
Practical Algorithms for Distributed Network

Control
by

Nathaniel Matthew Jones

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

MASSACHUSETTS 1NjftMlWJE
OF TECHNOLOGY

NOV 12 2013

LIBRARIES

@ Massachusetts Institute of Technology 2013. All

A u th o r ...
Department of Aeronautics

/ I A

Certified by

Profess r of Aeronautics

rights reserved.

Astronautics
August 14, 2013

Eytan Modiano
and Astronautics
Thesis Supervisor

Certified by..............

Certified by...............

Accepted by.........

Brooke Shrader

Technical Staff, MIT Lincoln Laboratory
Thesis Supervisor

Moe Win

Professor ;Aeronautics and Astronautics

- / gc Thesis Committee Member

Eytan Modiano

Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

2

Practical Algorithms for Distributed Network Control

by

Nathaniel Matthew Jones

Submitted to the Department of Aeronautics and Astronautics
on August 14, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Optimal routing and scheduling algorithms have been studied for decades, however
several practical issues prevent the adoption of these network control policies on the
Internet. This thesis considers two distinct topics in distributed network control:
(i) maximizing throughput in wireless networks using network coding, and (ii) de-
ploying controllable nodes in legacy networks.

Network coding is a relatively new technique that allows for an increase in through-
put under certain topological and routing conditions. The first part of this thesis
considers jointly optimal routing, scheduling, and network coding strategies to maxi-
mize throughput in wireless networks. We introduce a simple network coding strategy
and fully characterize the region of arrival rates supported. We propose a centralized
dynamic control policy for routing, scheduling, and our network coding strategy, and
prove this policy to be throughput optimal subject to our coding constraint. We
further propose a distributed control policy based on random access that optimizes
for routing, scheduling, and pairwise coding, where pairwise coding captures most of
the coding opportunities on random topologies. We prove this second policy to also
be throughput optimal subject to the coding constraint. Finally, we reduce the gap
between theory and practice by identifying and solving several problems that may
occur in system implementations of these policies.

Throughput optimal policies typically require every device in the network to make
dynamic routing decisions. In the second part of this thesis, we propose an overlay
routing architecture such that only a subset of devices (overlay nodes) need to make
dynamic routing decisions, and yet maximum throughput can still be achieved. We
begin by formulating an optimization problem that searches for the minimum overlay
node placement that achieves maximum throughput. We devise an efficient placement
algorithm which solves this problem optimally for networks not subject to interference
constraints. Then we propose a heuristic control policy for use at overlay nodes, and
show by simulation that this policy performs optimally in all studied scenarios.

Thesis Supervisor: Eytan Modiano
Title: Professor of Aeronautics and Astronautics

3

Thesis Supervisor: Brooke Shrader
Title: Technical Staff, MIT Lincoln Laboratory

Thesis Committee Member: Moe Win
Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

I would first and foremost like to thank my advisor, Eytan Modiano, who has patiently

met with me on a weekly basis since I started this program four years ago. Having

an advisor who takes a keen interest in the work and lives of his students is an asset

that not every graduate student can claim to have. I have been lucky to work with

someone so gifted and dedicated for the past four years.

I am also very fortunate to have worked with Brooke Shrader, my co-advisor

from Lincoln Laboratory. Brooke traveled between Lincoln Lab and the MIT campus

countless times to help me with my research. Her ability to help me convert intuition

into mathematical formulations has made me a better researcher, and I am excited

to return to work with her at Lincoln Lab.

Many thanks also to Moe Win, my committee member who has supported me en-

thusiastically at many key crossroads in this program. He was there for my qualifying

exams, my proposal defense, and now my thesis defense. I appreciate his flexibility,

kindness, and support of my research.

Georgios Paschos, one of my thesis readers, came to MIT later in my career here,

but his help with my research has been immeasurable. He has become a friend, an

unofficial mentor, and a collaborator. I also appreciate his many failed attempts at

trying to convince me to like coffee.

Thanks to Hulya Seferoglu for being a thesis reader and for sharing advice on the

practical applications of my research.

Thanks also to Chih-ping Li for always being willing to help me when I was stuck

on proofs.

My time here would not have been nearly so much fun were it not for Greg

Kuperman, Seb Neumayer, and Matt Johnston, who somehow made our office below

the Gas Turbine Lab a fun place to be with discussions of critical topics, like locating

free soda and light bulb failure rates.

Sincere thanks to all the other post-docs and fellow students in CNRG for being

such a talented and friendly cohort.

5

Thanks to my mentor in the Lincoln Scholars Program, Andrew Worthen, for fre-

quent advice and encouragement on my academic progress, and necessary distractions

on diverse topics ranging from plotting styles to gardening tips.

I wouldn't be here without the support of Lincoln Laboratory, specifically everyone

in Group 63 who have been with me since I moved to the Boston area, all the support

staff who helped me with various logistical issues, and the Lincoln Scholars Program,

which made my return to grad school possible.

And of course, love and thanks to my family. Thanks to my parents, Jana and

Rudy, for their inspiration and encouragement. Thanks to my sister and brother-in-

law, Katie and Scott, for always offering a bedroom in Georgia and a cold beer in

the fridge. And thanks to my sister Rachel and brother Josh for cheering me along

through four years of grad school.

I thank my best friend and fianc6e, Carrie Klugman, whose unrelenting support,

patience, and laughter has kept me going, ever since the incident with a tomato in

the elevator.

Thanks to Julie and Craig Klugman for their many, many delicious snack deliv-

eries, and to Josh Klugman for always finding humor in academia.

This work is sponsored by the Department of the Air Force and the Assistant

Secretary of Defense for Research and Engineering under Air Force Contract FA8721-

05-C-0002. Opinions, interpretations, conclusions and recommendations are those of

the author and are not necessarily endorsed by the United States Government.

6

Contents

1 Introduction 15

1.1 Background . 16

1.2 Related Work . 20

1.2.1 Network Coding. 20

1.2.2 Routing and Scheduling . 21

1.2.3 Joint Routing, Scheduling, and Network Coding 23

1.2.4 Backpressure Routing in a Network Overlay 23

1.3 Contributions . 25

1.3.1 Centralized Control for k-Tuple Coding 25

1.3.2 Distributed CSMA with Pairwise Coding 26

1.3.3 Backpressure Routing in Overlay Networks 27

2 Centralized Control for k-Tuple Coding 29

2.1 Introduction . 30

2.2 Model 33

2.2.1 Wireless Network . 33

2.2.2 Routing and Scheduling . 34

2.2.3 Network Coding. 34

2.3 Stability Region . 40

2.4 LCM-Frame Policy for Routing, Scheduling, and k-Tuple Coding . . . 43

2.5 k-Tuple Coding Gain . 45

2.6 Complexity and Side Information . 47

2.6.1 Complexity of Weight Computation 47

7

2.6.2 Upper Bound on Side Information 48

2.7 Numerical Results . 48

2.7.1 Simulation Results . 49

2.7.2 Linear Program Results . 52

2.8 Summary . 53

2.A Proof of Stability for LCM-Frame Policy 54

3 Distributed CSMA with Pairwise Coding 59

3.1 Introduction 59

3.2 Model 62

3.2.1 Wireless Network . 62

3.2.2 Adaptive CSMA . 63

3.2.3 Backpressure Routing . 64

3.2.4 Network Coding. 65

3.3 Stability Region . 66

3.4 Distributed CSMA . 68

3.4.1 Distributed CSMA Policy for Pairwise Coding 68

3.4.2 Rate Stability . 69

3.5 Packet Overhearing Extension . 70

3.5.1 Updated Stability Region for Overhearing 72

3.5.2 Policy Modification for Overhearing 72

3.5.3 Linear Program Results . 73

3.6 Implementation Considerations . 75

3.6.1 Backoff Times . 75

3.6.2 Avoiding Greedy Application of Network Coding 77

3.6.3 Minimum Queue Size with Network Coding 79

3.6.4 Managing Side Information Buffers 80

3.7 Numerical Results . 80

3.8 Summary . 85

3.A Rate Stability . 85

8

4 Backpressure Routing in Overlay Networks 89

4.1 Introduction 90

4.2 M odel . 93

4.2.1 Network . 93

4.2.2 Uncontrollable Nodes . 93

4.2.3 Controllable Nodes . 94

4.3 Throughput Region . 95

4.4 Placement of Overlay Nodes . 99

4.4.1 Overlay Node Placement Algorithm 100

4.5 Overlay Node Placement Results . 105

4.5.1 Simple Scenarios . 105

4.5.2 Random Networks . 107

4.6 Limited Number of Controllable Nodes 114

4.7 Overlay Nodes in Wireless Networks 114

4.8 Backpressure Overlay Policy . 117

4.8.1 The Control Problem . 118

4.8.2 Insufficiency of Traditional Backpressure Routing 119

4.8.3 The Proposed OBP Policy . 121

4.9 Sum m ary . 126

4.A Proofs . 128

4.A.1 Proof of Theorem 4.1 . 128

4.A.2 Proof of Lemma 4.3. 129

4.A.3 Proof of Lemma 4.5. 130

5 Conclusions 133

9

10

List of Figures

1-1 Stability region for 2-way relay. 16

1-2 Network coding on 2-way relay scenario. 17

1-3 Network overlay. 19

2-1 Pairwise coding on the 2-way relay scenario. 30

2-2 Pairwise coding operation. 35

2-3 3-tuple coding operation. 36

2-4 Pair of 3-tuple coding operations. 39

2-5 Queue size versus offered load for the LCM-Frame policy. 49

2-6 Network queue size versus simulation time. 50

2-7 Pairwise coding gain for random topologies. 51

2-8 Ratio of coding gain for 3-tuple versus pairwise coding. 51

2-9 Pairwise coding gain with 1-hop and 2-hop interference. 53

3-1 Pairwise coding operation. 66

3-2 Subqueues at node a for commodity x. 66

3-3 Simple packet overhearing operation. 70

3-4 Pairwise coding scenarios with overhearing. 71

3-5 Comparison of pairwise coding gains with and without overhearing. . 74

3-6 The 4 node diamond scenario. 78

3-7 Simulations on 3 node scenario from Figure 3-la. 81

3-8 Queue size versus number of nodes in tandem scenario. 83

3-9 Comparing MWS and CSMA for a 16 node scenario. 84

11

4-1 Network overlay model. 91

4-2 Path concatenation at controllable nodes. 95

4-3 Subset relationship in throughput region. 99

4-4 Summary of the overlay node placement algorithm. 104

4-5 Overlay node placement on a 7 x 7 grid. 108

4-6 Overlay node placement on power-law graphs. 109

4-7 Overlay node placement on Erd6s-Renyi random graphs. 110

4-8 Overlay node placement on Watts-Strogatz small-world graphs. . 112

4-9 Overlay node placement on Barabasi-Albert scale-free graphs. 113

4-10 Placing limited number of overlay nodes. 115

4-11 Overlay node placement on random geometric graphs. 117

4-12 Insufficiency of BP in overlay networks. 120

4-13 OBP simulation on scenario from Figure 4-12a. 122

4-14 Comparing OBP with BP. 124

4-15 Delay of BP and OBP on a directed tandem. 125

4-16 OBP on a ring network. 127

12

List of Tables

3.1 Maximum values for ri before overflow of rate R 76

13

14

Chapter 1

Introduction

There is an ongoing proliferation of wireless networks, out of convenience and neces-

sity. However, existing networks are often inefficient at supporting traffic demands

due to poor mitigation of wireless interference and suboptimal choice of routes. Net-

work expansion is extremely expensive due to a scarce frequency spectrum and high

costs of deploying wired infrastructure. This motivates our study of network control

policies that maximize throughput.

There have been many recent innovations in data networks with notable advances

in scheduling, routing, and network coding. The pioneering work on network con-

trol [40] provides a joint routing and scheduling policy that maximizes the region of

sustainable arrival rates versus all other routing and scheduling policies. Network

coding [1] is a relatively new technique that allows for an increase in throughput

under certain topological and routing conditions. Despite a wealth of rich theory, a

deficiency of practical implementations limits the adoption of these advanced tech-

niques.

This thesis moves towards practical implementation on two fronts. In Chapters 2

and 3, we consider the interactions between scheduling, routing, and network coding,

and propose dynamic policies that maximize the region of sustainable throughput

vectors in wireless networks. In Chapter 4, we consider integration with legacy net-

works by proposing an overlay approach where throughput can be maximized when

optimal control policies are applied at only a subset of nodes in the network.

15

1.1 Background

In deployed wireless networks, throughput is commonly limited due to inefficient

routing and scheduling algorithms. For example, consider the scheduling algorithm

used in IEEE 802.11 protocols that attempts to give all nodes equal access to the

channel. This equal access is undesirable for well-connected nodes that serve as

relays for a large fraction of traffic in the network. Also, commonly used routing

protocols such as OSPF try to identify the best single-path routes between sources and

destinations, ignoring diverse multiple-path routing opportunities that can increase

throughput and reduce congestion. The research area known as network control

considers routing and scheduling policies that overcome these deficiencies by using

multiple-path routes and choosing efficiently packed transmission schedules.

AY

session X 1/2

session Y

0 1/2 X
(a) Scenario (b) Stability Region

Figure 1-1: The wireless 2-way relay scenario and associated stability region.
(a) Nodes a and c can communicate only through the relay at node b. Dashed arrows
indicate traffic sessions. (b) Stability region for traffic sessions X and Y, assuming
at most one node can transmit at a time.

The stability region is the set of all arrival rates that can be supported by a

network, and is the largest region that any control policy can achieve. We give an

example of a stability region for the wireless 2-way relay scenario shown in Figure 1-la.

Here nodes a and c would like to exchange traffic, but can only communicate via the

relay at node b. For this wireless scenario, we assume interference constraints such

that at most one node can transmit at a time. Session X carries traffic from node

a to node c with an arrival rate of Ax, while session Y carries traffic from c to a

with arrival rate Ay. Either session can individually support an arrival rate of 1/2,

16

as it takes 2 transmissions to deliver each packet. Thus the network can support

arrival rates (Ax, Ay) of (0, 1/2) and (1/2, 0). Taking the convex hull of these two

extreme points and the origin gives the stability region' shown as a gray triangle in

Figure 1-1b.

Network coding is a coding technique that allows for increased throughput by

encoding packets at intermediate nodes in the network. With network coding, data

can be exchanged in fewer transmissions by strategically combining packets such that

each recipient has previously seen some portion of the encoded set.

Ay

(T1) 1/2

(T2)

(T3)

Px ®Py
0 1/3 1/2 A

(a) Pairwise Coding (b) Stability Region

Figure 1-2: Network coding on wireless 2-way relay scenario from Figure 1-1.
(a) Packets px and py exchanged in 3 transmissions using pairwise coding. (b) Pair-
wise coding adds the area of the dark gray triangle to the non-coding stability region
from Figure 1-1b.

A motivating example for wireless network coding is shown in Figure 1-2, where

we again consider the wireless 2-way relay scenario. In Figure 1-2a, we would like

to exchange one packet for each session. With network coding, these packets can be

exchanged in only 3 transmissions: (TI) send packet px from node a to node b; (T2)

send packet py from node c to node b; and (T3) send coded packet px Dpy as a binary

XOR combination of the two packets from node b to both a and c simultaneously via

a single wireless multicast transmission. Node a knows the value of packet px, so it

can therefore recover packet py. Likewise, node b can recover packet px. Without

network coding, this same packet exchange takes 4 transmissions, so in this example

'The full stability region of this network is a 6 dimensional polytope accounting for all combina-
tions of traffic sessions between nodes a, b, and c. For ease of exposition, we show a 2 dimensional
slice of this region where only sessions X and Y are active.

17

network coding has increased throughput by a factor of 4/3. This example shows

that network coding can support a symmetric arrival rate of (1/3,1/3), increasing

the stability region from the gray triangle shown in Figure 1-lb to also include the

area of the dark gray triangle in Figure 1-2b.

We would like to exploit network coding opportunities to increase throughput in

wireless networks. However, naive application of network coding can actually reduce

throughput by increasing interference and causing traffic to flow on undesirable paths.

Therefore we wish to find strategies that seek out beneficial coding opportunities

in the network while deferring to uncoded transmissions when no beneficial coding

opportunities exist. This requires a routing and scheduling strategy with knowledge

of network coding, as optimal routes and schedules may change when network coding

is considered.

In the first part of this thesis, we jointly optimize for routing, scheduling, and

network coding in wireless networks. We consider online policies that make dynamic

decisions based on queue state information without requiring knowledge of the exoge-

nous arrival rates. We develop both centralized and distributed policies, and compare

their performance. We will prove that our policies are throughput optimal subject

to our coding constraint, in that the policies maximize the region of arrival rates

supported by the network.

In the second part of this thesis, we consider the use of throughput optimal control

policies in legacy networks. We would like to enable network control policies to be

deployed in existing networks, alongside legacy nodes that are unaware of our control

policies. However, policies based on differential backlog routing typically require a

homogeneous network where all nodes participate in the network control decisions.

A problem with heterogeneous networks containing a mixture of controllable and

legacy nodes is that legacy nodes might not be able to forward all traffic that they

receive, creating a black hole route2 . The legacy nodes have no means to communicate

congestion information with controllable nodes, thus congested routes can attract

2Such nodes are sometimes called trapping nodes, and usually are explicitly assumed to not exist
on backpressure networks.

18

Figure 1-3: Example of a network overlay. The bottom plane shows the full network
graph, while the top plane shows a subset of network nodes and their conceptual
overlay connectivity.

more traffic and can cause the network queues to grow without bound.

Network overlays are frequently used to deploy new communication architectures

in legacy networks [31]. To accomplish this, messages from the new technology are

encapsulated in the legacy format, allowing the two methods to coexist in the legacy

network. Nodes making use of the new communication methods are then connected

in a conceptual network overlay that operates on top of the legacy network, as shown

in Figure 1-3. The most predominant example of a network overlay is the Internet,

which was previously connected as a network overlay on top of the public telephone

networks (e.g., via dial-up modems). Lately, this situation has reversed such that

telephone communications now largely operate as a network overlay on top of the

Internet (e.g., via Voice-over-IP).

We model our heterogeneous mixture of controllable and legacy nodes such that

controllable nodes are deployed in a network overlay operating on top of the legacy

network. We consider two complementary parts to this problem: (1) we develop

algorithms to choose which legacy nodes to replace with controllable nodes for max-

imizing throughput, and (2) we design a backpressure-based network control policy

to be used in the network overlay setting. We then evaluate our backpressure overlay

policy via simulation, and observe that maximum throughput can be attained when

only a fraction of legacy nodes are replaced with controllable nodes.

19

1.2 Related Work

The first part of our research is at the intersection of network coding and network

control. While there are many related works on each of these individual research

topics, there is little existing work on the combined area of routing, scheduling, and

network coding. We review literature on network coding in Section 1.2.1, routing

and scheduling in Section 1.2.2, and joint routing, scheduling, and network coding in

Section 1.2.3.

The second part of our research considers the use of network control policies in

heterogeneous networks with a mixture of legacy and fully controllable nodes. Our

approach will use a modified backpressure policy in a network overlay model. In

Section 1.2.4, we review literature on modified backpressure policies that are related

to ours, and on the use of network overlays to incorporate advanced routing techniques

into legacy networks.

1.2.1 Network Coding

Originally introduced in 2000 by Ahlswede, Cai, Li, and Yeung [1], network coding

can increase network throughput by allowing intermediate nodes to combine or en-

code received data rather than simply forwarding it. The benefit of this approach

for wireless transmissions was clearly demonstrated by COPE [14], an opportunistic

network coding protocol that takes advantage of wireless multicast and allows encod-

ing of packets between multiple unicast sessions using binary XOR operations. The

authors combine their coding strategy with a modified MAC protocol to show signifi-

cant throughput improvements versus a standard 802.11 MAC on a wireless testbed.

A more sophisticated coding scheme was considered by Traskov et al. [42], where a

linear program is developed to identify butterfly coding opportunities throughout the

network. While the proposed scheme realizes many advanced coding opportunities,

the scheme is suboptimal due to high complexity of the problem. The original work

on COPE [14] explored the interplay between coding and scheduling, and subsequent

work in [37] motivated the need for routing protocols to be aware of COPE-style

20

network coding. The appropriate choice of routes can increase coding opportunities

and [37] shows that significant throughput improvements are possible through such

coding aware routing. This is further studied in a utility maximization framework [35]

to argue that rate control and scheduling should also be coding-aware. In this work,

we address the joint design and performance of routing, scheduling, and coding in a

wireless network.

Network coding can be combined with packet overhearing to yield additional

coding opportunities. Packet overhearing occurs when nodes receive a packet concur-

rently with that packet's intended recipient. These additional nodes can then use their

knowledge of the overheard packet in future decoding operations. Katti et al. [14] use

opportunistic overhearing with coding operations over 3 or more packets. A similar

coding scheme is combined with energy efficient scheduling in [6]. Khreishah et al. [16]

use pairwise coding with overhearing in a joint coding, scheduling, and rate control

policy, while Paschos et al. [30] optimize for scheduling and pairwise coding with

statistical overhearing. Finally, a policy for scheduling and coding with symmetric

overhearing on star topologies is provided in [34]. We incorporate overhearing into

our coding strategy in Chapter 3.

1.2.2 Routing and Scheduling

Numerous previous works have considered joint routing and scheduling in the ab-

sence of network coding. In their seminal paper on network control [40], Tassiulas

and Ephremides introduce the maximum weight scheduling (MWS) and differential

backlog routing policy to provide throughput optimal network control. The policy

has an attractive property for dynamic control in that decisions rely only on cur-

rent queue state information, without requiring knowledge of the long-term arrival

rates. The authors are able to prove, using Lyapunov stability theory, that their

policy can stabilize the network queues for any stochastic arrival process within the

stability region of the network. Neely, Modiano, and Rohrs [27] extended this to

jointly optimize for routing, scheduling, and power control in wireless networks with

time-varying channels. Le, Modiano, and Shroff [17] developed routing, scheduling,

21

and flow control algorithms for wireless networks with finite buffers.

Several recent works combine differential backlog routing with random access

schedulers in place of MWS to avoid the need for information sharing inherent to

centralized control. Jiang and Walrand [10] provided a carrier sense multiple access

(CSMA) policy that adaptively chooses backoff durations based on queue backlogs

to achieve throughput optimality under an ideal CSMA setting. Ni and Srikant [29]

relax the ideal CSMA assumption and avoid collisions of data packets by allowing col-

lisions in control traffic while still maintaining throughput optimality. Marbach and

Eryilmaz [21] provide an alternate proof to [10] and provide additional results under

the primary interference model. Liu et al. [19] provide another proof of convergence

for [10] and study the effects of collisions. Rajagopalan, Shah, and Shin [32] provided

a throughput optimal slotted ALOHA policy that chooses transmission probabilities

as a function of queue backlog.

Other works have also focused on distributed queue-based scheduling, and can

be extended to incorporate backpressure routing. Chaporkar, Kar, and Sarkar [4]

characterized performance bounds of a distributed maximal scheduler with imperfect

matchings. Modiano, Shah, and Zussman [22] provided a distributed scheduler that

achieves 100% throughput using a randomized gossip algorithm.

While the literature is very rich for the theoretical framework of MWS and back-

pressure routing, there are very few system implementations addressing the practical

aspects of these policies. This is in part due to the overhead required to implement

MWS under centralized control. Moeller et al. [23] provided the backpressure col-

lection protocol for wireless sensor networks and evaluated the performance of this

backpressure routing scheme on a testbed with 40 Mote sensor devices. Nardelli et

al. [25] implemented their oCSMA policy as a variation of [10], and were able to eval-

uate the performance of oCSMA under several scenarios known to cause problems for

standard 802.11 MAC protocols.

22

1.2.3 Joint Routing, Scheduling, and Network Coding

Network coding has been incorporated into the design of scheduling and routing

schemes in recent work. A number of recent works, including [5], [16], [30], [34], [41],

and [43], develop joint scheduling and coding schemes in a network control framework,

either for single-hop transmissions, or under the assumption that routes are fixed and

specified a priori. In addressing the routing problem, [42] provides a linear optimiza-

tion approach for identifying network coding opportunities on butterfly subgraphs

with multiple unicast sessions, while [7] develops a policy for dynamic routing and

scheduling to provide stability throughout the region from [42]. The poison-remedy

approach introduced in [7] involves opportunistically identifying coding opportunities,

creating poisoned or coded packets, and subsequently sending a request for remedy

or uncoded packets to be sent to the destination node to allow for decoding. In

a different approach, [6] provides a distributed backpressure routing and maximum

weight scheduling policy for a generalized COPE coding scheme, making opportunis-

tic coding decisions to increase throughput. The policy in [6] exploits the use of

overhearing to provide coding opportunities, optimizing for a subset of coding oppor-

tunities to reduce complexity while allowing for distributed implementation. Finally,

[38] formulates a linear program for the joint routing, scheduling and pairwise coding

problem and evaluates results from a computational solution to the problem.

