships between parts. Articulated objects can be modeled by the

appearance of each rigid part and connections that behave like joints. We describe

such models in Chapter 5. In [13], faces and terrain maps were modeled by the

appearance of local features and spatial relationships between those features. This is

the nature of the models presented in Chapter 4. In [22], pictorial structures were

9

used to represent generic scene concepts such as waterfalls, snowy mountains and

sunsets. For example, a waterfall was modeled as a bright white region (water) in

the middle of darker regions (rocks). There are many other modeling schemes which

can be seen as particular implementations of the pictorial structure framework, such

as [3] and [91.

1.2 Statistical Formulation

In their original work, Fischler and Elschlager only addressed the problem of finding

the best alignment of a pictorial structure model to an image. As mentioned be-

fore, they characterized this problem by defining an energy function to be minimized.

While the energy function intuitively makes sense, it has many free parameters. For

each different object, one has to construct a model, which includes picking an appear-

ance model for each part, the characteristics of the connections between parts, and

weighting parameters for the energy function.

We present a statistical formulation of the pictorial structure framework. The

original matching problem studied by Fischler and Elschlager is equivalent to finding

the maximum a posteriori (MAP) estimate of the object location given an observed

image in our formulation. The new formulation helps to characterize the different

model parameters. In fact, all parameters can be determined empirically using sta-

tistical estimation. This way we can construct models automatically, using only a

few training examples. The idea is to use the training examples to estimate a model

under the maximum likelihood (ML) formalism. This is a big advantage over picking

model parameters manually. Learning from examples is an important capability for

an intelligent system. Moreover, a user can't usually find the best parameters for a

model by trial and error.

Another approach to the object detection problem arises naturally from the sta-

tistical formulation (besides MAP estimation). The idea is to sample object locations

from their posterior probability distribution. When there is a lot of uncertainty in the

object location, sampling is useful to produce multiple hypotheses. Also, sometimes

10

our statistical model only approximates the "true" posterior probability of the object

location. Sampling allow us to find many locations for which our posterior is high,

and select one of those as the correct one using some other measure. This is similar to

the idea behind importance sampling (see [15]). It can also be seen as a mechanism

for visual selection (see [2]).

1.3 Efficient Algorithms

Our main motivation is to construct a framework that is rich enough to capture the

appearance of many generic objects and for which we can solve the object detection

and model learning problems efficiently. We present algorithms to solve these prob-

lems for a natural class of pictorial structure models. Our methods require that the

set of connections between parts form a tree structure, and that the relationships

between connected parts be of a particular (but quite general) form.

Restricting the relationships between parts to a tree structure is natural. For

example, the connections between parts of many animate objects form a tree corre-

sponding to the skeletal structure. Many other kinds of objects can be represented

using a tree structure such as a star-graph, where there is one central part to which

all the other parts are connected. The restriction that we impose on the form of the

relationships between parts similarly allows a broad range of objects to be modeled.

We present examples illustrating that our algorithms enable efficient search for

the globally best match of relatively generic objects to an image. Figure 1-1 shows

matching results for a face model, and for a model of the human body. Both these

models were automatically constructed using training examples.

The asymptotic running time of our matching algorithms is optimal, in the sense

that they run as quickly as it takes to match each part separately, without accounting

for the relationships between parts. In practice, the algorithms are also fast, finding

the globally best match of a pictorial structure to an image in a few seconds.

11

Chapter 2

General Framework

In this chapter we present the statistical framework for pictorial structures. As de-

scribed in Section 1.3, our main motivation is to construct a rich class of models for

which we can develop efficient algorithms to solve the object detection and model

learning problems.

2.1 Statistical Approach

A typical way to approach object detection from a statistical perspective is to model

two different distributions. One distribution corresponds to the imaging process, and

measures the likelihood of seeing a particular image, given that an object is at some

location. The other distribution measures the prior probability that an object would

be at a particular location.

Let 0 be a set of parameters that define an object model. The likelihood of

seeing image I given that the object is at location L is given by p(I|L, 0). The prior

probability of the object being at location L is given by p(LI0). Using Bayes' rule

we can compute p(LII, 0), the probability that the object is at location L, given an

observed image I (this will be called the posterior distribution from now on). A

number of interesting problems can be characterized in terms of these probability

distributions:

* MAP estimation - this is the problem of finding the location L with highest

12

posterior probability. In some sense, the MAP estimate is our best guess for

the location of the object. If the posterior is low everywhere we might decide

that the object is not visible in the image.

" Sampling - this is the problem of sampling from the posterior distribution. In

general, the posterior distribution we define is only an approximation of the

"true" one. Sampling allows us to find many locations for which our posterior

is high, and evaluate them using some other method. In this way, our framework

can be used to generate a number of promising hypothesis for the location of

the object. Each hypothesis must be verified, but there are only a small number

of them.

" Model estimation - this is the problem of finding 0 which specifies a good model

for a particular object. We would like to build models using some sort of training

examples.

The next section describes how we model p(IIL, 0) and p(LIO). Later, we show

how to estimate model parameters using training examples, and in Chapter 3 we

present efficient algorithms to compute the MAP estimate of the object location and

to sample from its posterior distribution.

2.2 Pictorial Structures

In the pictorial structure framework, an object is represented by a collection of parts,

or features, with connections between certain pairs of parts. A natural way to express

such a model is in terms of an undirected graph G = (V, E), where the vertices

V = {vi, ... ,vn} correspond to the parts, and there is an edge (vi, vj) E E for each

pair of connected parts vi and vj.

An instance of the object is given by a configuration L = (l,..., la), where 1i is

a random variable specifying the location of part vi. Sometimes we refer to L simply

as the object location, but "configuration" emphasizes the part-based representation.

The location of a part, li, can simply be the position of the part in the image, but

13

Figure 2-1: Graphical representation of the dependencies between the location of

object parts (black nodes) and the image. In the case of a car, each black node would

correspond to a part such as a wheel, the body, etc.

more complex parameterizations are also possible. For example, a location can specify

the position, angle, and scale parameters for two dimensional parts. Each connection

(vi, vj) E E indicates that the locations 1i for vi and 1j for vj are dependent. To be

precise, the prior distribution over object configurations, p(L I), is a Markov Random

Field, with structure specified by the graph G. Using Bayes' rule, the posterior

distribution over object configurations given an observed image can be characterized

by the prior model and a likelihood function,

p(L|I, 0) oc p(I|L, 0)p(LJO), (2.1)

where the likelihood, p(IIL, 0), measures the probability of seeing image I given a

particular configuration for the object. Figure 2-1 shows a graphical representation

of this statistical model. The random variable corresponding to the location of each

object part is represented by a black node. Thick edges correspond to dependencies

coming from the prior model, and the thin directed edges correspond to the depen-

dency of the image with respect to the object configuration.

This posterior distribution is too complex to deal with in its most general form.

In fact, finding the MAP estimate or sampling from this distribution is an NP-hard

problem. Our framework is based on restricting the form of the prior model and the

likelihood function so that the posterior distribution is more tractable. First of all,

14

the graphical representation of the posterior should have no loops. In that case, we

can find the MAP estimate and sample from the distribution in polynomial time.

This is done using a generalization of the Viterbi and Forward-Backward algorithms

(see [27]). Similar algorithms are known in the Bayesian Network community as belief

propagation and belief revision (see [26]). These algorithms can be implemented to

take O(h 2n) time, where n is the number of object parts, and h is a discrete number of

possible locations for each part. Unfortunately, this is not good enough. The number

of possible locations for each part can be huge, and a quadratic algorithm takes too

long. We identify a restriction on the type of dependencies between parts for which

we can obtain algorithms that run in O(hn) time. These algorithms are quite fast in

practice.

We assume that there is an appearance model for each part, and that the appear-

ances are characterized by some parameters u {ui I vi E V}. The exact method

used to model the appearance of parts is not important. In Section 4, a part is

modeled as a local image feature, based on image derivatives around a point, while

in Section 5 parts are modeled as fairly large shapes. In practice, the appearance

modeling scheme just needs to provide a distribution p(Illi, ui) (up to a normaliz-

ing constant), which measures the likelihood of seeing a particular image, given that

a part with appearance parameters ui is at location li. Note that this distribution

doesn't have to be a precise generative model, an approximate measure is enough in

practice. We model the likelihood of seeing an image given that the object is at some

configuration as the product of the individual likelihoods,

p(I|L, u) cX W (Illi, ui). (2.2)
i=1

This approximation is good if the parts don't overlap, as they would generate different

portions of the image. But the approximation can be bad if one part occludes another.

The articulated models in Section 5 provide examples where the approximation can

be problematic. For those models, the MAP estimate of an object location can be a

poor estimate of its position. On the other hand, we show that we can find the true

15

location by sampling from the posterior. We sample to find many locations with high

posterior, and select one of those using a different measure.

In our models, the set of connections between parts forms a tree structure. The

dependencies between parts are characterized by some parameters c = {cij I (vi, vj) E

E}. For example, one connection might indicate that a given part tends to be at a

certain distance to the left of another one. We don't model any preference over the

absolute location of object parts, only over their relative configuration. Let p(4i) = 1

for simplicity. Our efficient algorithms require that the joint distribution for the

locations of two connected parts be expressed in a specific form. There are a few

different possibilities, here we concentrate on the following form. Suppose we have a

Normal distribution in a transformed space,

p(1i, I Icij) = M(Tij(l) - Tys(l), 0, Eij), (2.3)

where Tij, Ti, and Ei are the connection parameters encoded by cij. The covariance

matrix Ei should be diagonal, and for simplicity we will assume that Ti, and Ti

are invertible. We further require that it be possible to discretize Tji(lj) in a grid

(which in turn specifies a number of discrete locations 1j). The functions Tij and Ti

together capture the ideal relative locations for parts vi and vj. The distance between

the transformed locations, weighted by Eij, measures the deformation of a "spring"

connecting vi and vj. This special form for the joint distribution of two parts arises

naturally from our algorithmic techniques. Moreover, it allows for a broad class of

interesting models. In Section 4 we describe simple feature based models where the

connections between parts behave like springs. More complex models are described

in Section 5, where the connections between parts behave like flexible joints.

The prior distribution over object locations can be defined in terms of the joint

distributions for pairs of connected parts,

p(LIE, c) =]J p(1i, 11cij). (2.4)
(vi,vj)-E

16

Figure 2-2: Graphical representation of the dependencies between the location of

object parts (black nodes) and the image in the restricted models (see text).

Note that this is not a real probability distribution over locations. It actually inte-

grates to infinity! The joint distributions described above have the same problem.

What is happening is that we have an uninformative prior over absolute locations (see

[4]). We can interpret these functions as distributions over equivalence classes. Each

equivalence class corresponds to object configurations which have different absolute

locations, but the relative locations between parts are the same.

So our models depend on parameters 9 = (u, E, c), where u = {u 1,...,u,,} are

the appearance parameters for each part, E indicates which parts are connected, and

c = {cij I (vi, vj) E E} are the connection parameters. We have defined both p(IIL, 9),

the likelihood of seeing an image given that the object is at a some configuration, and

p(LI9), the prior probability that the object would assume a particular configuration.

This is sufficient to characterize p(L|I, 9), the probability that the object is at some

configuration in an image. A graphical representation of our restricted models is

shown in Figure 2-2.

2.3 Estimating Model Parameters

Suppose we are given a set of example images V1,..., Im and corresponding object

configurations L', ... , L' for each image. The problem is to use the training examples

to obtain estimates for the model parameters 9 = (u, E, c), where u = {u 1 ,... , u"}

are the appearance parameters for each part, E is the set of connections between

17

parts, and c = {cij I (vi, vj) E E} are the connection parameters. The maximum

likelihood (ML) estimate of 0 is, by definition, the value 0* that maximizes

m

p(-[', ... , mL ,. ... , LmIO) -- rl P 1k, L k|6%
k=1

where the right hand side is obtained by assuming that each example was generated

independently. Since p(I, L I) = p(IIL, 0)p(LIO), the ML estimate is

M M
0* = arg max 1 p(Ik Lk,0) 1 f(LO). (2.5)

* k=1 k=1

The first term in this equation depends only on the appearance of the parts, while

the second term depends only on the set of connections and connection parameters.

Thus, we can independently solve for u* and the pair E*, c*.

2.3.1 Estimating the Appearance Parameters

From equation (2.5) we get

m

U* = arg max 1 p(IkILkU).
k=1

The likelihood of seeing image 1 k, given the configuration Lk for the object is given

by equation (2.2). Thus,

f* =a a P(k lk U,) - arg max gm a fl pT Ik, U).
U U

k=1 i=1 i=1 k=1

Looking at the right hand side we see that to find u* we can independently solve for

the u*,

U* = arg max fl p(Ik lU).
k=1

This is exactly the ML estimate of the appearance parameters for part vi, given inde-

pendent examples (Il, l),. . ., (Im, lm). Solving for u* depends on picking a specific

modeling scheme for the parts.