1.2.4 Backpressure Routing in a Network Overlay

Here, we discuss works related to application of backpressure routing in network

overlays. This includes general use of network overlays for improved route selec-

tion, modifications to the differential backlog routing policy for reducing delay, and

separation of routing and scheduling in network control policies.

Several works have considered the use of network overlays to improve routing on

the Internet. Andersen et al. [2] motivate the need for resilient overlay networks

(RON) to find paths around network outages on a faster timescale than BGP. Their

method deploys a group of RON nodes as an application-layer overlay across various

23

routing domains, continuously monitoring the quality of paths in the RON to decide

which routes to use. Similarly, Han et al. [9] proposed a method for choosing place-

ment of overlay nodes to improve path diversity in overlay routes. While both of

the preceding works show that their strategies choose high quality single-path routes,

we would like to go further and identify multiple-path routes that offer maximum

throughput.

Delay reduction for backpressure routing has been studied in a variety of scenar-

ios. While multiple-path routes are required to support the full stability region, the

exploratory phase of backpressure routing can lead to large queues when the offered

load is low and single-path routes would suffice. Neely, Modiano, and Rhors [26]

propose a hybrid policy combining backpressure routing with shortest-path routing,

where flows are biased towards shortest-path routes, yet still support the full stability

region. Khan, Le, and Modiano [15] extend this hybrid policy to also include digital

fountain codes, and show their policy to achieve minimum end-to-end delay in the

presence of random link failures. Ying, Shakkottai, and Reddy [44] develop a policy

that achieves a similar shortest-path result by minimizing the average path length

used by flows. In a scenario with multiple clusters that are intermittently connected,

Ryu, Ying, and Shakkottai [33] combine backpressure routing with source routing in

a network overlay model to separate the queue dynamics of intra-cluster traffic from

longer inter-cluster delays. Bui, Srikant, and Stolyar apply shadow queues [3] to allow

the use of per-neighbor FIFO queues instead of per-commodity queues, as is typical

with differential backlog routing, and find that this can improve network delay.

Seferoglu and Modiano develop the Diff-Max [36] policy, which separates routing

and scheduling functions for backpressure networks. This separation simplifies prac-

tical implementation of network control policies, and their control function modifies

the differential backlog routing policy in a similar fashion as our backpressure policy

for network overlays in Chapter 4.

24

1.3 Contributions

Next we preview the main contributions in this thesis.

1.3.1 Centralized Control for k-Tuple Coding

In Chapter 2, we consider jointly optimal routing, scheduling, and network coding

strategies to maximize throughput in wireless networks. Other works also combine

network coding with optimal routing and scheduling, but have either applied network

coding in an opportunistic manner [6] or considered advanced network coding strate-

gies where the region of supported arrival rates is difficult to characterize [7]. Our

approach is to instead consider a simple network coding strategy where we exactly

define our coding constraint, and therefore we can characterize the stability region

for our coding scheme.

The original policy for differential backlog routing with max-weight scheduling [40]

is optimal for a class of routing and scheduling algorithms that support multicom-

modity unicast traffic. We generalize the class of supported algorithms to also include

network coded transmissions via wireless multicast, subject to our coding constraint,

and then we develop a policy to optimize for this more general class. We are able to

jointly optimize for routing with network coding because the inherit behavior of our

policy is to probe all edges and hyperedges in the network with each commodity. As

the policy explores the network, queue backlogs grow until routes are found that can

satisfy a given arrival rate vector. If coding is required for the rate vector to be sat-

isfied, then backlogs will grow until the necessary coding opportunities are available

for a sufficient fraction of time to satisfy the rate vector.

A generalization of pairwise network coding with next-hop decodability is intro-

duced - called k-tuple coding. The region of arrival rates is fully characterized for

which the network queues can be stabilized under this coding strategy.

We propose a dynamic control policy for routing, scheduling, and k-tuple coding,

and prove that our policy is throughput optimal subject to the k-tuple coding con-

straint. Analytical bounds are provided for coding gain of the policy, and numerical

25

results are presented to support our analytical findings. The stability region is eval-

uated directly, using a linear program solver, both with and without network coding

to calculate the coding gain along random arrival rate vectors in the stability region.

We study our policy in a packet simulator to verify that the queues remain relatively

small for arrival rates interior to the stability region, and observe average network

queue sizes with and without network coding to compare network delays.

Simulation results show that most of the gains are achieved with pairwise coding,

and that the coding gain is greater with 2-hop interference3 than 1-hop interference4 .

Also, we find that under 2-hop interference, the policy yields median throughput gains

of 31% beyond optimal scheduling and routing on random topologies with 16 nodes.

Results of Chapter 2 were presented in [12].

1.3.2 Distributed CSMA with Pairwise Coding

In Chapter 3, we consider distributed strategies for joint routing, scheduling, and net-

work coding to maximize throughput in wireless networks. While Chapter 2 provides

a centralized control policy for routing, scheduling, and network coding, that policy

requires large overhead to share queue state information with the central controller.

Moreover, the centralized policy from Chapter 2 is based on max-weight scheduling,

which requires solving a computationally hard problem in every time step. Recently,

a distributed CSMA policy [10] with low computational complexity was proved to

be throughput optimal. In Chapter 3, we keep the pairwise network coding and

differential backlog routing strategies from the policy in Chapter 2, but replace the

centralized scheduler with a distributed CSMA scheduler similar to that from [10].

Following the proof from [10], we prove that our CSMA policy can support all arrival

rates allowed by the network subject to our pairwise coding constraint.

The network coding scheme is extended to optimize for packet overhearing to in-

crease the number of beneficial coding opportunities. The stability region is adjusted

3The 2-hop interference model allows simultaneous transmissions to be non-interfering as long as
they are at least 2-hops apart in the network.

4The 1-hop interference model allows each node to transmit or receive at most one packet at a
time.

26

to account for our overhearing scheme, and we evaluate coding gain on random topolo-

gies. The results show that overhearing provides an average throughput gain of only

2% beyond pairwise coding without overhearing, however the additional computa-

tional cost of our overhearing scheme is low. Our results show that overhearing can

provide up to an additional 25% increase in throughput on random topologies, and

thus find it to be a worthwhile addition.

The distributed CSMA policy has the same throughput region as that of the

centralized MWS policy from Chapter 2. However, through simulation we observe

that delay with the CSMA policy can be significantly worse than delay with the

MWS policy. We study delay on structured and random scenarios, and find for both

policies that network queue size grows quadratically with the number of nodes in

tandem, where the CSMA policy has larger coefficients on this quadratic function.

The network queue size from the CSMA policy is found to be inversely proportional

to a, a step-size parameter, where small values of a are required to support the full

stability region. We ultimately conclude that the cost of our distributed optimal

control comes at the cost of increased delay.

Results of Chapter 3 were presented in [13].

1.3.3 Backpressure Routing in Overlay Networks

In Chapter 4, we consider strategies for integrating network control policies in legacy

networks. The approach is to model the controllable nodes as a network overlay

operating within the legacy network, and contributions are along two fronts. First,

we determine where to place controllable nodes with the objective of maximizing

throughput. Second, we develop a network control policy that operates on the network

overlay using a modification to differential backlog routing, allowing the policy to

observe the level of congestion in the legacy network.

The stability region is characterized for heterogeneous network overlays with a

mixture of controllable and uncontrollable nodes, where the controllable nodes can

arbitrarily re-route traffic while all other nodes are limited to forwarding traffic along

shortest-path routes. An all-paths condition is identified, requiring that all paths in a

27

network can be constructed as a concatenation of shortest-path routes at controllable

overlay nodes. This property is proved necessary and sufficient for the network overlay

to have the same stability region as if all nodes in the network were controllable. We

study three classes of simple graphs, and find the minimum number of overlay nodes

required to provide the full stability region: (1) on tree networks, no controllable

nodes are required; (2) on ring networks, exactly 3 controllable nodes are required;

and (3) on clique networks, all nodes must be controllable.

Next, we develop an algorithm for placing controllable nodes to satisfy the all-

paths condition on graphs where shortest-path routes are given. This overlay node

placement algorithm is simulated on several models for random graphs. On power-

law graphs with an exponent of oz = 2.5, considered a good model for the Internet,

only 8% of nodes are required to be controllable to enable the full throughput region.

A variation on the node placement algorithm is provided to maximize scaling of a

specific rate vector given a fixed number of controllable nodes. In one scenario, 80%

of the arrival rate vector is supported with only 4 overlay nodes, while support for

the final 20% of the rate vector requires an additional 5 overlay nodes.

Finally, we propose a heuristic policy for applying differential backlog routing on

network overlays. The overlay backpressure policy is simulated, comparing network

queue size to that of standard differential-backlog on fully controllable networks.

For the scenarios considered, the modified overlay backpressure policy stabilizes the

network queues, yielding the full stability region. We observe decreased delay, relative

to that of standard differential backlog routing, attributed to the reduced number of

controllable nodes.

28

Chapter 2

Centralized Control for k-Tuple

Coding

In this chapter, we consider jointly optimal routing, scheduling, and network coding

strategies to maximize throughput in wireless networks. While routing and scheduling

for wireless networks have been studied for decades, network coding is a relatively

new technique that allows for an increase in throughput under certain topological

and routing conditions. In this work, we introduce k-tuple coding, a generalization of

pairwise coding with next-hop decodability, and fully characterize the region of arrival

rates for which the network queues can be stabilized under this coding strategy. We

propose a dynamic control policy for routing, scheduling, and k-tuple coding, and

prove that our policy is throughput optimal subject to the k-tuple coding constraint.

We provide analytical bounds on the coding gain of our policy, and present numerical

results to evaluate performance on random topologies. We show that most of the

gains are achieved with pairwise coding, and that the coding gain is greater under

2-hop than 1-hop interference. Simulations show that under 2-hop interference our

policy yields median throughput gains of 31% beyond optimal scheduling and routing

without coding on random topologies with 16 nodes.

29

2.1 Introduction

Network coding, originally introduced in [1], can increase network throughput by al-

lowing intermediate nodes to combine or encode the data they receive, rather than

simply replicating and forwarding it. For example, consider the wireless 2-way re-

lay scenario shown in Figure 2-1a, where nodes a and b can only communicate via

the intermediate node r. Here, we assume unit-rate links and that only one node

can transmit at a time. If node r is limited to forwarding traffic without network

coding, then the region of arrival rates that can be supported for these two sessions

is shown as the light gray triangle in Figure 2-1b. However, if node r is also allowed

to perform network coding for this pair of sessions, then the supported region in-

creases to also include the dark gray triangle. Thus, network coding can allow us to

increase throughput in the network. The details of our network coding scheme will

be discussed in Section 2.2.3, and the stability region for this coding scheme will be

characterized in Section 2.3.

AB

session B 1/2

session A

0 1/3 1/2 AA
(a) 2-way Relay Scenario (b) Stability Region

Figure 2-1: Pairwise coding on the 2-way relay scenario. (a) Traffic sessions are shown
with dashed arrows, where session A has rate AA and session B has rate AB. (b) The
stability region is the set of all arrival rates that the system can support. The region
supported without network coding is shown in light gray, while the combination of
light and dark gray triangles show the region supported with network coding.

The benefit of wireless network coding was clearly demonstrated with the in-

troduction of COPE by Katti, et al. [14]. COPE is an opportunistic network coding

protocol that takes advantage of wireless multicast and allows encoding of packets be-

30

tween multiple unicast sessions using binary XOR operations. The authors combine

their coding strategy with a modified MAC protocol to show significant through-

put improvements versus a standard 802.11 MAC on a wireless testbed. While the

original work on COPE [14] explored the interplay between coding and scheduling,

subsequent work by Sengupta, Rayanchu, and Banerjee [37] motivated the need for

routing protocols to be aware of COPE-style network coding. The appropriate choice

of routes can increase coding opportunities and [37] shows that significant through-

put improvements are possible through such coding aware routing. In this chapter,

we address the joint design and performance of routing, scheduling, and coding in a

wireless network.

Numerous previous works have considered joint routing and scheduling in the ab-

sence of network coding. In their seminal paper on network control [40], Tassiulas

and Ephremides introduce the maximum weight scheduling and differential backlog

routing policy to provide throughput optimal network control. The policy has an

attractive property for dynamic control in that decisions rely only on current queue

state information, without requiring knowledge of the long-term arrival rates. The

authors are able to prove, using Lyapunov stability theory, that their policy can sta-

bilize the network queues for any stochastic arrival process within the stability region

of the network. Neely, Modiano, and Rohrs [27] extended this to jointly optimize

for routing, scheduling, and power control in wireless networks with time-varying

channels.

Recently, network coding has been incorporated into the design of scheduling and

routing schemes. A number of recent works, including [5], [16], [30], and [34], develop

joint scheduling and coding schemes in a network control framework, either for single-

hop transmissions, or under the assumption that routes are fixed and specified a pri-

ori. In addressing the routing problem, [42] provides a linear optimization approach

for identifying network coding opportunities on butterfly subgraphs with multiple uni-

cast sessions, while [7] develops a policy for dynamic routing and scheduling to provide

stability throughout the region from [42]. The poison-remedy approach introduced

in [7] involves opportunistically identifying coding opportunities, creating poisoned

31

or coded packets, and subsequently sending a request for remedy or uncoded packets

to be sent to the destination node to allow for decoding. In a different approach, [6]

provides a distributed backpressure routing and maximum weight scheduling policy

for a generalized COPE coding scheme, making opportunistic coding decisions to in-

crease throughput. The policy in [6] exploits the use of overhearing to provide coding

opportunities, optimizing for a subset of coding opportunities to reduce complexity

while allowing for distributed implementation.

This chapter proposes an inter-session network coding strategy that jointly opti-

mizes for routing and scheduling of unicast traffic on wireless networks. The coding

scheme considered does not require overhearing, but simply requires each node to

keep a copy of packets it previously transmitted for some limited period of time. All

coded packets must be decoded at the next hop, and when a coding opportunity

is identified, the requisite conditions for decoding are already satisfied. The main

contributions in this chapter are as follows. We introduce k-tuple coding, a general-

ization of pairwise inter-session network coding, and fully characterize the stability

region under this coding strategy. We then propose a dynamic routing, scheduling,

and k-tuple coding policy and prove that this policy is throughput optimal subject

to the k-tuple coding constraint. Analytical bounds are provided for the throughput

gain of k-tuple coding relative to optimal routing and scheduling without network

coding. Finally, numerical results from simulation and linear program evaluation are

given to provide a sense of the performance of our policy under various settings.

A unique attribute of our policy is that it requires keeping track of which one-hop

neighbor supplies each packet; this requirement shows up both in the characterization

of the stability region and in the construction of weight calculations.

This chapter is organized as follows. Section 2.2 describes our system model,

and Section 2.3 characterizes the stability region under this model. In Section 2.4

we design a control policy that combines scheduling, routing, and network coding to

achieve the given stability region. We provide analytical results on coding gain in

Section 2.5, and describe the complexity of our coding operations in Section 2.6. In

Section 2.7 we give numerical results, and offer concluding remarks in Section 2.8.

32

2.2 Model

2.2.1 Wireless Network

We model the wireless network as a directed hypergraph, G = (K, R), where K is

the set of nodes in the network and ?i is the set of directed hyperedges 1 supported

by the network. Hyperedge (a, j) allows head node a to communicate directly with

a set of tail nodes j using a single transmission. Standard edge (a, b) is a special

case of a hyperedge, where node b is the only tail node. Let k C W be the set of

hyperedges that contain exactly k tail nodes. We model the network as a hypergraph

to capture the effects of wireless multicast transmissions, which are needed by the

network coding strategy.

We consider unicast traffic. In this context, wireless multicast is used only for

the transmission of network coded packets. Time is assumed to be slotted, and for

simplicity unit rate links are used with packets of a fixed size corresponding to one

packet per time slot. Packets destined for node c are called commodity c packets.

Exogenous packet arrivals are allowed from arbitrary processes with finite second

moments. Let A' be the average rate of exogenous arrivals at node a for commodity c,

and let A = (A') be a vector of arrival rates for all sources a and commodities c.

We assume non-interfering transmissions to be reliable, but otherwise allow ar-

bitrary interference constraints. However, our numerical results consider two inter-

ference models of interest: 1-hop and 2-hop interference. In the context of wireless

networks, the 1-hop interference model means that each node can receive from at

most one neighbor at a time, and a node cannot receive while transmitting. The

2-hop interference model builds on the restrictions of 1-hop interference, adding a

constraint such that simultaneous communications will interfere if connected by any

standard edge in the network. We naturally extend the 1-hop and 2-hop interference

models from [39] by allowing these models to make use of wireless multicast.

'We consider hyperedges composed of one or more standard edges emanating from a single node.

33

2.2.2 Routing and Scheduling

A wireless network requires mechanisms for routing packets along a series of hyperedges

toward the destination node and for scheduling a set of hyperedges to be activated si-

multaneously without creating interference. Let schedule e be a set of non-interfering

hyperedges, and let L be the set of all such schedules. We consider a centralized con-

trol policy that dynamically chooses which hyperedges to activate during each time

slot, and chooses which commodity to send over each hyperedge when active.

Tassiulas and Ephremides [40] provided a joint routing and scheduling policy that

is throughput optimal; in the absence of network coding, their policy yields 100%

throughput for all arrival rate vectors that can be supported by any policy. At each

time slot t > 0 and for each edge (a, b), this policy calculates the edge weight W*b(t)

as the maximum differential backlog over the edge,

Wab*(t) = max{Uc(t) - Uc(t)} , (2.1)cEAr

where Ua(t) is the backlog at node a of commodity c packets at time t. Their policy

then chooses the schedule with maximum total weight f*(t),

e* (t) = arg max E eabWa*b(t) (2.2)
(a,b)E7W

where eab = 1 if edge (a, b) is active in schedule f, and is 0 otherwise. Finally, this

policy serves the commodities that maximize Equation (2.1) for each active edge in

schedule f*(t). While this policy optimizes for scheduling and routing, the policy

as stated only considers standard edges in Rl1 and does not account for network

coding. We extend this policy from Tassiulas and Ephremides to jointly optimize for

scheduling, routing, and our simple network coding scheme.

2.2.3 Network Coding

We describe our k-tuple coding operations using a constructive approach by first

considering the pairwise case of coding over 2 sessions, then extending this to the

34

(Ti) send PB on (T2) send PA on
edge (a, r) edge (b, r)

(T3) send PA (PB on hyperedge

(r, J), J = (a, b)

Figure 2-2: Sequence of transmissions T1, T2, and T3 for pairwise coding on the
2-way relay scenario from Figure 2-ia.

case of coding over 3 sessions, and finally generalizing to the case of coding over

k sessions. We then motivate the use of coding by describing achievable throughput

gains in simple scenarios. Our coding strategy depends on knowing the neighbor from

which each packet is received. To accomplish this, nodes store packets in subqueues

based on the one-hop source of each packet; one-hop subqueue d for commodity c

holds commodity c packets received from neighbor d.

Our coding strategy considers ordered sets of hyperedge tail nodes and commodi-

ties. Let (a, J) be a hyperedge with ordered tail nodes, for J E perms(J), where

perms(J) is the set of all permutations of J. The tail node at the mth position in J is

denoted J(m), and with an abuse of notation J(k+1) = J(1) for IJI = k. Let s E }Nk

be an ordered set of k commodities, and let Sk be the set of all ordered commodity

sets of size k. The commodity at the Mth position of s is denoted s(m), and again by

abuse of notation, let s(k + 1) = s(1) for Is| = k.

Pairwise Coding

Consider again the scenario from Figure 2-la, where nodes a and b can only communi-

cate via node r. With pairwise coding, we can exchange one packet from each session

in 3 transmissions as shown in Figure 2-2. Here, node a sends packet PB for commod-

ity b to node r in transmission TI, and node b sends packet PA for commodity a to

node r in transmission T2. Thus for hyperedge (r, J), J = (a, b), and commodity set

s = (a, b), a packet for commodity s(2) = b (i.e., PB) is in one-hop subqueue J(l) = a

and a packet for commodity s(i) = a resides in one-hop subqueue J(2) = b. Node r

can generate a coded packet PAB = PA (PB, where D is the binary XOR operation,

35

PB
PA / 'PB P

/ PA D PB,
r PB 0 PC| r \ @P

PA PC
c b

PC
(a) (b)

Figure 2-3: 3-tuple coding operation at node r. (a) Standard edges shown with solid

lines, with all hyperedges available; traffic demands shown with dashed arrows. (b)

Activations shown with solid arrows.

and then send PAB to nodes a and b with a single wireless multicast transmission,

labeled T3 in Figure 2-2. Node a has previously seen packet PB, and can recover

PA = PAB (PB. Likewise, node b can recover packet PB. Note that we do not require

packets PA, PB, and PAB to be transmitted in consecutive time slots, but require only

that PAB is transmitted after both PA and PB have been received at node r.

The coding operation requires that each node maintain an extra buffer with un-

coded copies of packets that it has previously transmitted; we call this the side in-

formation buffer. In the example above, upon transmitting to node r, node a keeps

packet PB and node b keeps packet PA in their respective side information buffers.

Additionally, node r adds PA and PB to its side information buffer upon transmitting

coded packet PAB. We discuss operations for removing packets from this buffer in

Section 2.6.2. Note that coded packets can be discarded at the end of the coding op-

eration, as only uncoded packets are stored in one-hop subqueues and side information

buffers.

3-Tuple Coding

Now suppose that node r has received packet PA for commodity a from neighbor c,

packet PB for commodity b from neighbor a, and packet Pc for commodity c from

neighbor b. For hyperedge (r, J), J = (a, b, c), and commodity set s = (a, b, c), a

packet for commodity s(2) = b resides in the one-hop subqueue J(1) = a, a packet

for commodity s(3) = c resides in subqueue J(2) = b, and a packet for commodity

36

s(1) = a resides in subqueue J(3) = c. Node r can encode packets PA, PB, and

pc using two coded packets: PAB = PA (PB and PBC = PB D pc. Node r can then

transmit coded packets PAB and PBc to neighbors a, b, and c using 2 wireless multicast

transmissions. Each of the 3 neighbors can decode the packet destined for them using

the 2 coded packets from r along with their side information copy of the uncoded

packet that they respectively supplied to the encoding node. Note that even though

nodes a, b, and c can decode all 3 packets, they each keep only the one packet that is

destined for them and discard the rest. This scenario is shown in Figure 2-3.

Definition 2.1. A coding opportunity (s, (r, J)) is formed by the combination of

ordered hyperedge (r, J) and ordered set of commodities s held at node r for which:

(a) IsI = IJI = k, and (b) for each m = 1, 2,..., k, a packet for commodity s(m + 1)

resides in the one-hop subqueue J(m) at node r.

For the pairwise coding scenario, if PA and PB are the only packets in the one-

hop subqueues at node r, then s = (a, b) is the only set of commodities that forms

a coding opportunity with hyperedge (r, J), J = (a, b). Commodity set s' = (b, a)

does not form a coding opportunity with hyperedge (r, J), J = (a, b), since at node

r, there is no packet for commodity s'(2) = a in one-hop subqueue J(1) = a, and

no packet for commodity s'(1) = b in one-hop subqueue J(2) = b. By assumption, a

node will never transmit a packet destined for itself, so commodity set s' = (b, a) and

ordered hyperedge (r, J), J = (a, b), will never satisfy the condition (b) for coding

opportunities. However commodity set s' = (b, a) and hyperedge (r, J'), J' = (b, a),

do form a coding opportunity, since s' and J' are formed by the same circular shift of

s and J, respectively. Yet, the coding operations and packets delivered for (s', (r, J'))

and (s, (r, J)) are identical. In general, for any coding opportunity (s, (r, J)), we can

ignore equivalent circular shifts (s', (r, J')) in constructing a routing and scheduling

policy. Furthermore, consider hyperedge (r, J), J = (a, b), on a more general topology,

where the transmit buffer at r contains packets in both one-hop subqueues a and b

for commodities g and h. Then commodity sets si = (g, h), S2 = (h, g), S3 = (g, g),

and S4 = (h, h) can each be combined with hyperedge (r, J) to form valid coding

37

opportunities (s, (r, J)) for s E {si, S2, S 3 , s4 }. Here, we see that a coding opportunity

can be valid even when combining two packets of the same commodity, as in S3 and

s 4 . While such coding scenarios indicate that packets have traveled in cycles, and

therefore do not increase throughput, these coding opportunities can help recover

from suboptimal paths explored by backpressure routing.

Coding Rule

A k-tuple coding operation can only be performed for a coding opportunity (s, (r, J))

that satisfies Definition 2.1. A packet for commodity s(m +1) that resides in the one-

hop subqueue J(m) at node r is delivered to neighbor J(m + 1).

For the 3-tuple coding example, commodity set s = (c, b, a) and ordered hyperedge

(r, J), J = (a, c, b) also form a valid coding opportunity. In this alternate coding

opportunity, node r delivers packet pc to node a, PB to c, and PA to b.

k-Tuple Coding

Generalizing further, a commodity set s and hyperedge (r, J), IsI = IJI = k, can

form a k-tuple coding opportunity for 2 < k < degree(r), where degree(r) is the

number of edges incident to node r. The encoding operation requires r to receive one

packet from each of the k distinct neighbors in J, and then to transmit k - 1 coded

packets via wireless multicast to all k neighbors. To encode the uncoded packets

Pi, ---, k corresponding, in order, to commodities s(1), ... , s(k), node r can generate

k -I coded packets as: (P1 EP2), (P2 (p 3), ... , and (pk1 EDPk). Each of the k neighbors

already has in their side information buffer a copy of the packet that they respectively

supplied to r. Upon receiving the k - 1 coded packets from r, each of the k neighbors

can then decode the packet destined for them. For example, assume node d supplied

packet pi to r, and r sends packet PA to d using a k-tuple code. Node d can recover

packet P as: P2 = P1 E (P1 (P2), p3 = P2 ((P2 D P3), ... , and P = Pk-1 ((Pk-1 EDPk).

It follows that for all code sizes k, the use of binary XOR operations between pairs

of packets is sufficient for both encode and decode operations for k-tuple coding.

38

a PB b
PB PC PB ()PC,

PC ()PD

PA Ir1 r2 PCCE)P

PAE PB,
PA PD PB PD

(a) (b)

Figure 2-4: Pair of 3-tuple coding nodes, r1 and r 2 . (a) Standard edges shown with
solid lines, with all hyperedges emanating from r 1 and r 2 available; traffic demands
shown with dashed lines. (b) Activations shown with solid arrows.

Lemma 2.1. If k neighbors of a node each have in their respective side information

buffers at most one packet from a k-tuple coding opportunity, then under any coding

strategy, k - 1 is the fewest number of packets that the coding node must transmit to

exchange all k packets.

Proof. The proof follows because in order to solve for k - 1 unknown packets, k - 1

linearly independent equations are needed. 0

Thus, the benefit of network coding reduces with increasing k. We next consider

the throughput gain for individual and cascading k-tuple coding operations in Obser-

vations 2.1 and 2.2, where cascading occurs when the output of one coding operation

is the input to another coding operation.

Observation 2.1. A single k-tuple coding operation yields a throughput gain of 2k

when all hyperedges connected to the coding node mutually interfere.

The single k-tuple coding operation requires a total of 2k -1 time slots, consisting

of k uplink transmissions and k - 1 downlink transmissions, while the same packet

exchange without coding requires 2k time slots, yielding the observed result. Here,

we save 1 transmission per coding operation. For pairwise coding the throughput

gain is 4/3, and for 3-tuple coding the gain is 6/5. While 3-tuple coding yields a

lower gain than pairwise coding, notice that there is no pairwise coding opportunity

in the 3-tuple coding scenario in Figure 2-3.

39

Observation 2.2. Throughput gain can increase when k-tuple coding operations cas-

cade. For example, a pair of cascading k-tuple coding operations can yield a through-

put gain of 2-.

Consider coding nodes r 1 and r 2 that share a single edge and where both coding

nodes have degree k, with interference constraints such that all hyperedges mutually

interfere. An example of this scenario is shown in Figure 2-4 for the case of k = 3

under 2-hop interference. For the traffic demands shown, node r 1 is a tail node for

the 3-tuple coding opportunity (s2, (r2 , J2)), s 2 = (b, c, d) and J2 = (b, c, ri), while

r 2 is a tail node for the coding opportunity (si, (ri, Ji)), where si = (a, b, d) and

J, = (a, r 2, d). The coding operation at ri can deliver PA to a, PB to r 2 and PD to

d. The coding operation at r 2 can deliver PB to b, pc to c, and PD to ri. Without

coding, it takes 2 +3+2+3 = 10 or 2(2k-1) time slots to deliver packets pAPB,PC,

and PD, while k-tuple coding can deliver the same set of packets in 4 + 2 + 2 = 8 or

2(2k -2) time slots using the activations in Figure 2-4b. This yields the observed gain

of 2k}. Again, we save 1 transmission per coding operation. However, by allowing

two coding operations to interact, the throughput gain has increased beyond that

of a single coding operation. For pairwise coding this is a throughput gain of 3/2,

while for 3-tuple coding the throughput gain is 5/4. These throughput gains require

a pipeline of coding operations, where nodes r, and r 2 are initialized with packets

from a, b, c, and d, and the activations cycle between coding operations at r1 and r 2 -

2.3 Stability Region

The stability region ANC of our k-tuple coding strategy is the set of all arrival rate vec-

tors (Ac) that can be supported while ensuring that all packet queues in the network

remain finite.

Let fd" be the rate of flow for uncoded packets of commodity c packets received

from node d and sent over edge (a, b), and let faI be the rate of flow for coded

packets over ordered hyperedge (a, J) for each commodity in set s, where (s, (a, J))

is a coding opportunity. For simplicity, we use the following f notation to represent

40

a sum over a set of underlying flow variables. Notation {d, c} -+ b means commodity

c from one-hop subqueue d is sent to node b. Let f,' be the total uncoded and coded

flow rate from node a to neighbor b for commodity c from the subqueue for one-hop

neighbor d. Thus,

d= fd c +fa, Va, b, c, d E M, (2.3){(a,J)E~ik,k >2,sESk:'
d,bEJ,cEs,{d,c}-+b f

where the summation is over the set of coded flow variables fas for all hyperedges

(a, J) and commodity sets s that deliver commodity c packets from one-hop subqueue

d to node b. Let fja be the total coded and uncoded flow rate from a to b for

commodity c traffic from all one-hop subqueues, as shown below.

fcb =Zd f , Va, b, c E (2.4)
d

We start with some efficiency assumptions: nodes don't transmit to themselves

and nodes don't transmit any traffic destined for themselves. Also, all flow variables

are non-negative. Next, we define several constraints from our policy.

Flow Conservation: For each node a and for each commodity c 4 a, all com-

modity c flow that enters a must leave a. To maintain this flow conservation, the

exogenous arrivals for commodity c must equal the difference between total network

departures for commodity c and total network arrivals for commodity c.

A=Z -aZb - f, Va, c E : a 4 c (2.5)
b d

Coding Constraint: Our coding strategy allows node a to encode packets for

commodity c that have been received directly from neighbor d, where the total flow

directly from d to a for commodity c gives an upper bound on the total coded flow

from a that can make use of commodity c packets in the side information buffer at

41

neighbor d.

dcf fea, Va, c, d E A (2.6)
b

Hyperedge Rate Constraint: Let -ye be the fraction of time that schedule e is

active, and let eaj = 1 if hyperedge (a, j) is active in schedule e, and 0 otherwise.

Let Raj be the fraction of time that hyperedge (a, j) is active. Then we find Raj as

follows:

Raj=Z eaj 1e, V(a,j). (2.7)

The set (Raj) for all hyperedges must then be in the convex hull of the set of all

schedules C, where ZeE YE 1.

For uncoded traffic (k = 1), the fraction of time Raj, J= {b}, that edge (a, b) is

active gives an upper bound on the total flow of all commodities over that edge.

S fdc < Ra], V(a, b) : J = {b} (2.8)
d,c EK

For coded traffic (k 2), our coding strategy imposes a factor of k 11 to account for

the k - 1 time slots required to deliver one packet to each destination of a coded

packet.

R-
fa :5 f < J R , V(a, J) : j1 =k k > 2 (2.9)

JEperms(j),sESk

The stability region for our k-tuple coding strategy is the convex polytope bounded

by the set of constraints in Equations (2.5)-(2.9).

It can be shown that Equations (2.5)-(2.9) are necessary for stability. Equa-

tion (2.5) is required by flow efficiency assumptions and reliable transmission, com-

bined with the model of each packet traversing a single path in the network. Equa-

tion (2.6) follows from the structure of subqueues and the coding rule. Equation (2.7)

42

is required for schedules to be non-interfering, where violating this convexity con-

straint would necessitate the use of a schedule that is not allowed. Equations (2.8)

and (2.9) are clear from the edge capacities and the coding rule.

Additionally, we give the following two redundant constraints that are informative

about our coding strategy.

a= Zfaa, Va,c E .: af:A c (2.10)
b

0 = c- fC, Va, cdE A: a = c, d 5 a (2.11)
b)

Equation (2.10) indicates that exogenous arrivals must be sent uncoded by the source

node, while Equation (2.11) indicates that the total flow out of one-hop subqueue d

for commodity c at node a must equal the total flow sent from d to a for commodity

c. These two equations can be viewed as detailed flow conservation constraints for

the one-hop subqueues. It can be shown that replacing Equations (2.5) and (2.6)

with Equations (2.10) and (2.11) does not change the stability region ANC.

2.4 LCM-Frame Policy for Routing, Scheduling,

and k-Tuple Coding

Our control policy performs scheduling, routing, and k-tuple coding for dynamic

choice of k. The transmission of each k-tuple set requires k - 1 time slots, and we

schedule for fixed size frames such that all coding operations are performed within

the frame boundary. Therefore, the frame size must be an integer multiple of k - 1

for each code size k E {1, ... , K}.

The least common multiple framing (LCM-Prame) policy uses a fixed frame size of

length T = lcm{1, ... , K - 1} time slots, where K is the maximum size of any k-tuple

code used. Control decisions are made only at the beginning of each frame, so that

for each hyperedge active within a frame, all packets sent over the active hyperedge

contain packets using the same code size k. Let Ck represent a k-tuple coding set of

43

k E {2, ..., K} packets, which are to be encoded to form k - 1 coded packets. For

example, in the case of K = 5 all frames will have duration T = lcm{1, 2, 3, 4} = 12

time slots and each active hyperedge can transmit 12 uncoded packets, 12 sets of C2,

6 sets of C 3 , 4 sets of C4, or 3 sets of C5.

At every time slot t = nT, for integer n > 0, the policy operates as follows.

1. For every standard edge (a, b) E 71, calculate edge weight W*b(t) as below, and

choose associated commodity sab(t) and subqueue d*b(t). Let Uf'c(t) represent

the backlog at node a at time t for packets received from neighbor d and destined

for commodity c. This is a slight modification from the policy in Equation (2.1),

in that here we use the backlog of the one-hop subqueue of each commodity

instead of the total backlog for each commodity.

W,*b(t) = max {Uf'(t) - U,''(t)} (2.12)
c,d

2. For every hyperedge (a, J), for k = > > 2, calculate the weight as follows.

For every ordered hyperedge (a, J), for J E perms(J), and every commodity

set s E Sk such that (s, (a, J)) is a coding opportunity, calculate the weight

Wa'j(t). First, evaluate the differential backlog for each commodity in s and

the respective tail node from J as: UJ(m),(m+1)(t) - Ua,s(mn+ 1(t), for each m =

1, 2, ..., k. If this differential backlog is non-positive for any position m, then it

is not beneficial to encode, so set weight Waj(t) = 0. If the differential backlog

is positive for all positions m, then calculate weight Waj(t) as

k

W (t) = k-i Z1 (Ua'(t) - ,c(t)) (2.13)
~M=1

where d = J(m),b = J(m + 1), and c = s(m + 1). The factor k accounts

for k - 1 time slots required to transmit the coded set s. Then choose optimal

weight W*g(t) for the unordered hyperedge as below.

W,(t) = max{IW ()(2.
JS

44

The optimal commodity set s*j(t) and tail ordering J*(t) are chosen as the val-

ues of s and J, respectively, that yield the maximum weight in Equation (2.14).

3. Choose the maximum weighted schedule, generalizing Equation (2.2) to allow

for hyperedges, as below.

e* (t) = arg max fabWa*b(t) + E eajwj(t) (2.15)
IEI (a,b) (a,J)

4. Repeatedly activate the chosen hyperedges for the duration of the T-slot frame.

If there are not enough packets in the subqueue for an active commodity, then

null packets are used in place of that commodity for the remainder of the frame.

Definition 2.2. A queue U(t), t > 0, is stable if

1t-1
lim sup E E[U(T)] < 00. (2.16)

t-0 r=O

A network is stable when all queues in the network are stable.

Theorem 2.1. The LCM-Frame policy stabilizes the network for all arrival rate vec-

tors interior to stability region ANC.

The proof is given in Appendix 2.A.

The policy probes all paths in the network, so it will encounter complex coding

opportunities such as those in the example from Figure 2-4. As the policy makes use

of coding opportunities it reduces backpressure along those paths, thereby attracting

more traffic to paths that offer coding opportunities.

2.5 k-Taple Coding Gain

We require a meaningful metric to compare performance with coding versus without

coding. We identify the maximum scaling of arrival rate vector subject to stability

from Equations (2.5)-(2.9). Our metric of interest is the ratio of these stable scalings

45

under k-tuple coding versus routing and scheduling without coding. Let ARS be the

stability region under routing-and-scheduling only.

Definition 2.3. Given rate vector A E ARS, let fNC(A) = max{p : pA E ANC} and

let fRs(A) = max{p : pA E ARS}, where p is a scalar. Coding gain is the ratio

fNC(A)/fRS(A)-

Theorem 2.2. Considering all possible topologies, traffic demands, and interference

constraints, and with dynamic and optimal choice of code size, the coding gain from

k-tuple coding is upper bounded by 2.

We offer a sketch of the proof. First, the coding constraint is relaxed, removing

the requirement that recipients of coded packets are part of a coding opportunity

while still allowing encoding nodes to deliver k packets in k - 1 time slots. Starting

with Equation (2.6), take the sum over all neighbors d for both sides of the inequality,

then add A' to the right side to yield the relaxed coding constraint below.

-d fdc < Ac +Zf, Va, c E N (2.17)
b,d d

By this relaxation, we have ANC ARCC, where ARCC is the stability region under

the relaxed coding constraint (2.17). Next, we compare to the flow conservation

constraint (2.5) and note that the relaxed constraint (2.17) is degenerate and can be

removed. With coding constraint (2.6) removed, any pair of packets can be encoded

and sent over a standard edge in one time slot, allowing each edge to achieve a

rate of 2. This implies that ARCC = 2ARS, which in turn gives the desired result

ANC 2ARS-

Further, a coding gain of 2 is achievable. Consider again the scenario from Fig-

ure 2-la, but now relax the interference constraint to allow all nodes to transmit

simultaneously. This might occur, for example, when node r has multiple uplink

channels while nodes a and b are in the same downlink channel. Then, without net-

work coding the aggregate system throughput is limited to sum of the combined rates,

i.e., AA ± AB 1. However, with network coding the aggregate system throughput

46

is limited to the maximum of the combined rates, i.e., max(AA, AB) < 1. For sym-

metric arrival rates, the system without network coding supports a maximum rate of

(AA, AB) = (1/2,1/2), while the system with network coding supports a maximum

rate of (1, 1), yielding a coding gain of 2.

2.6 Complexity and Side Information

The gain in stable throughput provided by the LCM-Frame policy comes at the ex-

pense of additional complexity in computing weights and additional side information

that must be stored in the network. In this section we quantify these aspects of the

policy.

2.6.1 Complexity of Weight Computation

The policies that we consider require solving the maximum weight independent set

(MWIS) problem at each time slot, which is known to be NP-Hard for general in-

terference graphs. However, polynomial time solutions for MWIS are possible for

certain classes of interference graphs, such as claw-free interference graphs [24]. For

these classes of graphs with polynomial MWIS solutions, we focus on the complexity

of calculating weights of hyperedges for k-tuple coding. Let N be the number of

nodes in the network, and let each node represent a commodity.

Standard edges: There are O(N) edges per node, with O(N) commodities and

O(N) one-hop sources. The running time for the weight calculations of standard

edges at each node is thus O(N 3) per time slot.

Pairwise hyperedges: There are O(N 2) pairwise hyperedges per node, and the

required one-hop sources are given by the tail nodes of the hyperedge. Each pairwise

hyperedge is composed of two standard edges, and for each of these component stan-

dard edges we can independently choose the commodity with maximum differential

backlog. This gives a running time at each node of 2N 3 = O(N) per time slot.

General k-tuple hyperedges, k > 2: There are 0() subsets of k tail nodes at each

node, and when we eliminate circular shifts, there are (k - 1)! circular permutations

47

of each subset of tail nodes to consider. For each circular permutation, the choice of

optimal commodity set requires a running time of ((kN). The running time at each

node is then (N')k!Nk(k - 1)! = O(Nk+1) per time slot.

2.6.2 Upper Bound on Side Information

To decode coded packets, k-tuple coding requires each node to maintain a side infor-

mation buffer, where uncoded copies of previously transmitted packets are stored.

Corollary 2.1. For every arrival rate vector (A') strictly interior to the stability

region ANC, the LCM-Frame policy stabilizes the side information buffers in the net-

work.

Proof. The k-tuple coding strategy requires each node a to keep a side information

copy of each packet p sent from a to neighbor b only as long as p resides in b's queue.

For the LCM-Frame policy, there is only one copy of each packet in the network, and

each packet has a single one-hop source. Under centralized control, the activation

schedule alerts nodes when to discard packets tracked as side information. Here, the

side information buffer at node a for packets sent to node b corresponds directly to the

same set of packets in the subqueue at node b for packets received from node a, and

both are kept in FIFO order. Thus, when a packet is sent from a specific subqueue,

the same packet can be removed from the associated side information buffer. The

total network queue size then gives an upper bound on the total side information in

the network, and by Theorem 2.1 the LCM-Frame policy stabilizes the network queues

whenever (A') E ANC. Therefore, the side information buffers are also stable. 0

2.7 Numerical Results

We use two approaches to study the LCM-Frame policy: a packet simulation to

evaluate average queue size for the policy, and a linear program (LP) solver to evaluate

the flow constraints of the policy to observe coding gain. For a scenario with N nodes,

there are N - 1 possible traffic demands at each node, for a total of N(N - 1) traffic

48

1 0e4
e No Coding

-B- Pairwise
8 -4 - 3-tuple8e4 -

N
2) 6e4

CD

a)

4e4 -

> 2e4

0.045 0.05 0.055 0.06 0.065
p, offered load, packets/slot

Figure 2-5: Network queue size versus offered load for three configurations of the
LCM-Frame policy on 16 node topology with 11 traffic demands. Dotted vertical
lines indicate bounds of the stability region for each configuration. At each value of p
between 0.045 and 0.065 at increments of 0.001, we evaluate the LCM-Frame policy
for 10 million time slots.

demands in the network. This yields 56 and 240 possible demands for N = 8 and

N = 16, respectively. We generate random arrival rate vectors A by activating each

of these demands with probability 1/2, where demands are specified as 1 for active

and 0 for inactive. Let p be a value by which we scale A to specify the offered load;

in effect, p is the offered load for each active demand.

2.7.1 Simulation Results

First we consider a random 16 node topology under 2-hop interference, and we choose

an arrival rate vector A with 11 active traffic demands, where we scale A by p. Exoge-

nous arrivals are generated for each active demand using an independent Bernoulli

processes; since A is a vector of O's and l's, the scalar p serves as the probability of

packet arrival per time slot for each active demand. We compare three configura-

tions of the policy: no coding (K = 1), pairwise coding (K = 2), and 3-tuple coding

(K = 3).

49

5e4
- p=0.058

(e 0p=.057
. 4e4

3e4 -
a)
=3

=3

-?c 2e4
0

> 1e4 -

0
0 2e6 4e6 6e6 8e6 10e6

sim. time, slots

Figure 2-6: Network queue size versus simulation time for the pairwise coding configu-
ration from Figure 2-5. Average network queue sizes shown for both stable p = 0.057
and unstable p = 0.058 values of offered load, with queue state recorded every 25
thousand time slots.

Figure 2-5 shows the time average of the total network queue size, over all nodes

and commodities, as a function of offered load. Using the constraints of our stability

region, Equations (2.5)-(2.9), we find the maximum stable values of offered load to

be p = 1/19 ~ 0.0526 without coding, p = 1/17.5 ~ 0.0571 for pairwise coding, and

p = 1/17 0.0588 for 3-tuple coding; these bounds are indicated on Figure 2-5 with

vertical dotted lines. For each configuration, the policy seems to maintain bounded

average queue size within the stability region.

Figure 2-6 shows average total network queue size as a function of time for pairwise

coding. The queues are stable at an offered load of p = 0.057, just inside the stability

region. Outside the stability region, with p = 0.058, the average network queue size

grows linearly as a function of time.

50

0.8-

0.6-

0.4-

0.2

0

80% achieve
-- -.. pairwise codi

gain 1.13

20%
pairv
gain

ng

achieve
wise coding -

1.26

1 1.1 1.2 1.3 1.4 1.5
pairwise coding gain

Figure 2-7: Empirical CCDF of pairwise coding gain for random 8 node topologies
under 2-hop interference.

0.05

0.04

0.03

0.02

0.01

0
1.02 1.04 1.06 1.081

coding gain, 3-tuple vs. pairwise

Figure 2-8: Empirical CCDF of ratio of coding gain for 3-tuple versus pairwise coding.
Same topologies -and arrival rate vectors as Figure 2-7.

51

U-
0
C0
0

E
UJ

LL

0

.
E

Ul

4% of obe
benefit frc
3-tuple c I g

1

servations
m

oding

2.7.2 Linear Program Results

We use an LP solver with constraints (2.5-2.9) of the stability region to evaluate the

coding gain of our LCM-Frame policy. We consider random geometric topologies,

with node placement drawn from a uniform distribution in a unit square. Node

connectivity is given by a scaled unit disc model, such that two nodes are connected

if they are within a certain connectivity radius of one another. In particular, we

generate topologies with 8 nodes and a connectivity radius of 0.335, and topologies

with 16 nodes with a connectivity radius of 0.273. For both 8 and 16 node cases, the

median node degree is 3 among all nodes from the generated topologies. We consider

only topologies that are connected.

First we evaluate coding gain for pairwise and 3-tuple coding. We consider 100

random topologies with 8 nodes each under 2-hop interference, and we evaluate coding

gain for 100 arrival rate vectors per topology. Figure 2-7 shows an empirical com-

plementary cumulative distribution function (CCDF) of the observed pairwise coding

gain, where 80% of the observations show gain of 1.13 or more and 20% show gain

of 1.26 or more. Figure 2-8 shows the ratio of 3-tuple coding gain versus pairwise

coding gain. Here we see that 3-tuple coding yields additional gain in only 4% of our

observations, and that this gain is limited to at most 6% and often much less.

Finally, we compare the gain of pairwise coding under 1-hop versus 2-hop inter-

ference. We evaluate 50 random topologies of 16 nodes each, with 100 random arrival

rate vectors per topology. Figure 2-9 shows empirical CCDFs of pairwise coding gain

for both interference models. Here, pairwise coding performs reasonably well under

1-hop interference, with a median coding gain of 1.25, and performs even better under

2-hop interference, where the median has increased to 1.31. Comparing to the 8 node

scenario, there is a noticeable improvement under 2-hop interference here with 80%

of observations showing gain above 1.25.

52

A 2hop

0.8 - E) 1hop 2hop intf.
median coding
gain = 1.31

0.6-

0.4-

1hop intf.
median coding

0.2 ~gain = 1.25

0.
1 1.1 1.2 1.3 1.4 1.5

pairwise coding gain

Figure 2-9: Empirical CCDFs of pairwise coding gain for random 16 node topologies
under 1-hop and 2-hop interference.

2.8 Summary

In this chapter we presented a technique that dynamically optimizes for routing,

scheduling, and simple network coding for wireless networks. We introduced k-tuple

coding, a generalization of pairwise network coding, and provided the LCM-Frame

policy, which is throughput optimal subject to the k-tuple coding constraint. We

have shown achievable coding gain on simple scenarios, provided simulation results

for more complex scenarios, and gave an upper bound on k-tuple coding gain for all

possible scenarios.

Our main conclusion is that pairwise coding provides most of the benefit of k-tuple

coding for the scenarios considered. We evaluated the LCM-Frame policy via packet

simulation and LP evaluation for pairwise and 3-tuple coding. Due to the topology

and traffic structure required for k-tuple coding operations, we expect limited addi-

tional gain from increasing code size k on random topologies. Note that the reduced

complexity in computing weights for pairwise coding becomes significant for larger

networks. We observe that the LCM-Frame policy yields greater coding gains under

2-hop interference than under 1-hop interference. Future work of interest includes

53

suboptimal scheduling with reduced complexity, and full system implementation.

2.A Proof of Stability for LCM-Frame Policy

Proof of Theorem 2.1. We use T-slot Lyapunov drift analysis to prove that our policy

stabilizes the network for all arrival rate vectors strictly interior to the stability region.

Let A' d,(t) be the number of exogenous arrivals for commodity c at node i during time

slot t, where A' d,(t) = 0 for any d - i. Let U(t) denote the matrix of queue backlogs

U 'c(t) for all nodes and commodities.