18

2.3.2 Estimating the Dependencies

From equation (2.5) we get

m

E*, c* = arg max 1 p(L|E, c). (2.6)
k=1

We need to pick a set of edges that form a tree and the properties for each edge. This

can be done in a similar way to the Chow and Liu algorithm in [10], which estimates

a tree distribution for discrete random variables. Equation (2.4) defines the prior

probability of the object assuming configuration Lk as,

p(Lk|E, c) = fl p(lk, I kc).
(vi,v)EE

Plugging this into equation (2.6) and re-ordering the factors we get,

m

E*, c* = arg max fJ H7p(1klci). (2.7)
E,c (vi,vj)EE k=1

We can estimate the parameters for each possible connection independently, even

before we know which connections will actually be in E as

m

c* = arg nax H p(lk, ICij).
ij cij k=1 j

This is the ML estimate for the joint distribution of 1i and 1j, given independent exam-

ples (l, 1>, ... , (lT, 1m). Solving for c* depends on picking a specific representation

for the joint distributions. Independent of the exact form of p(li, lj cij), and how to

compute ci. (since it may vary with different modeling schemes), we can characterize

the "quality" of a connection between two parts as the probability of the examples

under the ML estimate for their joint distribution,

m

q(vi,vj) = H p(lfl ici).
k=1

19

These quantities can be used to estimate the connection set E* as follows. We know

that E* should form a tree, and according to equation (2.7) we let,

E*=arg max (Ui, vj) = arg min U (2.8)
E (vi,vj)vEE (vi,vj)EE

The right hand side is obtained by taking the negative logarithm of the function

being maximized (and thus finding the argument minimizing the value, instead of

maximizing it). Solving this equation reduces to the problem of computing the min-

imum spanning tree (MST) of a graph. We build a complete graph on the vertices

V, and associate a weight - log q(vj, v) with each edge (vi, vU). By definition, the

MST of this graph is the tree with minimum total weight, which is exactly the set of

edges E* defined by equation (2.8). The MST problem is well known (see [11]) and

can be solved efficiently. Kruskal's algorithm can be used to compute the MST in

O(n 2 log(n)) time, since we have a complete graph with n nodes.

20

Chapter 3

Matching Algorithms

Now we describe efficient algorithms to match pictorial structure models to images.

The first one finds the MAP estimate of the object location given an observed image.

That algorithm was first presented in [12]. The second method samples configura-

tions from the posterior distribution. Both algorithms work in a discretized space

of locations for each part. They basically run in O(hn) time, where h is a number

of discrete locations for each part and n is the number of parts. To be precise, h

is a number of discrete locations for Ti(l), which usually matches the number of

locations for 1j. Sometimes, however, it can be a little larger, as shown in Section 5.

3.1 MAP Estimate

Remember that the MAP estimate of the object location is a configuration with

highest probability given an observed image. In some sense, this is our best guess for

the object location (see [4] for a theoretical justification for using the MAP estimate).

Now we show how to efficiently compute this "best" configuration.

The MAP estimate is given by

L* = arg maxp(LI, 0) = arg maxp(I|L, O)p(LO).
L L

Equation (2.2) characterizes the likelihood p(I|L, 0) in terms of an appearance model

21

for each part, and equation (2.4) characterizes the prior p(L I) in terms of the con-

nections between parts. Thus, in our framework we have,

L* = arg max P(IAIli, UiO H P(lil Ici))
L (=1 (vi,vj)E E

By taking the negative logarithm of this equation, a typical energy minimization

problem arises,

L* = argmin (mi(li) + di (li, , (3.1)
L= (vj,v)GE

where mi(li) = - log p(Illi, ui) is a match cost, which measures how well part vi

matches the image data at location li, and dij (li, Ij) = - log p(li, ljIcij) is a deformation

cost, which measures how well the relative locations for vi and v agree with the prior

model.

The form of this minimization is quite general, and it appears in a number of

problems in computer vision, such as MAP estimation of Markov Random Fields and

optimization of dynamic contour models (snakes). While the form of the minimization

is shared with these other problems, the structure of the graph and space of possible

configurations differ substantially. This changes the computational nature of the

problem.

Solving equation (3.1) for arbitrary graphs and arbitrary functions mi, dij is an

NP-hard problem (see [7]). However, when the graph G = (V, E) has a restricted

form, the problem can be solved more efficiently. For instance, with first-order snakes

the graph is simply a chain, which enables a dynamic programming solution that

takes O(h2 n) time, where h is a number of discrete locations for each part, and n is

the number of parts in the model. (see [1]). Moreover, with snakes the minimization

is done over a small number of locations for each vertex (e.g., the current location

plus the 8 neighbors on the image grid). This minimization is then iterated until

the change in energy is small. The key to an efficient solution is that the number

of locations, h, be small, as the dynamic programming solution is quadratic in this

22

value. Another source of efficient algorithms has been in restricting dij to a particular

form. This approach has been particularly fruitful in some recent work on MRFs for

low-level vision ([8, 20]). In our algorithm, we use constraints on both the structure

of the graph and the form of dij.

By restricting the graphs to trees, a similar kind of dynamic programming can be

applied as is done for chains, making the minimization problem polynomial rather

than exponential time. The precise technique is described in Section 3.1.1. However,

this O(h 2 n) algorithm is not practical, because the number of possible locations for

each part, h, is usually huge. When searching for the best possible match of a pictorial

structure to an image, there is no natural way to limit the space of locations. For

example, the number of locations for a part is usually at least as large as the number

of pixels in the image, making h on the order of 105 possible values.

The restricted form of the joint distribution for the locations of two connected

parts in equation (2.3) is,

p(li, Icij) = A(Tij(l) - T7ji(lj),0,).

This makes di (li, 41) a Mahalanobis distance between transformed locations,

di) = (Tj,(li) - Tg(lj)) T E' (Ti3(4) - Tj2(l)), (3.2)

where E' = Ei/2, and we ignored an additive constant since it doesn't change the

solution of our problem. This form for dij yields a minimization algorithm which runs

in O(hn) rather than O(h2rn) time. This makes it quite practical to find the globally

optimal match of a pictorial structure to an image, up to the discretization of the

possible locations.