At each decision time t = nT, n > 0, the LCM-Frame policy chooses which

hyperedges and commodities to activate for the duration of the frame. At time

T E {t, ... , t ± T - 1}, let fi(T) be the rate allocated for commodity c from one-hop

source d over edge (a, b), where pyC (T) = 1 if active and 0 otherwise. Also at time T,

let psj(T) be the rate allocated to each commodity of set s for k-tuple coded trans-

missions over ordered hyperedge (a, J), with traffic delivered according to the coding

rule, where p'i,(T) = -I k = IJI, if active and 0 otherwise. Like with flow variables,

f represents a sum over rate allocation variables. Let A f(T) be the sum of rate al-

location variables for coded and uncoded transmissions from a to b for commodity c

packets from one-hop subqueue d, where

A c(T) = dc (T) +AL(T). (2.18)

{(a,J)E7-k ,k >2,sESk:I
d,bCJ,cEs,{d,c}-b f

Let A4d(T) be the sum of all transmissions at node a for packets from subqueue d for

commodity c,

a* a (F) , (2.19)
b

and let A*f(T) be the sum of all network transmissions from a to b for commodity c

54

packets from all one-hop subqueues,

f(T) = f (r). (2.20)
d

At decision times to, the queueing dynamics of the network satisfy

to+T-1 - + to+T-1

U ,c (to + T) Uf~~0 ~) + (f' A f ()) , (2.21)
-i r=to . r=to

where [x]+ = max(x, 0). Next, we use the following result from [8, Lemma 4.3]: for

V,U,u, A > 0 and V < [U - I]++ A, we have V 2 < U2 ± [_ 2 + A 2 - 2U(pu - A).

Squaring both sides of Equation (2.21) and noting that A d'c(T), yI I(r), and P,(s)

are all finite, we apply the above result to find an upper bound,

to+T-1

(Udc(to + T))2 + (Uf''(t 0)) 2 ± B1 + 2Uf''(to) [(Ad'i- ± C) c

T=tO

(2.22)

where B 1 is a positive finite number.

We employ the quadratic Lyapunov function,

L (U(t)) = [(U'"(t))2 (2.23)
i,c,d

and the following T-slot Lyapunov drift argument from [8, Lemma 4.2]: If there exists

a positive integer T such that E{U(T)} < oo for all r E {0, ... , T-1}, and if there exist

positive values B and 0 such that we have the following bound on T-slot Lyapunov

drift for all decision times to,

E{L(U(to + T)) - L(U(to)) IU(to)} < B - 0 E U2d'c(to), (2.24)
i,c,d

then the network is stable according to Definition 2.2.

55

Using Equations (2.22) and (2.23), we find an upper bound on the T-slot difference

as follows:

L (U(to + T)) - L (U(to))

<[B1 + 2Ufdc(to) E (A '()
i,c,d L r=to

to+T-1

<N 3B1 + 2 (U'c(to) Z A ,c(T)
i'c T=tO

to+T-1

= N 3B1 + 2 Ujc(to) E Ac(-r)
i~c -r=to

+ A*() - Al(T)]

to+T-1

-2Z E Ui'c(to) E
i,c,d I=tO

to+T -1
-2 E

-r=to

(2.25)

(9 (() - 2.6)

(2.26)

tAdlc(.) [Ui c(to) - U '(to)]

i,b,c,d

(2.27)

where all exogenous arrivals A ,c(r) are extracted from the bracketed summation in

Equation (2.26). Then, the bracketed summation has been rearranged from the dif-

ferential rate allocation (departures minus arrivals) for each node i in Equation (2.26)

into to the differential backlog for each edge (i, b) in Equation (2.27).

At each decision time to, the T-slot drift is defined as

AT (U(to)) A E{L (U(to + T)) - L (U(to)) IU(to)}. (2.28)

Applying the upper bound from Equation (2.27) to Equation (2.28), we find an upper

bound on the T-slot drift as follows.

to+T -1

N 3B 1 + 2 E U',c(to) E Ac (T)

_ E +TC T=t U(to) (2.2

r=to i,b,c,d

= N3 B1 + 2T E Ujic'(to) M - 2 t0(1 (jC() [Ui,c(to) - (to)
i'c r=to i,b,c,d

9)

(2.30)

56

AT (U(to))

In Equation (2.30), we have taken the expectation E{A"(T),IU(to)} = E{A ' (T) =

A), and used a deterministic rate allocation Af;c(r) when given backlog U(to). While

differential backlog routing allows for arbitrary tie-breaking when choosing rate al-

location variables p, all tie-breaking rules yield the same T-slot drift, so we assume

deterministic tie-breaking for simplicity.

For any arrival rate vector A = (A) strictly inside of stability region ANC, there

exists a small c > 0 such that vector (A + c) is also inside the stability region. By

definition of the stability region, we can identify a flow vector of f}.j and fj terms

that corresponds to (A + c) and satisfies the constraints (2.5)-(2.9) of the stability

region. For any decision time to and any r E {to, ..., to + T - 1}, our policy satisfies

the following inequality by choosing the set of rate allocation variables corresponding

to A tc(r) that maximize the term on the right.

b[Ud''(to) - Ua,c(to)] dic(T) [Ud',(to) -U"'c (to)]
a,b,c,d a,b,c,d

Applying the result from Equation (2.31) to Equation (2.30), we have

(2.31)

to+T-1

AT (U(to)) B 2 + 2T E U '(to)Ac - 2 cUfEc(to)-U 'c(to) (2.32)
i,C r=to i,b,c,d

= B 2 + 2TZ U ,c(to)A - 2T Uf' (to) -U '(to)] (2.33)
i,c i,b,c,d

= B 2 + 2T Uj (to) A1 - E UPC (to) 13 ffic
Sic i,c b

-- Z fdg (2.34)
i,cdoi b g

= B 2 + 2T U '(to)Ac - E Uj' (to) (Ac + E) - U'c (to)(0)
i'c i'c i,c,dfi

(2.35)

= B 2 - 2Tc E U ,c(to),
i'c

(2.36)

where B 2 = N 3B1 is finite. In Equation (2.32), the summation of time r = to to

57

to + T - 1 is over an argument that is fixed for the duration of the T-slot period,

thus this summation of time is replaced by the scalar T. Then, from Equation (2.33),

rearrange terms to yield Equation (2.34). We apply modified Flow Conservation

Equations (2.10) and (2.11) to substitute (AX + c) and (0) into Equation (2.34) to

yield Equation (2.35). Finally, terms A) axe canceled out to arrive at Equation (2.36),

which is in the form of Equation (2.24).

We have shown that our policy satisfies Equation (2.24), and thus satisfies the

conditions of [8, Lemma 4.2]. The LCM-Frame policy therefore stabilizes the network

for all arrival rate vectors strictly interior to the stability region. L

58

Chapter 3

Distributed CSMA with Pairwise

Coding

In Chapter 2, we developed a centralized control policy to jointly optimize for routing

and scheduling combined with a simple network coding strategy using max-weight

scheduling (MWS). In this chapter, we focus on pairwise network coding and develop

a distributed carrier sense multiple access (CSMA) policy that supports all arrival

rates allowed by the network subject to the pairwise coding constraint. We extend

our network coding scheme by incorporating packet overhearing to increase the num-

ber of beneficial coding opportunities, and adjust our policy to also optimize for this

extension. Simulation results show that the CSMA strategy yields the same through-

put as the optimal centralized policy of Chapter 2, but at the cost of increased delay.

Moreover, overhearing provides up to an additional 25% increase in throughput on

random topologies.

3.1 Introduction

Network coding, originally introduced in [1], can increase network throughput by al-

lowing intermediate nodes to combine or encode the data they receive, rather than

simply forwarding it. The benefit of this approach for wireless transmissions was

clearly demonstrated by COPE [14], an opportunistic network coding protocol that

59

allows encoding of packets between multiple unicast sessions using binary XOR op-

erations. The authors combine their coding strategy with a modified MAC protocol

to show significant throughput improvements versus a standard 802.11 MAC on a

wireless testbed. While the original work on COPE [14] explored the interplay be-

tween coding and scheduling, subsequent work in [37] motivated the need for routing

protocols to be aware of network coding by formulating an offline linear program to

show that significant throughput improvements are possible. The appropriate choice

of routes can increase coding opportunities and [37] shows that significant through-

put improvements are possible through such coding aware routing. In this work, we

address the joint design and performance of routing, scheduling, and network coding

in a wireless network by developing a distributed online policy that is throughput

optimal subject to our coding constraints.

Numerous previous works have considered joint routing and scheduling in the ab-

sence of network coding. In their seminal paper on network control [40], Tassiulas

and Ephremides introduce the max-weight scheduling (MWS) and differential back-

log routing policy to provide throughput optimal network control. The policy has an

attractive property for dynamic control in that decisions rely only on current queue

state information, without requiring knowledge of the long-term arrival rates. The

authors are able to prove, using Lyapunov stability theory, that their policy can sta-

bilize the network queues for any stochastic arrival process within the stability region

of the network. In [27], MWS is extended to optimize for routing, scheduling, and

power control in wireless networks. MWS is a very powerful scheduling technique,

but the benefits do not come without cost. Even [40] notes that it can be cumber-

some to collect queue state information from across a wireless network to a centralized

controller. Additionally, MWS requires the solution to the maximum weight indepen-

dent set (MWIS) problem, which is known to be NP-Hard under general interference

constraints.

Jiang and Walrand [10] recently developed an adaptive carrier sense multiple ac-

cess (CSMA) policy based on queue size information, and proved their policy to be

throughput optimal. This adaptive CSMA policy is a randomized scheduler and

60

operates under distributed control, addressing some of the main concerns with the

scalability of MWS. In [29], the adaptive CSMA scheduler is extended by relaxing

some ideal assumptions from [10], maintaining throughput optimality in the presence

of collisions in control traffic. An alternate proof of optimality is provided in [21]

for queue-based CSMA policies on wireless networks with primary interference con-

straints. In [19], the authors provide another proof of CSMA rate convergence and

study the effects of collisions. A throughput optimal ALOHA policy that chooses

transmission probabilities as a function of queue backlog is developed in [32]. Other

works ([4],[22]) have focused on distributed queue-based scheduling, and can be ex-

tended to incorporate backpressure routing. Performance bounds are characterized

in [4] for a distributed maximal scheduler with imperfect matchings. A distributed

scheduler that achieves 100% throughput using a randomized gossip algorithm is de-

veloped in [22].

We developed a centralized control policy based on MWS in Chapter 2 to jointly

optimize for routing, scheduling, and a simple network coding scheme. Here we de-

velop a distributed online queue-size based policy that is throughput optimal subject

to our coding constraints. We modify the adaptive CSMA policy from [10] to incor-

porate a simple network coding scheme that we first proposed in [12]. We focus on

pairwise coding, combined with a packet overhearing feature that can increase the

number of coding opportunities with only a constant increase in algorithmic complex-

ity. Our main contributions include:

" We propose a distributed CSMA policy for routing, scheduling, and pairwise

coding that supports all arrival rates within the stability region of pairwise

coding;

" We develop an extension to our coding strategy to allow for additional coding

opportunities via overhearing of uncoded transmissions, and update our policy

to optimize for these overhearing opportunities;

" We address several practical implementation issues, including overflow of finite

precision variables and management of side information buffers;

61

* We provide results from packet simulation and linear program evaluation to

compare the performance of our policy under various settings.

This chapter is organized as follows. We describe our system model in Section 3.2,

and characterize the stability region under this model in Section 3.3. In Section 3.4

we design a distributed routing, scheduling, and pairwise coding policy. Section 3.5

adds a packet overhearing option to our coding strategy and updates the policy to

take advantage of coding opportunities with overhearing. We address implementation

issues in Section 3.6, provide numerical results in Section 3.7, and offer concluding

remarks in Section 3.8.

3.2 Model

3.2.1 Wireless Network

We model the wireless network as a directed hypergraph, G = (H, Wi), where Ar is

the set of nodes in the network and 1 is the set of directed hyperedges supported

by the network. Hyperedge (a, J) allows node a to communicate directly with a set

of tail nodes J using a single transmission, where J is always in alphabetical order.

For example, in Figure 3-la node a can transmit to nodes b and c simultaneously

over hyperedge (a, J), J = (b, c). Standard edge (a, b) is a special case of a hyperedge

where node b is the only tail node. In this chapter we consider hyperedges with at

most two tail nodes, J < 2 (corresponding to pairwise coding).

We consider unicast traffic, but use wireless multicast to transmit on hyperedges

for network coded packets and to enable a packet overhearing feature. We assume

time to be continuous, and for simplicity assume unit rate links and that exogenous

arrivals are for packets of a fixed size corresponding to one time unit. Packets destined

for node c are called commodity c packets. Let A' be the average rate of exogenous

arrivals at node a for commodity c, and let A = (A') be a vector of arrival rates for

all sources a and commodities c.

62

We assume that non-interfering transmissions are reliable, but otherwise allow

arbitrary interference constraints. Let L be the set of all feasible schedules on the

network. Here, schedule f is a group of simultaneous (hyper)edge activations, and f is

feasible if these activations don't violate the network interference constraints. While

our policy supports general interference models, our simulations were conducted using

two simple interference models, known as 1-hop and 2-hop interference. The 1-hop

interference model allows any node to transmit or receive at most one packet at a

time. The 2-hop interference model requires at least two hops in the network between

any simultaneous transmissions, else they will interfere.

3.2.2 Adaptive CSMA

Wireless networks are subject to packet losses from interfering transmissions, and

thus benefit from a scheduling policy that prevents interfering transmissions from

becoming simultaneously active. CSMA is a random access scheduler where each

node listens to the channel for interfering transmissions, and competition for the

channel is mitigated using random backoff times. Our CSMA policy is based on the

policy from [10], which we extend to account for hyperedges with our coding scheme.

Jiang and Walrand [10] developed an adaptive CSMA policy that operates in con-

tinuous time, choosing exponentially distributed backoff times for each edge i as a

function of the queue backlog on that edge Ui(t). The policy assumes an idealized

setting where each node can sense any transmission that it would interfere with and

channel sensing is instantaneous. Combined with backoff times drawn from a contin-

uous distributioni, this ideal setting avoids packet collisions. The backoff rate Ri(t)

is updated at periodic times t = nT, where T is the duration of the update interval.

The weight of edge i is chosen as W(t) = Ui(t), and the backoff rate is chosen as

ri(t) = a - Wi(nT), Vt : nT < t < (n + 1)T (3.1)

Rz(t) = exp (ri(t)) . (3.2)

'The probability that any two edges choose the same backoff time from the exponential distri-
bution is 0, independent of the edge backoff rates.

63

Here, ri(t) is called the transmission aggressiveness parameter, and a is a step size pa-

rameter controlling the convergence of the algorithm. The mean backoff time 1/Ri(t)

decreases as the backlog increases, giving preference to transmissions on edges with

higher backlog. In this policy, each edge i transitions between idle, wait, and transmit

states as follows.

" Idle State: Edge i remains in the idle state while the channel is sensed to be

busy, i.e., while an interfering edge is active. When the channel is later sensed to

be inactive2, draw a backoff timer from an exponential distribution with mean

1/Ri and switch to the wait state.

" Wait State: Edge i remains in the wait state while the channel is sensed to be

inactive and the backoff timer is non-zero. If the channel becomes busy, switch

to the idle state. Else, when the backoff timer expires switch to the transmit

state.

" Transmit State: Transmit packet of unit duration3 . When the transmission

has completed, switch to the idle state.

3.2.3 Backpressure Routing

Combined with an optimal scheduler, backpressure routing was proved to be a through-

put optimal routing strategy in [40]. The idea is simple: choose the weight of each

edge as the difference in backlog across the edge for the commodity that maximizes

the difference. For example, edge (a, b) has weight Wab(t) as follows:

Wab(t) = max [Ua(t) - Ub(t)]+, (3.3)
c Ej

where notation [x]+ represents max(x, 0). Backpressure routing was combined with

adaptive CSMA for multihop traffic in [10], where the weight from Equation (3.3) is

2 We allow for multiple simultaneous activations outside of the sensing range.
3Both exponentially distributed and unit duration transmissions are considered in [10]. The

authors cite the main result from [18], which states that for an ideal CSMA network, edge activation
frequencies are insensitive to the distributions of backoff and transmit times when given their means.

64

used to calculate aggressiveness parameter rab(t) in Equation (3.1). The backoff rate

Rab(t) is then calculated as in Equation (3.2).

3.2.4 Network Coding

Network coding is a technique that allows for increased throughput by encoding pack-

ets at intermediate nodes in the network. Our network coding scheme allows data

to be exchanged in fewer transmissions by strategically combining packets such that

each recipient has previously seen some portion of the encoded set. In Chapter 2

we described a simple network coding scheme that under specific routing conditions

allows intermediate nodes to exchange k packets in k - 1 transmissions. When eval-

uating this scheme on random wireless topologies, we observed that the majority of

coding gains are generated by k = 2 pairwise coding operations. Similar observations

are noted in [6], [14], [20], and [38]. Therefore, here we limit our consideration to the

pairwise coding case. We describe pairwise coding in the following example.

Consider the wireless network in Figure 3-la with 1-hop interference. We would

like to exchange packets py and px between nodes b and c via a relay at node a.

Without network coding it takes 2 transmissions to exchange each packet, for a total of

4 transmissions. With network coding, however, these same packets can be exchanged

in only 3 transmissions: (1) send py from b to a; (2) send px from c to a; and (3) send

coded packet px E py as a binary XOR combination of px and py from node a to

nodes b and c simultaneously via a single wireless multicast transmission. Using the

packets that they contributed, nodes b and c can each recover the packet destined for

them. In this example, network coding has increased throughput by a factor of 4/3.

As in Chapter 2, here our coded transmissions are decoded hop-by-hop and each node

maintains a side information buffer of packets that it previously transmitted (so that

they can be used to decode coded transmissions).

A pairwise coding opportunity (s, (a, J)), is formed by the combination of

hyperedge (a, J), J = (b, c), and commodity pair s = (x, y) for which: (1) a packet of

commodity x was received at node a from neighbor c, and (2) a packet of commodity y

was received at node a from neighbor b. Identifying coding opportunities requires

65

PY (1) send py on (2) send px on
edge (b, a) edge (c, a)

- (3) send px E py on hyperedge

Px (a, J), J = (b, c)
(a) Pairwise Coding Scenario (b) Edge Activations

Figure 3-1: Pairwise coding operation at node a. (a) Standard edges shown with solid

lines, with all hyperedges available; traffic demands shown with dashed arrows. (b)

Edge activations shown with solid arrows.

Qa~ Qa, QCa

Figure 3-2: Subqueues at node a for commodity x. Subqueue Q6,x contains network

arrivals from neighbor b; subqueue Qg contains local exogenous arrivals; subqueue

QC'X contains network arrivals from neighbor c. Packet arrivals shown in dashed

arrows.

that nodes keep track of which one-hop neighbor supplied each packet. While other

works on differential backlog routing (e.g., [40] and [10]) track the number of packets

for each commodity at each node, we further divide the queues into subqueues to

track the number of packets from each neighbor for each commodity. For example,

subqueue Qbf" at node a contains U"'" number of packets received from neighbor b

for commodity x, i.e., U ' I Q= bx 1. This is illustrated in Figure 3-2 for commodity x

packets received at node a from various sources.

3.3 Stability Region

The stability region ANC of our network coding strategy is the set of all arrival rate

vectors (A') that can be supported while ensuring that all packet queues are stable.

This region is independent of the control policy chosen, and is a special case of the

stability region that we specified in Chapter 2 for network coding with maximum

code size of 2. We specify the region here for convenience.

66

Let f' be the rate of uncoded flow of commodity c packets, previously received

from one-hop neighbor d, and sent over edge (a, b), and let faj be the rate of coded

flow over hyperedge (a, J) for each commodity in set s, where (s, (a, J)) is a coding

opportunity. For simplicity, we use the following f notation to represent a sum over

a set of underlying flow variables. Let fa"c be the total uncoded and coded flow rate

from node a to neighbor b for commodity c from subqueue Qdc, where node a received

the packets from one-hop neighbor d. Thus,

fd fdc± + f," Va, b, c, d E M, J= (b, d), (3.4)
g:s=(c,g)

where the summation is over all commodities g such that (s, (a, J)), s = (c, g), is a

coding opportunity. Let fab be the total coded and uncoded flow rate from a to b for

commodity c traffic from all one-hop subqueues.

fb= Ed fa, Va, b, c E A (3.5)

We define the stability region by starting with some efficiency assumptions: nodes

don't transmit to themselves and nodes don't transmit any traffic destined for them-

selves. Also, all flow variables are non-negative. The remaining constraints are equiv-

alent to the pairwise coding configuration of the stability region from Chapter 2, as

follows.

Ae fa- f, Va, c E A : a a c (3.6)
b d

dc c 5 fg, V a, c, d E (3
b

GaJ ye I(aJ)e (,J), Z ' = 1, Ye ;> 0 Ve (3.8)
fEL fEL

f < GaJ, V(a, b): J = {b} (3.9)
d,cEAr

K fs GaJ, V(a, J): J = 2 (3.10)
sE{A} 2

67

Equation (3.6) is the flow conservation constraint, stating that all flow entering any

node a for commodity c must leave node a, except at the destination (a = c). The

coding constraint in Equation (3.7) states that the total flow into subqueue QdC from

node d gives an upper bound on the total coded flow out of Qdc to all neighbors b.

Equation (3.8) is a convexity constraint, stating that activation frequencies Gaj for

all edges and hyperedges (a, J) must be in the convex hull of the set of all feasible

schedules L. Here, indicator I(a,J)El = 1 if (a, J) is active in schedule f, and 0 oth-

erwise. The edge and hyperedge rate constraints in Equations (3.9)-(3.10) state that

activation frequency GaJ gives an upper bound on the total flow for all commodities

over edge or hyperedge (a, J). The stability region for our pairwise coding strategy

is the polytope bounded by the set of constraints in Equations (3.6)-(3.10).

3.4 Distributed CSMA

Our proposed policy adapts that of [101 to account for pairwise network coding as

follows. The policy is parameterized for step-size a and update interval T. The policy

updates backoff rate parameters every T time units and maintains edge timers asso-

ciated with transitions between idle, transmit, and wait states. Each node requires

backlog information only for the queues of one-hop neighbors, therefore this policy is

distributed.

3.4.1 Distributed CSMA Policy for Pairwise Coding

Parameter Updates: For each edge or hyperedge (a, J), we maintain a trans-

mission aggressiveness (TA) parameter raj(t) and a backoff rate Raj(t). At times

t = nT, for integer values of n > 0, these parameters are updated as follows.

For each standard edge (a, b), calculate edge weight Wab(t) as follows:

Wab(t) = max[Uad'c(t) - Uba'c(t)]+, (3.11)
d,c

where c* is the optimal commodity and d* identifies the optimal subqueue Qd,c* that

68

maximizes Equation (3.11). TA parameter rab(t) and backoff rate Rab(t) for edge

(a, b) can then be calculated as in Equations (3.1) and (3.2).

For each hyperedge (a, J), J = (b, g), calculate weight Waj(t) as

Waj(t) = max [Ug'x(t) - Us"'(t)]+ + max [Uj'(t) - Ug',(t)]+, (3.12)

where x* identifies the optimal commodity to send from node a to b, and y* identifies

the optimal commodity to send from node a to g. This optimal commodity pair

s = (x*, y*) and hyperedge (a, J), J = (b, g), form a coding opportunity (s, (a, J))

as long as (i) there is a packet at node a of commodity x* from neighbor g, i.e.,

Ug'x* (t) > 0, and (ii) there is a packet at node a of commodity y* from neighbor b,

i.e., Uaby*(t) > 0. Next, calculate TA parameter raj(t) and backoff rate RaJ(t) as in

Equations (3.1) and (3.2).

State Transitions: The Idle, Wait, and Transmit states are handled as in

Section 3.2.2. For a transmission on standard edge (a, b), transmit an uncoded packet

pC for optimal commodity c* from subqueue Qd*,,*. For a transmission on hyperedge

(a, J), J = (b, g), transmit a coded packet pxy = px D py, where packet px is from

subqueue Qgx* and packet py is from subqueue Qby*. If a subqueue is ever found to

be empty, the policy creates a null packet to send.

3.4.2 Rate Stability

It can be shown that distributed CSMA with pairwise coding stabilizes the network

for all arrival rate vectors strictly interior to the stability region ANC specified in

Equations (3.6)-(3.10). The proof follows the method shown in [10]. A sketch of

this proof is given in Appendix 3.A. Whenever the packet queues are stable, the

distributed CSMA policy also stabilizes all side information buffers in the network.

This is clear from the discussion of maintenance operations on side information buffers

in Section 3.6.4.

69

a a

9 9

b b

(a) (b)

Figure 3-3: Simple packet overhearing operation. (a) Transmission from a to g,
overheard by b. (b) Analogous routing scenario.

3.5 Packet Overhearing Extension

Network coding can be combined with packet overhearing to yield additional coding

opportunities. Packet overhearing occurs when any nodes receive a packet concur-

rently with that packet's intended next-hop recipient. These additional nodes can

then use their knowledge of the overheard packet in future decoding operations. The

use of overhearing has been explored in [6], [14], [16], [30], and [34].

We consider a simple packet overhearing scheme to improve our network coding

strategy, as shown in Figure 3-3. A transmission from node a to node g that is

overheard by node b, where nodes b and g are neighbors as shown in Figure 3-3a, is

analogous to a special routing operation where a transmission is sent from node a to

node b to node g all at once, as shown in Figure 3-3b. We allow for overhearing of

uncoded transmissions, creating two additional pairwise coding scenarios as shown in

Figure 3-4. A single overhearing operation leads to the pairwise coding opportunity

shown in Figure 3-4a, using edge activations in Figure 3-4c. Here, node a transmits

packet py to node g, and this packet is overheard by node b, allowing b to later decode

the coded packet px D py from g. The addition of a second overhearing operation

leads to the pairwise coding opportunity shown in Figure 3-4b, using edge activations

in Figure 3-4d. In addition to the overhearing at node b, node e transmits packet px

to node g, and px is overheard by node c. Nodes b and c can both decode the coded

packet px D py from g.

A standard uncoded transmission from a to g for commodity x has weight Wag

70

a py9 C

b ~ Px

(a)

(c)

a Pye

9

(b)

Vy Px®Y

x p

(d)

Figure 3-4: Pairwise coding scenarios with overhearing shown in (a) and (b), where
solid lines indicate edges and dashed lines indicate traffic demands. Associated edge
activations shown below each overhearing scenario in (c) and (d), where dotted arrows
indicate overheard transmissions.

from Equation (3.13), while the same transmission overheard by node b has weight

Wabg from Equation (3.14). (Here d is the source of the subqueue at node a containing

the commodity x packet.)

Wag = [Ua'x(t) -

Wabg = [Ud'x (t) - U,2)+

(3.13)

(3.14)

The packet departs from subqueue Qdix at node a for both the standard and overheard

transmissions, while the subqueue at which the packet is received at node g depends

on the transmission type. For the standard transmission from a to g, the packet

enters subqueue Qagx and a copy is stored in the side information buffer at node a.

However, for the overheard transmission, the packet enters subqueue Qg~x because we

treat the packet as if it was received at g from node b, as shown in Figure 3-3b. The

overheard packet is then stored in the side information buffer at node b instead of at

node a.

Our overhearing strategy doesn't introduce new types of network coding edge

71

activations, only a new type of uncoded hyperedge activation. Therefore, Theorem 2

from Chapter 2 still applies, giving an upper bound of 2 for the maximum possible

coding gain from our pairwise coding strategy with overhearing.

3.5.1 Updated Stability Region for Overhearing

Overhearing leads to minor changes to the stability region. We represent the over-

hearing transmission as flow variable , which is the flow from subqueue Qij" at

node d to node b and overheard by node a. We introduce an Overhearing Constraint

as a prerequisite for our overhearing strategy: overhearing flow variables can only

represent positive flow for hyperedges (d, J), J = (a, b), where edge (a, b) is also avail-

able in the network; otherwise the overhearing flow variable must take the value of

zero flow. The total uncoded and coded flows f" from Equation (3.4) becomes

fd =f;c ± d + j 'b + fa, Va, b, c, d E A , J = (bd). (3.15)
.i g:s=(c,g)

Equations (3.5) and Flow Conservation (3.6) incorporate the addition of overhearing

from Equation (3.15) but otherwise remain unchanged. The Coding Constraint (3.7)

changes to account for outgoing overheard transmissions, as follows:

E dc_ dce~ *dc . ~
b(f fl fa) < f, V a, c, d E A. (3.16)

The Hyperedge Rate Constraints in Equations (3.8)-(3.10) remain unchanged. However,

note that we have generalized the hyperedge activation rate GaJ in Equation (3.10)

to include both pairwise coding and uncoded overhearing, as these both operate over

hyperedges. The stability region with overhearing is then given by the constraints in

Equations (3.6), (3.8)-(3.10), and (3.16).

3.5.2 Policy Modification for Overhearing

The overhearing extension requires only minor changes to how hyperedge rate param-

eters are handled by our distributed CSMA policy. Parameter updates for standard

72

edges remain unchanged, and the state transitions behave exactly as without the

overhearing feature.

Parameter Updates for Hyperedges: At each time t = nT, for integer n > 0,

for each hyperedge (a, J), J = (b, g), calculate weights Whj, Waj, and Waj as follows.

1. For transmissions from a to g overheard by b, calculate WhJ as

max

Wi = c'd
aJ ,

0,

if edge (b, g) E W ,

otherwise.

2. For transmissions from a to b overheard by g, calculate Wh as

max

aJ j ,
0,

[Ud'c(t) - Ub''(t)]+ if edge (g, b) E 7L,

otherwise.

3. For network coded transmissions from a to b and g, calculate Wa as Waj(t)

from Equation (3.12).

Then, choose the network coding or overhearing operation that maximizes the weight

of the hyperedge,

Waj(t) - max {Waj, Whs, Whj} . (3.17)

TA parameter raJ(t) and backoff rate Raj(t) are calculated as in Equations (3.1) and

(3.2).

3.5.3 Linear Program Results

We compare coding gains directly by evaluating the bounds of the stability region

using an LP solver. We generate 100 random 16 node topologies, where there are

16 x 15 = 240 possible traffic demands on each topology. We choose traffic demand

vector A C {0, 1}240, where each demand is activated with probability p, and find

73

[Ud' (t) - Ubg ()+,

0 1000 2000 3000 4000
simulation number, sorted

(a) p = 1/32

C

5000

1.4.

1.1 - with Overhearing
x without Overhearing

1
0 1000 2000 3000 4000 50C

1.5

1.4

1.3

1.2

1.1

1

simulation number, sorted

(c) p = 1/8

N. P%0

- with Overhearing
x without Overhearing

0 1000 2000 3000 4000
simulation number, sorted

(e) p = 1/2

C)
C
~0
0

1.5

1.4

1.3

1.5

1.4

1.3

1.2

1.5

1.4

1.3-

1.2

1.1

1.5

1.4

1.3
C)

' 1.21

1.1

5000

0 1000 2000 3000 4000 5000
simulation number, sorted

(b) p = 1/16

A.h.rei

- with Overhearing

x without Overhearing

0 1000 2000 3000 4000
simulation number, sorted

(d) p = 1/4

with Overhearing
x without Overhearing

0 1000 2000 3000 4000
simulation number, sorted

(f) p = 3/4

5000

5000

Figure 3-5: Comparison of pairwise coding gains with and without overhearing for
individual traffic vectors. Random traffic demands with activation probability p.
Results sorted in order of increasing gain for coding without overhearing. All graphs
share same legend.

74

6-'

- -..';
-F.-

CD

0

1.1

1 I-.,.

.w44

C)

0)

C

(5
C)
C
-C
0
0

1.2

1.1

1

1

1
0

the maximum offered load without coding pi such that A -Pi E A and the maximum

offered load with network coding PNC such that A - PNC E ANC. Coding gain is then

the ratio PNC/P1. These topologies are evaluated with 2-hop interference constraints.

Figure 3-5 shows coding gains for traffic demand activation probabilities p={1/32,

1/16, 1/8, 1/4, 1/2, 3/4}. For each activation probability, 5000 individual arrival rate

vectors are generated (50 per topology). Coding gain is then evaluated for each ar-

rival rate vector, both with and without overhearing. For each activation probability,

the vectors are sorted in increasing order of coding gain for pairwise coding without

overhearing, and the values for coding gain are plotted in that order. In Figure 3-5a

where p = 1/32, we observe up to 25% additional gain from overhearing, although

these additional gains are only present in 21% of our observations. The maximum

additional gain from overhearing decreases as the probability p increases, while the

frequency of occurrence increases with p. In Figure 3-5e where p = 1/2, the addi-

tional gain from overhearing is at most 5%, and these additional gains are present

in 50% of our observations. For each activation probability p, the median additional

coding gain from overhearing is less than 2%, however the small computational cost

to include overhearing and the potential increase in coding gain make it a worthwhile

extension. It is interesting to note that the gain from overhearing is greatest when the

traffic vector is sparse. Additional traffic demands increase the likelihood of coding

opportunities without the need for overheard transmissions, so overhearing provides

only small incremental gains when the traffic vector is dense.

3.6 Implementation Considerations

Next we discuss some details related to implementation of the distributed CSMA

policy.

3.6.1 Backoff Times

Backoff rate Ri grows exponentially with aggressiveness parameter r , and for any

finite precision computation this can lead to overflow of variable Ri. This occurs,

75

Max. R, Max. Associated

Data Type of R, before overflow ri = log(Rj)

Double Precision Floating Point 1.7977e+308 709.78
Single Precision Floating Point 3.4028e+38 88.72

Unsigned 64-bit Integer 1.8447e+19 44.36

Table 3.1: Maximum values for ri before overflow of rate Ri.

for example, in the case of a bursty source node, and is exacerbated on systems that

require the use of fixed-point arithmetic. Table 3.1 shows values of ri that lead to

overflow for various data types of variable R,. When the differential backlog is large,

multiple outgoing edges i can be assigned backoff rate Ri = oo and the node will

not be able to correctly discriminate between exponentially distributed backoff times

Bi ~ Exp(R = oo) = 0.

Larger values of ri can be supported by comparing logarithms of the backoff

times instead of comparing the backoff times directly. We use the inverse transform

method to generate backoff times Bi - Exp(RI) as follows. Generate random variable

Z ~ Uniform[O, 1], where the CDF of Z is Fz(z) = P(Z < z) = z. Then choose backoff

times using the function Bi = - log(Z)/Ri. The CDF of Bi is FB,(bi) = P(Bi < bi) =

P(- log(Z)/Ri bi) = P(Z > e-IRi) = 1 - e-biRi, so Bi is exponentially distributed

with rate Ri. Taking the logarithm of bi and using Ri = e'', we find

I- log(z)\
log(bi) = log = log (-log(z)) - ri, (3.18)

eri

which allows almost the full range of values supported by variable ri, except when

z is extremely close to 0 or 1. The earliest of a group of backoff times can then be

chosen as

min bi = exp (min log(bi)). (3.19)

A node can then choose the minimum backoff time between interfering edges with the

correct activation probabilities, or a simulation engine can choose between all waiting

edges in the network. New backoff times can be drawn at each comparison due to the

76

memoryless property of the exponential distribution.

3.6.2 Avoiding Greedy Application of Network Coding

It may be tempting to opportunistically promote edge activations into hyperedge ac-

tivations. However, it is known that greedy application of network coding can reduce

throughput [5]. In this section, we show that our policy avoids greedy application

of network coding on one such scenario, the 4 node diamond topology with 1-hop

interference and arrival rates as indicated in Figure 3-6a. Here the network can be

stabilized for offered loads p < 1/4. With 1-hop interference, edges (c, a) and (c, d)

mutually interfere with all hyperedges in the network, (a, Ja), (b, Jb), (c, Jc), and

(d, Jd), where Ja = (b, c), Jb = (a, d), J, = (a, d), and Jd = (b, c). Thus, a greedy ap-

plication of network coding on any hyperedge reduces the fraction of time that edges

(c, a) and (c, d) can be active. This problem is illustrated as follows. Without loss of

generality, assume that traffic only flows on efficient paths (e.g., traffic from c to a

doesn't go the long way around the diamond), and let p be feasible. By Equation (3.9)

we find activation frequency Gca fc;, = 2p and likewise Gcd > 2p. Using the con-

vexity of schedules from Equation (3.8), Gca + Gcd + GaJa + GbJb + Gcc + GdJd < 1,

and thus Gaja + GbJb + Gcjc + GdJd < 1 - 4p. Therefore, as the offered load p ap-

proaches the stability bound 1/4, all hyperedge activation frequencies must go to 0

as a prerequisite for stability.

We evaluate distributed CSMA with pairwise coding on the scenario from Figure

3-6a by simulating our policy using Poisson arrivals, o = 1/10, and T = 10. The

simulations are run for 10 million time units for each value of offered load considered.

Figure 3-6b shows the activation frequency of each hyperedge versus offered load p,

while Figure 3-6c shows activation frequencies for standard edges in the same scenario.

As p approaches 1/4, we observe that Gca and Gcd each converge to 1/2 = 2p, Gab,

Gbd, Gdb, and Gba all converge to 1/4 = p, and all other edges and hyperedges converge

to 0, as desired. Therefore, our policy avoids greedy application of network coding

for this scenario.

77

Aa to b AdP

a /

// L~

a d

A =02p c A =2p

(a) Scenario

0.06-

0.05 GcJ
CD) C

E- 0.04 GbJ
b

C 0.03 . GaJ
0 __ a

0.02- - - * -... GdJ d

0.01 0 9x

0
0.05 0.1 0.15 0.2 0.25

offered load, p
(b) Hyperedge Activation Frequencies

0.5

-e- Gca
(*) 0.4-0- e -Gcd

-- Gab
y0.3 -+ - Gbd

.- +-Gdb
- 0.2

> - ''' Gba
0 1 '. -"--Gac

CMU-0.1 - G dc
0
0.05 0.1 0.15 0.2 0.25

offered load, p
(c) Edge Activation Frequencies

Figure 3-6: The 4 node diamond scenario. Under 1-hop interference, greedy appli-
cation of network coding can reduce throughput. Stability requires all activation
frequencies Gi -+ 0 for each hyperedge i as offered load approaches stability bound
p = 0.25. Our policy satisfies this condition.

78

3.6.3 Minimum Queue Size with Network Coding

As the arrival rate vector approaches the upper bound of the stability region, our

policy requires use of small values of step-size a to achieve necessary service rates.

However, we observe that queues grow large for small values of a. As a function of

step-size a and offered load p, we find a lower bound on the average network queue

size required for rate convergence on the 3 node scenario in Figure 3-la. In particular

we show that the queue size must be inversely proportional to a. For simplicity of

this example, let the arrival rates be symmetric, i.e., p = A' = Ab, and let p be in the

range 1/4 < p < 1/3 such that pairwise coding is required to stabilize the network.

Using the result from [18], we model schedule activations of our policy as a Markov

chain. In this simple 3 node scenario, at most one edge can be active at a time, so

activation frequency iri of each schedule i is the service rate for edge i. Note the

convexity constraint is 7ro + 1rba + 7rca + rac + irab ± raj = 1, where J = (b, c), ri > 0,

and 7r is the activation frequency of the empty schedule. By symmetry, 7rc = wra and

7Wac = rab. Combine the convexity constraint with service requirements lrba = Wrca > ,

and rac +7raj > p, we find upper bound rab < 1 - 3p. Applying this bound to service

requirement rab + raJ > p, we find lower bound raj 4p - 1. Taking the ratio

between WraJ and rab,

4p- 1 WraJ WrRaj _ erab+rac
1p- I - - erab= erac, (3.20)
1 - 3P -Iab WrORab e ab

where ri = vrR, is given by the stationary distribution of the Markov chain, RaJ =

exp(raj), and raJ = rab + rac. Solving for rac yields r, > log . By a similar

method, we find rba > log P + rac. By symmetry, rca = rba and rac = rab.

When rate parameters are stable, average queue sizes can be found as follows.

Applying Equation (3.1), Uj'e = Ucb = n, and accounting for differential backlog,
bU,c =bUcp = "+rac. The policy back-fills packets to learn the forward direction of

traffic flow, so U "' = Uc"b = UaC Taking a sum over all queues, a lower bound on

79

average network queue size is found as follows.

Uc > - log + - log (3.21)
icd a -3p a -3p

Considering offered load p = 0.32 in Equation (3.21), we find that convergence of

service rates requires a minimum network queue size of 19.73/a, which is inversely

proportional to a as expected from Equation (3.1). We evaluate this lower bound on

network queue size for various values of a, as shown in Figure 3-7a. Simulations for

this scenario are discussed in Section 3.7.

3.6.4 Managing Side Information Buffers

This subsection describes a distributed method to determine when packets can be

discarded from side information buffers. Let Sbc be the size of the side information

buffer at node a for packets sent to neighbor b for commodity c. Recall that even

with packet overhearing, a copy of each transmitted packet is stored in exactly one

side information buffer; in the case of packet overhearing, the side information copy is

stored at the overhearing node instead of the transmitting node. The policy exchanges

backlog information with neighbors every T units of time. Side information buffers

are kept in FIFO order, so when node b sends backlog information U,c to node a,

the associated side information buffer at node a can be reduced such that it contains

only the most recent Sac = Uac packets. Without loss of generality, assume node b

can transmit at most one packet at a time. Therefore node b can transmit at most T

packets between sending backlog updates to node a. Thus, Sbc < Ubac + T, and the

side information buffers are stable whenever the queues are stable.

3.7 Numerical Results

We simulate our policy using Poisson arrivals, and compare distributed CSMA with

our MWS policy from Chapter 2. All configurations were simulated for 10 million

time units.

80

aZ

0

a)-

N

a)

0

0
CaCM
0)

CZ

N

C,)
a)

0-

0

a)

400

300

200

100

0

300

0 2e5 4e5 6e5 8e5 1e6
simulation time

(a) Queue Size vs. Time

U

2500

2000-

1500-

500

0.315 0.32 0.325 0.33 1/3
offered load, p

(b) Queue Size vs. Offered Load

Figure 3-7: Simulations on 3 node scenario from Figure 3-la. Legend applies to both

subplots. (a) Offered load p = 0.32 for various a. Dotted lines show lower bound on
stable queue size from Equation (3.21). (b) Stability bound at p = 1/3.

81

A A A A

-- CSMA, a= 1/20
-O-CSMA, c= 1/10
-+-CSMA, a= 1/5
-'- MWS

0- A
Av% &ft

-e

M M -

1000[

0

We first consider the performance of our CSMA policy on the 3 node scenario

from Figure 3-1a with symmetric offered load p = Ac = A. We simulate CSMA with

a = {l/5, 1/10, 1/20} and update interval T = 10. Figure 3-7a shows the network

queue size as a function of time for offered load p = 0.32. Here we see that CSMA

operates with queue size at roughly 1/a times that of MWS. The lower bound on

CSMA queue size from Equation (3.21), shown as a dotted horizontal lines, appears

reasonably close to actual network queue size in this scenario. However, the distance

between the bound and actual queue size will vary based on offered load and arrival

process. Figure 3-7b shows average network queue size versus offered load, where

the bound of the stability region is indicated with a dashed vertical line at p = 1/3.

For all configurations, we see that queues remain relatively small when the offered

load is interior to the stability region, and the queues grow large as the offered load

approaches the stability bound.

We next consider how queue sizes scale with the number of nodes n on a tandem

configuration with symmetric end-to-end traffic, as shown in Figure 3-8a. We config-

ure CSMA with a = 1/10, T = 10, p = A' = A' = 0.3, and evaluate this scenario

under the 1-hop interference model. Figure 3-8b shows average network queue size

for our CSMA and MWS policies on networks with n = {3, 4, ..., 10} nodes. For both

policies we observe that the queues grow quadratically with number of nodes n due

to differential backlog routing, which is consistent with findings from [3]. The ratio

between CSMA and MWS network queue sizes is roughly 10 for n = 3 nodes and

increases to around 30 for n = 10 nodes.

Finally, we consider queue size versus offered load for a 16 node scenario with

11 traffic demands as shown in Figure 3-9a, with 2-hop interference. (This is the

same scenario considered in Figure 2-5 of Chapter 2.) MWS results are shown on

Figure 3-9b, while CSMA results are shown on Figure 3-9c. The dotted vertical lines

indicate the bounds of the stability region (computed using an LP solver) at p = 1/19

without coding, p = 1/17.5 for pairwise coding, and at p = 1/16 for pairwise coding

with overhearing. This yields a pairwise coding gain of 19/17.5 = 1.086 without

overhearing and 19/16 = 1.188 with overhearing. We see that the queues remain

82

= p

(a) n Node Tandem Scenario

4 5
n, number

6 7
of nodes

8 9 10
in tandem

(b) Packet Simulation

Figure 3-8: Average network queue size for pairwise coding on tandem network with
increasing number of intermediate nodes with symmetric end-to-end traffic, as shown
in (a). Results in (b) show quadratic growth in queue size as a function of the number
of nodes, n, for both MWS and CSMA policies.

83

-e-- CSMA c=1/10

- -V-MWS

a)
a)

a)

N

C/)
a)

Cr

600C

5000

4000

3000

2000

1000

n

-

3

10

16
I 4 i1

i 15

4 7

12 / / ,- 14
6

9 / 8

1 13
- 11

(a) Scenario

-e- Piri-

0.0475 0.0525 0.0575
offered load, p

(b) MWS

0.0475 0.0525 0.0575 0.0E

-9- Pairwise
-"-- No Coding

0.0625

Pairwise with
Overhearing

-e-- Pairwise
- No Coding

25
offered load, p

(c) CSMA

Figure 3-9: Comparing MWS and CSMA for a 16 node scenario. (a) Traffic demands
as dashed lines with arrows. (b)&(c) Stability bounds as dotted vertical lines.

84

1 0e3

8e3

6e3

4e3

2e3

0

Cz

ci)

N

(D

Cr

a)

a)

Ca

6i
N

C,,

a)

0

CD
C:

60e3

50e3

40e3

30e3

20e3

10e3

0

relatively small for values of p interior to the stability bound, and the queues grow

rapidly when p exceeds the bound. We also observe that CSMA queues operate at

between 10 and 20 times those for MWS, although this will vary with a.

3.8 Summary

In this chapter, we considered distributed techniques for joint routing, scheduling, and

pairwise network coding to maximize throughput in wireless networks. We presented

the distributed CSMA policy for pairwise coding, and showed that this policy can

come arbitrarily close to supporting the full stability region allowed by our coding

constraint. We developed a packet overhearing extension to increase the number of

beneficial coding opportunities and evaluated our policy with and without overhearing

on multiple scenarios. On random scenarios we find the additional gains from our

overhearing scheme are low on average at around 2%, but occasionally we observe

larger gains of up to 25% that make this simple extension worthwhile.

In comparing performance of our CSMA and MWS policies, we find that the

distributed control of the CSMA policy comes at the expense of growth in average

queue size. For a simple pairwise coding scenario, we provide a lower bound on stable

CSMA queue size as a function of the offered load and a. This bound is inversely

proportional to a, and we found it useful for approximating the network queue size

in our simulations. We evaluated stable queue size as a function of the number of

nodes in a tandem network, and observe quadratic growth in stable CSMA queue

size. While MWS also experiences quadratic growth in queue size, the growth rate is

noticeably faster for CSMA.

3.A Rate Stability

Using appropriate choices for parameters a and T, we wish to show that for any

strictly feasible arrival rate vector A and any flow decomposition f, the distributed

CSMA policy chooses TA parameters ri such that service si(r) dominates arrivals fi

85

for each edge i. Here, A is strictly feasible if (A + c) E ANC, for c > 0, and f is a

flow decomposition of A according to Equations (3.6)-(3.10). First, we show that if

a solution is attainable for finite r*, then si(r*) > fi, Vi. Second, we show that the

solution is attainable whenever the arrival rate is strictly feasible. Combining the

first and second steps gives the desired result.

Let -ye be an activation probability for schedule f satisfying flow decomposition fi,

and let ire(r) be the actual activation frequency of each schedule f according to service

rates si(r)Vi. Indicator Ziee = 1 if edge i is active in schedule f, and 0 otherwise. Then

fA =e Iiee. Again using the result from [181, we model schedule activations of our

policy as a continuous time Markov chain, where the schedule activation frequencies

conditioned on ri are given by Equations (3.22) and (3.23).

re(r) = exp(Zi riIe)/ C(r) (3.22)

C(r) = EZ exp(Ei rije,) (3.23)

We can minimize the Kullback-Leibler divergence between distributions Y and r(r)

by solving supr>o F(r), where F(r) is non-positive for r > 0 and is defined as

F(r) = Et ye log (wre(r)) = E> firi - log(C(r)) . (3.24)

Note that -F(r) = fi-si(r), so a distributed gradient algorithm to solve supr>o F(r)

is shown in Equation (3.25).

ri(n + 1) = [ri(n) + a(n)(fi - si(r(n)))]+, Vi (3.25)

Choosing r (0) = 0, a(n) = a, interval n of duration T, and observing that fA and

si(r) correspond to queue arrivals and departures, respectively, we obtain ri(nT) =

aUi(nT). This is in the form of Equation (3.1).

86

Existence Proposition: If r* > 0 exists such that F(r*) = sup,>0 F(r), then

si(r*) > fi, Vi. Dualize each constraint ri 0 with dual variables di > 0:

L(r, d) = F(r) + diri . (3.26)

At solution r* we have

-L(r*, d*) = fi - si(r*) + d* (3.27)

=0 .