3.1.1 Efficient Minimization

In this section, we show how to use dynamic programming to find the configuration

L* = (l*,. . . , l*), minimizing equation (3.1) when the graph G is a tree. This is an

23

instance of a known class of dynamic programming techniques and is a generalization

of the technique for chains that is used in solving snakes problems (e.g., [1]). The

computation involves (n - 1) functions, each of which specifies the best location of

one part with respect to the possible locations of another part.

Given a tree G = (V, E), let vr C V be an arbitrarily chosen root vertex. From

this root, each vertex vi E V has a depth di which is the number of edges between it

and v, (and the depth of v, is 0). The children, Ci, of vertex vi are those neighboring

vertices, if any, of depth (di + 1). Every vertex vi other than the root has a unique

parent, which is the neighboring vertex of depth (di - 1).

First we note that for any vertex vj with no children (i.e., any leaf of the tree), the

best location 1* of that vertex can be computed as a function of the location of just

its parent, vi. The only edge incident on vj is (vi, vj), thus the only contribution of 1j

to the energy in (3.1) is m (l) + dij (Ii, 1j). Hence, the quality of the best location of

vj given location 1i of vi is

B (Ii) = min (mj (l) + di (1i, II)) , (3.3)
Ij

and the best location of vj as a function of 1i can be obtained by replacing the min

in the equation above with arg min.

For any vertex v3 other than the root, assume that the function Bc(l3) is known

for each child v, C C3 . That is, the quality of the best location of each child is known

with respect to the location of vi. Then the quality of the best location of vj given

the location of its parent vi is

Bj (1i) = min mj (l) + dij (1i 1) + E Bc(lj) . (3.4)

Again, the best location of vj as a function of 1i can be obtained by replacing the min

in the equation above with arg min. This equation subsumes (3.3) because for a leaf

node the sum over its children is simply empty. Finally, for the root vr, if Bc(l,) is

24

known for each child v, E Cr then the best location of the root is

ir =argmin (mr(ir) + E Be(1j)
1, vcECr

That is, the minimization in (3.1) can be expressed recursively in terms of the (n -

1) functions Bj(1j) for each vertex vj E V (other than the root). These recursive

equations, in turn, specify an algorithm. Let d be the maximum depth node in the

tree. For each node vj with depth d, compute Bj(l), where vi is the parent of vj.

These are all leaf nodes, so clearly B (l) can be computed as in (3.3). Next, for each

node v with depth (d -1) compute B (1i), where again vi is the parent of vj. Clearly,

Bc(lj) has been computed for every child v, of vj, because the children have depth

d. Thus B3 (li) can be computed as in (3.4). Continue in this manner, decreasing

the depth until reaching the root at depth zero. Besides computing each B we also

compute B , which indicates the best location of v as a function of its parent location

(obtained by replacing the min in B with arg min). At this point, we compute the

optimal location l* of the root. The optimal location L* of all the parts can now be

computed by tracing from the root to each leaf. We know the optimal location of vj

given the location of its parent, and the optimal location of each parent is now known

starting from the root.

The overall running time of this algorithm is O(Hn), where H is the time required

to compute each B(l) and Bj(li). The typical way to compute these functions takes

O(h 2) time. This is done by considering every location of a child node for each

possible location of the parent. In the next section, we show how to compute each

B(1j) and Bj(l1) more efficiently when dij is restricted to be in the form of equation

equation (3.2). The method will compute each pair B3 (1j) and Bj(l) in 0(h), yielding

an O(hn) algorithm overall.

3.1.2 Generalized Distance Transforms

Traditional distance transforms are defined for sets of points on a grid. Suppose we

have a grid g. Given a point set B C g, the distance transform of B specifies for

25

each location in the grid, the distance to the closest point in the set,

DB(x) = min d(x, y).
yEB

In particular, DB is zero at any point in B, and is small at nearby locations. The

distance transform is commonly used for matching edge based models (see [6, 19]).

The trivial way to compute this function takes 0(hjBj) time, where h is the number

of locations in the grid. On the other hand, efficient algorithms exist to compute

the distance transform in 0(h) time, independent of the number of points in B (see

[5, 21]). These algorithms have small constants and are very fast in practice. In order

to compute the distance transform, it is commonly expressed as

DB(x) = min (d(x, y) + 1B(y)),

where 1B(y) is an indicator function for membership in the set B, that has value 0

when y G B and oo otherwise. This suggests a generalization of distance transforms

to functions as follows. Let the distance transform of a function f defined over a grid

g be

Df (x) = min (d(x, y) + f (y)) .
yEg

Intuitively, for each grid location x, this function finds a location y that is close to

x and for which f(y) is small. Note that difference between the value of Df at two

locations is bounded by the distance between the locations, regardless of how quickly

the function f changes. In particular, if there is a location where f(x) has a small

value, Df will have small value at x and nearby locations.

Given the restricted form of dij in equation (3.2), the functions Bj(1j) that must

be computed by the dynamic programming algorithm can be rewritten as generalized

distance transforms under the Mahalanobis distance dij,

Bj (l) = Df (Ti (l)),

26

where

f (y) = mj (T,- (y)) + 1: Bc(T,- (y)),
VcECj

and the grid 9 specifies a discrete set of values for Tji(l) that are considered during

the minimization (this in turn specifies a discrete set of locations 1j). There is an

approximation being made, since the set of discrete values for Tji(lj) (the locations

in the grid) might not match the set of discrete values for Tij(li) (where we need the

value of Df). We can simply define the value of the distance transform at a non-

grid position to be the value of the closest grid point. The error introduced by this

approximation is small (as the transform changes slowly).

It turns out that some of the efficient algorithms used to compute the classical

distance transform can be modified to compute the generalized distance transform

under different distances. The method of Karzanov (originally in [21], but see [29] for

a better description) can be changed to compute the transform of a function under

a Mahalanobis distance with diagonal covariance matrix. The algorithm can also

compute Bj(1i) as it computes Bj(li).

3.2 Sampling from the Posterior

We now turn to the problem of sampling from the posterior distribution of object

configurations. When there is a lot of uncertainty in the object location, sampling is

useful to produce multiple hypotheses. Sometimes our statistical model only approx-

imates the "true" posterior probability of an object location in an image. In that

case, simply computing the MAP estimate might give poor results. By sampling we

can find many locations for which our posterior is high, and select one of those as the

correct one using some other measure.