We know di > 0, so si(r*) > fj Vi.

Attainability Proposition: If A is strictly feasible, then F(r*) = sup,>o F(r)

is attainable. In [11], the dual of sup,>O F(r) was found as the following program.

max - uelog(uf)

SAt. Z(Ue4EI) >- fA,Vi (3.28)

Eu = l, _1>

Strict feasibility of A satisfies the Slater condition, giving existence of finite values for

Lagrangian dual variables of all constraints in (3.28): y* > 0, w* > 0, and z*. The

optimal value for Equation (3.28) occurs when

- exp(; y i -iet)
U = jexp(E Y1 ZEj) (3.29)

where yj is the dual variable for constraint Ef(uteiet) > fA. Observe that u* is in

the form of lre(r*) from Equations (3.22)-(3.23), where y! = ri' Vi. Then the optimal

value for Equation (3.28) equals F(r*) and is obtained whenever A is strictly feasible.

Combining the two propositions: If A is strictly feasible, then si(r) > fi, Vi.

Note that for fixed values of parameters a and T, we are only guaranteed that the

87

service rates will converge to the neighborhood of the link arrivals A. For rate stability,

it is sufficient for the convergence neighborhood to be fully contained in the stability

region. By assumption, arrival rates are strictly feasible, so there always exists a value

of a small enough that the neighborhood of convergence is fully within the stability

region. Thus, the parameterized policy can come arbitrarily close to supporting the

full stability region.

Note that for pairwise coding, e.g., in Figure 3-la, we have assumed that TA

parameter for hyperedge (a, J), J = (b, c), is raJ = rab+ rac. This assumption is

confirmed by verifying that the total service rate Sab(r) on edge (a,b) is Wrab+ raJ:

a
Sab(r) = log (C(r)) (3.30)

arab

= (exp(ra) + exp(rab + rac))/C(r) (3.31)

= 7r1 (Rab + RaJ) (3.32)

= 7rab + lraJ, (3.33)

where irx = 1/C(r).

88

Chapter 4

Backpressure Routing in Overlay

Networks

In Chapters 2 and 3, we considered the use of network coding to increase the stability

region for wireless networks. In this chapter, we consider routing strategies for max-

imizing throughput in legacy networks where a subset of legacy nodes is replaced by

nodes aware of network control policies.

While differential backlog routing is known to be a throughput optimal routing

policy, it typically requires a homogeneous network where all nodes participate in

control decisions. We model a set of controllable nodes as a network overlay operat-

ing within a legacy network, and characterize the throughput region of the network

as a function of this set of controllable nodes. Our goal is to increase achievable

throughput in the network by using control policies in the network overlay to enable

multiple-path routing. As a motivation, we find that ring networks require exactly

3 controllable nodes to enable the same throughput region as when all nodes are

controllable, independent of the total number of nodes in the network. We develop

algorithms to choose the minimum number of controllable nodes required to enable

the full throughput region of networks with shortest-path routing, and these algo-

rithms are evaluated on several classes of regular and random graphs. In the case

of random networks with a power-law degree distribution, which is a common model

for the Internet, we find that fewer than 80 out of 1000 nodes are required to be

89

controllable to enable the full throughput region.

Since standard backpressure routing cannot be directly applied to the overlay set-

ting, we develop a heuristic extension to backpressure routing that determines how

to route packets between overlay nodes. Simulation results confirm that maximum

throughput can be attained with our policy in several scenarios, when only a fraction

of legacy nodes are replaced by controllable nodes. Moreover, we observe reduced

delay relative to the case where all nodes are controllable and operate under back-

pressure routing.

4.1 Introduction

Backpressure routing has been studied for decades, however adoption of this through-

put optimal policy has not been embraced for general use on the Internet. This is

due, in part, to a difficulty for backpressure routing to coexist with legacy routing

protocols. With few exceptions, backpressure routing is studied in homogeneous net-

works, where all nodes are dynamically controllable and implement a backpressure

policy across all nodes uniformly. As will be shown, backpressure routing - also

known as differential backlog routing, as proposed in [40] - is suboptimal when ap-

plied only to a subset of nodes in the network. A key problem with deployment in

heterogeneous networks is the possibility of encountering black hole routes, which are

typically assumed to not exist in a homogeneous network control scenario.

We would like to enable network control policies to be deployed in existing net-

works, alongside legacy nodes that are unaware of our control policies. There are

many reasons to integrate controllable nodes into heterogeneous networks, not the

least of which is the financial cost of replacing all nodes at once. Other reasons

include a need to maintain compatibility with current applications and special pur-

pose hardware, a lack of ownership to decommission legacy equipment, and a lack of

administrative privilege to modify existing software.

Conceptually, we model controllable nodes as operating in a network overlay on

top of a legacy network. Network overlays are frequently used to deploy new commu-

90

Figure 4-1: Example of a network overlay. The bottom plane shows the full network
graph, while the top plane shows a subset of network nodes and their conceptual
overlay connectivity.

nication architectures in legacy networks [31]. To accomplish this, messages from the

new technology are encapsulated in the legacy format, allowing the two methods to

coexist in the legacy network. Nodes making use of the new communication meth-

ods are then connected in a conceptual network overlay that operates on top of the

legacy network, as shown in Figure 4-1. The most predominant example of a network

overlay is the Internet, which was previously connected as a network overlay on top

of the public telephone networks (e.g., via dial-up modems). Lately, this situation

has reversed such that telephone communications now largely operate as a network

overlay on top of the Internet (e.g., via Voice-over-IP).

Several works have considered the use of network overlays to improve routing on

the Internet. Andersen et al. [2] motivate the need for resilient overlay networks

(RON) to find paths around network outages on a faster timescale than BGP. Their

method deploys a group of RON nodes as an application-layer overlay across various

routing domains, continuously monitoring the quality of paths in the RON to decide

which routes to use. Similarly, Han et al. [9] proposed a method for choosing place-

ment of overlay nodes to improve path diversity in overlay routes. While both of

the preceding works show that their strategies choose high quality single-path routes,

we would like to go further and identify multiple-path routes that offer maximum

throughput.

Delay reduction for backpressure routing has been studied in a variety of scenarios.

While multiple-path routes are required to support the full throughput region, the ex-

91

ploratory phase of backpressure routing can lead to large queues when the offered load

is low and single-path routes would suffice. Neely, Modiano, and Rhors [26] propose

a hybrid policy combining backpressure routing with shortest-path routing, where

flows are biased towards shortest-path routes, yet still support the full throughput

region. Khan, Le, and Modiano [15] extend this hybrid policy to also include digital

fountain codes, and show their policy to achieve minimum end-to-end delay in the

presence of random link failures. Ying, Shakkottai, and Reddy [44] develop a policy

that achieves a similar shortest-path result by minimizing the average path length

used by flows. In a scenario with multiple clusters that are intermittently connected,

Ryu, Ying, and Shakkottai [33] combine backpressure routing with source routing in

a network overlay model to separate the queue dynamics of intra-cluster traffic from

longer inter-cluster delays. Bui, Srikant, and Stolyar apply shadow queues [3] to allow

the use of per-neighbor FIFO queues instead of per-commodity queues, as is typical

with differential backlog routing, and find that this can improve network delay.

In this chapter, we consider two problems in the area of control for heterogeneous

networks. First, we develop algorithms for choosing the placement of controllable

nodes, where our goal here is to allocate the minimum number of controllable nodes

such that the full network throughput region is available. Given a graph G with nodes

K supporting shortest-path routes between each pair of nodes, we wish to identify a

set of controllable nodes V C K to maximize throughput. Ideally, we would like to

solve P1,

V1* = min |V|
VCA (P1)

s.t. AG(V) = AG()

where AG(V) is the throughput region of graph G when only nodes V are controllable,

while AG(K) is the throughput region when all nodes are controllable. Note that com-

paring throughput regions directly can be difficult, so instead we identify a condition

that is sufficient to guarantee the full throughput region, and minimize placement

of controllable nodes subject to this condition. Second, we develop a backpressure

92

routing policy that avoids black hole routes in heterogeneous networks, with only mild

assumptions about the behavior of the underlying scheduling algorithm. Our solu-

tions for the first and second problems are complementary, in the sense that they can

be used together to solve the joint problem. However, our node placement algorithm

can be used with other policies, and our backpressure policy does not depend on the

results of the node placement algorithm.

This chapter is organized as follows. Section 4.2 describes our system models,

and Section 4.3 characterizes the throughput region under these models. We de-

velop a node placement algorithm in Section 4.4, and offer simulation results for

this algorithm in Section 4.5. A backpressure policy for heterogeneous networks is

designed in Section 4.8, and we offer concluding remarks in Section 4.9.

4.2 Model

4.2.1 Network

We model the network as a directed graph G = {.M, E}, where K is the set of nodes

in the network and E is the set of edges. Networks drawn as undirected graphs are

implied to have both directed edges (i, j) and (j, i) for every pair of nodes i and j

shown as being connected. For simplicity, we assume slotted time and we use unit

rate links with fixed packet sizes corresponding to one packet per time slot. Our

simulation results will assume wired networks that are interference free, such that all

edges can be activated simultaneously. Finally, packet transmissions are assumed to

be reliable.

4.2.2 Uncontrollable Nodes

We assume that the underlay network provides a fixed realization for shortest-path

routes between all pairs of nodes, and that uncontrollable nodes will forward traffic

only along the given shortest-path routes. Further, we assume that only one path

is provided between each pair of nodes. Note that shortest-paths are necessarily

93

acyclici provided non-negative edge costs. Let PTP be the path from a to b provided

by the underlay network, and let ps' = (PS) for all a, b E A be the set of all paths

provided by the underlay network. Assume the underlay provides all edges (i, j) E 9

as single-hop paths Ps.

Optimal substructure is assumed for shortest-paths, such that if shortest-path paP

from node a to c includes node b, then path PsP includes shortest-paths pS, from

a to b, and pP, from b to c. This optimal substructure is consistent with shortest-

paths in OSPF, a widely used routing protocol based on Dijkstra's shortest-path

algorithm [311, where OSPF allows for the use of lowest next-hop router ID as a

method for choosing between multiple paths of equal length.

4.2.3 Controllable Nodes

Next, we consider the subset of nodes V C K, called overlay or controllable nodes,

which can perform dynamic routing decisions to direct packets to the destination or

other controllable nodes along the provided shortest-path routes. Intuitively, these

nodes V can improve throughput performance by generating new paths and enabling

multi-path routing. The remaining uncontrollable nodes u E K \ V provide only

shortest-path routing in the underlay network, with an exception that any uncon-

trollable node u can participate in dynamic routing for all traffic that originates at

u or is destined for u; this may occur, for example, in the source and destination

applications at uncontrollable nodes, or in a shim-layer between the network-layer

and application-layer. Without such an exception, all sources and destinations may

be required to be controllable nodes (e.g., in a ring network, where a source may

need to bifurcate traffic between the clockwise and counterclockwise paths to a des-

tination), in which case supporting the full throughput region would necessitate that

V = K. However, only controllable nodes V can participate in dynamic routing for

traffic received over the network.

Controllable nodes can increase the achievable throughput region by admitting

new paths to the network as concatenations of existing paths from shortest-path

'Acyclic paths are also known as simple paths.

94

2

4

5

Figure 4-2: Example of 2-concatenation on a 5 node ring network, where node 3 is
controllable. A subset of the shortest-paths {pf, P, Pf7}EPSP are shown as solid
red arrows. Path Pf4olnac is a 2-concatenation of paths pP and psP at controllable
node 3, and is shown as a dashed blue arrow. Here, pjoncat E P(V), but pfoncat 0 pSP

routing. A 2-concatenation of shortest-paths Psp and Psp is an acyclic path from a

to b, Pab, where v E V is a controllable node and v is the only node shared between

shortest-paths pSP and PP. Note that a 2-concatenation of acyclic paths will always

be acyclic, as we only allow the concatenated paths to share the overlay node v at

which concatenation is performed. An n-concatenation is then the concatenation of

n shortest-paths at n - 1 controllable nodes, performed as a succession of (n - 1)

2-concatenations. Following the rule that a 2-concatenation can be performed only

on acyclic paths that share only the concatenation node, an n-concatenation is also

always acyclic. Consider the set of paths P(V), which contains all underlay paths

pSP as well as all possible n-concatenations of these paths at the controllable nodes

V. We will see that this set P(V) plays a role in the achievability of the throughput

region. An example of a 2-concatenation path in P(V) is shown in Figure 4-2.

4.3 Throughput Region

The throughput region AG(V) is the set of all arrival rates that can be achieved by

any policy implemented at controllable nodes V on graph G. For the case where all

nodes are controllable, i.e., V = A, the throughput region equals the stability region

of graph G. This section characterizes the throughput region that corresponds to the

set of paths P(V), i.e., all shortest-paths and all acyclic concatenations of shortest-

95

paths at controllable nodes V. The throughput region is the set of all arrival rate

vectors that can be supported by such paths on the network. Recall the following

two properties about underlay paths: (i) a shortest-path PSbp exists for every pair of

nodes a and b, and (ii) edge (a, b) = PsbP for all edges (a, b) E S, i.e., all 1-hop paths

are in the set Psp.

Packets destined for node c are called commodity c packets. Let Ac be the rate

of exogenous arrivals at node a for commodity c, and let A = (Ac) be the multicom-

modity arrival rate vector for all sources a and commodities c. All flow variables are

non-negative, where fj2b'C is the edge-flow rate for commodity c on edge (i, j) along

the shortest-path from node a to b. Flow for a path is allowed only on the edges along

that path, i.e., fa b'c = 0 unless (i, j) E P.sbp Let facb be path-flow rate for commodity c

along shortest-path Pasb, from node a to node b. Decision variable vi = 1 if node i is

controllable, and vi = 0 otherwise, for all nodes i c AJ. The capacity of edge (i, j)
is Rij. The controllable throughput region AG(V) is then the set of all arrival rate

vectors A = (Ac) such that Equations (4.1)-(4.6) can be satisfied.

Flow Conservation:

AC> f- > f, cvcVccK\v (4.1)
bC{c,V\v} dEV\v

AC= cf, VuEK\V,cE f\u (4.2)
bE{c,V}

Path Constraint:

fac fbc , V (ij) E PP V a, b, c E C (4.3)

Overlay Neighbor Constraints:

fab'c (1 - vi)Rij , V(i,Ej)EPf, af i, Vc E H (4.4)

fj 'c < (1 - vj)Ri , V (i, I) c Pa , b z j, Vc E A (4.5)

Edge Rate Constraint:

> z3 < Ria , V (i, j) E ' (4.6)
a,b,c

96

Equation (4.1) represents flow conservation of commodity c packets at controllable

node v. Here, exogenous arrivals at node v equal network departures minus (endoge-

nous) network arrivals at v. Similarly, Equation (4.2) represents flow conservation for

exogenous arrivals at uncontrollable nodes. The exogenous arrivals for commodity c

at uncontrollable node u are equal to network departures on the shortest-path to des-

tination c plus network departures along shortest-paths to controllable nodes. This

is the special case where uncontrollable node u is a source, in that u can dynamically

route exogenous arrivals but not endogenous network arrivals. Equation (4.3) is a path

constraint for each commodity c along the shortest-path from node a to node b, where

the path-flow equals the edge-flow for each edge along path P'. Equations (4.4)-

(4.5) force edge-flow fj'' = 0 if node i or j is a controllable node intermediate to path

PS , i.e., for i 4 a and j 5 b, as such paths remove routing ability from intermediate

controllable nodes. Equations (4.4)-(4.5) are necessary to allow for dynamic choice of

controllable nodes, and are redundant with Equation (4.6) when nodes i and j both

are uncontrollable. Finally, Equation (4.6) is an edge rate constraint for every edge

(i, j), such that total flow over an edge is upper bounded by the edge capacity.

If there are no controllable nodes, i.e., V = 0, then Equation (4.2) simplifies to

AC = fa, V a, c E A, a : c . (4.7)

Here, Equations (4.4) and (4.5) can be ignored as they are always redundant with

Equation (4.6). The throughput region without controllable nodes is then limited

to the set of arrival rate vectors A such that Equations (4.7), (4.3), and (4.6) can

be satisfied. Indeed, these equations specify the shortest-path formulation for the

throughput region on graph G, defined as As= AG(O)-

If all nodes are controllable, i.e., V = Ar, then there are no constraints from un-

derlay paths and all dynamic routing decisions are allowed. Equations (4.1) and (4.6)

97

simplify to Equations (4.8) and (4.9).

A fc Z , VacEKa4c (4.8)
b:(a,b)EE d:(d,a)EE

EI ac < Rab , V(a, b) E S (4.9)
C

Here, there are no uncontrollable nodes, so Equation (4.2) is unused, and Equa-

tions (4.3), (4.4), and (4.5) are redundant with Equations (4.8) and (4.9). The full

region AG AG(K) is then defined as the set of arrival rate vectors A that satisfy

Equations (4.8) and (4.9). This is the largest region supported by network G.

Any work-conserving policy with shortest-path routing can support the region

AG(0), while differential backlog (backpressure) routing is known to support the full

region AG(AF). However, how to achieve the heterogeneous region AG(V) with a

dynamic routing policy is not generally known. For heterogeneous networks, convert-

ing an uncontrollable node u into a controllable node v relaxes the constraints for

node u from Equation (4.2) into Equation (4.1). Note that when node v becomes

controllable, the overlay neighbor constraints from Equations (4.4) and (4.5) become

active.

Recall that we assume optimal substructure for shortest-paths. We use this struc-

ture to find an additional property about the throughput region. Any path pSbP that

passes through a controllable node v can be split into two sub-paths Pa and PvSbP,

where optimal substructure guarantees that both sub-paths are in the set of underlay

routes pP. Node v can then concatenate these sub-paths to form the original path

Pa. Therefore, if there exists a flow decomposition of A that uses path Pa, then

there is also a flow decomposition that uses sub-paths PaS and PSj. Thus, with

shortest-path routing, adding controllable nodes can allow the throughput region to

grow, but never causes the region to shrink. This implies a subset relationship in

the throughput region with shortest-path underlay routing, such that for any overlay

node sets V1 and V2, if V1 g V2 then AG(V 1) C AG(V 2)- More generally, we have the

98

AG(0)

Figure 4-3: Notional diagram showing the subset relationship from Equation (4.10) in
a 2-dimensional projection of throughput region AG(.), for sets of controllable nodes
V1 and V2 such that 0 C V1 C V2 C K.

subset relationship from Equation (4.10), as pictorially shown in Figure 4-3.

As AG(0) C AG(V 1) C AG(V 2) C AG(K)- AG, V Vi C V2 C K (4.10)

We next wish to find the smallest set of nodes V C K such that AG(V) = AG(K).

4.4 Placement of Overlay Nodes

We would like to place controllable nodes to solve P1, but the constraint AG(V) =

AG(K) is difficult to evaluate directly. A simple implementation for P1 can use the

fact that AG is a convex polytope, choosing the minimum number of controllable

nodes to satisfy all points in the throughput region, as

V2* = min lVi
VC (P2)
s.t. A(' E AG (V) , VA~i E AG ,

where A() enumerates all extreme points of AG. It is clear that P2 is equivalent to

P1, and therefore V2* = V*. However, enumerating all extreme points of region AG

may be impractical, as AG has N(N - 1) dimensions, i.e., one dimension for each

source-destination pair, and the number of extreme points potentially grows with the

power set of all dimensions, 0(2N
2).

99

Instead of evaluating P2, we propose a surrogate condition that is easier to evaluate

while still leading to the same optimal solution. Recall that the set of paths P(V)

includes all underlay paths Psp and all n-concatenations (for any n) of these paths

at controllable nodes V. Let PG be the set of all acyclic paths between all pairs of

nodes in G. A first observation is that P(K) = PG. This holds by the assumption

that all 1-hop paths are included in the set PSP, and since all nodes are controllable

we can produce any path in G as a concatenation of 1-hop paths. Next, we define an

important condition.

Condition 4.1 (All-paths). A set of controllable nodes V is said to satisfy the all-

paths condition if P(V) = PG.

Theorem 4.1. Given a placement of controllable nodes V, satisfying the all-paths

condition is necessary and sufficient for maximizing the throughput region, i.e.,

AG(V) = AG if and only if P(V) = PG.

The proof is given in Appendix 4.A.1. Using the all-paths condition, we define P3

as below.

Vs*=min V|
VCK (P3)
s.t. all-paths condition

Corollary 4.1. P1 - P3, therefore V1* = V*.

4.4.1 Overlay Node Placement Algorithm

We design an algorithm to choose the placement of overlay nodes V C K on a given

graph G = {K, E} such that the choice of overlay nodes is sufficient to satisfy the full

throughput region of the network, i.e., AG(V) = AG(M). The overlay node placement

algorithm consists of three phases: (1) removal of degree-1 nodes; (2) constraint

pruning; and (3) overlay node placement. These phases are explained below.

100

Phase 1: Remove Degree-1 Nodes

An attached tree is a tree that is connected to the rest of graph G by only a single

edge. An intuitive observation is that the throughput region does not increase by

installing controllable nodes on attached trees. Thus, at this preparatory phase, we

remove all attached trees by removing degree-i nodes recursively, as follows. Start

with original graph G = (K, C), and initialize N' := M and E' := E. While there

exists any node n E N' such that degree(n) = 1, set N' :=K'\n and set C' := E'\e,

where e is the only edge that connects to node n. Repeat until no degree-i nodes

remain. All remaining nodes have a degree of at least 2, thus all attached trees have

been removed. The graph that remains is G' = (N', C').

Lemma 4.1. Assume that a placement V that satisfies the all-paths condition includes

some node n on an attached tree. If node n is removed, the remaining placement V\n

still satisfies the all-paths condition.

Proof. To show P(V) = P(V \ n), we will show that for any pair a, b E K, each

acyclic path Pb E P(V) falls into one of four cases. For each case we see that Pb

does not require any overlay nodes on attached trees, proving the lemma.

1. Nodes a and b are both on the same attached tree: There is only one path from

node a to node b, and this is the shortest path.

2. Node a is on a specific attached tree and node b is not on that tree: There is

only one path from node a to the node c E G' that connects to the attached

tree, and this is the shortest path. Path Pb must include shortest-path PasP

3. Node b is on a specific attached tree and node a is not on that tree: There is

only one path from c E G' to b, where c connects to the attached tree. Then

path Pab must include shortest-path PsfP

4. Nodes a and b are both on G': No possible acyclic path from node a to node b

can go through attached trees, as entering and exiting an attached tree forms

a cycle.

101

Therefore, if placement V satisfies the all-paths condition, then placement V \ n also

satisfies the all-paths condition. E

By induction, it suffices to allocate overlay nodes in G' to satisfy the all-paths

condition.

Phase 2: Constraint Pruning

In this phase, we define the destination trees which will be used to find the constraints

for node placement. Exploiting a necessary condition from Lemma 4.2 regarding the

placement of controllable nodes, we show that proper pruning of these destination

trees will identify the set of constraints over which we minimize the allocation of

controllable nodes.

By optimal substructure, the union of shortest paths PK to any destination n

from all nodes x E A' \ n forms destination tree Dn. Define {Pn} \ n to be the set

of nodes on the shortest path from x to n, excluding node n. We have the following.

Lemma 4.2. If the degree of node x on tree Dn is less than the degree of x on

graph G', and there is no overlay node along the shortest path from x to n (i.e.,

Ov E V : v E {P'} \ n), then the all-paths condition is not satisfied.

Proof. Let (b, x) be an edge in G' but not in Dn, where such an edge exists by the

premise of Lemma 4.2. Consider path p formed from the concatenation of (b, x) and

shortest-path Px. We will show that this path cannot be formed if there are no

controllable nodes in the shortest path from x to n, and thus the all-paths condition

is not satisfied.

First, observe that since edge (b, x) is not on tree Dn, shortest-path Pb does not

include this edge (b, x). Thus, the path p requires a concatenation of two or more

shortest-paths. Such a concatenation must occur at a controllable node on path Px.

However, this is impossible since there are no controllable nodes on path PK. Thus,

the all-paths condition is not satisfied.

For Phase 2, we prune destination trees Dn at nodes with degree in Dn that is

less than their degree in G' to obtain pruned trees D'. By Lemma 4.2, for the all-

102

paths condition to be satisfied it is necessary to have at least one overlay node on the

shortest path to n from every leaf node of pruned tree D'. The pruned trees D' and

this necessary condition from Lemma 4.2 will be used as constraints in Phase 3.

Phase 3: Overlay Node Placement

Consider binary program P4 for placing the minimum number of overlay nodes to

satisfy Lemma 4.2 for all nodes on all pruned trees D'.

V4* = min Vn
n

s.t. Va ;> 1, Vb E LeafNodes(D'), Vn (P4)
aE{P }\n

Vn E {, 1}, Vn

Here, LeafNodes(D') is the set of all leaf nodes on pruned tree D', and {P.} \ n is

defined in Phase 2.

Next, we show that the placement determined by the solution of P4 satisfies the

all-paths condition.

Lemma 4.3. The overlay node placement of P4 satisfies the all-paths condition for

graph G'.

The proof of Lemma 4.3 is given in Appendix 4.A.2.

The following main result establishes the performance of the proposed overlay

node placement algorithm.

Theorem 4.2. Let V* be the solution to P4. Then V* is an optimal solution to PS,

and therefore also P1. Thus, AG(V*) = AG-

Proof. By Lemma 4.2, the constraint of P4 is necessary for the all-paths condition.

By Lemma 4.1 and Lemma 4.3 it is also sufficient. Thus, we have P4 <- P3. By

Theorem 4.1, P3 <=> P1, thus P4 <-=> P1. Then by P1, V* has the minimum

cardinality to satisfy AG(V*) = AG, where AG = AG(V). -

103

Overlay Node Placement Algorithm

Phase 1: Recursively remove all degree-1 nodes N1 and associated edges E1 from

graph G, until no degree-1 nodes remain. The remaining graph is G' = {N', E'},

where K' = K \ .Af and E' = E \ E1. This removes all attached trees from G.

Phase 2: Consider the destination tree Dn for each node n E K', and consider

the degree of all nodes b E A' \ n on tree Dn. If the degree of b on Dn is less than the

degree of b on G', then prune destination tree Dn at node b by removing all edges to

children of node b on D., and remove any nodes and edges that become disconnected

from n. The remaining subgraph is the pruned tree D'.

Phase 3: Solve P4, and place an overlay node at each node n where the solution

P4 has the result vn = 1.

Figure 4-4: Summary of the overlay node placement algorithm.

A summary of the overlay node placement algorithm is shown in Figure 4-4.

Phases 1 and 2 of the algorithm have complexity O(N 2). P4 solves a vertex cover

problem, which is known to be NP-Hard. However, note that the constraints of our

problem have optimal substructure, which might be exploitable. For our experiments

on graphs with 1000 nodes, the solver found most solutions to P4 within 5 seconds,

and we only rarely encountered scenarios that required more than a few minutes to

solve. Thus, we find this algorithm to be practical.

We will assume hop-count as the shortest-path metric for results that follow.

However, note that the proof of optimality for the overlay node placement algorithm

makes no assumption about the shortest-path metric, thus alternate metrics are also

supported.

104

4.5 Overlay Node Placement Results

We provide results for various types of graphs representing wired networks, including

specific families of graphs and random graphs. By Theorem 4.2, the full throughput

region is provided by the placement of our algorithm on all of these cases.

4.5.1 Simple Scenarios

Trees and Forests

Consider trees with shortest-path underlay routes ps' for every pair of nodes a and b.

A tree is loop free, and thus each path p E PSP is the unique acyclic path from node

a to b. Thus, the all-paths condition is automatically satisfied, and AG(0) = AG().

It follows that no controllable nodes are required for a forest, which is a disjoint

union of trees.

Cycles and Rings

Next, we provide a lower bound that is fundamental to the performance of P4 on

graphs with cycles.

Lemma 4.4. Every cycle requires at least 3 controllable nodes to satisfy the all-paths

condition.

Proof. Consider controllable nodes v1 , v2 E V on a cycle, and without loss of generality

assume shortest-path P" 2 is on the cycle. Then path Ps' allows one direction of

flow on the cycle, and at least one additional controllable node is required to allow

flow in the counter direction on the cycle. Note that the same problem occurs in

scenarios with 0 or 1 controllable node on the cycle, and when path P.f2 is not

on the cycle. Thus, at least 3 controllable nodes are required on each cycle in the

network. 5

Further, the result from Lemma 4.4 is exact for the case of a ring, where the entire

graph is a single cycle.

105

Lemma 4.5. Exactly 3 controllable nodes are required to satisfy the all-paths condi-

tion for a ring network with N > 5 nodes and hop-count as the metric for shortest-path

routing.

The proof is given in Appendix 4.A.3.

Cliques

Consider a clique, which is a fully connected graph where edge (a, b) exists for all pairs

of nodes a, b E AF. We require all edges (a, b) to be included in the underlay routes,

thus all underlay routes are single edges, i.e., P.J, = (a, b) for all pairs a, b E K.

A Hamiltonian path, traversing all nodes, will require all intermediate nodes to be

controllable. Such paths can start and end at any node, therefore it is clear that

a clique requires all nodes to be controllable to satisfy the all-paths condition, i.e.,

V =A.

Regular Grids

Consider regular grid networks as a tiling of nodes connected in squares of 2 x 2

nodes with total N = L x W nodes, for L > 2 and W > 2. Here, L is the number of

nodes per row while W is the number of nodes per column. Assume that we get to

choose how shortest-path ties are broken, i.e., the network is designed such that ties

are broken in favor of minimizing the number of controllable nodes required. Each

2 x 2 square tile is a cycle, so by Lemma 4.4 each cycle requires at least 3 controllable

nodes. Let T7 be the set of four nodes on tile j. Then a simple program to place

overlay nodes on a grid is given by P5.

min E Vn
n

s.t. E Vn 3, for each tile j, (P5)
nET7

vn E {, 1}, Vn

In Figure 4-5, we see that P5 chooses controllable nodes V in a crosshatch pattern.

106

We can apply this pattern to grids of arbitrary size by choosing all nodes on even

rows and even columns to be controllable. Note that no two uncontrollable nodes are

adjacent in the crosshatching pattern. By assumption, the shortest-path tie-breaking

rule can be chosen to prefer uncontrollable nodes, if available, as the next-hop when

constructing shortest-paths. Then, for any uncontrollable node u and any pair of

controllable nodes a and b that neighbor u on the grid, the 2-hop shortest-path

between node a and b is guaranteed to pass through node a by the tie-breaking rule.

All such 2-hop paths are then in the set PSP, and it is easy to verify that the set

of paths P(V) = PG. Therefore, the crosshatch allocation from P5 satisfies the all-

paths condition, and by Theorem 4.1 we have AG(V) AG. As a confirmation, the

shortest-paths from the above discussion can be used with the overlay node placement

algorithm (using P4) to arrive at the same crosshatch allocation in Figure 4-5.

For the crosshatch overlay node allocation, the ratio of controllable nodes to total

nodes, V/N, is shown in Equation (4.11).

V _ L[W/2j + [L/2, [W/2] for L > 2 and W > 2 (4.11)
N L x W

This ratio is exactly 3/4 when both L and W are even. If either L or W or both

are odd, then V/N is minimized on a 3 x 3 grid at V/N = 5/9, and asymptotically

approaches 3/4 as L and W grow large.

4.5.2 Random Networks

This section considers placement of overlay nodes to support the full throughput

region on various types of random graphs. For all scenarios, N is the total number

of nodes in the network, and V is the number of overlay or controllable nodes that

the algorithm chooses.

Power-Law Degree Distribution

The degree distribution of nodes in the Internet follows roughly a power-law distribu-

tion [28], such that a histogram of node degrees follows a straight line when both the

107

Figure 4-5: Minimal placement of overlay nodes to support full throughput region on
a 7 x 7 grid. Overlay nodes indicated in blue. Node placement from P5.

value and frequency axes are logarithmic. We construct random networks that have

power-law degree distributions using the configuration model and a truncated Zipf

distribution [28]. Zipf is a discrete distribution with parameters a and Z, where a

is the power-law exponent and Z is a truncation parameter indicating the maximum

degree of the distribution. The Zipf PMF is shown in Equation (4.12).

P(D = d) = , for d = 1, ... , Z (4.12)
Ik=1

For a given number of nodes N, the configuration model attaches a number of stubs

to each node according to the Zipf distribution, where a stub is half of an edge.

Pairs of unconnected stubs are then chosen randomly and connected to form edges.

Thus, node degree follows a power-law distribution. While self-loops and multi-edges

are possible, these can both be ignored for our purposes; self-loops don't increase

throughput, and our node placement algorithm is agnostic to capacity changes from

multi-edges.

Figure 4-6 shows results from the overlay node placement algorithm for random

power-law graphs with N = 1000 nodes, averaged over 10 realizations per data point.

Values of a between 2 and 3 are considered, with a = 2.5 being a frequent estimate

for the Internet [28]. For a = 2.5, the overlay node placement algorithm finds less

108

250 500
Z, power-law truncation parameter

1000

Figure 4-6: Results of overlay node placement algorithm on random graphs where
node degree follows a power-law distribution with exponent a. These power-law
graphs were generated with configuration model and truncated Zipf distribution.
Value V/N is fraction of overlay nodes to total nodes.

than 8% of nodes are needed to be controllable for the full throughput region to be

achievable.

Erdos-Renyi Model

The classic model for random graphs is known as the Erd6s-Renyi (ER) model [28],

where edges are independent and each edge is equally likely. ER graphs are also

known as Poisson random graphs. We generate random graphs using the G(N, p)

formulation of the ER model, where parameter N is the number of nodes and p is the

edge-connection probability. Random graphs are then generated from this model by

considering every pair of nodes a, b E K, and creating edge (a, b) with probability p.

Figure 4-7 shows results of the overlay node placement algorithm on ER graphs

with N = 1000 nodes. The edge-activation probability p is varied from 0 to 1,

and results are averaged over 10 realizations for each probability p considered. For

the ER model, a giant component forms at p = 1/N with high probability, and

the network becomes connected at p = log(N)/N with high probability. At around

109

0.3

0.25

0.2
z

0.15

0.1

0.05

0
0 100

-Ar- a = 2
(x = 2.25
a=2.5

-- II-- a = 2.75
- a =3

0 0.002 0.004 0.006 0.008
p, edge generation probability

-G- V/N

-9.- C/N

0.01 0.012

Figure 4-7: Results of overlay node placement algorithm on Erdos-Renyi random
graphs with N = 1000 nodes. The blue curve indicates fraction V/N of overlay nodes,
while the red curve indicates the ratio C/N of size for largest connected component to
total nodes. Dashed vertical line at probability p = 1/N at which giant component
begins forming. Solid vertical line at probability p = log(N)/N at which network
becomes connected.

110

U)

~0
0

0

C.)
CZ

0.8-

0.6-

0.4-

0.2 -

n
0.014

1

p = 1.25/N = 0.00125, we see the allocated controllable nodes V is only about 1%

of N while the size of the largest connected component G is about 33% of N. At

p = 7/N = 0.007, the graph is connected while V is still only 75% of N.

Two characteristics of the ER model are low clustering of nodes, such that few

triangles are formed, and a high incidence of long edges yielding a low average length

for shortest-paths. We next consider a random graph model with high node clustering.

Watts-Strogatz Small-World Model

Small-world graphs are characterized by high clustering of nodes, and the Watts-

Strogatz (WS) model generates random graphs with small-world properties using

parameters K for initial node degree and / for edge rewiring probability. Initial

node degree K is limited to even values and K is also the average node degree for the

random graph. Graphs are initialized as a ring lattice, where N nodes are arranged in

increasing order around a ring and each node is connected to the closest K neighbors,

K/2 in each direction. Each edge (a, b) with a < b is rewired with probability / as

edge (a, c), where node c is chosen uniformly amongst all nodes not directly connected

to node a. At / = 0, the WS model produces a ring lattice, while at / 1 all edges

are rewired and the result approaches an ER graph.

We generate random graphs according to the WS small-world model with N = 500

nodes for initial edge degrees of K = 2, 4, and 6, and edge rewiring probability # is

varied from 0 to 1. Figure 4-8 shows results of the overlay node placement algorithm

on these WS graphs, where results are averaged over 20 realizations. For initial edge

degree K = 2, the ratio V/N is less than 13% for all probabilities /. At K > 4,

the initial ring lattice at / = 0 requires all nodes to be controllable. As the rewiring

probability / grows, the occurrence of triangles decreases, where the minimum ratio

V/N is around 50% for K = 4 and is around 75% for K = 6.

A limitation of the small-world model is that it generates too few nodes with very

low-degree or high-degree distribution. The next section considers an elegant graph

model that accounts for a growth process from which power-law graphs are formed.

111

0.8-

0.6-

-Ar-- K=6 edges
-.-- K=4 edges

-9- K=2 edges

0.2-

0 0.2 0.4 0.6 0.8 1
P, edge rewire probability

Figure 4-8: Results of overlay node placement algorithm on Watts-Strogatz small-
world graphs with N 500 nodes. Plot shows ratio of overlay nodes to total nodes,
V/N, as a function of /, the edge rewiring probability. Curves are shown for K = 2, 4,
and 6, where K is the average node degree.

Barabaisi-Albert Scale-Free Model

The Baraba'si-Albert (BA) model for random graphs, named for Albert-laszl6 Baraba'si

and Reka Albert, is a scale-free model in the sense that nodes have a power-law degree

distribution. Unlike the power-law model considered earlier in Section 4.5.2, the BA

model is a growth model where nodes are added over time using a preferential attach-

ment scheme. This model uses only one parameter, M, representing the initial degree

of nodes as they are added to the network. Starting with a small connected network,

the model adds nodes one-by-one, attaching each new node to M of the previously

added nodes. The current degree of node i is ki, and the probability of attaching

to node i is proportional to ki, i.e., probability pi = ki/ E kj, giving preference for

attaching to nodes with high degree.

Figure 4-9 shows results of the overlay node placement algorithm on Barab6si-

Albert scale-free graphs, and results are averaged over 20 realizations. For M = 1,

the model always generates a tree, giving V 0. For M = 2, V decreases with

increasing N, and V/N hits 50% at around N 750. For M = 3, V again decreases

112

L

1 J

0.8-

0.6-

z

0.4-

-A-- M=3 edges

0.2 - M=2 edges
--e-- M=1 edge

0 500 1000 1500 2000
N

Figure 4-9: Results of overlay node placement algorithm on Barabasi-Albert scale-free
graphs. This is a growth model, where the number of nodes N increases over time.
Curves are shown for M = 1, 2, and 3, where M is the initial degree of new nodes as
they are added.

with N, and V/N hits 75% at around N = 1000. While this preferential attachment

scheme from Barabaisi and Albert provides growth model for networks with a power-

law degree distribution, we observe very different results on BA graphs in Figure 4-9

versus results on power-law graphs with a Zipf distribution in Figure 4-6. In our

earlier results with the Zipf distribution, a high fraction of nodes have a degree of

one. However, in BA graphs, parameter M is the minimum degree of each node

in the graph. Thus, for any M > 2 with the BA preferential attachment scheme,

the probability grows with each node placed that a new node will attached to two or

more nodes that are already otherwise connected, in which case a new cycle is formed.

Each new cycle can require additional controllable nodes, therefore BA graphs with

parameter M > 2 have a high ratio of overlay nodes to total nodes, V/N.

113

N

4.6 Limited Number of Controllable Nodes

A program in the form of P2 is useful in scenarios where only a small set of arrival rate

vectors require support, such that the constraints are limited to the specific vectors

A(') of interest. For example, this can be used to minimize the number of controllable

nodes required to allow maximum flow between a specific source and destination. A

similar formulation can be used to maximize the achievable flow when the maximum

number of controllable nodes is upper bounded by some number X, as shown in

P6. This can be useful in scenarios where resource limitations don't allow enough

controllable nodes to achieve maximum throughput. As in P2, multiple rate vectors

A(') can be supported with additional constraints pA) E AG(V)-

max p
VCA

s.t. pA E AG(V) (P6)

|v| < X

Figure 4-10 shows results of P6 on a 6 x 6 grid for a specific arrival rate vector A

with four equal traffic demands. Here, A is the maximum scaling of the four traffic

demands for A c AG, which occurs at (A2 9, A26, A1, A1) = (2.5, 2.5, 2.5, 2.5). Figure 4-

10b shows that a 20% scaling of vector A is be supported by shortest-path routing

alone, i.e., when X = 0 and no nodes are allowed to be controllable. When a single

controllable node is allowed, i.e. X = 1, the supported throughput doubles to 40%

of A, and when X = 4 controllable nodes are allowed, the supported rate quadruples

to 80% of A. There are diminishing returns as X increases further, and maximum

throughput is supported when we are limited to placing X = 9 controllable nodes.

4.7 Overlay Nodes in Wireless Networks

The all-paths condition 4.1 is sufficient to achieve AG(V) AG in all networks, but

this condition is not always a necessary condition in wireless networks. In other words,

114

31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13 1 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

(a) Scenario

0.98 1.00

0.90 0.93

0.80 0.8

0.67

0.55

0.40

0.20

1 2 3 4 5 6
X, bound on number of overlay nodes

(b) Node Placement Results

7 8 9

Figure 4-10: Placing limited number of overlay nodes. Results of P6 for chosen rate
vector on a 6 x 6 grid. (a) Rate vector with four traffic demands, each indicated with
an arrow. (b) Fraction of rate vector supported when limited to IVI < X controllable
nodes.

115

"" 0.8
0)

CU)

0.6

0
0.0.

0.4

0.2 -

0
0

1

-

-

satisfying the all-paths condition may over allocate controllable nodes under certain

wireless interference models. To see why, consider a clique where all edges have unit-

capacity and all transmissions mutually interfere. Due to interference, the maximum

network sum throughput in this scenario is one, and this maximum throughput can

only be achieved when each source a sends to destination b directly over edge (a, b).

Thus no multi-hop paths are required, and the all-paths condition is sufficient but

not necessary for this scenario.

To illustrate an overlay network in a wireless scenario, we study the performance of

the overlay node placement algorithm on random geometric graphs, which is a simple

model for wireless networks with omnidirectional antennas. The geometric model

has parameters N and r, where N is the number of nodes and r is the edge range.

Random graphs are then generated by randomly placing N nodes in a unit square,

and creating all edges (a, b) for which the Euclidean distance between nodes a and b

is within range r. Figure 4-11 shows results of the overlay node placement algorithm

on random graphs with N = 500, averaged over 10 realizations per data point. Here,

we see for the geometric model that the number of overlay nodes, V, placed by our

algorithm grows much faster than the size of the largest connected component, C.

The reason is twofold: (i) triangles appear in minor components2 , and (ii) multiple

large components grow simultaneously. This is in contrast to the behavior of the

Erd6s-Renyi model, as discussed in Section 4.5.2, where minor components tend to

be loop-free and a single major component appears with high probability.

The results for random geometric graphs show that the overlay node placement

algorithm chooses most nodes to be controllable. However, as noted above, the place-

ment of controllable nodes by this algorithm is sufficient but may not be necessary

for wireless networks. Thus, the minimum number of controllable nodes required to

provide full throughput in wireless networks is unclear. A topic for future work is a

study of the necessary conditions for AG(V) AG under various interference models.

2If edges (a, b) and (a, c) exist at range r, then the distance between b and c is at most 2r. Thus,
every degree-2 node at range r is on a triangle at range 2r.

116

C')

0

0
C
0

CTu

0.8

0.6

0.4

0.2

0
0.02 0.04 0.06

r, edge range
0.08 0.1

Figure 4-11: Results of overlay node placement algorithm on random geometric graphs
with N = 500 nodes. The blue curve shows the ratio V/N of overlay nodes to total
nodes. The red curve shows the ratio C/N for size of largest connected component
to total nodes.

4.8 Backpressure Overlay Policy

Next, we study the problem of throughput maximization using a dynamic routing

policy for a fixed placement V of overlay nodes. For this section, uncontrollable nodes

are assumed to use a fair scheduling algorithm that serves each flow proportionally to

queue backlog. This includes first-in first-out (FIFO), round robin, and proportionally

fair random service on a packet-by-packet basis, the last of which is used in our

simulation results. Our random scheduler at node a transmits a packet of commodity

c with probability p', given by

Uc
P" = ,a (4.13)

where Ua is the queue backlog for commodity x at uncontrollable node a. All packet

simulations of policies considered use Poisson arrivals, and simulations are run for

1 million time steps.

117

1 ffi I

- v

-9- V/N

-M- C/N

4.8.1 The Control Problem

We are interested in a dynamic policy that is stable for any arrival vector in the region

AG(V), i.e., achieves maximum throughput in the overlay network. Controlling such a

system is non-trivial since legacy nodes K\V lack controllability. While backpressure

(BP) routing [40] is known to be throughput optimal, this assumes a homogeneous

setting where all nodes are controllable and thus BP doesn't directly apply to our

overlay setting. In fact, Section 4.8.2 shows an example where BP is suboptimal when

applied only at overlay nodes. A primary issue is that BP cannot account for queues

at uncontrollable nodes, so we modify BP to infer this queue size information.

Under policy 7r, let pcr(t, r) be the service function on the link (v, n) E S for

commodity c packets at time t, where v E V and n E AF. The edge rate constraint (4.6)

implies E, p,(t) < R., must be satisfied at every slot. Thus, at each overlay node,

the policy chooses the number of packets to be sent to any outgoing neighbor by

assigning values to these functions. Uncontrollable nodes K \ V are assumed to only

forward the packets on pre-specified shortest-paths.

We define two different types of queues: (i) At each controllable node v E V,

the queue for commodity c is denoted by Q (t), and (ii) at each uncontrollable node

m E Af \ V, queue Uaff(t) denotes commodity c packets for edge (m, n) E S on path

PSP. Note that queues in the underlay network have inherent directionality, since

traffic going to opposite directions must be distinguished. Overlay nodes cannot

directly observe queues at uncontrollable nodes, so instead we count packets-in-flight

Fab(t) as the number of commodity c packets that have departed overlay node a but

have not yet reached overlay neighbor b. The number of packets-in-flight on overlay

edge (a, b) is then is the sum of uncontrollable node queues along path PSP, as shown

in Equation (4.14).

,(" (t) (4.14)
(m, n) ePVP

118

In practice, counting packets-in-flight Fc"(t) can be realized by looking at the

difference in cumulative count for packets of commodity c sent from a to b versus

the cumulative count for these packets received at b. Alternatively, Facb(t) can be

tracked by acknowledging packet serial numbers from b to a, where the in-flight count

is estimated based on network delays for delivering the acknowledgment packets.

4.8.2 Insufficiency of Traditional Backpressure Routing

For an interference-free wired network, the backpressure (BP) routing policy [40] is

as follows. For each edge (a, b) E E, define the differential backlog Wb(t),

Wa"b(t) = Q"(t) - Qc(t), V (a, b) E S, V c E A, (4.15)

and define commodity cab(t) that maximizes this weight,

cab(t) E arg max Wa , V (a, b) c S. (4.16)
ceAr

Then, the BP policy chooses

I'ab>
C.b Rab , if W >0
a,6(t, BP) =b (4.17)

ab-
0, otherwise,

where P/ab(t, BP) = 0, Vc # cab(t). In [40], this policy is shown to stabilize any point

in the region AG(PJ)-

The intuition behind the optimality of BP is that congestion information prop-

agates through the network via queue backlogs. The policy balances neighboring

backlogs, such that when node n becomes congested, any upstream neighbors of n

also become congested. Since uncontrollable nodes do not use BP, they do not prop-

agate congestion information to BP sources. This is the primary reason why we do

not expect BP to perform well in our system. The secondary reason is based on an

assumption that legacy nodes cannot provide information about their backlog sizes.

119

4
5

2

3 6

1

(a) Scenario

2000

-v-- BP, overlay nodes

--- BP, all nodes
1500-

N

(D
=)
07

0 1000-

C)

a)

500-

0.4 0.5 0.6 0.7 0.8 0.9 1
p, system load

(b) Simulation Results

Figure 4-12: Insufficiency of BP in overlay networks. (a) Scenario with contention at
uncontrollable node 3. (b) Queue size of BP in overlay vs. BP in underlay.

120

Consider the example of Figure 4-12a, where the (controllable) overlay nodes

V ={1, 2, 5, 6} are indicated in blue, with directed unit-rate links. It can easily be

verified that the all-paths condition is satisfied for this setting, thus AG(V) AG(K).

The dashed red arrows show two traffic demands with symmetric arrival rates A. With

unit-rate links, offered load p = A, where p < 1 is required for this network to be

stable. We examine two different cases. First, we run BP at all nodes; this achieves

maximum throughout and it is stable for all p < 1. Second, we run BP only at overlay

nodes, computing differential backlogs across the overlay edges, e.g., node 2 computes

W6s = Q1 - Q6 and W% = Q6 - Q6. Simulation results in Figure 4-12b show that

BP at the overlay nodes cannot stabilize p > 2/3, i.e., it is throughput suboptimal.

The intuition is as follows. Note that Q6 = 0, since node 6 is a destination. Then,

any congestion at uncontrollable node 3 cannot be detected by source node 2, leading

to positive traffic flow from source 2 through node 3 which is detrimental to traffic

from source 1. This motivates our policy in the following section.

4.8.3 The Proposed OBP Policy

We propose the following policy, both dynamic and distributed, to account for packets-

in-flight.