The sampling problem can be solved with an algorithm similar to the one used to

compute the MAP estimate. The posterior distribution is

p(LII, 0) oc p(I|L, O)p(L|0) oc p(Illi, ui) p(li, ij Iz Ci .
\i=1 (vi,vj)E E/

27

Like before, let v, c V be an arbitrarily chosen root vertex, and the children of vi

be Ci. The algorithm works by first computing p(lrI, 0). We then sample a location

for the root from that distribution. Next we sample a location for each child, v., of

the root from p(c, 1 , I, 0). We can continue in this manner until we have sampled a

location for each part. The marginal distribution for the root location is,

Or 11I,0) DC E .. - (-E HP(I~li, i) 11 p(li, ly~cij).
11 1r -1 1r+1 1, \i=1 (vi,v)GEE/

Computing the distribution in this form would take exponential time. But since the

set of dependencies between parts form a tree, we can rewrite the distribution as,

P(l,|I,0) c P('Ir, Ur) 11 Sc(lr).

The functions Sj (l) are similar to the Bj (l) we used for the MAP estimation algo-

rithm,

Sj (lz) = (P(Jlj, j)p(1l, 1Icij) 11 Sc(l) (3.5)
(j vcECi

These recursive functions already give a polynomial algorithm to compute p(lrI, 0).

As in the MAP estimation algorithm we can compute them starting from the leaf

vertices. The trivial way to compute each Sj(l) takes O(h2) time. For each location

of 1i we evaluate the function by explicitly summing over all possible locations of 1j.

We will show how to compute each Sj (l) in 0(h) time for the case where p(li, lyIcij)

is in the special form given by equation (2.3). But first let's see what we need to do

after we sample a location for the root from its marginal distribution. If we have a

location for the parent vi of vj we can write,

p(lj li, 1, 0) Oc P(IIlj, uj)p(li, Icij) TI SC(lj). (3.6)
vcecj

If we have already computed the S functions we can compute this distribution in

O(h) time. So once we have sampled a location for the root, we can sample a location

for each of its children. Next we sample a location for the nodes at the third level

28

of the tree, and so on until we sample a location for every part. In the next section

we show how to compute the S functions in O(h) time, yielding a 0(hn) algorithm

for sampling a configuration from the posterior distribution. Note that if we want to

sample multiple times we only need to compute the S functions once. And when the

location of a parent node is fixed, we only need to compute the distribution in (3.6)

for locations of the children where p(li, ljIcij) is not too small. So sampling multiple

times isn't much more costly than sampling once.

3.2.1 Computing the S functions

We want to efficiently compute the function in equation (3.5). We will do this by

writing the function as a Gaussian convolution in the transformed space (given by Tj

and Tj) . Using the special form of p(li, IIcij) we can write,

Sj (l) = E ((Tij(li) - Tji(l), 0, Eij) p(IIl1, uj) H ScJ(j).
lj VcEcj /

This can be seen as a Gaussian convolution in the transformed space:

Sj (l) = (9 0 f) (T (l)),

where

f (y) = p (I IT-. ()M, y) 1 SC (T,- (y)).

Just like when computing the generalized distance transform, the convolution is done

over a discrete grid which specifies possible values for Ti(lj) (which in turn specify

a set of locations 1j). The Gaussian filter g is separable since the covariance matrix

Ej is diagonal. We can compute a good approximation for the convolution in linear

time using the techniques from [31].

29

3.3 Summary

In this chapter, we have presented two different algorithms that can be used to locate

pictorial structure models in images. Together with the model learning method from

Section 2.3, these algorithms form the base of a complete recognition system. The next

two chapters describe two modeling schemes that represent objects in very different

ways. The two schemes use the same computational mechanisms, which are exactly

the algorithms presented so far.

30

Chapter 4

Iconic Models

The framework presented so far is general in the sense that it doesn't fully specify how

objects are represented. A particular modeling scheme must define the pose space

for the object parts, the form of the appearance model for each part, and the type

of connections between parts. Here we present models that represent objects by the

appearance of local features and spatial relationships between those features. This

type of model has been popular in the context of face detection (see [13, 9, 32]). We

first describe how we model the appearance of a feature, and later describe how we

model spatial relationships between features. In Section 4.3 we show experiments of

face detection.

4.1 Features

The location of a feature is specified by its (x, y) position in the image, so we have

a two-dimensional pose space for each part. To model the appearance of features we

use the iconic representation developed in [28]. The iconic representation is based on

Gaussian derivative filters of different orders, orientations and scales. To describe an

image patch centered at some position we collect the response of all filters at that

point in a high-dimensional vector. This vector is normalized and called the iconic

index at that position. Figure 4-1 shows the nine filters used to build the iconic

representation at a fixed scale. In practice, we use three scales, given by a, = 1,

31

- - - rnil~

Figure 4-1: Gaussian derivative basis functions used in the iconic representation.

U2 = 2, and o3 = 4, the standard deviations of the Gaussian filters. So we get a

27 dimensional vector. The iconic index is fairly insensitive to changes in lighting

conditions. For example, it is invariant to gain and bias. We get invariance to bias

as a consequence of using image derivative filters, and the normalization gives us

the invariance to gain. Iconic indices are also relatively insensitive to small changes

in scale and other image deformations. They can also be made invariant to image

rotation (see [28]).

The appearance of a feature is modeled by a distribution over iconic indices.

Specifically, we model the distribution of iconic indices at the location of a feature

as a Gaussian with diagonal covariance matrix. Using a diagonal covariance matrix

makes it possible to estimate the distribution parameters with a small number of

examples. If many examples are available, a full Gaussian distribution or even more

complex distributions such as a mixture of Gaussians, or a non-parametric estimate

could be used. Under the Gaussian model, the appearance parameters for each part

are u2 = (pi, E), a mean vector and a covariance matrix. We have,

p (I I , uj) oc M (a (1j), pi, Ej),7

where a(li) is the iconic index at location 1i in the image. So each dimension of a(li)

is the response of a different Gaussian derivative filter at location 1j. If we have some

training examples, we can easily estimate the maximum likelihood parameters of this

distribution as the sample mean and covariance.

Note that we can use other methods to represent the appearance of features. In

particular, we experimented with the eigenspace techniques from [24]. With a small

number of training examples the eigenspace methods are no better than the iconic

representation, and the iconic representation can be computed more efficiently. In

32

fact, the iconic representation can be computed very efficiently by convolving each

level of a Gaussian pyramid with small x-y separable filters (see [14]).

4.2 Spatial Distribution

The spatial configuration of features is modeled by a collection of springs connecting

pairs of them. Each connection (vi, vj) is characterized by the ideal relative location

of the two connected parts sij, and a covariance matrix Ei which in some sense

corresponds to the stiffness of the spring connecting the two parts. So the connection

parameters are cij = (si,, Eig). We model the distribution of the relative location

of part vj with respect to the location of part vi as a Gaussian with mean si and

covariance Ej,

p(li, ic = .Af(1j - 4i, s, Eij). (4.1)

So, ideally the location of part vj is the location of part vi shifted by si. Since the

models are deformable, the location of vj can vary (which corresponds to stretching

the spring), by paying a cost that depends on the covariance matrix. Because we have

a full covariance matrix, stretching in different directions can have different costs. For

example, two parts can be highly constrained to be at the same vertical position, while

their relative horizontal position may be uncertain. As in the appearance model, the

maximum likelihood parameters of this distribution can easily be estimated using

training examples.

In practice, we need to write the joint distribution of 1i and 1j in the specific

form required by our algorithms. It must be a Gaussian distribution with zero mean

and diagonal covariance in a transformed space, as described by equation (2.3). To

do this, we first compute the singular value decomposition of the covariance matrix

Eij = UZjDijU . Now let

To (1) = UT (li + sij), and TT(ly) =

33

Figure 4-2: Three examples from the first training set and the structure of the learned

model.

which allow us to write equation (4.1) in the right form,

p(li, I ci) = .f(T 3s(l 1) - T(l), 0, Di).

4.3 Experiments

In this section, we present experiments of using the iconic models we just described

to detect faces. The basic idea is to use ML estimation to train a model of frontal

faces, and MAP estimation to detect faces in novel images. Our first model has five

features, corresponding to the eyes, nose, and corners of the mouth. To generate

training examples we labeled the location of each feature in twenty different images

(from the Yale face database). More training examples were automatically generated

by scaling and rotating each training image by a small amount. This makes our

model handle some variation in orientation and scale. Some training examples and

the structure of the learned model are shown in Figure 4-2. Remember that we never

told the system which features should be connected together. Picking a structure is

part of the ML parameter estimation procedure.

We tested the model by matching it to novel images using MAP estimation. Note

that all model parameters are automatically estimated under the maximum likelihood

formalism. Thus, there are no "knobs" to tune in the matching algorithm. Some

matching results are shown in Figure 4-3. Both the learning and matching algorithms

are extremely fast. Using a desktop computer it took a few seconds to learn the model

and about a second to compute the MAP estimate in each image.

34

Figure 4-3: Matching results.

35

4 1 2
4 3 2

3 -

Figure 4-4: One example from the second training set, the structure of the learned

model, and a pictorial illustration of the connections to one of the parts, showing the

location uncertainty for parts 2, 3, and 4, when part 1 is at a fixed position.

The first experiment demonstrates that we can learn a useful model from training

examples. The structure of this model is not particularly interesting. All parts are

connected through a central part, and the properties of each connection are similar.

So we tried learning a larger model, this one with nine parts. We now have three

features for each eye, one for the left corner, one for the right corner and one for

the pupil. This is a useful model to detect gaze direction. Figure 4-4 shows one of

the training examples and the learned model. Also, in Figure 4-4, there is a detailed

illustration of the connections to the left corner of the right eye. The ellipses illustrate

the location uncertainty for the other parts, when this part is at some fixed location.

They are level sets of the probability distribution for the location of parts 2, 3, and

4, given that part 1 is fixed. The location of the pupil is much more constrained

with respect to the location of the eye corner than any other part. Also note that

the distributions are not centrally symmetric. We see that the algorithm learned

an interesting structure for the model, and automatically determined the constraints

between the locations of different pairs of parts.

36

Chapter 5

Articulated Models

Now we present a scheme to model articulated objects. Our main motivation is to

construct a system that can estimate the pose of human bodies. We concentrate on

detecting objects in silhouette images. These images can be generated by subtracting

a background model from the original input image. Figure 5-1 shows an example

input and matching result. Silhouette images characterize well the problem of pose

estimation for an articulated object. We want to find an object configuration that

covers the foreground pixels and leaves the background pixels uncovered. Note that

we won't assume "perfect" silhouette images. In fact, our method works with very

noisy input.

5.1 Parts

For simplicity, assume that the image of an object is generated by a scaled ortho-

graphic projection, and that the scale factor of the projection is known. We can easily

add an extra parameter in our search space to relax this later.

Suppose that objects are composed of a number of rigid parts, connected by flexi-

ble joints. If a rigid part is more or less cylindrical, its projection can be approximated

by a rectangle. The width of the rectangle comes from the diameter of the cylinder

and is fixed, while the length of the rectangle comes from the length of the cylinder

and can vary due to foreshortening. In practice, we model the projection of a part as

37

Figure 5-1: Input image, silhouette obtained by background subtraction, and match-
ing result.

38

a rectangle parameterized by (x, y, s, 0). The center of the rectangle is given in image

coordinates (x, y), the length of the rectangle is defined by the amount of foreshort-

ening s E [0, 1], and the orientation is given by 0. So we have a four-dimensional pose

space for each part.

We model p(I li, ui) in the following way. First, each pixel in the image is generated

independently. Pixels inside the rectangle specified by 1i are foreground pixels with

probability q1 . Intuitively, qi should be close to one, expressing the idea that parts

occlude the background. We also model a border area around each part (see Figure 5-

2). In this area, pixels belong to the foreground with probability q2. In practice, when

we estimate q2 from data we see that pixels around a part tend to be background.

We assume that pixels outside both areas are equally likely to be background or

foreground pixels. Thus,

p(Illi, ui) = q,,nt't (1 - q)(areal-counti) q ount2 (1 - q 2)(area2-count2) 0 .5(t-areal-area2)

where count1 is the number of foreground pixels inside the rectangle, and area1 is

the area of the rectangle. count2 and area2 are similar measures corresponding to

the border area, and t is the total number of pixels in the image. So the appearance

parameters are ui = (qi, q2), and it is straightforward to estimate these parameters

from training examples. To make the probability measure robust, when computing

count1 , we consider a slightly dilated version of the silhouette, and to compute count2

we erode the silhouette. Computing the likelihood for every possible location of a part

can be done efficiently by convolving the image with uniform filters. Each convolution

counts the number of pixels inside a rectangle (specified by the filter) at every possible

translation.