Overlay Backpressure (OBP). Let E represent the set of edges in the overlay

network. Redefine the differential backlog from Equation (4.15) as

Wa'b(t) = Qc(t) - Qc(t) - Fa'b(t), V (a, b) E EVc E K, (4.18)

then determine cab(t) and pab(t, OBP) as in Equations (4.16) and (4.17).

Intuitively, the OBP policy takes into account both the packet accumulation at

the neighboring overlay node b, as well as any packets-in-flight on the path Pasb in the

form of negative pressure. Through simulation we observe the following properties of

the OBP policy: (i) OBP maximizes throughput in all examined scenarios, including

the one of Figure 4-12a, (ii) OBP outperforms BP applied only at overlay nodes, and

(iii) OBP has good delay properties, outperforming BP applied at all nodes.

121

A6
2
2 -

(0.5. 1.5)

I.

1 - (1, 1)

s (1, 0.75)

I 4949

0 A

(a) Throughput Region

8000

a)
N

=n
a)

0)

a)

7000-

6000-

5000-

4000-

3000-

2000-

1000 -

0.85 0.9
p, system load

(b) Simulation Results

0.95

Figure 4-13: Evaluation of OBP policy on scenario from Figure 4-12a. (a) Throughput
region of Figure 4-12a, with select rate vectors indicated. (b) Average queue backlog
of OBP, after 1e6 time steps, for rate vectors indicated in (a).

122

--- (1, 0.75)

-- - (0.5, 1.5)

k

1

In Figure 4-13, we study different arrival vectors for the network of Figure 4-12a.

The simulation results in Figure 4-13b show that all studied vectors are supported

by the OBP policy.

In Figure 4-14, we show simulation results from three policies: BP, BP with

shortest-path bias (BP+SP) from [26], and OBP. The simulations show that BP is

stable for all values p < 1. Comparing OBP results to BP and BP+SP, both of which

are throughput optimal policies, we see that OBP yields superior network delay. The

reason is threefold: (i) the quadratic network queue size of BP is proportional to the

number of controllable nodes used (in this scenario, OBP uses only 5 controllable

nodes), (ii) no packets are sent to attached trees in case of OBP, and (iii) under light

traffic, packets under BP perform random walks.

In Figure 4-15, we study a directed tandem network for the purpose of illustrating

the delay properties of OBP. From [3] it is known that for BP on a tandem network,

per-node queues grow linearly with distance from the destination, and thus network

queue size grows quadratically with the total number of nodes. However, for the

OBP policy we observe this linear growth of per-node queues only at controllable

nodes, implying smaller total network queues size and improved delay performance

when there are few controllable nodes. In this particular example, only the source

is controllable for OBP, with n - 1 legacy nodes, corresponding to the maximum

benefit. Figure 4-15a compares BP and OBP queue size versus number of nodes n

for a fixed offered load of p = 0.8. Here, we see BP queues grow quadratically in

n, while OBP queues grow linearly in n. Figures 4-15c through 4-15f compare BP

and OBP queue size versus offered load for n = 10, 25, 50, and 100 nodes. The BP

policy only transmits on edges with positive differential backlog, i.e. when Wab

Qa - Qb > 0 from Equation (4.15). Thus, BP can satisfy any offered load p < 0.5

with network queue size of approximately n x p by spacing packets at least 2 nodes

apart at intermediate edges on the directed tandem, such that weight Wab = 1 for

any intermediate node a with a packet. However, to support any offered load p > 0.5,

BP requires a positive differential backlog on all edges of the directed tandem. A

lower bound on network queue size that allows all edges to have a positive differential

123

20

27

22

32
24

33 16 6 12
19 -,- -- 14

., 1- 30

18 --
25 15

17 28

11 26 29

21 3 8 9

10

2 31 13 7 23

4

(a) Scenario

- -BP

- V - BP+SP

-G- OBP

--

- .- -

0.4 0.5 0.6 0.7
p, offered load

(b) Simulation Results

0.8 0.9 1

Figure 4-14: Comparing OBP with BP on a random graph. (a) Scenario with two
symmetric traffic demands, indicated in red arrows. (b) Average queue size for BP,
BP+SP, and OBP.

124

1000

800

600

400

(D
N

a)

0

At

a)
CU

200

U
0.3

10 25 50 80 10
n, number of nodes

(b) Fixed load p = 0.8

0

0.4 0.6
p, offered load

0.8 1

o 400
N

8 300
Cy

0 200

C:

D 100
CD

CO

(c) Fixed n = 10 nodes

0.2 0.4 0.
0.2 0.4 0.6

p, offered load

(e) Fixed n = 50 nodes

).8 1

ci)

.!6000

.~4000
0

S2000
0)
CZ

Cd
U

0.2 0.4 0.6 0.8
p, offered load

(d) Fixed n = 25 nodes

0.2 0.4 0.6
p, offered load

0.8 1

(f) Fixed n = 100 nodes

Figure 4-15: Directed tandem with n nodes. (a) Directed tandem scenario with
single traffic demand from node 1 to n. (b) BP versus OBP for fixed offered load
p = 0.8. BP queues grow quadratically with n, while OBP queues grow linearly with
n. (c)-(f) BP versus OBP for fixed n = {10, 25, 50, 100} number of nodes. Note sharp
growth in BP backlog at p = 0.5. Dotted red horizontal lines estimate BP queue size
at n(n - 1)/2. Dotted blue horizontal lines estimate OBP queue size at 2n.

125

- P
- -o..

Wi 5000
N

S4000

0

c2000
C
(1)
CCI 1 0
C)

-- BP

- 9-OBP

(a) Scenario

cD 60
N

Z)
=3 4

40

c 20

0

CD

CD

C
0

-A- BP

9GOBP

-A- BP

-- OBP

0.2

ai)
.N 1500

C 1000
0

500

0)

CD

(D)

nU

-A- BP

-0 OBP
-A- BP

-9 OBP

-

%U

I

F

F

1

I

backlog can be found as (n - 1) + (n - 2) +... + 2 + 1 + 0 = n(n - 1)/2, which is

quadratic in the number of nodes n. Therefore, for each value of n, the BP queue size

sharply transitions from a linear regime of around n x p for p < 0.5 to a quadratic

regime of around n(n - 1)/2 for 0.5 < p < 0.95. For the same scenarios, OBP queue

size is approximately 2n x p for p < 0.95, where OBP network queues are split evenly

between node 1 and total packets-in-flight F .

Finally, we consider the performance of OBP on a ring network with N = 20 nodes

and V = 3 overlay nodes, where V = 3 was proved sufficient to achieve AG(V) AG

by Lemma 4.5. The scenario is shown in Figure 4-16a, with two competing traffic

demands indicated with red arrows. Figure 4-16b shows the throughput region for

these two traffic demands, with 4 rate vectors identified, and results for the OBP

policy on these rate vectors is shown in Figure 4-16c. For each rate vector, we see the

queues remain small for all points internal to the throughput region, indicating that

OBP can stabilize the system for these vectors.

4.9 Summary

In this chapter, we have studied optimal routing in legacy networks where only a

subset of nodes can make dynamic routing decisions, while the legacy nodes can

forward packets only on pre-specified shortest-paths. This model captures evolving

heterogeneous networks where intelligence is introduced on a fraction of nodes. We

propose a sufficient condition for optimality, which is also necessary for interference-

free networks with shortest-path routing. Based on this condition, we devise an

optimal algorithm for placing controllable nodes. Finally, we propose a dynamic

backpressure routing policy to be implemented in a network overlay, and show that

this policy demonstrates superior performance in terms of throughput and delay.

126

A15

I ~
I 4'

I 4'
I 4. 4'

, 4' -
I 4' .,4'

I4' -4'-

5 6 7
4 ... 8

3 ,-9

2 10

19 13

18 14

17 16 15

1-

0

(a) Scenario

-A-(1,2)
----- (52,1)

- -- (2, 0)
--N- (1.5,1.5)

(b) Stability Region

. -~

0.92 0.94 0.96
p, system load

(c) Simulation Results

Figure 4-16: Evaluation of OBP on a ring with N = 20 nodes. (a) Overlay nodes
indicated in blue; two traffic demands shown with red arrows. (b) Throughput re-
gion for competing traffic demands A' and A". Various rate vectors identified for
simulation. (c) Queue size of OBP policy after 1 million time steps for rate vectors
indicated in (b).

127

1

2000

(2.0)

2 A8

1500 F
N

C,

0

a)
C:

1000k

500 k

0.9 0.98

(1,2)

- - - - --- -- -- 7- -

(2, 1)

F

1

4.A Proofs

4.A.1 Proof of Theorem 4.1

Theorem 4.1. Given a placement of controllable nodes V, satisfying the all-paths

condition is necessary and sufficient for maximizing the throughput region, i.e.,

AG(V) = AG if and only if P(V) = PG.

Proof of Sufficiency: Consider a multicommodity vector A E AG. Feasibility of A

implies existence of a feasible flow decomposition of A. Without loss of generality,

choose any one component of A that sends flow from node a to node b with corre-

sponding arrival rate Ab. This arrival rate Ab is supported by flow fa'\, where fa can

be decomposed into subflows fa(p) for paths p E Pab. Thus, if all paths are available

to each source via the all-paths condition, then the feasible flow decomposition can

be constructed with a stationary policy using underlay routes and the given set of

controllable overlay nodes. E

Proof of Necessity: Support of the full throughput region requires support for all

arrival rate vectors interior to the rate region allowed by the network. Assume

AG(V) = AG and some path Pf is unavailable, both as a shortest-path and as an

n-concatenation of shortest-paths at controllable nodes V. Without loss of generality,

assume that this unavailable path does not traverse any controllable nodes. Oth-

erwise, split the unavailable path at controllable nodes and choose an unavailable

segment induced from the split as path Pf; such an unavailable segment must exist,

otherwise the original path could be formed as an n-concatenation of the induced

segments. We will show that there exists a feasible arrival rate vector that requires

the use of the unavailable path P.

Construct an arrival rate vector A that includes component A) equal to the

maximum flow allowed for path Pf, plus edge rate Rab if edge (a, b) exists. In vector

A, also include one-hop traffic demands for all edges (i, j) E E \ (a, b) by choosing Aj

128

to equal any remaining capacity on edge (i, j). This rate vector A is then feasible by

construction.

Let AN be the set of nodes on path P3. For every node j not on path P, i.e.,

j E M \ Ar, the arrival rate vector A was constructed such that EZ Aj = Ej Rij.

Applying the edge rate constraints from Equation (4.6) at node j and taking the sum

over all neighbors i, we have ZX E. fi.Y, < I Rj3 = EZ Ai for all j E K \ A/,

where the last equality comes from the previous equation. Then flow conservation

requires that f,c = 0 for all commodities c $ j. Thus, no feasible flow decomposition

of A can route flow for Ab through any nodes in K \ AQ. Therefore, it remains to

consider only nodes in XNi to support A.

If PI is the only path from node a to b using nodes from the set AQ, then P)t is

clearly necessary to support flow A). Otherwise, recall that by assumption there are

no controllable nodes intermediate to path PX. Then it remains only to consider the

case where the shortest-path from node a to b uses a strict subset of nodes in A, as

no controllable nodes are available for path concatenation. Consider edge (i, j) such

that nodes i and j are on path P, where edge (i, j) is on PSP but not on P . Here,

PjI = (i, j) is the only available path from i to j with unused capacity, because no

controllable nodes are available. Then, fj' 3 = A = Rij, and Equation (4.6) requires

fab'b = 0. Therefore, there is no unused capacity on path P P so Ab and A) cannot

be supported simultaneously. There are no other paths to consider from node a to b

for a feasible flow decomposition of A.

Therefore, AG(V) C AG if any path is not available. Thus, we have proved the

necessity of the all-paths condition for wired networks with shortest-path routing. l

4.A.2 Proof of Lemma 4.3

Lemma 4.3. The overlay node placement of P4 satisfies the all-paths condition for

graph G'.

Proof. Let V be a overlay node placement chosen by P4, and consider every acyclic

path Pab between all pairs of nodes a and b in graph G'. For all such paths Pab, we will

129

show that either (1) Pab is a shortest-path or (2) Pab can be formed as a concatenation

of shortest-paths at overlay nodes V. Thus, Pab E P(V) for all paths Pab on graph

G', proving that P(V) = PG,, i.e., that the all-paths condition is satisfied.

Define overlay neighbor tree D" to be the union of shortest path routes to node

n from all overlay neighbors of n, where the overlay nodes are defined by V. Because

P4 places overlay nodes on the shortest paths from the leaf nodes of D' to n, we have

the relationship D" C D' C Dn. The leaf nodes of D' are the closest overlay nodes

to n, and we will make use of this construction.

For each path Pab, one of two cases must hold.

(1) The entire path Pab is contained in overlay neighbor tree D''. In this case,

Pab = PSbp, SO Pb E P (V)

(2) There exists an overlay node v E D' such that path Pb is a concatenation of

paths Pa, and PvP at overlay node v.

Path PSbP is provided by a shortest-path route, so it only remains to show that

path Pa, is either (1) a shortest-path or (2) can be formed as a concatenation of

shortest-paths at overlay nodes V, i.e., Pa, E P(V). To show this, first note that

neighbor tree D' includes all neighbors of node b, and that v is at least one hop

away from b. Then path Pvsp has a positive length, and thus the length of path

P, is strictly less than the length of path Pab. We can then iteratively repeat the

above two-case argument by letting b' = v, and consider sub-path Pad,, repeatedly

shortening the path until case (1) holds.

Therefore, every path Pab on graph G' is also in the set of paths P(V). Thus,

P(V) = P%/, and the all-paths condition is satisfied. 0

4.A.3 Proof of Lemma 4.5

Lemma 4.5. Exactly 3 controllable nodes are required to satisfy the all-paths condition

for a ring network with N > 5 nodes and hop-count as the metric for shortest-path

routing.

130

Proof. Lemma 4.4 establishes the necessity of at least 3 controllable nodes, so it

only remains to show that 3 controllable nodes are sufficient to satisfy the all-paths

condition.

Starting from any node x, consider nodes y and z that are neighbors, i.e., (y, z) E

E, where shortest-paths P' and Ps' are disjoint. Without loss of generality assume

PsI <; PS I where IpI is the length of path p. With hop-count as the shortest-path

metric, the length of these disjoint shortest-paths can differ at most by 1. Otherwise,

there would exist a contradiction, as the path formed as a concatenation of Ps with

edge (y, z) would be shorter than shortest-path P. Then the following inequality

holds for any number of nodes N > 5.

1p N - 1]J N (4.19)|Pg| I _- 2 - 3I('9

Therefore, any node can reach a minimum of N/3 nodes in either direction around the

ring using shortest-path routing. Conversely, any node can be reached by a minimum

of N/3 nodes in either direction. Then we can place 3 controllable nodes, vI, v2 ,

and v3 , such that shortest-paths Ps, and Psk are edge-disjoint for all permutations

i, j, k E {1, 2, 3}. The overlay edges between these controllable nodes then form a

bidirectionally connected ring as shown in Figure 4-1, making use of all paths between

the controllable nodes. Every uncontrollable u is on the shortest-path between two

controllable nodes vi and vj; thus, by optimal substructure, paths Ps and PSP are

edge-disjoint paths from u to vi and v , and paths P' and P' are edge-disjoint paths

from vi and vj to node u. Then every path in the network is either a shortest-path or

can be formed as an n-concatenation of shortest paths, and the all-paths condition is

satisfied with exactly 3 controllable nodes. L

131

132

Chapter 5

Conclusions

In this thesis, we have considered practical applications of distributed network control

policies in two distinct areas. In the first part of this thesis, we studied the use of

network coding to increase the stability region of wireless networks. In the second

part of this thesis, we studied the use of backpressure routing in interference-free

legacy networks based on shortest-path routing, where only a subset of devices are

allowed to make dynamic routing decisions.

In Chapters 2 and 3, we introduced a simple network coding scheme, and char-

acterized the stability region subject to our network coding constraints. In Chap-

ter 2, we developed a centralized network control policy that jointly optimizes for

routing, scheduling, and our simple network coding scheme, and proved that this

policy achieves maximum throughput subject to our coding constraint. In Chapter

3, we extended the policy from Chapter 2 by replacing the centralized max-weight

scheduler with a distributed CSMA scheduler for use in random access networks, and

showed that this CSMA policy can come arbitrarily close to supporting the full stabil-

ity region allowed by our network coding constraint. We also developed a method for

maintaining stable side information buffers without decreasing throughput. Analyti-

cal and empirical results were provided on throughput and delay. A main conclusion

is that pairwise network coding captures most of the throughput gains on random

topologies, and we showed simulation results for random graphs where pairwise net-

work coding provides a median throughput gain of 31% beyond optimal routing and

133

scheduling without network coding.

In Chapter 4, a network overlay architecture was considered for deploying control-

lable nodes in networks based on shortest-path routing. We developed an algorithm to

find the minimum placement of controllable overlay nodes while maximizing through-

put region of the network. A motivating result showed that large ring networks require

exactly 3 controllable nodes to achieve the full throughput region of the network. We

evaluated our overlay node placement algorithm on various random graph models,

and found, for example, that on 1000 node random graphs with power-law degree

distribution using exponent a = 2.5 - a common model for the Internet - the

full throughput region was achieved with fewer than 8% of nodes made controllable.

We showed that the use of traditional backpressure (BP) routing at overlay nodes

can be throughput suboptimal due to an inability to detect congestion at uncontrol-

lable nodes. We then developed the overlay backpressure (OBP) routing policy to

detect congestion at uncontrollable nodes by tracking the packets-in-flight between

controllable nodes, and showed OBP to achieve maximum throughput in all scenarios

considered.

There are many avenues for future work on these topics. For network coding, it

would be interesting to characterize the stability region with unreliable transmissions,

and to combine our network coding scheme with suboptimal - but computationally

less complex - greedy maximal scheduling. Then, a system implementation of our

policies could be built. We would like to find the minimum placement of controllable

nodes for maximizing throughput in interference networks. It would also be interest-

ing to consider the behavior of our OBP policy in networks with mixed data rates,

and to evaluate OBP on top of live networks.

134

Bibliography

[1] R. Ahlswede, N. Cai, S.Y.R. Li, and R.W. Yeung. Network information flow.
IEEE Trans. on Info. Theory, 46(4):1204-1216, 2000.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay
networks. In Proc. A CM SOSP, Oct. 2001.

[3] L. Bui, R. Srikant, and A. Stolyar. Novel architectures and algorithms for delay
reduction in back-pressure scheduling and routing. In Proc. IEEE INFOCOM,
April 2009.

[4] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through maximal
scheduling in wireless networks. In Proc. Allerton, Sept. 2005.

[5] P. Chaporkar and A. Proutiere. Adaptive network coding and scheduling for
maximizing throughput in wireless networks. In Proc. ACM MobiCom, Sept.
2007.

[6] T. Cui, L. Chen, and T. Ho. Energy efficient opportunistic network coding for
wireless networks. In Proc. IEEE INFOCOM, April 2008.

[7] A. Eryilmaz and D. S. Lun. Control for inter-session network coding. In NetCod,
Jan. 2007.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and cross-layer
control in wireless networks, volume 1. Foundations and Trends in Networking,
2006.

[9] J. Han, D. Watson, and F. Jahanian. Topology aware overlay networks. In Proc.
IEEE INFOCOM, March 2005.

[10] L. Jiang and J. Walrand. A distributed CSMA algorithm for throughput and
utility maximization in wireless networks. In Proc. Allerton, Sept. 2008.

[11] L. Jiang and J. Walrand. A distributed algorithm for maximal throughput and
optimal fairness in wireless networks with a general interference model. EECS
Department, Univ. of California, Berkeley, Tech. Rep, 2008.

[12] N. M. Jones, B. Shrader, and E. Modiano. Optimal routing and scheduling for
a simple network coding scheme. In Proc. IEEE INFOCOM, March 2012.

135

[13] N. M. Jones, B. Shrader, and E. Modiano. Distributed CSMA with Pairwise

Coding. In Proc. IEEE INFOCOM, April 2013.

[14] S. Katti, H. Rahul, W. Hu, D. Katabi, M. M6dard, and J. Crowcroft. XORs in
the air: Practical wireless network coding. IEEE/ACM Trans. on Networking,
16(3):497-510, 2008.

[15] W. Khan, L. B. Le, and E. Modiano. Autonomous routing algorithms for net-

works with wide-spread failures. In Proc. IEEE MILCOM, Oct. 2009.

[16] A. Khreishah, C.C. Wang, and N.B. Shroff. Cross-layer optimization for wireless

multihop networks with pairwise intersession network coding. IEEE Journal on

Selected Areas in Comm., 27(5):606-621, 2009.

[17] L.B. Le, E. Modiano, and N.B. Shroff. Optimal control of wireless networks with

finite buffers. In Proc. IEEE INFOCOM, March 2010.

[18] S. C. Liew, C. Kai, J. Leung, and B. Wong. Back-of-the-envelope computation
of throughput distributions in csma wireless networks. In Proc. IEEE ICC, June

2009.

[19] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor. Towards utility-optimal

random access without message passing. Wireless Communications and Mobile

Computing, 10(1):115-128, 2010.

[20] P. Mannersalo, G. S. Paschos, and L. Gkatzikis. Geometrical bounds on the

efficiency of wireless network coding. In Proc. WiOpt, May 2013.

[21] P. Marbach and A. Eryilmaz. A backlog-based csma mechanism to achieve fair-

ness and throughput-optimality in multihop wireless networks. In Proc. Allerton,
Sept. 2008.

[22] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless

networks via gossiping. In Proc. ACM SIGMETRICS, June 2006.

[23] S. Moeller, A. Sridharan, B. Krishnamachari, and 0. Gnawali. Routing without

routes: The backpressure collection protocol. In Proc. IPSN, April 2010.

[24] D. Nakamura and A. Tamura. A revision of Minty's algorithm for finding a

maximum weight stable set of a claw-free graph. J. Oper. Res. Soc. Japan,
44(2):194-204, 2001.

[25] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and M. Chiang.
Experimental evaluation of optimal CSMA. In Proc. IEEE INFOCOM, April

2011.

[26] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and routing

for time varying wireless networks. In Proc. IEEE INFOCOM, April 2003.

136

[27] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and routing
for time-varying wireless networks. IEEE Journal on Selected Areas in Comm.,
23(1):89-103, 2005.

[28] M. E. J Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

[29] J. Ni and R. Srikant. Distributed CSMA/CA algorithms for achieving maximum
throughput in wireless networks. In Proc. ITA Workshop, Feb. 2009.

[30] G. S. Paschos, L. Georgiadis, and L. Tassiulas. Optimal scheduling of pairwise
XORs under statistical overhearing and feedback. In Proc. IEEE RAWNET,
May 2011.

[31] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition, 2007.

[32] S. Rajagopalan, D. Shah, and J. Shin. Network adiabatic theorem: an efficient
randomized protocol for contention resolution. In Proc. ACM SIGMETRICS,
June 2009.

[33] J. Ryu, L. Ying, and S. Shakkottai. Back-pressure routing for intermittently
connected networks. In Proc. IEEE INFOCOM, March 2010.

[34] Y.E. Sagduyu, D. Guo, and R. Berry. Throughput and stability of digital and
analog network coding for wireless networks with single and multiple relays. In
Proc. WICON, Nov. 2008.

[35] H. Seferoglu, A. Markopoulou, and U. Kozat. Network coding-aware rate control
and scheduling in wireless networks. In Proc. IEEE ICME, June 2009.

[36] H. Seferoglu and E. Modiano. Diff-max: Separation of routing and scheduling in
backpressure-based wireless networks. In Proc. IEEE INFOCOM, April 2013.

[37] S. Sengupta, S. Rayanchu, and S. Banerjee. An analysis of wireless network
coding for unicast sessions: The case for coding-aware routing. In Proc. IEEE
INFOCOM, May 2007.

[38] S. Shabdanov, C. Rosenberg, and P. Mitran. Joint routing, scheduling, and
network coding for wireless multihop networks. In Proc. WiOpt, May 2011.

[39] G. Sharma, R.R. Mazumdar, and N.B. Shroff. On the complexity of scheduling
in wireless networks. In Proc. A CM MobiCom, Sept. 2006.

[40] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio net-
works. IEEE TRans. Auto. Control, pages 1936-1948, Dec. 1992.

[41] D. Traskov, M. Medard, P. Sadeghi, and R. Koetter. Joint scheduling and in-
stantaneously decodable network coding. In Proc. IEEE GLOBECOM, 2009.

137

[42] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Medard. Network
Coding for Multiple Unicasts: An Approach based on Linear Optimization. In
Proc. ISIT, July 2006.

[43] C.C. Wang and N. B. Shroff. On wireless network scheduling with intersession
network coding. In Proc. CISS, March 2008.

[44] L. Ying, S. Shakkottai, and A. Reddy. On combining shortest-path and back-
pressure routing over multihop wireless networks. In Proc. IEEE INFOCOM,
April 2009.

138