Intuitively, our model of p(Illi, ui) is good. The likelihood favors large parts, as

they explain a larger area of the image. But remember that we model p(I|L, u) as

a product of the individual likelihoods for each part. For a configuration with over-

lapping parts, the measure "overcounts" evidence. Suppose we have an object with

two parts. The likelihood of an image is the same if the two parts are arranged to

39

Figure 5-2: A rectangular part. area1 is the area inside the part, and area2 is the
border area around it.

explain different areas of the image, or if the two parts are on top of each other and

explain the same area twice. Therefore, with this measure the MAP estimate of an

object configuration can be a bad guess for its true position. This is not because the

posterior probability of the true configuration is low, but because there are configu-

rations which have high posterior and are wrong. In our experiments, we obtain a

number of configurations which have high posterior probability by sampling from that

distribution. We then select one of the samples by computing a quality measure that

doesn't overcount evidence. This is similar to the idea behind importance sampling.

There is one more thing we have to take into account for sampling to work. When

p(I|L, u) overcounts evidence, it tends to create high peaks. This in turn creates high

peaks in the posterior. The problem is that when a distribution has a very strong

peak, sampling from the distribution will almost always obtain the location of the

peak. To ensure that we get a number of different hypothesis from sampling we use

a smoothed version of p(I|L, u), defined as

n

0'(I L, u) oc p(I IL, u)'/T OC $ (11, 1 1/T,

where T controls the degree of smoothing. This is a standard trick, borrowed from

the principle of annealing (see [16]). Note that p'(I|L, u) is just the product of the

smoothed likelihoods for each part. In all our experiments we used T = 10.

40

Area 2

Area 1

0

a b

Figure 5-3: Two parts of an articulated object, (a) in their own coordinate system
and (b) the ideal configuration of the pair.

5.2 Geometry

For the articulated objects, pairs of parts are connected by flexible joints. A pair

of connected parts is illustrated in Figure 5-3. The location of the joint is specified

by two points (xij, Yij) and (xji, y3i), one in the coordinate frame of each part, as

indicated by circles in Figure 5-3a. In an ideal configuration these points coincide, as

illustrated in Figure 5-3b. The ideal relative orientation is given by Oij, the difference

between the orientation of the two parts, and the ideal relative length is given by Si.

Suppose 1i = (xi, yi, si, Oi) and 1j = (xj, yj, sj, Oj) are the locations of two connected

parts. The joint probability for the two locations is based on the deviation between

their ideal values and the observed values,

p(1i, ljIcCi) = N(x - X', 0, o)

)(y - yj, 0, 2)
Y 2) (5.1)

.V(sj - si, sij, oU)

M(Oj - Oi, Oi, k),

where (x', y') and (x', yj) are the positions of the joints in image coordinates. Let RO

be the matrix that performs a rotation of 0 radians about the origin. Then,

= + siRo, and + sjRo.
yI y

41

The distribution over angles, M, is the von Mises distribution (see [18]),

M (0, p, k) oc ek 0(-)

The first two terms in the joint distribution measure the horizontal and vertical

distances between the observed joint positions in the image. The third term measures

the difference between the relative sizes of the two parts and the ideal relative size.

The last term measures the difference between the relative angle of the two parts and

the ideal relative angle. Usually a, and c7y will be small so parts tend to be aligned at

their joint. And if k is small, the angle between the two parts is fairly unconstrained,

modeling a revolute joint.

The connection parameters under this model are,

c = (z, y, 2 i,0, , o , 2 , k).

Finding the maximum likelihood estimate of (sij, o) is easy since we just have a

Gaussian distribution over the size differences. sij is just the mean size difference

over the examples and or is the sample variance. Similarly, there are known methods

to find the ML parameters (Oij, k) of a von Mises distribution (see [18]). The ML

estimate of the joint location in each part is the values (Yij, xi, yji) which minimize

the sum of square distances between (X', yi) and (x, yj) over the examples. We can

compute this as a linear least squares problem. The variances (o, o) are just the

sample variances.

We need to write the joint distribution of 1i and l in the specific form required

by our algorithms. It must be a Gaussian distribution with zero mean and diagonal

covariance in a transformed space, as described by equation (2.3). First note that a

von Mises distribution over angular parameters can be specified in terms of a Gaussian

over the unit vector representation of the angles. Let a and 3 be the unit vectors

corresponding to two angles a and /. That is, a = [cos(a), sin(af)]T, and similarly

42

for 3. Then,

2costIl- -=Oil= 2

Now let
Ti (li) = (x'i, y , si + s, cos(O + 5), sin(Oi + Oij)),

Tji(l) = (x', yj, sj, cos(0j), sin(0j)),

E = diag(1/o , 1/os, 1/of, k, k),

which allow us to write equation (5.1) in the right form,

p(li, 1jci) = N(Tys(1j) - T (l), 0, Ei).

For these models, the number of discrete locations in the transformed space is a little

bit larger than the number of locations for each part. This is because we represent

the orientation of a part as a unit vector. In practice, we use 32 possible angles for

each part, and represent them as points in a 11 x 11 grid.

5.3 Experiments

In this section, we present experiments of using the articulated models just described

to represent the human body. Our model has ten parts, corresponding to the torso,

head, two parts per arm and two parts per leg. To generate training examples we

labeled the location of each part in ten different images (without too much precision).

The learned model is shown in Figure 5-4. The crosses indicate joints between parts.

We never told the system which parts should be connected together, this is automat-

ically learned during the ML parameter estimation. Note that the correct structure

was learned, and the joint locations agree with the human body anatomy (the joint

in the middle of the torso connects to the head).

We tested the model by matching it to novel images. As described in Section 5.1,

the MAP estimate can be a bad guess for the object location. Therefore we sample

configurations from the posterior distribution and rate each sample using a separate

measure. For each sample we computed a Chamfer distance between the shape of

43

Figure 5-4: Model of human body.

the object under that configuration and the silhouette obtained from the input im-

age. The Chamfer distance is a robust measure of binary correlation (see [6]). The

matching process is illustrated in Figure 5-5. First, a silhouette is obtained from the

original image using background subtraction. We use the silhouette as input to the

sampling algorithm and obtain a number of different pose hypothesis. The best pose

is then selected using the Chamfer measure.

More matching results are shown in Figure 5-6. For each image, we sampled two-

hundred object configurations from the posterior distribution and picked the best one

under the Chamfer distance. Using a desktop computer it took about one minute to

process each example. The space of possible locations for each part was discretized

into a 70 x 70 x 10 x 32 grid, corresponding to (x, y, s, 0) parameters.

Figure 5-7 shows that our method works well with noisy input. There is no way

to detect body parts individually on inputs like that. But the dependencies between

parts provide sufficient context to detect the human body as a whole. Of course,

sometimes the estimated pose is not perfect. The most common source of error comes

from ambiguities in the silhouette. Figure 5-8 shows an example where the silhouette

doesn't provide enough information to estimate the position of one arm. Even in that

case we get a fairly good estimate. We can detect when ambiguities happen because

we obtain many different samples with equally good Chamfer distance.

44

Figure 5-5: Input image, silhouette, random samples,
the Chamfer distance.

and best result selected using

45

7= - -- I .- - - -- -

I

Figure 5-6: Matching results (sampling 100 times).

46

Figure 5-7: Even with noisy silhouettes we get good results.

47

Figure 5-8: In this case, the silhouette doesn't provide enough information to estimate

the position of one arm.

48

Chapter 6

Summary

This thesis described a statistical framework to represent the visual appearance of

objects. With a statistical approach we can define the object detection and model

learning problems in a principled way. Our major contribution is a rich class of

models for which we can solve these problems efficiently. The models are based on

the pictorial structure representation developed in [13], which allows for qualitative

descriptions of appearance and is suitable for generic recognition problems.

One of the difficulties in representing generic objects is the large variation in shape

and photometric information in each object class. Using a representation by parts, we

can model the appearance variation in each part separately. We also explicitly model

the geometric configuration of the parts, independent of their individual appearances.

We demonstrated that our methods can be used to learn models for generic objects,

such as faces and human bodies. Using these models we can detect the corresponding

objects and estimate their pose.

Our framework is general, in the sense that it is independent of the specific method

used to represent the appearance of parts, and the type of the geometric relationships

between the parts. We presented two concrete modeling schemes, but there are many

other possibilities. By using a general framework we provided a set of computational

mechanisms that can be shared among many different modeling schemes.

49

6.1 Extensions

1. We can deal with occluded parts by making p(Illi, ui) robust. Basically the

likelihood should never be too small, even when there is no evidence for the part

at some location. The context provided by the unoccluded parts can be rich enough

to constrain the location of occluded parts.

2. We can detect multiple instances of an object using the MAP estimation algorithm.

The algorithm can output the configuration with maximum posterior probability

conditioned on each location for the root part. This doesn't take any more time than

computing the MAP estimate itself. So we could just pick all locations for the root

that yield a high posterior. We could also look at the configuration we get for each

possible location of the root and classify them using a separate method. This would

select h configurations to be tested, out of the possible h". Another option is to

sample multiple times from the posterior.

3. If we have an image sequence, we can detect an object in the first frame and use that

location as prior information for the detection in the next frame. All our algorithms

can be modified to take into account prior information over absolute locations. This

would yield a tracking system.

50

Bibliography

[1] A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic programming for

solving variational problems in vision. PAMI, 12(9):855-867, September 1990.

[2] Y. Amit and D. Geman. A computational model for visual selection. Neural

Computation, 11(7):1691-1715, October 1999.

[3] Y. Amit and A. Kong. Graphical templates for model registration.

18(3):225-236, March 1996.

[4] J.O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,

1985.

[5] G. Borgefors. Distance transformations in digital images. CVGIP, 34(3):344-371,

June 1986.

[6] G. Borgefors. Hierarchical chamfer matching: A parametric edge matching al-

gorithm. PAMI, 10(6):849-865, November 1988.

[7] Y. Boykov, 0. Veksler, and R. Zabih. Energy minimization with discontinuities.

Under Review, 1998.

[8] Y. Boykov, 0. Veksler, and R. Zabih. Markov random fields with efficient ap-

proximations. In CVPR98, pages 648-655, 1998.

[9] M.C. Burl, M. Weber, and P. Perona. A probabilistic approach to object recogni-

tion using local photometry and global geometry. In ECCV98, pages 11:628-641,

1998.

51

PAMI,

[10] C.K. Chow and C.N. Liu. Approximating discrete probability distributions with

dependence trees. IEEE Trans. Information Theory, 14(3):462-467, May 1968.

[11] T.H. Cormen, C.E. Leiserson, and Rivest R.L. Introduction to algorithms. MIT

Press and McGraw-Hill, 1996.

[12] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient matching of pictorial struc-

tures. In CVPROO, pages 11:66-73, 2000.

[13] M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial

structures. TC, 22(1):67-92, January 1973.

[14] W.T. Freeman and E.H. Adelson. The design and use of steerable filters. PAMI,

13(9):891-906, September 1991.

[15] A.E. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating

marginal densities. J. Royal Stat. Association, 85:398-409, 1990.

[16] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. PAMI, 6(6):721-741, November 1984.

[17] W.E.L. Grimson. Object Recognition by Computer, The Role of Geometric Con-

straints. MIT Press, 1990. With contributions from Tomas Lozano-Perez and

Daniel P. Huttenlocher.

[18] E.J. Gumbel, J.A. Greenwood, and D. Durand. The circular normal distribution:

Theory and tables. J. American Stat. Association, 48:131-152, March 1953.

[19] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images

using the hausdorff distance. PAMI, 15(9):850-863, September 1993.

[20] H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In CVPR98,

pages 125-131, 1998.

[21] A.V. Karzanov. Quick algorithm for determining the distances from the points of

the given subset of an integer lattice to the points of its complement. Cybernetics

52

and System Analysis, pages 177-181, April-May 1992. Translation from the

Russian by Julia Komissarchik.

[22] P. Lipson, E. Grimson, and P. Sinha. Configuration based scene classification

and image indexing. In CVPR97, pages 1007-1013, 1997.

[23] D.G. Lowe. Fitting parameterized three-dimensional models to images. PAMI,

13(5):441-450, May 1991.

[24] B. Moghaddam and A.P. Pentland. Probabilistic visual learning for object rep-

resentation. PAMI, 19(7):696-710, July 1997.

[25] H. Murase and S.K. Nayar. Visual learning and recognition of 3-d objects from

appearance. IJCV, 14(1):5-24, January 1995.

[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

[27] L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall,

1993.

[28] R.P.N. Rao and D.H. Ballard. An active vision architecture based on iconic

representations. AI, 78(1-2):461-505, October 1995.

[29] W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance.

Springer-Verlag, 1996. LNCS 1173.

[30] S. Ullman and R. Basri. Recognition by linear combinations of models. PAMI,

13(10):992-1005, October 1991.

[31] W.M. Wells, III. Efficient synthesis of gaussian filters by cascaded uniform filters.

PA MI, 8(2):234-239, March 1986.

[32] L. Wiskott, J. Fellous, N. Kruger, and C. von der Malsburg. Face recognition by

elastic bunch graph matching. PAMI, 19(7):775-669, July 1997.

53

